xref: /openbmc/linux/net/wireless/util.c (revision e23feb16)
1 /*
2  * Wireless utility functions
3  *
4  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
5  */
6 #include <linux/export.h>
7 #include <linux/bitops.h>
8 #include <linux/etherdevice.h>
9 #include <linux/slab.h>
10 #include <net/cfg80211.h>
11 #include <net/ip.h>
12 #include <net/dsfield.h>
13 #include "core.h"
14 #include "rdev-ops.h"
15 
16 
17 struct ieee80211_rate *
18 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
19 			    u32 basic_rates, int bitrate)
20 {
21 	struct ieee80211_rate *result = &sband->bitrates[0];
22 	int i;
23 
24 	for (i = 0; i < sband->n_bitrates; i++) {
25 		if (!(basic_rates & BIT(i)))
26 			continue;
27 		if (sband->bitrates[i].bitrate > bitrate)
28 			continue;
29 		result = &sband->bitrates[i];
30 	}
31 
32 	return result;
33 }
34 EXPORT_SYMBOL(ieee80211_get_response_rate);
35 
36 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
37 			      enum nl80211_bss_scan_width scan_width)
38 {
39 	struct ieee80211_rate *bitrates;
40 	u32 mandatory_rates = 0;
41 	enum ieee80211_rate_flags mandatory_flag;
42 	int i;
43 
44 	if (WARN_ON(!sband))
45 		return 1;
46 
47 	if (sband->band == IEEE80211_BAND_2GHZ) {
48 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
49 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
50 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
51 		else
52 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
53 	} else {
54 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
55 	}
56 
57 	bitrates = sband->bitrates;
58 	for (i = 0; i < sband->n_bitrates; i++)
59 		if (bitrates[i].flags & mandatory_flag)
60 			mandatory_rates |= BIT(i);
61 	return mandatory_rates;
62 }
63 EXPORT_SYMBOL(ieee80211_mandatory_rates);
64 
65 int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band)
66 {
67 	/* see 802.11 17.3.8.3.2 and Annex J
68 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
69 	if (chan <= 0)
70 		return 0; /* not supported */
71 	switch (band) {
72 	case IEEE80211_BAND_2GHZ:
73 		if (chan == 14)
74 			return 2484;
75 		else if (chan < 14)
76 			return 2407 + chan * 5;
77 		break;
78 	case IEEE80211_BAND_5GHZ:
79 		if (chan >= 182 && chan <= 196)
80 			return 4000 + chan * 5;
81 		else
82 			return 5000 + chan * 5;
83 		break;
84 	case IEEE80211_BAND_60GHZ:
85 		if (chan < 5)
86 			return 56160 + chan * 2160;
87 		break;
88 	default:
89 		;
90 	}
91 	return 0; /* not supported */
92 }
93 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
94 
95 int ieee80211_frequency_to_channel(int freq)
96 {
97 	/* see 802.11 17.3.8.3.2 and Annex J */
98 	if (freq == 2484)
99 		return 14;
100 	else if (freq < 2484)
101 		return (freq - 2407) / 5;
102 	else if (freq >= 4910 && freq <= 4980)
103 		return (freq - 4000) / 5;
104 	else if (freq <= 45000) /* DMG band lower limit */
105 		return (freq - 5000) / 5;
106 	else if (freq >= 58320 && freq <= 64800)
107 		return (freq - 56160) / 2160;
108 	else
109 		return 0;
110 }
111 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
112 
113 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
114 						  int freq)
115 {
116 	enum ieee80211_band band;
117 	struct ieee80211_supported_band *sband;
118 	int i;
119 
120 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
121 		sband = wiphy->bands[band];
122 
123 		if (!sband)
124 			continue;
125 
126 		for (i = 0; i < sband->n_channels; i++) {
127 			if (sband->channels[i].center_freq == freq)
128 				return &sband->channels[i];
129 		}
130 	}
131 
132 	return NULL;
133 }
134 EXPORT_SYMBOL(__ieee80211_get_channel);
135 
136 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
137 				     enum ieee80211_band band)
138 {
139 	int i, want;
140 
141 	switch (band) {
142 	case IEEE80211_BAND_5GHZ:
143 		want = 3;
144 		for (i = 0; i < sband->n_bitrates; i++) {
145 			if (sband->bitrates[i].bitrate == 60 ||
146 			    sband->bitrates[i].bitrate == 120 ||
147 			    sband->bitrates[i].bitrate == 240) {
148 				sband->bitrates[i].flags |=
149 					IEEE80211_RATE_MANDATORY_A;
150 				want--;
151 			}
152 		}
153 		WARN_ON(want);
154 		break;
155 	case IEEE80211_BAND_2GHZ:
156 		want = 7;
157 		for (i = 0; i < sband->n_bitrates; i++) {
158 			if (sband->bitrates[i].bitrate == 10) {
159 				sband->bitrates[i].flags |=
160 					IEEE80211_RATE_MANDATORY_B |
161 					IEEE80211_RATE_MANDATORY_G;
162 				want--;
163 			}
164 
165 			if (sband->bitrates[i].bitrate == 20 ||
166 			    sband->bitrates[i].bitrate == 55 ||
167 			    sband->bitrates[i].bitrate == 110 ||
168 			    sband->bitrates[i].bitrate == 60 ||
169 			    sband->bitrates[i].bitrate == 120 ||
170 			    sband->bitrates[i].bitrate == 240) {
171 				sband->bitrates[i].flags |=
172 					IEEE80211_RATE_MANDATORY_G;
173 				want--;
174 			}
175 
176 			if (sband->bitrates[i].bitrate != 10 &&
177 			    sband->bitrates[i].bitrate != 20 &&
178 			    sband->bitrates[i].bitrate != 55 &&
179 			    sband->bitrates[i].bitrate != 110)
180 				sband->bitrates[i].flags |=
181 					IEEE80211_RATE_ERP_G;
182 		}
183 		WARN_ON(want != 0 && want != 3 && want != 6);
184 		break;
185 	case IEEE80211_BAND_60GHZ:
186 		/* check for mandatory HT MCS 1..4 */
187 		WARN_ON(!sband->ht_cap.ht_supported);
188 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
189 		break;
190 	case IEEE80211_NUM_BANDS:
191 		WARN_ON(1);
192 		break;
193 	}
194 }
195 
196 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
197 {
198 	enum ieee80211_band band;
199 
200 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
201 		if (wiphy->bands[band])
202 			set_mandatory_flags_band(wiphy->bands[band], band);
203 }
204 
205 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
206 {
207 	int i;
208 	for (i = 0; i < wiphy->n_cipher_suites; i++)
209 		if (cipher == wiphy->cipher_suites[i])
210 			return true;
211 	return false;
212 }
213 
214 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
215 				   struct key_params *params, int key_idx,
216 				   bool pairwise, const u8 *mac_addr)
217 {
218 	if (key_idx > 5)
219 		return -EINVAL;
220 
221 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
222 		return -EINVAL;
223 
224 	if (pairwise && !mac_addr)
225 		return -EINVAL;
226 
227 	/*
228 	 * Disallow pairwise keys with non-zero index unless it's WEP
229 	 * or a vendor specific cipher (because current deployments use
230 	 * pairwise WEP keys with non-zero indices and for vendor specific
231 	 * ciphers this should be validated in the driver or hardware level
232 	 * - but 802.11i clearly specifies to use zero)
233 	 */
234 	if (pairwise && key_idx &&
235 	    ((params->cipher == WLAN_CIPHER_SUITE_TKIP) ||
236 	     (params->cipher == WLAN_CIPHER_SUITE_CCMP) ||
237 	     (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC)))
238 		return -EINVAL;
239 
240 	switch (params->cipher) {
241 	case WLAN_CIPHER_SUITE_WEP40:
242 		if (params->key_len != WLAN_KEY_LEN_WEP40)
243 			return -EINVAL;
244 		break;
245 	case WLAN_CIPHER_SUITE_TKIP:
246 		if (params->key_len != WLAN_KEY_LEN_TKIP)
247 			return -EINVAL;
248 		break;
249 	case WLAN_CIPHER_SUITE_CCMP:
250 		if (params->key_len != WLAN_KEY_LEN_CCMP)
251 			return -EINVAL;
252 		break;
253 	case WLAN_CIPHER_SUITE_WEP104:
254 		if (params->key_len != WLAN_KEY_LEN_WEP104)
255 			return -EINVAL;
256 		break;
257 	case WLAN_CIPHER_SUITE_AES_CMAC:
258 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
259 			return -EINVAL;
260 		break;
261 	default:
262 		/*
263 		 * We don't know anything about this algorithm,
264 		 * allow using it -- but the driver must check
265 		 * all parameters! We still check below whether
266 		 * or not the driver supports this algorithm,
267 		 * of course.
268 		 */
269 		break;
270 	}
271 
272 	if (params->seq) {
273 		switch (params->cipher) {
274 		case WLAN_CIPHER_SUITE_WEP40:
275 		case WLAN_CIPHER_SUITE_WEP104:
276 			/* These ciphers do not use key sequence */
277 			return -EINVAL;
278 		case WLAN_CIPHER_SUITE_TKIP:
279 		case WLAN_CIPHER_SUITE_CCMP:
280 		case WLAN_CIPHER_SUITE_AES_CMAC:
281 			if (params->seq_len != 6)
282 				return -EINVAL;
283 			break;
284 		}
285 	}
286 
287 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
288 		return -EINVAL;
289 
290 	return 0;
291 }
292 
293 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
294 {
295 	unsigned int hdrlen = 24;
296 
297 	if (ieee80211_is_data(fc)) {
298 		if (ieee80211_has_a4(fc))
299 			hdrlen = 30;
300 		if (ieee80211_is_data_qos(fc)) {
301 			hdrlen += IEEE80211_QOS_CTL_LEN;
302 			if (ieee80211_has_order(fc))
303 				hdrlen += IEEE80211_HT_CTL_LEN;
304 		}
305 		goto out;
306 	}
307 
308 	if (ieee80211_is_ctl(fc)) {
309 		/*
310 		 * ACK and CTS are 10 bytes, all others 16. To see how
311 		 * to get this condition consider
312 		 *   subtype mask:   0b0000000011110000 (0x00F0)
313 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
314 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
315 		 *   bits that matter:         ^^^      (0x00E0)
316 		 *   value of those: 0b0000000011000000 (0x00C0)
317 		 */
318 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
319 			hdrlen = 10;
320 		else
321 			hdrlen = 16;
322 	}
323 out:
324 	return hdrlen;
325 }
326 EXPORT_SYMBOL(ieee80211_hdrlen);
327 
328 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
329 {
330 	const struct ieee80211_hdr *hdr =
331 			(const struct ieee80211_hdr *)skb->data;
332 	unsigned int hdrlen;
333 
334 	if (unlikely(skb->len < 10))
335 		return 0;
336 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
337 	if (unlikely(hdrlen > skb->len))
338 		return 0;
339 	return hdrlen;
340 }
341 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
342 
343 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
344 {
345 	int ae = meshhdr->flags & MESH_FLAGS_AE;
346 	/* 802.11-2012, 8.2.4.7.3 */
347 	switch (ae) {
348 	default:
349 	case 0:
350 		return 6;
351 	case MESH_FLAGS_AE_A4:
352 		return 12;
353 	case MESH_FLAGS_AE_A5_A6:
354 		return 18;
355 	}
356 }
357 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
358 
359 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
360 			   enum nl80211_iftype iftype)
361 {
362 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
363 	u16 hdrlen, ethertype;
364 	u8 *payload;
365 	u8 dst[ETH_ALEN];
366 	u8 src[ETH_ALEN] __aligned(2);
367 
368 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
369 		return -1;
370 
371 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
372 
373 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
374 	 * header
375 	 * IEEE 802.11 address fields:
376 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
377 	 *   0     0   DA    SA    BSSID n/a
378 	 *   0     1   DA    BSSID SA    n/a
379 	 *   1     0   BSSID SA    DA    n/a
380 	 *   1     1   RA    TA    DA    SA
381 	 */
382 	memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
383 	memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
384 
385 	switch (hdr->frame_control &
386 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
387 	case cpu_to_le16(IEEE80211_FCTL_TODS):
388 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
389 			     iftype != NL80211_IFTYPE_AP_VLAN &&
390 			     iftype != NL80211_IFTYPE_P2P_GO))
391 			return -1;
392 		break;
393 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
394 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
395 			     iftype != NL80211_IFTYPE_MESH_POINT &&
396 			     iftype != NL80211_IFTYPE_AP_VLAN &&
397 			     iftype != NL80211_IFTYPE_STATION))
398 			return -1;
399 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
400 			struct ieee80211s_hdr *meshdr =
401 				(struct ieee80211s_hdr *) (skb->data + hdrlen);
402 			/* make sure meshdr->flags is on the linear part */
403 			if (!pskb_may_pull(skb, hdrlen + 1))
404 				return -1;
405 			if (meshdr->flags & MESH_FLAGS_AE_A4)
406 				return -1;
407 			if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
408 				skb_copy_bits(skb, hdrlen +
409 					offsetof(struct ieee80211s_hdr, eaddr1),
410 				       	dst, ETH_ALEN);
411 				skb_copy_bits(skb, hdrlen +
412 					offsetof(struct ieee80211s_hdr, eaddr2),
413 				        src, ETH_ALEN);
414 			}
415 			hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
416 		}
417 		break;
418 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
419 		if ((iftype != NL80211_IFTYPE_STATION &&
420 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
421 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
422 		    (is_multicast_ether_addr(dst) &&
423 		     ether_addr_equal(src, addr)))
424 			return -1;
425 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
426 			struct ieee80211s_hdr *meshdr =
427 				(struct ieee80211s_hdr *) (skb->data + hdrlen);
428 			/* make sure meshdr->flags is on the linear part */
429 			if (!pskb_may_pull(skb, hdrlen + 1))
430 				return -1;
431 			if (meshdr->flags & MESH_FLAGS_AE_A5_A6)
432 				return -1;
433 			if (meshdr->flags & MESH_FLAGS_AE_A4)
434 				skb_copy_bits(skb, hdrlen +
435 					offsetof(struct ieee80211s_hdr, eaddr1),
436 					src, ETH_ALEN);
437 			hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
438 		}
439 		break;
440 	case cpu_to_le16(0):
441 		if (iftype != NL80211_IFTYPE_ADHOC &&
442 		    iftype != NL80211_IFTYPE_STATION)
443 				return -1;
444 		break;
445 	}
446 
447 	if (!pskb_may_pull(skb, hdrlen + 8))
448 		return -1;
449 
450 	payload = skb->data + hdrlen;
451 	ethertype = (payload[6] << 8) | payload[7];
452 
453 	if (likely((ether_addr_equal(payload, rfc1042_header) &&
454 		    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
455 		   ether_addr_equal(payload, bridge_tunnel_header))) {
456 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
457 		 * replace EtherType */
458 		skb_pull(skb, hdrlen + 6);
459 		memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
460 		memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
461 	} else {
462 		struct ethhdr *ehdr;
463 		__be16 len;
464 
465 		skb_pull(skb, hdrlen);
466 		len = htons(skb->len);
467 		ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
468 		memcpy(ehdr->h_dest, dst, ETH_ALEN);
469 		memcpy(ehdr->h_source, src, ETH_ALEN);
470 		ehdr->h_proto = len;
471 	}
472 	return 0;
473 }
474 EXPORT_SYMBOL(ieee80211_data_to_8023);
475 
476 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
477 			     enum nl80211_iftype iftype, u8 *bssid, bool qos)
478 {
479 	struct ieee80211_hdr hdr;
480 	u16 hdrlen, ethertype;
481 	__le16 fc;
482 	const u8 *encaps_data;
483 	int encaps_len, skip_header_bytes;
484 	int nh_pos, h_pos;
485 	int head_need;
486 
487 	if (unlikely(skb->len < ETH_HLEN))
488 		return -EINVAL;
489 
490 	nh_pos = skb_network_header(skb) - skb->data;
491 	h_pos = skb_transport_header(skb) - skb->data;
492 
493 	/* convert Ethernet header to proper 802.11 header (based on
494 	 * operation mode) */
495 	ethertype = (skb->data[12] << 8) | skb->data[13];
496 	fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
497 
498 	switch (iftype) {
499 	case NL80211_IFTYPE_AP:
500 	case NL80211_IFTYPE_AP_VLAN:
501 	case NL80211_IFTYPE_P2P_GO:
502 		fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
503 		/* DA BSSID SA */
504 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
505 		memcpy(hdr.addr2, addr, ETH_ALEN);
506 		memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
507 		hdrlen = 24;
508 		break;
509 	case NL80211_IFTYPE_STATION:
510 	case NL80211_IFTYPE_P2P_CLIENT:
511 		fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
512 		/* BSSID SA DA */
513 		memcpy(hdr.addr1, bssid, ETH_ALEN);
514 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
515 		memcpy(hdr.addr3, skb->data, ETH_ALEN);
516 		hdrlen = 24;
517 		break;
518 	case NL80211_IFTYPE_ADHOC:
519 		/* DA SA BSSID */
520 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
521 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
522 		memcpy(hdr.addr3, bssid, ETH_ALEN);
523 		hdrlen = 24;
524 		break;
525 	default:
526 		return -EOPNOTSUPP;
527 	}
528 
529 	if (qos) {
530 		fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
531 		hdrlen += 2;
532 	}
533 
534 	hdr.frame_control = fc;
535 	hdr.duration_id = 0;
536 	hdr.seq_ctrl = 0;
537 
538 	skip_header_bytes = ETH_HLEN;
539 	if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
540 		encaps_data = bridge_tunnel_header;
541 		encaps_len = sizeof(bridge_tunnel_header);
542 		skip_header_bytes -= 2;
543 	} else if (ethertype >= ETH_P_802_3_MIN) {
544 		encaps_data = rfc1042_header;
545 		encaps_len = sizeof(rfc1042_header);
546 		skip_header_bytes -= 2;
547 	} else {
548 		encaps_data = NULL;
549 		encaps_len = 0;
550 	}
551 
552 	skb_pull(skb, skip_header_bytes);
553 	nh_pos -= skip_header_bytes;
554 	h_pos -= skip_header_bytes;
555 
556 	head_need = hdrlen + encaps_len - skb_headroom(skb);
557 
558 	if (head_need > 0 || skb_cloned(skb)) {
559 		head_need = max(head_need, 0);
560 		if (head_need)
561 			skb_orphan(skb);
562 
563 		if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
564 			return -ENOMEM;
565 
566 		skb->truesize += head_need;
567 	}
568 
569 	if (encaps_data) {
570 		memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
571 		nh_pos += encaps_len;
572 		h_pos += encaps_len;
573 	}
574 
575 	memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
576 
577 	nh_pos += hdrlen;
578 	h_pos += hdrlen;
579 
580 	/* Update skb pointers to various headers since this modified frame
581 	 * is going to go through Linux networking code that may potentially
582 	 * need things like pointer to IP header. */
583 	skb_set_mac_header(skb, 0);
584 	skb_set_network_header(skb, nh_pos);
585 	skb_set_transport_header(skb, h_pos);
586 
587 	return 0;
588 }
589 EXPORT_SYMBOL(ieee80211_data_from_8023);
590 
591 
592 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
593 			      const u8 *addr, enum nl80211_iftype iftype,
594 			      const unsigned int extra_headroom,
595 			      bool has_80211_header)
596 {
597 	struct sk_buff *frame = NULL;
598 	u16 ethertype;
599 	u8 *payload;
600 	const struct ethhdr *eth;
601 	int remaining, err;
602 	u8 dst[ETH_ALEN], src[ETH_ALEN];
603 
604 	if (has_80211_header) {
605 		err = ieee80211_data_to_8023(skb, addr, iftype);
606 		if (err)
607 			goto out;
608 
609 		/* skip the wrapping header */
610 		eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
611 		if (!eth)
612 			goto out;
613 	} else {
614 		eth = (struct ethhdr *) skb->data;
615 	}
616 
617 	while (skb != frame) {
618 		u8 padding;
619 		__be16 len = eth->h_proto;
620 		unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
621 
622 		remaining = skb->len;
623 		memcpy(dst, eth->h_dest, ETH_ALEN);
624 		memcpy(src, eth->h_source, ETH_ALEN);
625 
626 		padding = (4 - subframe_len) & 0x3;
627 		/* the last MSDU has no padding */
628 		if (subframe_len > remaining)
629 			goto purge;
630 
631 		skb_pull(skb, sizeof(struct ethhdr));
632 		/* reuse skb for the last subframe */
633 		if (remaining <= subframe_len + padding)
634 			frame = skb;
635 		else {
636 			unsigned int hlen = ALIGN(extra_headroom, 4);
637 			/*
638 			 * Allocate and reserve two bytes more for payload
639 			 * alignment since sizeof(struct ethhdr) is 14.
640 			 */
641 			frame = dev_alloc_skb(hlen + subframe_len + 2);
642 			if (!frame)
643 				goto purge;
644 
645 			skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
646 			memcpy(skb_put(frame, ntohs(len)), skb->data,
647 				ntohs(len));
648 
649 			eth = (struct ethhdr *)skb_pull(skb, ntohs(len) +
650 							padding);
651 			if (!eth) {
652 				dev_kfree_skb(frame);
653 				goto purge;
654 			}
655 		}
656 
657 		skb_reset_network_header(frame);
658 		frame->dev = skb->dev;
659 		frame->priority = skb->priority;
660 
661 		payload = frame->data;
662 		ethertype = (payload[6] << 8) | payload[7];
663 
664 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
665 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
666 			   ether_addr_equal(payload, bridge_tunnel_header))) {
667 			/* remove RFC1042 or Bridge-Tunnel
668 			 * encapsulation and replace EtherType */
669 			skb_pull(frame, 6);
670 			memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
671 			memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
672 		} else {
673 			memcpy(skb_push(frame, sizeof(__be16)), &len,
674 				sizeof(__be16));
675 			memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
676 			memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
677 		}
678 		__skb_queue_tail(list, frame);
679 	}
680 
681 	return;
682 
683  purge:
684 	__skb_queue_purge(list);
685  out:
686 	dev_kfree_skb(skb);
687 }
688 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
689 
690 /* Given a data frame determine the 802.1p/1d tag to use. */
691 unsigned int cfg80211_classify8021d(struct sk_buff *skb)
692 {
693 	unsigned int dscp;
694 
695 	/* skb->priority values from 256->263 are magic values to
696 	 * directly indicate a specific 802.1d priority.  This is used
697 	 * to allow 802.1d priority to be passed directly in from VLAN
698 	 * tags, etc.
699 	 */
700 	if (skb->priority >= 256 && skb->priority <= 263)
701 		return skb->priority - 256;
702 
703 	switch (skb->protocol) {
704 	case htons(ETH_P_IP):
705 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
706 		break;
707 	case htons(ETH_P_IPV6):
708 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
709 		break;
710 	default:
711 		return 0;
712 	}
713 
714 	return dscp >> 5;
715 }
716 EXPORT_SYMBOL(cfg80211_classify8021d);
717 
718 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
719 {
720 	const struct cfg80211_bss_ies *ies;
721 
722 	ies = rcu_dereference(bss->ies);
723 	if (!ies)
724 		return NULL;
725 
726 	return cfg80211_find_ie(ie, ies->data, ies->len);
727 }
728 EXPORT_SYMBOL(ieee80211_bss_get_ie);
729 
730 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
731 {
732 	struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy);
733 	struct net_device *dev = wdev->netdev;
734 	int i;
735 
736 	if (!wdev->connect_keys)
737 		return;
738 
739 	for (i = 0; i < 6; i++) {
740 		if (!wdev->connect_keys->params[i].cipher)
741 			continue;
742 		if (rdev_add_key(rdev, dev, i, false, NULL,
743 				 &wdev->connect_keys->params[i])) {
744 			netdev_err(dev, "failed to set key %d\n", i);
745 			continue;
746 		}
747 		if (wdev->connect_keys->def == i)
748 			if (rdev_set_default_key(rdev, dev, i, true, true)) {
749 				netdev_err(dev, "failed to set defkey %d\n", i);
750 				continue;
751 			}
752 		if (wdev->connect_keys->defmgmt == i)
753 			if (rdev_set_default_mgmt_key(rdev, dev, i))
754 				netdev_err(dev, "failed to set mgtdef %d\n", i);
755 	}
756 
757 	kfree(wdev->connect_keys);
758 	wdev->connect_keys = NULL;
759 }
760 
761 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
762 {
763 	struct cfg80211_event *ev;
764 	unsigned long flags;
765 	const u8 *bssid = NULL;
766 
767 	spin_lock_irqsave(&wdev->event_lock, flags);
768 	while (!list_empty(&wdev->event_list)) {
769 		ev = list_first_entry(&wdev->event_list,
770 				      struct cfg80211_event, list);
771 		list_del(&ev->list);
772 		spin_unlock_irqrestore(&wdev->event_lock, flags);
773 
774 		wdev_lock(wdev);
775 		switch (ev->type) {
776 		case EVENT_CONNECT_RESULT:
777 			if (!is_zero_ether_addr(ev->cr.bssid))
778 				bssid = ev->cr.bssid;
779 			__cfg80211_connect_result(
780 				wdev->netdev, bssid,
781 				ev->cr.req_ie, ev->cr.req_ie_len,
782 				ev->cr.resp_ie, ev->cr.resp_ie_len,
783 				ev->cr.status,
784 				ev->cr.status == WLAN_STATUS_SUCCESS,
785 				NULL);
786 			break;
787 		case EVENT_ROAMED:
788 			__cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
789 					  ev->rm.req_ie_len, ev->rm.resp_ie,
790 					  ev->rm.resp_ie_len);
791 			break;
792 		case EVENT_DISCONNECTED:
793 			__cfg80211_disconnected(wdev->netdev,
794 						ev->dc.ie, ev->dc.ie_len,
795 						ev->dc.reason, true);
796 			break;
797 		case EVENT_IBSS_JOINED:
798 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid);
799 			break;
800 		}
801 		wdev_unlock(wdev);
802 
803 		kfree(ev);
804 
805 		spin_lock_irqsave(&wdev->event_lock, flags);
806 	}
807 	spin_unlock_irqrestore(&wdev->event_lock, flags);
808 }
809 
810 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
811 {
812 	struct wireless_dev *wdev;
813 
814 	ASSERT_RTNL();
815 	ASSERT_RDEV_LOCK(rdev);
816 
817 	list_for_each_entry(wdev, &rdev->wdev_list, list)
818 		cfg80211_process_wdev_events(wdev);
819 }
820 
821 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
822 			  struct net_device *dev, enum nl80211_iftype ntype,
823 			  u32 *flags, struct vif_params *params)
824 {
825 	int err;
826 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
827 
828 	ASSERT_RDEV_LOCK(rdev);
829 
830 	/* don't support changing VLANs, you just re-create them */
831 	if (otype == NL80211_IFTYPE_AP_VLAN)
832 		return -EOPNOTSUPP;
833 
834 	/* cannot change into P2P device type */
835 	if (ntype == NL80211_IFTYPE_P2P_DEVICE)
836 		return -EOPNOTSUPP;
837 
838 	if (!rdev->ops->change_virtual_intf ||
839 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
840 		return -EOPNOTSUPP;
841 
842 	/* if it's part of a bridge, reject changing type to station/ibss */
843 	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
844 	    (ntype == NL80211_IFTYPE_ADHOC ||
845 	     ntype == NL80211_IFTYPE_STATION ||
846 	     ntype == NL80211_IFTYPE_P2P_CLIENT))
847 		return -EBUSY;
848 
849 	if (ntype != otype && netif_running(dev)) {
850 		err = cfg80211_can_change_interface(rdev, dev->ieee80211_ptr,
851 						    ntype);
852 		if (err)
853 			return err;
854 
855 		dev->ieee80211_ptr->use_4addr = false;
856 		dev->ieee80211_ptr->mesh_id_up_len = 0;
857 
858 		switch (otype) {
859 		case NL80211_IFTYPE_AP:
860 			cfg80211_stop_ap(rdev, dev);
861 			break;
862 		case NL80211_IFTYPE_ADHOC:
863 			cfg80211_leave_ibss(rdev, dev, false);
864 			break;
865 		case NL80211_IFTYPE_STATION:
866 		case NL80211_IFTYPE_P2P_CLIENT:
867 			wdev_lock(dev->ieee80211_ptr);
868 			cfg80211_disconnect(rdev, dev,
869 					    WLAN_REASON_DEAUTH_LEAVING, true);
870 			wdev_unlock(dev->ieee80211_ptr);
871 			break;
872 		case NL80211_IFTYPE_MESH_POINT:
873 			/* mesh should be handled? */
874 			break;
875 		default:
876 			break;
877 		}
878 
879 		cfg80211_process_rdev_events(rdev);
880 	}
881 
882 	err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
883 
884 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
885 
886 	if (!err && params && params->use_4addr != -1)
887 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
888 
889 	if (!err) {
890 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
891 		switch (ntype) {
892 		case NL80211_IFTYPE_STATION:
893 			if (dev->ieee80211_ptr->use_4addr)
894 				break;
895 			/* fall through */
896 		case NL80211_IFTYPE_P2P_CLIENT:
897 		case NL80211_IFTYPE_ADHOC:
898 			dev->priv_flags |= IFF_DONT_BRIDGE;
899 			break;
900 		case NL80211_IFTYPE_P2P_GO:
901 		case NL80211_IFTYPE_AP:
902 		case NL80211_IFTYPE_AP_VLAN:
903 		case NL80211_IFTYPE_WDS:
904 		case NL80211_IFTYPE_MESH_POINT:
905 			/* bridging OK */
906 			break;
907 		case NL80211_IFTYPE_MONITOR:
908 			/* monitor can't bridge anyway */
909 			break;
910 		case NL80211_IFTYPE_UNSPECIFIED:
911 		case NUM_NL80211_IFTYPES:
912 			/* not happening */
913 			break;
914 		case NL80211_IFTYPE_P2P_DEVICE:
915 			WARN_ON(1);
916 			break;
917 		}
918 	}
919 
920 	if (!err && ntype != otype && netif_running(dev)) {
921 		cfg80211_update_iface_num(rdev, ntype, 1);
922 		cfg80211_update_iface_num(rdev, otype, -1);
923 	}
924 
925 	return err;
926 }
927 
928 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
929 {
930 	static const u32 __mcs2bitrate[] = {
931 		/* control PHY */
932 		[0] =   275,
933 		/* SC PHY */
934 		[1] =  3850,
935 		[2] =  7700,
936 		[3] =  9625,
937 		[4] = 11550,
938 		[5] = 12512, /* 1251.25 mbps */
939 		[6] = 15400,
940 		[7] = 19250,
941 		[8] = 23100,
942 		[9] = 25025,
943 		[10] = 30800,
944 		[11] = 38500,
945 		[12] = 46200,
946 		/* OFDM PHY */
947 		[13] =  6930,
948 		[14] =  8662, /* 866.25 mbps */
949 		[15] = 13860,
950 		[16] = 17325,
951 		[17] = 20790,
952 		[18] = 27720,
953 		[19] = 34650,
954 		[20] = 41580,
955 		[21] = 45045,
956 		[22] = 51975,
957 		[23] = 62370,
958 		[24] = 67568, /* 6756.75 mbps */
959 		/* LP-SC PHY */
960 		[25] =  6260,
961 		[26] =  8340,
962 		[27] = 11120,
963 		[28] = 12510,
964 		[29] = 16680,
965 		[30] = 22240,
966 		[31] = 25030,
967 	};
968 
969 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
970 		return 0;
971 
972 	return __mcs2bitrate[rate->mcs];
973 }
974 
975 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
976 {
977 	static const u32 base[4][10] = {
978 		{   6500000,
979 		   13000000,
980 		   19500000,
981 		   26000000,
982 		   39000000,
983 		   52000000,
984 		   58500000,
985 		   65000000,
986 		   78000000,
987 		   0,
988 		},
989 		{  13500000,
990 		   27000000,
991 		   40500000,
992 		   54000000,
993 		   81000000,
994 		  108000000,
995 		  121500000,
996 		  135000000,
997 		  162000000,
998 		  180000000,
999 		},
1000 		{  29300000,
1001 		   58500000,
1002 		   87800000,
1003 		  117000000,
1004 		  175500000,
1005 		  234000000,
1006 		  263300000,
1007 		  292500000,
1008 		  351000000,
1009 		  390000000,
1010 		},
1011 		{  58500000,
1012 		  117000000,
1013 		  175500000,
1014 		  234000000,
1015 		  351000000,
1016 		  468000000,
1017 		  526500000,
1018 		  585000000,
1019 		  702000000,
1020 		  780000000,
1021 		},
1022 	};
1023 	u32 bitrate;
1024 	int idx;
1025 
1026 	if (WARN_ON_ONCE(rate->mcs > 9))
1027 		return 0;
1028 
1029 	idx = rate->flags & (RATE_INFO_FLAGS_160_MHZ_WIDTH |
1030 			     RATE_INFO_FLAGS_80P80_MHZ_WIDTH) ? 3 :
1031 		  rate->flags & RATE_INFO_FLAGS_80_MHZ_WIDTH ? 2 :
1032 		  rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH ? 1 : 0;
1033 
1034 	bitrate = base[idx][rate->mcs];
1035 	bitrate *= rate->nss;
1036 
1037 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1038 		bitrate = (bitrate / 9) * 10;
1039 
1040 	/* do NOT round down here */
1041 	return (bitrate + 50000) / 100000;
1042 }
1043 
1044 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1045 {
1046 	int modulation, streams, bitrate;
1047 
1048 	if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1049 	    !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1050 		return rate->legacy;
1051 	if (rate->flags & RATE_INFO_FLAGS_60G)
1052 		return cfg80211_calculate_bitrate_60g(rate);
1053 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1054 		return cfg80211_calculate_bitrate_vht(rate);
1055 
1056 	/* the formula below does only work for MCS values smaller than 32 */
1057 	if (WARN_ON_ONCE(rate->mcs >= 32))
1058 		return 0;
1059 
1060 	modulation = rate->mcs & 7;
1061 	streams = (rate->mcs >> 3) + 1;
1062 
1063 	bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ?
1064 			13500000 : 6500000;
1065 
1066 	if (modulation < 4)
1067 		bitrate *= (modulation + 1);
1068 	else if (modulation == 4)
1069 		bitrate *= (modulation + 2);
1070 	else
1071 		bitrate *= (modulation + 3);
1072 
1073 	bitrate *= streams;
1074 
1075 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1076 		bitrate = (bitrate / 9) * 10;
1077 
1078 	/* do NOT round down here */
1079 	return (bitrate + 50000) / 100000;
1080 }
1081 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1082 
1083 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1084 			  enum ieee80211_p2p_attr_id attr,
1085 			  u8 *buf, unsigned int bufsize)
1086 {
1087 	u8 *out = buf;
1088 	u16 attr_remaining = 0;
1089 	bool desired_attr = false;
1090 	u16 desired_len = 0;
1091 
1092 	while (len > 0) {
1093 		unsigned int iedatalen;
1094 		unsigned int copy;
1095 		const u8 *iedata;
1096 
1097 		if (len < 2)
1098 			return -EILSEQ;
1099 		iedatalen = ies[1];
1100 		if (iedatalen + 2 > len)
1101 			return -EILSEQ;
1102 
1103 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1104 			goto cont;
1105 
1106 		if (iedatalen < 4)
1107 			goto cont;
1108 
1109 		iedata = ies + 2;
1110 
1111 		/* check WFA OUI, P2P subtype */
1112 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1113 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1114 			goto cont;
1115 
1116 		iedatalen -= 4;
1117 		iedata += 4;
1118 
1119 		/* check attribute continuation into this IE */
1120 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1121 		if (copy && desired_attr) {
1122 			desired_len += copy;
1123 			if (out) {
1124 				memcpy(out, iedata, min(bufsize, copy));
1125 				out += min(bufsize, copy);
1126 				bufsize -= min(bufsize, copy);
1127 			}
1128 
1129 
1130 			if (copy == attr_remaining)
1131 				return desired_len;
1132 		}
1133 
1134 		attr_remaining -= copy;
1135 		if (attr_remaining)
1136 			goto cont;
1137 
1138 		iedatalen -= copy;
1139 		iedata += copy;
1140 
1141 		while (iedatalen > 0) {
1142 			u16 attr_len;
1143 
1144 			/* P2P attribute ID & size must fit */
1145 			if (iedatalen < 3)
1146 				return -EILSEQ;
1147 			desired_attr = iedata[0] == attr;
1148 			attr_len = get_unaligned_le16(iedata + 1);
1149 			iedatalen -= 3;
1150 			iedata += 3;
1151 
1152 			copy = min_t(unsigned int, attr_len, iedatalen);
1153 
1154 			if (desired_attr) {
1155 				desired_len += copy;
1156 				if (out) {
1157 					memcpy(out, iedata, min(bufsize, copy));
1158 					out += min(bufsize, copy);
1159 					bufsize -= min(bufsize, copy);
1160 				}
1161 
1162 				if (copy == attr_len)
1163 					return desired_len;
1164 			}
1165 
1166 			iedata += copy;
1167 			iedatalen -= copy;
1168 			attr_remaining = attr_len - copy;
1169 		}
1170 
1171  cont:
1172 		len -= ies[1] + 2;
1173 		ies += ies[1] + 2;
1174 	}
1175 
1176 	if (attr_remaining && desired_attr)
1177 		return -EILSEQ;
1178 
1179 	return -ENOENT;
1180 }
1181 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1182 
1183 bool ieee80211_operating_class_to_band(u8 operating_class,
1184 				       enum ieee80211_band *band)
1185 {
1186 	switch (operating_class) {
1187 	case 112:
1188 	case 115 ... 127:
1189 		*band = IEEE80211_BAND_5GHZ;
1190 		return true;
1191 	case 81:
1192 	case 82:
1193 	case 83:
1194 	case 84:
1195 		*band = IEEE80211_BAND_2GHZ;
1196 		return true;
1197 	case 180:
1198 		*band = IEEE80211_BAND_60GHZ;
1199 		return true;
1200 	}
1201 
1202 	return false;
1203 }
1204 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1205 
1206 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1207 				 u32 beacon_int)
1208 {
1209 	struct wireless_dev *wdev;
1210 	int res = 0;
1211 
1212 	if (!beacon_int)
1213 		return -EINVAL;
1214 
1215 	list_for_each_entry(wdev, &rdev->wdev_list, list) {
1216 		if (!wdev->beacon_interval)
1217 			continue;
1218 		if (wdev->beacon_interval != beacon_int) {
1219 			res = -EINVAL;
1220 			break;
1221 		}
1222 	}
1223 
1224 	return res;
1225 }
1226 
1227 int cfg80211_can_use_iftype_chan(struct cfg80211_registered_device *rdev,
1228 				 struct wireless_dev *wdev,
1229 				 enum nl80211_iftype iftype,
1230 				 struct ieee80211_channel *chan,
1231 				 enum cfg80211_chan_mode chanmode,
1232 				 u8 radar_detect)
1233 {
1234 	struct wireless_dev *wdev_iter;
1235 	u32 used_iftypes = BIT(iftype);
1236 	int num[NUM_NL80211_IFTYPES];
1237 	struct ieee80211_channel
1238 			*used_channels[CFG80211_MAX_NUM_DIFFERENT_CHANNELS];
1239 	struct ieee80211_channel *ch;
1240 	enum cfg80211_chan_mode chmode;
1241 	int num_different_channels = 0;
1242 	int total = 1;
1243 	bool radar_required;
1244 	int i, j;
1245 
1246 	ASSERT_RTNL();
1247 
1248 	if (WARN_ON(hweight32(radar_detect) > 1))
1249 		return -EINVAL;
1250 
1251 	switch (iftype) {
1252 	case NL80211_IFTYPE_ADHOC:
1253 	case NL80211_IFTYPE_AP:
1254 	case NL80211_IFTYPE_AP_VLAN:
1255 	case NL80211_IFTYPE_MESH_POINT:
1256 	case NL80211_IFTYPE_P2P_GO:
1257 	case NL80211_IFTYPE_WDS:
1258 		radar_required = !!(chan &&
1259 				    (chan->flags & IEEE80211_CHAN_RADAR));
1260 		break;
1261 	case NL80211_IFTYPE_P2P_CLIENT:
1262 	case NL80211_IFTYPE_STATION:
1263 	case NL80211_IFTYPE_P2P_DEVICE:
1264 	case NL80211_IFTYPE_MONITOR:
1265 		radar_required = false;
1266 		break;
1267 	case NUM_NL80211_IFTYPES:
1268 	case NL80211_IFTYPE_UNSPECIFIED:
1269 	default:
1270 		return -EINVAL;
1271 	}
1272 
1273 	if (radar_required && !radar_detect)
1274 		return -EINVAL;
1275 
1276 	/* Always allow software iftypes */
1277 	if (rdev->wiphy.software_iftypes & BIT(iftype)) {
1278 		if (radar_detect)
1279 			return -EINVAL;
1280 		return 0;
1281 	}
1282 
1283 	memset(num, 0, sizeof(num));
1284 	memset(used_channels, 0, sizeof(used_channels));
1285 
1286 	num[iftype] = 1;
1287 
1288 	switch (chanmode) {
1289 	case CHAN_MODE_UNDEFINED:
1290 		break;
1291 	case CHAN_MODE_SHARED:
1292 		WARN_ON(!chan);
1293 		used_channels[0] = chan;
1294 		num_different_channels++;
1295 		break;
1296 	case CHAN_MODE_EXCLUSIVE:
1297 		num_different_channels++;
1298 		break;
1299 	}
1300 
1301 	list_for_each_entry(wdev_iter, &rdev->wdev_list, list) {
1302 		if (wdev_iter == wdev)
1303 			continue;
1304 		if (wdev_iter->iftype == NL80211_IFTYPE_P2P_DEVICE) {
1305 			if (!wdev_iter->p2p_started)
1306 				continue;
1307 		} else if (wdev_iter->netdev) {
1308 			if (!netif_running(wdev_iter->netdev))
1309 				continue;
1310 		} else {
1311 			WARN_ON(1);
1312 		}
1313 
1314 		if (rdev->wiphy.software_iftypes & BIT(wdev_iter->iftype))
1315 			continue;
1316 
1317 		/*
1318 		 * We may be holding the "wdev" mutex, but now need to lock
1319 		 * wdev_iter. This is OK because once we get here wdev_iter
1320 		 * is not wdev (tested above), but we need to use the nested
1321 		 * locking for lockdep.
1322 		 */
1323 		mutex_lock_nested(&wdev_iter->mtx, 1);
1324 		__acquire(wdev_iter->mtx);
1325 		cfg80211_get_chan_state(wdev_iter, &ch, &chmode);
1326 		wdev_unlock(wdev_iter);
1327 
1328 		switch (chmode) {
1329 		case CHAN_MODE_UNDEFINED:
1330 			break;
1331 		case CHAN_MODE_SHARED:
1332 			for (i = 0; i < CFG80211_MAX_NUM_DIFFERENT_CHANNELS; i++)
1333 				if (!used_channels[i] || used_channels[i] == ch)
1334 					break;
1335 
1336 			if (i == CFG80211_MAX_NUM_DIFFERENT_CHANNELS)
1337 				return -EBUSY;
1338 
1339 			if (used_channels[i] == NULL) {
1340 				used_channels[i] = ch;
1341 				num_different_channels++;
1342 			}
1343 			break;
1344 		case CHAN_MODE_EXCLUSIVE:
1345 			num_different_channels++;
1346 			break;
1347 		}
1348 
1349 		num[wdev_iter->iftype]++;
1350 		total++;
1351 		used_iftypes |= BIT(wdev_iter->iftype);
1352 	}
1353 
1354 	if (total == 1 && !radar_detect)
1355 		return 0;
1356 
1357 	for (i = 0; i < rdev->wiphy.n_iface_combinations; i++) {
1358 		const struct ieee80211_iface_combination *c;
1359 		struct ieee80211_iface_limit *limits;
1360 		u32 all_iftypes = 0;
1361 
1362 		c = &rdev->wiphy.iface_combinations[i];
1363 
1364 		if (total > c->max_interfaces)
1365 			continue;
1366 		if (num_different_channels > c->num_different_channels)
1367 			continue;
1368 
1369 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1370 				 GFP_KERNEL);
1371 		if (!limits)
1372 			return -ENOMEM;
1373 
1374 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1375 			if (rdev->wiphy.software_iftypes & BIT(iftype))
1376 				continue;
1377 			for (j = 0; j < c->n_limits; j++) {
1378 				all_iftypes |= limits[j].types;
1379 				if (!(limits[j].types & BIT(iftype)))
1380 					continue;
1381 				if (limits[j].max < num[iftype])
1382 					goto cont;
1383 				limits[j].max -= num[iftype];
1384 			}
1385 		}
1386 
1387 		if (radar_detect && !(c->radar_detect_widths & radar_detect))
1388 			goto cont;
1389 
1390 		/*
1391 		 * Finally check that all iftypes that we're currently
1392 		 * using are actually part of this combination. If they
1393 		 * aren't then we can't use this combination and have
1394 		 * to continue to the next.
1395 		 */
1396 		if ((all_iftypes & used_iftypes) != used_iftypes)
1397 			goto cont;
1398 
1399 		/*
1400 		 * This combination covered all interface types and
1401 		 * supported the requested numbers, so we're good.
1402 		 */
1403 		kfree(limits);
1404 		return 0;
1405  cont:
1406 		kfree(limits);
1407 	}
1408 
1409 	return -EBUSY;
1410 }
1411 
1412 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1413 			   const u8 *rates, unsigned int n_rates,
1414 			   u32 *mask)
1415 {
1416 	int i, j;
1417 
1418 	if (!sband)
1419 		return -EINVAL;
1420 
1421 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1422 		return -EINVAL;
1423 
1424 	*mask = 0;
1425 
1426 	for (i = 0; i < n_rates; i++) {
1427 		int rate = (rates[i] & 0x7f) * 5;
1428 		bool found = false;
1429 
1430 		for (j = 0; j < sband->n_bitrates; j++) {
1431 			if (sband->bitrates[j].bitrate == rate) {
1432 				found = true;
1433 				*mask |= BIT(j);
1434 				break;
1435 			}
1436 		}
1437 		if (!found)
1438 			return -EINVAL;
1439 	}
1440 
1441 	/*
1442 	 * mask must have at least one bit set here since we
1443 	 * didn't accept a 0-length rates array nor allowed
1444 	 * entries in the array that didn't exist
1445 	 */
1446 
1447 	return 0;
1448 }
1449 
1450 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1451 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1452 const unsigned char rfc1042_header[] __aligned(2) =
1453 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1454 EXPORT_SYMBOL(rfc1042_header);
1455 
1456 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1457 const unsigned char bridge_tunnel_header[] __aligned(2) =
1458 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1459 EXPORT_SYMBOL(bridge_tunnel_header);
1460