1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Wireless utility functions 4 * 5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 */ 8 #include <linux/export.h> 9 #include <linux/bitops.h> 10 #include <linux/etherdevice.h> 11 #include <linux/slab.h> 12 #include <net/cfg80211.h> 13 #include <net/ip.h> 14 #include <net/dsfield.h> 15 #include <linux/if_vlan.h> 16 #include <linux/mpls.h> 17 #include <linux/gcd.h> 18 #include "core.h" 19 #include "rdev-ops.h" 20 21 22 struct ieee80211_rate * 23 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 24 u32 basic_rates, int bitrate) 25 { 26 struct ieee80211_rate *result = &sband->bitrates[0]; 27 int i; 28 29 for (i = 0; i < sband->n_bitrates; i++) { 30 if (!(basic_rates & BIT(i))) 31 continue; 32 if (sband->bitrates[i].bitrate > bitrate) 33 continue; 34 result = &sband->bitrates[i]; 35 } 36 37 return result; 38 } 39 EXPORT_SYMBOL(ieee80211_get_response_rate); 40 41 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 42 enum nl80211_bss_scan_width scan_width) 43 { 44 struct ieee80211_rate *bitrates; 45 u32 mandatory_rates = 0; 46 enum ieee80211_rate_flags mandatory_flag; 47 int i; 48 49 if (WARN_ON(!sband)) 50 return 1; 51 52 if (sband->band == NL80211_BAND_2GHZ) { 53 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 54 scan_width == NL80211_BSS_CHAN_WIDTH_10) 55 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 56 else 57 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 58 } else { 59 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 60 } 61 62 bitrates = sband->bitrates; 63 for (i = 0; i < sband->n_bitrates; i++) 64 if (bitrates[i].flags & mandatory_flag) 65 mandatory_rates |= BIT(i); 66 return mandatory_rates; 67 } 68 EXPORT_SYMBOL(ieee80211_mandatory_rates); 69 70 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band) 71 { 72 /* see 802.11 17.3.8.3.2 and Annex J 73 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 74 if (chan <= 0) 75 return 0; /* not supported */ 76 switch (band) { 77 case NL80211_BAND_2GHZ: 78 if (chan == 14) 79 return 2484; 80 else if (chan < 14) 81 return 2407 + chan * 5; 82 break; 83 case NL80211_BAND_5GHZ: 84 if (chan >= 182 && chan <= 196) 85 return 4000 + chan * 5; 86 else 87 return 5000 + chan * 5; 88 break; 89 case NL80211_BAND_60GHZ: 90 if (chan < 5) 91 return 56160 + chan * 2160; 92 break; 93 default: 94 ; 95 } 96 return 0; /* not supported */ 97 } 98 EXPORT_SYMBOL(ieee80211_channel_to_frequency); 99 100 int ieee80211_frequency_to_channel(int freq) 101 { 102 /* see 802.11 17.3.8.3.2 and Annex J */ 103 if (freq == 2484) 104 return 14; 105 else if (freq < 2484) 106 return (freq - 2407) / 5; 107 else if (freq >= 4910 && freq <= 4980) 108 return (freq - 4000) / 5; 109 else if (freq <= 45000) /* DMG band lower limit */ 110 return (freq - 5000) / 5; 111 else if (freq >= 58320 && freq <= 64800) 112 return (freq - 56160) / 2160; 113 else 114 return 0; 115 } 116 EXPORT_SYMBOL(ieee80211_frequency_to_channel); 117 118 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq) 119 { 120 enum nl80211_band band; 121 struct ieee80211_supported_band *sband; 122 int i; 123 124 for (band = 0; band < NUM_NL80211_BANDS; band++) { 125 sband = wiphy->bands[band]; 126 127 if (!sband) 128 continue; 129 130 for (i = 0; i < sband->n_channels; i++) { 131 if (sband->channels[i].center_freq == freq) 132 return &sband->channels[i]; 133 } 134 } 135 136 return NULL; 137 } 138 EXPORT_SYMBOL(ieee80211_get_channel); 139 140 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) 141 { 142 int i, want; 143 144 switch (sband->band) { 145 case NL80211_BAND_5GHZ: 146 want = 3; 147 for (i = 0; i < sband->n_bitrates; i++) { 148 if (sband->bitrates[i].bitrate == 60 || 149 sband->bitrates[i].bitrate == 120 || 150 sband->bitrates[i].bitrate == 240) { 151 sband->bitrates[i].flags |= 152 IEEE80211_RATE_MANDATORY_A; 153 want--; 154 } 155 } 156 WARN_ON(want); 157 break; 158 case NL80211_BAND_2GHZ: 159 want = 7; 160 for (i = 0; i < sband->n_bitrates; i++) { 161 if (sband->bitrates[i].bitrate == 10) { 162 sband->bitrates[i].flags |= 163 IEEE80211_RATE_MANDATORY_B | 164 IEEE80211_RATE_MANDATORY_G; 165 want--; 166 } 167 168 if (sband->bitrates[i].bitrate == 20 || 169 sband->bitrates[i].bitrate == 55 || 170 sband->bitrates[i].bitrate == 110 || 171 sband->bitrates[i].bitrate == 60 || 172 sband->bitrates[i].bitrate == 120 || 173 sband->bitrates[i].bitrate == 240) { 174 sband->bitrates[i].flags |= 175 IEEE80211_RATE_MANDATORY_G; 176 want--; 177 } 178 179 if (sband->bitrates[i].bitrate != 10 && 180 sband->bitrates[i].bitrate != 20 && 181 sband->bitrates[i].bitrate != 55 && 182 sband->bitrates[i].bitrate != 110) 183 sband->bitrates[i].flags |= 184 IEEE80211_RATE_ERP_G; 185 } 186 WARN_ON(want != 0 && want != 3 && want != 6); 187 break; 188 case NL80211_BAND_60GHZ: 189 /* check for mandatory HT MCS 1..4 */ 190 WARN_ON(!sband->ht_cap.ht_supported); 191 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 192 break; 193 case NUM_NL80211_BANDS: 194 default: 195 WARN_ON(1); 196 break; 197 } 198 } 199 200 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 201 { 202 enum nl80211_band band; 203 204 for (band = 0; band < NUM_NL80211_BANDS; band++) 205 if (wiphy->bands[band]) 206 set_mandatory_flags_band(wiphy->bands[band]); 207 } 208 209 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 210 { 211 int i; 212 for (i = 0; i < wiphy->n_cipher_suites; i++) 213 if (cipher == wiphy->cipher_suites[i]) 214 return true; 215 return false; 216 } 217 218 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 219 struct key_params *params, int key_idx, 220 bool pairwise, const u8 *mac_addr) 221 { 222 if (key_idx < 0 || key_idx > 5) 223 return -EINVAL; 224 225 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 226 return -EINVAL; 227 228 if (pairwise && !mac_addr) 229 return -EINVAL; 230 231 switch (params->cipher) { 232 case WLAN_CIPHER_SUITE_TKIP: 233 case WLAN_CIPHER_SUITE_CCMP: 234 case WLAN_CIPHER_SUITE_CCMP_256: 235 case WLAN_CIPHER_SUITE_GCMP: 236 case WLAN_CIPHER_SUITE_GCMP_256: 237 /* Disallow pairwise keys with non-zero index unless it's WEP 238 * or a vendor specific cipher (because current deployments use 239 * pairwise WEP keys with non-zero indices and for vendor 240 * specific ciphers this should be validated in the driver or 241 * hardware level - but 802.11i clearly specifies to use zero) 242 */ 243 if (pairwise && key_idx) 244 return -EINVAL; 245 break; 246 case WLAN_CIPHER_SUITE_AES_CMAC: 247 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 248 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 249 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 250 /* Disallow BIP (group-only) cipher as pairwise cipher */ 251 if (pairwise) 252 return -EINVAL; 253 if (key_idx < 4) 254 return -EINVAL; 255 break; 256 case WLAN_CIPHER_SUITE_WEP40: 257 case WLAN_CIPHER_SUITE_WEP104: 258 if (key_idx > 3) 259 return -EINVAL; 260 default: 261 break; 262 } 263 264 switch (params->cipher) { 265 case WLAN_CIPHER_SUITE_WEP40: 266 if (params->key_len != WLAN_KEY_LEN_WEP40) 267 return -EINVAL; 268 break; 269 case WLAN_CIPHER_SUITE_TKIP: 270 if (params->key_len != WLAN_KEY_LEN_TKIP) 271 return -EINVAL; 272 break; 273 case WLAN_CIPHER_SUITE_CCMP: 274 if (params->key_len != WLAN_KEY_LEN_CCMP) 275 return -EINVAL; 276 break; 277 case WLAN_CIPHER_SUITE_CCMP_256: 278 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 279 return -EINVAL; 280 break; 281 case WLAN_CIPHER_SUITE_GCMP: 282 if (params->key_len != WLAN_KEY_LEN_GCMP) 283 return -EINVAL; 284 break; 285 case WLAN_CIPHER_SUITE_GCMP_256: 286 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 287 return -EINVAL; 288 break; 289 case WLAN_CIPHER_SUITE_WEP104: 290 if (params->key_len != WLAN_KEY_LEN_WEP104) 291 return -EINVAL; 292 break; 293 case WLAN_CIPHER_SUITE_AES_CMAC: 294 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 295 return -EINVAL; 296 break; 297 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 298 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 299 return -EINVAL; 300 break; 301 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 302 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 303 return -EINVAL; 304 break; 305 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 306 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 307 return -EINVAL; 308 break; 309 default: 310 /* 311 * We don't know anything about this algorithm, 312 * allow using it -- but the driver must check 313 * all parameters! We still check below whether 314 * or not the driver supports this algorithm, 315 * of course. 316 */ 317 break; 318 } 319 320 if (params->seq) { 321 switch (params->cipher) { 322 case WLAN_CIPHER_SUITE_WEP40: 323 case WLAN_CIPHER_SUITE_WEP104: 324 /* These ciphers do not use key sequence */ 325 return -EINVAL; 326 case WLAN_CIPHER_SUITE_TKIP: 327 case WLAN_CIPHER_SUITE_CCMP: 328 case WLAN_CIPHER_SUITE_CCMP_256: 329 case WLAN_CIPHER_SUITE_GCMP: 330 case WLAN_CIPHER_SUITE_GCMP_256: 331 case WLAN_CIPHER_SUITE_AES_CMAC: 332 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 333 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 334 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 335 if (params->seq_len != 6) 336 return -EINVAL; 337 break; 338 } 339 } 340 341 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 342 return -EINVAL; 343 344 return 0; 345 } 346 347 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 348 { 349 unsigned int hdrlen = 24; 350 351 if (ieee80211_is_data(fc)) { 352 if (ieee80211_has_a4(fc)) 353 hdrlen = 30; 354 if (ieee80211_is_data_qos(fc)) { 355 hdrlen += IEEE80211_QOS_CTL_LEN; 356 if (ieee80211_has_order(fc)) 357 hdrlen += IEEE80211_HT_CTL_LEN; 358 } 359 goto out; 360 } 361 362 if (ieee80211_is_mgmt(fc)) { 363 if (ieee80211_has_order(fc)) 364 hdrlen += IEEE80211_HT_CTL_LEN; 365 goto out; 366 } 367 368 if (ieee80211_is_ctl(fc)) { 369 /* 370 * ACK and CTS are 10 bytes, all others 16. To see how 371 * to get this condition consider 372 * subtype mask: 0b0000000011110000 (0x00F0) 373 * ACK subtype: 0b0000000011010000 (0x00D0) 374 * CTS subtype: 0b0000000011000000 (0x00C0) 375 * bits that matter: ^^^ (0x00E0) 376 * value of those: 0b0000000011000000 (0x00C0) 377 */ 378 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 379 hdrlen = 10; 380 else 381 hdrlen = 16; 382 } 383 out: 384 return hdrlen; 385 } 386 EXPORT_SYMBOL(ieee80211_hdrlen); 387 388 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 389 { 390 const struct ieee80211_hdr *hdr = 391 (const struct ieee80211_hdr *)skb->data; 392 unsigned int hdrlen; 393 394 if (unlikely(skb->len < 10)) 395 return 0; 396 hdrlen = ieee80211_hdrlen(hdr->frame_control); 397 if (unlikely(hdrlen > skb->len)) 398 return 0; 399 return hdrlen; 400 } 401 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 402 403 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 404 { 405 int ae = flags & MESH_FLAGS_AE; 406 /* 802.11-2012, 8.2.4.7.3 */ 407 switch (ae) { 408 default: 409 case 0: 410 return 6; 411 case MESH_FLAGS_AE_A4: 412 return 12; 413 case MESH_FLAGS_AE_A5_A6: 414 return 18; 415 } 416 } 417 418 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 419 { 420 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 421 } 422 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 423 424 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 425 const u8 *addr, enum nl80211_iftype iftype) 426 { 427 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 428 struct { 429 u8 hdr[ETH_ALEN] __aligned(2); 430 __be16 proto; 431 } payload; 432 struct ethhdr tmp; 433 u16 hdrlen; 434 u8 mesh_flags = 0; 435 436 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 437 return -1; 438 439 hdrlen = ieee80211_hdrlen(hdr->frame_control); 440 if (skb->len < hdrlen + 8) 441 return -1; 442 443 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 444 * header 445 * IEEE 802.11 address fields: 446 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 447 * 0 0 DA SA BSSID n/a 448 * 0 1 DA BSSID SA n/a 449 * 1 0 BSSID SA DA n/a 450 * 1 1 RA TA DA SA 451 */ 452 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 453 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 454 455 if (iftype == NL80211_IFTYPE_MESH_POINT) 456 skb_copy_bits(skb, hdrlen, &mesh_flags, 1); 457 458 mesh_flags &= MESH_FLAGS_AE; 459 460 switch (hdr->frame_control & 461 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 462 case cpu_to_le16(IEEE80211_FCTL_TODS): 463 if (unlikely(iftype != NL80211_IFTYPE_AP && 464 iftype != NL80211_IFTYPE_AP_VLAN && 465 iftype != NL80211_IFTYPE_P2P_GO)) 466 return -1; 467 break; 468 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 469 if (unlikely(iftype != NL80211_IFTYPE_WDS && 470 iftype != NL80211_IFTYPE_MESH_POINT && 471 iftype != NL80211_IFTYPE_AP_VLAN && 472 iftype != NL80211_IFTYPE_STATION)) 473 return -1; 474 if (iftype == NL80211_IFTYPE_MESH_POINT) { 475 if (mesh_flags == MESH_FLAGS_AE_A4) 476 return -1; 477 if (mesh_flags == MESH_FLAGS_AE_A5_A6) { 478 skb_copy_bits(skb, hdrlen + 479 offsetof(struct ieee80211s_hdr, eaddr1), 480 tmp.h_dest, 2 * ETH_ALEN); 481 } 482 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 483 } 484 break; 485 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 486 if ((iftype != NL80211_IFTYPE_STATION && 487 iftype != NL80211_IFTYPE_P2P_CLIENT && 488 iftype != NL80211_IFTYPE_MESH_POINT) || 489 (is_multicast_ether_addr(tmp.h_dest) && 490 ether_addr_equal(tmp.h_source, addr))) 491 return -1; 492 if (iftype == NL80211_IFTYPE_MESH_POINT) { 493 if (mesh_flags == MESH_FLAGS_AE_A5_A6) 494 return -1; 495 if (mesh_flags == MESH_FLAGS_AE_A4) 496 skb_copy_bits(skb, hdrlen + 497 offsetof(struct ieee80211s_hdr, eaddr1), 498 tmp.h_source, ETH_ALEN); 499 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 500 } 501 break; 502 case cpu_to_le16(0): 503 if (iftype != NL80211_IFTYPE_ADHOC && 504 iftype != NL80211_IFTYPE_STATION && 505 iftype != NL80211_IFTYPE_OCB) 506 return -1; 507 break; 508 } 509 510 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)); 511 tmp.h_proto = payload.proto; 512 513 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) && 514 tmp.h_proto != htons(ETH_P_AARP) && 515 tmp.h_proto != htons(ETH_P_IPX)) || 516 ether_addr_equal(payload.hdr, bridge_tunnel_header))) 517 /* remove RFC1042 or Bridge-Tunnel encapsulation and 518 * replace EtherType */ 519 hdrlen += ETH_ALEN + 2; 520 else 521 tmp.h_proto = htons(skb->len - hdrlen); 522 523 pskb_pull(skb, hdrlen); 524 525 if (!ehdr) 526 ehdr = skb_push(skb, sizeof(struct ethhdr)); 527 memcpy(ehdr, &tmp, sizeof(tmp)); 528 529 return 0; 530 } 531 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 532 533 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr, 534 enum nl80211_iftype iftype, 535 const u8 *bssid, bool qos) 536 { 537 struct ieee80211_hdr hdr; 538 u16 hdrlen, ethertype; 539 __le16 fc; 540 const u8 *encaps_data; 541 int encaps_len, skip_header_bytes; 542 int nh_pos, h_pos; 543 int head_need; 544 545 if (unlikely(skb->len < ETH_HLEN)) 546 return -EINVAL; 547 548 nh_pos = skb_network_header(skb) - skb->data; 549 h_pos = skb_transport_header(skb) - skb->data; 550 551 /* convert Ethernet header to proper 802.11 header (based on 552 * operation mode) */ 553 ethertype = (skb->data[12] << 8) | skb->data[13]; 554 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); 555 556 switch (iftype) { 557 case NL80211_IFTYPE_AP: 558 case NL80211_IFTYPE_AP_VLAN: 559 case NL80211_IFTYPE_P2P_GO: 560 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); 561 /* DA BSSID SA */ 562 memcpy(hdr.addr1, skb->data, ETH_ALEN); 563 memcpy(hdr.addr2, addr, ETH_ALEN); 564 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 565 hdrlen = 24; 566 break; 567 case NL80211_IFTYPE_STATION: 568 case NL80211_IFTYPE_P2P_CLIENT: 569 fc |= cpu_to_le16(IEEE80211_FCTL_TODS); 570 /* BSSID SA DA */ 571 memcpy(hdr.addr1, bssid, ETH_ALEN); 572 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 573 memcpy(hdr.addr3, skb->data, ETH_ALEN); 574 hdrlen = 24; 575 break; 576 case NL80211_IFTYPE_OCB: 577 case NL80211_IFTYPE_ADHOC: 578 /* DA SA BSSID */ 579 memcpy(hdr.addr1, skb->data, ETH_ALEN); 580 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 581 memcpy(hdr.addr3, bssid, ETH_ALEN); 582 hdrlen = 24; 583 break; 584 default: 585 return -EOPNOTSUPP; 586 } 587 588 if (qos) { 589 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 590 hdrlen += 2; 591 } 592 593 hdr.frame_control = fc; 594 hdr.duration_id = 0; 595 hdr.seq_ctrl = 0; 596 597 skip_header_bytes = ETH_HLEN; 598 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 599 encaps_data = bridge_tunnel_header; 600 encaps_len = sizeof(bridge_tunnel_header); 601 skip_header_bytes -= 2; 602 } else if (ethertype >= ETH_P_802_3_MIN) { 603 encaps_data = rfc1042_header; 604 encaps_len = sizeof(rfc1042_header); 605 skip_header_bytes -= 2; 606 } else { 607 encaps_data = NULL; 608 encaps_len = 0; 609 } 610 611 skb_pull(skb, skip_header_bytes); 612 nh_pos -= skip_header_bytes; 613 h_pos -= skip_header_bytes; 614 615 head_need = hdrlen + encaps_len - skb_headroom(skb); 616 617 if (head_need > 0 || skb_cloned(skb)) { 618 head_need = max(head_need, 0); 619 if (head_need) 620 skb_orphan(skb); 621 622 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) 623 return -ENOMEM; 624 } 625 626 if (encaps_data) { 627 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 628 nh_pos += encaps_len; 629 h_pos += encaps_len; 630 } 631 632 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 633 634 nh_pos += hdrlen; 635 h_pos += hdrlen; 636 637 /* Update skb pointers to various headers since this modified frame 638 * is going to go through Linux networking code that may potentially 639 * need things like pointer to IP header. */ 640 skb_reset_mac_header(skb); 641 skb_set_network_header(skb, nh_pos); 642 skb_set_transport_header(skb, h_pos); 643 644 return 0; 645 } 646 EXPORT_SYMBOL(ieee80211_data_from_8023); 647 648 static void 649 __frame_add_frag(struct sk_buff *skb, struct page *page, 650 void *ptr, int len, int size) 651 { 652 struct skb_shared_info *sh = skb_shinfo(skb); 653 int page_offset; 654 655 page_ref_inc(page); 656 page_offset = ptr - page_address(page); 657 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 658 } 659 660 static void 661 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 662 int offset, int len) 663 { 664 struct skb_shared_info *sh = skb_shinfo(skb); 665 const skb_frag_t *frag = &sh->frags[0]; 666 struct page *frag_page; 667 void *frag_ptr; 668 int frag_len, frag_size; 669 int head_size = skb->len - skb->data_len; 670 int cur_len; 671 672 frag_page = virt_to_head_page(skb->head); 673 frag_ptr = skb->data; 674 frag_size = head_size; 675 676 while (offset >= frag_size) { 677 offset -= frag_size; 678 frag_page = skb_frag_page(frag); 679 frag_ptr = skb_frag_address(frag); 680 frag_size = skb_frag_size(frag); 681 frag++; 682 } 683 684 frag_ptr += offset; 685 frag_len = frag_size - offset; 686 687 cur_len = min(len, frag_len); 688 689 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 690 len -= cur_len; 691 692 while (len > 0) { 693 frag_len = skb_frag_size(frag); 694 cur_len = min(len, frag_len); 695 __frame_add_frag(frame, skb_frag_page(frag), 696 skb_frag_address(frag), cur_len, frag_len); 697 len -= cur_len; 698 frag++; 699 } 700 } 701 702 static struct sk_buff * 703 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 704 int offset, int len, bool reuse_frag) 705 { 706 struct sk_buff *frame; 707 int cur_len = len; 708 709 if (skb->len - offset < len) 710 return NULL; 711 712 /* 713 * When reusing framents, copy some data to the head to simplify 714 * ethernet header handling and speed up protocol header processing 715 * in the stack later. 716 */ 717 if (reuse_frag) 718 cur_len = min_t(int, len, 32); 719 720 /* 721 * Allocate and reserve two bytes more for payload 722 * alignment since sizeof(struct ethhdr) is 14. 723 */ 724 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 725 if (!frame) 726 return NULL; 727 728 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 729 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 730 731 len -= cur_len; 732 if (!len) 733 return frame; 734 735 offset += cur_len; 736 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 737 738 return frame; 739 } 740 741 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 742 const u8 *addr, enum nl80211_iftype iftype, 743 const unsigned int extra_headroom, 744 const u8 *check_da, const u8 *check_sa) 745 { 746 unsigned int hlen = ALIGN(extra_headroom, 4); 747 struct sk_buff *frame = NULL; 748 u16 ethertype; 749 u8 *payload; 750 int offset = 0, remaining; 751 struct ethhdr eth; 752 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 753 bool reuse_skb = false; 754 bool last = false; 755 756 while (!last) { 757 unsigned int subframe_len; 758 int len; 759 u8 padding; 760 761 skb_copy_bits(skb, offset, ð, sizeof(eth)); 762 len = ntohs(eth.h_proto); 763 subframe_len = sizeof(struct ethhdr) + len; 764 padding = (4 - subframe_len) & 0x3; 765 766 /* the last MSDU has no padding */ 767 remaining = skb->len - offset; 768 if (subframe_len > remaining) 769 goto purge; 770 771 offset += sizeof(struct ethhdr); 772 last = remaining <= subframe_len + padding; 773 774 /* FIXME: should we really accept multicast DA? */ 775 if ((check_da && !is_multicast_ether_addr(eth.h_dest) && 776 !ether_addr_equal(check_da, eth.h_dest)) || 777 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) { 778 offset += len + padding; 779 continue; 780 } 781 782 /* reuse skb for the last subframe */ 783 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 784 skb_pull(skb, offset); 785 frame = skb; 786 reuse_skb = true; 787 } else { 788 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 789 reuse_frag); 790 if (!frame) 791 goto purge; 792 793 offset += len + padding; 794 } 795 796 skb_reset_network_header(frame); 797 frame->dev = skb->dev; 798 frame->priority = skb->priority; 799 800 payload = frame->data; 801 ethertype = (payload[6] << 8) | payload[7]; 802 if (likely((ether_addr_equal(payload, rfc1042_header) && 803 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 804 ether_addr_equal(payload, bridge_tunnel_header))) { 805 eth.h_proto = htons(ethertype); 806 skb_pull(frame, ETH_ALEN + 2); 807 } 808 809 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth)); 810 __skb_queue_tail(list, frame); 811 } 812 813 if (!reuse_skb) 814 dev_kfree_skb(skb); 815 816 return; 817 818 purge: 819 __skb_queue_purge(list); 820 dev_kfree_skb(skb); 821 } 822 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 823 824 /* Given a data frame determine the 802.1p/1d tag to use. */ 825 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 826 struct cfg80211_qos_map *qos_map) 827 { 828 unsigned int dscp; 829 unsigned char vlan_priority; 830 831 /* skb->priority values from 256->263 are magic values to 832 * directly indicate a specific 802.1d priority. This is used 833 * to allow 802.1d priority to be passed directly in from VLAN 834 * tags, etc. 835 */ 836 if (skb->priority >= 256 && skb->priority <= 263) 837 return skb->priority - 256; 838 839 if (skb_vlan_tag_present(skb)) { 840 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 841 >> VLAN_PRIO_SHIFT; 842 if (vlan_priority > 0) 843 return vlan_priority; 844 } 845 846 switch (skb->protocol) { 847 case htons(ETH_P_IP): 848 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 849 break; 850 case htons(ETH_P_IPV6): 851 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 852 break; 853 case htons(ETH_P_MPLS_UC): 854 case htons(ETH_P_MPLS_MC): { 855 struct mpls_label mpls_tmp, *mpls; 856 857 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 858 sizeof(*mpls), &mpls_tmp); 859 if (!mpls) 860 return 0; 861 862 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 863 >> MPLS_LS_TC_SHIFT; 864 } 865 case htons(ETH_P_80221): 866 /* 802.21 is always network control traffic */ 867 return 7; 868 default: 869 return 0; 870 } 871 872 if (qos_map) { 873 unsigned int i, tmp_dscp = dscp >> 2; 874 875 for (i = 0; i < qos_map->num_des; i++) { 876 if (tmp_dscp == qos_map->dscp_exception[i].dscp) 877 return qos_map->dscp_exception[i].up; 878 } 879 880 for (i = 0; i < 8; i++) { 881 if (tmp_dscp >= qos_map->up[i].low && 882 tmp_dscp <= qos_map->up[i].high) 883 return i; 884 } 885 } 886 887 return dscp >> 5; 888 } 889 EXPORT_SYMBOL(cfg80211_classify8021d); 890 891 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie) 892 { 893 const struct cfg80211_bss_ies *ies; 894 895 ies = rcu_dereference(bss->ies); 896 if (!ies) 897 return NULL; 898 899 return cfg80211_find_ie(ie, ies->data, ies->len); 900 } 901 EXPORT_SYMBOL(ieee80211_bss_get_ie); 902 903 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 904 { 905 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 906 struct net_device *dev = wdev->netdev; 907 int i; 908 909 if (!wdev->connect_keys) 910 return; 911 912 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) { 913 if (!wdev->connect_keys->params[i].cipher) 914 continue; 915 if (rdev_add_key(rdev, dev, i, false, NULL, 916 &wdev->connect_keys->params[i])) { 917 netdev_err(dev, "failed to set key %d\n", i); 918 continue; 919 } 920 if (wdev->connect_keys->def == i && 921 rdev_set_default_key(rdev, dev, i, true, true)) { 922 netdev_err(dev, "failed to set defkey %d\n", i); 923 continue; 924 } 925 } 926 927 kzfree(wdev->connect_keys); 928 wdev->connect_keys = NULL; 929 } 930 931 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 932 { 933 struct cfg80211_event *ev; 934 unsigned long flags; 935 936 spin_lock_irqsave(&wdev->event_lock, flags); 937 while (!list_empty(&wdev->event_list)) { 938 ev = list_first_entry(&wdev->event_list, 939 struct cfg80211_event, list); 940 list_del(&ev->list); 941 spin_unlock_irqrestore(&wdev->event_lock, flags); 942 943 wdev_lock(wdev); 944 switch (ev->type) { 945 case EVENT_CONNECT_RESULT: 946 __cfg80211_connect_result( 947 wdev->netdev, 948 &ev->cr, 949 ev->cr.status == WLAN_STATUS_SUCCESS); 950 break; 951 case EVENT_ROAMED: 952 __cfg80211_roamed(wdev, &ev->rm); 953 break; 954 case EVENT_DISCONNECTED: 955 __cfg80211_disconnected(wdev->netdev, 956 ev->dc.ie, ev->dc.ie_len, 957 ev->dc.reason, 958 !ev->dc.locally_generated); 959 break; 960 case EVENT_IBSS_JOINED: 961 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 962 ev->ij.channel); 963 break; 964 case EVENT_STOPPED: 965 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 966 break; 967 } 968 wdev_unlock(wdev); 969 970 kfree(ev); 971 972 spin_lock_irqsave(&wdev->event_lock, flags); 973 } 974 spin_unlock_irqrestore(&wdev->event_lock, flags); 975 } 976 977 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 978 { 979 struct wireless_dev *wdev; 980 981 ASSERT_RTNL(); 982 983 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 984 cfg80211_process_wdev_events(wdev); 985 } 986 987 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 988 struct net_device *dev, enum nl80211_iftype ntype, 989 struct vif_params *params) 990 { 991 int err; 992 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 993 994 ASSERT_RTNL(); 995 996 /* don't support changing VLANs, you just re-create them */ 997 if (otype == NL80211_IFTYPE_AP_VLAN) 998 return -EOPNOTSUPP; 999 1000 /* cannot change into P2P device or NAN */ 1001 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 1002 ntype == NL80211_IFTYPE_NAN) 1003 return -EOPNOTSUPP; 1004 1005 if (!rdev->ops->change_virtual_intf || 1006 !(rdev->wiphy.interface_modes & (1 << ntype))) 1007 return -EOPNOTSUPP; 1008 1009 /* if it's part of a bridge, reject changing type to station/ibss */ 1010 if ((dev->priv_flags & IFF_BRIDGE_PORT) && 1011 (ntype == NL80211_IFTYPE_ADHOC || 1012 ntype == NL80211_IFTYPE_STATION || 1013 ntype == NL80211_IFTYPE_P2P_CLIENT)) 1014 return -EBUSY; 1015 1016 if (ntype != otype) { 1017 dev->ieee80211_ptr->use_4addr = false; 1018 dev->ieee80211_ptr->mesh_id_up_len = 0; 1019 wdev_lock(dev->ieee80211_ptr); 1020 rdev_set_qos_map(rdev, dev, NULL); 1021 wdev_unlock(dev->ieee80211_ptr); 1022 1023 switch (otype) { 1024 case NL80211_IFTYPE_AP: 1025 cfg80211_stop_ap(rdev, dev, true); 1026 break; 1027 case NL80211_IFTYPE_ADHOC: 1028 cfg80211_leave_ibss(rdev, dev, false); 1029 break; 1030 case NL80211_IFTYPE_STATION: 1031 case NL80211_IFTYPE_P2P_CLIENT: 1032 wdev_lock(dev->ieee80211_ptr); 1033 cfg80211_disconnect(rdev, dev, 1034 WLAN_REASON_DEAUTH_LEAVING, true); 1035 wdev_unlock(dev->ieee80211_ptr); 1036 break; 1037 case NL80211_IFTYPE_MESH_POINT: 1038 /* mesh should be handled? */ 1039 break; 1040 default: 1041 break; 1042 } 1043 1044 cfg80211_process_rdev_events(rdev); 1045 } 1046 1047 err = rdev_change_virtual_intf(rdev, dev, ntype, params); 1048 1049 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 1050 1051 if (!err && params && params->use_4addr != -1) 1052 dev->ieee80211_ptr->use_4addr = params->use_4addr; 1053 1054 if (!err) { 1055 dev->priv_flags &= ~IFF_DONT_BRIDGE; 1056 switch (ntype) { 1057 case NL80211_IFTYPE_STATION: 1058 if (dev->ieee80211_ptr->use_4addr) 1059 break; 1060 /* fall through */ 1061 case NL80211_IFTYPE_OCB: 1062 case NL80211_IFTYPE_P2P_CLIENT: 1063 case NL80211_IFTYPE_ADHOC: 1064 dev->priv_flags |= IFF_DONT_BRIDGE; 1065 break; 1066 case NL80211_IFTYPE_P2P_GO: 1067 case NL80211_IFTYPE_AP: 1068 case NL80211_IFTYPE_AP_VLAN: 1069 case NL80211_IFTYPE_WDS: 1070 case NL80211_IFTYPE_MESH_POINT: 1071 /* bridging OK */ 1072 break; 1073 case NL80211_IFTYPE_MONITOR: 1074 /* monitor can't bridge anyway */ 1075 break; 1076 case NL80211_IFTYPE_UNSPECIFIED: 1077 case NUM_NL80211_IFTYPES: 1078 /* not happening */ 1079 break; 1080 case NL80211_IFTYPE_P2P_DEVICE: 1081 case NL80211_IFTYPE_NAN: 1082 WARN_ON(1); 1083 break; 1084 } 1085 } 1086 1087 if (!err && ntype != otype && netif_running(dev)) { 1088 cfg80211_update_iface_num(rdev, ntype, 1); 1089 cfg80211_update_iface_num(rdev, otype, -1); 1090 } 1091 1092 return err; 1093 } 1094 1095 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) 1096 { 1097 int modulation, streams, bitrate; 1098 1099 /* the formula below does only work for MCS values smaller than 32 */ 1100 if (WARN_ON_ONCE(rate->mcs >= 32)) 1101 return 0; 1102 1103 modulation = rate->mcs & 7; 1104 streams = (rate->mcs >> 3) + 1; 1105 1106 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1107 1108 if (modulation < 4) 1109 bitrate *= (modulation + 1); 1110 else if (modulation == 4) 1111 bitrate *= (modulation + 2); 1112 else 1113 bitrate *= (modulation + 3); 1114 1115 bitrate *= streams; 1116 1117 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1118 bitrate = (bitrate / 9) * 10; 1119 1120 /* do NOT round down here */ 1121 return (bitrate + 50000) / 100000; 1122 } 1123 1124 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate) 1125 { 1126 static const u32 __mcs2bitrate[] = { 1127 /* control PHY */ 1128 [0] = 275, 1129 /* SC PHY */ 1130 [1] = 3850, 1131 [2] = 7700, 1132 [3] = 9625, 1133 [4] = 11550, 1134 [5] = 12512, /* 1251.25 mbps */ 1135 [6] = 15400, 1136 [7] = 19250, 1137 [8] = 23100, 1138 [9] = 25025, 1139 [10] = 30800, 1140 [11] = 38500, 1141 [12] = 46200, 1142 /* OFDM PHY */ 1143 [13] = 6930, 1144 [14] = 8662, /* 866.25 mbps */ 1145 [15] = 13860, 1146 [16] = 17325, 1147 [17] = 20790, 1148 [18] = 27720, 1149 [19] = 34650, 1150 [20] = 41580, 1151 [21] = 45045, 1152 [22] = 51975, 1153 [23] = 62370, 1154 [24] = 67568, /* 6756.75 mbps */ 1155 /* LP-SC PHY */ 1156 [25] = 6260, 1157 [26] = 8340, 1158 [27] = 11120, 1159 [28] = 12510, 1160 [29] = 16680, 1161 [30] = 22240, 1162 [31] = 25030, 1163 }; 1164 1165 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1166 return 0; 1167 1168 return __mcs2bitrate[rate->mcs]; 1169 } 1170 1171 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1172 { 1173 static const u32 base[4][10] = { 1174 { 6500000, 1175 13000000, 1176 19500000, 1177 26000000, 1178 39000000, 1179 52000000, 1180 58500000, 1181 65000000, 1182 78000000, 1183 /* not in the spec, but some devices use this: */ 1184 86500000, 1185 }, 1186 { 13500000, 1187 27000000, 1188 40500000, 1189 54000000, 1190 81000000, 1191 108000000, 1192 121500000, 1193 135000000, 1194 162000000, 1195 180000000, 1196 }, 1197 { 29300000, 1198 58500000, 1199 87800000, 1200 117000000, 1201 175500000, 1202 234000000, 1203 263300000, 1204 292500000, 1205 351000000, 1206 390000000, 1207 }, 1208 { 58500000, 1209 117000000, 1210 175500000, 1211 234000000, 1212 351000000, 1213 468000000, 1214 526500000, 1215 585000000, 1216 702000000, 1217 780000000, 1218 }, 1219 }; 1220 u32 bitrate; 1221 int idx; 1222 1223 if (rate->mcs > 9) 1224 goto warn; 1225 1226 switch (rate->bw) { 1227 case RATE_INFO_BW_160: 1228 idx = 3; 1229 break; 1230 case RATE_INFO_BW_80: 1231 idx = 2; 1232 break; 1233 case RATE_INFO_BW_40: 1234 idx = 1; 1235 break; 1236 case RATE_INFO_BW_5: 1237 case RATE_INFO_BW_10: 1238 default: 1239 goto warn; 1240 case RATE_INFO_BW_20: 1241 idx = 0; 1242 } 1243 1244 bitrate = base[idx][rate->mcs]; 1245 bitrate *= rate->nss; 1246 1247 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1248 bitrate = (bitrate / 9) * 10; 1249 1250 /* do NOT round down here */ 1251 return (bitrate + 50000) / 100000; 1252 warn: 1253 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1254 rate->bw, rate->mcs, rate->nss); 1255 return 0; 1256 } 1257 1258 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1259 { 1260 if (rate->flags & RATE_INFO_FLAGS_MCS) 1261 return cfg80211_calculate_bitrate_ht(rate); 1262 if (rate->flags & RATE_INFO_FLAGS_60G) 1263 return cfg80211_calculate_bitrate_60g(rate); 1264 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1265 return cfg80211_calculate_bitrate_vht(rate); 1266 1267 return rate->legacy; 1268 } 1269 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1270 1271 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1272 enum ieee80211_p2p_attr_id attr, 1273 u8 *buf, unsigned int bufsize) 1274 { 1275 u8 *out = buf; 1276 u16 attr_remaining = 0; 1277 bool desired_attr = false; 1278 u16 desired_len = 0; 1279 1280 while (len > 0) { 1281 unsigned int iedatalen; 1282 unsigned int copy; 1283 const u8 *iedata; 1284 1285 if (len < 2) 1286 return -EILSEQ; 1287 iedatalen = ies[1]; 1288 if (iedatalen + 2 > len) 1289 return -EILSEQ; 1290 1291 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1292 goto cont; 1293 1294 if (iedatalen < 4) 1295 goto cont; 1296 1297 iedata = ies + 2; 1298 1299 /* check WFA OUI, P2P subtype */ 1300 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1301 iedata[2] != 0x9a || iedata[3] != 0x09) 1302 goto cont; 1303 1304 iedatalen -= 4; 1305 iedata += 4; 1306 1307 /* check attribute continuation into this IE */ 1308 copy = min_t(unsigned int, attr_remaining, iedatalen); 1309 if (copy && desired_attr) { 1310 desired_len += copy; 1311 if (out) { 1312 memcpy(out, iedata, min(bufsize, copy)); 1313 out += min(bufsize, copy); 1314 bufsize -= min(bufsize, copy); 1315 } 1316 1317 1318 if (copy == attr_remaining) 1319 return desired_len; 1320 } 1321 1322 attr_remaining -= copy; 1323 if (attr_remaining) 1324 goto cont; 1325 1326 iedatalen -= copy; 1327 iedata += copy; 1328 1329 while (iedatalen > 0) { 1330 u16 attr_len; 1331 1332 /* P2P attribute ID & size must fit */ 1333 if (iedatalen < 3) 1334 return -EILSEQ; 1335 desired_attr = iedata[0] == attr; 1336 attr_len = get_unaligned_le16(iedata + 1); 1337 iedatalen -= 3; 1338 iedata += 3; 1339 1340 copy = min_t(unsigned int, attr_len, iedatalen); 1341 1342 if (desired_attr) { 1343 desired_len += copy; 1344 if (out) { 1345 memcpy(out, iedata, min(bufsize, copy)); 1346 out += min(bufsize, copy); 1347 bufsize -= min(bufsize, copy); 1348 } 1349 1350 if (copy == attr_len) 1351 return desired_len; 1352 } 1353 1354 iedata += copy; 1355 iedatalen -= copy; 1356 attr_remaining = attr_len - copy; 1357 } 1358 1359 cont: 1360 len -= ies[1] + 2; 1361 ies += ies[1] + 2; 1362 } 1363 1364 if (attr_remaining && desired_attr) 1365 return -EILSEQ; 1366 1367 return -ENOENT; 1368 } 1369 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1370 1371 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id) 1372 { 1373 int i; 1374 1375 for (i = 0; i < n_ids; i++) 1376 if (ids[i] == id) 1377 return true; 1378 return false; 1379 } 1380 1381 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) 1382 { 1383 /* we assume a validly formed IEs buffer */ 1384 u8 len = ies[pos + 1]; 1385 1386 pos += 2 + len; 1387 1388 /* the IE itself must have 255 bytes for fragments to follow */ 1389 if (len < 255) 1390 return pos; 1391 1392 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { 1393 len = ies[pos + 1]; 1394 pos += 2 + len; 1395 } 1396 1397 return pos; 1398 } 1399 1400 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1401 const u8 *ids, int n_ids, 1402 const u8 *after_ric, int n_after_ric, 1403 size_t offset) 1404 { 1405 size_t pos = offset; 1406 1407 while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) { 1408 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1409 pos = skip_ie(ies, ielen, pos); 1410 1411 while (pos < ielen && 1412 !ieee80211_id_in_list(after_ric, n_after_ric, 1413 ies[pos])) 1414 pos = skip_ie(ies, ielen, pos); 1415 } else { 1416 pos = skip_ie(ies, ielen, pos); 1417 } 1418 } 1419 1420 return pos; 1421 } 1422 EXPORT_SYMBOL(ieee80211_ie_split_ric); 1423 1424 bool ieee80211_operating_class_to_band(u8 operating_class, 1425 enum nl80211_band *band) 1426 { 1427 switch (operating_class) { 1428 case 112: 1429 case 115 ... 127: 1430 case 128 ... 130: 1431 *band = NL80211_BAND_5GHZ; 1432 return true; 1433 case 81: 1434 case 82: 1435 case 83: 1436 case 84: 1437 *band = NL80211_BAND_2GHZ; 1438 return true; 1439 case 180: 1440 *band = NL80211_BAND_60GHZ; 1441 return true; 1442 } 1443 1444 return false; 1445 } 1446 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1447 1448 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 1449 u8 *op_class) 1450 { 1451 u8 vht_opclass; 1452 u16 freq = chandef->center_freq1; 1453 1454 if (freq >= 2412 && freq <= 2472) { 1455 if (chandef->width > NL80211_CHAN_WIDTH_40) 1456 return false; 1457 1458 /* 2.407 GHz, channels 1..13 */ 1459 if (chandef->width == NL80211_CHAN_WIDTH_40) { 1460 if (freq > chandef->chan->center_freq) 1461 *op_class = 83; /* HT40+ */ 1462 else 1463 *op_class = 84; /* HT40- */ 1464 } else { 1465 *op_class = 81; 1466 } 1467 1468 return true; 1469 } 1470 1471 if (freq == 2484) { 1472 if (chandef->width > NL80211_CHAN_WIDTH_40) 1473 return false; 1474 1475 *op_class = 82; /* channel 14 */ 1476 return true; 1477 } 1478 1479 switch (chandef->width) { 1480 case NL80211_CHAN_WIDTH_80: 1481 vht_opclass = 128; 1482 break; 1483 case NL80211_CHAN_WIDTH_160: 1484 vht_opclass = 129; 1485 break; 1486 case NL80211_CHAN_WIDTH_80P80: 1487 vht_opclass = 130; 1488 break; 1489 case NL80211_CHAN_WIDTH_10: 1490 case NL80211_CHAN_WIDTH_5: 1491 return false; /* unsupported for now */ 1492 default: 1493 vht_opclass = 0; 1494 break; 1495 } 1496 1497 /* 5 GHz, channels 36..48 */ 1498 if (freq >= 5180 && freq <= 5240) { 1499 if (vht_opclass) { 1500 *op_class = vht_opclass; 1501 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1502 if (freq > chandef->chan->center_freq) 1503 *op_class = 116; 1504 else 1505 *op_class = 117; 1506 } else { 1507 *op_class = 115; 1508 } 1509 1510 return true; 1511 } 1512 1513 /* 5 GHz, channels 52..64 */ 1514 if (freq >= 5260 && freq <= 5320) { 1515 if (vht_opclass) { 1516 *op_class = vht_opclass; 1517 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1518 if (freq > chandef->chan->center_freq) 1519 *op_class = 119; 1520 else 1521 *op_class = 120; 1522 } else { 1523 *op_class = 118; 1524 } 1525 1526 return true; 1527 } 1528 1529 /* 5 GHz, channels 100..144 */ 1530 if (freq >= 5500 && freq <= 5720) { 1531 if (vht_opclass) { 1532 *op_class = vht_opclass; 1533 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1534 if (freq > chandef->chan->center_freq) 1535 *op_class = 122; 1536 else 1537 *op_class = 123; 1538 } else { 1539 *op_class = 121; 1540 } 1541 1542 return true; 1543 } 1544 1545 /* 5 GHz, channels 149..169 */ 1546 if (freq >= 5745 && freq <= 5845) { 1547 if (vht_opclass) { 1548 *op_class = vht_opclass; 1549 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1550 if (freq > chandef->chan->center_freq) 1551 *op_class = 126; 1552 else 1553 *op_class = 127; 1554 } else if (freq <= 5805) { 1555 *op_class = 124; 1556 } else { 1557 *op_class = 125; 1558 } 1559 1560 return true; 1561 } 1562 1563 /* 56.16 GHz, channel 1..4 */ 1564 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) { 1565 if (chandef->width >= NL80211_CHAN_WIDTH_40) 1566 return false; 1567 1568 *op_class = 180; 1569 return true; 1570 } 1571 1572 /* not supported yet */ 1573 return false; 1574 } 1575 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 1576 1577 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, 1578 u32 *beacon_int_gcd, 1579 bool *beacon_int_different) 1580 { 1581 struct wireless_dev *wdev; 1582 1583 *beacon_int_gcd = 0; 1584 *beacon_int_different = false; 1585 1586 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 1587 if (!wdev->beacon_interval) 1588 continue; 1589 1590 if (!*beacon_int_gcd) { 1591 *beacon_int_gcd = wdev->beacon_interval; 1592 continue; 1593 } 1594 1595 if (wdev->beacon_interval == *beacon_int_gcd) 1596 continue; 1597 1598 *beacon_int_different = true; 1599 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval); 1600 } 1601 1602 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { 1603 if (*beacon_int_gcd) 1604 *beacon_int_different = true; 1605 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); 1606 } 1607 } 1608 1609 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 1610 enum nl80211_iftype iftype, u32 beacon_int) 1611 { 1612 /* 1613 * This is just a basic pre-condition check; if interface combinations 1614 * are possible the driver must already be checking those with a call 1615 * to cfg80211_check_combinations(), in which case we'll validate more 1616 * through the cfg80211_calculate_bi_data() call and code in 1617 * cfg80211_iter_combinations(). 1618 */ 1619 1620 if (beacon_int < 10 || beacon_int > 10000) 1621 return -EINVAL; 1622 1623 return 0; 1624 } 1625 1626 int cfg80211_iter_combinations(struct wiphy *wiphy, 1627 struct iface_combination_params *params, 1628 void (*iter)(const struct ieee80211_iface_combination *c, 1629 void *data), 1630 void *data) 1631 { 1632 const struct ieee80211_regdomain *regdom; 1633 enum nl80211_dfs_regions region = 0; 1634 int i, j, iftype; 1635 int num_interfaces = 0; 1636 u32 used_iftypes = 0; 1637 u32 beacon_int_gcd; 1638 bool beacon_int_different; 1639 1640 /* 1641 * This is a bit strange, since the iteration used to rely only on 1642 * the data given by the driver, but here it now relies on context, 1643 * in form of the currently operating interfaces. 1644 * This is OK for all current users, and saves us from having to 1645 * push the GCD calculations into all the drivers. 1646 * In the future, this should probably rely more on data that's in 1647 * cfg80211 already - the only thing not would appear to be any new 1648 * interfaces (while being brought up) and channel/radar data. 1649 */ 1650 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, 1651 &beacon_int_gcd, &beacon_int_different); 1652 1653 if (params->radar_detect) { 1654 rcu_read_lock(); 1655 regdom = rcu_dereference(cfg80211_regdomain); 1656 if (regdom) 1657 region = regdom->dfs_region; 1658 rcu_read_unlock(); 1659 } 1660 1661 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1662 num_interfaces += params->iftype_num[iftype]; 1663 if (params->iftype_num[iftype] > 0 && 1664 !(wiphy->software_iftypes & BIT(iftype))) 1665 used_iftypes |= BIT(iftype); 1666 } 1667 1668 for (i = 0; i < wiphy->n_iface_combinations; i++) { 1669 const struct ieee80211_iface_combination *c; 1670 struct ieee80211_iface_limit *limits; 1671 u32 all_iftypes = 0; 1672 1673 c = &wiphy->iface_combinations[i]; 1674 1675 if (num_interfaces > c->max_interfaces) 1676 continue; 1677 if (params->num_different_channels > c->num_different_channels) 1678 continue; 1679 1680 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 1681 GFP_KERNEL); 1682 if (!limits) 1683 return -ENOMEM; 1684 1685 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1686 if (wiphy->software_iftypes & BIT(iftype)) 1687 continue; 1688 for (j = 0; j < c->n_limits; j++) { 1689 all_iftypes |= limits[j].types; 1690 if (!(limits[j].types & BIT(iftype))) 1691 continue; 1692 if (limits[j].max < params->iftype_num[iftype]) 1693 goto cont; 1694 limits[j].max -= params->iftype_num[iftype]; 1695 } 1696 } 1697 1698 if (params->radar_detect != 1699 (c->radar_detect_widths & params->radar_detect)) 1700 goto cont; 1701 1702 if (params->radar_detect && c->radar_detect_regions && 1703 !(c->radar_detect_regions & BIT(region))) 1704 goto cont; 1705 1706 /* Finally check that all iftypes that we're currently 1707 * using are actually part of this combination. If they 1708 * aren't then we can't use this combination and have 1709 * to continue to the next. 1710 */ 1711 if ((all_iftypes & used_iftypes) != used_iftypes) 1712 goto cont; 1713 1714 if (beacon_int_gcd) { 1715 if (c->beacon_int_min_gcd && 1716 beacon_int_gcd < c->beacon_int_min_gcd) 1717 goto cont; 1718 if (!c->beacon_int_min_gcd && beacon_int_different) 1719 goto cont; 1720 } 1721 1722 /* This combination covered all interface types and 1723 * supported the requested numbers, so we're good. 1724 */ 1725 1726 (*iter)(c, data); 1727 cont: 1728 kfree(limits); 1729 } 1730 1731 return 0; 1732 } 1733 EXPORT_SYMBOL(cfg80211_iter_combinations); 1734 1735 static void 1736 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 1737 void *data) 1738 { 1739 int *num = data; 1740 (*num)++; 1741 } 1742 1743 int cfg80211_check_combinations(struct wiphy *wiphy, 1744 struct iface_combination_params *params) 1745 { 1746 int err, num = 0; 1747 1748 err = cfg80211_iter_combinations(wiphy, params, 1749 cfg80211_iter_sum_ifcombs, &num); 1750 if (err) 1751 return err; 1752 if (num == 0) 1753 return -EBUSY; 1754 1755 return 0; 1756 } 1757 EXPORT_SYMBOL(cfg80211_check_combinations); 1758 1759 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1760 const u8 *rates, unsigned int n_rates, 1761 u32 *mask) 1762 { 1763 int i, j; 1764 1765 if (!sband) 1766 return -EINVAL; 1767 1768 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1769 return -EINVAL; 1770 1771 *mask = 0; 1772 1773 for (i = 0; i < n_rates; i++) { 1774 int rate = (rates[i] & 0x7f) * 5; 1775 bool found = false; 1776 1777 for (j = 0; j < sband->n_bitrates; j++) { 1778 if (sband->bitrates[j].bitrate == rate) { 1779 found = true; 1780 *mask |= BIT(j); 1781 break; 1782 } 1783 } 1784 if (!found) 1785 return -EINVAL; 1786 } 1787 1788 /* 1789 * mask must have at least one bit set here since we 1790 * didn't accept a 0-length rates array nor allowed 1791 * entries in the array that didn't exist 1792 */ 1793 1794 return 0; 1795 } 1796 1797 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 1798 { 1799 enum nl80211_band band; 1800 unsigned int n_channels = 0; 1801 1802 for (band = 0; band < NUM_NL80211_BANDS; band++) 1803 if (wiphy->bands[band]) 1804 n_channels += wiphy->bands[band]->n_channels; 1805 1806 return n_channels; 1807 } 1808 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 1809 1810 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 1811 struct station_info *sinfo) 1812 { 1813 struct cfg80211_registered_device *rdev; 1814 struct wireless_dev *wdev; 1815 1816 wdev = dev->ieee80211_ptr; 1817 if (!wdev) 1818 return -EOPNOTSUPP; 1819 1820 rdev = wiphy_to_rdev(wdev->wiphy); 1821 if (!rdev->ops->get_station) 1822 return -EOPNOTSUPP; 1823 1824 return rdev_get_station(rdev, dev, mac_addr, sinfo); 1825 } 1826 EXPORT_SYMBOL(cfg80211_get_station); 1827 1828 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 1829 { 1830 int i; 1831 1832 if (!f) 1833 return; 1834 1835 kfree(f->serv_spec_info); 1836 kfree(f->srf_bf); 1837 kfree(f->srf_macs); 1838 for (i = 0; i < f->num_rx_filters; i++) 1839 kfree(f->rx_filters[i].filter); 1840 1841 for (i = 0; i < f->num_tx_filters; i++) 1842 kfree(f->tx_filters[i].filter); 1843 1844 kfree(f->rx_filters); 1845 kfree(f->tx_filters); 1846 kfree(f); 1847 } 1848 EXPORT_SYMBOL(cfg80211_free_nan_func); 1849 1850 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, 1851 u32 center_freq_khz, u32 bw_khz) 1852 { 1853 u32 start_freq_khz, end_freq_khz; 1854 1855 start_freq_khz = center_freq_khz - (bw_khz / 2); 1856 end_freq_khz = center_freq_khz + (bw_khz / 2); 1857 1858 if (start_freq_khz >= freq_range->start_freq_khz && 1859 end_freq_khz <= freq_range->end_freq_khz) 1860 return true; 1861 1862 return false; 1863 } 1864 1865 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 1866 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 1867 const unsigned char rfc1042_header[] __aligned(2) = 1868 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 1869 EXPORT_SYMBOL(rfc1042_header); 1870 1871 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 1872 const unsigned char bridge_tunnel_header[] __aligned(2) = 1873 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 1874 EXPORT_SYMBOL(bridge_tunnel_header); 1875