xref: /openbmc/linux/net/wireless/util.c (revision c4ee0af3)
1 /*
2  * Wireless utility functions
3  *
4  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
5  */
6 #include <linux/export.h>
7 #include <linux/bitops.h>
8 #include <linux/etherdevice.h>
9 #include <linux/slab.h>
10 #include <net/cfg80211.h>
11 #include <net/ip.h>
12 #include <net/dsfield.h>
13 #include <linux/if_vlan.h>
14 #include "core.h"
15 #include "rdev-ops.h"
16 
17 
18 struct ieee80211_rate *
19 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
20 			    u32 basic_rates, int bitrate)
21 {
22 	struct ieee80211_rate *result = &sband->bitrates[0];
23 	int i;
24 
25 	for (i = 0; i < sband->n_bitrates; i++) {
26 		if (!(basic_rates & BIT(i)))
27 			continue;
28 		if (sband->bitrates[i].bitrate > bitrate)
29 			continue;
30 		result = &sband->bitrates[i];
31 	}
32 
33 	return result;
34 }
35 EXPORT_SYMBOL(ieee80211_get_response_rate);
36 
37 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
38 			      enum nl80211_bss_scan_width scan_width)
39 {
40 	struct ieee80211_rate *bitrates;
41 	u32 mandatory_rates = 0;
42 	enum ieee80211_rate_flags mandatory_flag;
43 	int i;
44 
45 	if (WARN_ON(!sband))
46 		return 1;
47 
48 	if (sband->band == IEEE80211_BAND_2GHZ) {
49 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
50 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
51 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
52 		else
53 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
54 	} else {
55 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
56 	}
57 
58 	bitrates = sband->bitrates;
59 	for (i = 0; i < sband->n_bitrates; i++)
60 		if (bitrates[i].flags & mandatory_flag)
61 			mandatory_rates |= BIT(i);
62 	return mandatory_rates;
63 }
64 EXPORT_SYMBOL(ieee80211_mandatory_rates);
65 
66 int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band)
67 {
68 	/* see 802.11 17.3.8.3.2 and Annex J
69 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
70 	if (chan <= 0)
71 		return 0; /* not supported */
72 	switch (band) {
73 	case IEEE80211_BAND_2GHZ:
74 		if (chan == 14)
75 			return 2484;
76 		else if (chan < 14)
77 			return 2407 + chan * 5;
78 		break;
79 	case IEEE80211_BAND_5GHZ:
80 		if (chan >= 182 && chan <= 196)
81 			return 4000 + chan * 5;
82 		else
83 			return 5000 + chan * 5;
84 		break;
85 	case IEEE80211_BAND_60GHZ:
86 		if (chan < 5)
87 			return 56160 + chan * 2160;
88 		break;
89 	default:
90 		;
91 	}
92 	return 0; /* not supported */
93 }
94 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
95 
96 int ieee80211_frequency_to_channel(int freq)
97 {
98 	/* see 802.11 17.3.8.3.2 and Annex J */
99 	if (freq == 2484)
100 		return 14;
101 	else if (freq < 2484)
102 		return (freq - 2407) / 5;
103 	else if (freq >= 4910 && freq <= 4980)
104 		return (freq - 4000) / 5;
105 	else if (freq <= 45000) /* DMG band lower limit */
106 		return (freq - 5000) / 5;
107 	else if (freq >= 58320 && freq <= 64800)
108 		return (freq - 56160) / 2160;
109 	else
110 		return 0;
111 }
112 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
113 
114 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
115 						  int freq)
116 {
117 	enum ieee80211_band band;
118 	struct ieee80211_supported_band *sband;
119 	int i;
120 
121 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
122 		sband = wiphy->bands[band];
123 
124 		if (!sband)
125 			continue;
126 
127 		for (i = 0; i < sband->n_channels; i++) {
128 			if (sband->channels[i].center_freq == freq)
129 				return &sband->channels[i];
130 		}
131 	}
132 
133 	return NULL;
134 }
135 EXPORT_SYMBOL(__ieee80211_get_channel);
136 
137 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
138 				     enum ieee80211_band band)
139 {
140 	int i, want;
141 
142 	switch (band) {
143 	case IEEE80211_BAND_5GHZ:
144 		want = 3;
145 		for (i = 0; i < sband->n_bitrates; i++) {
146 			if (sband->bitrates[i].bitrate == 60 ||
147 			    sband->bitrates[i].bitrate == 120 ||
148 			    sband->bitrates[i].bitrate == 240) {
149 				sband->bitrates[i].flags |=
150 					IEEE80211_RATE_MANDATORY_A;
151 				want--;
152 			}
153 		}
154 		WARN_ON(want);
155 		break;
156 	case IEEE80211_BAND_2GHZ:
157 		want = 7;
158 		for (i = 0; i < sband->n_bitrates; i++) {
159 			if (sband->bitrates[i].bitrate == 10) {
160 				sband->bitrates[i].flags |=
161 					IEEE80211_RATE_MANDATORY_B |
162 					IEEE80211_RATE_MANDATORY_G;
163 				want--;
164 			}
165 
166 			if (sband->bitrates[i].bitrate == 20 ||
167 			    sband->bitrates[i].bitrate == 55 ||
168 			    sband->bitrates[i].bitrate == 110 ||
169 			    sband->bitrates[i].bitrate == 60 ||
170 			    sband->bitrates[i].bitrate == 120 ||
171 			    sband->bitrates[i].bitrate == 240) {
172 				sband->bitrates[i].flags |=
173 					IEEE80211_RATE_MANDATORY_G;
174 				want--;
175 			}
176 
177 			if (sband->bitrates[i].bitrate != 10 &&
178 			    sband->bitrates[i].bitrate != 20 &&
179 			    sband->bitrates[i].bitrate != 55 &&
180 			    sband->bitrates[i].bitrate != 110)
181 				sband->bitrates[i].flags |=
182 					IEEE80211_RATE_ERP_G;
183 		}
184 		WARN_ON(want != 0 && want != 3 && want != 6);
185 		break;
186 	case IEEE80211_BAND_60GHZ:
187 		/* check for mandatory HT MCS 1..4 */
188 		WARN_ON(!sband->ht_cap.ht_supported);
189 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
190 		break;
191 	case IEEE80211_NUM_BANDS:
192 		WARN_ON(1);
193 		break;
194 	}
195 }
196 
197 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
198 {
199 	enum ieee80211_band band;
200 
201 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
202 		if (wiphy->bands[band])
203 			set_mandatory_flags_band(wiphy->bands[band], band);
204 }
205 
206 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
207 {
208 	int i;
209 	for (i = 0; i < wiphy->n_cipher_suites; i++)
210 		if (cipher == wiphy->cipher_suites[i])
211 			return true;
212 	return false;
213 }
214 
215 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
216 				   struct key_params *params, int key_idx,
217 				   bool pairwise, const u8 *mac_addr)
218 {
219 	if (key_idx > 5)
220 		return -EINVAL;
221 
222 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
223 		return -EINVAL;
224 
225 	if (pairwise && !mac_addr)
226 		return -EINVAL;
227 
228 	/*
229 	 * Disallow pairwise keys with non-zero index unless it's WEP
230 	 * or a vendor specific cipher (because current deployments use
231 	 * pairwise WEP keys with non-zero indices and for vendor specific
232 	 * ciphers this should be validated in the driver or hardware level
233 	 * - but 802.11i clearly specifies to use zero)
234 	 */
235 	if (pairwise && key_idx &&
236 	    ((params->cipher == WLAN_CIPHER_SUITE_TKIP) ||
237 	     (params->cipher == WLAN_CIPHER_SUITE_CCMP) ||
238 	     (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC)))
239 		return -EINVAL;
240 
241 	switch (params->cipher) {
242 	case WLAN_CIPHER_SUITE_WEP40:
243 		if (params->key_len != WLAN_KEY_LEN_WEP40)
244 			return -EINVAL;
245 		break;
246 	case WLAN_CIPHER_SUITE_TKIP:
247 		if (params->key_len != WLAN_KEY_LEN_TKIP)
248 			return -EINVAL;
249 		break;
250 	case WLAN_CIPHER_SUITE_CCMP:
251 		if (params->key_len != WLAN_KEY_LEN_CCMP)
252 			return -EINVAL;
253 		break;
254 	case WLAN_CIPHER_SUITE_WEP104:
255 		if (params->key_len != WLAN_KEY_LEN_WEP104)
256 			return -EINVAL;
257 		break;
258 	case WLAN_CIPHER_SUITE_AES_CMAC:
259 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
260 			return -EINVAL;
261 		break;
262 	default:
263 		/*
264 		 * We don't know anything about this algorithm,
265 		 * allow using it -- but the driver must check
266 		 * all parameters! We still check below whether
267 		 * or not the driver supports this algorithm,
268 		 * of course.
269 		 */
270 		break;
271 	}
272 
273 	if (params->seq) {
274 		switch (params->cipher) {
275 		case WLAN_CIPHER_SUITE_WEP40:
276 		case WLAN_CIPHER_SUITE_WEP104:
277 			/* These ciphers do not use key sequence */
278 			return -EINVAL;
279 		case WLAN_CIPHER_SUITE_TKIP:
280 		case WLAN_CIPHER_SUITE_CCMP:
281 		case WLAN_CIPHER_SUITE_AES_CMAC:
282 			if (params->seq_len != 6)
283 				return -EINVAL;
284 			break;
285 		}
286 	}
287 
288 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
289 		return -EINVAL;
290 
291 	return 0;
292 }
293 
294 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
295 {
296 	unsigned int hdrlen = 24;
297 
298 	if (ieee80211_is_data(fc)) {
299 		if (ieee80211_has_a4(fc))
300 			hdrlen = 30;
301 		if (ieee80211_is_data_qos(fc)) {
302 			hdrlen += IEEE80211_QOS_CTL_LEN;
303 			if (ieee80211_has_order(fc))
304 				hdrlen += IEEE80211_HT_CTL_LEN;
305 		}
306 		goto out;
307 	}
308 
309 	if (ieee80211_is_ctl(fc)) {
310 		/*
311 		 * ACK and CTS are 10 bytes, all others 16. To see how
312 		 * to get this condition consider
313 		 *   subtype mask:   0b0000000011110000 (0x00F0)
314 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
315 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
316 		 *   bits that matter:         ^^^      (0x00E0)
317 		 *   value of those: 0b0000000011000000 (0x00C0)
318 		 */
319 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
320 			hdrlen = 10;
321 		else
322 			hdrlen = 16;
323 	}
324 out:
325 	return hdrlen;
326 }
327 EXPORT_SYMBOL(ieee80211_hdrlen);
328 
329 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
330 {
331 	const struct ieee80211_hdr *hdr =
332 			(const struct ieee80211_hdr *)skb->data;
333 	unsigned int hdrlen;
334 
335 	if (unlikely(skb->len < 10))
336 		return 0;
337 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
338 	if (unlikely(hdrlen > skb->len))
339 		return 0;
340 	return hdrlen;
341 }
342 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
343 
344 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
345 {
346 	int ae = meshhdr->flags & MESH_FLAGS_AE;
347 	/* 802.11-2012, 8.2.4.7.3 */
348 	switch (ae) {
349 	default:
350 	case 0:
351 		return 6;
352 	case MESH_FLAGS_AE_A4:
353 		return 12;
354 	case MESH_FLAGS_AE_A5_A6:
355 		return 18;
356 	}
357 }
358 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
359 
360 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
361 			   enum nl80211_iftype iftype)
362 {
363 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
364 	u16 hdrlen, ethertype;
365 	u8 *payload;
366 	u8 dst[ETH_ALEN];
367 	u8 src[ETH_ALEN] __aligned(2);
368 
369 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
370 		return -1;
371 
372 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
373 
374 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
375 	 * header
376 	 * IEEE 802.11 address fields:
377 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
378 	 *   0     0   DA    SA    BSSID n/a
379 	 *   0     1   DA    BSSID SA    n/a
380 	 *   1     0   BSSID SA    DA    n/a
381 	 *   1     1   RA    TA    DA    SA
382 	 */
383 	memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
384 	memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
385 
386 	switch (hdr->frame_control &
387 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
388 	case cpu_to_le16(IEEE80211_FCTL_TODS):
389 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
390 			     iftype != NL80211_IFTYPE_AP_VLAN &&
391 			     iftype != NL80211_IFTYPE_P2P_GO))
392 			return -1;
393 		break;
394 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
395 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
396 			     iftype != NL80211_IFTYPE_MESH_POINT &&
397 			     iftype != NL80211_IFTYPE_AP_VLAN &&
398 			     iftype != NL80211_IFTYPE_STATION))
399 			return -1;
400 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
401 			struct ieee80211s_hdr *meshdr =
402 				(struct ieee80211s_hdr *) (skb->data + hdrlen);
403 			/* make sure meshdr->flags is on the linear part */
404 			if (!pskb_may_pull(skb, hdrlen + 1))
405 				return -1;
406 			if (meshdr->flags & MESH_FLAGS_AE_A4)
407 				return -1;
408 			if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
409 				skb_copy_bits(skb, hdrlen +
410 					offsetof(struct ieee80211s_hdr, eaddr1),
411 				       	dst, ETH_ALEN);
412 				skb_copy_bits(skb, hdrlen +
413 					offsetof(struct ieee80211s_hdr, eaddr2),
414 				        src, ETH_ALEN);
415 			}
416 			hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
417 		}
418 		break;
419 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
420 		if ((iftype != NL80211_IFTYPE_STATION &&
421 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
422 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
423 		    (is_multicast_ether_addr(dst) &&
424 		     ether_addr_equal(src, addr)))
425 			return -1;
426 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
427 			struct ieee80211s_hdr *meshdr =
428 				(struct ieee80211s_hdr *) (skb->data + hdrlen);
429 			/* make sure meshdr->flags is on the linear part */
430 			if (!pskb_may_pull(skb, hdrlen + 1))
431 				return -1;
432 			if (meshdr->flags & MESH_FLAGS_AE_A5_A6)
433 				return -1;
434 			if (meshdr->flags & MESH_FLAGS_AE_A4)
435 				skb_copy_bits(skb, hdrlen +
436 					offsetof(struct ieee80211s_hdr, eaddr1),
437 					src, ETH_ALEN);
438 			hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
439 		}
440 		break;
441 	case cpu_to_le16(0):
442 		if (iftype != NL80211_IFTYPE_ADHOC &&
443 		    iftype != NL80211_IFTYPE_STATION)
444 				return -1;
445 		break;
446 	}
447 
448 	if (!pskb_may_pull(skb, hdrlen + 8))
449 		return -1;
450 
451 	payload = skb->data + hdrlen;
452 	ethertype = (payload[6] << 8) | payload[7];
453 
454 	if (likely((ether_addr_equal(payload, rfc1042_header) &&
455 		    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
456 		   ether_addr_equal(payload, bridge_tunnel_header))) {
457 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
458 		 * replace EtherType */
459 		skb_pull(skb, hdrlen + 6);
460 		memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
461 		memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
462 	} else {
463 		struct ethhdr *ehdr;
464 		__be16 len;
465 
466 		skb_pull(skb, hdrlen);
467 		len = htons(skb->len);
468 		ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
469 		memcpy(ehdr->h_dest, dst, ETH_ALEN);
470 		memcpy(ehdr->h_source, src, ETH_ALEN);
471 		ehdr->h_proto = len;
472 	}
473 	return 0;
474 }
475 EXPORT_SYMBOL(ieee80211_data_to_8023);
476 
477 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
478 			     enum nl80211_iftype iftype, u8 *bssid, bool qos)
479 {
480 	struct ieee80211_hdr hdr;
481 	u16 hdrlen, ethertype;
482 	__le16 fc;
483 	const u8 *encaps_data;
484 	int encaps_len, skip_header_bytes;
485 	int nh_pos, h_pos;
486 	int head_need;
487 
488 	if (unlikely(skb->len < ETH_HLEN))
489 		return -EINVAL;
490 
491 	nh_pos = skb_network_header(skb) - skb->data;
492 	h_pos = skb_transport_header(skb) - skb->data;
493 
494 	/* convert Ethernet header to proper 802.11 header (based on
495 	 * operation mode) */
496 	ethertype = (skb->data[12] << 8) | skb->data[13];
497 	fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
498 
499 	switch (iftype) {
500 	case NL80211_IFTYPE_AP:
501 	case NL80211_IFTYPE_AP_VLAN:
502 	case NL80211_IFTYPE_P2P_GO:
503 		fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
504 		/* DA BSSID SA */
505 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
506 		memcpy(hdr.addr2, addr, ETH_ALEN);
507 		memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
508 		hdrlen = 24;
509 		break;
510 	case NL80211_IFTYPE_STATION:
511 	case NL80211_IFTYPE_P2P_CLIENT:
512 		fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
513 		/* BSSID SA DA */
514 		memcpy(hdr.addr1, bssid, ETH_ALEN);
515 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
516 		memcpy(hdr.addr3, skb->data, ETH_ALEN);
517 		hdrlen = 24;
518 		break;
519 	case NL80211_IFTYPE_ADHOC:
520 		/* DA SA BSSID */
521 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
522 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
523 		memcpy(hdr.addr3, bssid, ETH_ALEN);
524 		hdrlen = 24;
525 		break;
526 	default:
527 		return -EOPNOTSUPP;
528 	}
529 
530 	if (qos) {
531 		fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
532 		hdrlen += 2;
533 	}
534 
535 	hdr.frame_control = fc;
536 	hdr.duration_id = 0;
537 	hdr.seq_ctrl = 0;
538 
539 	skip_header_bytes = ETH_HLEN;
540 	if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
541 		encaps_data = bridge_tunnel_header;
542 		encaps_len = sizeof(bridge_tunnel_header);
543 		skip_header_bytes -= 2;
544 	} else if (ethertype >= ETH_P_802_3_MIN) {
545 		encaps_data = rfc1042_header;
546 		encaps_len = sizeof(rfc1042_header);
547 		skip_header_bytes -= 2;
548 	} else {
549 		encaps_data = NULL;
550 		encaps_len = 0;
551 	}
552 
553 	skb_pull(skb, skip_header_bytes);
554 	nh_pos -= skip_header_bytes;
555 	h_pos -= skip_header_bytes;
556 
557 	head_need = hdrlen + encaps_len - skb_headroom(skb);
558 
559 	if (head_need > 0 || skb_cloned(skb)) {
560 		head_need = max(head_need, 0);
561 		if (head_need)
562 			skb_orphan(skb);
563 
564 		if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
565 			return -ENOMEM;
566 
567 		skb->truesize += head_need;
568 	}
569 
570 	if (encaps_data) {
571 		memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
572 		nh_pos += encaps_len;
573 		h_pos += encaps_len;
574 	}
575 
576 	memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
577 
578 	nh_pos += hdrlen;
579 	h_pos += hdrlen;
580 
581 	/* Update skb pointers to various headers since this modified frame
582 	 * is going to go through Linux networking code that may potentially
583 	 * need things like pointer to IP header. */
584 	skb_set_mac_header(skb, 0);
585 	skb_set_network_header(skb, nh_pos);
586 	skb_set_transport_header(skb, h_pos);
587 
588 	return 0;
589 }
590 EXPORT_SYMBOL(ieee80211_data_from_8023);
591 
592 
593 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
594 			      const u8 *addr, enum nl80211_iftype iftype,
595 			      const unsigned int extra_headroom,
596 			      bool has_80211_header)
597 {
598 	struct sk_buff *frame = NULL;
599 	u16 ethertype;
600 	u8 *payload;
601 	const struct ethhdr *eth;
602 	int remaining, err;
603 	u8 dst[ETH_ALEN], src[ETH_ALEN];
604 
605 	if (has_80211_header) {
606 		err = ieee80211_data_to_8023(skb, addr, iftype);
607 		if (err)
608 			goto out;
609 
610 		/* skip the wrapping header */
611 		eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
612 		if (!eth)
613 			goto out;
614 	} else {
615 		eth = (struct ethhdr *) skb->data;
616 	}
617 
618 	while (skb != frame) {
619 		u8 padding;
620 		__be16 len = eth->h_proto;
621 		unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
622 
623 		remaining = skb->len;
624 		memcpy(dst, eth->h_dest, ETH_ALEN);
625 		memcpy(src, eth->h_source, ETH_ALEN);
626 
627 		padding = (4 - subframe_len) & 0x3;
628 		/* the last MSDU has no padding */
629 		if (subframe_len > remaining)
630 			goto purge;
631 
632 		skb_pull(skb, sizeof(struct ethhdr));
633 		/* reuse skb for the last subframe */
634 		if (remaining <= subframe_len + padding)
635 			frame = skb;
636 		else {
637 			unsigned int hlen = ALIGN(extra_headroom, 4);
638 			/*
639 			 * Allocate and reserve two bytes more for payload
640 			 * alignment since sizeof(struct ethhdr) is 14.
641 			 */
642 			frame = dev_alloc_skb(hlen + subframe_len + 2);
643 			if (!frame)
644 				goto purge;
645 
646 			skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
647 			memcpy(skb_put(frame, ntohs(len)), skb->data,
648 				ntohs(len));
649 
650 			eth = (struct ethhdr *)skb_pull(skb, ntohs(len) +
651 							padding);
652 			if (!eth) {
653 				dev_kfree_skb(frame);
654 				goto purge;
655 			}
656 		}
657 
658 		skb_reset_network_header(frame);
659 		frame->dev = skb->dev;
660 		frame->priority = skb->priority;
661 
662 		payload = frame->data;
663 		ethertype = (payload[6] << 8) | payload[7];
664 
665 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
666 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
667 			   ether_addr_equal(payload, bridge_tunnel_header))) {
668 			/* remove RFC1042 or Bridge-Tunnel
669 			 * encapsulation and replace EtherType */
670 			skb_pull(frame, 6);
671 			memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
672 			memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
673 		} else {
674 			memcpy(skb_push(frame, sizeof(__be16)), &len,
675 				sizeof(__be16));
676 			memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
677 			memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
678 		}
679 		__skb_queue_tail(list, frame);
680 	}
681 
682 	return;
683 
684  purge:
685 	__skb_queue_purge(list);
686  out:
687 	dev_kfree_skb(skb);
688 }
689 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
690 
691 /* Given a data frame determine the 802.1p/1d tag to use. */
692 unsigned int cfg80211_classify8021d(struct sk_buff *skb)
693 {
694 	unsigned int dscp;
695 	unsigned char vlan_priority;
696 
697 	/* skb->priority values from 256->263 are magic values to
698 	 * directly indicate a specific 802.1d priority.  This is used
699 	 * to allow 802.1d priority to be passed directly in from VLAN
700 	 * tags, etc.
701 	 */
702 	if (skb->priority >= 256 && skb->priority <= 263)
703 		return skb->priority - 256;
704 
705 	if (vlan_tx_tag_present(skb)) {
706 		vlan_priority = (vlan_tx_tag_get(skb) & VLAN_PRIO_MASK)
707 			>> VLAN_PRIO_SHIFT;
708 		if (vlan_priority > 0)
709 			return vlan_priority;
710 	}
711 
712 	switch (skb->protocol) {
713 	case htons(ETH_P_IP):
714 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
715 		break;
716 	case htons(ETH_P_IPV6):
717 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
718 		break;
719 	default:
720 		return 0;
721 	}
722 
723 	return dscp >> 5;
724 }
725 EXPORT_SYMBOL(cfg80211_classify8021d);
726 
727 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
728 {
729 	const struct cfg80211_bss_ies *ies;
730 
731 	ies = rcu_dereference(bss->ies);
732 	if (!ies)
733 		return NULL;
734 
735 	return cfg80211_find_ie(ie, ies->data, ies->len);
736 }
737 EXPORT_SYMBOL(ieee80211_bss_get_ie);
738 
739 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
740 {
741 	struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy);
742 	struct net_device *dev = wdev->netdev;
743 	int i;
744 
745 	if (!wdev->connect_keys)
746 		return;
747 
748 	for (i = 0; i < 6; i++) {
749 		if (!wdev->connect_keys->params[i].cipher)
750 			continue;
751 		if (rdev_add_key(rdev, dev, i, false, NULL,
752 				 &wdev->connect_keys->params[i])) {
753 			netdev_err(dev, "failed to set key %d\n", i);
754 			continue;
755 		}
756 		if (wdev->connect_keys->def == i)
757 			if (rdev_set_default_key(rdev, dev, i, true, true)) {
758 				netdev_err(dev, "failed to set defkey %d\n", i);
759 				continue;
760 			}
761 		if (wdev->connect_keys->defmgmt == i)
762 			if (rdev_set_default_mgmt_key(rdev, dev, i))
763 				netdev_err(dev, "failed to set mgtdef %d\n", i);
764 	}
765 
766 	kfree(wdev->connect_keys);
767 	wdev->connect_keys = NULL;
768 }
769 
770 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
771 {
772 	struct cfg80211_event *ev;
773 	unsigned long flags;
774 	const u8 *bssid = NULL;
775 
776 	spin_lock_irqsave(&wdev->event_lock, flags);
777 	while (!list_empty(&wdev->event_list)) {
778 		ev = list_first_entry(&wdev->event_list,
779 				      struct cfg80211_event, list);
780 		list_del(&ev->list);
781 		spin_unlock_irqrestore(&wdev->event_lock, flags);
782 
783 		wdev_lock(wdev);
784 		switch (ev->type) {
785 		case EVENT_CONNECT_RESULT:
786 			if (!is_zero_ether_addr(ev->cr.bssid))
787 				bssid = ev->cr.bssid;
788 			__cfg80211_connect_result(
789 				wdev->netdev, bssid,
790 				ev->cr.req_ie, ev->cr.req_ie_len,
791 				ev->cr.resp_ie, ev->cr.resp_ie_len,
792 				ev->cr.status,
793 				ev->cr.status == WLAN_STATUS_SUCCESS,
794 				NULL);
795 			break;
796 		case EVENT_ROAMED:
797 			__cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
798 					  ev->rm.req_ie_len, ev->rm.resp_ie,
799 					  ev->rm.resp_ie_len);
800 			break;
801 		case EVENT_DISCONNECTED:
802 			__cfg80211_disconnected(wdev->netdev,
803 						ev->dc.ie, ev->dc.ie_len,
804 						ev->dc.reason, true);
805 			break;
806 		case EVENT_IBSS_JOINED:
807 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid);
808 			break;
809 		}
810 		wdev_unlock(wdev);
811 
812 		kfree(ev);
813 
814 		spin_lock_irqsave(&wdev->event_lock, flags);
815 	}
816 	spin_unlock_irqrestore(&wdev->event_lock, flags);
817 }
818 
819 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
820 {
821 	struct wireless_dev *wdev;
822 
823 	ASSERT_RTNL();
824 	ASSERT_RDEV_LOCK(rdev);
825 
826 	list_for_each_entry(wdev, &rdev->wdev_list, list)
827 		cfg80211_process_wdev_events(wdev);
828 }
829 
830 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
831 			  struct net_device *dev, enum nl80211_iftype ntype,
832 			  u32 *flags, struct vif_params *params)
833 {
834 	int err;
835 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
836 
837 	ASSERT_RDEV_LOCK(rdev);
838 
839 	/* don't support changing VLANs, you just re-create them */
840 	if (otype == NL80211_IFTYPE_AP_VLAN)
841 		return -EOPNOTSUPP;
842 
843 	/* cannot change into P2P device type */
844 	if (ntype == NL80211_IFTYPE_P2P_DEVICE)
845 		return -EOPNOTSUPP;
846 
847 	if (!rdev->ops->change_virtual_intf ||
848 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
849 		return -EOPNOTSUPP;
850 
851 	/* if it's part of a bridge, reject changing type to station/ibss */
852 	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
853 	    (ntype == NL80211_IFTYPE_ADHOC ||
854 	     ntype == NL80211_IFTYPE_STATION ||
855 	     ntype == NL80211_IFTYPE_P2P_CLIENT))
856 		return -EBUSY;
857 
858 	if (ntype != otype && netif_running(dev)) {
859 		err = cfg80211_can_change_interface(rdev, dev->ieee80211_ptr,
860 						    ntype);
861 		if (err)
862 			return err;
863 
864 		dev->ieee80211_ptr->use_4addr = false;
865 		dev->ieee80211_ptr->mesh_id_up_len = 0;
866 
867 		switch (otype) {
868 		case NL80211_IFTYPE_AP:
869 			cfg80211_stop_ap(rdev, dev);
870 			break;
871 		case NL80211_IFTYPE_ADHOC:
872 			cfg80211_leave_ibss(rdev, dev, false);
873 			break;
874 		case NL80211_IFTYPE_STATION:
875 		case NL80211_IFTYPE_P2P_CLIENT:
876 			wdev_lock(dev->ieee80211_ptr);
877 			cfg80211_disconnect(rdev, dev,
878 					    WLAN_REASON_DEAUTH_LEAVING, true);
879 			wdev_unlock(dev->ieee80211_ptr);
880 			break;
881 		case NL80211_IFTYPE_MESH_POINT:
882 			/* mesh should be handled? */
883 			break;
884 		default:
885 			break;
886 		}
887 
888 		cfg80211_process_rdev_events(rdev);
889 	}
890 
891 	err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
892 
893 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
894 
895 	if (!err && params && params->use_4addr != -1)
896 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
897 
898 	if (!err) {
899 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
900 		switch (ntype) {
901 		case NL80211_IFTYPE_STATION:
902 			if (dev->ieee80211_ptr->use_4addr)
903 				break;
904 			/* fall through */
905 		case NL80211_IFTYPE_P2P_CLIENT:
906 		case NL80211_IFTYPE_ADHOC:
907 			dev->priv_flags |= IFF_DONT_BRIDGE;
908 			break;
909 		case NL80211_IFTYPE_P2P_GO:
910 		case NL80211_IFTYPE_AP:
911 		case NL80211_IFTYPE_AP_VLAN:
912 		case NL80211_IFTYPE_WDS:
913 		case NL80211_IFTYPE_MESH_POINT:
914 			/* bridging OK */
915 			break;
916 		case NL80211_IFTYPE_MONITOR:
917 			/* monitor can't bridge anyway */
918 			break;
919 		case NL80211_IFTYPE_UNSPECIFIED:
920 		case NUM_NL80211_IFTYPES:
921 			/* not happening */
922 			break;
923 		case NL80211_IFTYPE_P2P_DEVICE:
924 			WARN_ON(1);
925 			break;
926 		}
927 	}
928 
929 	if (!err && ntype != otype && netif_running(dev)) {
930 		cfg80211_update_iface_num(rdev, ntype, 1);
931 		cfg80211_update_iface_num(rdev, otype, -1);
932 	}
933 
934 	return err;
935 }
936 
937 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
938 {
939 	static const u32 __mcs2bitrate[] = {
940 		/* control PHY */
941 		[0] =   275,
942 		/* SC PHY */
943 		[1] =  3850,
944 		[2] =  7700,
945 		[3] =  9625,
946 		[4] = 11550,
947 		[5] = 12512, /* 1251.25 mbps */
948 		[6] = 15400,
949 		[7] = 19250,
950 		[8] = 23100,
951 		[9] = 25025,
952 		[10] = 30800,
953 		[11] = 38500,
954 		[12] = 46200,
955 		/* OFDM PHY */
956 		[13] =  6930,
957 		[14] =  8662, /* 866.25 mbps */
958 		[15] = 13860,
959 		[16] = 17325,
960 		[17] = 20790,
961 		[18] = 27720,
962 		[19] = 34650,
963 		[20] = 41580,
964 		[21] = 45045,
965 		[22] = 51975,
966 		[23] = 62370,
967 		[24] = 67568, /* 6756.75 mbps */
968 		/* LP-SC PHY */
969 		[25] =  6260,
970 		[26] =  8340,
971 		[27] = 11120,
972 		[28] = 12510,
973 		[29] = 16680,
974 		[30] = 22240,
975 		[31] = 25030,
976 	};
977 
978 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
979 		return 0;
980 
981 	return __mcs2bitrate[rate->mcs];
982 }
983 
984 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
985 {
986 	static const u32 base[4][10] = {
987 		{   6500000,
988 		   13000000,
989 		   19500000,
990 		   26000000,
991 		   39000000,
992 		   52000000,
993 		   58500000,
994 		   65000000,
995 		   78000000,
996 		   0,
997 		},
998 		{  13500000,
999 		   27000000,
1000 		   40500000,
1001 		   54000000,
1002 		   81000000,
1003 		  108000000,
1004 		  121500000,
1005 		  135000000,
1006 		  162000000,
1007 		  180000000,
1008 		},
1009 		{  29300000,
1010 		   58500000,
1011 		   87800000,
1012 		  117000000,
1013 		  175500000,
1014 		  234000000,
1015 		  263300000,
1016 		  292500000,
1017 		  351000000,
1018 		  390000000,
1019 		},
1020 		{  58500000,
1021 		  117000000,
1022 		  175500000,
1023 		  234000000,
1024 		  351000000,
1025 		  468000000,
1026 		  526500000,
1027 		  585000000,
1028 		  702000000,
1029 		  780000000,
1030 		},
1031 	};
1032 	u32 bitrate;
1033 	int idx;
1034 
1035 	if (WARN_ON_ONCE(rate->mcs > 9))
1036 		return 0;
1037 
1038 	idx = rate->flags & (RATE_INFO_FLAGS_160_MHZ_WIDTH |
1039 			     RATE_INFO_FLAGS_80P80_MHZ_WIDTH) ? 3 :
1040 		  rate->flags & RATE_INFO_FLAGS_80_MHZ_WIDTH ? 2 :
1041 		  rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH ? 1 : 0;
1042 
1043 	bitrate = base[idx][rate->mcs];
1044 	bitrate *= rate->nss;
1045 
1046 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1047 		bitrate = (bitrate / 9) * 10;
1048 
1049 	/* do NOT round down here */
1050 	return (bitrate + 50000) / 100000;
1051 }
1052 
1053 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1054 {
1055 	int modulation, streams, bitrate;
1056 
1057 	if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1058 	    !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1059 		return rate->legacy;
1060 	if (rate->flags & RATE_INFO_FLAGS_60G)
1061 		return cfg80211_calculate_bitrate_60g(rate);
1062 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1063 		return cfg80211_calculate_bitrate_vht(rate);
1064 
1065 	/* the formula below does only work for MCS values smaller than 32 */
1066 	if (WARN_ON_ONCE(rate->mcs >= 32))
1067 		return 0;
1068 
1069 	modulation = rate->mcs & 7;
1070 	streams = (rate->mcs >> 3) + 1;
1071 
1072 	bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ?
1073 			13500000 : 6500000;
1074 
1075 	if (modulation < 4)
1076 		bitrate *= (modulation + 1);
1077 	else if (modulation == 4)
1078 		bitrate *= (modulation + 2);
1079 	else
1080 		bitrate *= (modulation + 3);
1081 
1082 	bitrate *= streams;
1083 
1084 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1085 		bitrate = (bitrate / 9) * 10;
1086 
1087 	/* do NOT round down here */
1088 	return (bitrate + 50000) / 100000;
1089 }
1090 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1091 
1092 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1093 			  enum ieee80211_p2p_attr_id attr,
1094 			  u8 *buf, unsigned int bufsize)
1095 {
1096 	u8 *out = buf;
1097 	u16 attr_remaining = 0;
1098 	bool desired_attr = false;
1099 	u16 desired_len = 0;
1100 
1101 	while (len > 0) {
1102 		unsigned int iedatalen;
1103 		unsigned int copy;
1104 		const u8 *iedata;
1105 
1106 		if (len < 2)
1107 			return -EILSEQ;
1108 		iedatalen = ies[1];
1109 		if (iedatalen + 2 > len)
1110 			return -EILSEQ;
1111 
1112 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1113 			goto cont;
1114 
1115 		if (iedatalen < 4)
1116 			goto cont;
1117 
1118 		iedata = ies + 2;
1119 
1120 		/* check WFA OUI, P2P subtype */
1121 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1122 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1123 			goto cont;
1124 
1125 		iedatalen -= 4;
1126 		iedata += 4;
1127 
1128 		/* check attribute continuation into this IE */
1129 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1130 		if (copy && desired_attr) {
1131 			desired_len += copy;
1132 			if (out) {
1133 				memcpy(out, iedata, min(bufsize, copy));
1134 				out += min(bufsize, copy);
1135 				bufsize -= min(bufsize, copy);
1136 			}
1137 
1138 
1139 			if (copy == attr_remaining)
1140 				return desired_len;
1141 		}
1142 
1143 		attr_remaining -= copy;
1144 		if (attr_remaining)
1145 			goto cont;
1146 
1147 		iedatalen -= copy;
1148 		iedata += copy;
1149 
1150 		while (iedatalen > 0) {
1151 			u16 attr_len;
1152 
1153 			/* P2P attribute ID & size must fit */
1154 			if (iedatalen < 3)
1155 				return -EILSEQ;
1156 			desired_attr = iedata[0] == attr;
1157 			attr_len = get_unaligned_le16(iedata + 1);
1158 			iedatalen -= 3;
1159 			iedata += 3;
1160 
1161 			copy = min_t(unsigned int, attr_len, iedatalen);
1162 
1163 			if (desired_attr) {
1164 				desired_len += copy;
1165 				if (out) {
1166 					memcpy(out, iedata, min(bufsize, copy));
1167 					out += min(bufsize, copy);
1168 					bufsize -= min(bufsize, copy);
1169 				}
1170 
1171 				if (copy == attr_len)
1172 					return desired_len;
1173 			}
1174 
1175 			iedata += copy;
1176 			iedatalen -= copy;
1177 			attr_remaining = attr_len - copy;
1178 		}
1179 
1180  cont:
1181 		len -= ies[1] + 2;
1182 		ies += ies[1] + 2;
1183 	}
1184 
1185 	if (attr_remaining && desired_attr)
1186 		return -EILSEQ;
1187 
1188 	return -ENOENT;
1189 }
1190 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1191 
1192 bool ieee80211_operating_class_to_band(u8 operating_class,
1193 				       enum ieee80211_band *band)
1194 {
1195 	switch (operating_class) {
1196 	case 112:
1197 	case 115 ... 127:
1198 		*band = IEEE80211_BAND_5GHZ;
1199 		return true;
1200 	case 81:
1201 	case 82:
1202 	case 83:
1203 	case 84:
1204 		*band = IEEE80211_BAND_2GHZ;
1205 		return true;
1206 	case 180:
1207 		*band = IEEE80211_BAND_60GHZ;
1208 		return true;
1209 	}
1210 
1211 	return false;
1212 }
1213 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1214 
1215 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1216 				 u32 beacon_int)
1217 {
1218 	struct wireless_dev *wdev;
1219 	int res = 0;
1220 
1221 	if (!beacon_int)
1222 		return -EINVAL;
1223 
1224 	list_for_each_entry(wdev, &rdev->wdev_list, list) {
1225 		if (!wdev->beacon_interval)
1226 			continue;
1227 		if (wdev->beacon_interval != beacon_int) {
1228 			res = -EINVAL;
1229 			break;
1230 		}
1231 	}
1232 
1233 	return res;
1234 }
1235 
1236 int cfg80211_can_use_iftype_chan(struct cfg80211_registered_device *rdev,
1237 				 struct wireless_dev *wdev,
1238 				 enum nl80211_iftype iftype,
1239 				 struct ieee80211_channel *chan,
1240 				 enum cfg80211_chan_mode chanmode,
1241 				 u8 radar_detect)
1242 {
1243 	struct wireless_dev *wdev_iter;
1244 	u32 used_iftypes = BIT(iftype);
1245 	int num[NUM_NL80211_IFTYPES];
1246 	struct ieee80211_channel
1247 			*used_channels[CFG80211_MAX_NUM_DIFFERENT_CHANNELS];
1248 	struct ieee80211_channel *ch;
1249 	enum cfg80211_chan_mode chmode;
1250 	int num_different_channels = 0;
1251 	int total = 1;
1252 	bool radar_required = false;
1253 	int i, j;
1254 
1255 	ASSERT_RTNL();
1256 
1257 	if (WARN_ON(hweight32(radar_detect) > 1))
1258 		return -EINVAL;
1259 
1260 	switch (iftype) {
1261 	case NL80211_IFTYPE_ADHOC:
1262 	case NL80211_IFTYPE_AP:
1263 	case NL80211_IFTYPE_AP_VLAN:
1264 	case NL80211_IFTYPE_MESH_POINT:
1265 	case NL80211_IFTYPE_P2P_GO:
1266 	case NL80211_IFTYPE_WDS:
1267 		/* if the interface could potentially choose a DFS channel,
1268 		 * then mark DFS as required.
1269 		 */
1270 		if (!chan) {
1271 			if (chanmode != CHAN_MODE_UNDEFINED && radar_detect)
1272 				radar_required = true;
1273 			break;
1274 		}
1275 		radar_required = !!(chan->flags & IEEE80211_CHAN_RADAR);
1276 		break;
1277 	case NL80211_IFTYPE_P2P_CLIENT:
1278 	case NL80211_IFTYPE_STATION:
1279 	case NL80211_IFTYPE_P2P_DEVICE:
1280 	case NL80211_IFTYPE_MONITOR:
1281 		break;
1282 	case NUM_NL80211_IFTYPES:
1283 	case NL80211_IFTYPE_UNSPECIFIED:
1284 	default:
1285 		return -EINVAL;
1286 	}
1287 
1288 	if (radar_required && !radar_detect)
1289 		return -EINVAL;
1290 
1291 	/* Always allow software iftypes */
1292 	if (rdev->wiphy.software_iftypes & BIT(iftype)) {
1293 		if (radar_detect)
1294 			return -EINVAL;
1295 		return 0;
1296 	}
1297 
1298 	memset(num, 0, sizeof(num));
1299 	memset(used_channels, 0, sizeof(used_channels));
1300 
1301 	num[iftype] = 1;
1302 
1303 	switch (chanmode) {
1304 	case CHAN_MODE_UNDEFINED:
1305 		break;
1306 	case CHAN_MODE_SHARED:
1307 		WARN_ON(!chan);
1308 		used_channels[0] = chan;
1309 		num_different_channels++;
1310 		break;
1311 	case CHAN_MODE_EXCLUSIVE:
1312 		num_different_channels++;
1313 		break;
1314 	}
1315 
1316 	list_for_each_entry(wdev_iter, &rdev->wdev_list, list) {
1317 		if (wdev_iter == wdev)
1318 			continue;
1319 		if (wdev_iter->iftype == NL80211_IFTYPE_P2P_DEVICE) {
1320 			if (!wdev_iter->p2p_started)
1321 				continue;
1322 		} else if (wdev_iter->netdev) {
1323 			if (!netif_running(wdev_iter->netdev))
1324 				continue;
1325 		} else {
1326 			WARN_ON(1);
1327 		}
1328 
1329 		if (rdev->wiphy.software_iftypes & BIT(wdev_iter->iftype))
1330 			continue;
1331 
1332 		/*
1333 		 * We may be holding the "wdev" mutex, but now need to lock
1334 		 * wdev_iter. This is OK because once we get here wdev_iter
1335 		 * is not wdev (tested above), but we need to use the nested
1336 		 * locking for lockdep.
1337 		 */
1338 		mutex_lock_nested(&wdev_iter->mtx, 1);
1339 		__acquire(wdev_iter->mtx);
1340 		cfg80211_get_chan_state(wdev_iter, &ch, &chmode);
1341 		wdev_unlock(wdev_iter);
1342 
1343 		switch (chmode) {
1344 		case CHAN_MODE_UNDEFINED:
1345 			break;
1346 		case CHAN_MODE_SHARED:
1347 			for (i = 0; i < CFG80211_MAX_NUM_DIFFERENT_CHANNELS; i++)
1348 				if (!used_channels[i] || used_channels[i] == ch)
1349 					break;
1350 
1351 			if (i == CFG80211_MAX_NUM_DIFFERENT_CHANNELS)
1352 				return -EBUSY;
1353 
1354 			if (used_channels[i] == NULL) {
1355 				used_channels[i] = ch;
1356 				num_different_channels++;
1357 			}
1358 			break;
1359 		case CHAN_MODE_EXCLUSIVE:
1360 			num_different_channels++;
1361 			break;
1362 		}
1363 
1364 		num[wdev_iter->iftype]++;
1365 		total++;
1366 		used_iftypes |= BIT(wdev_iter->iftype);
1367 	}
1368 
1369 	if (total == 1 && !radar_detect)
1370 		return 0;
1371 
1372 	for (i = 0; i < rdev->wiphy.n_iface_combinations; i++) {
1373 		const struct ieee80211_iface_combination *c;
1374 		struct ieee80211_iface_limit *limits;
1375 		u32 all_iftypes = 0;
1376 
1377 		c = &rdev->wiphy.iface_combinations[i];
1378 
1379 		if (total > c->max_interfaces)
1380 			continue;
1381 		if (num_different_channels > c->num_different_channels)
1382 			continue;
1383 
1384 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1385 				 GFP_KERNEL);
1386 		if (!limits)
1387 			return -ENOMEM;
1388 
1389 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1390 			if (rdev->wiphy.software_iftypes & BIT(iftype))
1391 				continue;
1392 			for (j = 0; j < c->n_limits; j++) {
1393 				all_iftypes |= limits[j].types;
1394 				if (!(limits[j].types & BIT(iftype)))
1395 					continue;
1396 				if (limits[j].max < num[iftype])
1397 					goto cont;
1398 				limits[j].max -= num[iftype];
1399 			}
1400 		}
1401 
1402 		if (radar_detect && !(c->radar_detect_widths & radar_detect))
1403 			goto cont;
1404 
1405 		/*
1406 		 * Finally check that all iftypes that we're currently
1407 		 * using are actually part of this combination. If they
1408 		 * aren't then we can't use this combination and have
1409 		 * to continue to the next.
1410 		 */
1411 		if ((all_iftypes & used_iftypes) != used_iftypes)
1412 			goto cont;
1413 
1414 		/*
1415 		 * This combination covered all interface types and
1416 		 * supported the requested numbers, so we're good.
1417 		 */
1418 		kfree(limits);
1419 		return 0;
1420  cont:
1421 		kfree(limits);
1422 	}
1423 
1424 	return -EBUSY;
1425 }
1426 
1427 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1428 			   const u8 *rates, unsigned int n_rates,
1429 			   u32 *mask)
1430 {
1431 	int i, j;
1432 
1433 	if (!sband)
1434 		return -EINVAL;
1435 
1436 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1437 		return -EINVAL;
1438 
1439 	*mask = 0;
1440 
1441 	for (i = 0; i < n_rates; i++) {
1442 		int rate = (rates[i] & 0x7f) * 5;
1443 		bool found = false;
1444 
1445 		for (j = 0; j < sband->n_bitrates; j++) {
1446 			if (sband->bitrates[j].bitrate == rate) {
1447 				found = true;
1448 				*mask |= BIT(j);
1449 				break;
1450 			}
1451 		}
1452 		if (!found)
1453 			return -EINVAL;
1454 	}
1455 
1456 	/*
1457 	 * mask must have at least one bit set here since we
1458 	 * didn't accept a 0-length rates array nor allowed
1459 	 * entries in the array that didn't exist
1460 	 */
1461 
1462 	return 0;
1463 }
1464 
1465 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1466 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1467 const unsigned char rfc1042_header[] __aligned(2) =
1468 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1469 EXPORT_SYMBOL(rfc1042_header);
1470 
1471 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1472 const unsigned char bridge_tunnel_header[] __aligned(2) =
1473 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1474 EXPORT_SYMBOL(bridge_tunnel_header);
1475