1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Wireless utility functions 4 * 5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018-2019 Intel Corporation 9 */ 10 #include <linux/export.h> 11 #include <linux/bitops.h> 12 #include <linux/etherdevice.h> 13 #include <linux/slab.h> 14 #include <linux/ieee80211.h> 15 #include <net/cfg80211.h> 16 #include <net/ip.h> 17 #include <net/dsfield.h> 18 #include <linux/if_vlan.h> 19 #include <linux/mpls.h> 20 #include <linux/gcd.h> 21 #include <linux/bitfield.h> 22 #include <linux/nospec.h> 23 #include "core.h" 24 #include "rdev-ops.h" 25 26 27 struct ieee80211_rate * 28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 29 u32 basic_rates, int bitrate) 30 { 31 struct ieee80211_rate *result = &sband->bitrates[0]; 32 int i; 33 34 for (i = 0; i < sband->n_bitrates; i++) { 35 if (!(basic_rates & BIT(i))) 36 continue; 37 if (sband->bitrates[i].bitrate > bitrate) 38 continue; 39 result = &sband->bitrates[i]; 40 } 41 42 return result; 43 } 44 EXPORT_SYMBOL(ieee80211_get_response_rate); 45 46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 47 enum nl80211_bss_scan_width scan_width) 48 { 49 struct ieee80211_rate *bitrates; 50 u32 mandatory_rates = 0; 51 enum ieee80211_rate_flags mandatory_flag; 52 int i; 53 54 if (WARN_ON(!sband)) 55 return 1; 56 57 if (sband->band == NL80211_BAND_2GHZ) { 58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 59 scan_width == NL80211_BSS_CHAN_WIDTH_10) 60 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 61 else 62 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 63 } else { 64 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 65 } 66 67 bitrates = sband->bitrates; 68 for (i = 0; i < sband->n_bitrates; i++) 69 if (bitrates[i].flags & mandatory_flag) 70 mandatory_rates |= BIT(i); 71 return mandatory_rates; 72 } 73 EXPORT_SYMBOL(ieee80211_mandatory_rates); 74 75 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band) 76 { 77 /* see 802.11 17.3.8.3.2 and Annex J 78 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 79 if (chan <= 0) 80 return 0; /* not supported */ 81 switch (band) { 82 case NL80211_BAND_2GHZ: 83 if (chan == 14) 84 return 2484; 85 else if (chan < 14) 86 return 2407 + chan * 5; 87 break; 88 case NL80211_BAND_5GHZ: 89 if (chan >= 182 && chan <= 196) 90 return 4000 + chan * 5; 91 else 92 return 5000 + chan * 5; 93 break; 94 case NL80211_BAND_60GHZ: 95 if (chan < 7) 96 return 56160 + chan * 2160; 97 break; 98 default: 99 ; 100 } 101 return 0; /* not supported */ 102 } 103 EXPORT_SYMBOL(ieee80211_channel_to_frequency); 104 105 int ieee80211_frequency_to_channel(int freq) 106 { 107 /* see 802.11 17.3.8.3.2 and Annex J */ 108 if (freq == 2484) 109 return 14; 110 else if (freq < 2484) 111 return (freq - 2407) / 5; 112 else if (freq >= 4910 && freq <= 4980) 113 return (freq - 4000) / 5; 114 else if (freq <= 45000) /* DMG band lower limit */ 115 return (freq - 5000) / 5; 116 else if (freq >= 58320 && freq <= 70200) 117 return (freq - 56160) / 2160; 118 else 119 return 0; 120 } 121 EXPORT_SYMBOL(ieee80211_frequency_to_channel); 122 123 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq) 124 { 125 enum nl80211_band band; 126 struct ieee80211_supported_band *sband; 127 int i; 128 129 for (band = 0; band < NUM_NL80211_BANDS; band++) { 130 sband = wiphy->bands[band]; 131 132 if (!sband) 133 continue; 134 135 for (i = 0; i < sband->n_channels; i++) { 136 if (sband->channels[i].center_freq == freq) 137 return &sband->channels[i]; 138 } 139 } 140 141 return NULL; 142 } 143 EXPORT_SYMBOL(ieee80211_get_channel); 144 145 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) 146 { 147 int i, want; 148 149 switch (sband->band) { 150 case NL80211_BAND_5GHZ: 151 want = 3; 152 for (i = 0; i < sband->n_bitrates; i++) { 153 if (sband->bitrates[i].bitrate == 60 || 154 sband->bitrates[i].bitrate == 120 || 155 sband->bitrates[i].bitrate == 240) { 156 sband->bitrates[i].flags |= 157 IEEE80211_RATE_MANDATORY_A; 158 want--; 159 } 160 } 161 WARN_ON(want); 162 break; 163 case NL80211_BAND_2GHZ: 164 want = 7; 165 for (i = 0; i < sband->n_bitrates; i++) { 166 switch (sband->bitrates[i].bitrate) { 167 case 10: 168 case 20: 169 case 55: 170 case 110: 171 sband->bitrates[i].flags |= 172 IEEE80211_RATE_MANDATORY_B | 173 IEEE80211_RATE_MANDATORY_G; 174 want--; 175 break; 176 case 60: 177 case 120: 178 case 240: 179 sband->bitrates[i].flags |= 180 IEEE80211_RATE_MANDATORY_G; 181 want--; 182 /* fall through */ 183 default: 184 sband->bitrates[i].flags |= 185 IEEE80211_RATE_ERP_G; 186 break; 187 } 188 } 189 WARN_ON(want != 0 && want != 3); 190 break; 191 case NL80211_BAND_60GHZ: 192 /* check for mandatory HT MCS 1..4 */ 193 WARN_ON(!sband->ht_cap.ht_supported); 194 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 195 break; 196 case NUM_NL80211_BANDS: 197 default: 198 WARN_ON(1); 199 break; 200 } 201 } 202 203 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 204 { 205 enum nl80211_band band; 206 207 for (band = 0; band < NUM_NL80211_BANDS; band++) 208 if (wiphy->bands[band]) 209 set_mandatory_flags_band(wiphy->bands[band]); 210 } 211 212 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 213 { 214 int i; 215 for (i = 0; i < wiphy->n_cipher_suites; i++) 216 if (cipher == wiphy->cipher_suites[i]) 217 return true; 218 return false; 219 } 220 221 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 222 struct key_params *params, int key_idx, 223 bool pairwise, const u8 *mac_addr) 224 { 225 if (key_idx < 0 || key_idx > 5) 226 return -EINVAL; 227 228 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 229 return -EINVAL; 230 231 if (pairwise && !mac_addr) 232 return -EINVAL; 233 234 switch (params->cipher) { 235 case WLAN_CIPHER_SUITE_TKIP: 236 case WLAN_CIPHER_SUITE_CCMP: 237 case WLAN_CIPHER_SUITE_CCMP_256: 238 case WLAN_CIPHER_SUITE_GCMP: 239 case WLAN_CIPHER_SUITE_GCMP_256: 240 /* Disallow pairwise keys with non-zero index unless it's WEP 241 * or a vendor specific cipher (because current deployments use 242 * pairwise WEP keys with non-zero indices and for vendor 243 * specific ciphers this should be validated in the driver or 244 * hardware level - but 802.11i clearly specifies to use zero) 245 */ 246 if (pairwise && key_idx) 247 return -EINVAL; 248 break; 249 case WLAN_CIPHER_SUITE_AES_CMAC: 250 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 251 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 252 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 253 /* Disallow BIP (group-only) cipher as pairwise cipher */ 254 if (pairwise) 255 return -EINVAL; 256 if (key_idx < 4) 257 return -EINVAL; 258 break; 259 case WLAN_CIPHER_SUITE_WEP40: 260 case WLAN_CIPHER_SUITE_WEP104: 261 if (key_idx > 3) 262 return -EINVAL; 263 default: 264 break; 265 } 266 267 switch (params->cipher) { 268 case WLAN_CIPHER_SUITE_WEP40: 269 if (params->key_len != WLAN_KEY_LEN_WEP40) 270 return -EINVAL; 271 break; 272 case WLAN_CIPHER_SUITE_TKIP: 273 if (params->key_len != WLAN_KEY_LEN_TKIP) 274 return -EINVAL; 275 break; 276 case WLAN_CIPHER_SUITE_CCMP: 277 if (params->key_len != WLAN_KEY_LEN_CCMP) 278 return -EINVAL; 279 break; 280 case WLAN_CIPHER_SUITE_CCMP_256: 281 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 282 return -EINVAL; 283 break; 284 case WLAN_CIPHER_SUITE_GCMP: 285 if (params->key_len != WLAN_KEY_LEN_GCMP) 286 return -EINVAL; 287 break; 288 case WLAN_CIPHER_SUITE_GCMP_256: 289 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 290 return -EINVAL; 291 break; 292 case WLAN_CIPHER_SUITE_WEP104: 293 if (params->key_len != WLAN_KEY_LEN_WEP104) 294 return -EINVAL; 295 break; 296 case WLAN_CIPHER_SUITE_AES_CMAC: 297 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 298 return -EINVAL; 299 break; 300 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 301 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 302 return -EINVAL; 303 break; 304 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 305 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 306 return -EINVAL; 307 break; 308 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 309 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 310 return -EINVAL; 311 break; 312 default: 313 /* 314 * We don't know anything about this algorithm, 315 * allow using it -- but the driver must check 316 * all parameters! We still check below whether 317 * or not the driver supports this algorithm, 318 * of course. 319 */ 320 break; 321 } 322 323 if (params->seq) { 324 switch (params->cipher) { 325 case WLAN_CIPHER_SUITE_WEP40: 326 case WLAN_CIPHER_SUITE_WEP104: 327 /* These ciphers do not use key sequence */ 328 return -EINVAL; 329 case WLAN_CIPHER_SUITE_TKIP: 330 case WLAN_CIPHER_SUITE_CCMP: 331 case WLAN_CIPHER_SUITE_CCMP_256: 332 case WLAN_CIPHER_SUITE_GCMP: 333 case WLAN_CIPHER_SUITE_GCMP_256: 334 case WLAN_CIPHER_SUITE_AES_CMAC: 335 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 336 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 337 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 338 if (params->seq_len != 6) 339 return -EINVAL; 340 break; 341 } 342 } 343 344 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 345 return -EINVAL; 346 347 return 0; 348 } 349 350 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 351 { 352 unsigned int hdrlen = 24; 353 354 if (ieee80211_is_data(fc)) { 355 if (ieee80211_has_a4(fc)) 356 hdrlen = 30; 357 if (ieee80211_is_data_qos(fc)) { 358 hdrlen += IEEE80211_QOS_CTL_LEN; 359 if (ieee80211_has_order(fc)) 360 hdrlen += IEEE80211_HT_CTL_LEN; 361 } 362 goto out; 363 } 364 365 if (ieee80211_is_mgmt(fc)) { 366 if (ieee80211_has_order(fc)) 367 hdrlen += IEEE80211_HT_CTL_LEN; 368 goto out; 369 } 370 371 if (ieee80211_is_ctl(fc)) { 372 /* 373 * ACK and CTS are 10 bytes, all others 16. To see how 374 * to get this condition consider 375 * subtype mask: 0b0000000011110000 (0x00F0) 376 * ACK subtype: 0b0000000011010000 (0x00D0) 377 * CTS subtype: 0b0000000011000000 (0x00C0) 378 * bits that matter: ^^^ (0x00E0) 379 * value of those: 0b0000000011000000 (0x00C0) 380 */ 381 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 382 hdrlen = 10; 383 else 384 hdrlen = 16; 385 } 386 out: 387 return hdrlen; 388 } 389 EXPORT_SYMBOL(ieee80211_hdrlen); 390 391 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 392 { 393 const struct ieee80211_hdr *hdr = 394 (const struct ieee80211_hdr *)skb->data; 395 unsigned int hdrlen; 396 397 if (unlikely(skb->len < 10)) 398 return 0; 399 hdrlen = ieee80211_hdrlen(hdr->frame_control); 400 if (unlikely(hdrlen > skb->len)) 401 return 0; 402 return hdrlen; 403 } 404 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 405 406 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 407 { 408 int ae = flags & MESH_FLAGS_AE; 409 /* 802.11-2012, 8.2.4.7.3 */ 410 switch (ae) { 411 default: 412 case 0: 413 return 6; 414 case MESH_FLAGS_AE_A4: 415 return 12; 416 case MESH_FLAGS_AE_A5_A6: 417 return 18; 418 } 419 } 420 421 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 422 { 423 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 424 } 425 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 426 427 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 428 const u8 *addr, enum nl80211_iftype iftype, 429 u8 data_offset) 430 { 431 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 432 struct { 433 u8 hdr[ETH_ALEN] __aligned(2); 434 __be16 proto; 435 } payload; 436 struct ethhdr tmp; 437 u16 hdrlen; 438 u8 mesh_flags = 0; 439 440 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 441 return -1; 442 443 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; 444 if (skb->len < hdrlen + 8) 445 return -1; 446 447 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 448 * header 449 * IEEE 802.11 address fields: 450 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 451 * 0 0 DA SA BSSID n/a 452 * 0 1 DA BSSID SA n/a 453 * 1 0 BSSID SA DA n/a 454 * 1 1 RA TA DA SA 455 */ 456 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 457 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 458 459 if (iftype == NL80211_IFTYPE_MESH_POINT) 460 skb_copy_bits(skb, hdrlen, &mesh_flags, 1); 461 462 mesh_flags &= MESH_FLAGS_AE; 463 464 switch (hdr->frame_control & 465 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 466 case cpu_to_le16(IEEE80211_FCTL_TODS): 467 if (unlikely(iftype != NL80211_IFTYPE_AP && 468 iftype != NL80211_IFTYPE_AP_VLAN && 469 iftype != NL80211_IFTYPE_P2P_GO)) 470 return -1; 471 break; 472 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 473 if (unlikely(iftype != NL80211_IFTYPE_WDS && 474 iftype != NL80211_IFTYPE_MESH_POINT && 475 iftype != NL80211_IFTYPE_AP_VLAN && 476 iftype != NL80211_IFTYPE_STATION)) 477 return -1; 478 if (iftype == NL80211_IFTYPE_MESH_POINT) { 479 if (mesh_flags == MESH_FLAGS_AE_A4) 480 return -1; 481 if (mesh_flags == MESH_FLAGS_AE_A5_A6) { 482 skb_copy_bits(skb, hdrlen + 483 offsetof(struct ieee80211s_hdr, eaddr1), 484 tmp.h_dest, 2 * ETH_ALEN); 485 } 486 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 487 } 488 break; 489 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 490 if ((iftype != NL80211_IFTYPE_STATION && 491 iftype != NL80211_IFTYPE_P2P_CLIENT && 492 iftype != NL80211_IFTYPE_MESH_POINT) || 493 (is_multicast_ether_addr(tmp.h_dest) && 494 ether_addr_equal(tmp.h_source, addr))) 495 return -1; 496 if (iftype == NL80211_IFTYPE_MESH_POINT) { 497 if (mesh_flags == MESH_FLAGS_AE_A5_A6) 498 return -1; 499 if (mesh_flags == MESH_FLAGS_AE_A4) 500 skb_copy_bits(skb, hdrlen + 501 offsetof(struct ieee80211s_hdr, eaddr1), 502 tmp.h_source, ETH_ALEN); 503 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 504 } 505 break; 506 case cpu_to_le16(0): 507 if (iftype != NL80211_IFTYPE_ADHOC && 508 iftype != NL80211_IFTYPE_STATION && 509 iftype != NL80211_IFTYPE_OCB) 510 return -1; 511 break; 512 } 513 514 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)); 515 tmp.h_proto = payload.proto; 516 517 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) && 518 tmp.h_proto != htons(ETH_P_AARP) && 519 tmp.h_proto != htons(ETH_P_IPX)) || 520 ether_addr_equal(payload.hdr, bridge_tunnel_header))) 521 /* remove RFC1042 or Bridge-Tunnel encapsulation and 522 * replace EtherType */ 523 hdrlen += ETH_ALEN + 2; 524 else 525 tmp.h_proto = htons(skb->len - hdrlen); 526 527 pskb_pull(skb, hdrlen); 528 529 if (!ehdr) 530 ehdr = skb_push(skb, sizeof(struct ethhdr)); 531 memcpy(ehdr, &tmp, sizeof(tmp)); 532 533 return 0; 534 } 535 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 536 537 static void 538 __frame_add_frag(struct sk_buff *skb, struct page *page, 539 void *ptr, int len, int size) 540 { 541 struct skb_shared_info *sh = skb_shinfo(skb); 542 int page_offset; 543 544 page_ref_inc(page); 545 page_offset = ptr - page_address(page); 546 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 547 } 548 549 static void 550 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 551 int offset, int len) 552 { 553 struct skb_shared_info *sh = skb_shinfo(skb); 554 const skb_frag_t *frag = &sh->frags[0]; 555 struct page *frag_page; 556 void *frag_ptr; 557 int frag_len, frag_size; 558 int head_size = skb->len - skb->data_len; 559 int cur_len; 560 561 frag_page = virt_to_head_page(skb->head); 562 frag_ptr = skb->data; 563 frag_size = head_size; 564 565 while (offset >= frag_size) { 566 offset -= frag_size; 567 frag_page = skb_frag_page(frag); 568 frag_ptr = skb_frag_address(frag); 569 frag_size = skb_frag_size(frag); 570 frag++; 571 } 572 573 frag_ptr += offset; 574 frag_len = frag_size - offset; 575 576 cur_len = min(len, frag_len); 577 578 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 579 len -= cur_len; 580 581 while (len > 0) { 582 frag_len = skb_frag_size(frag); 583 cur_len = min(len, frag_len); 584 __frame_add_frag(frame, skb_frag_page(frag), 585 skb_frag_address(frag), cur_len, frag_len); 586 len -= cur_len; 587 frag++; 588 } 589 } 590 591 static struct sk_buff * 592 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 593 int offset, int len, bool reuse_frag) 594 { 595 struct sk_buff *frame; 596 int cur_len = len; 597 598 if (skb->len - offset < len) 599 return NULL; 600 601 /* 602 * When reusing framents, copy some data to the head to simplify 603 * ethernet header handling and speed up protocol header processing 604 * in the stack later. 605 */ 606 if (reuse_frag) 607 cur_len = min_t(int, len, 32); 608 609 /* 610 * Allocate and reserve two bytes more for payload 611 * alignment since sizeof(struct ethhdr) is 14. 612 */ 613 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 614 if (!frame) 615 return NULL; 616 617 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 618 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 619 620 len -= cur_len; 621 if (!len) 622 return frame; 623 624 offset += cur_len; 625 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 626 627 return frame; 628 } 629 630 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 631 const u8 *addr, enum nl80211_iftype iftype, 632 const unsigned int extra_headroom, 633 const u8 *check_da, const u8 *check_sa) 634 { 635 unsigned int hlen = ALIGN(extra_headroom, 4); 636 struct sk_buff *frame = NULL; 637 u16 ethertype; 638 u8 *payload; 639 int offset = 0, remaining; 640 struct ethhdr eth; 641 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 642 bool reuse_skb = false; 643 bool last = false; 644 645 while (!last) { 646 unsigned int subframe_len; 647 int len; 648 u8 padding; 649 650 skb_copy_bits(skb, offset, ð, sizeof(eth)); 651 len = ntohs(eth.h_proto); 652 subframe_len = sizeof(struct ethhdr) + len; 653 padding = (4 - subframe_len) & 0x3; 654 655 /* the last MSDU has no padding */ 656 remaining = skb->len - offset; 657 if (subframe_len > remaining) 658 goto purge; 659 660 offset += sizeof(struct ethhdr); 661 last = remaining <= subframe_len + padding; 662 663 /* FIXME: should we really accept multicast DA? */ 664 if ((check_da && !is_multicast_ether_addr(eth.h_dest) && 665 !ether_addr_equal(check_da, eth.h_dest)) || 666 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) { 667 offset += len + padding; 668 continue; 669 } 670 671 /* reuse skb for the last subframe */ 672 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 673 skb_pull(skb, offset); 674 frame = skb; 675 reuse_skb = true; 676 } else { 677 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 678 reuse_frag); 679 if (!frame) 680 goto purge; 681 682 offset += len + padding; 683 } 684 685 skb_reset_network_header(frame); 686 frame->dev = skb->dev; 687 frame->priority = skb->priority; 688 689 payload = frame->data; 690 ethertype = (payload[6] << 8) | payload[7]; 691 if (likely((ether_addr_equal(payload, rfc1042_header) && 692 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 693 ether_addr_equal(payload, bridge_tunnel_header))) { 694 eth.h_proto = htons(ethertype); 695 skb_pull(frame, ETH_ALEN + 2); 696 } 697 698 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth)); 699 __skb_queue_tail(list, frame); 700 } 701 702 if (!reuse_skb) 703 dev_kfree_skb(skb); 704 705 return; 706 707 purge: 708 __skb_queue_purge(list); 709 dev_kfree_skb(skb); 710 } 711 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 712 713 /* Given a data frame determine the 802.1p/1d tag to use. */ 714 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 715 struct cfg80211_qos_map *qos_map) 716 { 717 unsigned int dscp; 718 unsigned char vlan_priority; 719 unsigned int ret; 720 721 /* skb->priority values from 256->263 are magic values to 722 * directly indicate a specific 802.1d priority. This is used 723 * to allow 802.1d priority to be passed directly in from VLAN 724 * tags, etc. 725 */ 726 if (skb->priority >= 256 && skb->priority <= 263) { 727 ret = skb->priority - 256; 728 goto out; 729 } 730 731 if (skb_vlan_tag_present(skb)) { 732 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 733 >> VLAN_PRIO_SHIFT; 734 if (vlan_priority > 0) { 735 ret = vlan_priority; 736 goto out; 737 } 738 } 739 740 switch (skb->protocol) { 741 case htons(ETH_P_IP): 742 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 743 break; 744 case htons(ETH_P_IPV6): 745 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 746 break; 747 case htons(ETH_P_MPLS_UC): 748 case htons(ETH_P_MPLS_MC): { 749 struct mpls_label mpls_tmp, *mpls; 750 751 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 752 sizeof(*mpls), &mpls_tmp); 753 if (!mpls) 754 return 0; 755 756 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 757 >> MPLS_LS_TC_SHIFT; 758 goto out; 759 } 760 case htons(ETH_P_80221): 761 /* 802.21 is always network control traffic */ 762 return 7; 763 default: 764 return 0; 765 } 766 767 if (qos_map) { 768 unsigned int i, tmp_dscp = dscp >> 2; 769 770 for (i = 0; i < qos_map->num_des; i++) { 771 if (tmp_dscp == qos_map->dscp_exception[i].dscp) { 772 ret = qos_map->dscp_exception[i].up; 773 goto out; 774 } 775 } 776 777 for (i = 0; i < 8; i++) { 778 if (tmp_dscp >= qos_map->up[i].low && 779 tmp_dscp <= qos_map->up[i].high) { 780 ret = i; 781 goto out; 782 } 783 } 784 } 785 786 ret = dscp >> 5; 787 out: 788 return array_index_nospec(ret, IEEE80211_NUM_TIDS); 789 } 790 EXPORT_SYMBOL(cfg80211_classify8021d); 791 792 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id) 793 { 794 const struct cfg80211_bss_ies *ies; 795 796 ies = rcu_dereference(bss->ies); 797 if (!ies) 798 return NULL; 799 800 return cfg80211_find_elem(id, ies->data, ies->len); 801 } 802 EXPORT_SYMBOL(ieee80211_bss_get_elem); 803 804 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 805 { 806 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 807 struct net_device *dev = wdev->netdev; 808 int i; 809 810 if (!wdev->connect_keys) 811 return; 812 813 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) { 814 if (!wdev->connect_keys->params[i].cipher) 815 continue; 816 if (rdev_add_key(rdev, dev, i, false, NULL, 817 &wdev->connect_keys->params[i])) { 818 netdev_err(dev, "failed to set key %d\n", i); 819 continue; 820 } 821 if (wdev->connect_keys->def == i && 822 rdev_set_default_key(rdev, dev, i, true, true)) { 823 netdev_err(dev, "failed to set defkey %d\n", i); 824 continue; 825 } 826 } 827 828 kzfree(wdev->connect_keys); 829 wdev->connect_keys = NULL; 830 } 831 832 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 833 { 834 struct cfg80211_event *ev; 835 unsigned long flags; 836 837 spin_lock_irqsave(&wdev->event_lock, flags); 838 while (!list_empty(&wdev->event_list)) { 839 ev = list_first_entry(&wdev->event_list, 840 struct cfg80211_event, list); 841 list_del(&ev->list); 842 spin_unlock_irqrestore(&wdev->event_lock, flags); 843 844 wdev_lock(wdev); 845 switch (ev->type) { 846 case EVENT_CONNECT_RESULT: 847 __cfg80211_connect_result( 848 wdev->netdev, 849 &ev->cr, 850 ev->cr.status == WLAN_STATUS_SUCCESS); 851 break; 852 case EVENT_ROAMED: 853 __cfg80211_roamed(wdev, &ev->rm); 854 break; 855 case EVENT_DISCONNECTED: 856 __cfg80211_disconnected(wdev->netdev, 857 ev->dc.ie, ev->dc.ie_len, 858 ev->dc.reason, 859 !ev->dc.locally_generated); 860 break; 861 case EVENT_IBSS_JOINED: 862 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 863 ev->ij.channel); 864 break; 865 case EVENT_STOPPED: 866 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 867 break; 868 case EVENT_PORT_AUTHORIZED: 869 __cfg80211_port_authorized(wdev, ev->pa.bssid); 870 break; 871 } 872 wdev_unlock(wdev); 873 874 kfree(ev); 875 876 spin_lock_irqsave(&wdev->event_lock, flags); 877 } 878 spin_unlock_irqrestore(&wdev->event_lock, flags); 879 } 880 881 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 882 { 883 struct wireless_dev *wdev; 884 885 ASSERT_RTNL(); 886 887 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 888 cfg80211_process_wdev_events(wdev); 889 } 890 891 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 892 struct net_device *dev, enum nl80211_iftype ntype, 893 struct vif_params *params) 894 { 895 int err; 896 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 897 898 ASSERT_RTNL(); 899 900 /* don't support changing VLANs, you just re-create them */ 901 if (otype == NL80211_IFTYPE_AP_VLAN) 902 return -EOPNOTSUPP; 903 904 /* cannot change into P2P device or NAN */ 905 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 906 ntype == NL80211_IFTYPE_NAN) 907 return -EOPNOTSUPP; 908 909 if (!rdev->ops->change_virtual_intf || 910 !(rdev->wiphy.interface_modes & (1 << ntype))) 911 return -EOPNOTSUPP; 912 913 /* if it's part of a bridge, reject changing type to station/ibss */ 914 if ((dev->priv_flags & IFF_BRIDGE_PORT) && 915 (ntype == NL80211_IFTYPE_ADHOC || 916 ntype == NL80211_IFTYPE_STATION || 917 ntype == NL80211_IFTYPE_P2P_CLIENT)) 918 return -EBUSY; 919 920 if (ntype != otype) { 921 dev->ieee80211_ptr->use_4addr = false; 922 dev->ieee80211_ptr->mesh_id_up_len = 0; 923 wdev_lock(dev->ieee80211_ptr); 924 rdev_set_qos_map(rdev, dev, NULL); 925 wdev_unlock(dev->ieee80211_ptr); 926 927 switch (otype) { 928 case NL80211_IFTYPE_AP: 929 cfg80211_stop_ap(rdev, dev, true); 930 break; 931 case NL80211_IFTYPE_ADHOC: 932 cfg80211_leave_ibss(rdev, dev, false); 933 break; 934 case NL80211_IFTYPE_STATION: 935 case NL80211_IFTYPE_P2P_CLIENT: 936 wdev_lock(dev->ieee80211_ptr); 937 cfg80211_disconnect(rdev, dev, 938 WLAN_REASON_DEAUTH_LEAVING, true); 939 wdev_unlock(dev->ieee80211_ptr); 940 break; 941 case NL80211_IFTYPE_MESH_POINT: 942 /* mesh should be handled? */ 943 break; 944 default: 945 break; 946 } 947 948 cfg80211_process_rdev_events(rdev); 949 } 950 951 err = rdev_change_virtual_intf(rdev, dev, ntype, params); 952 953 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 954 955 if (!err && params && params->use_4addr != -1) 956 dev->ieee80211_ptr->use_4addr = params->use_4addr; 957 958 if (!err) { 959 dev->priv_flags &= ~IFF_DONT_BRIDGE; 960 switch (ntype) { 961 case NL80211_IFTYPE_STATION: 962 if (dev->ieee80211_ptr->use_4addr) 963 break; 964 /* fall through */ 965 case NL80211_IFTYPE_OCB: 966 case NL80211_IFTYPE_P2P_CLIENT: 967 case NL80211_IFTYPE_ADHOC: 968 dev->priv_flags |= IFF_DONT_BRIDGE; 969 break; 970 case NL80211_IFTYPE_P2P_GO: 971 case NL80211_IFTYPE_AP: 972 case NL80211_IFTYPE_AP_VLAN: 973 case NL80211_IFTYPE_WDS: 974 case NL80211_IFTYPE_MESH_POINT: 975 /* bridging OK */ 976 break; 977 case NL80211_IFTYPE_MONITOR: 978 /* monitor can't bridge anyway */ 979 break; 980 case NL80211_IFTYPE_UNSPECIFIED: 981 case NUM_NL80211_IFTYPES: 982 /* not happening */ 983 break; 984 case NL80211_IFTYPE_P2P_DEVICE: 985 case NL80211_IFTYPE_NAN: 986 WARN_ON(1); 987 break; 988 } 989 } 990 991 if (!err && ntype != otype && netif_running(dev)) { 992 cfg80211_update_iface_num(rdev, ntype, 1); 993 cfg80211_update_iface_num(rdev, otype, -1); 994 } 995 996 return err; 997 } 998 999 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) 1000 { 1001 int modulation, streams, bitrate; 1002 1003 /* the formula below does only work for MCS values smaller than 32 */ 1004 if (WARN_ON_ONCE(rate->mcs >= 32)) 1005 return 0; 1006 1007 modulation = rate->mcs & 7; 1008 streams = (rate->mcs >> 3) + 1; 1009 1010 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1011 1012 if (modulation < 4) 1013 bitrate *= (modulation + 1); 1014 else if (modulation == 4) 1015 bitrate *= (modulation + 2); 1016 else 1017 bitrate *= (modulation + 3); 1018 1019 bitrate *= streams; 1020 1021 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1022 bitrate = (bitrate / 9) * 10; 1023 1024 /* do NOT round down here */ 1025 return (bitrate + 50000) / 100000; 1026 } 1027 1028 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate) 1029 { 1030 static const u32 __mcs2bitrate[] = { 1031 /* control PHY */ 1032 [0] = 275, 1033 /* SC PHY */ 1034 [1] = 3850, 1035 [2] = 7700, 1036 [3] = 9625, 1037 [4] = 11550, 1038 [5] = 12512, /* 1251.25 mbps */ 1039 [6] = 15400, 1040 [7] = 19250, 1041 [8] = 23100, 1042 [9] = 25025, 1043 [10] = 30800, 1044 [11] = 38500, 1045 [12] = 46200, 1046 /* OFDM PHY */ 1047 [13] = 6930, 1048 [14] = 8662, /* 866.25 mbps */ 1049 [15] = 13860, 1050 [16] = 17325, 1051 [17] = 20790, 1052 [18] = 27720, 1053 [19] = 34650, 1054 [20] = 41580, 1055 [21] = 45045, 1056 [22] = 51975, 1057 [23] = 62370, 1058 [24] = 67568, /* 6756.75 mbps */ 1059 /* LP-SC PHY */ 1060 [25] = 6260, 1061 [26] = 8340, 1062 [27] = 11120, 1063 [28] = 12510, 1064 [29] = 16680, 1065 [30] = 22240, 1066 [31] = 25030, 1067 }; 1068 1069 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1070 return 0; 1071 1072 return __mcs2bitrate[rate->mcs]; 1073 } 1074 1075 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1076 { 1077 static const u32 base[4][10] = { 1078 { 6500000, 1079 13000000, 1080 19500000, 1081 26000000, 1082 39000000, 1083 52000000, 1084 58500000, 1085 65000000, 1086 78000000, 1087 /* not in the spec, but some devices use this: */ 1088 86500000, 1089 }, 1090 { 13500000, 1091 27000000, 1092 40500000, 1093 54000000, 1094 81000000, 1095 108000000, 1096 121500000, 1097 135000000, 1098 162000000, 1099 180000000, 1100 }, 1101 { 29300000, 1102 58500000, 1103 87800000, 1104 117000000, 1105 175500000, 1106 234000000, 1107 263300000, 1108 292500000, 1109 351000000, 1110 390000000, 1111 }, 1112 { 58500000, 1113 117000000, 1114 175500000, 1115 234000000, 1116 351000000, 1117 468000000, 1118 526500000, 1119 585000000, 1120 702000000, 1121 780000000, 1122 }, 1123 }; 1124 u32 bitrate; 1125 int idx; 1126 1127 if (rate->mcs > 9) 1128 goto warn; 1129 1130 switch (rate->bw) { 1131 case RATE_INFO_BW_160: 1132 idx = 3; 1133 break; 1134 case RATE_INFO_BW_80: 1135 idx = 2; 1136 break; 1137 case RATE_INFO_BW_40: 1138 idx = 1; 1139 break; 1140 case RATE_INFO_BW_5: 1141 case RATE_INFO_BW_10: 1142 default: 1143 goto warn; 1144 case RATE_INFO_BW_20: 1145 idx = 0; 1146 } 1147 1148 bitrate = base[idx][rate->mcs]; 1149 bitrate *= rate->nss; 1150 1151 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1152 bitrate = (bitrate / 9) * 10; 1153 1154 /* do NOT round down here */ 1155 return (bitrate + 50000) / 100000; 1156 warn: 1157 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1158 rate->bw, rate->mcs, rate->nss); 1159 return 0; 1160 } 1161 1162 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) 1163 { 1164 #define SCALE 2048 1165 u16 mcs_divisors[12] = { 1166 34133, /* 16.666666... */ 1167 17067, /* 8.333333... */ 1168 11378, /* 5.555555... */ 1169 8533, /* 4.166666... */ 1170 5689, /* 2.777777... */ 1171 4267, /* 2.083333... */ 1172 3923, /* 1.851851... */ 1173 3413, /* 1.666666... */ 1174 2844, /* 1.388888... */ 1175 2560, /* 1.250000... */ 1176 2276, /* 1.111111... */ 1177 2048, /* 1.000000... */ 1178 }; 1179 u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; 1180 u32 rates_969[3] = { 480388888, 453700000, 408333333 }; 1181 u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1182 u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1183 u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1184 u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1185 u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1186 u64 tmp; 1187 u32 result; 1188 1189 if (WARN_ON_ONCE(rate->mcs > 11)) 1190 return 0; 1191 1192 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) 1193 return 0; 1194 if (WARN_ON_ONCE(rate->he_ru_alloc > 1195 NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1196 return 0; 1197 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1198 return 0; 1199 1200 if (rate->bw == RATE_INFO_BW_160) 1201 result = rates_160M[rate->he_gi]; 1202 else if (rate->bw == RATE_INFO_BW_80 || 1203 (rate->bw == RATE_INFO_BW_HE_RU && 1204 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) 1205 result = rates_969[rate->he_gi]; 1206 else if (rate->bw == RATE_INFO_BW_40 || 1207 (rate->bw == RATE_INFO_BW_HE_RU && 1208 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) 1209 result = rates_484[rate->he_gi]; 1210 else if (rate->bw == RATE_INFO_BW_20 || 1211 (rate->bw == RATE_INFO_BW_HE_RU && 1212 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) 1213 result = rates_242[rate->he_gi]; 1214 else if (rate->bw == RATE_INFO_BW_HE_RU && 1215 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) 1216 result = rates_106[rate->he_gi]; 1217 else if (rate->bw == RATE_INFO_BW_HE_RU && 1218 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) 1219 result = rates_52[rate->he_gi]; 1220 else if (rate->bw == RATE_INFO_BW_HE_RU && 1221 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) 1222 result = rates_26[rate->he_gi]; 1223 else if (WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", 1224 rate->bw, rate->he_ru_alloc)) 1225 return 0; 1226 1227 /* now scale to the appropriate MCS */ 1228 tmp = result; 1229 tmp *= SCALE; 1230 do_div(tmp, mcs_divisors[rate->mcs]); 1231 result = tmp; 1232 1233 /* and take NSS, DCM into account */ 1234 result = (result * rate->nss) / 8; 1235 if (rate->he_dcm) 1236 result /= 2; 1237 1238 return result; 1239 } 1240 1241 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1242 { 1243 if (rate->flags & RATE_INFO_FLAGS_MCS) 1244 return cfg80211_calculate_bitrate_ht(rate); 1245 if (rate->flags & RATE_INFO_FLAGS_60G) 1246 return cfg80211_calculate_bitrate_60g(rate); 1247 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1248 return cfg80211_calculate_bitrate_vht(rate); 1249 if (rate->flags & RATE_INFO_FLAGS_HE_MCS) 1250 return cfg80211_calculate_bitrate_he(rate); 1251 1252 return rate->legacy; 1253 } 1254 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1255 1256 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1257 enum ieee80211_p2p_attr_id attr, 1258 u8 *buf, unsigned int bufsize) 1259 { 1260 u8 *out = buf; 1261 u16 attr_remaining = 0; 1262 bool desired_attr = false; 1263 u16 desired_len = 0; 1264 1265 while (len > 0) { 1266 unsigned int iedatalen; 1267 unsigned int copy; 1268 const u8 *iedata; 1269 1270 if (len < 2) 1271 return -EILSEQ; 1272 iedatalen = ies[1]; 1273 if (iedatalen + 2 > len) 1274 return -EILSEQ; 1275 1276 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1277 goto cont; 1278 1279 if (iedatalen < 4) 1280 goto cont; 1281 1282 iedata = ies + 2; 1283 1284 /* check WFA OUI, P2P subtype */ 1285 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1286 iedata[2] != 0x9a || iedata[3] != 0x09) 1287 goto cont; 1288 1289 iedatalen -= 4; 1290 iedata += 4; 1291 1292 /* check attribute continuation into this IE */ 1293 copy = min_t(unsigned int, attr_remaining, iedatalen); 1294 if (copy && desired_attr) { 1295 desired_len += copy; 1296 if (out) { 1297 memcpy(out, iedata, min(bufsize, copy)); 1298 out += min(bufsize, copy); 1299 bufsize -= min(bufsize, copy); 1300 } 1301 1302 1303 if (copy == attr_remaining) 1304 return desired_len; 1305 } 1306 1307 attr_remaining -= copy; 1308 if (attr_remaining) 1309 goto cont; 1310 1311 iedatalen -= copy; 1312 iedata += copy; 1313 1314 while (iedatalen > 0) { 1315 u16 attr_len; 1316 1317 /* P2P attribute ID & size must fit */ 1318 if (iedatalen < 3) 1319 return -EILSEQ; 1320 desired_attr = iedata[0] == attr; 1321 attr_len = get_unaligned_le16(iedata + 1); 1322 iedatalen -= 3; 1323 iedata += 3; 1324 1325 copy = min_t(unsigned int, attr_len, iedatalen); 1326 1327 if (desired_attr) { 1328 desired_len += copy; 1329 if (out) { 1330 memcpy(out, iedata, min(bufsize, copy)); 1331 out += min(bufsize, copy); 1332 bufsize -= min(bufsize, copy); 1333 } 1334 1335 if (copy == attr_len) 1336 return desired_len; 1337 } 1338 1339 iedata += copy; 1340 iedatalen -= copy; 1341 attr_remaining = attr_len - copy; 1342 } 1343 1344 cont: 1345 len -= ies[1] + 2; 1346 ies += ies[1] + 2; 1347 } 1348 1349 if (attr_remaining && desired_attr) 1350 return -EILSEQ; 1351 1352 return -ENOENT; 1353 } 1354 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1355 1356 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) 1357 { 1358 int i; 1359 1360 /* Make sure array values are legal */ 1361 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) 1362 return false; 1363 1364 i = 0; 1365 while (i < n_ids) { 1366 if (ids[i] == WLAN_EID_EXTENSION) { 1367 if (id_ext && (ids[i + 1] == id)) 1368 return true; 1369 1370 i += 2; 1371 continue; 1372 } 1373 1374 if (ids[i] == id && !id_ext) 1375 return true; 1376 1377 i++; 1378 } 1379 return false; 1380 } 1381 1382 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) 1383 { 1384 /* we assume a validly formed IEs buffer */ 1385 u8 len = ies[pos + 1]; 1386 1387 pos += 2 + len; 1388 1389 /* the IE itself must have 255 bytes for fragments to follow */ 1390 if (len < 255) 1391 return pos; 1392 1393 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { 1394 len = ies[pos + 1]; 1395 pos += 2 + len; 1396 } 1397 1398 return pos; 1399 } 1400 1401 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1402 const u8 *ids, int n_ids, 1403 const u8 *after_ric, int n_after_ric, 1404 size_t offset) 1405 { 1406 size_t pos = offset; 1407 1408 while (pos < ielen) { 1409 u8 ext = 0; 1410 1411 if (ies[pos] == WLAN_EID_EXTENSION) 1412 ext = 2; 1413 if ((pos + ext) >= ielen) 1414 break; 1415 1416 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], 1417 ies[pos] == WLAN_EID_EXTENSION)) 1418 break; 1419 1420 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1421 pos = skip_ie(ies, ielen, pos); 1422 1423 while (pos < ielen) { 1424 if (ies[pos] == WLAN_EID_EXTENSION) 1425 ext = 2; 1426 else 1427 ext = 0; 1428 1429 if ((pos + ext) >= ielen) 1430 break; 1431 1432 if (!ieee80211_id_in_list(after_ric, 1433 n_after_ric, 1434 ies[pos + ext], 1435 ext == 2)) 1436 pos = skip_ie(ies, ielen, pos); 1437 else 1438 break; 1439 } 1440 } else { 1441 pos = skip_ie(ies, ielen, pos); 1442 } 1443 } 1444 1445 return pos; 1446 } 1447 EXPORT_SYMBOL(ieee80211_ie_split_ric); 1448 1449 bool ieee80211_operating_class_to_band(u8 operating_class, 1450 enum nl80211_band *band) 1451 { 1452 switch (operating_class) { 1453 case 112: 1454 case 115 ... 127: 1455 case 128 ... 130: 1456 *band = NL80211_BAND_5GHZ; 1457 return true; 1458 case 81: 1459 case 82: 1460 case 83: 1461 case 84: 1462 *band = NL80211_BAND_2GHZ; 1463 return true; 1464 case 180: 1465 *band = NL80211_BAND_60GHZ; 1466 return true; 1467 } 1468 1469 return false; 1470 } 1471 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1472 1473 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 1474 u8 *op_class) 1475 { 1476 u8 vht_opclass; 1477 u32 freq = chandef->center_freq1; 1478 1479 if (freq >= 2412 && freq <= 2472) { 1480 if (chandef->width > NL80211_CHAN_WIDTH_40) 1481 return false; 1482 1483 /* 2.407 GHz, channels 1..13 */ 1484 if (chandef->width == NL80211_CHAN_WIDTH_40) { 1485 if (freq > chandef->chan->center_freq) 1486 *op_class = 83; /* HT40+ */ 1487 else 1488 *op_class = 84; /* HT40- */ 1489 } else { 1490 *op_class = 81; 1491 } 1492 1493 return true; 1494 } 1495 1496 if (freq == 2484) { 1497 if (chandef->width > NL80211_CHAN_WIDTH_40) 1498 return false; 1499 1500 *op_class = 82; /* channel 14 */ 1501 return true; 1502 } 1503 1504 switch (chandef->width) { 1505 case NL80211_CHAN_WIDTH_80: 1506 vht_opclass = 128; 1507 break; 1508 case NL80211_CHAN_WIDTH_160: 1509 vht_opclass = 129; 1510 break; 1511 case NL80211_CHAN_WIDTH_80P80: 1512 vht_opclass = 130; 1513 break; 1514 case NL80211_CHAN_WIDTH_10: 1515 case NL80211_CHAN_WIDTH_5: 1516 return false; /* unsupported for now */ 1517 default: 1518 vht_opclass = 0; 1519 break; 1520 } 1521 1522 /* 5 GHz, channels 36..48 */ 1523 if (freq >= 5180 && freq <= 5240) { 1524 if (vht_opclass) { 1525 *op_class = vht_opclass; 1526 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1527 if (freq > chandef->chan->center_freq) 1528 *op_class = 116; 1529 else 1530 *op_class = 117; 1531 } else { 1532 *op_class = 115; 1533 } 1534 1535 return true; 1536 } 1537 1538 /* 5 GHz, channels 52..64 */ 1539 if (freq >= 5260 && freq <= 5320) { 1540 if (vht_opclass) { 1541 *op_class = vht_opclass; 1542 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1543 if (freq > chandef->chan->center_freq) 1544 *op_class = 119; 1545 else 1546 *op_class = 120; 1547 } else { 1548 *op_class = 118; 1549 } 1550 1551 return true; 1552 } 1553 1554 /* 5 GHz, channels 100..144 */ 1555 if (freq >= 5500 && freq <= 5720) { 1556 if (vht_opclass) { 1557 *op_class = vht_opclass; 1558 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1559 if (freq > chandef->chan->center_freq) 1560 *op_class = 122; 1561 else 1562 *op_class = 123; 1563 } else { 1564 *op_class = 121; 1565 } 1566 1567 return true; 1568 } 1569 1570 /* 5 GHz, channels 149..169 */ 1571 if (freq >= 5745 && freq <= 5845) { 1572 if (vht_opclass) { 1573 *op_class = vht_opclass; 1574 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1575 if (freq > chandef->chan->center_freq) 1576 *op_class = 126; 1577 else 1578 *op_class = 127; 1579 } else if (freq <= 5805) { 1580 *op_class = 124; 1581 } else { 1582 *op_class = 125; 1583 } 1584 1585 return true; 1586 } 1587 1588 /* 56.16 GHz, channel 1..4 */ 1589 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { 1590 if (chandef->width >= NL80211_CHAN_WIDTH_40) 1591 return false; 1592 1593 *op_class = 180; 1594 return true; 1595 } 1596 1597 /* not supported yet */ 1598 return false; 1599 } 1600 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 1601 1602 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, 1603 u32 *beacon_int_gcd, 1604 bool *beacon_int_different) 1605 { 1606 struct wireless_dev *wdev; 1607 1608 *beacon_int_gcd = 0; 1609 *beacon_int_different = false; 1610 1611 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 1612 if (!wdev->beacon_interval) 1613 continue; 1614 1615 if (!*beacon_int_gcd) { 1616 *beacon_int_gcd = wdev->beacon_interval; 1617 continue; 1618 } 1619 1620 if (wdev->beacon_interval == *beacon_int_gcd) 1621 continue; 1622 1623 *beacon_int_different = true; 1624 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval); 1625 } 1626 1627 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { 1628 if (*beacon_int_gcd) 1629 *beacon_int_different = true; 1630 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); 1631 } 1632 } 1633 1634 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 1635 enum nl80211_iftype iftype, u32 beacon_int) 1636 { 1637 /* 1638 * This is just a basic pre-condition check; if interface combinations 1639 * are possible the driver must already be checking those with a call 1640 * to cfg80211_check_combinations(), in which case we'll validate more 1641 * through the cfg80211_calculate_bi_data() call and code in 1642 * cfg80211_iter_combinations(). 1643 */ 1644 1645 if (beacon_int < 10 || beacon_int > 10000) 1646 return -EINVAL; 1647 1648 return 0; 1649 } 1650 1651 int cfg80211_iter_combinations(struct wiphy *wiphy, 1652 struct iface_combination_params *params, 1653 void (*iter)(const struct ieee80211_iface_combination *c, 1654 void *data), 1655 void *data) 1656 { 1657 const struct ieee80211_regdomain *regdom; 1658 enum nl80211_dfs_regions region = 0; 1659 int i, j, iftype; 1660 int num_interfaces = 0; 1661 u32 used_iftypes = 0; 1662 u32 beacon_int_gcd; 1663 bool beacon_int_different; 1664 1665 /* 1666 * This is a bit strange, since the iteration used to rely only on 1667 * the data given by the driver, but here it now relies on context, 1668 * in form of the currently operating interfaces. 1669 * This is OK for all current users, and saves us from having to 1670 * push the GCD calculations into all the drivers. 1671 * In the future, this should probably rely more on data that's in 1672 * cfg80211 already - the only thing not would appear to be any new 1673 * interfaces (while being brought up) and channel/radar data. 1674 */ 1675 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, 1676 &beacon_int_gcd, &beacon_int_different); 1677 1678 if (params->radar_detect) { 1679 rcu_read_lock(); 1680 regdom = rcu_dereference(cfg80211_regdomain); 1681 if (regdom) 1682 region = regdom->dfs_region; 1683 rcu_read_unlock(); 1684 } 1685 1686 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1687 num_interfaces += params->iftype_num[iftype]; 1688 if (params->iftype_num[iftype] > 0 && 1689 !(wiphy->software_iftypes & BIT(iftype))) 1690 used_iftypes |= BIT(iftype); 1691 } 1692 1693 for (i = 0; i < wiphy->n_iface_combinations; i++) { 1694 const struct ieee80211_iface_combination *c; 1695 struct ieee80211_iface_limit *limits; 1696 u32 all_iftypes = 0; 1697 1698 c = &wiphy->iface_combinations[i]; 1699 1700 if (num_interfaces > c->max_interfaces) 1701 continue; 1702 if (params->num_different_channels > c->num_different_channels) 1703 continue; 1704 1705 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 1706 GFP_KERNEL); 1707 if (!limits) 1708 return -ENOMEM; 1709 1710 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1711 if (wiphy->software_iftypes & BIT(iftype)) 1712 continue; 1713 for (j = 0; j < c->n_limits; j++) { 1714 all_iftypes |= limits[j].types; 1715 if (!(limits[j].types & BIT(iftype))) 1716 continue; 1717 if (limits[j].max < params->iftype_num[iftype]) 1718 goto cont; 1719 limits[j].max -= params->iftype_num[iftype]; 1720 } 1721 } 1722 1723 if (params->radar_detect != 1724 (c->radar_detect_widths & params->radar_detect)) 1725 goto cont; 1726 1727 if (params->radar_detect && c->radar_detect_regions && 1728 !(c->radar_detect_regions & BIT(region))) 1729 goto cont; 1730 1731 /* Finally check that all iftypes that we're currently 1732 * using are actually part of this combination. If they 1733 * aren't then we can't use this combination and have 1734 * to continue to the next. 1735 */ 1736 if ((all_iftypes & used_iftypes) != used_iftypes) 1737 goto cont; 1738 1739 if (beacon_int_gcd) { 1740 if (c->beacon_int_min_gcd && 1741 beacon_int_gcd < c->beacon_int_min_gcd) 1742 goto cont; 1743 if (!c->beacon_int_min_gcd && beacon_int_different) 1744 goto cont; 1745 } 1746 1747 /* This combination covered all interface types and 1748 * supported the requested numbers, so we're good. 1749 */ 1750 1751 (*iter)(c, data); 1752 cont: 1753 kfree(limits); 1754 } 1755 1756 return 0; 1757 } 1758 EXPORT_SYMBOL(cfg80211_iter_combinations); 1759 1760 static void 1761 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 1762 void *data) 1763 { 1764 int *num = data; 1765 (*num)++; 1766 } 1767 1768 int cfg80211_check_combinations(struct wiphy *wiphy, 1769 struct iface_combination_params *params) 1770 { 1771 int err, num = 0; 1772 1773 err = cfg80211_iter_combinations(wiphy, params, 1774 cfg80211_iter_sum_ifcombs, &num); 1775 if (err) 1776 return err; 1777 if (num == 0) 1778 return -EBUSY; 1779 1780 return 0; 1781 } 1782 EXPORT_SYMBOL(cfg80211_check_combinations); 1783 1784 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1785 const u8 *rates, unsigned int n_rates, 1786 u32 *mask) 1787 { 1788 int i, j; 1789 1790 if (!sband) 1791 return -EINVAL; 1792 1793 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1794 return -EINVAL; 1795 1796 *mask = 0; 1797 1798 for (i = 0; i < n_rates; i++) { 1799 int rate = (rates[i] & 0x7f) * 5; 1800 bool found = false; 1801 1802 for (j = 0; j < sband->n_bitrates; j++) { 1803 if (sband->bitrates[j].bitrate == rate) { 1804 found = true; 1805 *mask |= BIT(j); 1806 break; 1807 } 1808 } 1809 if (!found) 1810 return -EINVAL; 1811 } 1812 1813 /* 1814 * mask must have at least one bit set here since we 1815 * didn't accept a 0-length rates array nor allowed 1816 * entries in the array that didn't exist 1817 */ 1818 1819 return 0; 1820 } 1821 1822 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 1823 { 1824 enum nl80211_band band; 1825 unsigned int n_channels = 0; 1826 1827 for (band = 0; band < NUM_NL80211_BANDS; band++) 1828 if (wiphy->bands[band]) 1829 n_channels += wiphy->bands[band]->n_channels; 1830 1831 return n_channels; 1832 } 1833 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 1834 1835 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 1836 struct station_info *sinfo) 1837 { 1838 struct cfg80211_registered_device *rdev; 1839 struct wireless_dev *wdev; 1840 1841 wdev = dev->ieee80211_ptr; 1842 if (!wdev) 1843 return -EOPNOTSUPP; 1844 1845 rdev = wiphy_to_rdev(wdev->wiphy); 1846 if (!rdev->ops->get_station) 1847 return -EOPNOTSUPP; 1848 1849 memset(sinfo, 0, sizeof(*sinfo)); 1850 1851 return rdev_get_station(rdev, dev, mac_addr, sinfo); 1852 } 1853 EXPORT_SYMBOL(cfg80211_get_station); 1854 1855 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 1856 { 1857 int i; 1858 1859 if (!f) 1860 return; 1861 1862 kfree(f->serv_spec_info); 1863 kfree(f->srf_bf); 1864 kfree(f->srf_macs); 1865 for (i = 0; i < f->num_rx_filters; i++) 1866 kfree(f->rx_filters[i].filter); 1867 1868 for (i = 0; i < f->num_tx_filters; i++) 1869 kfree(f->tx_filters[i].filter); 1870 1871 kfree(f->rx_filters); 1872 kfree(f->tx_filters); 1873 kfree(f); 1874 } 1875 EXPORT_SYMBOL(cfg80211_free_nan_func); 1876 1877 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, 1878 u32 center_freq_khz, u32 bw_khz) 1879 { 1880 u32 start_freq_khz, end_freq_khz; 1881 1882 start_freq_khz = center_freq_khz - (bw_khz / 2); 1883 end_freq_khz = center_freq_khz + (bw_khz / 2); 1884 1885 if (start_freq_khz >= freq_range->start_freq_khz && 1886 end_freq_khz <= freq_range->end_freq_khz) 1887 return true; 1888 1889 return false; 1890 } 1891 1892 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) 1893 { 1894 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, 1895 sizeof(*(sinfo->pertid)), 1896 gfp); 1897 if (!sinfo->pertid) 1898 return -ENOMEM; 1899 1900 return 0; 1901 } 1902 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); 1903 1904 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 1905 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 1906 const unsigned char rfc1042_header[] __aligned(2) = 1907 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 1908 EXPORT_SYMBOL(rfc1042_header); 1909 1910 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 1911 const unsigned char bridge_tunnel_header[] __aligned(2) = 1912 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 1913 EXPORT_SYMBOL(bridge_tunnel_header); 1914 1915 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ 1916 struct iapp_layer2_update { 1917 u8 da[ETH_ALEN]; /* broadcast */ 1918 u8 sa[ETH_ALEN]; /* STA addr */ 1919 __be16 len; /* 6 */ 1920 u8 dsap; /* 0 */ 1921 u8 ssap; /* 0 */ 1922 u8 control; 1923 u8 xid_info[3]; 1924 } __packed; 1925 1926 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr) 1927 { 1928 struct iapp_layer2_update *msg; 1929 struct sk_buff *skb; 1930 1931 /* Send Level 2 Update Frame to update forwarding tables in layer 2 1932 * bridge devices */ 1933 1934 skb = dev_alloc_skb(sizeof(*msg)); 1935 if (!skb) 1936 return; 1937 msg = skb_put(skb, sizeof(*msg)); 1938 1939 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) 1940 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ 1941 1942 eth_broadcast_addr(msg->da); 1943 ether_addr_copy(msg->sa, addr); 1944 msg->len = htons(6); 1945 msg->dsap = 0; 1946 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ 1947 msg->control = 0xaf; /* XID response lsb.1111F101. 1948 * F=0 (no poll command; unsolicited frame) */ 1949 msg->xid_info[0] = 0x81; /* XID format identifier */ 1950 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ 1951 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ 1952 1953 skb->dev = dev; 1954 skb->protocol = eth_type_trans(skb, dev); 1955 memset(skb->cb, 0, sizeof(skb->cb)); 1956 netif_rx_ni(skb); 1957 } 1958 EXPORT_SYMBOL(cfg80211_send_layer2_update); 1959 1960 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, 1961 enum ieee80211_vht_chanwidth bw, 1962 int mcs, bool ext_nss_bw_capable) 1963 { 1964 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map); 1965 int max_vht_nss = 0; 1966 int ext_nss_bw; 1967 int supp_width; 1968 int i, mcs_encoding; 1969 1970 if (map == 0xffff) 1971 return 0; 1972 1973 if (WARN_ON(mcs > 9)) 1974 return 0; 1975 if (mcs <= 7) 1976 mcs_encoding = 0; 1977 else if (mcs == 8) 1978 mcs_encoding = 1; 1979 else 1980 mcs_encoding = 2; 1981 1982 /* find max_vht_nss for the given MCS */ 1983 for (i = 7; i >= 0; i--) { 1984 int supp = (map >> (2 * i)) & 3; 1985 1986 if (supp == 3) 1987 continue; 1988 1989 if (supp >= mcs_encoding) { 1990 max_vht_nss = i; 1991 break; 1992 } 1993 } 1994 1995 if (!(cap->supp_mcs.tx_mcs_map & 1996 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) 1997 return max_vht_nss; 1998 1999 ext_nss_bw = le32_get_bits(cap->vht_cap_info, 2000 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2001 supp_width = le32_get_bits(cap->vht_cap_info, 2002 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2003 2004 /* if not capable, treat ext_nss_bw as 0 */ 2005 if (!ext_nss_bw_capable) 2006 ext_nss_bw = 0; 2007 2008 /* This is invalid */ 2009 if (supp_width == 3) 2010 return 0; 2011 2012 /* This is an invalid combination so pretend nothing is supported */ 2013 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2)) 2014 return 0; 2015 2016 /* 2017 * Cover all the special cases according to IEEE 802.11-2016 2018 * Table 9-250. All other cases are either factor of 1 or not 2019 * valid/supported. 2020 */ 2021 switch (bw) { 2022 case IEEE80211_VHT_CHANWIDTH_USE_HT: 2023 case IEEE80211_VHT_CHANWIDTH_80MHZ: 2024 if ((supp_width == 1 || supp_width == 2) && 2025 ext_nss_bw == 3) 2026 return 2 * max_vht_nss; 2027 break; 2028 case IEEE80211_VHT_CHANWIDTH_160MHZ: 2029 if (supp_width == 0 && 2030 (ext_nss_bw == 1 || ext_nss_bw == 2)) 2031 return max_vht_nss / 2; 2032 if (supp_width == 0 && 2033 ext_nss_bw == 3) 2034 return (3 * max_vht_nss) / 4; 2035 if (supp_width == 1 && 2036 ext_nss_bw == 3) 2037 return 2 * max_vht_nss; 2038 break; 2039 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 2040 if (supp_width == 0 && ext_nss_bw == 1) 2041 return 0; /* not possible */ 2042 if (supp_width == 0 && 2043 ext_nss_bw == 2) 2044 return max_vht_nss / 2; 2045 if (supp_width == 0 && 2046 ext_nss_bw == 3) 2047 return (3 * max_vht_nss) / 4; 2048 if (supp_width == 1 && 2049 ext_nss_bw == 0) 2050 return 0; /* not possible */ 2051 if (supp_width == 1 && 2052 ext_nss_bw == 1) 2053 return max_vht_nss / 2; 2054 if (supp_width == 1 && 2055 ext_nss_bw == 2) 2056 return (3 * max_vht_nss) / 4; 2057 break; 2058 } 2059 2060 /* not covered or invalid combination received */ 2061 return max_vht_nss; 2062 } 2063 EXPORT_SYMBOL(ieee80211_get_vht_max_nss); 2064