xref: /openbmc/linux/net/wireless/util.c (revision c4c11dd1)
1 /*
2  * Wireless utility functions
3  *
4  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
5  */
6 #include <linux/export.h>
7 #include <linux/bitops.h>
8 #include <linux/etherdevice.h>
9 #include <linux/slab.h>
10 #include <net/cfg80211.h>
11 #include <net/ip.h>
12 #include <net/dsfield.h>
13 #include "core.h"
14 #include "rdev-ops.h"
15 
16 
17 struct ieee80211_rate *
18 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
19 			    u32 basic_rates, int bitrate)
20 {
21 	struct ieee80211_rate *result = &sband->bitrates[0];
22 	int i;
23 
24 	for (i = 0; i < sband->n_bitrates; i++) {
25 		if (!(basic_rates & BIT(i)))
26 			continue;
27 		if (sband->bitrates[i].bitrate > bitrate)
28 			continue;
29 		result = &sband->bitrates[i];
30 	}
31 
32 	return result;
33 }
34 EXPORT_SYMBOL(ieee80211_get_response_rate);
35 
36 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband)
37 {
38 	struct ieee80211_rate *bitrates;
39 	u32 mandatory_rates = 0;
40 	enum ieee80211_rate_flags mandatory_flag;
41 	int i;
42 
43 	if (WARN_ON(!sband))
44 		return 1;
45 
46 	if (sband->band == IEEE80211_BAND_2GHZ)
47 		mandatory_flag = IEEE80211_RATE_MANDATORY_B;
48 	else
49 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
50 
51 	bitrates = sband->bitrates;
52 	for (i = 0; i < sband->n_bitrates; i++)
53 		if (bitrates[i].flags & mandatory_flag)
54 			mandatory_rates |= BIT(i);
55 	return mandatory_rates;
56 }
57 EXPORT_SYMBOL(ieee80211_mandatory_rates);
58 
59 int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band)
60 {
61 	/* see 802.11 17.3.8.3.2 and Annex J
62 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
63 	if (chan <= 0)
64 		return 0; /* not supported */
65 	switch (band) {
66 	case IEEE80211_BAND_2GHZ:
67 		if (chan == 14)
68 			return 2484;
69 		else if (chan < 14)
70 			return 2407 + chan * 5;
71 		break;
72 	case IEEE80211_BAND_5GHZ:
73 		if (chan >= 182 && chan <= 196)
74 			return 4000 + chan * 5;
75 		else
76 			return 5000 + chan * 5;
77 		break;
78 	case IEEE80211_BAND_60GHZ:
79 		if (chan < 5)
80 			return 56160 + chan * 2160;
81 		break;
82 	default:
83 		;
84 	}
85 	return 0; /* not supported */
86 }
87 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
88 
89 int ieee80211_frequency_to_channel(int freq)
90 {
91 	/* see 802.11 17.3.8.3.2 and Annex J */
92 	if (freq == 2484)
93 		return 14;
94 	else if (freq < 2484)
95 		return (freq - 2407) / 5;
96 	else if (freq >= 4910 && freq <= 4980)
97 		return (freq - 4000) / 5;
98 	else if (freq <= 45000) /* DMG band lower limit */
99 		return (freq - 5000) / 5;
100 	else if (freq >= 58320 && freq <= 64800)
101 		return (freq - 56160) / 2160;
102 	else
103 		return 0;
104 }
105 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
106 
107 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
108 						  int freq)
109 {
110 	enum ieee80211_band band;
111 	struct ieee80211_supported_band *sband;
112 	int i;
113 
114 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
115 		sband = wiphy->bands[band];
116 
117 		if (!sband)
118 			continue;
119 
120 		for (i = 0; i < sband->n_channels; i++) {
121 			if (sband->channels[i].center_freq == freq)
122 				return &sband->channels[i];
123 		}
124 	}
125 
126 	return NULL;
127 }
128 EXPORT_SYMBOL(__ieee80211_get_channel);
129 
130 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
131 				     enum ieee80211_band band)
132 {
133 	int i, want;
134 
135 	switch (band) {
136 	case IEEE80211_BAND_5GHZ:
137 		want = 3;
138 		for (i = 0; i < sband->n_bitrates; i++) {
139 			if (sband->bitrates[i].bitrate == 60 ||
140 			    sband->bitrates[i].bitrate == 120 ||
141 			    sband->bitrates[i].bitrate == 240) {
142 				sband->bitrates[i].flags |=
143 					IEEE80211_RATE_MANDATORY_A;
144 				want--;
145 			}
146 		}
147 		WARN_ON(want);
148 		break;
149 	case IEEE80211_BAND_2GHZ:
150 		want = 7;
151 		for (i = 0; i < sband->n_bitrates; i++) {
152 			if (sband->bitrates[i].bitrate == 10) {
153 				sband->bitrates[i].flags |=
154 					IEEE80211_RATE_MANDATORY_B |
155 					IEEE80211_RATE_MANDATORY_G;
156 				want--;
157 			}
158 
159 			if (sband->bitrates[i].bitrate == 20 ||
160 			    sband->bitrates[i].bitrate == 55 ||
161 			    sband->bitrates[i].bitrate == 110 ||
162 			    sband->bitrates[i].bitrate == 60 ||
163 			    sband->bitrates[i].bitrate == 120 ||
164 			    sband->bitrates[i].bitrate == 240) {
165 				sband->bitrates[i].flags |=
166 					IEEE80211_RATE_MANDATORY_G;
167 				want--;
168 			}
169 
170 			if (sband->bitrates[i].bitrate != 10 &&
171 			    sband->bitrates[i].bitrate != 20 &&
172 			    sband->bitrates[i].bitrate != 55 &&
173 			    sband->bitrates[i].bitrate != 110)
174 				sband->bitrates[i].flags |=
175 					IEEE80211_RATE_ERP_G;
176 		}
177 		WARN_ON(want != 0 && want != 3 && want != 6);
178 		break;
179 	case IEEE80211_BAND_60GHZ:
180 		/* check for mandatory HT MCS 1..4 */
181 		WARN_ON(!sband->ht_cap.ht_supported);
182 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
183 		break;
184 	case IEEE80211_NUM_BANDS:
185 		WARN_ON(1);
186 		break;
187 	}
188 }
189 
190 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
191 {
192 	enum ieee80211_band band;
193 
194 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
195 		if (wiphy->bands[band])
196 			set_mandatory_flags_band(wiphy->bands[band], band);
197 }
198 
199 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
200 {
201 	int i;
202 	for (i = 0; i < wiphy->n_cipher_suites; i++)
203 		if (cipher == wiphy->cipher_suites[i])
204 			return true;
205 	return false;
206 }
207 
208 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
209 				   struct key_params *params, int key_idx,
210 				   bool pairwise, const u8 *mac_addr)
211 {
212 	if (key_idx > 5)
213 		return -EINVAL;
214 
215 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
216 		return -EINVAL;
217 
218 	if (pairwise && !mac_addr)
219 		return -EINVAL;
220 
221 	/*
222 	 * Disallow pairwise keys with non-zero index unless it's WEP
223 	 * or a vendor specific cipher (because current deployments use
224 	 * pairwise WEP keys with non-zero indices and for vendor specific
225 	 * ciphers this should be validated in the driver or hardware level
226 	 * - but 802.11i clearly specifies to use zero)
227 	 */
228 	if (pairwise && key_idx &&
229 	    ((params->cipher == WLAN_CIPHER_SUITE_TKIP) ||
230 	     (params->cipher == WLAN_CIPHER_SUITE_CCMP) ||
231 	     (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC)))
232 		return -EINVAL;
233 
234 	switch (params->cipher) {
235 	case WLAN_CIPHER_SUITE_WEP40:
236 		if (params->key_len != WLAN_KEY_LEN_WEP40)
237 			return -EINVAL;
238 		break;
239 	case WLAN_CIPHER_SUITE_TKIP:
240 		if (params->key_len != WLAN_KEY_LEN_TKIP)
241 			return -EINVAL;
242 		break;
243 	case WLAN_CIPHER_SUITE_CCMP:
244 		if (params->key_len != WLAN_KEY_LEN_CCMP)
245 			return -EINVAL;
246 		break;
247 	case WLAN_CIPHER_SUITE_WEP104:
248 		if (params->key_len != WLAN_KEY_LEN_WEP104)
249 			return -EINVAL;
250 		break;
251 	case WLAN_CIPHER_SUITE_AES_CMAC:
252 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
253 			return -EINVAL;
254 		break;
255 	default:
256 		/*
257 		 * We don't know anything about this algorithm,
258 		 * allow using it -- but the driver must check
259 		 * all parameters! We still check below whether
260 		 * or not the driver supports this algorithm,
261 		 * of course.
262 		 */
263 		break;
264 	}
265 
266 	if (params->seq) {
267 		switch (params->cipher) {
268 		case WLAN_CIPHER_SUITE_WEP40:
269 		case WLAN_CIPHER_SUITE_WEP104:
270 			/* These ciphers do not use key sequence */
271 			return -EINVAL;
272 		case WLAN_CIPHER_SUITE_TKIP:
273 		case WLAN_CIPHER_SUITE_CCMP:
274 		case WLAN_CIPHER_SUITE_AES_CMAC:
275 			if (params->seq_len != 6)
276 				return -EINVAL;
277 			break;
278 		}
279 	}
280 
281 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
282 		return -EINVAL;
283 
284 	return 0;
285 }
286 
287 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
288 {
289 	unsigned int hdrlen = 24;
290 
291 	if (ieee80211_is_data(fc)) {
292 		if (ieee80211_has_a4(fc))
293 			hdrlen = 30;
294 		if (ieee80211_is_data_qos(fc)) {
295 			hdrlen += IEEE80211_QOS_CTL_LEN;
296 			if (ieee80211_has_order(fc))
297 				hdrlen += IEEE80211_HT_CTL_LEN;
298 		}
299 		goto out;
300 	}
301 
302 	if (ieee80211_is_ctl(fc)) {
303 		/*
304 		 * ACK and CTS are 10 bytes, all others 16. To see how
305 		 * to get this condition consider
306 		 *   subtype mask:   0b0000000011110000 (0x00F0)
307 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
308 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
309 		 *   bits that matter:         ^^^      (0x00E0)
310 		 *   value of those: 0b0000000011000000 (0x00C0)
311 		 */
312 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
313 			hdrlen = 10;
314 		else
315 			hdrlen = 16;
316 	}
317 out:
318 	return hdrlen;
319 }
320 EXPORT_SYMBOL(ieee80211_hdrlen);
321 
322 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
323 {
324 	const struct ieee80211_hdr *hdr =
325 			(const struct ieee80211_hdr *)skb->data;
326 	unsigned int hdrlen;
327 
328 	if (unlikely(skb->len < 10))
329 		return 0;
330 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
331 	if (unlikely(hdrlen > skb->len))
332 		return 0;
333 	return hdrlen;
334 }
335 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
336 
337 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
338 {
339 	int ae = meshhdr->flags & MESH_FLAGS_AE;
340 	/* 802.11-2012, 8.2.4.7.3 */
341 	switch (ae) {
342 	default:
343 	case 0:
344 		return 6;
345 	case MESH_FLAGS_AE_A4:
346 		return 12;
347 	case MESH_FLAGS_AE_A5_A6:
348 		return 18;
349 	}
350 }
351 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
352 
353 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
354 			   enum nl80211_iftype iftype)
355 {
356 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
357 	u16 hdrlen, ethertype;
358 	u8 *payload;
359 	u8 dst[ETH_ALEN];
360 	u8 src[ETH_ALEN] __aligned(2);
361 
362 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
363 		return -1;
364 
365 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
366 
367 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
368 	 * header
369 	 * IEEE 802.11 address fields:
370 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
371 	 *   0     0   DA    SA    BSSID n/a
372 	 *   0     1   DA    BSSID SA    n/a
373 	 *   1     0   BSSID SA    DA    n/a
374 	 *   1     1   RA    TA    DA    SA
375 	 */
376 	memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
377 	memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
378 
379 	switch (hdr->frame_control &
380 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
381 	case cpu_to_le16(IEEE80211_FCTL_TODS):
382 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
383 			     iftype != NL80211_IFTYPE_AP_VLAN &&
384 			     iftype != NL80211_IFTYPE_P2P_GO))
385 			return -1;
386 		break;
387 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
388 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
389 			     iftype != NL80211_IFTYPE_MESH_POINT &&
390 			     iftype != NL80211_IFTYPE_AP_VLAN &&
391 			     iftype != NL80211_IFTYPE_STATION))
392 			return -1;
393 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
394 			struct ieee80211s_hdr *meshdr =
395 				(struct ieee80211s_hdr *) (skb->data + hdrlen);
396 			/* make sure meshdr->flags is on the linear part */
397 			if (!pskb_may_pull(skb, hdrlen + 1))
398 				return -1;
399 			if (meshdr->flags & MESH_FLAGS_AE_A4)
400 				return -1;
401 			if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
402 				skb_copy_bits(skb, hdrlen +
403 					offsetof(struct ieee80211s_hdr, eaddr1),
404 				       	dst, ETH_ALEN);
405 				skb_copy_bits(skb, hdrlen +
406 					offsetof(struct ieee80211s_hdr, eaddr2),
407 				        src, ETH_ALEN);
408 			}
409 			hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
410 		}
411 		break;
412 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
413 		if ((iftype != NL80211_IFTYPE_STATION &&
414 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
415 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
416 		    (is_multicast_ether_addr(dst) &&
417 		     ether_addr_equal(src, addr)))
418 			return -1;
419 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
420 			struct ieee80211s_hdr *meshdr =
421 				(struct ieee80211s_hdr *) (skb->data + hdrlen);
422 			/* make sure meshdr->flags is on the linear part */
423 			if (!pskb_may_pull(skb, hdrlen + 1))
424 				return -1;
425 			if (meshdr->flags & MESH_FLAGS_AE_A5_A6)
426 				return -1;
427 			if (meshdr->flags & MESH_FLAGS_AE_A4)
428 				skb_copy_bits(skb, hdrlen +
429 					offsetof(struct ieee80211s_hdr, eaddr1),
430 					src, ETH_ALEN);
431 			hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
432 		}
433 		break;
434 	case cpu_to_le16(0):
435 		if (iftype != NL80211_IFTYPE_ADHOC &&
436 		    iftype != NL80211_IFTYPE_STATION)
437 				return -1;
438 		break;
439 	}
440 
441 	if (!pskb_may_pull(skb, hdrlen + 8))
442 		return -1;
443 
444 	payload = skb->data + hdrlen;
445 	ethertype = (payload[6] << 8) | payload[7];
446 
447 	if (likely((ether_addr_equal(payload, rfc1042_header) &&
448 		    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
449 		   ether_addr_equal(payload, bridge_tunnel_header))) {
450 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
451 		 * replace EtherType */
452 		skb_pull(skb, hdrlen + 6);
453 		memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
454 		memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
455 	} else {
456 		struct ethhdr *ehdr;
457 		__be16 len;
458 
459 		skb_pull(skb, hdrlen);
460 		len = htons(skb->len);
461 		ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
462 		memcpy(ehdr->h_dest, dst, ETH_ALEN);
463 		memcpy(ehdr->h_source, src, ETH_ALEN);
464 		ehdr->h_proto = len;
465 	}
466 	return 0;
467 }
468 EXPORT_SYMBOL(ieee80211_data_to_8023);
469 
470 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
471 			     enum nl80211_iftype iftype, u8 *bssid, bool qos)
472 {
473 	struct ieee80211_hdr hdr;
474 	u16 hdrlen, ethertype;
475 	__le16 fc;
476 	const u8 *encaps_data;
477 	int encaps_len, skip_header_bytes;
478 	int nh_pos, h_pos;
479 	int head_need;
480 
481 	if (unlikely(skb->len < ETH_HLEN))
482 		return -EINVAL;
483 
484 	nh_pos = skb_network_header(skb) - skb->data;
485 	h_pos = skb_transport_header(skb) - skb->data;
486 
487 	/* convert Ethernet header to proper 802.11 header (based on
488 	 * operation mode) */
489 	ethertype = (skb->data[12] << 8) | skb->data[13];
490 	fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
491 
492 	switch (iftype) {
493 	case NL80211_IFTYPE_AP:
494 	case NL80211_IFTYPE_AP_VLAN:
495 	case NL80211_IFTYPE_P2P_GO:
496 		fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
497 		/* DA BSSID SA */
498 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
499 		memcpy(hdr.addr2, addr, ETH_ALEN);
500 		memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
501 		hdrlen = 24;
502 		break;
503 	case NL80211_IFTYPE_STATION:
504 	case NL80211_IFTYPE_P2P_CLIENT:
505 		fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
506 		/* BSSID SA DA */
507 		memcpy(hdr.addr1, bssid, ETH_ALEN);
508 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
509 		memcpy(hdr.addr3, skb->data, ETH_ALEN);
510 		hdrlen = 24;
511 		break;
512 	case NL80211_IFTYPE_ADHOC:
513 		/* DA SA BSSID */
514 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
515 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
516 		memcpy(hdr.addr3, bssid, ETH_ALEN);
517 		hdrlen = 24;
518 		break;
519 	default:
520 		return -EOPNOTSUPP;
521 	}
522 
523 	if (qos) {
524 		fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
525 		hdrlen += 2;
526 	}
527 
528 	hdr.frame_control = fc;
529 	hdr.duration_id = 0;
530 	hdr.seq_ctrl = 0;
531 
532 	skip_header_bytes = ETH_HLEN;
533 	if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
534 		encaps_data = bridge_tunnel_header;
535 		encaps_len = sizeof(bridge_tunnel_header);
536 		skip_header_bytes -= 2;
537 	} else if (ethertype >= ETH_P_802_3_MIN) {
538 		encaps_data = rfc1042_header;
539 		encaps_len = sizeof(rfc1042_header);
540 		skip_header_bytes -= 2;
541 	} else {
542 		encaps_data = NULL;
543 		encaps_len = 0;
544 	}
545 
546 	skb_pull(skb, skip_header_bytes);
547 	nh_pos -= skip_header_bytes;
548 	h_pos -= skip_header_bytes;
549 
550 	head_need = hdrlen + encaps_len - skb_headroom(skb);
551 
552 	if (head_need > 0 || skb_cloned(skb)) {
553 		head_need = max(head_need, 0);
554 		if (head_need)
555 			skb_orphan(skb);
556 
557 		if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
558 			return -ENOMEM;
559 
560 		skb->truesize += head_need;
561 	}
562 
563 	if (encaps_data) {
564 		memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
565 		nh_pos += encaps_len;
566 		h_pos += encaps_len;
567 	}
568 
569 	memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
570 
571 	nh_pos += hdrlen;
572 	h_pos += hdrlen;
573 
574 	/* Update skb pointers to various headers since this modified frame
575 	 * is going to go through Linux networking code that may potentially
576 	 * need things like pointer to IP header. */
577 	skb_set_mac_header(skb, 0);
578 	skb_set_network_header(skb, nh_pos);
579 	skb_set_transport_header(skb, h_pos);
580 
581 	return 0;
582 }
583 EXPORT_SYMBOL(ieee80211_data_from_8023);
584 
585 
586 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
587 			      const u8 *addr, enum nl80211_iftype iftype,
588 			      const unsigned int extra_headroom,
589 			      bool has_80211_header)
590 {
591 	struct sk_buff *frame = NULL;
592 	u16 ethertype;
593 	u8 *payload;
594 	const struct ethhdr *eth;
595 	int remaining, err;
596 	u8 dst[ETH_ALEN], src[ETH_ALEN];
597 
598 	if (has_80211_header) {
599 		err = ieee80211_data_to_8023(skb, addr, iftype);
600 		if (err)
601 			goto out;
602 
603 		/* skip the wrapping header */
604 		eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
605 		if (!eth)
606 			goto out;
607 	} else {
608 		eth = (struct ethhdr *) skb->data;
609 	}
610 
611 	while (skb != frame) {
612 		u8 padding;
613 		__be16 len = eth->h_proto;
614 		unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
615 
616 		remaining = skb->len;
617 		memcpy(dst, eth->h_dest, ETH_ALEN);
618 		memcpy(src, eth->h_source, ETH_ALEN);
619 
620 		padding = (4 - subframe_len) & 0x3;
621 		/* the last MSDU has no padding */
622 		if (subframe_len > remaining)
623 			goto purge;
624 
625 		skb_pull(skb, sizeof(struct ethhdr));
626 		/* reuse skb for the last subframe */
627 		if (remaining <= subframe_len + padding)
628 			frame = skb;
629 		else {
630 			unsigned int hlen = ALIGN(extra_headroom, 4);
631 			/*
632 			 * Allocate and reserve two bytes more for payload
633 			 * alignment since sizeof(struct ethhdr) is 14.
634 			 */
635 			frame = dev_alloc_skb(hlen + subframe_len + 2);
636 			if (!frame)
637 				goto purge;
638 
639 			skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
640 			memcpy(skb_put(frame, ntohs(len)), skb->data,
641 				ntohs(len));
642 
643 			eth = (struct ethhdr *)skb_pull(skb, ntohs(len) +
644 							padding);
645 			if (!eth) {
646 				dev_kfree_skb(frame);
647 				goto purge;
648 			}
649 		}
650 
651 		skb_reset_network_header(frame);
652 		frame->dev = skb->dev;
653 		frame->priority = skb->priority;
654 
655 		payload = frame->data;
656 		ethertype = (payload[6] << 8) | payload[7];
657 
658 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
659 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
660 			   ether_addr_equal(payload, bridge_tunnel_header))) {
661 			/* remove RFC1042 or Bridge-Tunnel
662 			 * encapsulation and replace EtherType */
663 			skb_pull(frame, 6);
664 			memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
665 			memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
666 		} else {
667 			memcpy(skb_push(frame, sizeof(__be16)), &len,
668 				sizeof(__be16));
669 			memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
670 			memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
671 		}
672 		__skb_queue_tail(list, frame);
673 	}
674 
675 	return;
676 
677  purge:
678 	__skb_queue_purge(list);
679  out:
680 	dev_kfree_skb(skb);
681 }
682 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
683 
684 /* Given a data frame determine the 802.1p/1d tag to use. */
685 unsigned int cfg80211_classify8021d(struct sk_buff *skb)
686 {
687 	unsigned int dscp;
688 
689 	/* skb->priority values from 256->263 are magic values to
690 	 * directly indicate a specific 802.1d priority.  This is used
691 	 * to allow 802.1d priority to be passed directly in from VLAN
692 	 * tags, etc.
693 	 */
694 	if (skb->priority >= 256 && skb->priority <= 263)
695 		return skb->priority - 256;
696 
697 	switch (skb->protocol) {
698 	case htons(ETH_P_IP):
699 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
700 		break;
701 	case htons(ETH_P_IPV6):
702 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
703 		break;
704 	default:
705 		return 0;
706 	}
707 
708 	return dscp >> 5;
709 }
710 EXPORT_SYMBOL(cfg80211_classify8021d);
711 
712 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
713 {
714 	const struct cfg80211_bss_ies *ies;
715 
716 	ies = rcu_dereference(bss->ies);
717 	if (!ies)
718 		return NULL;
719 
720 	return cfg80211_find_ie(ie, ies->data, ies->len);
721 }
722 EXPORT_SYMBOL(ieee80211_bss_get_ie);
723 
724 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
725 {
726 	struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy);
727 	struct net_device *dev = wdev->netdev;
728 	int i;
729 
730 	if (!wdev->connect_keys)
731 		return;
732 
733 	for (i = 0; i < 6; i++) {
734 		if (!wdev->connect_keys->params[i].cipher)
735 			continue;
736 		if (rdev_add_key(rdev, dev, i, false, NULL,
737 				 &wdev->connect_keys->params[i])) {
738 			netdev_err(dev, "failed to set key %d\n", i);
739 			continue;
740 		}
741 		if (wdev->connect_keys->def == i)
742 			if (rdev_set_default_key(rdev, dev, i, true, true)) {
743 				netdev_err(dev, "failed to set defkey %d\n", i);
744 				continue;
745 			}
746 		if (wdev->connect_keys->defmgmt == i)
747 			if (rdev_set_default_mgmt_key(rdev, dev, i))
748 				netdev_err(dev, "failed to set mgtdef %d\n", i);
749 	}
750 
751 	kfree(wdev->connect_keys);
752 	wdev->connect_keys = NULL;
753 }
754 
755 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
756 {
757 	struct cfg80211_event *ev;
758 	unsigned long flags;
759 	const u8 *bssid = NULL;
760 
761 	spin_lock_irqsave(&wdev->event_lock, flags);
762 	while (!list_empty(&wdev->event_list)) {
763 		ev = list_first_entry(&wdev->event_list,
764 				      struct cfg80211_event, list);
765 		list_del(&ev->list);
766 		spin_unlock_irqrestore(&wdev->event_lock, flags);
767 
768 		wdev_lock(wdev);
769 		switch (ev->type) {
770 		case EVENT_CONNECT_RESULT:
771 			if (!is_zero_ether_addr(ev->cr.bssid))
772 				bssid = ev->cr.bssid;
773 			__cfg80211_connect_result(
774 				wdev->netdev, bssid,
775 				ev->cr.req_ie, ev->cr.req_ie_len,
776 				ev->cr.resp_ie, ev->cr.resp_ie_len,
777 				ev->cr.status,
778 				ev->cr.status == WLAN_STATUS_SUCCESS,
779 				NULL);
780 			break;
781 		case EVENT_ROAMED:
782 			__cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
783 					  ev->rm.req_ie_len, ev->rm.resp_ie,
784 					  ev->rm.resp_ie_len);
785 			break;
786 		case EVENT_DISCONNECTED:
787 			__cfg80211_disconnected(wdev->netdev,
788 						ev->dc.ie, ev->dc.ie_len,
789 						ev->dc.reason, true);
790 			break;
791 		case EVENT_IBSS_JOINED:
792 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid);
793 			break;
794 		}
795 		wdev_unlock(wdev);
796 
797 		kfree(ev);
798 
799 		spin_lock_irqsave(&wdev->event_lock, flags);
800 	}
801 	spin_unlock_irqrestore(&wdev->event_lock, flags);
802 }
803 
804 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
805 {
806 	struct wireless_dev *wdev;
807 
808 	ASSERT_RTNL();
809 	ASSERT_RDEV_LOCK(rdev);
810 
811 	list_for_each_entry(wdev, &rdev->wdev_list, list)
812 		cfg80211_process_wdev_events(wdev);
813 }
814 
815 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
816 			  struct net_device *dev, enum nl80211_iftype ntype,
817 			  u32 *flags, struct vif_params *params)
818 {
819 	int err;
820 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
821 
822 	ASSERT_RDEV_LOCK(rdev);
823 
824 	/* don't support changing VLANs, you just re-create them */
825 	if (otype == NL80211_IFTYPE_AP_VLAN)
826 		return -EOPNOTSUPP;
827 
828 	/* cannot change into P2P device type */
829 	if (ntype == NL80211_IFTYPE_P2P_DEVICE)
830 		return -EOPNOTSUPP;
831 
832 	if (!rdev->ops->change_virtual_intf ||
833 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
834 		return -EOPNOTSUPP;
835 
836 	/* if it's part of a bridge, reject changing type to station/ibss */
837 	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
838 	    (ntype == NL80211_IFTYPE_ADHOC ||
839 	     ntype == NL80211_IFTYPE_STATION ||
840 	     ntype == NL80211_IFTYPE_P2P_CLIENT))
841 		return -EBUSY;
842 
843 	if (ntype != otype && netif_running(dev)) {
844 		err = cfg80211_can_change_interface(rdev, dev->ieee80211_ptr,
845 						    ntype);
846 		if (err)
847 			return err;
848 
849 		dev->ieee80211_ptr->use_4addr = false;
850 		dev->ieee80211_ptr->mesh_id_up_len = 0;
851 
852 		switch (otype) {
853 		case NL80211_IFTYPE_AP:
854 			cfg80211_stop_ap(rdev, dev);
855 			break;
856 		case NL80211_IFTYPE_ADHOC:
857 			cfg80211_leave_ibss(rdev, dev, false);
858 			break;
859 		case NL80211_IFTYPE_STATION:
860 		case NL80211_IFTYPE_P2P_CLIENT:
861 			wdev_lock(dev->ieee80211_ptr);
862 			cfg80211_disconnect(rdev, dev,
863 					    WLAN_REASON_DEAUTH_LEAVING, true);
864 			wdev_unlock(dev->ieee80211_ptr);
865 			break;
866 		case NL80211_IFTYPE_MESH_POINT:
867 			/* mesh should be handled? */
868 			break;
869 		default:
870 			break;
871 		}
872 
873 		cfg80211_process_rdev_events(rdev);
874 	}
875 
876 	err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
877 
878 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
879 
880 	if (!err && params && params->use_4addr != -1)
881 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
882 
883 	if (!err) {
884 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
885 		switch (ntype) {
886 		case NL80211_IFTYPE_STATION:
887 			if (dev->ieee80211_ptr->use_4addr)
888 				break;
889 			/* fall through */
890 		case NL80211_IFTYPE_P2P_CLIENT:
891 		case NL80211_IFTYPE_ADHOC:
892 			dev->priv_flags |= IFF_DONT_BRIDGE;
893 			break;
894 		case NL80211_IFTYPE_P2P_GO:
895 		case NL80211_IFTYPE_AP:
896 		case NL80211_IFTYPE_AP_VLAN:
897 		case NL80211_IFTYPE_WDS:
898 		case NL80211_IFTYPE_MESH_POINT:
899 			/* bridging OK */
900 			break;
901 		case NL80211_IFTYPE_MONITOR:
902 			/* monitor can't bridge anyway */
903 			break;
904 		case NL80211_IFTYPE_UNSPECIFIED:
905 		case NUM_NL80211_IFTYPES:
906 			/* not happening */
907 			break;
908 		case NL80211_IFTYPE_P2P_DEVICE:
909 			WARN_ON(1);
910 			break;
911 		}
912 	}
913 
914 	if (!err && ntype != otype && netif_running(dev)) {
915 		cfg80211_update_iface_num(rdev, ntype, 1);
916 		cfg80211_update_iface_num(rdev, otype, -1);
917 	}
918 
919 	return err;
920 }
921 
922 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
923 {
924 	static const u32 __mcs2bitrate[] = {
925 		/* control PHY */
926 		[0] =   275,
927 		/* SC PHY */
928 		[1] =  3850,
929 		[2] =  7700,
930 		[3] =  9625,
931 		[4] = 11550,
932 		[5] = 12512, /* 1251.25 mbps */
933 		[6] = 15400,
934 		[7] = 19250,
935 		[8] = 23100,
936 		[9] = 25025,
937 		[10] = 30800,
938 		[11] = 38500,
939 		[12] = 46200,
940 		/* OFDM PHY */
941 		[13] =  6930,
942 		[14] =  8662, /* 866.25 mbps */
943 		[15] = 13860,
944 		[16] = 17325,
945 		[17] = 20790,
946 		[18] = 27720,
947 		[19] = 34650,
948 		[20] = 41580,
949 		[21] = 45045,
950 		[22] = 51975,
951 		[23] = 62370,
952 		[24] = 67568, /* 6756.75 mbps */
953 		/* LP-SC PHY */
954 		[25] =  6260,
955 		[26] =  8340,
956 		[27] = 11120,
957 		[28] = 12510,
958 		[29] = 16680,
959 		[30] = 22240,
960 		[31] = 25030,
961 	};
962 
963 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
964 		return 0;
965 
966 	return __mcs2bitrate[rate->mcs];
967 }
968 
969 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
970 {
971 	static const u32 base[4][10] = {
972 		{   6500000,
973 		   13000000,
974 		   19500000,
975 		   26000000,
976 		   39000000,
977 		   52000000,
978 		   58500000,
979 		   65000000,
980 		   78000000,
981 		   0,
982 		},
983 		{  13500000,
984 		   27000000,
985 		   40500000,
986 		   54000000,
987 		   81000000,
988 		  108000000,
989 		  121500000,
990 		  135000000,
991 		  162000000,
992 		  180000000,
993 		},
994 		{  29300000,
995 		   58500000,
996 		   87800000,
997 		  117000000,
998 		  175500000,
999 		  234000000,
1000 		  263300000,
1001 		  292500000,
1002 		  351000000,
1003 		  390000000,
1004 		},
1005 		{  58500000,
1006 		  117000000,
1007 		  175500000,
1008 		  234000000,
1009 		  351000000,
1010 		  468000000,
1011 		  526500000,
1012 		  585000000,
1013 		  702000000,
1014 		  780000000,
1015 		},
1016 	};
1017 	u32 bitrate;
1018 	int idx;
1019 
1020 	if (WARN_ON_ONCE(rate->mcs > 9))
1021 		return 0;
1022 
1023 	idx = rate->flags & (RATE_INFO_FLAGS_160_MHZ_WIDTH |
1024 			     RATE_INFO_FLAGS_80P80_MHZ_WIDTH) ? 3 :
1025 		  rate->flags & RATE_INFO_FLAGS_80_MHZ_WIDTH ? 2 :
1026 		  rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH ? 1 : 0;
1027 
1028 	bitrate = base[idx][rate->mcs];
1029 	bitrate *= rate->nss;
1030 
1031 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1032 		bitrate = (bitrate / 9) * 10;
1033 
1034 	/* do NOT round down here */
1035 	return (bitrate + 50000) / 100000;
1036 }
1037 
1038 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1039 {
1040 	int modulation, streams, bitrate;
1041 
1042 	if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1043 	    !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1044 		return rate->legacy;
1045 	if (rate->flags & RATE_INFO_FLAGS_60G)
1046 		return cfg80211_calculate_bitrate_60g(rate);
1047 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1048 		return cfg80211_calculate_bitrate_vht(rate);
1049 
1050 	/* the formula below does only work for MCS values smaller than 32 */
1051 	if (WARN_ON_ONCE(rate->mcs >= 32))
1052 		return 0;
1053 
1054 	modulation = rate->mcs & 7;
1055 	streams = (rate->mcs >> 3) + 1;
1056 
1057 	bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ?
1058 			13500000 : 6500000;
1059 
1060 	if (modulation < 4)
1061 		bitrate *= (modulation + 1);
1062 	else if (modulation == 4)
1063 		bitrate *= (modulation + 2);
1064 	else
1065 		bitrate *= (modulation + 3);
1066 
1067 	bitrate *= streams;
1068 
1069 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1070 		bitrate = (bitrate / 9) * 10;
1071 
1072 	/* do NOT round down here */
1073 	return (bitrate + 50000) / 100000;
1074 }
1075 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1076 
1077 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1078 			  enum ieee80211_p2p_attr_id attr,
1079 			  u8 *buf, unsigned int bufsize)
1080 {
1081 	u8 *out = buf;
1082 	u16 attr_remaining = 0;
1083 	bool desired_attr = false;
1084 	u16 desired_len = 0;
1085 
1086 	while (len > 0) {
1087 		unsigned int iedatalen;
1088 		unsigned int copy;
1089 		const u8 *iedata;
1090 
1091 		if (len < 2)
1092 			return -EILSEQ;
1093 		iedatalen = ies[1];
1094 		if (iedatalen + 2 > len)
1095 			return -EILSEQ;
1096 
1097 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1098 			goto cont;
1099 
1100 		if (iedatalen < 4)
1101 			goto cont;
1102 
1103 		iedata = ies + 2;
1104 
1105 		/* check WFA OUI, P2P subtype */
1106 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1107 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1108 			goto cont;
1109 
1110 		iedatalen -= 4;
1111 		iedata += 4;
1112 
1113 		/* check attribute continuation into this IE */
1114 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1115 		if (copy && desired_attr) {
1116 			desired_len += copy;
1117 			if (out) {
1118 				memcpy(out, iedata, min(bufsize, copy));
1119 				out += min(bufsize, copy);
1120 				bufsize -= min(bufsize, copy);
1121 			}
1122 
1123 
1124 			if (copy == attr_remaining)
1125 				return desired_len;
1126 		}
1127 
1128 		attr_remaining -= copy;
1129 		if (attr_remaining)
1130 			goto cont;
1131 
1132 		iedatalen -= copy;
1133 		iedata += copy;
1134 
1135 		while (iedatalen > 0) {
1136 			u16 attr_len;
1137 
1138 			/* P2P attribute ID & size must fit */
1139 			if (iedatalen < 3)
1140 				return -EILSEQ;
1141 			desired_attr = iedata[0] == attr;
1142 			attr_len = get_unaligned_le16(iedata + 1);
1143 			iedatalen -= 3;
1144 			iedata += 3;
1145 
1146 			copy = min_t(unsigned int, attr_len, iedatalen);
1147 
1148 			if (desired_attr) {
1149 				desired_len += copy;
1150 				if (out) {
1151 					memcpy(out, iedata, min(bufsize, copy));
1152 					out += min(bufsize, copy);
1153 					bufsize -= min(bufsize, copy);
1154 				}
1155 
1156 				if (copy == attr_len)
1157 					return desired_len;
1158 			}
1159 
1160 			iedata += copy;
1161 			iedatalen -= copy;
1162 			attr_remaining = attr_len - copy;
1163 		}
1164 
1165  cont:
1166 		len -= ies[1] + 2;
1167 		ies += ies[1] + 2;
1168 	}
1169 
1170 	if (attr_remaining && desired_attr)
1171 		return -EILSEQ;
1172 
1173 	return -ENOENT;
1174 }
1175 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1176 
1177 bool ieee80211_operating_class_to_band(u8 operating_class,
1178 				       enum ieee80211_band *band)
1179 {
1180 	switch (operating_class) {
1181 	case 112:
1182 	case 115 ... 127:
1183 		*band = IEEE80211_BAND_5GHZ;
1184 		return true;
1185 	case 81:
1186 	case 82:
1187 	case 83:
1188 	case 84:
1189 		*band = IEEE80211_BAND_2GHZ;
1190 		return true;
1191 	case 180:
1192 		*band = IEEE80211_BAND_60GHZ;
1193 		return true;
1194 	}
1195 
1196 	return false;
1197 }
1198 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1199 
1200 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1201 				 u32 beacon_int)
1202 {
1203 	struct wireless_dev *wdev;
1204 	int res = 0;
1205 
1206 	if (!beacon_int)
1207 		return -EINVAL;
1208 
1209 	list_for_each_entry(wdev, &rdev->wdev_list, list) {
1210 		if (!wdev->beacon_interval)
1211 			continue;
1212 		if (wdev->beacon_interval != beacon_int) {
1213 			res = -EINVAL;
1214 			break;
1215 		}
1216 	}
1217 
1218 	return res;
1219 }
1220 
1221 int cfg80211_can_use_iftype_chan(struct cfg80211_registered_device *rdev,
1222 				 struct wireless_dev *wdev,
1223 				 enum nl80211_iftype iftype,
1224 				 struct ieee80211_channel *chan,
1225 				 enum cfg80211_chan_mode chanmode,
1226 				 u8 radar_detect)
1227 {
1228 	struct wireless_dev *wdev_iter;
1229 	u32 used_iftypes = BIT(iftype);
1230 	int num[NUM_NL80211_IFTYPES];
1231 	struct ieee80211_channel
1232 			*used_channels[CFG80211_MAX_NUM_DIFFERENT_CHANNELS];
1233 	struct ieee80211_channel *ch;
1234 	enum cfg80211_chan_mode chmode;
1235 	int num_different_channels = 0;
1236 	int total = 1;
1237 	bool radar_required;
1238 	int i, j;
1239 
1240 	ASSERT_RTNL();
1241 
1242 	if (WARN_ON(hweight32(radar_detect) > 1))
1243 		return -EINVAL;
1244 
1245 	switch (iftype) {
1246 	case NL80211_IFTYPE_ADHOC:
1247 	case NL80211_IFTYPE_AP:
1248 	case NL80211_IFTYPE_AP_VLAN:
1249 	case NL80211_IFTYPE_MESH_POINT:
1250 	case NL80211_IFTYPE_P2P_GO:
1251 	case NL80211_IFTYPE_WDS:
1252 		radar_required = !!(chan &&
1253 				    (chan->flags & IEEE80211_CHAN_RADAR));
1254 		break;
1255 	case NL80211_IFTYPE_P2P_CLIENT:
1256 	case NL80211_IFTYPE_STATION:
1257 	case NL80211_IFTYPE_P2P_DEVICE:
1258 	case NL80211_IFTYPE_MONITOR:
1259 		radar_required = false;
1260 		break;
1261 	case NUM_NL80211_IFTYPES:
1262 	case NL80211_IFTYPE_UNSPECIFIED:
1263 	default:
1264 		return -EINVAL;
1265 	}
1266 
1267 	if (radar_required && !radar_detect)
1268 		return -EINVAL;
1269 
1270 	/* Always allow software iftypes */
1271 	if (rdev->wiphy.software_iftypes & BIT(iftype)) {
1272 		if (radar_detect)
1273 			return -EINVAL;
1274 		return 0;
1275 	}
1276 
1277 	memset(num, 0, sizeof(num));
1278 	memset(used_channels, 0, sizeof(used_channels));
1279 
1280 	num[iftype] = 1;
1281 
1282 	switch (chanmode) {
1283 	case CHAN_MODE_UNDEFINED:
1284 		break;
1285 	case CHAN_MODE_SHARED:
1286 		WARN_ON(!chan);
1287 		used_channels[0] = chan;
1288 		num_different_channels++;
1289 		break;
1290 	case CHAN_MODE_EXCLUSIVE:
1291 		num_different_channels++;
1292 		break;
1293 	}
1294 
1295 	list_for_each_entry(wdev_iter, &rdev->wdev_list, list) {
1296 		if (wdev_iter == wdev)
1297 			continue;
1298 		if (wdev_iter->iftype == NL80211_IFTYPE_P2P_DEVICE) {
1299 			if (!wdev_iter->p2p_started)
1300 				continue;
1301 		} else if (wdev_iter->netdev) {
1302 			if (!netif_running(wdev_iter->netdev))
1303 				continue;
1304 		} else {
1305 			WARN_ON(1);
1306 		}
1307 
1308 		if (rdev->wiphy.software_iftypes & BIT(wdev_iter->iftype))
1309 			continue;
1310 
1311 		/*
1312 		 * We may be holding the "wdev" mutex, but now need to lock
1313 		 * wdev_iter. This is OK because once we get here wdev_iter
1314 		 * is not wdev (tested above), but we need to use the nested
1315 		 * locking for lockdep.
1316 		 */
1317 		mutex_lock_nested(&wdev_iter->mtx, 1);
1318 		__acquire(wdev_iter->mtx);
1319 		cfg80211_get_chan_state(wdev_iter, &ch, &chmode);
1320 		wdev_unlock(wdev_iter);
1321 
1322 		switch (chmode) {
1323 		case CHAN_MODE_UNDEFINED:
1324 			break;
1325 		case CHAN_MODE_SHARED:
1326 			for (i = 0; i < CFG80211_MAX_NUM_DIFFERENT_CHANNELS; i++)
1327 				if (!used_channels[i] || used_channels[i] == ch)
1328 					break;
1329 
1330 			if (i == CFG80211_MAX_NUM_DIFFERENT_CHANNELS)
1331 				return -EBUSY;
1332 
1333 			if (used_channels[i] == NULL) {
1334 				used_channels[i] = ch;
1335 				num_different_channels++;
1336 			}
1337 			break;
1338 		case CHAN_MODE_EXCLUSIVE:
1339 			num_different_channels++;
1340 			break;
1341 		}
1342 
1343 		num[wdev_iter->iftype]++;
1344 		total++;
1345 		used_iftypes |= BIT(wdev_iter->iftype);
1346 	}
1347 
1348 	if (total == 1 && !radar_detect)
1349 		return 0;
1350 
1351 	for (i = 0; i < rdev->wiphy.n_iface_combinations; i++) {
1352 		const struct ieee80211_iface_combination *c;
1353 		struct ieee80211_iface_limit *limits;
1354 		u32 all_iftypes = 0;
1355 
1356 		c = &rdev->wiphy.iface_combinations[i];
1357 
1358 		if (total > c->max_interfaces)
1359 			continue;
1360 		if (num_different_channels > c->num_different_channels)
1361 			continue;
1362 
1363 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1364 				 GFP_KERNEL);
1365 		if (!limits)
1366 			return -ENOMEM;
1367 
1368 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1369 			if (rdev->wiphy.software_iftypes & BIT(iftype))
1370 				continue;
1371 			for (j = 0; j < c->n_limits; j++) {
1372 				all_iftypes |= limits[j].types;
1373 				if (!(limits[j].types & BIT(iftype)))
1374 					continue;
1375 				if (limits[j].max < num[iftype])
1376 					goto cont;
1377 				limits[j].max -= num[iftype];
1378 			}
1379 		}
1380 
1381 		if (radar_detect && !(c->radar_detect_widths & radar_detect))
1382 			goto cont;
1383 
1384 		/*
1385 		 * Finally check that all iftypes that we're currently
1386 		 * using are actually part of this combination. If they
1387 		 * aren't then we can't use this combination and have
1388 		 * to continue to the next.
1389 		 */
1390 		if ((all_iftypes & used_iftypes) != used_iftypes)
1391 			goto cont;
1392 
1393 		/*
1394 		 * This combination covered all interface types and
1395 		 * supported the requested numbers, so we're good.
1396 		 */
1397 		kfree(limits);
1398 		return 0;
1399  cont:
1400 		kfree(limits);
1401 	}
1402 
1403 	return -EBUSY;
1404 }
1405 
1406 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1407 			   const u8 *rates, unsigned int n_rates,
1408 			   u32 *mask)
1409 {
1410 	int i, j;
1411 
1412 	if (!sband)
1413 		return -EINVAL;
1414 
1415 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1416 		return -EINVAL;
1417 
1418 	*mask = 0;
1419 
1420 	for (i = 0; i < n_rates; i++) {
1421 		int rate = (rates[i] & 0x7f) * 5;
1422 		bool found = false;
1423 
1424 		for (j = 0; j < sband->n_bitrates; j++) {
1425 			if (sband->bitrates[j].bitrate == rate) {
1426 				found = true;
1427 				*mask |= BIT(j);
1428 				break;
1429 			}
1430 		}
1431 		if (!found)
1432 			return -EINVAL;
1433 	}
1434 
1435 	/*
1436 	 * mask must have at least one bit set here since we
1437 	 * didn't accept a 0-length rates array nor allowed
1438 	 * entries in the array that didn't exist
1439 	 */
1440 
1441 	return 0;
1442 }
1443 
1444 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1445 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1446 const unsigned char rfc1042_header[] __aligned(2) =
1447 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1448 EXPORT_SYMBOL(rfc1042_header);
1449 
1450 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1451 const unsigned char bridge_tunnel_header[] __aligned(2) =
1452 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1453 EXPORT_SYMBOL(bridge_tunnel_header);
1454