xref: /openbmc/linux/net/wireless/util.c (revision d774a589)
1 /*
2  * Wireless utility functions
3  *
4  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2013-2014  Intel Mobile Communications GmbH
6  */
7 #include <linux/export.h>
8 #include <linux/bitops.h>
9 #include <linux/etherdevice.h>
10 #include <linux/slab.h>
11 #include <net/cfg80211.h>
12 #include <net/ip.h>
13 #include <net/dsfield.h>
14 #include <linux/if_vlan.h>
15 #include <linux/mpls.h>
16 #include <linux/gcd.h>
17 #include "core.h"
18 #include "rdev-ops.h"
19 
20 
21 struct ieee80211_rate *
22 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
23 			    u32 basic_rates, int bitrate)
24 {
25 	struct ieee80211_rate *result = &sband->bitrates[0];
26 	int i;
27 
28 	for (i = 0; i < sband->n_bitrates; i++) {
29 		if (!(basic_rates & BIT(i)))
30 			continue;
31 		if (sband->bitrates[i].bitrate > bitrate)
32 			continue;
33 		result = &sband->bitrates[i];
34 	}
35 
36 	return result;
37 }
38 EXPORT_SYMBOL(ieee80211_get_response_rate);
39 
40 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
41 			      enum nl80211_bss_scan_width scan_width)
42 {
43 	struct ieee80211_rate *bitrates;
44 	u32 mandatory_rates = 0;
45 	enum ieee80211_rate_flags mandatory_flag;
46 	int i;
47 
48 	if (WARN_ON(!sband))
49 		return 1;
50 
51 	if (sband->band == NL80211_BAND_2GHZ) {
52 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
53 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
54 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
55 		else
56 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
57 	} else {
58 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
59 	}
60 
61 	bitrates = sband->bitrates;
62 	for (i = 0; i < sband->n_bitrates; i++)
63 		if (bitrates[i].flags & mandatory_flag)
64 			mandatory_rates |= BIT(i);
65 	return mandatory_rates;
66 }
67 EXPORT_SYMBOL(ieee80211_mandatory_rates);
68 
69 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
70 {
71 	/* see 802.11 17.3.8.3.2 and Annex J
72 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
73 	if (chan <= 0)
74 		return 0; /* not supported */
75 	switch (band) {
76 	case NL80211_BAND_2GHZ:
77 		if (chan == 14)
78 			return 2484;
79 		else if (chan < 14)
80 			return 2407 + chan * 5;
81 		break;
82 	case NL80211_BAND_5GHZ:
83 		if (chan >= 182 && chan <= 196)
84 			return 4000 + chan * 5;
85 		else
86 			return 5000 + chan * 5;
87 		break;
88 	case NL80211_BAND_60GHZ:
89 		if (chan < 5)
90 			return 56160 + chan * 2160;
91 		break;
92 	default:
93 		;
94 	}
95 	return 0; /* not supported */
96 }
97 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
98 
99 int ieee80211_frequency_to_channel(int freq)
100 {
101 	/* see 802.11 17.3.8.3.2 and Annex J */
102 	if (freq == 2484)
103 		return 14;
104 	else if (freq < 2484)
105 		return (freq - 2407) / 5;
106 	else if (freq >= 4910 && freq <= 4980)
107 		return (freq - 4000) / 5;
108 	else if (freq <= 45000) /* DMG band lower limit */
109 		return (freq - 5000) / 5;
110 	else if (freq >= 58320 && freq <= 64800)
111 		return (freq - 56160) / 2160;
112 	else
113 		return 0;
114 }
115 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
116 
117 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
118 						  int freq)
119 {
120 	enum nl80211_band band;
121 	struct ieee80211_supported_band *sband;
122 	int i;
123 
124 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
125 		sband = wiphy->bands[band];
126 
127 		if (!sband)
128 			continue;
129 
130 		for (i = 0; i < sband->n_channels; i++) {
131 			if (sband->channels[i].center_freq == freq)
132 				return &sband->channels[i];
133 		}
134 	}
135 
136 	return NULL;
137 }
138 EXPORT_SYMBOL(__ieee80211_get_channel);
139 
140 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
141 				     enum nl80211_band band)
142 {
143 	int i, want;
144 
145 	switch (band) {
146 	case NL80211_BAND_5GHZ:
147 		want = 3;
148 		for (i = 0; i < sband->n_bitrates; i++) {
149 			if (sband->bitrates[i].bitrate == 60 ||
150 			    sband->bitrates[i].bitrate == 120 ||
151 			    sband->bitrates[i].bitrate == 240) {
152 				sband->bitrates[i].flags |=
153 					IEEE80211_RATE_MANDATORY_A;
154 				want--;
155 			}
156 		}
157 		WARN_ON(want);
158 		break;
159 	case NL80211_BAND_2GHZ:
160 		want = 7;
161 		for (i = 0; i < sband->n_bitrates; i++) {
162 			if (sband->bitrates[i].bitrate == 10) {
163 				sband->bitrates[i].flags |=
164 					IEEE80211_RATE_MANDATORY_B |
165 					IEEE80211_RATE_MANDATORY_G;
166 				want--;
167 			}
168 
169 			if (sband->bitrates[i].bitrate == 20 ||
170 			    sband->bitrates[i].bitrate == 55 ||
171 			    sband->bitrates[i].bitrate == 110 ||
172 			    sband->bitrates[i].bitrate == 60 ||
173 			    sband->bitrates[i].bitrate == 120 ||
174 			    sband->bitrates[i].bitrate == 240) {
175 				sband->bitrates[i].flags |=
176 					IEEE80211_RATE_MANDATORY_G;
177 				want--;
178 			}
179 
180 			if (sband->bitrates[i].bitrate != 10 &&
181 			    sband->bitrates[i].bitrate != 20 &&
182 			    sband->bitrates[i].bitrate != 55 &&
183 			    sband->bitrates[i].bitrate != 110)
184 				sband->bitrates[i].flags |=
185 					IEEE80211_RATE_ERP_G;
186 		}
187 		WARN_ON(want != 0 && want != 3 && want != 6);
188 		break;
189 	case NL80211_BAND_60GHZ:
190 		/* check for mandatory HT MCS 1..4 */
191 		WARN_ON(!sband->ht_cap.ht_supported);
192 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
193 		break;
194 	case NUM_NL80211_BANDS:
195 		WARN_ON(1);
196 		break;
197 	}
198 }
199 
200 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
201 {
202 	enum nl80211_band band;
203 
204 	for (band = 0; band < NUM_NL80211_BANDS; band++)
205 		if (wiphy->bands[band])
206 			set_mandatory_flags_band(wiphy->bands[band], band);
207 }
208 
209 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
210 {
211 	int i;
212 	for (i = 0; i < wiphy->n_cipher_suites; i++)
213 		if (cipher == wiphy->cipher_suites[i])
214 			return true;
215 	return false;
216 }
217 
218 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
219 				   struct key_params *params, int key_idx,
220 				   bool pairwise, const u8 *mac_addr)
221 {
222 	if (key_idx < 0 || key_idx > 5)
223 		return -EINVAL;
224 
225 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
226 		return -EINVAL;
227 
228 	if (pairwise && !mac_addr)
229 		return -EINVAL;
230 
231 	switch (params->cipher) {
232 	case WLAN_CIPHER_SUITE_TKIP:
233 	case WLAN_CIPHER_SUITE_CCMP:
234 	case WLAN_CIPHER_SUITE_CCMP_256:
235 	case WLAN_CIPHER_SUITE_GCMP:
236 	case WLAN_CIPHER_SUITE_GCMP_256:
237 		/* Disallow pairwise keys with non-zero index unless it's WEP
238 		 * or a vendor specific cipher (because current deployments use
239 		 * pairwise WEP keys with non-zero indices and for vendor
240 		 * specific ciphers this should be validated in the driver or
241 		 * hardware level - but 802.11i clearly specifies to use zero)
242 		 */
243 		if (pairwise && key_idx)
244 			return -EINVAL;
245 		break;
246 	case WLAN_CIPHER_SUITE_AES_CMAC:
247 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
248 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
249 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
250 		/* Disallow BIP (group-only) cipher as pairwise cipher */
251 		if (pairwise)
252 			return -EINVAL;
253 		if (key_idx < 4)
254 			return -EINVAL;
255 		break;
256 	case WLAN_CIPHER_SUITE_WEP40:
257 	case WLAN_CIPHER_SUITE_WEP104:
258 		if (key_idx > 3)
259 			return -EINVAL;
260 	default:
261 		break;
262 	}
263 
264 	switch (params->cipher) {
265 	case WLAN_CIPHER_SUITE_WEP40:
266 		if (params->key_len != WLAN_KEY_LEN_WEP40)
267 			return -EINVAL;
268 		break;
269 	case WLAN_CIPHER_SUITE_TKIP:
270 		if (params->key_len != WLAN_KEY_LEN_TKIP)
271 			return -EINVAL;
272 		break;
273 	case WLAN_CIPHER_SUITE_CCMP:
274 		if (params->key_len != WLAN_KEY_LEN_CCMP)
275 			return -EINVAL;
276 		break;
277 	case WLAN_CIPHER_SUITE_CCMP_256:
278 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
279 			return -EINVAL;
280 		break;
281 	case WLAN_CIPHER_SUITE_GCMP:
282 		if (params->key_len != WLAN_KEY_LEN_GCMP)
283 			return -EINVAL;
284 		break;
285 	case WLAN_CIPHER_SUITE_GCMP_256:
286 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
287 			return -EINVAL;
288 		break;
289 	case WLAN_CIPHER_SUITE_WEP104:
290 		if (params->key_len != WLAN_KEY_LEN_WEP104)
291 			return -EINVAL;
292 		break;
293 	case WLAN_CIPHER_SUITE_AES_CMAC:
294 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
295 			return -EINVAL;
296 		break;
297 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
298 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
299 			return -EINVAL;
300 		break;
301 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
302 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
303 			return -EINVAL;
304 		break;
305 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
306 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
307 			return -EINVAL;
308 		break;
309 	default:
310 		/*
311 		 * We don't know anything about this algorithm,
312 		 * allow using it -- but the driver must check
313 		 * all parameters! We still check below whether
314 		 * or not the driver supports this algorithm,
315 		 * of course.
316 		 */
317 		break;
318 	}
319 
320 	if (params->seq) {
321 		switch (params->cipher) {
322 		case WLAN_CIPHER_SUITE_WEP40:
323 		case WLAN_CIPHER_SUITE_WEP104:
324 			/* These ciphers do not use key sequence */
325 			return -EINVAL;
326 		case WLAN_CIPHER_SUITE_TKIP:
327 		case WLAN_CIPHER_SUITE_CCMP:
328 		case WLAN_CIPHER_SUITE_CCMP_256:
329 		case WLAN_CIPHER_SUITE_GCMP:
330 		case WLAN_CIPHER_SUITE_GCMP_256:
331 		case WLAN_CIPHER_SUITE_AES_CMAC:
332 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
333 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
334 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
335 			if (params->seq_len != 6)
336 				return -EINVAL;
337 			break;
338 		}
339 	}
340 
341 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
342 		return -EINVAL;
343 
344 	return 0;
345 }
346 
347 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
348 {
349 	unsigned int hdrlen = 24;
350 
351 	if (ieee80211_is_data(fc)) {
352 		if (ieee80211_has_a4(fc))
353 			hdrlen = 30;
354 		if (ieee80211_is_data_qos(fc)) {
355 			hdrlen += IEEE80211_QOS_CTL_LEN;
356 			if (ieee80211_has_order(fc))
357 				hdrlen += IEEE80211_HT_CTL_LEN;
358 		}
359 		goto out;
360 	}
361 
362 	if (ieee80211_is_mgmt(fc)) {
363 		if (ieee80211_has_order(fc))
364 			hdrlen += IEEE80211_HT_CTL_LEN;
365 		goto out;
366 	}
367 
368 	if (ieee80211_is_ctl(fc)) {
369 		/*
370 		 * ACK and CTS are 10 bytes, all others 16. To see how
371 		 * to get this condition consider
372 		 *   subtype mask:   0b0000000011110000 (0x00F0)
373 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
374 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
375 		 *   bits that matter:         ^^^      (0x00E0)
376 		 *   value of those: 0b0000000011000000 (0x00C0)
377 		 */
378 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
379 			hdrlen = 10;
380 		else
381 			hdrlen = 16;
382 	}
383 out:
384 	return hdrlen;
385 }
386 EXPORT_SYMBOL(ieee80211_hdrlen);
387 
388 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
389 {
390 	const struct ieee80211_hdr *hdr =
391 			(const struct ieee80211_hdr *)skb->data;
392 	unsigned int hdrlen;
393 
394 	if (unlikely(skb->len < 10))
395 		return 0;
396 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
397 	if (unlikely(hdrlen > skb->len))
398 		return 0;
399 	return hdrlen;
400 }
401 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
402 
403 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
404 {
405 	int ae = flags & MESH_FLAGS_AE;
406 	/* 802.11-2012, 8.2.4.7.3 */
407 	switch (ae) {
408 	default:
409 	case 0:
410 		return 6;
411 	case MESH_FLAGS_AE_A4:
412 		return 12;
413 	case MESH_FLAGS_AE_A5_A6:
414 		return 18;
415 	}
416 }
417 
418 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
419 {
420 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
421 }
422 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
423 
424 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
425 				  const u8 *addr, enum nl80211_iftype iftype)
426 {
427 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
428 	struct {
429 		u8 hdr[ETH_ALEN] __aligned(2);
430 		__be16 proto;
431 	} payload;
432 	struct ethhdr tmp;
433 	u16 hdrlen;
434 	u8 mesh_flags = 0;
435 
436 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
437 		return -1;
438 
439 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
440 	if (skb->len < hdrlen + 8)
441 		return -1;
442 
443 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
444 	 * header
445 	 * IEEE 802.11 address fields:
446 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
447 	 *   0     0   DA    SA    BSSID n/a
448 	 *   0     1   DA    BSSID SA    n/a
449 	 *   1     0   BSSID SA    DA    n/a
450 	 *   1     1   RA    TA    DA    SA
451 	 */
452 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
453 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
454 
455 	if (iftype == NL80211_IFTYPE_MESH_POINT)
456 		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
457 
458 	switch (hdr->frame_control &
459 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
460 	case cpu_to_le16(IEEE80211_FCTL_TODS):
461 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
462 			     iftype != NL80211_IFTYPE_AP_VLAN &&
463 			     iftype != NL80211_IFTYPE_P2P_GO))
464 			return -1;
465 		break;
466 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
467 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
468 			     iftype != NL80211_IFTYPE_MESH_POINT &&
469 			     iftype != NL80211_IFTYPE_AP_VLAN &&
470 			     iftype != NL80211_IFTYPE_STATION))
471 			return -1;
472 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
473 			if (mesh_flags & MESH_FLAGS_AE_A4)
474 				return -1;
475 			if (mesh_flags & MESH_FLAGS_AE_A5_A6) {
476 				skb_copy_bits(skb, hdrlen +
477 					offsetof(struct ieee80211s_hdr, eaddr1),
478 					tmp.h_dest, 2 * ETH_ALEN);
479 			}
480 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
481 		}
482 		break;
483 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
484 		if ((iftype != NL80211_IFTYPE_STATION &&
485 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
486 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
487 		    (is_multicast_ether_addr(tmp.h_dest) &&
488 		     ether_addr_equal(tmp.h_source, addr)))
489 			return -1;
490 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
491 			if (mesh_flags & MESH_FLAGS_AE_A5_A6)
492 				return -1;
493 			if (mesh_flags & MESH_FLAGS_AE_A4)
494 				skb_copy_bits(skb, hdrlen +
495 					offsetof(struct ieee80211s_hdr, eaddr1),
496 					tmp.h_source, ETH_ALEN);
497 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
498 		}
499 		break;
500 	case cpu_to_le16(0):
501 		if (iftype != NL80211_IFTYPE_ADHOC &&
502 		    iftype != NL80211_IFTYPE_STATION &&
503 		    iftype != NL80211_IFTYPE_OCB)
504 				return -1;
505 		break;
506 	}
507 
508 	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
509 	tmp.h_proto = payload.proto;
510 
511 	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
512 		    tmp.h_proto != htons(ETH_P_AARP) &&
513 		    tmp.h_proto != htons(ETH_P_IPX)) ||
514 		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
515 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
516 		 * replace EtherType */
517 		hdrlen += ETH_ALEN + 2;
518 	else
519 		tmp.h_proto = htons(skb->len - hdrlen);
520 
521 	pskb_pull(skb, hdrlen);
522 
523 	if (!ehdr)
524 		ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
525 	memcpy(ehdr, &tmp, sizeof(tmp));
526 
527 	return 0;
528 }
529 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
530 
531 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
532 			     enum nl80211_iftype iftype,
533 			     const u8 *bssid, bool qos)
534 {
535 	struct ieee80211_hdr hdr;
536 	u16 hdrlen, ethertype;
537 	__le16 fc;
538 	const u8 *encaps_data;
539 	int encaps_len, skip_header_bytes;
540 	int nh_pos, h_pos;
541 	int head_need;
542 
543 	if (unlikely(skb->len < ETH_HLEN))
544 		return -EINVAL;
545 
546 	nh_pos = skb_network_header(skb) - skb->data;
547 	h_pos = skb_transport_header(skb) - skb->data;
548 
549 	/* convert Ethernet header to proper 802.11 header (based on
550 	 * operation mode) */
551 	ethertype = (skb->data[12] << 8) | skb->data[13];
552 	fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
553 
554 	switch (iftype) {
555 	case NL80211_IFTYPE_AP:
556 	case NL80211_IFTYPE_AP_VLAN:
557 	case NL80211_IFTYPE_P2P_GO:
558 		fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
559 		/* DA BSSID SA */
560 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
561 		memcpy(hdr.addr2, addr, ETH_ALEN);
562 		memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
563 		hdrlen = 24;
564 		break;
565 	case NL80211_IFTYPE_STATION:
566 	case NL80211_IFTYPE_P2P_CLIENT:
567 		fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
568 		/* BSSID SA DA */
569 		memcpy(hdr.addr1, bssid, ETH_ALEN);
570 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
571 		memcpy(hdr.addr3, skb->data, ETH_ALEN);
572 		hdrlen = 24;
573 		break;
574 	case NL80211_IFTYPE_OCB:
575 	case NL80211_IFTYPE_ADHOC:
576 		/* DA SA BSSID */
577 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
578 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
579 		memcpy(hdr.addr3, bssid, ETH_ALEN);
580 		hdrlen = 24;
581 		break;
582 	default:
583 		return -EOPNOTSUPP;
584 	}
585 
586 	if (qos) {
587 		fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
588 		hdrlen += 2;
589 	}
590 
591 	hdr.frame_control = fc;
592 	hdr.duration_id = 0;
593 	hdr.seq_ctrl = 0;
594 
595 	skip_header_bytes = ETH_HLEN;
596 	if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
597 		encaps_data = bridge_tunnel_header;
598 		encaps_len = sizeof(bridge_tunnel_header);
599 		skip_header_bytes -= 2;
600 	} else if (ethertype >= ETH_P_802_3_MIN) {
601 		encaps_data = rfc1042_header;
602 		encaps_len = sizeof(rfc1042_header);
603 		skip_header_bytes -= 2;
604 	} else {
605 		encaps_data = NULL;
606 		encaps_len = 0;
607 	}
608 
609 	skb_pull(skb, skip_header_bytes);
610 	nh_pos -= skip_header_bytes;
611 	h_pos -= skip_header_bytes;
612 
613 	head_need = hdrlen + encaps_len - skb_headroom(skb);
614 
615 	if (head_need > 0 || skb_cloned(skb)) {
616 		head_need = max(head_need, 0);
617 		if (head_need)
618 			skb_orphan(skb);
619 
620 		if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
621 			return -ENOMEM;
622 
623 		skb->truesize += head_need;
624 	}
625 
626 	if (encaps_data) {
627 		memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
628 		nh_pos += encaps_len;
629 		h_pos += encaps_len;
630 	}
631 
632 	memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
633 
634 	nh_pos += hdrlen;
635 	h_pos += hdrlen;
636 
637 	/* Update skb pointers to various headers since this modified frame
638 	 * is going to go through Linux networking code that may potentially
639 	 * need things like pointer to IP header. */
640 	skb_reset_mac_header(skb);
641 	skb_set_network_header(skb, nh_pos);
642 	skb_set_transport_header(skb, h_pos);
643 
644 	return 0;
645 }
646 EXPORT_SYMBOL(ieee80211_data_from_8023);
647 
648 static void
649 __frame_add_frag(struct sk_buff *skb, struct page *page,
650 		 void *ptr, int len, int size)
651 {
652 	struct skb_shared_info *sh = skb_shinfo(skb);
653 	int page_offset;
654 
655 	page_ref_inc(page);
656 	page_offset = ptr - page_address(page);
657 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
658 }
659 
660 static void
661 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
662 			    int offset, int len)
663 {
664 	struct skb_shared_info *sh = skb_shinfo(skb);
665 	const skb_frag_t *frag = &sh->frags[-1];
666 	struct page *frag_page;
667 	void *frag_ptr;
668 	int frag_len, frag_size;
669 	int head_size = skb->len - skb->data_len;
670 	int cur_len;
671 
672 	frag_page = virt_to_head_page(skb->head);
673 	frag_ptr = skb->data;
674 	frag_size = head_size;
675 
676 	while (offset >= frag_size) {
677 		offset -= frag_size;
678 		frag++;
679 		frag_page = skb_frag_page(frag);
680 		frag_ptr = skb_frag_address(frag);
681 		frag_size = skb_frag_size(frag);
682 	}
683 
684 	frag_ptr += offset;
685 	frag_len = frag_size - offset;
686 
687 	cur_len = min(len, frag_len);
688 
689 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
690 	len -= cur_len;
691 
692 	while (len > 0) {
693 		frag++;
694 		frag_len = skb_frag_size(frag);
695 		cur_len = min(len, frag_len);
696 		__frame_add_frag(frame, skb_frag_page(frag),
697 				 skb_frag_address(frag), cur_len, frag_len);
698 		len -= cur_len;
699 	}
700 }
701 
702 static struct sk_buff *
703 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
704 		       int offset, int len, bool reuse_frag)
705 {
706 	struct sk_buff *frame;
707 	int cur_len = len;
708 
709 	if (skb->len - offset < len)
710 		return NULL;
711 
712 	/*
713 	 * When reusing framents, copy some data to the head to simplify
714 	 * ethernet header handling and speed up protocol header processing
715 	 * in the stack later.
716 	 */
717 	if (reuse_frag)
718 		cur_len = min_t(int, len, 32);
719 
720 	/*
721 	 * Allocate and reserve two bytes more for payload
722 	 * alignment since sizeof(struct ethhdr) is 14.
723 	 */
724 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
725 	if (!frame)
726 		return NULL;
727 
728 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
729 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
730 
731 	len -= cur_len;
732 	if (!len)
733 		return frame;
734 
735 	offset += cur_len;
736 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
737 
738 	return frame;
739 }
740 
741 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
742 			      const u8 *addr, enum nl80211_iftype iftype,
743 			      const unsigned int extra_headroom,
744 			      const u8 *check_da, const u8 *check_sa)
745 {
746 	unsigned int hlen = ALIGN(extra_headroom, 4);
747 	struct sk_buff *frame = NULL;
748 	u16 ethertype;
749 	u8 *payload;
750 	int offset = 0, remaining;
751 	struct ethhdr eth;
752 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
753 	bool reuse_skb = false;
754 	bool last = false;
755 
756 	while (!last) {
757 		unsigned int subframe_len;
758 		int len;
759 		u8 padding;
760 
761 		skb_copy_bits(skb, offset, &eth, sizeof(eth));
762 		len = ntohs(eth.h_proto);
763 		subframe_len = sizeof(struct ethhdr) + len;
764 		padding = (4 - subframe_len) & 0x3;
765 
766 		/* the last MSDU has no padding */
767 		remaining = skb->len - offset;
768 		if (subframe_len > remaining)
769 			goto purge;
770 
771 		offset += sizeof(struct ethhdr);
772 		last = remaining <= subframe_len + padding;
773 
774 		/* FIXME: should we really accept multicast DA? */
775 		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
776 		     !ether_addr_equal(check_da, eth.h_dest)) ||
777 		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
778 			offset += len + padding;
779 			continue;
780 		}
781 
782 		/* reuse skb for the last subframe */
783 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
784 			skb_pull(skb, offset);
785 			frame = skb;
786 			reuse_skb = true;
787 		} else {
788 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
789 						       reuse_frag);
790 			if (!frame)
791 				goto purge;
792 
793 			offset += len + padding;
794 		}
795 
796 		skb_reset_network_header(frame);
797 		frame->dev = skb->dev;
798 		frame->priority = skb->priority;
799 
800 		payload = frame->data;
801 		ethertype = (payload[6] << 8) | payload[7];
802 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
803 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
804 			   ether_addr_equal(payload, bridge_tunnel_header))) {
805 			eth.h_proto = htons(ethertype);
806 			skb_pull(frame, ETH_ALEN + 2);
807 		}
808 
809 		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
810 		__skb_queue_tail(list, frame);
811 	}
812 
813 	if (!reuse_skb)
814 		dev_kfree_skb(skb);
815 
816 	return;
817 
818  purge:
819 	__skb_queue_purge(list);
820 	dev_kfree_skb(skb);
821 }
822 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
823 
824 /* Given a data frame determine the 802.1p/1d tag to use. */
825 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
826 				    struct cfg80211_qos_map *qos_map)
827 {
828 	unsigned int dscp;
829 	unsigned char vlan_priority;
830 
831 	/* skb->priority values from 256->263 are magic values to
832 	 * directly indicate a specific 802.1d priority.  This is used
833 	 * to allow 802.1d priority to be passed directly in from VLAN
834 	 * tags, etc.
835 	 */
836 	if (skb->priority >= 256 && skb->priority <= 263)
837 		return skb->priority - 256;
838 
839 	if (skb_vlan_tag_present(skb)) {
840 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
841 			>> VLAN_PRIO_SHIFT;
842 		if (vlan_priority > 0)
843 			return vlan_priority;
844 	}
845 
846 	switch (skb->protocol) {
847 	case htons(ETH_P_IP):
848 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
849 		break;
850 	case htons(ETH_P_IPV6):
851 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
852 		break;
853 	case htons(ETH_P_MPLS_UC):
854 	case htons(ETH_P_MPLS_MC): {
855 		struct mpls_label mpls_tmp, *mpls;
856 
857 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
858 					  sizeof(*mpls), &mpls_tmp);
859 		if (!mpls)
860 			return 0;
861 
862 		return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
863 			>> MPLS_LS_TC_SHIFT;
864 	}
865 	case htons(ETH_P_80221):
866 		/* 802.21 is always network control traffic */
867 		return 7;
868 	default:
869 		return 0;
870 	}
871 
872 	if (qos_map) {
873 		unsigned int i, tmp_dscp = dscp >> 2;
874 
875 		for (i = 0; i < qos_map->num_des; i++) {
876 			if (tmp_dscp == qos_map->dscp_exception[i].dscp)
877 				return qos_map->dscp_exception[i].up;
878 		}
879 
880 		for (i = 0; i < 8; i++) {
881 			if (tmp_dscp >= qos_map->up[i].low &&
882 			    tmp_dscp <= qos_map->up[i].high)
883 				return i;
884 		}
885 	}
886 
887 	return dscp >> 5;
888 }
889 EXPORT_SYMBOL(cfg80211_classify8021d);
890 
891 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
892 {
893 	const struct cfg80211_bss_ies *ies;
894 
895 	ies = rcu_dereference(bss->ies);
896 	if (!ies)
897 		return NULL;
898 
899 	return cfg80211_find_ie(ie, ies->data, ies->len);
900 }
901 EXPORT_SYMBOL(ieee80211_bss_get_ie);
902 
903 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
904 {
905 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
906 	struct net_device *dev = wdev->netdev;
907 	int i;
908 
909 	if (!wdev->connect_keys)
910 		return;
911 
912 	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
913 		if (!wdev->connect_keys->params[i].cipher)
914 			continue;
915 		if (rdev_add_key(rdev, dev, i, false, NULL,
916 				 &wdev->connect_keys->params[i])) {
917 			netdev_err(dev, "failed to set key %d\n", i);
918 			continue;
919 		}
920 		if (wdev->connect_keys->def == i)
921 			if (rdev_set_default_key(rdev, dev, i, true, true)) {
922 				netdev_err(dev, "failed to set defkey %d\n", i);
923 				continue;
924 			}
925 	}
926 
927 	kzfree(wdev->connect_keys);
928 	wdev->connect_keys = NULL;
929 }
930 
931 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
932 {
933 	struct cfg80211_event *ev;
934 	unsigned long flags;
935 	const u8 *bssid = NULL;
936 
937 	spin_lock_irqsave(&wdev->event_lock, flags);
938 	while (!list_empty(&wdev->event_list)) {
939 		ev = list_first_entry(&wdev->event_list,
940 				      struct cfg80211_event, list);
941 		list_del(&ev->list);
942 		spin_unlock_irqrestore(&wdev->event_lock, flags);
943 
944 		wdev_lock(wdev);
945 		switch (ev->type) {
946 		case EVENT_CONNECT_RESULT:
947 			if (!is_zero_ether_addr(ev->cr.bssid))
948 				bssid = ev->cr.bssid;
949 			__cfg80211_connect_result(
950 				wdev->netdev, bssid,
951 				ev->cr.req_ie, ev->cr.req_ie_len,
952 				ev->cr.resp_ie, ev->cr.resp_ie_len,
953 				ev->cr.status,
954 				ev->cr.status == WLAN_STATUS_SUCCESS,
955 				ev->cr.bss);
956 			break;
957 		case EVENT_ROAMED:
958 			__cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
959 					  ev->rm.req_ie_len, ev->rm.resp_ie,
960 					  ev->rm.resp_ie_len);
961 			break;
962 		case EVENT_DISCONNECTED:
963 			__cfg80211_disconnected(wdev->netdev,
964 						ev->dc.ie, ev->dc.ie_len,
965 						ev->dc.reason,
966 						!ev->dc.locally_generated);
967 			break;
968 		case EVENT_IBSS_JOINED:
969 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
970 					       ev->ij.channel);
971 			break;
972 		case EVENT_STOPPED:
973 			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
974 			break;
975 		}
976 		wdev_unlock(wdev);
977 
978 		kfree(ev);
979 
980 		spin_lock_irqsave(&wdev->event_lock, flags);
981 	}
982 	spin_unlock_irqrestore(&wdev->event_lock, flags);
983 }
984 
985 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
986 {
987 	struct wireless_dev *wdev;
988 
989 	ASSERT_RTNL();
990 
991 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
992 		cfg80211_process_wdev_events(wdev);
993 }
994 
995 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
996 			  struct net_device *dev, enum nl80211_iftype ntype,
997 			  u32 *flags, struct vif_params *params)
998 {
999 	int err;
1000 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1001 
1002 	ASSERT_RTNL();
1003 
1004 	/* don't support changing VLANs, you just re-create them */
1005 	if (otype == NL80211_IFTYPE_AP_VLAN)
1006 		return -EOPNOTSUPP;
1007 
1008 	/* cannot change into P2P device or NAN */
1009 	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1010 	    ntype == NL80211_IFTYPE_NAN)
1011 		return -EOPNOTSUPP;
1012 
1013 	if (!rdev->ops->change_virtual_intf ||
1014 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1015 		return -EOPNOTSUPP;
1016 
1017 	/* if it's part of a bridge, reject changing type to station/ibss */
1018 	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
1019 	    (ntype == NL80211_IFTYPE_ADHOC ||
1020 	     ntype == NL80211_IFTYPE_STATION ||
1021 	     ntype == NL80211_IFTYPE_P2P_CLIENT))
1022 		return -EBUSY;
1023 
1024 	if (ntype != otype) {
1025 		dev->ieee80211_ptr->use_4addr = false;
1026 		dev->ieee80211_ptr->mesh_id_up_len = 0;
1027 		wdev_lock(dev->ieee80211_ptr);
1028 		rdev_set_qos_map(rdev, dev, NULL);
1029 		wdev_unlock(dev->ieee80211_ptr);
1030 
1031 		switch (otype) {
1032 		case NL80211_IFTYPE_AP:
1033 			cfg80211_stop_ap(rdev, dev, true);
1034 			break;
1035 		case NL80211_IFTYPE_ADHOC:
1036 			cfg80211_leave_ibss(rdev, dev, false);
1037 			break;
1038 		case NL80211_IFTYPE_STATION:
1039 		case NL80211_IFTYPE_P2P_CLIENT:
1040 			wdev_lock(dev->ieee80211_ptr);
1041 			cfg80211_disconnect(rdev, dev,
1042 					    WLAN_REASON_DEAUTH_LEAVING, true);
1043 			wdev_unlock(dev->ieee80211_ptr);
1044 			break;
1045 		case NL80211_IFTYPE_MESH_POINT:
1046 			/* mesh should be handled? */
1047 			break;
1048 		default:
1049 			break;
1050 		}
1051 
1052 		cfg80211_process_rdev_events(rdev);
1053 	}
1054 
1055 	err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
1056 
1057 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1058 
1059 	if (!err && params && params->use_4addr != -1)
1060 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1061 
1062 	if (!err) {
1063 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1064 		switch (ntype) {
1065 		case NL80211_IFTYPE_STATION:
1066 			if (dev->ieee80211_ptr->use_4addr)
1067 				break;
1068 			/* fall through */
1069 		case NL80211_IFTYPE_OCB:
1070 		case NL80211_IFTYPE_P2P_CLIENT:
1071 		case NL80211_IFTYPE_ADHOC:
1072 			dev->priv_flags |= IFF_DONT_BRIDGE;
1073 			break;
1074 		case NL80211_IFTYPE_P2P_GO:
1075 		case NL80211_IFTYPE_AP:
1076 		case NL80211_IFTYPE_AP_VLAN:
1077 		case NL80211_IFTYPE_WDS:
1078 		case NL80211_IFTYPE_MESH_POINT:
1079 			/* bridging OK */
1080 			break;
1081 		case NL80211_IFTYPE_MONITOR:
1082 			/* monitor can't bridge anyway */
1083 			break;
1084 		case NL80211_IFTYPE_UNSPECIFIED:
1085 		case NUM_NL80211_IFTYPES:
1086 			/* not happening */
1087 			break;
1088 		case NL80211_IFTYPE_P2P_DEVICE:
1089 		case NL80211_IFTYPE_NAN:
1090 			WARN_ON(1);
1091 			break;
1092 		}
1093 	}
1094 
1095 	if (!err && ntype != otype && netif_running(dev)) {
1096 		cfg80211_update_iface_num(rdev, ntype, 1);
1097 		cfg80211_update_iface_num(rdev, otype, -1);
1098 	}
1099 
1100 	return err;
1101 }
1102 
1103 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1104 {
1105 	static const u32 __mcs2bitrate[] = {
1106 		/* control PHY */
1107 		[0] =   275,
1108 		/* SC PHY */
1109 		[1] =  3850,
1110 		[2] =  7700,
1111 		[3] =  9625,
1112 		[4] = 11550,
1113 		[5] = 12512, /* 1251.25 mbps */
1114 		[6] = 15400,
1115 		[7] = 19250,
1116 		[8] = 23100,
1117 		[9] = 25025,
1118 		[10] = 30800,
1119 		[11] = 38500,
1120 		[12] = 46200,
1121 		/* OFDM PHY */
1122 		[13] =  6930,
1123 		[14] =  8662, /* 866.25 mbps */
1124 		[15] = 13860,
1125 		[16] = 17325,
1126 		[17] = 20790,
1127 		[18] = 27720,
1128 		[19] = 34650,
1129 		[20] = 41580,
1130 		[21] = 45045,
1131 		[22] = 51975,
1132 		[23] = 62370,
1133 		[24] = 67568, /* 6756.75 mbps */
1134 		/* LP-SC PHY */
1135 		[25] =  6260,
1136 		[26] =  8340,
1137 		[27] = 11120,
1138 		[28] = 12510,
1139 		[29] = 16680,
1140 		[30] = 22240,
1141 		[31] = 25030,
1142 	};
1143 
1144 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1145 		return 0;
1146 
1147 	return __mcs2bitrate[rate->mcs];
1148 }
1149 
1150 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1151 {
1152 	static const u32 base[4][10] = {
1153 		{   6500000,
1154 		   13000000,
1155 		   19500000,
1156 		   26000000,
1157 		   39000000,
1158 		   52000000,
1159 		   58500000,
1160 		   65000000,
1161 		   78000000,
1162 		/* not in the spec, but some devices use this: */
1163 		   86500000,
1164 		},
1165 		{  13500000,
1166 		   27000000,
1167 		   40500000,
1168 		   54000000,
1169 		   81000000,
1170 		  108000000,
1171 		  121500000,
1172 		  135000000,
1173 		  162000000,
1174 		  180000000,
1175 		},
1176 		{  29300000,
1177 		   58500000,
1178 		   87800000,
1179 		  117000000,
1180 		  175500000,
1181 		  234000000,
1182 		  263300000,
1183 		  292500000,
1184 		  351000000,
1185 		  390000000,
1186 		},
1187 		{  58500000,
1188 		  117000000,
1189 		  175500000,
1190 		  234000000,
1191 		  351000000,
1192 		  468000000,
1193 		  526500000,
1194 		  585000000,
1195 		  702000000,
1196 		  780000000,
1197 		},
1198 	};
1199 	u32 bitrate;
1200 	int idx;
1201 
1202 	if (WARN_ON_ONCE(rate->mcs > 9))
1203 		return 0;
1204 
1205 	switch (rate->bw) {
1206 	case RATE_INFO_BW_160:
1207 		idx = 3;
1208 		break;
1209 	case RATE_INFO_BW_80:
1210 		idx = 2;
1211 		break;
1212 	case RATE_INFO_BW_40:
1213 		idx = 1;
1214 		break;
1215 	case RATE_INFO_BW_5:
1216 	case RATE_INFO_BW_10:
1217 	default:
1218 		WARN_ON(1);
1219 		/* fall through */
1220 	case RATE_INFO_BW_20:
1221 		idx = 0;
1222 	}
1223 
1224 	bitrate = base[idx][rate->mcs];
1225 	bitrate *= rate->nss;
1226 
1227 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1228 		bitrate = (bitrate / 9) * 10;
1229 
1230 	/* do NOT round down here */
1231 	return (bitrate + 50000) / 100000;
1232 }
1233 
1234 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1235 {
1236 	int modulation, streams, bitrate;
1237 
1238 	if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1239 	    !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1240 		return rate->legacy;
1241 	if (rate->flags & RATE_INFO_FLAGS_60G)
1242 		return cfg80211_calculate_bitrate_60g(rate);
1243 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1244 		return cfg80211_calculate_bitrate_vht(rate);
1245 
1246 	/* the formula below does only work for MCS values smaller than 32 */
1247 	if (WARN_ON_ONCE(rate->mcs >= 32))
1248 		return 0;
1249 
1250 	modulation = rate->mcs & 7;
1251 	streams = (rate->mcs >> 3) + 1;
1252 
1253 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1254 
1255 	if (modulation < 4)
1256 		bitrate *= (modulation + 1);
1257 	else if (modulation == 4)
1258 		bitrate *= (modulation + 2);
1259 	else
1260 		bitrate *= (modulation + 3);
1261 
1262 	bitrate *= streams;
1263 
1264 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1265 		bitrate = (bitrate / 9) * 10;
1266 
1267 	/* do NOT round down here */
1268 	return (bitrate + 50000) / 100000;
1269 }
1270 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1271 
1272 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1273 			  enum ieee80211_p2p_attr_id attr,
1274 			  u8 *buf, unsigned int bufsize)
1275 {
1276 	u8 *out = buf;
1277 	u16 attr_remaining = 0;
1278 	bool desired_attr = false;
1279 	u16 desired_len = 0;
1280 
1281 	while (len > 0) {
1282 		unsigned int iedatalen;
1283 		unsigned int copy;
1284 		const u8 *iedata;
1285 
1286 		if (len < 2)
1287 			return -EILSEQ;
1288 		iedatalen = ies[1];
1289 		if (iedatalen + 2 > len)
1290 			return -EILSEQ;
1291 
1292 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1293 			goto cont;
1294 
1295 		if (iedatalen < 4)
1296 			goto cont;
1297 
1298 		iedata = ies + 2;
1299 
1300 		/* check WFA OUI, P2P subtype */
1301 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1302 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1303 			goto cont;
1304 
1305 		iedatalen -= 4;
1306 		iedata += 4;
1307 
1308 		/* check attribute continuation into this IE */
1309 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1310 		if (copy && desired_attr) {
1311 			desired_len += copy;
1312 			if (out) {
1313 				memcpy(out, iedata, min(bufsize, copy));
1314 				out += min(bufsize, copy);
1315 				bufsize -= min(bufsize, copy);
1316 			}
1317 
1318 
1319 			if (copy == attr_remaining)
1320 				return desired_len;
1321 		}
1322 
1323 		attr_remaining -= copy;
1324 		if (attr_remaining)
1325 			goto cont;
1326 
1327 		iedatalen -= copy;
1328 		iedata += copy;
1329 
1330 		while (iedatalen > 0) {
1331 			u16 attr_len;
1332 
1333 			/* P2P attribute ID & size must fit */
1334 			if (iedatalen < 3)
1335 				return -EILSEQ;
1336 			desired_attr = iedata[0] == attr;
1337 			attr_len = get_unaligned_le16(iedata + 1);
1338 			iedatalen -= 3;
1339 			iedata += 3;
1340 
1341 			copy = min_t(unsigned int, attr_len, iedatalen);
1342 
1343 			if (desired_attr) {
1344 				desired_len += copy;
1345 				if (out) {
1346 					memcpy(out, iedata, min(bufsize, copy));
1347 					out += min(bufsize, copy);
1348 					bufsize -= min(bufsize, copy);
1349 				}
1350 
1351 				if (copy == attr_len)
1352 					return desired_len;
1353 			}
1354 
1355 			iedata += copy;
1356 			iedatalen -= copy;
1357 			attr_remaining = attr_len - copy;
1358 		}
1359 
1360  cont:
1361 		len -= ies[1] + 2;
1362 		ies += ies[1] + 2;
1363 	}
1364 
1365 	if (attr_remaining && desired_attr)
1366 		return -EILSEQ;
1367 
1368 	return -ENOENT;
1369 }
1370 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1371 
1372 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1373 {
1374 	int i;
1375 
1376 	for (i = 0; i < n_ids; i++)
1377 		if (ids[i] == id)
1378 			return true;
1379 	return false;
1380 }
1381 
1382 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1383 {
1384 	/* we assume a validly formed IEs buffer */
1385 	u8 len = ies[pos + 1];
1386 
1387 	pos += 2 + len;
1388 
1389 	/* the IE itself must have 255 bytes for fragments to follow */
1390 	if (len < 255)
1391 		return pos;
1392 
1393 	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1394 		len = ies[pos + 1];
1395 		pos += 2 + len;
1396 	}
1397 
1398 	return pos;
1399 }
1400 
1401 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1402 			      const u8 *ids, int n_ids,
1403 			      const u8 *after_ric, int n_after_ric,
1404 			      size_t offset)
1405 {
1406 	size_t pos = offset;
1407 
1408 	while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
1409 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1410 			pos = skip_ie(ies, ielen, pos);
1411 
1412 			while (pos < ielen &&
1413 			       !ieee80211_id_in_list(after_ric, n_after_ric,
1414 						     ies[pos]))
1415 				pos = skip_ie(ies, ielen, pos);
1416 		} else {
1417 			pos = skip_ie(ies, ielen, pos);
1418 		}
1419 	}
1420 
1421 	return pos;
1422 }
1423 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1424 
1425 bool ieee80211_operating_class_to_band(u8 operating_class,
1426 				       enum nl80211_band *band)
1427 {
1428 	switch (operating_class) {
1429 	case 112:
1430 	case 115 ... 127:
1431 	case 128 ... 130:
1432 		*band = NL80211_BAND_5GHZ;
1433 		return true;
1434 	case 81:
1435 	case 82:
1436 	case 83:
1437 	case 84:
1438 		*band = NL80211_BAND_2GHZ;
1439 		return true;
1440 	case 180:
1441 		*band = NL80211_BAND_60GHZ;
1442 		return true;
1443 	}
1444 
1445 	return false;
1446 }
1447 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1448 
1449 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1450 					  u8 *op_class)
1451 {
1452 	u8 vht_opclass;
1453 	u16 freq = chandef->center_freq1;
1454 
1455 	if (freq >= 2412 && freq <= 2472) {
1456 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1457 			return false;
1458 
1459 		/* 2.407 GHz, channels 1..13 */
1460 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1461 			if (freq > chandef->chan->center_freq)
1462 				*op_class = 83; /* HT40+ */
1463 			else
1464 				*op_class = 84; /* HT40- */
1465 		} else {
1466 			*op_class = 81;
1467 		}
1468 
1469 		return true;
1470 	}
1471 
1472 	if (freq == 2484) {
1473 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1474 			return false;
1475 
1476 		*op_class = 82; /* channel 14 */
1477 		return true;
1478 	}
1479 
1480 	switch (chandef->width) {
1481 	case NL80211_CHAN_WIDTH_80:
1482 		vht_opclass = 128;
1483 		break;
1484 	case NL80211_CHAN_WIDTH_160:
1485 		vht_opclass = 129;
1486 		break;
1487 	case NL80211_CHAN_WIDTH_80P80:
1488 		vht_opclass = 130;
1489 		break;
1490 	case NL80211_CHAN_WIDTH_10:
1491 	case NL80211_CHAN_WIDTH_5:
1492 		return false; /* unsupported for now */
1493 	default:
1494 		vht_opclass = 0;
1495 		break;
1496 	}
1497 
1498 	/* 5 GHz, channels 36..48 */
1499 	if (freq >= 5180 && freq <= 5240) {
1500 		if (vht_opclass) {
1501 			*op_class = vht_opclass;
1502 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1503 			if (freq > chandef->chan->center_freq)
1504 				*op_class = 116;
1505 			else
1506 				*op_class = 117;
1507 		} else {
1508 			*op_class = 115;
1509 		}
1510 
1511 		return true;
1512 	}
1513 
1514 	/* 5 GHz, channels 52..64 */
1515 	if (freq >= 5260 && freq <= 5320) {
1516 		if (vht_opclass) {
1517 			*op_class = vht_opclass;
1518 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1519 			if (freq > chandef->chan->center_freq)
1520 				*op_class = 119;
1521 			else
1522 				*op_class = 120;
1523 		} else {
1524 			*op_class = 118;
1525 		}
1526 
1527 		return true;
1528 	}
1529 
1530 	/* 5 GHz, channels 100..144 */
1531 	if (freq >= 5500 && freq <= 5720) {
1532 		if (vht_opclass) {
1533 			*op_class = vht_opclass;
1534 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1535 			if (freq > chandef->chan->center_freq)
1536 				*op_class = 122;
1537 			else
1538 				*op_class = 123;
1539 		} else {
1540 			*op_class = 121;
1541 		}
1542 
1543 		return true;
1544 	}
1545 
1546 	/* 5 GHz, channels 149..169 */
1547 	if (freq >= 5745 && freq <= 5845) {
1548 		if (vht_opclass) {
1549 			*op_class = vht_opclass;
1550 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1551 			if (freq > chandef->chan->center_freq)
1552 				*op_class = 126;
1553 			else
1554 				*op_class = 127;
1555 		} else if (freq <= 5805) {
1556 			*op_class = 124;
1557 		} else {
1558 			*op_class = 125;
1559 		}
1560 
1561 		return true;
1562 	}
1563 
1564 	/* 56.16 GHz, channel 1..4 */
1565 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1566 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1567 			return false;
1568 
1569 		*op_class = 180;
1570 		return true;
1571 	}
1572 
1573 	/* not supported yet */
1574 	return false;
1575 }
1576 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1577 
1578 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1579 				       u32 *beacon_int_gcd,
1580 				       bool *beacon_int_different)
1581 {
1582 	struct wireless_dev *wdev;
1583 
1584 	*beacon_int_gcd = 0;
1585 	*beacon_int_different = false;
1586 
1587 	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1588 		if (!wdev->beacon_interval)
1589 			continue;
1590 
1591 		if (!*beacon_int_gcd) {
1592 			*beacon_int_gcd = wdev->beacon_interval;
1593 			continue;
1594 		}
1595 
1596 		if (wdev->beacon_interval == *beacon_int_gcd)
1597 			continue;
1598 
1599 		*beacon_int_different = true;
1600 		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1601 	}
1602 
1603 	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1604 		if (*beacon_int_gcd)
1605 			*beacon_int_different = true;
1606 		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1607 	}
1608 }
1609 
1610 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1611 				 enum nl80211_iftype iftype, u32 beacon_int)
1612 {
1613 	/*
1614 	 * This is just a basic pre-condition check; if interface combinations
1615 	 * are possible the driver must already be checking those with a call
1616 	 * to cfg80211_check_combinations(), in which case we'll validate more
1617 	 * through the cfg80211_calculate_bi_data() call and code in
1618 	 * cfg80211_iter_combinations().
1619 	 */
1620 
1621 	if (beacon_int < 10 || beacon_int > 10000)
1622 		return -EINVAL;
1623 
1624 	return 0;
1625 }
1626 
1627 int cfg80211_iter_combinations(struct wiphy *wiphy,
1628 			       struct iface_combination_params *params,
1629 			       void (*iter)(const struct ieee80211_iface_combination *c,
1630 					    void *data),
1631 			       void *data)
1632 {
1633 	const struct ieee80211_regdomain *regdom;
1634 	enum nl80211_dfs_regions region = 0;
1635 	int i, j, iftype;
1636 	int num_interfaces = 0;
1637 	u32 used_iftypes = 0;
1638 	u32 beacon_int_gcd;
1639 	bool beacon_int_different;
1640 
1641 	/*
1642 	 * This is a bit strange, since the iteration used to rely only on
1643 	 * the data given by the driver, but here it now relies on context,
1644 	 * in form of the currently operating interfaces.
1645 	 * This is OK for all current users, and saves us from having to
1646 	 * push the GCD calculations into all the drivers.
1647 	 * In the future, this should probably rely more on data that's in
1648 	 * cfg80211 already - the only thing not would appear to be any new
1649 	 * interfaces (while being brought up) and channel/radar data.
1650 	 */
1651 	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1652 				   &beacon_int_gcd, &beacon_int_different);
1653 
1654 	if (params->radar_detect) {
1655 		rcu_read_lock();
1656 		regdom = rcu_dereference(cfg80211_regdomain);
1657 		if (regdom)
1658 			region = regdom->dfs_region;
1659 		rcu_read_unlock();
1660 	}
1661 
1662 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1663 		num_interfaces += params->iftype_num[iftype];
1664 		if (params->iftype_num[iftype] > 0 &&
1665 		    !(wiphy->software_iftypes & BIT(iftype)))
1666 			used_iftypes |= BIT(iftype);
1667 	}
1668 
1669 	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1670 		const struct ieee80211_iface_combination *c;
1671 		struct ieee80211_iface_limit *limits;
1672 		u32 all_iftypes = 0;
1673 
1674 		c = &wiphy->iface_combinations[i];
1675 
1676 		if (num_interfaces > c->max_interfaces)
1677 			continue;
1678 		if (params->num_different_channels > c->num_different_channels)
1679 			continue;
1680 
1681 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1682 				 GFP_KERNEL);
1683 		if (!limits)
1684 			return -ENOMEM;
1685 
1686 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1687 			if (wiphy->software_iftypes & BIT(iftype))
1688 				continue;
1689 			for (j = 0; j < c->n_limits; j++) {
1690 				all_iftypes |= limits[j].types;
1691 				if (!(limits[j].types & BIT(iftype)))
1692 					continue;
1693 				if (limits[j].max < params->iftype_num[iftype])
1694 					goto cont;
1695 				limits[j].max -= params->iftype_num[iftype];
1696 			}
1697 		}
1698 
1699 		if (params->radar_detect !=
1700 			(c->radar_detect_widths & params->radar_detect))
1701 			goto cont;
1702 
1703 		if (params->radar_detect && c->radar_detect_regions &&
1704 		    !(c->radar_detect_regions & BIT(region)))
1705 			goto cont;
1706 
1707 		/* Finally check that all iftypes that we're currently
1708 		 * using are actually part of this combination. If they
1709 		 * aren't then we can't use this combination and have
1710 		 * to continue to the next.
1711 		 */
1712 		if ((all_iftypes & used_iftypes) != used_iftypes)
1713 			goto cont;
1714 
1715 		if (beacon_int_gcd) {
1716 			if (c->beacon_int_min_gcd &&
1717 			    beacon_int_gcd < c->beacon_int_min_gcd)
1718 				goto cont;
1719 			if (!c->beacon_int_min_gcd && beacon_int_different)
1720 				goto cont;
1721 		}
1722 
1723 		/* This combination covered all interface types and
1724 		 * supported the requested numbers, so we're good.
1725 		 */
1726 
1727 		(*iter)(c, data);
1728  cont:
1729 		kfree(limits);
1730 	}
1731 
1732 	return 0;
1733 }
1734 EXPORT_SYMBOL(cfg80211_iter_combinations);
1735 
1736 static void
1737 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1738 			  void *data)
1739 {
1740 	int *num = data;
1741 	(*num)++;
1742 }
1743 
1744 int cfg80211_check_combinations(struct wiphy *wiphy,
1745 				struct iface_combination_params *params)
1746 {
1747 	int err, num = 0;
1748 
1749 	err = cfg80211_iter_combinations(wiphy, params,
1750 					 cfg80211_iter_sum_ifcombs, &num);
1751 	if (err)
1752 		return err;
1753 	if (num == 0)
1754 		return -EBUSY;
1755 
1756 	return 0;
1757 }
1758 EXPORT_SYMBOL(cfg80211_check_combinations);
1759 
1760 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1761 			   const u8 *rates, unsigned int n_rates,
1762 			   u32 *mask)
1763 {
1764 	int i, j;
1765 
1766 	if (!sband)
1767 		return -EINVAL;
1768 
1769 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1770 		return -EINVAL;
1771 
1772 	*mask = 0;
1773 
1774 	for (i = 0; i < n_rates; i++) {
1775 		int rate = (rates[i] & 0x7f) * 5;
1776 		bool found = false;
1777 
1778 		for (j = 0; j < sband->n_bitrates; j++) {
1779 			if (sband->bitrates[j].bitrate == rate) {
1780 				found = true;
1781 				*mask |= BIT(j);
1782 				break;
1783 			}
1784 		}
1785 		if (!found)
1786 			return -EINVAL;
1787 	}
1788 
1789 	/*
1790 	 * mask must have at least one bit set here since we
1791 	 * didn't accept a 0-length rates array nor allowed
1792 	 * entries in the array that didn't exist
1793 	 */
1794 
1795 	return 0;
1796 }
1797 
1798 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1799 {
1800 	enum nl80211_band band;
1801 	unsigned int n_channels = 0;
1802 
1803 	for (band = 0; band < NUM_NL80211_BANDS; band++)
1804 		if (wiphy->bands[band])
1805 			n_channels += wiphy->bands[band]->n_channels;
1806 
1807 	return n_channels;
1808 }
1809 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1810 
1811 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1812 			 struct station_info *sinfo)
1813 {
1814 	struct cfg80211_registered_device *rdev;
1815 	struct wireless_dev *wdev;
1816 
1817 	wdev = dev->ieee80211_ptr;
1818 	if (!wdev)
1819 		return -EOPNOTSUPP;
1820 
1821 	rdev = wiphy_to_rdev(wdev->wiphy);
1822 	if (!rdev->ops->get_station)
1823 		return -EOPNOTSUPP;
1824 
1825 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1826 }
1827 EXPORT_SYMBOL(cfg80211_get_station);
1828 
1829 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1830 {
1831 	int i;
1832 
1833 	if (!f)
1834 		return;
1835 
1836 	kfree(f->serv_spec_info);
1837 	kfree(f->srf_bf);
1838 	kfree(f->srf_macs);
1839 	for (i = 0; i < f->num_rx_filters; i++)
1840 		kfree(f->rx_filters[i].filter);
1841 
1842 	for (i = 0; i < f->num_tx_filters; i++)
1843 		kfree(f->tx_filters[i].filter);
1844 
1845 	kfree(f->rx_filters);
1846 	kfree(f->tx_filters);
1847 	kfree(f);
1848 }
1849 EXPORT_SYMBOL(cfg80211_free_nan_func);
1850 
1851 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1852 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1853 const unsigned char rfc1042_header[] __aligned(2) =
1854 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1855 EXPORT_SYMBOL(rfc1042_header);
1856 
1857 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1858 const unsigned char bridge_tunnel_header[] __aligned(2) =
1859 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1860 EXPORT_SYMBOL(bridge_tunnel_header);
1861