xref: /openbmc/linux/net/wireless/util.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  */
8 #include <linux/export.h>
9 #include <linux/bitops.h>
10 #include <linux/etherdevice.h>
11 #include <linux/slab.h>
12 #include <net/cfg80211.h>
13 #include <net/ip.h>
14 #include <net/dsfield.h>
15 #include <linux/if_vlan.h>
16 #include <linux/mpls.h>
17 #include <linux/gcd.h>
18 #include "core.h"
19 #include "rdev-ops.h"
20 
21 
22 struct ieee80211_rate *
23 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
24 			    u32 basic_rates, int bitrate)
25 {
26 	struct ieee80211_rate *result = &sband->bitrates[0];
27 	int i;
28 
29 	for (i = 0; i < sband->n_bitrates; i++) {
30 		if (!(basic_rates & BIT(i)))
31 			continue;
32 		if (sband->bitrates[i].bitrate > bitrate)
33 			continue;
34 		result = &sband->bitrates[i];
35 	}
36 
37 	return result;
38 }
39 EXPORT_SYMBOL(ieee80211_get_response_rate);
40 
41 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
42 			      enum nl80211_bss_scan_width scan_width)
43 {
44 	struct ieee80211_rate *bitrates;
45 	u32 mandatory_rates = 0;
46 	enum ieee80211_rate_flags mandatory_flag;
47 	int i;
48 
49 	if (WARN_ON(!sband))
50 		return 1;
51 
52 	if (sband->band == NL80211_BAND_2GHZ) {
53 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
54 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
55 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
56 		else
57 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
58 	} else {
59 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
60 	}
61 
62 	bitrates = sband->bitrates;
63 	for (i = 0; i < sband->n_bitrates; i++)
64 		if (bitrates[i].flags & mandatory_flag)
65 			mandatory_rates |= BIT(i);
66 	return mandatory_rates;
67 }
68 EXPORT_SYMBOL(ieee80211_mandatory_rates);
69 
70 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
71 {
72 	/* see 802.11 17.3.8.3.2 and Annex J
73 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
74 	if (chan <= 0)
75 		return 0; /* not supported */
76 	switch (band) {
77 	case NL80211_BAND_2GHZ:
78 		if (chan == 14)
79 			return 2484;
80 		else if (chan < 14)
81 			return 2407 + chan * 5;
82 		break;
83 	case NL80211_BAND_5GHZ:
84 		if (chan >= 182 && chan <= 196)
85 			return 4000 + chan * 5;
86 		else
87 			return 5000 + chan * 5;
88 		break;
89 	case NL80211_BAND_60GHZ:
90 		if (chan < 5)
91 			return 56160 + chan * 2160;
92 		break;
93 	default:
94 		;
95 	}
96 	return 0; /* not supported */
97 }
98 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
99 
100 int ieee80211_frequency_to_channel(int freq)
101 {
102 	/* see 802.11 17.3.8.3.2 and Annex J */
103 	if (freq == 2484)
104 		return 14;
105 	else if (freq < 2484)
106 		return (freq - 2407) / 5;
107 	else if (freq >= 4910 && freq <= 4980)
108 		return (freq - 4000) / 5;
109 	else if (freq <= 45000) /* DMG band lower limit */
110 		return (freq - 5000) / 5;
111 	else if (freq >= 58320 && freq <= 64800)
112 		return (freq - 56160) / 2160;
113 	else
114 		return 0;
115 }
116 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
117 
118 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
119 {
120 	enum nl80211_band band;
121 	struct ieee80211_supported_band *sband;
122 	int i;
123 
124 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
125 		sband = wiphy->bands[band];
126 
127 		if (!sband)
128 			continue;
129 
130 		for (i = 0; i < sband->n_channels; i++) {
131 			if (sband->channels[i].center_freq == freq)
132 				return &sband->channels[i];
133 		}
134 	}
135 
136 	return NULL;
137 }
138 EXPORT_SYMBOL(ieee80211_get_channel);
139 
140 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
141 {
142 	int i, want;
143 
144 	switch (sband->band) {
145 	case NL80211_BAND_5GHZ:
146 		want = 3;
147 		for (i = 0; i < sband->n_bitrates; i++) {
148 			if (sband->bitrates[i].bitrate == 60 ||
149 			    sband->bitrates[i].bitrate == 120 ||
150 			    sband->bitrates[i].bitrate == 240) {
151 				sband->bitrates[i].flags |=
152 					IEEE80211_RATE_MANDATORY_A;
153 				want--;
154 			}
155 		}
156 		WARN_ON(want);
157 		break;
158 	case NL80211_BAND_2GHZ:
159 		want = 7;
160 		for (i = 0; i < sband->n_bitrates; i++) {
161 			if (sband->bitrates[i].bitrate == 10) {
162 				sband->bitrates[i].flags |=
163 					IEEE80211_RATE_MANDATORY_B |
164 					IEEE80211_RATE_MANDATORY_G;
165 				want--;
166 			}
167 
168 			if (sband->bitrates[i].bitrate == 20 ||
169 			    sband->bitrates[i].bitrate == 55 ||
170 			    sband->bitrates[i].bitrate == 110 ||
171 			    sband->bitrates[i].bitrate == 60 ||
172 			    sband->bitrates[i].bitrate == 120 ||
173 			    sband->bitrates[i].bitrate == 240) {
174 				sband->bitrates[i].flags |=
175 					IEEE80211_RATE_MANDATORY_G;
176 				want--;
177 			}
178 
179 			if (sband->bitrates[i].bitrate != 10 &&
180 			    sband->bitrates[i].bitrate != 20 &&
181 			    sband->bitrates[i].bitrate != 55 &&
182 			    sband->bitrates[i].bitrate != 110)
183 				sband->bitrates[i].flags |=
184 					IEEE80211_RATE_ERP_G;
185 		}
186 		WARN_ON(want != 0 && want != 3 && want != 6);
187 		break;
188 	case NL80211_BAND_60GHZ:
189 		/* check for mandatory HT MCS 1..4 */
190 		WARN_ON(!sband->ht_cap.ht_supported);
191 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
192 		break;
193 	case NUM_NL80211_BANDS:
194 	default:
195 		WARN_ON(1);
196 		break;
197 	}
198 }
199 
200 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
201 {
202 	enum nl80211_band band;
203 
204 	for (band = 0; band < NUM_NL80211_BANDS; band++)
205 		if (wiphy->bands[band])
206 			set_mandatory_flags_band(wiphy->bands[band]);
207 }
208 
209 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
210 {
211 	int i;
212 	for (i = 0; i < wiphy->n_cipher_suites; i++)
213 		if (cipher == wiphy->cipher_suites[i])
214 			return true;
215 	return false;
216 }
217 
218 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
219 				   struct key_params *params, int key_idx,
220 				   bool pairwise, const u8 *mac_addr)
221 {
222 	if (key_idx < 0 || key_idx > 5)
223 		return -EINVAL;
224 
225 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
226 		return -EINVAL;
227 
228 	if (pairwise && !mac_addr)
229 		return -EINVAL;
230 
231 	switch (params->cipher) {
232 	case WLAN_CIPHER_SUITE_TKIP:
233 	case WLAN_CIPHER_SUITE_CCMP:
234 	case WLAN_CIPHER_SUITE_CCMP_256:
235 	case WLAN_CIPHER_SUITE_GCMP:
236 	case WLAN_CIPHER_SUITE_GCMP_256:
237 		/* Disallow pairwise keys with non-zero index unless it's WEP
238 		 * or a vendor specific cipher (because current deployments use
239 		 * pairwise WEP keys with non-zero indices and for vendor
240 		 * specific ciphers this should be validated in the driver or
241 		 * hardware level - but 802.11i clearly specifies to use zero)
242 		 */
243 		if (pairwise && key_idx)
244 			return -EINVAL;
245 		break;
246 	case WLAN_CIPHER_SUITE_AES_CMAC:
247 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
248 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
249 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
250 		/* Disallow BIP (group-only) cipher as pairwise cipher */
251 		if (pairwise)
252 			return -EINVAL;
253 		if (key_idx < 4)
254 			return -EINVAL;
255 		break;
256 	case WLAN_CIPHER_SUITE_WEP40:
257 	case WLAN_CIPHER_SUITE_WEP104:
258 		if (key_idx > 3)
259 			return -EINVAL;
260 	default:
261 		break;
262 	}
263 
264 	switch (params->cipher) {
265 	case WLAN_CIPHER_SUITE_WEP40:
266 		if (params->key_len != WLAN_KEY_LEN_WEP40)
267 			return -EINVAL;
268 		break;
269 	case WLAN_CIPHER_SUITE_TKIP:
270 		if (params->key_len != WLAN_KEY_LEN_TKIP)
271 			return -EINVAL;
272 		break;
273 	case WLAN_CIPHER_SUITE_CCMP:
274 		if (params->key_len != WLAN_KEY_LEN_CCMP)
275 			return -EINVAL;
276 		break;
277 	case WLAN_CIPHER_SUITE_CCMP_256:
278 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
279 			return -EINVAL;
280 		break;
281 	case WLAN_CIPHER_SUITE_GCMP:
282 		if (params->key_len != WLAN_KEY_LEN_GCMP)
283 			return -EINVAL;
284 		break;
285 	case WLAN_CIPHER_SUITE_GCMP_256:
286 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
287 			return -EINVAL;
288 		break;
289 	case WLAN_CIPHER_SUITE_WEP104:
290 		if (params->key_len != WLAN_KEY_LEN_WEP104)
291 			return -EINVAL;
292 		break;
293 	case WLAN_CIPHER_SUITE_AES_CMAC:
294 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
295 			return -EINVAL;
296 		break;
297 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
298 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
299 			return -EINVAL;
300 		break;
301 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
302 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
303 			return -EINVAL;
304 		break;
305 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
306 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
307 			return -EINVAL;
308 		break;
309 	default:
310 		/*
311 		 * We don't know anything about this algorithm,
312 		 * allow using it -- but the driver must check
313 		 * all parameters! We still check below whether
314 		 * or not the driver supports this algorithm,
315 		 * of course.
316 		 */
317 		break;
318 	}
319 
320 	if (params->seq) {
321 		switch (params->cipher) {
322 		case WLAN_CIPHER_SUITE_WEP40:
323 		case WLAN_CIPHER_SUITE_WEP104:
324 			/* These ciphers do not use key sequence */
325 			return -EINVAL;
326 		case WLAN_CIPHER_SUITE_TKIP:
327 		case WLAN_CIPHER_SUITE_CCMP:
328 		case WLAN_CIPHER_SUITE_CCMP_256:
329 		case WLAN_CIPHER_SUITE_GCMP:
330 		case WLAN_CIPHER_SUITE_GCMP_256:
331 		case WLAN_CIPHER_SUITE_AES_CMAC:
332 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
333 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
334 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
335 			if (params->seq_len != 6)
336 				return -EINVAL;
337 			break;
338 		}
339 	}
340 
341 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
342 		return -EINVAL;
343 
344 	return 0;
345 }
346 
347 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
348 {
349 	unsigned int hdrlen = 24;
350 
351 	if (ieee80211_is_data(fc)) {
352 		if (ieee80211_has_a4(fc))
353 			hdrlen = 30;
354 		if (ieee80211_is_data_qos(fc)) {
355 			hdrlen += IEEE80211_QOS_CTL_LEN;
356 			if (ieee80211_has_order(fc))
357 				hdrlen += IEEE80211_HT_CTL_LEN;
358 		}
359 		goto out;
360 	}
361 
362 	if (ieee80211_is_mgmt(fc)) {
363 		if (ieee80211_has_order(fc))
364 			hdrlen += IEEE80211_HT_CTL_LEN;
365 		goto out;
366 	}
367 
368 	if (ieee80211_is_ctl(fc)) {
369 		/*
370 		 * ACK and CTS are 10 bytes, all others 16. To see how
371 		 * to get this condition consider
372 		 *   subtype mask:   0b0000000011110000 (0x00F0)
373 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
374 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
375 		 *   bits that matter:         ^^^      (0x00E0)
376 		 *   value of those: 0b0000000011000000 (0x00C0)
377 		 */
378 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
379 			hdrlen = 10;
380 		else
381 			hdrlen = 16;
382 	}
383 out:
384 	return hdrlen;
385 }
386 EXPORT_SYMBOL(ieee80211_hdrlen);
387 
388 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
389 {
390 	const struct ieee80211_hdr *hdr =
391 			(const struct ieee80211_hdr *)skb->data;
392 	unsigned int hdrlen;
393 
394 	if (unlikely(skb->len < 10))
395 		return 0;
396 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
397 	if (unlikely(hdrlen > skb->len))
398 		return 0;
399 	return hdrlen;
400 }
401 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
402 
403 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
404 {
405 	int ae = flags & MESH_FLAGS_AE;
406 	/* 802.11-2012, 8.2.4.7.3 */
407 	switch (ae) {
408 	default:
409 	case 0:
410 		return 6;
411 	case MESH_FLAGS_AE_A4:
412 		return 12;
413 	case MESH_FLAGS_AE_A5_A6:
414 		return 18;
415 	}
416 }
417 
418 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
419 {
420 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
421 }
422 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
423 
424 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
425 				  const u8 *addr, enum nl80211_iftype iftype)
426 {
427 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
428 	struct {
429 		u8 hdr[ETH_ALEN] __aligned(2);
430 		__be16 proto;
431 	} payload;
432 	struct ethhdr tmp;
433 	u16 hdrlen;
434 	u8 mesh_flags = 0;
435 
436 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
437 		return -1;
438 
439 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
440 	if (skb->len < hdrlen + 8)
441 		return -1;
442 
443 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
444 	 * header
445 	 * IEEE 802.11 address fields:
446 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
447 	 *   0     0   DA    SA    BSSID n/a
448 	 *   0     1   DA    BSSID SA    n/a
449 	 *   1     0   BSSID SA    DA    n/a
450 	 *   1     1   RA    TA    DA    SA
451 	 */
452 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
453 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
454 
455 	if (iftype == NL80211_IFTYPE_MESH_POINT)
456 		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
457 
458 	mesh_flags &= MESH_FLAGS_AE;
459 
460 	switch (hdr->frame_control &
461 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
462 	case cpu_to_le16(IEEE80211_FCTL_TODS):
463 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
464 			     iftype != NL80211_IFTYPE_AP_VLAN &&
465 			     iftype != NL80211_IFTYPE_P2P_GO))
466 			return -1;
467 		break;
468 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
469 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
470 			     iftype != NL80211_IFTYPE_MESH_POINT &&
471 			     iftype != NL80211_IFTYPE_AP_VLAN &&
472 			     iftype != NL80211_IFTYPE_STATION))
473 			return -1;
474 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
475 			if (mesh_flags == MESH_FLAGS_AE_A4)
476 				return -1;
477 			if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
478 				skb_copy_bits(skb, hdrlen +
479 					offsetof(struct ieee80211s_hdr, eaddr1),
480 					tmp.h_dest, 2 * ETH_ALEN);
481 			}
482 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
483 		}
484 		break;
485 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
486 		if ((iftype != NL80211_IFTYPE_STATION &&
487 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
488 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
489 		    (is_multicast_ether_addr(tmp.h_dest) &&
490 		     ether_addr_equal(tmp.h_source, addr)))
491 			return -1;
492 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
493 			if (mesh_flags == MESH_FLAGS_AE_A5_A6)
494 				return -1;
495 			if (mesh_flags == MESH_FLAGS_AE_A4)
496 				skb_copy_bits(skb, hdrlen +
497 					offsetof(struct ieee80211s_hdr, eaddr1),
498 					tmp.h_source, ETH_ALEN);
499 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
500 		}
501 		break;
502 	case cpu_to_le16(0):
503 		if (iftype != NL80211_IFTYPE_ADHOC &&
504 		    iftype != NL80211_IFTYPE_STATION &&
505 		    iftype != NL80211_IFTYPE_OCB)
506 				return -1;
507 		break;
508 	}
509 
510 	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
511 	tmp.h_proto = payload.proto;
512 
513 	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
514 		    tmp.h_proto != htons(ETH_P_AARP) &&
515 		    tmp.h_proto != htons(ETH_P_IPX)) ||
516 		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
517 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
518 		 * replace EtherType */
519 		hdrlen += ETH_ALEN + 2;
520 	else
521 		tmp.h_proto = htons(skb->len - hdrlen);
522 
523 	pskb_pull(skb, hdrlen);
524 
525 	if (!ehdr)
526 		ehdr = skb_push(skb, sizeof(struct ethhdr));
527 	memcpy(ehdr, &tmp, sizeof(tmp));
528 
529 	return 0;
530 }
531 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
532 
533 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
534 			     enum nl80211_iftype iftype,
535 			     const u8 *bssid, bool qos)
536 {
537 	struct ieee80211_hdr hdr;
538 	u16 hdrlen, ethertype;
539 	__le16 fc;
540 	const u8 *encaps_data;
541 	int encaps_len, skip_header_bytes;
542 	int nh_pos, h_pos;
543 	int head_need;
544 
545 	if (unlikely(skb->len < ETH_HLEN))
546 		return -EINVAL;
547 
548 	nh_pos = skb_network_header(skb) - skb->data;
549 	h_pos = skb_transport_header(skb) - skb->data;
550 
551 	/* convert Ethernet header to proper 802.11 header (based on
552 	 * operation mode) */
553 	ethertype = (skb->data[12] << 8) | skb->data[13];
554 	fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
555 
556 	switch (iftype) {
557 	case NL80211_IFTYPE_AP:
558 	case NL80211_IFTYPE_AP_VLAN:
559 	case NL80211_IFTYPE_P2P_GO:
560 		fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
561 		/* DA BSSID SA */
562 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
563 		memcpy(hdr.addr2, addr, ETH_ALEN);
564 		memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
565 		hdrlen = 24;
566 		break;
567 	case NL80211_IFTYPE_STATION:
568 	case NL80211_IFTYPE_P2P_CLIENT:
569 		fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
570 		/* BSSID SA DA */
571 		memcpy(hdr.addr1, bssid, ETH_ALEN);
572 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
573 		memcpy(hdr.addr3, skb->data, ETH_ALEN);
574 		hdrlen = 24;
575 		break;
576 	case NL80211_IFTYPE_OCB:
577 	case NL80211_IFTYPE_ADHOC:
578 		/* DA SA BSSID */
579 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
580 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
581 		memcpy(hdr.addr3, bssid, ETH_ALEN);
582 		hdrlen = 24;
583 		break;
584 	default:
585 		return -EOPNOTSUPP;
586 	}
587 
588 	if (qos) {
589 		fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
590 		hdrlen += 2;
591 	}
592 
593 	hdr.frame_control = fc;
594 	hdr.duration_id = 0;
595 	hdr.seq_ctrl = 0;
596 
597 	skip_header_bytes = ETH_HLEN;
598 	if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
599 		encaps_data = bridge_tunnel_header;
600 		encaps_len = sizeof(bridge_tunnel_header);
601 		skip_header_bytes -= 2;
602 	} else if (ethertype >= ETH_P_802_3_MIN) {
603 		encaps_data = rfc1042_header;
604 		encaps_len = sizeof(rfc1042_header);
605 		skip_header_bytes -= 2;
606 	} else {
607 		encaps_data = NULL;
608 		encaps_len = 0;
609 	}
610 
611 	skb_pull(skb, skip_header_bytes);
612 	nh_pos -= skip_header_bytes;
613 	h_pos -= skip_header_bytes;
614 
615 	head_need = hdrlen + encaps_len - skb_headroom(skb);
616 
617 	if (head_need > 0 || skb_cloned(skb)) {
618 		head_need = max(head_need, 0);
619 		if (head_need)
620 			skb_orphan(skb);
621 
622 		if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
623 			return -ENOMEM;
624 	}
625 
626 	if (encaps_data) {
627 		memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
628 		nh_pos += encaps_len;
629 		h_pos += encaps_len;
630 	}
631 
632 	memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
633 
634 	nh_pos += hdrlen;
635 	h_pos += hdrlen;
636 
637 	/* Update skb pointers to various headers since this modified frame
638 	 * is going to go through Linux networking code that may potentially
639 	 * need things like pointer to IP header. */
640 	skb_reset_mac_header(skb);
641 	skb_set_network_header(skb, nh_pos);
642 	skb_set_transport_header(skb, h_pos);
643 
644 	return 0;
645 }
646 EXPORT_SYMBOL(ieee80211_data_from_8023);
647 
648 static void
649 __frame_add_frag(struct sk_buff *skb, struct page *page,
650 		 void *ptr, int len, int size)
651 {
652 	struct skb_shared_info *sh = skb_shinfo(skb);
653 	int page_offset;
654 
655 	page_ref_inc(page);
656 	page_offset = ptr - page_address(page);
657 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
658 }
659 
660 static void
661 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
662 			    int offset, int len)
663 {
664 	struct skb_shared_info *sh = skb_shinfo(skb);
665 	const skb_frag_t *frag = &sh->frags[0];
666 	struct page *frag_page;
667 	void *frag_ptr;
668 	int frag_len, frag_size;
669 	int head_size = skb->len - skb->data_len;
670 	int cur_len;
671 
672 	frag_page = virt_to_head_page(skb->head);
673 	frag_ptr = skb->data;
674 	frag_size = head_size;
675 
676 	while (offset >= frag_size) {
677 		offset -= frag_size;
678 		frag_page = skb_frag_page(frag);
679 		frag_ptr = skb_frag_address(frag);
680 		frag_size = skb_frag_size(frag);
681 		frag++;
682 	}
683 
684 	frag_ptr += offset;
685 	frag_len = frag_size - offset;
686 
687 	cur_len = min(len, frag_len);
688 
689 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
690 	len -= cur_len;
691 
692 	while (len > 0) {
693 		frag_len = skb_frag_size(frag);
694 		cur_len = min(len, frag_len);
695 		__frame_add_frag(frame, skb_frag_page(frag),
696 				 skb_frag_address(frag), cur_len, frag_len);
697 		len -= cur_len;
698 		frag++;
699 	}
700 }
701 
702 static struct sk_buff *
703 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
704 		       int offset, int len, bool reuse_frag)
705 {
706 	struct sk_buff *frame;
707 	int cur_len = len;
708 
709 	if (skb->len - offset < len)
710 		return NULL;
711 
712 	/*
713 	 * When reusing framents, copy some data to the head to simplify
714 	 * ethernet header handling and speed up protocol header processing
715 	 * in the stack later.
716 	 */
717 	if (reuse_frag)
718 		cur_len = min_t(int, len, 32);
719 
720 	/*
721 	 * Allocate and reserve two bytes more for payload
722 	 * alignment since sizeof(struct ethhdr) is 14.
723 	 */
724 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
725 	if (!frame)
726 		return NULL;
727 
728 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
729 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
730 
731 	len -= cur_len;
732 	if (!len)
733 		return frame;
734 
735 	offset += cur_len;
736 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
737 
738 	return frame;
739 }
740 
741 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
742 			      const u8 *addr, enum nl80211_iftype iftype,
743 			      const unsigned int extra_headroom,
744 			      const u8 *check_da, const u8 *check_sa)
745 {
746 	unsigned int hlen = ALIGN(extra_headroom, 4);
747 	struct sk_buff *frame = NULL;
748 	u16 ethertype;
749 	u8 *payload;
750 	int offset = 0, remaining;
751 	struct ethhdr eth;
752 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
753 	bool reuse_skb = false;
754 	bool last = false;
755 
756 	while (!last) {
757 		unsigned int subframe_len;
758 		int len;
759 		u8 padding;
760 
761 		skb_copy_bits(skb, offset, &eth, sizeof(eth));
762 		len = ntohs(eth.h_proto);
763 		subframe_len = sizeof(struct ethhdr) + len;
764 		padding = (4 - subframe_len) & 0x3;
765 
766 		/* the last MSDU has no padding */
767 		remaining = skb->len - offset;
768 		if (subframe_len > remaining)
769 			goto purge;
770 
771 		offset += sizeof(struct ethhdr);
772 		last = remaining <= subframe_len + padding;
773 
774 		/* FIXME: should we really accept multicast DA? */
775 		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
776 		     !ether_addr_equal(check_da, eth.h_dest)) ||
777 		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
778 			offset += len + padding;
779 			continue;
780 		}
781 
782 		/* reuse skb for the last subframe */
783 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
784 			skb_pull(skb, offset);
785 			frame = skb;
786 			reuse_skb = true;
787 		} else {
788 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
789 						       reuse_frag);
790 			if (!frame)
791 				goto purge;
792 
793 			offset += len + padding;
794 		}
795 
796 		skb_reset_network_header(frame);
797 		frame->dev = skb->dev;
798 		frame->priority = skb->priority;
799 
800 		payload = frame->data;
801 		ethertype = (payload[6] << 8) | payload[7];
802 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
803 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
804 			   ether_addr_equal(payload, bridge_tunnel_header))) {
805 			eth.h_proto = htons(ethertype);
806 			skb_pull(frame, ETH_ALEN + 2);
807 		}
808 
809 		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
810 		__skb_queue_tail(list, frame);
811 	}
812 
813 	if (!reuse_skb)
814 		dev_kfree_skb(skb);
815 
816 	return;
817 
818  purge:
819 	__skb_queue_purge(list);
820 	dev_kfree_skb(skb);
821 }
822 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
823 
824 /* Given a data frame determine the 802.1p/1d tag to use. */
825 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
826 				    struct cfg80211_qos_map *qos_map)
827 {
828 	unsigned int dscp;
829 	unsigned char vlan_priority;
830 
831 	/* skb->priority values from 256->263 are magic values to
832 	 * directly indicate a specific 802.1d priority.  This is used
833 	 * to allow 802.1d priority to be passed directly in from VLAN
834 	 * tags, etc.
835 	 */
836 	if (skb->priority >= 256 && skb->priority <= 263)
837 		return skb->priority - 256;
838 
839 	if (skb_vlan_tag_present(skb)) {
840 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
841 			>> VLAN_PRIO_SHIFT;
842 		if (vlan_priority > 0)
843 			return vlan_priority;
844 	}
845 
846 	switch (skb->protocol) {
847 	case htons(ETH_P_IP):
848 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
849 		break;
850 	case htons(ETH_P_IPV6):
851 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
852 		break;
853 	case htons(ETH_P_MPLS_UC):
854 	case htons(ETH_P_MPLS_MC): {
855 		struct mpls_label mpls_tmp, *mpls;
856 
857 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
858 					  sizeof(*mpls), &mpls_tmp);
859 		if (!mpls)
860 			return 0;
861 
862 		return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
863 			>> MPLS_LS_TC_SHIFT;
864 	}
865 	case htons(ETH_P_80221):
866 		/* 802.21 is always network control traffic */
867 		return 7;
868 	default:
869 		return 0;
870 	}
871 
872 	if (qos_map) {
873 		unsigned int i, tmp_dscp = dscp >> 2;
874 
875 		for (i = 0; i < qos_map->num_des; i++) {
876 			if (tmp_dscp == qos_map->dscp_exception[i].dscp)
877 				return qos_map->dscp_exception[i].up;
878 		}
879 
880 		for (i = 0; i < 8; i++) {
881 			if (tmp_dscp >= qos_map->up[i].low &&
882 			    tmp_dscp <= qos_map->up[i].high)
883 				return i;
884 		}
885 	}
886 
887 	return dscp >> 5;
888 }
889 EXPORT_SYMBOL(cfg80211_classify8021d);
890 
891 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
892 {
893 	const struct cfg80211_bss_ies *ies;
894 
895 	ies = rcu_dereference(bss->ies);
896 	if (!ies)
897 		return NULL;
898 
899 	return cfg80211_find_ie(ie, ies->data, ies->len);
900 }
901 EXPORT_SYMBOL(ieee80211_bss_get_ie);
902 
903 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
904 {
905 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
906 	struct net_device *dev = wdev->netdev;
907 	int i;
908 
909 	if (!wdev->connect_keys)
910 		return;
911 
912 	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
913 		if (!wdev->connect_keys->params[i].cipher)
914 			continue;
915 		if (rdev_add_key(rdev, dev, i, false, NULL,
916 				 &wdev->connect_keys->params[i])) {
917 			netdev_err(dev, "failed to set key %d\n", i);
918 			continue;
919 		}
920 		if (wdev->connect_keys->def == i &&
921 		    rdev_set_default_key(rdev, dev, i, true, true)) {
922 			netdev_err(dev, "failed to set defkey %d\n", i);
923 			continue;
924 		}
925 	}
926 
927 	kzfree(wdev->connect_keys);
928 	wdev->connect_keys = NULL;
929 }
930 
931 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
932 {
933 	struct cfg80211_event *ev;
934 	unsigned long flags;
935 
936 	spin_lock_irqsave(&wdev->event_lock, flags);
937 	while (!list_empty(&wdev->event_list)) {
938 		ev = list_first_entry(&wdev->event_list,
939 				      struct cfg80211_event, list);
940 		list_del(&ev->list);
941 		spin_unlock_irqrestore(&wdev->event_lock, flags);
942 
943 		wdev_lock(wdev);
944 		switch (ev->type) {
945 		case EVENT_CONNECT_RESULT:
946 			__cfg80211_connect_result(
947 				wdev->netdev,
948 				&ev->cr,
949 				ev->cr.status == WLAN_STATUS_SUCCESS);
950 			break;
951 		case EVENT_ROAMED:
952 			__cfg80211_roamed(wdev, &ev->rm);
953 			break;
954 		case EVENT_DISCONNECTED:
955 			__cfg80211_disconnected(wdev->netdev,
956 						ev->dc.ie, ev->dc.ie_len,
957 						ev->dc.reason,
958 						!ev->dc.locally_generated);
959 			break;
960 		case EVENT_IBSS_JOINED:
961 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
962 					       ev->ij.channel);
963 			break;
964 		case EVENT_STOPPED:
965 			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
966 			break;
967 		}
968 		wdev_unlock(wdev);
969 
970 		kfree(ev);
971 
972 		spin_lock_irqsave(&wdev->event_lock, flags);
973 	}
974 	spin_unlock_irqrestore(&wdev->event_lock, flags);
975 }
976 
977 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
978 {
979 	struct wireless_dev *wdev;
980 
981 	ASSERT_RTNL();
982 
983 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
984 		cfg80211_process_wdev_events(wdev);
985 }
986 
987 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
988 			  struct net_device *dev, enum nl80211_iftype ntype,
989 			  struct vif_params *params)
990 {
991 	int err;
992 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
993 
994 	ASSERT_RTNL();
995 
996 	/* don't support changing VLANs, you just re-create them */
997 	if (otype == NL80211_IFTYPE_AP_VLAN)
998 		return -EOPNOTSUPP;
999 
1000 	/* cannot change into P2P device or NAN */
1001 	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1002 	    ntype == NL80211_IFTYPE_NAN)
1003 		return -EOPNOTSUPP;
1004 
1005 	if (!rdev->ops->change_virtual_intf ||
1006 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1007 		return -EOPNOTSUPP;
1008 
1009 	/* if it's part of a bridge, reject changing type to station/ibss */
1010 	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
1011 	    (ntype == NL80211_IFTYPE_ADHOC ||
1012 	     ntype == NL80211_IFTYPE_STATION ||
1013 	     ntype == NL80211_IFTYPE_P2P_CLIENT))
1014 		return -EBUSY;
1015 
1016 	if (ntype != otype) {
1017 		dev->ieee80211_ptr->use_4addr = false;
1018 		dev->ieee80211_ptr->mesh_id_up_len = 0;
1019 		wdev_lock(dev->ieee80211_ptr);
1020 		rdev_set_qos_map(rdev, dev, NULL);
1021 		wdev_unlock(dev->ieee80211_ptr);
1022 
1023 		switch (otype) {
1024 		case NL80211_IFTYPE_AP:
1025 			cfg80211_stop_ap(rdev, dev, true);
1026 			break;
1027 		case NL80211_IFTYPE_ADHOC:
1028 			cfg80211_leave_ibss(rdev, dev, false);
1029 			break;
1030 		case NL80211_IFTYPE_STATION:
1031 		case NL80211_IFTYPE_P2P_CLIENT:
1032 			wdev_lock(dev->ieee80211_ptr);
1033 			cfg80211_disconnect(rdev, dev,
1034 					    WLAN_REASON_DEAUTH_LEAVING, true);
1035 			wdev_unlock(dev->ieee80211_ptr);
1036 			break;
1037 		case NL80211_IFTYPE_MESH_POINT:
1038 			/* mesh should be handled? */
1039 			break;
1040 		default:
1041 			break;
1042 		}
1043 
1044 		cfg80211_process_rdev_events(rdev);
1045 	}
1046 
1047 	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1048 
1049 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1050 
1051 	if (!err && params && params->use_4addr != -1)
1052 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1053 
1054 	if (!err) {
1055 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1056 		switch (ntype) {
1057 		case NL80211_IFTYPE_STATION:
1058 			if (dev->ieee80211_ptr->use_4addr)
1059 				break;
1060 			/* fall through */
1061 		case NL80211_IFTYPE_OCB:
1062 		case NL80211_IFTYPE_P2P_CLIENT:
1063 		case NL80211_IFTYPE_ADHOC:
1064 			dev->priv_flags |= IFF_DONT_BRIDGE;
1065 			break;
1066 		case NL80211_IFTYPE_P2P_GO:
1067 		case NL80211_IFTYPE_AP:
1068 		case NL80211_IFTYPE_AP_VLAN:
1069 		case NL80211_IFTYPE_WDS:
1070 		case NL80211_IFTYPE_MESH_POINT:
1071 			/* bridging OK */
1072 			break;
1073 		case NL80211_IFTYPE_MONITOR:
1074 			/* monitor can't bridge anyway */
1075 			break;
1076 		case NL80211_IFTYPE_UNSPECIFIED:
1077 		case NUM_NL80211_IFTYPES:
1078 			/* not happening */
1079 			break;
1080 		case NL80211_IFTYPE_P2P_DEVICE:
1081 		case NL80211_IFTYPE_NAN:
1082 			WARN_ON(1);
1083 			break;
1084 		}
1085 	}
1086 
1087 	if (!err && ntype != otype && netif_running(dev)) {
1088 		cfg80211_update_iface_num(rdev, ntype, 1);
1089 		cfg80211_update_iface_num(rdev, otype, -1);
1090 	}
1091 
1092 	return err;
1093 }
1094 
1095 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1096 {
1097 	int modulation, streams, bitrate;
1098 
1099 	/* the formula below does only work for MCS values smaller than 32 */
1100 	if (WARN_ON_ONCE(rate->mcs >= 32))
1101 		return 0;
1102 
1103 	modulation = rate->mcs & 7;
1104 	streams = (rate->mcs >> 3) + 1;
1105 
1106 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1107 
1108 	if (modulation < 4)
1109 		bitrate *= (modulation + 1);
1110 	else if (modulation == 4)
1111 		bitrate *= (modulation + 2);
1112 	else
1113 		bitrate *= (modulation + 3);
1114 
1115 	bitrate *= streams;
1116 
1117 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1118 		bitrate = (bitrate / 9) * 10;
1119 
1120 	/* do NOT round down here */
1121 	return (bitrate + 50000) / 100000;
1122 }
1123 
1124 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1125 {
1126 	static const u32 __mcs2bitrate[] = {
1127 		/* control PHY */
1128 		[0] =   275,
1129 		/* SC PHY */
1130 		[1] =  3850,
1131 		[2] =  7700,
1132 		[3] =  9625,
1133 		[4] = 11550,
1134 		[5] = 12512, /* 1251.25 mbps */
1135 		[6] = 15400,
1136 		[7] = 19250,
1137 		[8] = 23100,
1138 		[9] = 25025,
1139 		[10] = 30800,
1140 		[11] = 38500,
1141 		[12] = 46200,
1142 		/* OFDM PHY */
1143 		[13] =  6930,
1144 		[14] =  8662, /* 866.25 mbps */
1145 		[15] = 13860,
1146 		[16] = 17325,
1147 		[17] = 20790,
1148 		[18] = 27720,
1149 		[19] = 34650,
1150 		[20] = 41580,
1151 		[21] = 45045,
1152 		[22] = 51975,
1153 		[23] = 62370,
1154 		[24] = 67568, /* 6756.75 mbps */
1155 		/* LP-SC PHY */
1156 		[25] =  6260,
1157 		[26] =  8340,
1158 		[27] = 11120,
1159 		[28] = 12510,
1160 		[29] = 16680,
1161 		[30] = 22240,
1162 		[31] = 25030,
1163 	};
1164 
1165 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1166 		return 0;
1167 
1168 	return __mcs2bitrate[rate->mcs];
1169 }
1170 
1171 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1172 {
1173 	static const u32 base[4][10] = {
1174 		{   6500000,
1175 		   13000000,
1176 		   19500000,
1177 		   26000000,
1178 		   39000000,
1179 		   52000000,
1180 		   58500000,
1181 		   65000000,
1182 		   78000000,
1183 		/* not in the spec, but some devices use this: */
1184 		   86500000,
1185 		},
1186 		{  13500000,
1187 		   27000000,
1188 		   40500000,
1189 		   54000000,
1190 		   81000000,
1191 		  108000000,
1192 		  121500000,
1193 		  135000000,
1194 		  162000000,
1195 		  180000000,
1196 		},
1197 		{  29300000,
1198 		   58500000,
1199 		   87800000,
1200 		  117000000,
1201 		  175500000,
1202 		  234000000,
1203 		  263300000,
1204 		  292500000,
1205 		  351000000,
1206 		  390000000,
1207 		},
1208 		{  58500000,
1209 		  117000000,
1210 		  175500000,
1211 		  234000000,
1212 		  351000000,
1213 		  468000000,
1214 		  526500000,
1215 		  585000000,
1216 		  702000000,
1217 		  780000000,
1218 		},
1219 	};
1220 	u32 bitrate;
1221 	int idx;
1222 
1223 	if (rate->mcs > 9)
1224 		goto warn;
1225 
1226 	switch (rate->bw) {
1227 	case RATE_INFO_BW_160:
1228 		idx = 3;
1229 		break;
1230 	case RATE_INFO_BW_80:
1231 		idx = 2;
1232 		break;
1233 	case RATE_INFO_BW_40:
1234 		idx = 1;
1235 		break;
1236 	case RATE_INFO_BW_5:
1237 	case RATE_INFO_BW_10:
1238 	default:
1239 		goto warn;
1240 	case RATE_INFO_BW_20:
1241 		idx = 0;
1242 	}
1243 
1244 	bitrate = base[idx][rate->mcs];
1245 	bitrate *= rate->nss;
1246 
1247 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1248 		bitrate = (bitrate / 9) * 10;
1249 
1250 	/* do NOT round down here */
1251 	return (bitrate + 50000) / 100000;
1252  warn:
1253 	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1254 		  rate->bw, rate->mcs, rate->nss);
1255 	return 0;
1256 }
1257 
1258 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1259 {
1260 	if (rate->flags & RATE_INFO_FLAGS_MCS)
1261 		return cfg80211_calculate_bitrate_ht(rate);
1262 	if (rate->flags & RATE_INFO_FLAGS_60G)
1263 		return cfg80211_calculate_bitrate_60g(rate);
1264 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1265 		return cfg80211_calculate_bitrate_vht(rate);
1266 
1267 	return rate->legacy;
1268 }
1269 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1270 
1271 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1272 			  enum ieee80211_p2p_attr_id attr,
1273 			  u8 *buf, unsigned int bufsize)
1274 {
1275 	u8 *out = buf;
1276 	u16 attr_remaining = 0;
1277 	bool desired_attr = false;
1278 	u16 desired_len = 0;
1279 
1280 	while (len > 0) {
1281 		unsigned int iedatalen;
1282 		unsigned int copy;
1283 		const u8 *iedata;
1284 
1285 		if (len < 2)
1286 			return -EILSEQ;
1287 		iedatalen = ies[1];
1288 		if (iedatalen + 2 > len)
1289 			return -EILSEQ;
1290 
1291 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1292 			goto cont;
1293 
1294 		if (iedatalen < 4)
1295 			goto cont;
1296 
1297 		iedata = ies + 2;
1298 
1299 		/* check WFA OUI, P2P subtype */
1300 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1301 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1302 			goto cont;
1303 
1304 		iedatalen -= 4;
1305 		iedata += 4;
1306 
1307 		/* check attribute continuation into this IE */
1308 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1309 		if (copy && desired_attr) {
1310 			desired_len += copy;
1311 			if (out) {
1312 				memcpy(out, iedata, min(bufsize, copy));
1313 				out += min(bufsize, copy);
1314 				bufsize -= min(bufsize, copy);
1315 			}
1316 
1317 
1318 			if (copy == attr_remaining)
1319 				return desired_len;
1320 		}
1321 
1322 		attr_remaining -= copy;
1323 		if (attr_remaining)
1324 			goto cont;
1325 
1326 		iedatalen -= copy;
1327 		iedata += copy;
1328 
1329 		while (iedatalen > 0) {
1330 			u16 attr_len;
1331 
1332 			/* P2P attribute ID & size must fit */
1333 			if (iedatalen < 3)
1334 				return -EILSEQ;
1335 			desired_attr = iedata[0] == attr;
1336 			attr_len = get_unaligned_le16(iedata + 1);
1337 			iedatalen -= 3;
1338 			iedata += 3;
1339 
1340 			copy = min_t(unsigned int, attr_len, iedatalen);
1341 
1342 			if (desired_attr) {
1343 				desired_len += copy;
1344 				if (out) {
1345 					memcpy(out, iedata, min(bufsize, copy));
1346 					out += min(bufsize, copy);
1347 					bufsize -= min(bufsize, copy);
1348 				}
1349 
1350 				if (copy == attr_len)
1351 					return desired_len;
1352 			}
1353 
1354 			iedata += copy;
1355 			iedatalen -= copy;
1356 			attr_remaining = attr_len - copy;
1357 		}
1358 
1359  cont:
1360 		len -= ies[1] + 2;
1361 		ies += ies[1] + 2;
1362 	}
1363 
1364 	if (attr_remaining && desired_attr)
1365 		return -EILSEQ;
1366 
1367 	return -ENOENT;
1368 }
1369 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1370 
1371 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1372 {
1373 	int i;
1374 
1375 	for (i = 0; i < n_ids; i++)
1376 		if (ids[i] == id)
1377 			return true;
1378 	return false;
1379 }
1380 
1381 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1382 {
1383 	/* we assume a validly formed IEs buffer */
1384 	u8 len = ies[pos + 1];
1385 
1386 	pos += 2 + len;
1387 
1388 	/* the IE itself must have 255 bytes for fragments to follow */
1389 	if (len < 255)
1390 		return pos;
1391 
1392 	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1393 		len = ies[pos + 1];
1394 		pos += 2 + len;
1395 	}
1396 
1397 	return pos;
1398 }
1399 
1400 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1401 			      const u8 *ids, int n_ids,
1402 			      const u8 *after_ric, int n_after_ric,
1403 			      size_t offset)
1404 {
1405 	size_t pos = offset;
1406 
1407 	while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
1408 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1409 			pos = skip_ie(ies, ielen, pos);
1410 
1411 			while (pos < ielen &&
1412 			       !ieee80211_id_in_list(after_ric, n_after_ric,
1413 						     ies[pos]))
1414 				pos = skip_ie(ies, ielen, pos);
1415 		} else {
1416 			pos = skip_ie(ies, ielen, pos);
1417 		}
1418 	}
1419 
1420 	return pos;
1421 }
1422 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1423 
1424 bool ieee80211_operating_class_to_band(u8 operating_class,
1425 				       enum nl80211_band *band)
1426 {
1427 	switch (operating_class) {
1428 	case 112:
1429 	case 115 ... 127:
1430 	case 128 ... 130:
1431 		*band = NL80211_BAND_5GHZ;
1432 		return true;
1433 	case 81:
1434 	case 82:
1435 	case 83:
1436 	case 84:
1437 		*band = NL80211_BAND_2GHZ;
1438 		return true;
1439 	case 180:
1440 		*band = NL80211_BAND_60GHZ;
1441 		return true;
1442 	}
1443 
1444 	return false;
1445 }
1446 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1447 
1448 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1449 					  u8 *op_class)
1450 {
1451 	u8 vht_opclass;
1452 	u16 freq = chandef->center_freq1;
1453 
1454 	if (freq >= 2412 && freq <= 2472) {
1455 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1456 			return false;
1457 
1458 		/* 2.407 GHz, channels 1..13 */
1459 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1460 			if (freq > chandef->chan->center_freq)
1461 				*op_class = 83; /* HT40+ */
1462 			else
1463 				*op_class = 84; /* HT40- */
1464 		} else {
1465 			*op_class = 81;
1466 		}
1467 
1468 		return true;
1469 	}
1470 
1471 	if (freq == 2484) {
1472 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1473 			return false;
1474 
1475 		*op_class = 82; /* channel 14 */
1476 		return true;
1477 	}
1478 
1479 	switch (chandef->width) {
1480 	case NL80211_CHAN_WIDTH_80:
1481 		vht_opclass = 128;
1482 		break;
1483 	case NL80211_CHAN_WIDTH_160:
1484 		vht_opclass = 129;
1485 		break;
1486 	case NL80211_CHAN_WIDTH_80P80:
1487 		vht_opclass = 130;
1488 		break;
1489 	case NL80211_CHAN_WIDTH_10:
1490 	case NL80211_CHAN_WIDTH_5:
1491 		return false; /* unsupported for now */
1492 	default:
1493 		vht_opclass = 0;
1494 		break;
1495 	}
1496 
1497 	/* 5 GHz, channels 36..48 */
1498 	if (freq >= 5180 && freq <= 5240) {
1499 		if (vht_opclass) {
1500 			*op_class = vht_opclass;
1501 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1502 			if (freq > chandef->chan->center_freq)
1503 				*op_class = 116;
1504 			else
1505 				*op_class = 117;
1506 		} else {
1507 			*op_class = 115;
1508 		}
1509 
1510 		return true;
1511 	}
1512 
1513 	/* 5 GHz, channels 52..64 */
1514 	if (freq >= 5260 && freq <= 5320) {
1515 		if (vht_opclass) {
1516 			*op_class = vht_opclass;
1517 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1518 			if (freq > chandef->chan->center_freq)
1519 				*op_class = 119;
1520 			else
1521 				*op_class = 120;
1522 		} else {
1523 			*op_class = 118;
1524 		}
1525 
1526 		return true;
1527 	}
1528 
1529 	/* 5 GHz, channels 100..144 */
1530 	if (freq >= 5500 && freq <= 5720) {
1531 		if (vht_opclass) {
1532 			*op_class = vht_opclass;
1533 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1534 			if (freq > chandef->chan->center_freq)
1535 				*op_class = 122;
1536 			else
1537 				*op_class = 123;
1538 		} else {
1539 			*op_class = 121;
1540 		}
1541 
1542 		return true;
1543 	}
1544 
1545 	/* 5 GHz, channels 149..169 */
1546 	if (freq >= 5745 && freq <= 5845) {
1547 		if (vht_opclass) {
1548 			*op_class = vht_opclass;
1549 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1550 			if (freq > chandef->chan->center_freq)
1551 				*op_class = 126;
1552 			else
1553 				*op_class = 127;
1554 		} else if (freq <= 5805) {
1555 			*op_class = 124;
1556 		} else {
1557 			*op_class = 125;
1558 		}
1559 
1560 		return true;
1561 	}
1562 
1563 	/* 56.16 GHz, channel 1..4 */
1564 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1565 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1566 			return false;
1567 
1568 		*op_class = 180;
1569 		return true;
1570 	}
1571 
1572 	/* not supported yet */
1573 	return false;
1574 }
1575 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1576 
1577 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1578 				       u32 *beacon_int_gcd,
1579 				       bool *beacon_int_different)
1580 {
1581 	struct wireless_dev *wdev;
1582 
1583 	*beacon_int_gcd = 0;
1584 	*beacon_int_different = false;
1585 
1586 	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1587 		if (!wdev->beacon_interval)
1588 			continue;
1589 
1590 		if (!*beacon_int_gcd) {
1591 			*beacon_int_gcd = wdev->beacon_interval;
1592 			continue;
1593 		}
1594 
1595 		if (wdev->beacon_interval == *beacon_int_gcd)
1596 			continue;
1597 
1598 		*beacon_int_different = true;
1599 		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1600 	}
1601 
1602 	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1603 		if (*beacon_int_gcd)
1604 			*beacon_int_different = true;
1605 		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1606 	}
1607 }
1608 
1609 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1610 				 enum nl80211_iftype iftype, u32 beacon_int)
1611 {
1612 	/*
1613 	 * This is just a basic pre-condition check; if interface combinations
1614 	 * are possible the driver must already be checking those with a call
1615 	 * to cfg80211_check_combinations(), in which case we'll validate more
1616 	 * through the cfg80211_calculate_bi_data() call and code in
1617 	 * cfg80211_iter_combinations().
1618 	 */
1619 
1620 	if (beacon_int < 10 || beacon_int > 10000)
1621 		return -EINVAL;
1622 
1623 	return 0;
1624 }
1625 
1626 int cfg80211_iter_combinations(struct wiphy *wiphy,
1627 			       struct iface_combination_params *params,
1628 			       void (*iter)(const struct ieee80211_iface_combination *c,
1629 					    void *data),
1630 			       void *data)
1631 {
1632 	const struct ieee80211_regdomain *regdom;
1633 	enum nl80211_dfs_regions region = 0;
1634 	int i, j, iftype;
1635 	int num_interfaces = 0;
1636 	u32 used_iftypes = 0;
1637 	u32 beacon_int_gcd;
1638 	bool beacon_int_different;
1639 
1640 	/*
1641 	 * This is a bit strange, since the iteration used to rely only on
1642 	 * the data given by the driver, but here it now relies on context,
1643 	 * in form of the currently operating interfaces.
1644 	 * This is OK for all current users, and saves us from having to
1645 	 * push the GCD calculations into all the drivers.
1646 	 * In the future, this should probably rely more on data that's in
1647 	 * cfg80211 already - the only thing not would appear to be any new
1648 	 * interfaces (while being brought up) and channel/radar data.
1649 	 */
1650 	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1651 				   &beacon_int_gcd, &beacon_int_different);
1652 
1653 	if (params->radar_detect) {
1654 		rcu_read_lock();
1655 		regdom = rcu_dereference(cfg80211_regdomain);
1656 		if (regdom)
1657 			region = regdom->dfs_region;
1658 		rcu_read_unlock();
1659 	}
1660 
1661 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1662 		num_interfaces += params->iftype_num[iftype];
1663 		if (params->iftype_num[iftype] > 0 &&
1664 		    !(wiphy->software_iftypes & BIT(iftype)))
1665 			used_iftypes |= BIT(iftype);
1666 	}
1667 
1668 	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1669 		const struct ieee80211_iface_combination *c;
1670 		struct ieee80211_iface_limit *limits;
1671 		u32 all_iftypes = 0;
1672 
1673 		c = &wiphy->iface_combinations[i];
1674 
1675 		if (num_interfaces > c->max_interfaces)
1676 			continue;
1677 		if (params->num_different_channels > c->num_different_channels)
1678 			continue;
1679 
1680 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1681 				 GFP_KERNEL);
1682 		if (!limits)
1683 			return -ENOMEM;
1684 
1685 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1686 			if (wiphy->software_iftypes & BIT(iftype))
1687 				continue;
1688 			for (j = 0; j < c->n_limits; j++) {
1689 				all_iftypes |= limits[j].types;
1690 				if (!(limits[j].types & BIT(iftype)))
1691 					continue;
1692 				if (limits[j].max < params->iftype_num[iftype])
1693 					goto cont;
1694 				limits[j].max -= params->iftype_num[iftype];
1695 			}
1696 		}
1697 
1698 		if (params->radar_detect !=
1699 			(c->radar_detect_widths & params->radar_detect))
1700 			goto cont;
1701 
1702 		if (params->radar_detect && c->radar_detect_regions &&
1703 		    !(c->radar_detect_regions & BIT(region)))
1704 			goto cont;
1705 
1706 		/* Finally check that all iftypes that we're currently
1707 		 * using are actually part of this combination. If they
1708 		 * aren't then we can't use this combination and have
1709 		 * to continue to the next.
1710 		 */
1711 		if ((all_iftypes & used_iftypes) != used_iftypes)
1712 			goto cont;
1713 
1714 		if (beacon_int_gcd) {
1715 			if (c->beacon_int_min_gcd &&
1716 			    beacon_int_gcd < c->beacon_int_min_gcd)
1717 				goto cont;
1718 			if (!c->beacon_int_min_gcd && beacon_int_different)
1719 				goto cont;
1720 		}
1721 
1722 		/* This combination covered all interface types and
1723 		 * supported the requested numbers, so we're good.
1724 		 */
1725 
1726 		(*iter)(c, data);
1727  cont:
1728 		kfree(limits);
1729 	}
1730 
1731 	return 0;
1732 }
1733 EXPORT_SYMBOL(cfg80211_iter_combinations);
1734 
1735 static void
1736 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1737 			  void *data)
1738 {
1739 	int *num = data;
1740 	(*num)++;
1741 }
1742 
1743 int cfg80211_check_combinations(struct wiphy *wiphy,
1744 				struct iface_combination_params *params)
1745 {
1746 	int err, num = 0;
1747 
1748 	err = cfg80211_iter_combinations(wiphy, params,
1749 					 cfg80211_iter_sum_ifcombs, &num);
1750 	if (err)
1751 		return err;
1752 	if (num == 0)
1753 		return -EBUSY;
1754 
1755 	return 0;
1756 }
1757 EXPORT_SYMBOL(cfg80211_check_combinations);
1758 
1759 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1760 			   const u8 *rates, unsigned int n_rates,
1761 			   u32 *mask)
1762 {
1763 	int i, j;
1764 
1765 	if (!sband)
1766 		return -EINVAL;
1767 
1768 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1769 		return -EINVAL;
1770 
1771 	*mask = 0;
1772 
1773 	for (i = 0; i < n_rates; i++) {
1774 		int rate = (rates[i] & 0x7f) * 5;
1775 		bool found = false;
1776 
1777 		for (j = 0; j < sband->n_bitrates; j++) {
1778 			if (sband->bitrates[j].bitrate == rate) {
1779 				found = true;
1780 				*mask |= BIT(j);
1781 				break;
1782 			}
1783 		}
1784 		if (!found)
1785 			return -EINVAL;
1786 	}
1787 
1788 	/*
1789 	 * mask must have at least one bit set here since we
1790 	 * didn't accept a 0-length rates array nor allowed
1791 	 * entries in the array that didn't exist
1792 	 */
1793 
1794 	return 0;
1795 }
1796 
1797 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1798 {
1799 	enum nl80211_band band;
1800 	unsigned int n_channels = 0;
1801 
1802 	for (band = 0; band < NUM_NL80211_BANDS; band++)
1803 		if (wiphy->bands[band])
1804 			n_channels += wiphy->bands[band]->n_channels;
1805 
1806 	return n_channels;
1807 }
1808 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1809 
1810 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1811 			 struct station_info *sinfo)
1812 {
1813 	struct cfg80211_registered_device *rdev;
1814 	struct wireless_dev *wdev;
1815 
1816 	wdev = dev->ieee80211_ptr;
1817 	if (!wdev)
1818 		return -EOPNOTSUPP;
1819 
1820 	rdev = wiphy_to_rdev(wdev->wiphy);
1821 	if (!rdev->ops->get_station)
1822 		return -EOPNOTSUPP;
1823 
1824 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1825 }
1826 EXPORT_SYMBOL(cfg80211_get_station);
1827 
1828 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1829 {
1830 	int i;
1831 
1832 	if (!f)
1833 		return;
1834 
1835 	kfree(f->serv_spec_info);
1836 	kfree(f->srf_bf);
1837 	kfree(f->srf_macs);
1838 	for (i = 0; i < f->num_rx_filters; i++)
1839 		kfree(f->rx_filters[i].filter);
1840 
1841 	for (i = 0; i < f->num_tx_filters; i++)
1842 		kfree(f->tx_filters[i].filter);
1843 
1844 	kfree(f->rx_filters);
1845 	kfree(f->tx_filters);
1846 	kfree(f);
1847 }
1848 EXPORT_SYMBOL(cfg80211_free_nan_func);
1849 
1850 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1851 				u32 center_freq_khz, u32 bw_khz)
1852 {
1853 	u32 start_freq_khz, end_freq_khz;
1854 
1855 	start_freq_khz = center_freq_khz - (bw_khz / 2);
1856 	end_freq_khz = center_freq_khz + (bw_khz / 2);
1857 
1858 	if (start_freq_khz >= freq_range->start_freq_khz &&
1859 	    end_freq_khz <= freq_range->end_freq_khz)
1860 		return true;
1861 
1862 	return false;
1863 }
1864 
1865 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1866 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1867 const unsigned char rfc1042_header[] __aligned(2) =
1868 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1869 EXPORT_SYMBOL(rfc1042_header);
1870 
1871 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1872 const unsigned char bridge_tunnel_header[] __aligned(2) =
1873 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1874 EXPORT_SYMBOL(bridge_tunnel_header);
1875