1 /* 2 * Wireless utility functions 3 * 4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 5 */ 6 #include <linux/export.h> 7 #include <linux/bitops.h> 8 #include <linux/etherdevice.h> 9 #include <linux/slab.h> 10 #include <net/cfg80211.h> 11 #include <net/ip.h> 12 #include <net/dsfield.h> 13 #include <linux/if_vlan.h> 14 #include <linux/mpls.h> 15 #include "core.h" 16 #include "rdev-ops.h" 17 18 19 struct ieee80211_rate * 20 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 21 u32 basic_rates, int bitrate) 22 { 23 struct ieee80211_rate *result = &sband->bitrates[0]; 24 int i; 25 26 for (i = 0; i < sband->n_bitrates; i++) { 27 if (!(basic_rates & BIT(i))) 28 continue; 29 if (sband->bitrates[i].bitrate > bitrate) 30 continue; 31 result = &sband->bitrates[i]; 32 } 33 34 return result; 35 } 36 EXPORT_SYMBOL(ieee80211_get_response_rate); 37 38 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 39 enum nl80211_bss_scan_width scan_width) 40 { 41 struct ieee80211_rate *bitrates; 42 u32 mandatory_rates = 0; 43 enum ieee80211_rate_flags mandatory_flag; 44 int i; 45 46 if (WARN_ON(!sband)) 47 return 1; 48 49 if (sband->band == IEEE80211_BAND_2GHZ) { 50 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 51 scan_width == NL80211_BSS_CHAN_WIDTH_10) 52 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 53 else 54 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 55 } else { 56 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 57 } 58 59 bitrates = sband->bitrates; 60 for (i = 0; i < sband->n_bitrates; i++) 61 if (bitrates[i].flags & mandatory_flag) 62 mandatory_rates |= BIT(i); 63 return mandatory_rates; 64 } 65 EXPORT_SYMBOL(ieee80211_mandatory_rates); 66 67 int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band) 68 { 69 /* see 802.11 17.3.8.3.2 and Annex J 70 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 71 if (chan <= 0) 72 return 0; /* not supported */ 73 switch (band) { 74 case IEEE80211_BAND_2GHZ: 75 if (chan == 14) 76 return 2484; 77 else if (chan < 14) 78 return 2407 + chan * 5; 79 break; 80 case IEEE80211_BAND_5GHZ: 81 if (chan >= 182 && chan <= 196) 82 return 4000 + chan * 5; 83 else 84 return 5000 + chan * 5; 85 break; 86 case IEEE80211_BAND_60GHZ: 87 if (chan < 5) 88 return 56160 + chan * 2160; 89 break; 90 default: 91 ; 92 } 93 return 0; /* not supported */ 94 } 95 EXPORT_SYMBOL(ieee80211_channel_to_frequency); 96 97 int ieee80211_frequency_to_channel(int freq) 98 { 99 /* see 802.11 17.3.8.3.2 and Annex J */ 100 if (freq == 2484) 101 return 14; 102 else if (freq < 2484) 103 return (freq - 2407) / 5; 104 else if (freq >= 4910 && freq <= 4980) 105 return (freq - 4000) / 5; 106 else if (freq <= 45000) /* DMG band lower limit */ 107 return (freq - 5000) / 5; 108 else if (freq >= 58320 && freq <= 64800) 109 return (freq - 56160) / 2160; 110 else 111 return 0; 112 } 113 EXPORT_SYMBOL(ieee80211_frequency_to_channel); 114 115 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy, 116 int freq) 117 { 118 enum ieee80211_band band; 119 struct ieee80211_supported_band *sband; 120 int i; 121 122 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 123 sband = wiphy->bands[band]; 124 125 if (!sband) 126 continue; 127 128 for (i = 0; i < sband->n_channels; i++) { 129 if (sband->channels[i].center_freq == freq) 130 return &sband->channels[i]; 131 } 132 } 133 134 return NULL; 135 } 136 EXPORT_SYMBOL(__ieee80211_get_channel); 137 138 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband, 139 enum ieee80211_band band) 140 { 141 int i, want; 142 143 switch (band) { 144 case IEEE80211_BAND_5GHZ: 145 want = 3; 146 for (i = 0; i < sband->n_bitrates; i++) { 147 if (sband->bitrates[i].bitrate == 60 || 148 sband->bitrates[i].bitrate == 120 || 149 sband->bitrates[i].bitrate == 240) { 150 sband->bitrates[i].flags |= 151 IEEE80211_RATE_MANDATORY_A; 152 want--; 153 } 154 } 155 WARN_ON(want); 156 break; 157 case IEEE80211_BAND_2GHZ: 158 want = 7; 159 for (i = 0; i < sband->n_bitrates; i++) { 160 if (sband->bitrates[i].bitrate == 10) { 161 sband->bitrates[i].flags |= 162 IEEE80211_RATE_MANDATORY_B | 163 IEEE80211_RATE_MANDATORY_G; 164 want--; 165 } 166 167 if (sband->bitrates[i].bitrate == 20 || 168 sband->bitrates[i].bitrate == 55 || 169 sband->bitrates[i].bitrate == 110 || 170 sband->bitrates[i].bitrate == 60 || 171 sband->bitrates[i].bitrate == 120 || 172 sband->bitrates[i].bitrate == 240) { 173 sband->bitrates[i].flags |= 174 IEEE80211_RATE_MANDATORY_G; 175 want--; 176 } 177 178 if (sband->bitrates[i].bitrate != 10 && 179 sband->bitrates[i].bitrate != 20 && 180 sband->bitrates[i].bitrate != 55 && 181 sband->bitrates[i].bitrate != 110) 182 sband->bitrates[i].flags |= 183 IEEE80211_RATE_ERP_G; 184 } 185 WARN_ON(want != 0 && want != 3 && want != 6); 186 break; 187 case IEEE80211_BAND_60GHZ: 188 /* check for mandatory HT MCS 1..4 */ 189 WARN_ON(!sband->ht_cap.ht_supported); 190 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 191 break; 192 case IEEE80211_NUM_BANDS: 193 WARN_ON(1); 194 break; 195 } 196 } 197 198 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 199 { 200 enum ieee80211_band band; 201 202 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 203 if (wiphy->bands[band]) 204 set_mandatory_flags_band(wiphy->bands[band], band); 205 } 206 207 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 208 { 209 int i; 210 for (i = 0; i < wiphy->n_cipher_suites; i++) 211 if (cipher == wiphy->cipher_suites[i]) 212 return true; 213 return false; 214 } 215 216 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 217 struct key_params *params, int key_idx, 218 bool pairwise, const u8 *mac_addr) 219 { 220 if (key_idx > 5) 221 return -EINVAL; 222 223 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 224 return -EINVAL; 225 226 if (pairwise && !mac_addr) 227 return -EINVAL; 228 229 /* 230 * Disallow pairwise keys with non-zero index unless it's WEP 231 * or a vendor specific cipher (because current deployments use 232 * pairwise WEP keys with non-zero indices and for vendor specific 233 * ciphers this should be validated in the driver or hardware level 234 * - but 802.11i clearly specifies to use zero) 235 */ 236 if (pairwise && key_idx && 237 ((params->cipher == WLAN_CIPHER_SUITE_TKIP) || 238 (params->cipher == WLAN_CIPHER_SUITE_CCMP) || 239 (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC))) 240 return -EINVAL; 241 242 switch (params->cipher) { 243 case WLAN_CIPHER_SUITE_WEP40: 244 if (params->key_len != WLAN_KEY_LEN_WEP40) 245 return -EINVAL; 246 break; 247 case WLAN_CIPHER_SUITE_TKIP: 248 if (params->key_len != WLAN_KEY_LEN_TKIP) 249 return -EINVAL; 250 break; 251 case WLAN_CIPHER_SUITE_CCMP: 252 if (params->key_len != WLAN_KEY_LEN_CCMP) 253 return -EINVAL; 254 break; 255 case WLAN_CIPHER_SUITE_WEP104: 256 if (params->key_len != WLAN_KEY_LEN_WEP104) 257 return -EINVAL; 258 break; 259 case WLAN_CIPHER_SUITE_AES_CMAC: 260 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 261 return -EINVAL; 262 break; 263 default: 264 /* 265 * We don't know anything about this algorithm, 266 * allow using it -- but the driver must check 267 * all parameters! We still check below whether 268 * or not the driver supports this algorithm, 269 * of course. 270 */ 271 break; 272 } 273 274 if (params->seq) { 275 switch (params->cipher) { 276 case WLAN_CIPHER_SUITE_WEP40: 277 case WLAN_CIPHER_SUITE_WEP104: 278 /* These ciphers do not use key sequence */ 279 return -EINVAL; 280 case WLAN_CIPHER_SUITE_TKIP: 281 case WLAN_CIPHER_SUITE_CCMP: 282 case WLAN_CIPHER_SUITE_AES_CMAC: 283 if (params->seq_len != 6) 284 return -EINVAL; 285 break; 286 } 287 } 288 289 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 290 return -EINVAL; 291 292 return 0; 293 } 294 295 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 296 { 297 unsigned int hdrlen = 24; 298 299 if (ieee80211_is_data(fc)) { 300 if (ieee80211_has_a4(fc)) 301 hdrlen = 30; 302 if (ieee80211_is_data_qos(fc)) { 303 hdrlen += IEEE80211_QOS_CTL_LEN; 304 if (ieee80211_has_order(fc)) 305 hdrlen += IEEE80211_HT_CTL_LEN; 306 } 307 goto out; 308 } 309 310 if (ieee80211_is_ctl(fc)) { 311 /* 312 * ACK and CTS are 10 bytes, all others 16. To see how 313 * to get this condition consider 314 * subtype mask: 0b0000000011110000 (0x00F0) 315 * ACK subtype: 0b0000000011010000 (0x00D0) 316 * CTS subtype: 0b0000000011000000 (0x00C0) 317 * bits that matter: ^^^ (0x00E0) 318 * value of those: 0b0000000011000000 (0x00C0) 319 */ 320 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 321 hdrlen = 10; 322 else 323 hdrlen = 16; 324 } 325 out: 326 return hdrlen; 327 } 328 EXPORT_SYMBOL(ieee80211_hdrlen); 329 330 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 331 { 332 const struct ieee80211_hdr *hdr = 333 (const struct ieee80211_hdr *)skb->data; 334 unsigned int hdrlen; 335 336 if (unlikely(skb->len < 10)) 337 return 0; 338 hdrlen = ieee80211_hdrlen(hdr->frame_control); 339 if (unlikely(hdrlen > skb->len)) 340 return 0; 341 return hdrlen; 342 } 343 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 344 345 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 346 { 347 int ae = meshhdr->flags & MESH_FLAGS_AE; 348 /* 802.11-2012, 8.2.4.7.3 */ 349 switch (ae) { 350 default: 351 case 0: 352 return 6; 353 case MESH_FLAGS_AE_A4: 354 return 12; 355 case MESH_FLAGS_AE_A5_A6: 356 return 18; 357 } 358 } 359 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 360 361 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr, 362 enum nl80211_iftype iftype) 363 { 364 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 365 u16 hdrlen, ethertype; 366 u8 *payload; 367 u8 dst[ETH_ALEN]; 368 u8 src[ETH_ALEN] __aligned(2); 369 370 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 371 return -1; 372 373 hdrlen = ieee80211_hdrlen(hdr->frame_control); 374 375 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 376 * header 377 * IEEE 802.11 address fields: 378 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 379 * 0 0 DA SA BSSID n/a 380 * 0 1 DA BSSID SA n/a 381 * 1 0 BSSID SA DA n/a 382 * 1 1 RA TA DA SA 383 */ 384 memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN); 385 memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN); 386 387 switch (hdr->frame_control & 388 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 389 case cpu_to_le16(IEEE80211_FCTL_TODS): 390 if (unlikely(iftype != NL80211_IFTYPE_AP && 391 iftype != NL80211_IFTYPE_AP_VLAN && 392 iftype != NL80211_IFTYPE_P2P_GO)) 393 return -1; 394 break; 395 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 396 if (unlikely(iftype != NL80211_IFTYPE_WDS && 397 iftype != NL80211_IFTYPE_MESH_POINT && 398 iftype != NL80211_IFTYPE_AP_VLAN && 399 iftype != NL80211_IFTYPE_STATION)) 400 return -1; 401 if (iftype == NL80211_IFTYPE_MESH_POINT) { 402 struct ieee80211s_hdr *meshdr = 403 (struct ieee80211s_hdr *) (skb->data + hdrlen); 404 /* make sure meshdr->flags is on the linear part */ 405 if (!pskb_may_pull(skb, hdrlen + 1)) 406 return -1; 407 if (meshdr->flags & MESH_FLAGS_AE_A4) 408 return -1; 409 if (meshdr->flags & MESH_FLAGS_AE_A5_A6) { 410 skb_copy_bits(skb, hdrlen + 411 offsetof(struct ieee80211s_hdr, eaddr1), 412 dst, ETH_ALEN); 413 skb_copy_bits(skb, hdrlen + 414 offsetof(struct ieee80211s_hdr, eaddr2), 415 src, ETH_ALEN); 416 } 417 hdrlen += ieee80211_get_mesh_hdrlen(meshdr); 418 } 419 break; 420 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 421 if ((iftype != NL80211_IFTYPE_STATION && 422 iftype != NL80211_IFTYPE_P2P_CLIENT && 423 iftype != NL80211_IFTYPE_MESH_POINT) || 424 (is_multicast_ether_addr(dst) && 425 ether_addr_equal(src, addr))) 426 return -1; 427 if (iftype == NL80211_IFTYPE_MESH_POINT) { 428 struct ieee80211s_hdr *meshdr = 429 (struct ieee80211s_hdr *) (skb->data + hdrlen); 430 /* make sure meshdr->flags is on the linear part */ 431 if (!pskb_may_pull(skb, hdrlen + 1)) 432 return -1; 433 if (meshdr->flags & MESH_FLAGS_AE_A5_A6) 434 return -1; 435 if (meshdr->flags & MESH_FLAGS_AE_A4) 436 skb_copy_bits(skb, hdrlen + 437 offsetof(struct ieee80211s_hdr, eaddr1), 438 src, ETH_ALEN); 439 hdrlen += ieee80211_get_mesh_hdrlen(meshdr); 440 } 441 break; 442 case cpu_to_le16(0): 443 if (iftype != NL80211_IFTYPE_ADHOC && 444 iftype != NL80211_IFTYPE_STATION) 445 return -1; 446 break; 447 } 448 449 if (!pskb_may_pull(skb, hdrlen + 8)) 450 return -1; 451 452 payload = skb->data + hdrlen; 453 ethertype = (payload[6] << 8) | payload[7]; 454 455 if (likely((ether_addr_equal(payload, rfc1042_header) && 456 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 457 ether_addr_equal(payload, bridge_tunnel_header))) { 458 /* remove RFC1042 or Bridge-Tunnel encapsulation and 459 * replace EtherType */ 460 skb_pull(skb, hdrlen + 6); 461 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN); 462 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN); 463 } else { 464 struct ethhdr *ehdr; 465 __be16 len; 466 467 skb_pull(skb, hdrlen); 468 len = htons(skb->len); 469 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr)); 470 memcpy(ehdr->h_dest, dst, ETH_ALEN); 471 memcpy(ehdr->h_source, src, ETH_ALEN); 472 ehdr->h_proto = len; 473 } 474 return 0; 475 } 476 EXPORT_SYMBOL(ieee80211_data_to_8023); 477 478 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr, 479 enum nl80211_iftype iftype, u8 *bssid, bool qos) 480 { 481 struct ieee80211_hdr hdr; 482 u16 hdrlen, ethertype; 483 __le16 fc; 484 const u8 *encaps_data; 485 int encaps_len, skip_header_bytes; 486 int nh_pos, h_pos; 487 int head_need; 488 489 if (unlikely(skb->len < ETH_HLEN)) 490 return -EINVAL; 491 492 nh_pos = skb_network_header(skb) - skb->data; 493 h_pos = skb_transport_header(skb) - skb->data; 494 495 /* convert Ethernet header to proper 802.11 header (based on 496 * operation mode) */ 497 ethertype = (skb->data[12] << 8) | skb->data[13]; 498 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); 499 500 switch (iftype) { 501 case NL80211_IFTYPE_AP: 502 case NL80211_IFTYPE_AP_VLAN: 503 case NL80211_IFTYPE_P2P_GO: 504 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); 505 /* DA BSSID SA */ 506 memcpy(hdr.addr1, skb->data, ETH_ALEN); 507 memcpy(hdr.addr2, addr, ETH_ALEN); 508 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 509 hdrlen = 24; 510 break; 511 case NL80211_IFTYPE_STATION: 512 case NL80211_IFTYPE_P2P_CLIENT: 513 fc |= cpu_to_le16(IEEE80211_FCTL_TODS); 514 /* BSSID SA DA */ 515 memcpy(hdr.addr1, bssid, ETH_ALEN); 516 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 517 memcpy(hdr.addr3, skb->data, ETH_ALEN); 518 hdrlen = 24; 519 break; 520 case NL80211_IFTYPE_ADHOC: 521 /* DA SA BSSID */ 522 memcpy(hdr.addr1, skb->data, ETH_ALEN); 523 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 524 memcpy(hdr.addr3, bssid, ETH_ALEN); 525 hdrlen = 24; 526 break; 527 default: 528 return -EOPNOTSUPP; 529 } 530 531 if (qos) { 532 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 533 hdrlen += 2; 534 } 535 536 hdr.frame_control = fc; 537 hdr.duration_id = 0; 538 hdr.seq_ctrl = 0; 539 540 skip_header_bytes = ETH_HLEN; 541 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 542 encaps_data = bridge_tunnel_header; 543 encaps_len = sizeof(bridge_tunnel_header); 544 skip_header_bytes -= 2; 545 } else if (ethertype >= ETH_P_802_3_MIN) { 546 encaps_data = rfc1042_header; 547 encaps_len = sizeof(rfc1042_header); 548 skip_header_bytes -= 2; 549 } else { 550 encaps_data = NULL; 551 encaps_len = 0; 552 } 553 554 skb_pull(skb, skip_header_bytes); 555 nh_pos -= skip_header_bytes; 556 h_pos -= skip_header_bytes; 557 558 head_need = hdrlen + encaps_len - skb_headroom(skb); 559 560 if (head_need > 0 || skb_cloned(skb)) { 561 head_need = max(head_need, 0); 562 if (head_need) 563 skb_orphan(skb); 564 565 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) 566 return -ENOMEM; 567 568 skb->truesize += head_need; 569 } 570 571 if (encaps_data) { 572 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 573 nh_pos += encaps_len; 574 h_pos += encaps_len; 575 } 576 577 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 578 579 nh_pos += hdrlen; 580 h_pos += hdrlen; 581 582 /* Update skb pointers to various headers since this modified frame 583 * is going to go through Linux networking code that may potentially 584 * need things like pointer to IP header. */ 585 skb_set_mac_header(skb, 0); 586 skb_set_network_header(skb, nh_pos); 587 skb_set_transport_header(skb, h_pos); 588 589 return 0; 590 } 591 EXPORT_SYMBOL(ieee80211_data_from_8023); 592 593 594 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 595 const u8 *addr, enum nl80211_iftype iftype, 596 const unsigned int extra_headroom, 597 bool has_80211_header) 598 { 599 struct sk_buff *frame = NULL; 600 u16 ethertype; 601 u8 *payload; 602 const struct ethhdr *eth; 603 int remaining, err; 604 u8 dst[ETH_ALEN], src[ETH_ALEN]; 605 606 if (has_80211_header) { 607 err = ieee80211_data_to_8023(skb, addr, iftype); 608 if (err) 609 goto out; 610 611 /* skip the wrapping header */ 612 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr)); 613 if (!eth) 614 goto out; 615 } else { 616 eth = (struct ethhdr *) skb->data; 617 } 618 619 while (skb != frame) { 620 u8 padding; 621 __be16 len = eth->h_proto; 622 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len); 623 624 remaining = skb->len; 625 memcpy(dst, eth->h_dest, ETH_ALEN); 626 memcpy(src, eth->h_source, ETH_ALEN); 627 628 padding = (4 - subframe_len) & 0x3; 629 /* the last MSDU has no padding */ 630 if (subframe_len > remaining) 631 goto purge; 632 633 skb_pull(skb, sizeof(struct ethhdr)); 634 /* reuse skb for the last subframe */ 635 if (remaining <= subframe_len + padding) 636 frame = skb; 637 else { 638 unsigned int hlen = ALIGN(extra_headroom, 4); 639 /* 640 * Allocate and reserve two bytes more for payload 641 * alignment since sizeof(struct ethhdr) is 14. 642 */ 643 frame = dev_alloc_skb(hlen + subframe_len + 2); 644 if (!frame) 645 goto purge; 646 647 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 648 memcpy(skb_put(frame, ntohs(len)), skb->data, 649 ntohs(len)); 650 651 eth = (struct ethhdr *)skb_pull(skb, ntohs(len) + 652 padding); 653 if (!eth) { 654 dev_kfree_skb(frame); 655 goto purge; 656 } 657 } 658 659 skb_reset_network_header(frame); 660 frame->dev = skb->dev; 661 frame->priority = skb->priority; 662 663 payload = frame->data; 664 ethertype = (payload[6] << 8) | payload[7]; 665 666 if (likely((ether_addr_equal(payload, rfc1042_header) && 667 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 668 ether_addr_equal(payload, bridge_tunnel_header))) { 669 /* remove RFC1042 or Bridge-Tunnel 670 * encapsulation and replace EtherType */ 671 skb_pull(frame, 6); 672 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); 673 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); 674 } else { 675 memcpy(skb_push(frame, sizeof(__be16)), &len, 676 sizeof(__be16)); 677 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); 678 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); 679 } 680 __skb_queue_tail(list, frame); 681 } 682 683 return; 684 685 purge: 686 __skb_queue_purge(list); 687 out: 688 dev_kfree_skb(skb); 689 } 690 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 691 692 /* Given a data frame determine the 802.1p/1d tag to use. */ 693 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 694 struct cfg80211_qos_map *qos_map) 695 { 696 unsigned int dscp; 697 unsigned char vlan_priority; 698 699 /* skb->priority values from 256->263 are magic values to 700 * directly indicate a specific 802.1d priority. This is used 701 * to allow 802.1d priority to be passed directly in from VLAN 702 * tags, etc. 703 */ 704 if (skb->priority >= 256 && skb->priority <= 263) 705 return skb->priority - 256; 706 707 if (vlan_tx_tag_present(skb)) { 708 vlan_priority = (vlan_tx_tag_get(skb) & VLAN_PRIO_MASK) 709 >> VLAN_PRIO_SHIFT; 710 if (vlan_priority > 0) 711 return vlan_priority; 712 } 713 714 switch (skb->protocol) { 715 case htons(ETH_P_IP): 716 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 717 break; 718 case htons(ETH_P_IPV6): 719 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 720 break; 721 case htons(ETH_P_MPLS_UC): 722 case htons(ETH_P_MPLS_MC): { 723 struct mpls_label mpls_tmp, *mpls; 724 725 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 726 sizeof(*mpls), &mpls_tmp); 727 if (!mpls) 728 return 0; 729 730 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 731 >> MPLS_LS_TC_SHIFT; 732 } 733 case htons(ETH_P_80221): 734 /* 802.21 is always network control traffic */ 735 return 7; 736 default: 737 return 0; 738 } 739 740 if (qos_map) { 741 unsigned int i, tmp_dscp = dscp >> 2; 742 743 for (i = 0; i < qos_map->num_des; i++) { 744 if (tmp_dscp == qos_map->dscp_exception[i].dscp) 745 return qos_map->dscp_exception[i].up; 746 } 747 748 for (i = 0; i < 8; i++) { 749 if (tmp_dscp >= qos_map->up[i].low && 750 tmp_dscp <= qos_map->up[i].high) 751 return i; 752 } 753 } 754 755 return dscp >> 5; 756 } 757 EXPORT_SYMBOL(cfg80211_classify8021d); 758 759 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie) 760 { 761 const struct cfg80211_bss_ies *ies; 762 763 ies = rcu_dereference(bss->ies); 764 if (!ies) 765 return NULL; 766 767 return cfg80211_find_ie(ie, ies->data, ies->len); 768 } 769 EXPORT_SYMBOL(ieee80211_bss_get_ie); 770 771 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 772 { 773 struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy); 774 struct net_device *dev = wdev->netdev; 775 int i; 776 777 if (!wdev->connect_keys) 778 return; 779 780 for (i = 0; i < 6; i++) { 781 if (!wdev->connect_keys->params[i].cipher) 782 continue; 783 if (rdev_add_key(rdev, dev, i, false, NULL, 784 &wdev->connect_keys->params[i])) { 785 netdev_err(dev, "failed to set key %d\n", i); 786 continue; 787 } 788 if (wdev->connect_keys->def == i) 789 if (rdev_set_default_key(rdev, dev, i, true, true)) { 790 netdev_err(dev, "failed to set defkey %d\n", i); 791 continue; 792 } 793 if (wdev->connect_keys->defmgmt == i) 794 if (rdev_set_default_mgmt_key(rdev, dev, i)) 795 netdev_err(dev, "failed to set mgtdef %d\n", i); 796 } 797 798 kfree(wdev->connect_keys); 799 wdev->connect_keys = NULL; 800 } 801 802 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 803 { 804 struct cfg80211_event *ev; 805 unsigned long flags; 806 const u8 *bssid = NULL; 807 808 spin_lock_irqsave(&wdev->event_lock, flags); 809 while (!list_empty(&wdev->event_list)) { 810 ev = list_first_entry(&wdev->event_list, 811 struct cfg80211_event, list); 812 list_del(&ev->list); 813 spin_unlock_irqrestore(&wdev->event_lock, flags); 814 815 wdev_lock(wdev); 816 switch (ev->type) { 817 case EVENT_CONNECT_RESULT: 818 if (!is_zero_ether_addr(ev->cr.bssid)) 819 bssid = ev->cr.bssid; 820 __cfg80211_connect_result( 821 wdev->netdev, bssid, 822 ev->cr.req_ie, ev->cr.req_ie_len, 823 ev->cr.resp_ie, ev->cr.resp_ie_len, 824 ev->cr.status, 825 ev->cr.status == WLAN_STATUS_SUCCESS, 826 NULL); 827 break; 828 case EVENT_ROAMED: 829 __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie, 830 ev->rm.req_ie_len, ev->rm.resp_ie, 831 ev->rm.resp_ie_len); 832 break; 833 case EVENT_DISCONNECTED: 834 __cfg80211_disconnected(wdev->netdev, 835 ev->dc.ie, ev->dc.ie_len, 836 ev->dc.reason, true); 837 break; 838 case EVENT_IBSS_JOINED: 839 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 840 ev->ij.channel); 841 break; 842 } 843 wdev_unlock(wdev); 844 845 kfree(ev); 846 847 spin_lock_irqsave(&wdev->event_lock, flags); 848 } 849 spin_unlock_irqrestore(&wdev->event_lock, flags); 850 } 851 852 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 853 { 854 struct wireless_dev *wdev; 855 856 ASSERT_RTNL(); 857 858 list_for_each_entry(wdev, &rdev->wdev_list, list) 859 cfg80211_process_wdev_events(wdev); 860 } 861 862 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 863 struct net_device *dev, enum nl80211_iftype ntype, 864 u32 *flags, struct vif_params *params) 865 { 866 int err; 867 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 868 869 ASSERT_RTNL(); 870 871 /* don't support changing VLANs, you just re-create them */ 872 if (otype == NL80211_IFTYPE_AP_VLAN) 873 return -EOPNOTSUPP; 874 875 /* cannot change into P2P device type */ 876 if (ntype == NL80211_IFTYPE_P2P_DEVICE) 877 return -EOPNOTSUPP; 878 879 if (!rdev->ops->change_virtual_intf || 880 !(rdev->wiphy.interface_modes & (1 << ntype))) 881 return -EOPNOTSUPP; 882 883 /* if it's part of a bridge, reject changing type to station/ibss */ 884 if ((dev->priv_flags & IFF_BRIDGE_PORT) && 885 (ntype == NL80211_IFTYPE_ADHOC || 886 ntype == NL80211_IFTYPE_STATION || 887 ntype == NL80211_IFTYPE_P2P_CLIENT)) 888 return -EBUSY; 889 890 if (ntype != otype && netif_running(dev)) { 891 err = cfg80211_can_change_interface(rdev, dev->ieee80211_ptr, 892 ntype); 893 if (err) 894 return err; 895 896 dev->ieee80211_ptr->use_4addr = false; 897 dev->ieee80211_ptr->mesh_id_up_len = 0; 898 wdev_lock(dev->ieee80211_ptr); 899 rdev_set_qos_map(rdev, dev, NULL); 900 wdev_unlock(dev->ieee80211_ptr); 901 902 switch (otype) { 903 case NL80211_IFTYPE_AP: 904 cfg80211_stop_ap(rdev, dev, true); 905 break; 906 case NL80211_IFTYPE_ADHOC: 907 cfg80211_leave_ibss(rdev, dev, false); 908 break; 909 case NL80211_IFTYPE_STATION: 910 case NL80211_IFTYPE_P2P_CLIENT: 911 wdev_lock(dev->ieee80211_ptr); 912 cfg80211_disconnect(rdev, dev, 913 WLAN_REASON_DEAUTH_LEAVING, true); 914 wdev_unlock(dev->ieee80211_ptr); 915 break; 916 case NL80211_IFTYPE_MESH_POINT: 917 /* mesh should be handled? */ 918 break; 919 default: 920 break; 921 } 922 923 cfg80211_process_rdev_events(rdev); 924 } 925 926 err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params); 927 928 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 929 930 if (!err && params && params->use_4addr != -1) 931 dev->ieee80211_ptr->use_4addr = params->use_4addr; 932 933 if (!err) { 934 dev->priv_flags &= ~IFF_DONT_BRIDGE; 935 switch (ntype) { 936 case NL80211_IFTYPE_STATION: 937 if (dev->ieee80211_ptr->use_4addr) 938 break; 939 /* fall through */ 940 case NL80211_IFTYPE_P2P_CLIENT: 941 case NL80211_IFTYPE_ADHOC: 942 dev->priv_flags |= IFF_DONT_BRIDGE; 943 break; 944 case NL80211_IFTYPE_P2P_GO: 945 case NL80211_IFTYPE_AP: 946 case NL80211_IFTYPE_AP_VLAN: 947 case NL80211_IFTYPE_WDS: 948 case NL80211_IFTYPE_MESH_POINT: 949 /* bridging OK */ 950 break; 951 case NL80211_IFTYPE_MONITOR: 952 /* monitor can't bridge anyway */ 953 break; 954 case NL80211_IFTYPE_UNSPECIFIED: 955 case NUM_NL80211_IFTYPES: 956 /* not happening */ 957 break; 958 case NL80211_IFTYPE_P2P_DEVICE: 959 WARN_ON(1); 960 break; 961 } 962 } 963 964 if (!err && ntype != otype && netif_running(dev)) { 965 cfg80211_update_iface_num(rdev, ntype, 1); 966 cfg80211_update_iface_num(rdev, otype, -1); 967 } 968 969 return err; 970 } 971 972 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate) 973 { 974 static const u32 __mcs2bitrate[] = { 975 /* control PHY */ 976 [0] = 275, 977 /* SC PHY */ 978 [1] = 3850, 979 [2] = 7700, 980 [3] = 9625, 981 [4] = 11550, 982 [5] = 12512, /* 1251.25 mbps */ 983 [6] = 15400, 984 [7] = 19250, 985 [8] = 23100, 986 [9] = 25025, 987 [10] = 30800, 988 [11] = 38500, 989 [12] = 46200, 990 /* OFDM PHY */ 991 [13] = 6930, 992 [14] = 8662, /* 866.25 mbps */ 993 [15] = 13860, 994 [16] = 17325, 995 [17] = 20790, 996 [18] = 27720, 997 [19] = 34650, 998 [20] = 41580, 999 [21] = 45045, 1000 [22] = 51975, 1001 [23] = 62370, 1002 [24] = 67568, /* 6756.75 mbps */ 1003 /* LP-SC PHY */ 1004 [25] = 6260, 1005 [26] = 8340, 1006 [27] = 11120, 1007 [28] = 12510, 1008 [29] = 16680, 1009 [30] = 22240, 1010 [31] = 25030, 1011 }; 1012 1013 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1014 return 0; 1015 1016 return __mcs2bitrate[rate->mcs]; 1017 } 1018 1019 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1020 { 1021 static const u32 base[4][10] = { 1022 { 6500000, 1023 13000000, 1024 19500000, 1025 26000000, 1026 39000000, 1027 52000000, 1028 58500000, 1029 65000000, 1030 78000000, 1031 0, 1032 }, 1033 { 13500000, 1034 27000000, 1035 40500000, 1036 54000000, 1037 81000000, 1038 108000000, 1039 121500000, 1040 135000000, 1041 162000000, 1042 180000000, 1043 }, 1044 { 29300000, 1045 58500000, 1046 87800000, 1047 117000000, 1048 175500000, 1049 234000000, 1050 263300000, 1051 292500000, 1052 351000000, 1053 390000000, 1054 }, 1055 { 58500000, 1056 117000000, 1057 175500000, 1058 234000000, 1059 351000000, 1060 468000000, 1061 526500000, 1062 585000000, 1063 702000000, 1064 780000000, 1065 }, 1066 }; 1067 u32 bitrate; 1068 int idx; 1069 1070 if (WARN_ON_ONCE(rate->mcs > 9)) 1071 return 0; 1072 1073 idx = rate->flags & (RATE_INFO_FLAGS_160_MHZ_WIDTH | 1074 RATE_INFO_FLAGS_80P80_MHZ_WIDTH) ? 3 : 1075 rate->flags & RATE_INFO_FLAGS_80_MHZ_WIDTH ? 2 : 1076 rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH ? 1 : 0; 1077 1078 bitrate = base[idx][rate->mcs]; 1079 bitrate *= rate->nss; 1080 1081 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1082 bitrate = (bitrate / 9) * 10; 1083 1084 /* do NOT round down here */ 1085 return (bitrate + 50000) / 100000; 1086 } 1087 1088 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1089 { 1090 int modulation, streams, bitrate; 1091 1092 if (!(rate->flags & RATE_INFO_FLAGS_MCS) && 1093 !(rate->flags & RATE_INFO_FLAGS_VHT_MCS)) 1094 return rate->legacy; 1095 if (rate->flags & RATE_INFO_FLAGS_60G) 1096 return cfg80211_calculate_bitrate_60g(rate); 1097 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1098 return cfg80211_calculate_bitrate_vht(rate); 1099 1100 /* the formula below does only work for MCS values smaller than 32 */ 1101 if (WARN_ON_ONCE(rate->mcs >= 32)) 1102 return 0; 1103 1104 modulation = rate->mcs & 7; 1105 streams = (rate->mcs >> 3) + 1; 1106 1107 bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ? 1108 13500000 : 6500000; 1109 1110 if (modulation < 4) 1111 bitrate *= (modulation + 1); 1112 else if (modulation == 4) 1113 bitrate *= (modulation + 2); 1114 else 1115 bitrate *= (modulation + 3); 1116 1117 bitrate *= streams; 1118 1119 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1120 bitrate = (bitrate / 9) * 10; 1121 1122 /* do NOT round down here */ 1123 return (bitrate + 50000) / 100000; 1124 } 1125 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1126 1127 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1128 enum ieee80211_p2p_attr_id attr, 1129 u8 *buf, unsigned int bufsize) 1130 { 1131 u8 *out = buf; 1132 u16 attr_remaining = 0; 1133 bool desired_attr = false; 1134 u16 desired_len = 0; 1135 1136 while (len > 0) { 1137 unsigned int iedatalen; 1138 unsigned int copy; 1139 const u8 *iedata; 1140 1141 if (len < 2) 1142 return -EILSEQ; 1143 iedatalen = ies[1]; 1144 if (iedatalen + 2 > len) 1145 return -EILSEQ; 1146 1147 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1148 goto cont; 1149 1150 if (iedatalen < 4) 1151 goto cont; 1152 1153 iedata = ies + 2; 1154 1155 /* check WFA OUI, P2P subtype */ 1156 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1157 iedata[2] != 0x9a || iedata[3] != 0x09) 1158 goto cont; 1159 1160 iedatalen -= 4; 1161 iedata += 4; 1162 1163 /* check attribute continuation into this IE */ 1164 copy = min_t(unsigned int, attr_remaining, iedatalen); 1165 if (copy && desired_attr) { 1166 desired_len += copy; 1167 if (out) { 1168 memcpy(out, iedata, min(bufsize, copy)); 1169 out += min(bufsize, copy); 1170 bufsize -= min(bufsize, copy); 1171 } 1172 1173 1174 if (copy == attr_remaining) 1175 return desired_len; 1176 } 1177 1178 attr_remaining -= copy; 1179 if (attr_remaining) 1180 goto cont; 1181 1182 iedatalen -= copy; 1183 iedata += copy; 1184 1185 while (iedatalen > 0) { 1186 u16 attr_len; 1187 1188 /* P2P attribute ID & size must fit */ 1189 if (iedatalen < 3) 1190 return -EILSEQ; 1191 desired_attr = iedata[0] == attr; 1192 attr_len = get_unaligned_le16(iedata + 1); 1193 iedatalen -= 3; 1194 iedata += 3; 1195 1196 copy = min_t(unsigned int, attr_len, iedatalen); 1197 1198 if (desired_attr) { 1199 desired_len += copy; 1200 if (out) { 1201 memcpy(out, iedata, min(bufsize, copy)); 1202 out += min(bufsize, copy); 1203 bufsize -= min(bufsize, copy); 1204 } 1205 1206 if (copy == attr_len) 1207 return desired_len; 1208 } 1209 1210 iedata += copy; 1211 iedatalen -= copy; 1212 attr_remaining = attr_len - copy; 1213 } 1214 1215 cont: 1216 len -= ies[1] + 2; 1217 ies += ies[1] + 2; 1218 } 1219 1220 if (attr_remaining && desired_attr) 1221 return -EILSEQ; 1222 1223 return -ENOENT; 1224 } 1225 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1226 1227 bool ieee80211_operating_class_to_band(u8 operating_class, 1228 enum ieee80211_band *band) 1229 { 1230 switch (operating_class) { 1231 case 112: 1232 case 115 ... 127: 1233 *band = IEEE80211_BAND_5GHZ; 1234 return true; 1235 case 81: 1236 case 82: 1237 case 83: 1238 case 84: 1239 *band = IEEE80211_BAND_2GHZ; 1240 return true; 1241 case 180: 1242 *band = IEEE80211_BAND_60GHZ; 1243 return true; 1244 } 1245 1246 return false; 1247 } 1248 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1249 1250 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 1251 u32 beacon_int) 1252 { 1253 struct wireless_dev *wdev; 1254 int res = 0; 1255 1256 if (!beacon_int) 1257 return -EINVAL; 1258 1259 list_for_each_entry(wdev, &rdev->wdev_list, list) { 1260 if (!wdev->beacon_interval) 1261 continue; 1262 if (wdev->beacon_interval != beacon_int) { 1263 res = -EINVAL; 1264 break; 1265 } 1266 } 1267 1268 return res; 1269 } 1270 1271 int cfg80211_can_use_iftype_chan(struct cfg80211_registered_device *rdev, 1272 struct wireless_dev *wdev, 1273 enum nl80211_iftype iftype, 1274 struct ieee80211_channel *chan, 1275 enum cfg80211_chan_mode chanmode, 1276 u8 radar_detect) 1277 { 1278 struct wireless_dev *wdev_iter; 1279 u32 used_iftypes = BIT(iftype); 1280 int num[NUM_NL80211_IFTYPES]; 1281 struct ieee80211_channel 1282 *used_channels[CFG80211_MAX_NUM_DIFFERENT_CHANNELS]; 1283 struct ieee80211_channel *ch; 1284 enum cfg80211_chan_mode chmode; 1285 int num_different_channels = 0; 1286 int total = 1; 1287 int i, j; 1288 1289 ASSERT_RTNL(); 1290 1291 if (WARN_ON(hweight32(radar_detect) > 1)) 1292 return -EINVAL; 1293 1294 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 1295 return -EINVAL; 1296 1297 /* Always allow software iftypes */ 1298 if (rdev->wiphy.software_iftypes & BIT(iftype)) { 1299 if (radar_detect) 1300 return -EINVAL; 1301 return 0; 1302 } 1303 1304 memset(num, 0, sizeof(num)); 1305 memset(used_channels, 0, sizeof(used_channels)); 1306 1307 num[iftype] = 1; 1308 1309 switch (chanmode) { 1310 case CHAN_MODE_UNDEFINED: 1311 break; 1312 case CHAN_MODE_SHARED: 1313 WARN_ON(!chan); 1314 used_channels[0] = chan; 1315 num_different_channels++; 1316 break; 1317 case CHAN_MODE_EXCLUSIVE: 1318 num_different_channels++; 1319 break; 1320 } 1321 1322 list_for_each_entry(wdev_iter, &rdev->wdev_list, list) { 1323 if (wdev_iter == wdev) 1324 continue; 1325 if (wdev_iter->iftype == NL80211_IFTYPE_P2P_DEVICE) { 1326 if (!wdev_iter->p2p_started) 1327 continue; 1328 } else if (wdev_iter->netdev) { 1329 if (!netif_running(wdev_iter->netdev)) 1330 continue; 1331 } else { 1332 WARN_ON(1); 1333 } 1334 1335 if (rdev->wiphy.software_iftypes & BIT(wdev_iter->iftype)) 1336 continue; 1337 1338 /* 1339 * We may be holding the "wdev" mutex, but now need to lock 1340 * wdev_iter. This is OK because once we get here wdev_iter 1341 * is not wdev (tested above), but we need to use the nested 1342 * locking for lockdep. 1343 */ 1344 mutex_lock_nested(&wdev_iter->mtx, 1); 1345 __acquire(wdev_iter->mtx); 1346 cfg80211_get_chan_state(wdev_iter, &ch, &chmode, &radar_detect); 1347 wdev_unlock(wdev_iter); 1348 1349 switch (chmode) { 1350 case CHAN_MODE_UNDEFINED: 1351 break; 1352 case CHAN_MODE_SHARED: 1353 for (i = 0; i < CFG80211_MAX_NUM_DIFFERENT_CHANNELS; i++) 1354 if (!used_channels[i] || used_channels[i] == ch) 1355 break; 1356 1357 if (i == CFG80211_MAX_NUM_DIFFERENT_CHANNELS) 1358 return -EBUSY; 1359 1360 if (used_channels[i] == NULL) { 1361 used_channels[i] = ch; 1362 num_different_channels++; 1363 } 1364 break; 1365 case CHAN_MODE_EXCLUSIVE: 1366 num_different_channels++; 1367 break; 1368 } 1369 1370 num[wdev_iter->iftype]++; 1371 total++; 1372 used_iftypes |= BIT(wdev_iter->iftype); 1373 } 1374 1375 if (total == 1 && !radar_detect) 1376 return 0; 1377 1378 for (i = 0; i < rdev->wiphy.n_iface_combinations; i++) { 1379 const struct ieee80211_iface_combination *c; 1380 struct ieee80211_iface_limit *limits; 1381 u32 all_iftypes = 0; 1382 1383 c = &rdev->wiphy.iface_combinations[i]; 1384 1385 if (total > c->max_interfaces) 1386 continue; 1387 if (num_different_channels > c->num_different_channels) 1388 continue; 1389 1390 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 1391 GFP_KERNEL); 1392 if (!limits) 1393 return -ENOMEM; 1394 1395 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1396 if (rdev->wiphy.software_iftypes & BIT(iftype)) 1397 continue; 1398 for (j = 0; j < c->n_limits; j++) { 1399 all_iftypes |= limits[j].types; 1400 if (!(limits[j].types & BIT(iftype))) 1401 continue; 1402 if (limits[j].max < num[iftype]) 1403 goto cont; 1404 limits[j].max -= num[iftype]; 1405 } 1406 } 1407 1408 if (radar_detect && !(c->radar_detect_widths & radar_detect)) 1409 goto cont; 1410 1411 /* 1412 * Finally check that all iftypes that we're currently 1413 * using are actually part of this combination. If they 1414 * aren't then we can't use this combination and have 1415 * to continue to the next. 1416 */ 1417 if ((all_iftypes & used_iftypes) != used_iftypes) 1418 goto cont; 1419 1420 /* 1421 * This combination covered all interface types and 1422 * supported the requested numbers, so we're good. 1423 */ 1424 kfree(limits); 1425 return 0; 1426 cont: 1427 kfree(limits); 1428 } 1429 1430 return -EBUSY; 1431 } 1432 1433 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1434 const u8 *rates, unsigned int n_rates, 1435 u32 *mask) 1436 { 1437 int i, j; 1438 1439 if (!sband) 1440 return -EINVAL; 1441 1442 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1443 return -EINVAL; 1444 1445 *mask = 0; 1446 1447 for (i = 0; i < n_rates; i++) { 1448 int rate = (rates[i] & 0x7f) * 5; 1449 bool found = false; 1450 1451 for (j = 0; j < sband->n_bitrates; j++) { 1452 if (sband->bitrates[j].bitrate == rate) { 1453 found = true; 1454 *mask |= BIT(j); 1455 break; 1456 } 1457 } 1458 if (!found) 1459 return -EINVAL; 1460 } 1461 1462 /* 1463 * mask must have at least one bit set here since we 1464 * didn't accept a 0-length rates array nor allowed 1465 * entries in the array that didn't exist 1466 */ 1467 1468 return 0; 1469 } 1470 1471 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 1472 { 1473 enum ieee80211_band band; 1474 unsigned int n_channels = 0; 1475 1476 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 1477 if (wiphy->bands[band]) 1478 n_channels += wiphy->bands[band]->n_channels; 1479 1480 return n_channels; 1481 } 1482 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 1483 1484 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 1485 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 1486 const unsigned char rfc1042_header[] __aligned(2) = 1487 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 1488 EXPORT_SYMBOL(rfc1042_header); 1489 1490 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 1491 const unsigned char bridge_tunnel_header[] __aligned(2) = 1492 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 1493 EXPORT_SYMBOL(bridge_tunnel_header); 1494