1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Wireless utility functions 4 * 5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 */ 9 #include <linux/export.h> 10 #include <linux/bitops.h> 11 #include <linux/etherdevice.h> 12 #include <linux/slab.h> 13 #include <net/cfg80211.h> 14 #include <net/ip.h> 15 #include <net/dsfield.h> 16 #include <linux/if_vlan.h> 17 #include <linux/mpls.h> 18 #include <linux/gcd.h> 19 #include "core.h" 20 #include "rdev-ops.h" 21 22 23 struct ieee80211_rate * 24 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 25 u32 basic_rates, int bitrate) 26 { 27 struct ieee80211_rate *result = &sband->bitrates[0]; 28 int i; 29 30 for (i = 0; i < sband->n_bitrates; i++) { 31 if (!(basic_rates & BIT(i))) 32 continue; 33 if (sband->bitrates[i].bitrate > bitrate) 34 continue; 35 result = &sband->bitrates[i]; 36 } 37 38 return result; 39 } 40 EXPORT_SYMBOL(ieee80211_get_response_rate); 41 42 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 43 enum nl80211_bss_scan_width scan_width) 44 { 45 struct ieee80211_rate *bitrates; 46 u32 mandatory_rates = 0; 47 enum ieee80211_rate_flags mandatory_flag; 48 int i; 49 50 if (WARN_ON(!sband)) 51 return 1; 52 53 if (sband->band == NL80211_BAND_2GHZ) { 54 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 55 scan_width == NL80211_BSS_CHAN_WIDTH_10) 56 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 57 else 58 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 59 } else { 60 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 61 } 62 63 bitrates = sband->bitrates; 64 for (i = 0; i < sband->n_bitrates; i++) 65 if (bitrates[i].flags & mandatory_flag) 66 mandatory_rates |= BIT(i); 67 return mandatory_rates; 68 } 69 EXPORT_SYMBOL(ieee80211_mandatory_rates); 70 71 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band) 72 { 73 /* see 802.11 17.3.8.3.2 and Annex J 74 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 75 if (chan <= 0) 76 return 0; /* not supported */ 77 switch (band) { 78 case NL80211_BAND_2GHZ: 79 if (chan == 14) 80 return 2484; 81 else if (chan < 14) 82 return 2407 + chan * 5; 83 break; 84 case NL80211_BAND_5GHZ: 85 if (chan >= 182 && chan <= 196) 86 return 4000 + chan * 5; 87 else 88 return 5000 + chan * 5; 89 break; 90 case NL80211_BAND_60GHZ: 91 if (chan < 5) 92 return 56160 + chan * 2160; 93 break; 94 default: 95 ; 96 } 97 return 0; /* not supported */ 98 } 99 EXPORT_SYMBOL(ieee80211_channel_to_frequency); 100 101 int ieee80211_frequency_to_channel(int freq) 102 { 103 /* see 802.11 17.3.8.3.2 and Annex J */ 104 if (freq == 2484) 105 return 14; 106 else if (freq < 2484) 107 return (freq - 2407) / 5; 108 else if (freq >= 4910 && freq <= 4980) 109 return (freq - 4000) / 5; 110 else if (freq <= 45000) /* DMG band lower limit */ 111 return (freq - 5000) / 5; 112 else if (freq >= 58320 && freq <= 64800) 113 return (freq - 56160) / 2160; 114 else 115 return 0; 116 } 117 EXPORT_SYMBOL(ieee80211_frequency_to_channel); 118 119 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq) 120 { 121 enum nl80211_band band; 122 struct ieee80211_supported_band *sband; 123 int i; 124 125 for (band = 0; band < NUM_NL80211_BANDS; band++) { 126 sband = wiphy->bands[band]; 127 128 if (!sband) 129 continue; 130 131 for (i = 0; i < sband->n_channels; i++) { 132 if (sband->channels[i].center_freq == freq) 133 return &sband->channels[i]; 134 } 135 } 136 137 return NULL; 138 } 139 EXPORT_SYMBOL(ieee80211_get_channel); 140 141 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) 142 { 143 int i, want; 144 145 switch (sband->band) { 146 case NL80211_BAND_5GHZ: 147 want = 3; 148 for (i = 0; i < sband->n_bitrates; i++) { 149 if (sband->bitrates[i].bitrate == 60 || 150 sband->bitrates[i].bitrate == 120 || 151 sband->bitrates[i].bitrate == 240) { 152 sband->bitrates[i].flags |= 153 IEEE80211_RATE_MANDATORY_A; 154 want--; 155 } 156 } 157 WARN_ON(want); 158 break; 159 case NL80211_BAND_2GHZ: 160 want = 7; 161 for (i = 0; i < sband->n_bitrates; i++) { 162 switch (sband->bitrates[i].bitrate) { 163 case 10: 164 case 20: 165 case 55: 166 case 110: 167 sband->bitrates[i].flags |= 168 IEEE80211_RATE_MANDATORY_B | 169 IEEE80211_RATE_MANDATORY_G; 170 want--; 171 break; 172 case 60: 173 case 120: 174 case 240: 175 sband->bitrates[i].flags |= 176 IEEE80211_RATE_MANDATORY_G; 177 want--; 178 /* fall through */ 179 default: 180 sband->bitrates[i].flags |= 181 IEEE80211_RATE_ERP_G; 182 break; 183 } 184 } 185 WARN_ON(want != 0 && want != 3); 186 break; 187 case NL80211_BAND_60GHZ: 188 /* check for mandatory HT MCS 1..4 */ 189 WARN_ON(!sband->ht_cap.ht_supported); 190 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 191 break; 192 case NUM_NL80211_BANDS: 193 default: 194 WARN_ON(1); 195 break; 196 } 197 } 198 199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 200 { 201 enum nl80211_band band; 202 203 for (band = 0; band < NUM_NL80211_BANDS; band++) 204 if (wiphy->bands[band]) 205 set_mandatory_flags_band(wiphy->bands[band]); 206 } 207 208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 209 { 210 int i; 211 for (i = 0; i < wiphy->n_cipher_suites; i++) 212 if (cipher == wiphy->cipher_suites[i]) 213 return true; 214 return false; 215 } 216 217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 218 struct key_params *params, int key_idx, 219 bool pairwise, const u8 *mac_addr) 220 { 221 if (key_idx < 0 || key_idx > 5) 222 return -EINVAL; 223 224 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 225 return -EINVAL; 226 227 if (pairwise && !mac_addr) 228 return -EINVAL; 229 230 switch (params->cipher) { 231 case WLAN_CIPHER_SUITE_TKIP: 232 case WLAN_CIPHER_SUITE_CCMP: 233 case WLAN_CIPHER_SUITE_CCMP_256: 234 case WLAN_CIPHER_SUITE_GCMP: 235 case WLAN_CIPHER_SUITE_GCMP_256: 236 /* Disallow pairwise keys with non-zero index unless it's WEP 237 * or a vendor specific cipher (because current deployments use 238 * pairwise WEP keys with non-zero indices and for vendor 239 * specific ciphers this should be validated in the driver or 240 * hardware level - but 802.11i clearly specifies to use zero) 241 */ 242 if (pairwise && key_idx) 243 return -EINVAL; 244 break; 245 case WLAN_CIPHER_SUITE_AES_CMAC: 246 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 247 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 248 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 249 /* Disallow BIP (group-only) cipher as pairwise cipher */ 250 if (pairwise) 251 return -EINVAL; 252 if (key_idx < 4) 253 return -EINVAL; 254 break; 255 case WLAN_CIPHER_SUITE_WEP40: 256 case WLAN_CIPHER_SUITE_WEP104: 257 if (key_idx > 3) 258 return -EINVAL; 259 default: 260 break; 261 } 262 263 switch (params->cipher) { 264 case WLAN_CIPHER_SUITE_WEP40: 265 if (params->key_len != WLAN_KEY_LEN_WEP40) 266 return -EINVAL; 267 break; 268 case WLAN_CIPHER_SUITE_TKIP: 269 if (params->key_len != WLAN_KEY_LEN_TKIP) 270 return -EINVAL; 271 break; 272 case WLAN_CIPHER_SUITE_CCMP: 273 if (params->key_len != WLAN_KEY_LEN_CCMP) 274 return -EINVAL; 275 break; 276 case WLAN_CIPHER_SUITE_CCMP_256: 277 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 278 return -EINVAL; 279 break; 280 case WLAN_CIPHER_SUITE_GCMP: 281 if (params->key_len != WLAN_KEY_LEN_GCMP) 282 return -EINVAL; 283 break; 284 case WLAN_CIPHER_SUITE_GCMP_256: 285 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 286 return -EINVAL; 287 break; 288 case WLAN_CIPHER_SUITE_WEP104: 289 if (params->key_len != WLAN_KEY_LEN_WEP104) 290 return -EINVAL; 291 break; 292 case WLAN_CIPHER_SUITE_AES_CMAC: 293 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 294 return -EINVAL; 295 break; 296 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 297 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 298 return -EINVAL; 299 break; 300 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 301 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 302 return -EINVAL; 303 break; 304 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 305 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 306 return -EINVAL; 307 break; 308 default: 309 /* 310 * We don't know anything about this algorithm, 311 * allow using it -- but the driver must check 312 * all parameters! We still check below whether 313 * or not the driver supports this algorithm, 314 * of course. 315 */ 316 break; 317 } 318 319 if (params->seq) { 320 switch (params->cipher) { 321 case WLAN_CIPHER_SUITE_WEP40: 322 case WLAN_CIPHER_SUITE_WEP104: 323 /* These ciphers do not use key sequence */ 324 return -EINVAL; 325 case WLAN_CIPHER_SUITE_TKIP: 326 case WLAN_CIPHER_SUITE_CCMP: 327 case WLAN_CIPHER_SUITE_CCMP_256: 328 case WLAN_CIPHER_SUITE_GCMP: 329 case WLAN_CIPHER_SUITE_GCMP_256: 330 case WLAN_CIPHER_SUITE_AES_CMAC: 331 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 332 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 333 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 334 if (params->seq_len != 6) 335 return -EINVAL; 336 break; 337 } 338 } 339 340 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 341 return -EINVAL; 342 343 return 0; 344 } 345 346 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 347 { 348 unsigned int hdrlen = 24; 349 350 if (ieee80211_is_data(fc)) { 351 if (ieee80211_has_a4(fc)) 352 hdrlen = 30; 353 if (ieee80211_is_data_qos(fc)) { 354 hdrlen += IEEE80211_QOS_CTL_LEN; 355 if (ieee80211_has_order(fc)) 356 hdrlen += IEEE80211_HT_CTL_LEN; 357 } 358 goto out; 359 } 360 361 if (ieee80211_is_mgmt(fc)) { 362 if (ieee80211_has_order(fc)) 363 hdrlen += IEEE80211_HT_CTL_LEN; 364 goto out; 365 } 366 367 if (ieee80211_is_ctl(fc)) { 368 /* 369 * ACK and CTS are 10 bytes, all others 16. To see how 370 * to get this condition consider 371 * subtype mask: 0b0000000011110000 (0x00F0) 372 * ACK subtype: 0b0000000011010000 (0x00D0) 373 * CTS subtype: 0b0000000011000000 (0x00C0) 374 * bits that matter: ^^^ (0x00E0) 375 * value of those: 0b0000000011000000 (0x00C0) 376 */ 377 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 378 hdrlen = 10; 379 else 380 hdrlen = 16; 381 } 382 out: 383 return hdrlen; 384 } 385 EXPORT_SYMBOL(ieee80211_hdrlen); 386 387 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 388 { 389 const struct ieee80211_hdr *hdr = 390 (const struct ieee80211_hdr *)skb->data; 391 unsigned int hdrlen; 392 393 if (unlikely(skb->len < 10)) 394 return 0; 395 hdrlen = ieee80211_hdrlen(hdr->frame_control); 396 if (unlikely(hdrlen > skb->len)) 397 return 0; 398 return hdrlen; 399 } 400 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 401 402 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 403 { 404 int ae = flags & MESH_FLAGS_AE; 405 /* 802.11-2012, 8.2.4.7.3 */ 406 switch (ae) { 407 default: 408 case 0: 409 return 6; 410 case MESH_FLAGS_AE_A4: 411 return 12; 412 case MESH_FLAGS_AE_A5_A6: 413 return 18; 414 } 415 } 416 417 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 418 { 419 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 420 } 421 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 422 423 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 424 const u8 *addr, enum nl80211_iftype iftype, 425 u8 data_offset) 426 { 427 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 428 struct { 429 u8 hdr[ETH_ALEN] __aligned(2); 430 __be16 proto; 431 } payload; 432 struct ethhdr tmp; 433 u16 hdrlen; 434 u8 mesh_flags = 0; 435 436 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 437 return -1; 438 439 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; 440 if (skb->len < hdrlen + 8) 441 return -1; 442 443 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 444 * header 445 * IEEE 802.11 address fields: 446 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 447 * 0 0 DA SA BSSID n/a 448 * 0 1 DA BSSID SA n/a 449 * 1 0 BSSID SA DA n/a 450 * 1 1 RA TA DA SA 451 */ 452 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 453 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 454 455 if (iftype == NL80211_IFTYPE_MESH_POINT) 456 skb_copy_bits(skb, hdrlen, &mesh_flags, 1); 457 458 mesh_flags &= MESH_FLAGS_AE; 459 460 switch (hdr->frame_control & 461 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 462 case cpu_to_le16(IEEE80211_FCTL_TODS): 463 if (unlikely(iftype != NL80211_IFTYPE_AP && 464 iftype != NL80211_IFTYPE_AP_VLAN && 465 iftype != NL80211_IFTYPE_P2P_GO)) 466 return -1; 467 break; 468 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 469 if (unlikely(iftype != NL80211_IFTYPE_WDS && 470 iftype != NL80211_IFTYPE_MESH_POINT && 471 iftype != NL80211_IFTYPE_AP_VLAN && 472 iftype != NL80211_IFTYPE_STATION)) 473 return -1; 474 if (iftype == NL80211_IFTYPE_MESH_POINT) { 475 if (mesh_flags == MESH_FLAGS_AE_A4) 476 return -1; 477 if (mesh_flags == MESH_FLAGS_AE_A5_A6) { 478 skb_copy_bits(skb, hdrlen + 479 offsetof(struct ieee80211s_hdr, eaddr1), 480 tmp.h_dest, 2 * ETH_ALEN); 481 } 482 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 483 } 484 break; 485 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 486 if ((iftype != NL80211_IFTYPE_STATION && 487 iftype != NL80211_IFTYPE_P2P_CLIENT && 488 iftype != NL80211_IFTYPE_MESH_POINT) || 489 (is_multicast_ether_addr(tmp.h_dest) && 490 ether_addr_equal(tmp.h_source, addr))) 491 return -1; 492 if (iftype == NL80211_IFTYPE_MESH_POINT) { 493 if (mesh_flags == MESH_FLAGS_AE_A5_A6) 494 return -1; 495 if (mesh_flags == MESH_FLAGS_AE_A4) 496 skb_copy_bits(skb, hdrlen + 497 offsetof(struct ieee80211s_hdr, eaddr1), 498 tmp.h_source, ETH_ALEN); 499 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 500 } 501 break; 502 case cpu_to_le16(0): 503 if (iftype != NL80211_IFTYPE_ADHOC && 504 iftype != NL80211_IFTYPE_STATION && 505 iftype != NL80211_IFTYPE_OCB) 506 return -1; 507 break; 508 } 509 510 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)); 511 tmp.h_proto = payload.proto; 512 513 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) && 514 tmp.h_proto != htons(ETH_P_AARP) && 515 tmp.h_proto != htons(ETH_P_IPX)) || 516 ether_addr_equal(payload.hdr, bridge_tunnel_header))) 517 /* remove RFC1042 or Bridge-Tunnel encapsulation and 518 * replace EtherType */ 519 hdrlen += ETH_ALEN + 2; 520 else 521 tmp.h_proto = htons(skb->len - hdrlen); 522 523 pskb_pull(skb, hdrlen); 524 525 if (!ehdr) 526 ehdr = skb_push(skb, sizeof(struct ethhdr)); 527 memcpy(ehdr, &tmp, sizeof(tmp)); 528 529 return 0; 530 } 531 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 532 533 static void 534 __frame_add_frag(struct sk_buff *skb, struct page *page, 535 void *ptr, int len, int size) 536 { 537 struct skb_shared_info *sh = skb_shinfo(skb); 538 int page_offset; 539 540 page_ref_inc(page); 541 page_offset = ptr - page_address(page); 542 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 543 } 544 545 static void 546 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 547 int offset, int len) 548 { 549 struct skb_shared_info *sh = skb_shinfo(skb); 550 const skb_frag_t *frag = &sh->frags[0]; 551 struct page *frag_page; 552 void *frag_ptr; 553 int frag_len, frag_size; 554 int head_size = skb->len - skb->data_len; 555 int cur_len; 556 557 frag_page = virt_to_head_page(skb->head); 558 frag_ptr = skb->data; 559 frag_size = head_size; 560 561 while (offset >= frag_size) { 562 offset -= frag_size; 563 frag_page = skb_frag_page(frag); 564 frag_ptr = skb_frag_address(frag); 565 frag_size = skb_frag_size(frag); 566 frag++; 567 } 568 569 frag_ptr += offset; 570 frag_len = frag_size - offset; 571 572 cur_len = min(len, frag_len); 573 574 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 575 len -= cur_len; 576 577 while (len > 0) { 578 frag_len = skb_frag_size(frag); 579 cur_len = min(len, frag_len); 580 __frame_add_frag(frame, skb_frag_page(frag), 581 skb_frag_address(frag), cur_len, frag_len); 582 len -= cur_len; 583 frag++; 584 } 585 } 586 587 static struct sk_buff * 588 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 589 int offset, int len, bool reuse_frag) 590 { 591 struct sk_buff *frame; 592 int cur_len = len; 593 594 if (skb->len - offset < len) 595 return NULL; 596 597 /* 598 * When reusing framents, copy some data to the head to simplify 599 * ethernet header handling and speed up protocol header processing 600 * in the stack later. 601 */ 602 if (reuse_frag) 603 cur_len = min_t(int, len, 32); 604 605 /* 606 * Allocate and reserve two bytes more for payload 607 * alignment since sizeof(struct ethhdr) is 14. 608 */ 609 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 610 if (!frame) 611 return NULL; 612 613 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 614 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 615 616 len -= cur_len; 617 if (!len) 618 return frame; 619 620 offset += cur_len; 621 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 622 623 return frame; 624 } 625 626 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 627 const u8 *addr, enum nl80211_iftype iftype, 628 const unsigned int extra_headroom, 629 const u8 *check_da, const u8 *check_sa) 630 { 631 unsigned int hlen = ALIGN(extra_headroom, 4); 632 struct sk_buff *frame = NULL; 633 u16 ethertype; 634 u8 *payload; 635 int offset = 0, remaining; 636 struct ethhdr eth; 637 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 638 bool reuse_skb = false; 639 bool last = false; 640 641 while (!last) { 642 unsigned int subframe_len; 643 int len; 644 u8 padding; 645 646 skb_copy_bits(skb, offset, ð, sizeof(eth)); 647 len = ntohs(eth.h_proto); 648 subframe_len = sizeof(struct ethhdr) + len; 649 padding = (4 - subframe_len) & 0x3; 650 651 /* the last MSDU has no padding */ 652 remaining = skb->len - offset; 653 if (subframe_len > remaining) 654 goto purge; 655 656 offset += sizeof(struct ethhdr); 657 last = remaining <= subframe_len + padding; 658 659 /* FIXME: should we really accept multicast DA? */ 660 if ((check_da && !is_multicast_ether_addr(eth.h_dest) && 661 !ether_addr_equal(check_da, eth.h_dest)) || 662 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) { 663 offset += len + padding; 664 continue; 665 } 666 667 /* reuse skb for the last subframe */ 668 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 669 skb_pull(skb, offset); 670 frame = skb; 671 reuse_skb = true; 672 } else { 673 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 674 reuse_frag); 675 if (!frame) 676 goto purge; 677 678 offset += len + padding; 679 } 680 681 skb_reset_network_header(frame); 682 frame->dev = skb->dev; 683 frame->priority = skb->priority; 684 685 payload = frame->data; 686 ethertype = (payload[6] << 8) | payload[7]; 687 if (likely((ether_addr_equal(payload, rfc1042_header) && 688 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 689 ether_addr_equal(payload, bridge_tunnel_header))) { 690 eth.h_proto = htons(ethertype); 691 skb_pull(frame, ETH_ALEN + 2); 692 } 693 694 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth)); 695 __skb_queue_tail(list, frame); 696 } 697 698 if (!reuse_skb) 699 dev_kfree_skb(skb); 700 701 return; 702 703 purge: 704 __skb_queue_purge(list); 705 dev_kfree_skb(skb); 706 } 707 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 708 709 /* Given a data frame determine the 802.1p/1d tag to use. */ 710 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 711 struct cfg80211_qos_map *qos_map) 712 { 713 unsigned int dscp; 714 unsigned char vlan_priority; 715 716 /* skb->priority values from 256->263 are magic values to 717 * directly indicate a specific 802.1d priority. This is used 718 * to allow 802.1d priority to be passed directly in from VLAN 719 * tags, etc. 720 */ 721 if (skb->priority >= 256 && skb->priority <= 263) 722 return skb->priority - 256; 723 724 if (skb_vlan_tag_present(skb)) { 725 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 726 >> VLAN_PRIO_SHIFT; 727 if (vlan_priority > 0) 728 return vlan_priority; 729 } 730 731 switch (skb->protocol) { 732 case htons(ETH_P_IP): 733 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 734 break; 735 case htons(ETH_P_IPV6): 736 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 737 break; 738 case htons(ETH_P_MPLS_UC): 739 case htons(ETH_P_MPLS_MC): { 740 struct mpls_label mpls_tmp, *mpls; 741 742 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 743 sizeof(*mpls), &mpls_tmp); 744 if (!mpls) 745 return 0; 746 747 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 748 >> MPLS_LS_TC_SHIFT; 749 } 750 case htons(ETH_P_80221): 751 /* 802.21 is always network control traffic */ 752 return 7; 753 default: 754 return 0; 755 } 756 757 if (qos_map) { 758 unsigned int i, tmp_dscp = dscp >> 2; 759 760 for (i = 0; i < qos_map->num_des; i++) { 761 if (tmp_dscp == qos_map->dscp_exception[i].dscp) 762 return qos_map->dscp_exception[i].up; 763 } 764 765 for (i = 0; i < 8; i++) { 766 if (tmp_dscp >= qos_map->up[i].low && 767 tmp_dscp <= qos_map->up[i].high) 768 return i; 769 } 770 } 771 772 return dscp >> 5; 773 } 774 EXPORT_SYMBOL(cfg80211_classify8021d); 775 776 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie) 777 { 778 const struct cfg80211_bss_ies *ies; 779 780 ies = rcu_dereference(bss->ies); 781 if (!ies) 782 return NULL; 783 784 return cfg80211_find_ie(ie, ies->data, ies->len); 785 } 786 EXPORT_SYMBOL(ieee80211_bss_get_ie); 787 788 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 789 { 790 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 791 struct net_device *dev = wdev->netdev; 792 int i; 793 794 if (!wdev->connect_keys) 795 return; 796 797 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) { 798 if (!wdev->connect_keys->params[i].cipher) 799 continue; 800 if (rdev_add_key(rdev, dev, i, false, NULL, 801 &wdev->connect_keys->params[i])) { 802 netdev_err(dev, "failed to set key %d\n", i); 803 continue; 804 } 805 if (wdev->connect_keys->def == i && 806 rdev_set_default_key(rdev, dev, i, true, true)) { 807 netdev_err(dev, "failed to set defkey %d\n", i); 808 continue; 809 } 810 } 811 812 kzfree(wdev->connect_keys); 813 wdev->connect_keys = NULL; 814 } 815 816 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 817 { 818 struct cfg80211_event *ev; 819 unsigned long flags; 820 821 spin_lock_irqsave(&wdev->event_lock, flags); 822 while (!list_empty(&wdev->event_list)) { 823 ev = list_first_entry(&wdev->event_list, 824 struct cfg80211_event, list); 825 list_del(&ev->list); 826 spin_unlock_irqrestore(&wdev->event_lock, flags); 827 828 wdev_lock(wdev); 829 switch (ev->type) { 830 case EVENT_CONNECT_RESULT: 831 __cfg80211_connect_result( 832 wdev->netdev, 833 &ev->cr, 834 ev->cr.status == WLAN_STATUS_SUCCESS); 835 break; 836 case EVENT_ROAMED: 837 __cfg80211_roamed(wdev, &ev->rm); 838 break; 839 case EVENT_DISCONNECTED: 840 __cfg80211_disconnected(wdev->netdev, 841 ev->dc.ie, ev->dc.ie_len, 842 ev->dc.reason, 843 !ev->dc.locally_generated); 844 break; 845 case EVENT_IBSS_JOINED: 846 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 847 ev->ij.channel); 848 break; 849 case EVENT_STOPPED: 850 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 851 break; 852 case EVENT_PORT_AUTHORIZED: 853 __cfg80211_port_authorized(wdev, ev->pa.bssid); 854 break; 855 } 856 wdev_unlock(wdev); 857 858 kfree(ev); 859 860 spin_lock_irqsave(&wdev->event_lock, flags); 861 } 862 spin_unlock_irqrestore(&wdev->event_lock, flags); 863 } 864 865 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 866 { 867 struct wireless_dev *wdev; 868 869 ASSERT_RTNL(); 870 871 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 872 cfg80211_process_wdev_events(wdev); 873 } 874 875 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 876 struct net_device *dev, enum nl80211_iftype ntype, 877 struct vif_params *params) 878 { 879 int err; 880 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 881 882 ASSERT_RTNL(); 883 884 /* don't support changing VLANs, you just re-create them */ 885 if (otype == NL80211_IFTYPE_AP_VLAN) 886 return -EOPNOTSUPP; 887 888 /* cannot change into P2P device or NAN */ 889 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 890 ntype == NL80211_IFTYPE_NAN) 891 return -EOPNOTSUPP; 892 893 if (!rdev->ops->change_virtual_intf || 894 !(rdev->wiphy.interface_modes & (1 << ntype))) 895 return -EOPNOTSUPP; 896 897 /* if it's part of a bridge, reject changing type to station/ibss */ 898 if ((dev->priv_flags & IFF_BRIDGE_PORT) && 899 (ntype == NL80211_IFTYPE_ADHOC || 900 ntype == NL80211_IFTYPE_STATION || 901 ntype == NL80211_IFTYPE_P2P_CLIENT)) 902 return -EBUSY; 903 904 if (ntype != otype) { 905 dev->ieee80211_ptr->use_4addr = false; 906 dev->ieee80211_ptr->mesh_id_up_len = 0; 907 wdev_lock(dev->ieee80211_ptr); 908 rdev_set_qos_map(rdev, dev, NULL); 909 wdev_unlock(dev->ieee80211_ptr); 910 911 switch (otype) { 912 case NL80211_IFTYPE_AP: 913 cfg80211_stop_ap(rdev, dev, true); 914 break; 915 case NL80211_IFTYPE_ADHOC: 916 cfg80211_leave_ibss(rdev, dev, false); 917 break; 918 case NL80211_IFTYPE_STATION: 919 case NL80211_IFTYPE_P2P_CLIENT: 920 wdev_lock(dev->ieee80211_ptr); 921 cfg80211_disconnect(rdev, dev, 922 WLAN_REASON_DEAUTH_LEAVING, true); 923 wdev_unlock(dev->ieee80211_ptr); 924 break; 925 case NL80211_IFTYPE_MESH_POINT: 926 /* mesh should be handled? */ 927 break; 928 default: 929 break; 930 } 931 932 cfg80211_process_rdev_events(rdev); 933 } 934 935 err = rdev_change_virtual_intf(rdev, dev, ntype, params); 936 937 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 938 939 if (!err && params && params->use_4addr != -1) 940 dev->ieee80211_ptr->use_4addr = params->use_4addr; 941 942 if (!err) { 943 dev->priv_flags &= ~IFF_DONT_BRIDGE; 944 switch (ntype) { 945 case NL80211_IFTYPE_STATION: 946 if (dev->ieee80211_ptr->use_4addr) 947 break; 948 /* fall through */ 949 case NL80211_IFTYPE_OCB: 950 case NL80211_IFTYPE_P2P_CLIENT: 951 case NL80211_IFTYPE_ADHOC: 952 dev->priv_flags |= IFF_DONT_BRIDGE; 953 break; 954 case NL80211_IFTYPE_P2P_GO: 955 case NL80211_IFTYPE_AP: 956 case NL80211_IFTYPE_AP_VLAN: 957 case NL80211_IFTYPE_WDS: 958 case NL80211_IFTYPE_MESH_POINT: 959 /* bridging OK */ 960 break; 961 case NL80211_IFTYPE_MONITOR: 962 /* monitor can't bridge anyway */ 963 break; 964 case NL80211_IFTYPE_UNSPECIFIED: 965 case NUM_NL80211_IFTYPES: 966 /* not happening */ 967 break; 968 case NL80211_IFTYPE_P2P_DEVICE: 969 case NL80211_IFTYPE_NAN: 970 WARN_ON(1); 971 break; 972 } 973 } 974 975 if (!err && ntype != otype && netif_running(dev)) { 976 cfg80211_update_iface_num(rdev, ntype, 1); 977 cfg80211_update_iface_num(rdev, otype, -1); 978 } 979 980 return err; 981 } 982 983 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) 984 { 985 int modulation, streams, bitrate; 986 987 /* the formula below does only work for MCS values smaller than 32 */ 988 if (WARN_ON_ONCE(rate->mcs >= 32)) 989 return 0; 990 991 modulation = rate->mcs & 7; 992 streams = (rate->mcs >> 3) + 1; 993 994 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 995 996 if (modulation < 4) 997 bitrate *= (modulation + 1); 998 else if (modulation == 4) 999 bitrate *= (modulation + 2); 1000 else 1001 bitrate *= (modulation + 3); 1002 1003 bitrate *= streams; 1004 1005 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1006 bitrate = (bitrate / 9) * 10; 1007 1008 /* do NOT round down here */ 1009 return (bitrate + 50000) / 100000; 1010 } 1011 1012 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate) 1013 { 1014 static const u32 __mcs2bitrate[] = { 1015 /* control PHY */ 1016 [0] = 275, 1017 /* SC PHY */ 1018 [1] = 3850, 1019 [2] = 7700, 1020 [3] = 9625, 1021 [4] = 11550, 1022 [5] = 12512, /* 1251.25 mbps */ 1023 [6] = 15400, 1024 [7] = 19250, 1025 [8] = 23100, 1026 [9] = 25025, 1027 [10] = 30800, 1028 [11] = 38500, 1029 [12] = 46200, 1030 /* OFDM PHY */ 1031 [13] = 6930, 1032 [14] = 8662, /* 866.25 mbps */ 1033 [15] = 13860, 1034 [16] = 17325, 1035 [17] = 20790, 1036 [18] = 27720, 1037 [19] = 34650, 1038 [20] = 41580, 1039 [21] = 45045, 1040 [22] = 51975, 1041 [23] = 62370, 1042 [24] = 67568, /* 6756.75 mbps */ 1043 /* LP-SC PHY */ 1044 [25] = 6260, 1045 [26] = 8340, 1046 [27] = 11120, 1047 [28] = 12510, 1048 [29] = 16680, 1049 [30] = 22240, 1050 [31] = 25030, 1051 }; 1052 1053 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1054 return 0; 1055 1056 return __mcs2bitrate[rate->mcs]; 1057 } 1058 1059 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1060 { 1061 static const u32 base[4][10] = { 1062 { 6500000, 1063 13000000, 1064 19500000, 1065 26000000, 1066 39000000, 1067 52000000, 1068 58500000, 1069 65000000, 1070 78000000, 1071 /* not in the spec, but some devices use this: */ 1072 86500000, 1073 }, 1074 { 13500000, 1075 27000000, 1076 40500000, 1077 54000000, 1078 81000000, 1079 108000000, 1080 121500000, 1081 135000000, 1082 162000000, 1083 180000000, 1084 }, 1085 { 29300000, 1086 58500000, 1087 87800000, 1088 117000000, 1089 175500000, 1090 234000000, 1091 263300000, 1092 292500000, 1093 351000000, 1094 390000000, 1095 }, 1096 { 58500000, 1097 117000000, 1098 175500000, 1099 234000000, 1100 351000000, 1101 468000000, 1102 526500000, 1103 585000000, 1104 702000000, 1105 780000000, 1106 }, 1107 }; 1108 u32 bitrate; 1109 int idx; 1110 1111 if (rate->mcs > 9) 1112 goto warn; 1113 1114 switch (rate->bw) { 1115 case RATE_INFO_BW_160: 1116 idx = 3; 1117 break; 1118 case RATE_INFO_BW_80: 1119 idx = 2; 1120 break; 1121 case RATE_INFO_BW_40: 1122 idx = 1; 1123 break; 1124 case RATE_INFO_BW_5: 1125 case RATE_INFO_BW_10: 1126 default: 1127 goto warn; 1128 case RATE_INFO_BW_20: 1129 idx = 0; 1130 } 1131 1132 bitrate = base[idx][rate->mcs]; 1133 bitrate *= rate->nss; 1134 1135 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1136 bitrate = (bitrate / 9) * 10; 1137 1138 /* do NOT round down here */ 1139 return (bitrate + 50000) / 100000; 1140 warn: 1141 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1142 rate->bw, rate->mcs, rate->nss); 1143 return 0; 1144 } 1145 1146 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) 1147 { 1148 #define SCALE 2048 1149 u16 mcs_divisors[12] = { 1150 34133, /* 16.666666... */ 1151 17067, /* 8.333333... */ 1152 11378, /* 5.555555... */ 1153 8533, /* 4.166666... */ 1154 5689, /* 2.777777... */ 1155 4267, /* 2.083333... */ 1156 3923, /* 1.851851... */ 1157 3413, /* 1.666666... */ 1158 2844, /* 1.388888... */ 1159 2560, /* 1.250000... */ 1160 2276, /* 1.111111... */ 1161 2048, /* 1.000000... */ 1162 }; 1163 u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; 1164 u32 rates_969[3] = { 480388888, 453700000, 408333333 }; 1165 u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1166 u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1167 u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1168 u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1169 u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1170 u64 tmp; 1171 u32 result; 1172 1173 if (WARN_ON_ONCE(rate->mcs > 11)) 1174 return 0; 1175 1176 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) 1177 return 0; 1178 if (WARN_ON_ONCE(rate->he_ru_alloc > 1179 NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1180 return 0; 1181 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1182 return 0; 1183 1184 if (rate->bw == RATE_INFO_BW_160) 1185 result = rates_160M[rate->he_gi]; 1186 else if (rate->bw == RATE_INFO_BW_80 || 1187 (rate->bw == RATE_INFO_BW_HE_RU && 1188 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) 1189 result = rates_969[rate->he_gi]; 1190 else if (rate->bw == RATE_INFO_BW_40 || 1191 (rate->bw == RATE_INFO_BW_HE_RU && 1192 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) 1193 result = rates_484[rate->he_gi]; 1194 else if (rate->bw == RATE_INFO_BW_20 || 1195 (rate->bw == RATE_INFO_BW_HE_RU && 1196 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) 1197 result = rates_242[rate->he_gi]; 1198 else if (rate->bw == RATE_INFO_BW_HE_RU && 1199 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) 1200 result = rates_106[rate->he_gi]; 1201 else if (rate->bw == RATE_INFO_BW_HE_RU && 1202 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) 1203 result = rates_52[rate->he_gi]; 1204 else if (rate->bw == RATE_INFO_BW_HE_RU && 1205 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) 1206 result = rates_26[rate->he_gi]; 1207 else if (WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", 1208 rate->bw, rate->he_ru_alloc)) 1209 return 0; 1210 1211 /* now scale to the appropriate MCS */ 1212 tmp = result; 1213 tmp *= SCALE; 1214 do_div(tmp, mcs_divisors[rate->mcs]); 1215 result = tmp; 1216 1217 /* and take NSS, DCM into account */ 1218 result = (result * rate->nss) / 8; 1219 if (rate->he_dcm) 1220 result /= 2; 1221 1222 return result; 1223 } 1224 1225 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1226 { 1227 if (rate->flags & RATE_INFO_FLAGS_MCS) 1228 return cfg80211_calculate_bitrate_ht(rate); 1229 if (rate->flags & RATE_INFO_FLAGS_60G) 1230 return cfg80211_calculate_bitrate_60g(rate); 1231 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1232 return cfg80211_calculate_bitrate_vht(rate); 1233 if (rate->flags & RATE_INFO_FLAGS_HE_MCS) 1234 return cfg80211_calculate_bitrate_he(rate); 1235 1236 return rate->legacy; 1237 } 1238 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1239 1240 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1241 enum ieee80211_p2p_attr_id attr, 1242 u8 *buf, unsigned int bufsize) 1243 { 1244 u8 *out = buf; 1245 u16 attr_remaining = 0; 1246 bool desired_attr = false; 1247 u16 desired_len = 0; 1248 1249 while (len > 0) { 1250 unsigned int iedatalen; 1251 unsigned int copy; 1252 const u8 *iedata; 1253 1254 if (len < 2) 1255 return -EILSEQ; 1256 iedatalen = ies[1]; 1257 if (iedatalen + 2 > len) 1258 return -EILSEQ; 1259 1260 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1261 goto cont; 1262 1263 if (iedatalen < 4) 1264 goto cont; 1265 1266 iedata = ies + 2; 1267 1268 /* check WFA OUI, P2P subtype */ 1269 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1270 iedata[2] != 0x9a || iedata[3] != 0x09) 1271 goto cont; 1272 1273 iedatalen -= 4; 1274 iedata += 4; 1275 1276 /* check attribute continuation into this IE */ 1277 copy = min_t(unsigned int, attr_remaining, iedatalen); 1278 if (copy && desired_attr) { 1279 desired_len += copy; 1280 if (out) { 1281 memcpy(out, iedata, min(bufsize, copy)); 1282 out += min(bufsize, copy); 1283 bufsize -= min(bufsize, copy); 1284 } 1285 1286 1287 if (copy == attr_remaining) 1288 return desired_len; 1289 } 1290 1291 attr_remaining -= copy; 1292 if (attr_remaining) 1293 goto cont; 1294 1295 iedatalen -= copy; 1296 iedata += copy; 1297 1298 while (iedatalen > 0) { 1299 u16 attr_len; 1300 1301 /* P2P attribute ID & size must fit */ 1302 if (iedatalen < 3) 1303 return -EILSEQ; 1304 desired_attr = iedata[0] == attr; 1305 attr_len = get_unaligned_le16(iedata + 1); 1306 iedatalen -= 3; 1307 iedata += 3; 1308 1309 copy = min_t(unsigned int, attr_len, iedatalen); 1310 1311 if (desired_attr) { 1312 desired_len += copy; 1313 if (out) { 1314 memcpy(out, iedata, min(bufsize, copy)); 1315 out += min(bufsize, copy); 1316 bufsize -= min(bufsize, copy); 1317 } 1318 1319 if (copy == attr_len) 1320 return desired_len; 1321 } 1322 1323 iedata += copy; 1324 iedatalen -= copy; 1325 attr_remaining = attr_len - copy; 1326 } 1327 1328 cont: 1329 len -= ies[1] + 2; 1330 ies += ies[1] + 2; 1331 } 1332 1333 if (attr_remaining && desired_attr) 1334 return -EILSEQ; 1335 1336 return -ENOENT; 1337 } 1338 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1339 1340 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) 1341 { 1342 int i; 1343 1344 /* Make sure array values are legal */ 1345 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) 1346 return false; 1347 1348 i = 0; 1349 while (i < n_ids) { 1350 if (ids[i] == WLAN_EID_EXTENSION) { 1351 if (id_ext && (ids[i + 1] == id)) 1352 return true; 1353 1354 i += 2; 1355 continue; 1356 } 1357 1358 if (ids[i] == id && !id_ext) 1359 return true; 1360 1361 i++; 1362 } 1363 return false; 1364 } 1365 1366 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) 1367 { 1368 /* we assume a validly formed IEs buffer */ 1369 u8 len = ies[pos + 1]; 1370 1371 pos += 2 + len; 1372 1373 /* the IE itself must have 255 bytes for fragments to follow */ 1374 if (len < 255) 1375 return pos; 1376 1377 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { 1378 len = ies[pos + 1]; 1379 pos += 2 + len; 1380 } 1381 1382 return pos; 1383 } 1384 1385 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1386 const u8 *ids, int n_ids, 1387 const u8 *after_ric, int n_after_ric, 1388 size_t offset) 1389 { 1390 size_t pos = offset; 1391 1392 while (pos < ielen) { 1393 u8 ext = 0; 1394 1395 if (ies[pos] == WLAN_EID_EXTENSION) 1396 ext = 2; 1397 if ((pos + ext) >= ielen) 1398 break; 1399 1400 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], 1401 ies[pos] == WLAN_EID_EXTENSION)) 1402 break; 1403 1404 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1405 pos = skip_ie(ies, ielen, pos); 1406 1407 while (pos < ielen) { 1408 if (ies[pos] == WLAN_EID_EXTENSION) 1409 ext = 2; 1410 else 1411 ext = 0; 1412 1413 if ((pos + ext) >= ielen) 1414 break; 1415 1416 if (!ieee80211_id_in_list(after_ric, 1417 n_after_ric, 1418 ies[pos + ext], 1419 ext == 2)) 1420 pos = skip_ie(ies, ielen, pos); 1421 } 1422 } else { 1423 pos = skip_ie(ies, ielen, pos); 1424 } 1425 } 1426 1427 return pos; 1428 } 1429 EXPORT_SYMBOL(ieee80211_ie_split_ric); 1430 1431 bool ieee80211_operating_class_to_band(u8 operating_class, 1432 enum nl80211_band *band) 1433 { 1434 switch (operating_class) { 1435 case 112: 1436 case 115 ... 127: 1437 case 128 ... 130: 1438 *band = NL80211_BAND_5GHZ; 1439 return true; 1440 case 81: 1441 case 82: 1442 case 83: 1443 case 84: 1444 *band = NL80211_BAND_2GHZ; 1445 return true; 1446 case 180: 1447 *band = NL80211_BAND_60GHZ; 1448 return true; 1449 } 1450 1451 return false; 1452 } 1453 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1454 1455 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 1456 u8 *op_class) 1457 { 1458 u8 vht_opclass; 1459 u16 freq = chandef->center_freq1; 1460 1461 if (freq >= 2412 && freq <= 2472) { 1462 if (chandef->width > NL80211_CHAN_WIDTH_40) 1463 return false; 1464 1465 /* 2.407 GHz, channels 1..13 */ 1466 if (chandef->width == NL80211_CHAN_WIDTH_40) { 1467 if (freq > chandef->chan->center_freq) 1468 *op_class = 83; /* HT40+ */ 1469 else 1470 *op_class = 84; /* HT40- */ 1471 } else { 1472 *op_class = 81; 1473 } 1474 1475 return true; 1476 } 1477 1478 if (freq == 2484) { 1479 if (chandef->width > NL80211_CHAN_WIDTH_40) 1480 return false; 1481 1482 *op_class = 82; /* channel 14 */ 1483 return true; 1484 } 1485 1486 switch (chandef->width) { 1487 case NL80211_CHAN_WIDTH_80: 1488 vht_opclass = 128; 1489 break; 1490 case NL80211_CHAN_WIDTH_160: 1491 vht_opclass = 129; 1492 break; 1493 case NL80211_CHAN_WIDTH_80P80: 1494 vht_opclass = 130; 1495 break; 1496 case NL80211_CHAN_WIDTH_10: 1497 case NL80211_CHAN_WIDTH_5: 1498 return false; /* unsupported for now */ 1499 default: 1500 vht_opclass = 0; 1501 break; 1502 } 1503 1504 /* 5 GHz, channels 36..48 */ 1505 if (freq >= 5180 && freq <= 5240) { 1506 if (vht_opclass) { 1507 *op_class = vht_opclass; 1508 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1509 if (freq > chandef->chan->center_freq) 1510 *op_class = 116; 1511 else 1512 *op_class = 117; 1513 } else { 1514 *op_class = 115; 1515 } 1516 1517 return true; 1518 } 1519 1520 /* 5 GHz, channels 52..64 */ 1521 if (freq >= 5260 && freq <= 5320) { 1522 if (vht_opclass) { 1523 *op_class = vht_opclass; 1524 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1525 if (freq > chandef->chan->center_freq) 1526 *op_class = 119; 1527 else 1528 *op_class = 120; 1529 } else { 1530 *op_class = 118; 1531 } 1532 1533 return true; 1534 } 1535 1536 /* 5 GHz, channels 100..144 */ 1537 if (freq >= 5500 && freq <= 5720) { 1538 if (vht_opclass) { 1539 *op_class = vht_opclass; 1540 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1541 if (freq > chandef->chan->center_freq) 1542 *op_class = 122; 1543 else 1544 *op_class = 123; 1545 } else { 1546 *op_class = 121; 1547 } 1548 1549 return true; 1550 } 1551 1552 /* 5 GHz, channels 149..169 */ 1553 if (freq >= 5745 && freq <= 5845) { 1554 if (vht_opclass) { 1555 *op_class = vht_opclass; 1556 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1557 if (freq > chandef->chan->center_freq) 1558 *op_class = 126; 1559 else 1560 *op_class = 127; 1561 } else if (freq <= 5805) { 1562 *op_class = 124; 1563 } else { 1564 *op_class = 125; 1565 } 1566 1567 return true; 1568 } 1569 1570 /* 56.16 GHz, channel 1..4 */ 1571 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) { 1572 if (chandef->width >= NL80211_CHAN_WIDTH_40) 1573 return false; 1574 1575 *op_class = 180; 1576 return true; 1577 } 1578 1579 /* not supported yet */ 1580 return false; 1581 } 1582 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 1583 1584 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, 1585 u32 *beacon_int_gcd, 1586 bool *beacon_int_different) 1587 { 1588 struct wireless_dev *wdev; 1589 1590 *beacon_int_gcd = 0; 1591 *beacon_int_different = false; 1592 1593 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 1594 if (!wdev->beacon_interval) 1595 continue; 1596 1597 if (!*beacon_int_gcd) { 1598 *beacon_int_gcd = wdev->beacon_interval; 1599 continue; 1600 } 1601 1602 if (wdev->beacon_interval == *beacon_int_gcd) 1603 continue; 1604 1605 *beacon_int_different = true; 1606 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval); 1607 } 1608 1609 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { 1610 if (*beacon_int_gcd) 1611 *beacon_int_different = true; 1612 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); 1613 } 1614 } 1615 1616 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 1617 enum nl80211_iftype iftype, u32 beacon_int) 1618 { 1619 /* 1620 * This is just a basic pre-condition check; if interface combinations 1621 * are possible the driver must already be checking those with a call 1622 * to cfg80211_check_combinations(), in which case we'll validate more 1623 * through the cfg80211_calculate_bi_data() call and code in 1624 * cfg80211_iter_combinations(). 1625 */ 1626 1627 if (beacon_int < 10 || beacon_int > 10000) 1628 return -EINVAL; 1629 1630 return 0; 1631 } 1632 1633 int cfg80211_iter_combinations(struct wiphy *wiphy, 1634 struct iface_combination_params *params, 1635 void (*iter)(const struct ieee80211_iface_combination *c, 1636 void *data), 1637 void *data) 1638 { 1639 const struct ieee80211_regdomain *regdom; 1640 enum nl80211_dfs_regions region = 0; 1641 int i, j, iftype; 1642 int num_interfaces = 0; 1643 u32 used_iftypes = 0; 1644 u32 beacon_int_gcd; 1645 bool beacon_int_different; 1646 1647 /* 1648 * This is a bit strange, since the iteration used to rely only on 1649 * the data given by the driver, but here it now relies on context, 1650 * in form of the currently operating interfaces. 1651 * This is OK for all current users, and saves us from having to 1652 * push the GCD calculations into all the drivers. 1653 * In the future, this should probably rely more on data that's in 1654 * cfg80211 already - the only thing not would appear to be any new 1655 * interfaces (while being brought up) and channel/radar data. 1656 */ 1657 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, 1658 &beacon_int_gcd, &beacon_int_different); 1659 1660 if (params->radar_detect) { 1661 rcu_read_lock(); 1662 regdom = rcu_dereference(cfg80211_regdomain); 1663 if (regdom) 1664 region = regdom->dfs_region; 1665 rcu_read_unlock(); 1666 } 1667 1668 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1669 num_interfaces += params->iftype_num[iftype]; 1670 if (params->iftype_num[iftype] > 0 && 1671 !(wiphy->software_iftypes & BIT(iftype))) 1672 used_iftypes |= BIT(iftype); 1673 } 1674 1675 for (i = 0; i < wiphy->n_iface_combinations; i++) { 1676 const struct ieee80211_iface_combination *c; 1677 struct ieee80211_iface_limit *limits; 1678 u32 all_iftypes = 0; 1679 1680 c = &wiphy->iface_combinations[i]; 1681 1682 if (num_interfaces > c->max_interfaces) 1683 continue; 1684 if (params->num_different_channels > c->num_different_channels) 1685 continue; 1686 1687 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 1688 GFP_KERNEL); 1689 if (!limits) 1690 return -ENOMEM; 1691 1692 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1693 if (wiphy->software_iftypes & BIT(iftype)) 1694 continue; 1695 for (j = 0; j < c->n_limits; j++) { 1696 all_iftypes |= limits[j].types; 1697 if (!(limits[j].types & BIT(iftype))) 1698 continue; 1699 if (limits[j].max < params->iftype_num[iftype]) 1700 goto cont; 1701 limits[j].max -= params->iftype_num[iftype]; 1702 } 1703 } 1704 1705 if (params->radar_detect != 1706 (c->radar_detect_widths & params->radar_detect)) 1707 goto cont; 1708 1709 if (params->radar_detect && c->radar_detect_regions && 1710 !(c->radar_detect_regions & BIT(region))) 1711 goto cont; 1712 1713 /* Finally check that all iftypes that we're currently 1714 * using are actually part of this combination. If they 1715 * aren't then we can't use this combination and have 1716 * to continue to the next. 1717 */ 1718 if ((all_iftypes & used_iftypes) != used_iftypes) 1719 goto cont; 1720 1721 if (beacon_int_gcd) { 1722 if (c->beacon_int_min_gcd && 1723 beacon_int_gcd < c->beacon_int_min_gcd) 1724 goto cont; 1725 if (!c->beacon_int_min_gcd && beacon_int_different) 1726 goto cont; 1727 } 1728 1729 /* This combination covered all interface types and 1730 * supported the requested numbers, so we're good. 1731 */ 1732 1733 (*iter)(c, data); 1734 cont: 1735 kfree(limits); 1736 } 1737 1738 return 0; 1739 } 1740 EXPORT_SYMBOL(cfg80211_iter_combinations); 1741 1742 static void 1743 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 1744 void *data) 1745 { 1746 int *num = data; 1747 (*num)++; 1748 } 1749 1750 int cfg80211_check_combinations(struct wiphy *wiphy, 1751 struct iface_combination_params *params) 1752 { 1753 int err, num = 0; 1754 1755 err = cfg80211_iter_combinations(wiphy, params, 1756 cfg80211_iter_sum_ifcombs, &num); 1757 if (err) 1758 return err; 1759 if (num == 0) 1760 return -EBUSY; 1761 1762 return 0; 1763 } 1764 EXPORT_SYMBOL(cfg80211_check_combinations); 1765 1766 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1767 const u8 *rates, unsigned int n_rates, 1768 u32 *mask) 1769 { 1770 int i, j; 1771 1772 if (!sband) 1773 return -EINVAL; 1774 1775 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1776 return -EINVAL; 1777 1778 *mask = 0; 1779 1780 for (i = 0; i < n_rates; i++) { 1781 int rate = (rates[i] & 0x7f) * 5; 1782 bool found = false; 1783 1784 for (j = 0; j < sband->n_bitrates; j++) { 1785 if (sband->bitrates[j].bitrate == rate) { 1786 found = true; 1787 *mask |= BIT(j); 1788 break; 1789 } 1790 } 1791 if (!found) 1792 return -EINVAL; 1793 } 1794 1795 /* 1796 * mask must have at least one bit set here since we 1797 * didn't accept a 0-length rates array nor allowed 1798 * entries in the array that didn't exist 1799 */ 1800 1801 return 0; 1802 } 1803 1804 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 1805 { 1806 enum nl80211_band band; 1807 unsigned int n_channels = 0; 1808 1809 for (band = 0; band < NUM_NL80211_BANDS; band++) 1810 if (wiphy->bands[band]) 1811 n_channels += wiphy->bands[band]->n_channels; 1812 1813 return n_channels; 1814 } 1815 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 1816 1817 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 1818 struct station_info *sinfo) 1819 { 1820 struct cfg80211_registered_device *rdev; 1821 struct wireless_dev *wdev; 1822 1823 wdev = dev->ieee80211_ptr; 1824 if (!wdev) 1825 return -EOPNOTSUPP; 1826 1827 rdev = wiphy_to_rdev(wdev->wiphy); 1828 if (!rdev->ops->get_station) 1829 return -EOPNOTSUPP; 1830 1831 memset(sinfo, 0, sizeof(*sinfo)); 1832 1833 return rdev_get_station(rdev, dev, mac_addr, sinfo); 1834 } 1835 EXPORT_SYMBOL(cfg80211_get_station); 1836 1837 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 1838 { 1839 int i; 1840 1841 if (!f) 1842 return; 1843 1844 kfree(f->serv_spec_info); 1845 kfree(f->srf_bf); 1846 kfree(f->srf_macs); 1847 for (i = 0; i < f->num_rx_filters; i++) 1848 kfree(f->rx_filters[i].filter); 1849 1850 for (i = 0; i < f->num_tx_filters; i++) 1851 kfree(f->tx_filters[i].filter); 1852 1853 kfree(f->rx_filters); 1854 kfree(f->tx_filters); 1855 kfree(f); 1856 } 1857 EXPORT_SYMBOL(cfg80211_free_nan_func); 1858 1859 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, 1860 u32 center_freq_khz, u32 bw_khz) 1861 { 1862 u32 start_freq_khz, end_freq_khz; 1863 1864 start_freq_khz = center_freq_khz - (bw_khz / 2); 1865 end_freq_khz = center_freq_khz + (bw_khz / 2); 1866 1867 if (start_freq_khz >= freq_range->start_freq_khz && 1868 end_freq_khz <= freq_range->end_freq_khz) 1869 return true; 1870 1871 return false; 1872 } 1873 1874 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) 1875 { 1876 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, 1877 sizeof(*(sinfo->pertid)), 1878 gfp); 1879 if (!sinfo->pertid) 1880 return -ENOMEM; 1881 1882 return 0; 1883 } 1884 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); 1885 1886 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 1887 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 1888 const unsigned char rfc1042_header[] __aligned(2) = 1889 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 1890 EXPORT_SYMBOL(rfc1042_header); 1891 1892 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 1893 const unsigned char bridge_tunnel_header[] __aligned(2) = 1894 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 1895 EXPORT_SYMBOL(bridge_tunnel_header); 1896