xref: /openbmc/linux/net/wireless/util.c (revision a8a28aff)
1 /*
2  * Wireless utility functions
3  *
4  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
5  */
6 #include <linux/export.h>
7 #include <linux/bitops.h>
8 #include <linux/etherdevice.h>
9 #include <linux/slab.h>
10 #include <net/cfg80211.h>
11 #include <net/ip.h>
12 #include <net/dsfield.h>
13 #include <linux/if_vlan.h>
14 #include <linux/mpls.h>
15 #include "core.h"
16 #include "rdev-ops.h"
17 
18 
19 struct ieee80211_rate *
20 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
21 			    u32 basic_rates, int bitrate)
22 {
23 	struct ieee80211_rate *result = &sband->bitrates[0];
24 	int i;
25 
26 	for (i = 0; i < sband->n_bitrates; i++) {
27 		if (!(basic_rates & BIT(i)))
28 			continue;
29 		if (sband->bitrates[i].bitrate > bitrate)
30 			continue;
31 		result = &sband->bitrates[i];
32 	}
33 
34 	return result;
35 }
36 EXPORT_SYMBOL(ieee80211_get_response_rate);
37 
38 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
39 			      enum nl80211_bss_scan_width scan_width)
40 {
41 	struct ieee80211_rate *bitrates;
42 	u32 mandatory_rates = 0;
43 	enum ieee80211_rate_flags mandatory_flag;
44 	int i;
45 
46 	if (WARN_ON(!sband))
47 		return 1;
48 
49 	if (sband->band == IEEE80211_BAND_2GHZ) {
50 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
51 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
52 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
53 		else
54 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
55 	} else {
56 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
57 	}
58 
59 	bitrates = sband->bitrates;
60 	for (i = 0; i < sband->n_bitrates; i++)
61 		if (bitrates[i].flags & mandatory_flag)
62 			mandatory_rates |= BIT(i);
63 	return mandatory_rates;
64 }
65 EXPORT_SYMBOL(ieee80211_mandatory_rates);
66 
67 int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band)
68 {
69 	/* see 802.11 17.3.8.3.2 and Annex J
70 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
71 	if (chan <= 0)
72 		return 0; /* not supported */
73 	switch (band) {
74 	case IEEE80211_BAND_2GHZ:
75 		if (chan == 14)
76 			return 2484;
77 		else if (chan < 14)
78 			return 2407 + chan * 5;
79 		break;
80 	case IEEE80211_BAND_5GHZ:
81 		if (chan >= 182 && chan <= 196)
82 			return 4000 + chan * 5;
83 		else
84 			return 5000 + chan * 5;
85 		break;
86 	case IEEE80211_BAND_60GHZ:
87 		if (chan < 5)
88 			return 56160 + chan * 2160;
89 		break;
90 	default:
91 		;
92 	}
93 	return 0; /* not supported */
94 }
95 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
96 
97 int ieee80211_frequency_to_channel(int freq)
98 {
99 	/* see 802.11 17.3.8.3.2 and Annex J */
100 	if (freq == 2484)
101 		return 14;
102 	else if (freq < 2484)
103 		return (freq - 2407) / 5;
104 	else if (freq >= 4910 && freq <= 4980)
105 		return (freq - 4000) / 5;
106 	else if (freq <= 45000) /* DMG band lower limit */
107 		return (freq - 5000) / 5;
108 	else if (freq >= 58320 && freq <= 64800)
109 		return (freq - 56160) / 2160;
110 	else
111 		return 0;
112 }
113 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
114 
115 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
116 						  int freq)
117 {
118 	enum ieee80211_band band;
119 	struct ieee80211_supported_band *sband;
120 	int i;
121 
122 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
123 		sband = wiphy->bands[band];
124 
125 		if (!sband)
126 			continue;
127 
128 		for (i = 0; i < sband->n_channels; i++) {
129 			if (sband->channels[i].center_freq == freq)
130 				return &sband->channels[i];
131 		}
132 	}
133 
134 	return NULL;
135 }
136 EXPORT_SYMBOL(__ieee80211_get_channel);
137 
138 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
139 				     enum ieee80211_band band)
140 {
141 	int i, want;
142 
143 	switch (band) {
144 	case IEEE80211_BAND_5GHZ:
145 		want = 3;
146 		for (i = 0; i < sband->n_bitrates; i++) {
147 			if (sband->bitrates[i].bitrate == 60 ||
148 			    sband->bitrates[i].bitrate == 120 ||
149 			    sband->bitrates[i].bitrate == 240) {
150 				sband->bitrates[i].flags |=
151 					IEEE80211_RATE_MANDATORY_A;
152 				want--;
153 			}
154 		}
155 		WARN_ON(want);
156 		break;
157 	case IEEE80211_BAND_2GHZ:
158 		want = 7;
159 		for (i = 0; i < sband->n_bitrates; i++) {
160 			if (sband->bitrates[i].bitrate == 10) {
161 				sband->bitrates[i].flags |=
162 					IEEE80211_RATE_MANDATORY_B |
163 					IEEE80211_RATE_MANDATORY_G;
164 				want--;
165 			}
166 
167 			if (sband->bitrates[i].bitrate == 20 ||
168 			    sband->bitrates[i].bitrate == 55 ||
169 			    sband->bitrates[i].bitrate == 110 ||
170 			    sband->bitrates[i].bitrate == 60 ||
171 			    sband->bitrates[i].bitrate == 120 ||
172 			    sband->bitrates[i].bitrate == 240) {
173 				sband->bitrates[i].flags |=
174 					IEEE80211_RATE_MANDATORY_G;
175 				want--;
176 			}
177 
178 			if (sband->bitrates[i].bitrate != 10 &&
179 			    sband->bitrates[i].bitrate != 20 &&
180 			    sband->bitrates[i].bitrate != 55 &&
181 			    sband->bitrates[i].bitrate != 110)
182 				sband->bitrates[i].flags |=
183 					IEEE80211_RATE_ERP_G;
184 		}
185 		WARN_ON(want != 0 && want != 3 && want != 6);
186 		break;
187 	case IEEE80211_BAND_60GHZ:
188 		/* check for mandatory HT MCS 1..4 */
189 		WARN_ON(!sband->ht_cap.ht_supported);
190 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
191 		break;
192 	case IEEE80211_NUM_BANDS:
193 		WARN_ON(1);
194 		break;
195 	}
196 }
197 
198 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
199 {
200 	enum ieee80211_band band;
201 
202 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
203 		if (wiphy->bands[band])
204 			set_mandatory_flags_band(wiphy->bands[band], band);
205 }
206 
207 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
208 {
209 	int i;
210 	for (i = 0; i < wiphy->n_cipher_suites; i++)
211 		if (cipher == wiphy->cipher_suites[i])
212 			return true;
213 	return false;
214 }
215 
216 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
217 				   struct key_params *params, int key_idx,
218 				   bool pairwise, const u8 *mac_addr)
219 {
220 	if (key_idx > 5)
221 		return -EINVAL;
222 
223 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
224 		return -EINVAL;
225 
226 	if (pairwise && !mac_addr)
227 		return -EINVAL;
228 
229 	/*
230 	 * Disallow pairwise keys with non-zero index unless it's WEP
231 	 * or a vendor specific cipher (because current deployments use
232 	 * pairwise WEP keys with non-zero indices and for vendor specific
233 	 * ciphers this should be validated in the driver or hardware level
234 	 * - but 802.11i clearly specifies to use zero)
235 	 */
236 	if (pairwise && key_idx &&
237 	    ((params->cipher == WLAN_CIPHER_SUITE_TKIP) ||
238 	     (params->cipher == WLAN_CIPHER_SUITE_CCMP) ||
239 	     (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC)))
240 		return -EINVAL;
241 
242 	switch (params->cipher) {
243 	case WLAN_CIPHER_SUITE_WEP40:
244 		if (params->key_len != WLAN_KEY_LEN_WEP40)
245 			return -EINVAL;
246 		break;
247 	case WLAN_CIPHER_SUITE_TKIP:
248 		if (params->key_len != WLAN_KEY_LEN_TKIP)
249 			return -EINVAL;
250 		break;
251 	case WLAN_CIPHER_SUITE_CCMP:
252 		if (params->key_len != WLAN_KEY_LEN_CCMP)
253 			return -EINVAL;
254 		break;
255 	case WLAN_CIPHER_SUITE_WEP104:
256 		if (params->key_len != WLAN_KEY_LEN_WEP104)
257 			return -EINVAL;
258 		break;
259 	case WLAN_CIPHER_SUITE_AES_CMAC:
260 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
261 			return -EINVAL;
262 		break;
263 	default:
264 		/*
265 		 * We don't know anything about this algorithm,
266 		 * allow using it -- but the driver must check
267 		 * all parameters! We still check below whether
268 		 * or not the driver supports this algorithm,
269 		 * of course.
270 		 */
271 		break;
272 	}
273 
274 	if (params->seq) {
275 		switch (params->cipher) {
276 		case WLAN_CIPHER_SUITE_WEP40:
277 		case WLAN_CIPHER_SUITE_WEP104:
278 			/* These ciphers do not use key sequence */
279 			return -EINVAL;
280 		case WLAN_CIPHER_SUITE_TKIP:
281 		case WLAN_CIPHER_SUITE_CCMP:
282 		case WLAN_CIPHER_SUITE_AES_CMAC:
283 			if (params->seq_len != 6)
284 				return -EINVAL;
285 			break;
286 		}
287 	}
288 
289 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
290 		return -EINVAL;
291 
292 	return 0;
293 }
294 
295 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
296 {
297 	unsigned int hdrlen = 24;
298 
299 	if (ieee80211_is_data(fc)) {
300 		if (ieee80211_has_a4(fc))
301 			hdrlen = 30;
302 		if (ieee80211_is_data_qos(fc)) {
303 			hdrlen += IEEE80211_QOS_CTL_LEN;
304 			if (ieee80211_has_order(fc))
305 				hdrlen += IEEE80211_HT_CTL_LEN;
306 		}
307 		goto out;
308 	}
309 
310 	if (ieee80211_is_ctl(fc)) {
311 		/*
312 		 * ACK and CTS are 10 bytes, all others 16. To see how
313 		 * to get this condition consider
314 		 *   subtype mask:   0b0000000011110000 (0x00F0)
315 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
316 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
317 		 *   bits that matter:         ^^^      (0x00E0)
318 		 *   value of those: 0b0000000011000000 (0x00C0)
319 		 */
320 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
321 			hdrlen = 10;
322 		else
323 			hdrlen = 16;
324 	}
325 out:
326 	return hdrlen;
327 }
328 EXPORT_SYMBOL(ieee80211_hdrlen);
329 
330 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
331 {
332 	const struct ieee80211_hdr *hdr =
333 			(const struct ieee80211_hdr *)skb->data;
334 	unsigned int hdrlen;
335 
336 	if (unlikely(skb->len < 10))
337 		return 0;
338 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
339 	if (unlikely(hdrlen > skb->len))
340 		return 0;
341 	return hdrlen;
342 }
343 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
344 
345 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
346 {
347 	int ae = meshhdr->flags & MESH_FLAGS_AE;
348 	/* 802.11-2012, 8.2.4.7.3 */
349 	switch (ae) {
350 	default:
351 	case 0:
352 		return 6;
353 	case MESH_FLAGS_AE_A4:
354 		return 12;
355 	case MESH_FLAGS_AE_A5_A6:
356 		return 18;
357 	}
358 }
359 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
360 
361 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
362 			   enum nl80211_iftype iftype)
363 {
364 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
365 	u16 hdrlen, ethertype;
366 	u8 *payload;
367 	u8 dst[ETH_ALEN];
368 	u8 src[ETH_ALEN] __aligned(2);
369 
370 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
371 		return -1;
372 
373 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
374 
375 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
376 	 * header
377 	 * IEEE 802.11 address fields:
378 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
379 	 *   0     0   DA    SA    BSSID n/a
380 	 *   0     1   DA    BSSID SA    n/a
381 	 *   1     0   BSSID SA    DA    n/a
382 	 *   1     1   RA    TA    DA    SA
383 	 */
384 	memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
385 	memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
386 
387 	switch (hdr->frame_control &
388 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
389 	case cpu_to_le16(IEEE80211_FCTL_TODS):
390 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
391 			     iftype != NL80211_IFTYPE_AP_VLAN &&
392 			     iftype != NL80211_IFTYPE_P2P_GO))
393 			return -1;
394 		break;
395 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
396 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
397 			     iftype != NL80211_IFTYPE_MESH_POINT &&
398 			     iftype != NL80211_IFTYPE_AP_VLAN &&
399 			     iftype != NL80211_IFTYPE_STATION))
400 			return -1;
401 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
402 			struct ieee80211s_hdr *meshdr =
403 				(struct ieee80211s_hdr *) (skb->data + hdrlen);
404 			/* make sure meshdr->flags is on the linear part */
405 			if (!pskb_may_pull(skb, hdrlen + 1))
406 				return -1;
407 			if (meshdr->flags & MESH_FLAGS_AE_A4)
408 				return -1;
409 			if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
410 				skb_copy_bits(skb, hdrlen +
411 					offsetof(struct ieee80211s_hdr, eaddr1),
412 				       	dst, ETH_ALEN);
413 				skb_copy_bits(skb, hdrlen +
414 					offsetof(struct ieee80211s_hdr, eaddr2),
415 				        src, ETH_ALEN);
416 			}
417 			hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
418 		}
419 		break;
420 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
421 		if ((iftype != NL80211_IFTYPE_STATION &&
422 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
423 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
424 		    (is_multicast_ether_addr(dst) &&
425 		     ether_addr_equal(src, addr)))
426 			return -1;
427 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
428 			struct ieee80211s_hdr *meshdr =
429 				(struct ieee80211s_hdr *) (skb->data + hdrlen);
430 			/* make sure meshdr->flags is on the linear part */
431 			if (!pskb_may_pull(skb, hdrlen + 1))
432 				return -1;
433 			if (meshdr->flags & MESH_FLAGS_AE_A5_A6)
434 				return -1;
435 			if (meshdr->flags & MESH_FLAGS_AE_A4)
436 				skb_copy_bits(skb, hdrlen +
437 					offsetof(struct ieee80211s_hdr, eaddr1),
438 					src, ETH_ALEN);
439 			hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
440 		}
441 		break;
442 	case cpu_to_le16(0):
443 		if (iftype != NL80211_IFTYPE_ADHOC &&
444 		    iftype != NL80211_IFTYPE_STATION)
445 				return -1;
446 		break;
447 	}
448 
449 	if (!pskb_may_pull(skb, hdrlen + 8))
450 		return -1;
451 
452 	payload = skb->data + hdrlen;
453 	ethertype = (payload[6] << 8) | payload[7];
454 
455 	if (likely((ether_addr_equal(payload, rfc1042_header) &&
456 		    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
457 		   ether_addr_equal(payload, bridge_tunnel_header))) {
458 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
459 		 * replace EtherType */
460 		skb_pull(skb, hdrlen + 6);
461 		memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
462 		memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
463 	} else {
464 		struct ethhdr *ehdr;
465 		__be16 len;
466 
467 		skb_pull(skb, hdrlen);
468 		len = htons(skb->len);
469 		ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
470 		memcpy(ehdr->h_dest, dst, ETH_ALEN);
471 		memcpy(ehdr->h_source, src, ETH_ALEN);
472 		ehdr->h_proto = len;
473 	}
474 	return 0;
475 }
476 EXPORT_SYMBOL(ieee80211_data_to_8023);
477 
478 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
479 			     enum nl80211_iftype iftype,
480 			     const u8 *bssid, bool qos)
481 {
482 	struct ieee80211_hdr hdr;
483 	u16 hdrlen, ethertype;
484 	__le16 fc;
485 	const u8 *encaps_data;
486 	int encaps_len, skip_header_bytes;
487 	int nh_pos, h_pos;
488 	int head_need;
489 
490 	if (unlikely(skb->len < ETH_HLEN))
491 		return -EINVAL;
492 
493 	nh_pos = skb_network_header(skb) - skb->data;
494 	h_pos = skb_transport_header(skb) - skb->data;
495 
496 	/* convert Ethernet header to proper 802.11 header (based on
497 	 * operation mode) */
498 	ethertype = (skb->data[12] << 8) | skb->data[13];
499 	fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
500 
501 	switch (iftype) {
502 	case NL80211_IFTYPE_AP:
503 	case NL80211_IFTYPE_AP_VLAN:
504 	case NL80211_IFTYPE_P2P_GO:
505 		fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
506 		/* DA BSSID SA */
507 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
508 		memcpy(hdr.addr2, addr, ETH_ALEN);
509 		memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
510 		hdrlen = 24;
511 		break;
512 	case NL80211_IFTYPE_STATION:
513 	case NL80211_IFTYPE_P2P_CLIENT:
514 		fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
515 		/* BSSID SA DA */
516 		memcpy(hdr.addr1, bssid, ETH_ALEN);
517 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
518 		memcpy(hdr.addr3, skb->data, ETH_ALEN);
519 		hdrlen = 24;
520 		break;
521 	case NL80211_IFTYPE_ADHOC:
522 		/* DA SA BSSID */
523 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
524 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
525 		memcpy(hdr.addr3, bssid, ETH_ALEN);
526 		hdrlen = 24;
527 		break;
528 	default:
529 		return -EOPNOTSUPP;
530 	}
531 
532 	if (qos) {
533 		fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
534 		hdrlen += 2;
535 	}
536 
537 	hdr.frame_control = fc;
538 	hdr.duration_id = 0;
539 	hdr.seq_ctrl = 0;
540 
541 	skip_header_bytes = ETH_HLEN;
542 	if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
543 		encaps_data = bridge_tunnel_header;
544 		encaps_len = sizeof(bridge_tunnel_header);
545 		skip_header_bytes -= 2;
546 	} else if (ethertype >= ETH_P_802_3_MIN) {
547 		encaps_data = rfc1042_header;
548 		encaps_len = sizeof(rfc1042_header);
549 		skip_header_bytes -= 2;
550 	} else {
551 		encaps_data = NULL;
552 		encaps_len = 0;
553 	}
554 
555 	skb_pull(skb, skip_header_bytes);
556 	nh_pos -= skip_header_bytes;
557 	h_pos -= skip_header_bytes;
558 
559 	head_need = hdrlen + encaps_len - skb_headroom(skb);
560 
561 	if (head_need > 0 || skb_cloned(skb)) {
562 		head_need = max(head_need, 0);
563 		if (head_need)
564 			skb_orphan(skb);
565 
566 		if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
567 			return -ENOMEM;
568 
569 		skb->truesize += head_need;
570 	}
571 
572 	if (encaps_data) {
573 		memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
574 		nh_pos += encaps_len;
575 		h_pos += encaps_len;
576 	}
577 
578 	memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
579 
580 	nh_pos += hdrlen;
581 	h_pos += hdrlen;
582 
583 	/* Update skb pointers to various headers since this modified frame
584 	 * is going to go through Linux networking code that may potentially
585 	 * need things like pointer to IP header. */
586 	skb_set_mac_header(skb, 0);
587 	skb_set_network_header(skb, nh_pos);
588 	skb_set_transport_header(skb, h_pos);
589 
590 	return 0;
591 }
592 EXPORT_SYMBOL(ieee80211_data_from_8023);
593 
594 
595 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
596 			      const u8 *addr, enum nl80211_iftype iftype,
597 			      const unsigned int extra_headroom,
598 			      bool has_80211_header)
599 {
600 	struct sk_buff *frame = NULL;
601 	u16 ethertype;
602 	u8 *payload;
603 	const struct ethhdr *eth;
604 	int remaining, err;
605 	u8 dst[ETH_ALEN], src[ETH_ALEN];
606 
607 	if (has_80211_header) {
608 		err = ieee80211_data_to_8023(skb, addr, iftype);
609 		if (err)
610 			goto out;
611 
612 		/* skip the wrapping header */
613 		eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
614 		if (!eth)
615 			goto out;
616 	} else {
617 		eth = (struct ethhdr *) skb->data;
618 	}
619 
620 	while (skb != frame) {
621 		u8 padding;
622 		__be16 len = eth->h_proto;
623 		unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
624 
625 		remaining = skb->len;
626 		memcpy(dst, eth->h_dest, ETH_ALEN);
627 		memcpy(src, eth->h_source, ETH_ALEN);
628 
629 		padding = (4 - subframe_len) & 0x3;
630 		/* the last MSDU has no padding */
631 		if (subframe_len > remaining)
632 			goto purge;
633 
634 		skb_pull(skb, sizeof(struct ethhdr));
635 		/* reuse skb for the last subframe */
636 		if (remaining <= subframe_len + padding)
637 			frame = skb;
638 		else {
639 			unsigned int hlen = ALIGN(extra_headroom, 4);
640 			/*
641 			 * Allocate and reserve two bytes more for payload
642 			 * alignment since sizeof(struct ethhdr) is 14.
643 			 */
644 			frame = dev_alloc_skb(hlen + subframe_len + 2);
645 			if (!frame)
646 				goto purge;
647 
648 			skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
649 			memcpy(skb_put(frame, ntohs(len)), skb->data,
650 				ntohs(len));
651 
652 			eth = (struct ethhdr *)skb_pull(skb, ntohs(len) +
653 							padding);
654 			if (!eth) {
655 				dev_kfree_skb(frame);
656 				goto purge;
657 			}
658 		}
659 
660 		skb_reset_network_header(frame);
661 		frame->dev = skb->dev;
662 		frame->priority = skb->priority;
663 
664 		payload = frame->data;
665 		ethertype = (payload[6] << 8) | payload[7];
666 
667 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
668 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
669 			   ether_addr_equal(payload, bridge_tunnel_header))) {
670 			/* remove RFC1042 or Bridge-Tunnel
671 			 * encapsulation and replace EtherType */
672 			skb_pull(frame, 6);
673 			memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
674 			memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
675 		} else {
676 			memcpy(skb_push(frame, sizeof(__be16)), &len,
677 				sizeof(__be16));
678 			memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
679 			memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
680 		}
681 		__skb_queue_tail(list, frame);
682 	}
683 
684 	return;
685 
686  purge:
687 	__skb_queue_purge(list);
688  out:
689 	dev_kfree_skb(skb);
690 }
691 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
692 
693 /* Given a data frame determine the 802.1p/1d tag to use. */
694 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
695 				    struct cfg80211_qos_map *qos_map)
696 {
697 	unsigned int dscp;
698 	unsigned char vlan_priority;
699 
700 	/* skb->priority values from 256->263 are magic values to
701 	 * directly indicate a specific 802.1d priority.  This is used
702 	 * to allow 802.1d priority to be passed directly in from VLAN
703 	 * tags, etc.
704 	 */
705 	if (skb->priority >= 256 && skb->priority <= 263)
706 		return skb->priority - 256;
707 
708 	if (vlan_tx_tag_present(skb)) {
709 		vlan_priority = (vlan_tx_tag_get(skb) & VLAN_PRIO_MASK)
710 			>> VLAN_PRIO_SHIFT;
711 		if (vlan_priority > 0)
712 			return vlan_priority;
713 	}
714 
715 	switch (skb->protocol) {
716 	case htons(ETH_P_IP):
717 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
718 		break;
719 	case htons(ETH_P_IPV6):
720 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
721 		break;
722 	case htons(ETH_P_MPLS_UC):
723 	case htons(ETH_P_MPLS_MC): {
724 		struct mpls_label mpls_tmp, *mpls;
725 
726 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
727 					  sizeof(*mpls), &mpls_tmp);
728 		if (!mpls)
729 			return 0;
730 
731 		return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
732 			>> MPLS_LS_TC_SHIFT;
733 	}
734 	case htons(ETH_P_80221):
735 		/* 802.21 is always network control traffic */
736 		return 7;
737 	default:
738 		return 0;
739 	}
740 
741 	if (qos_map) {
742 		unsigned int i, tmp_dscp = dscp >> 2;
743 
744 		for (i = 0; i < qos_map->num_des; i++) {
745 			if (tmp_dscp == qos_map->dscp_exception[i].dscp)
746 				return qos_map->dscp_exception[i].up;
747 		}
748 
749 		for (i = 0; i < 8; i++) {
750 			if (tmp_dscp >= qos_map->up[i].low &&
751 			    tmp_dscp <= qos_map->up[i].high)
752 				return i;
753 		}
754 	}
755 
756 	return dscp >> 5;
757 }
758 EXPORT_SYMBOL(cfg80211_classify8021d);
759 
760 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
761 {
762 	const struct cfg80211_bss_ies *ies;
763 
764 	ies = rcu_dereference(bss->ies);
765 	if (!ies)
766 		return NULL;
767 
768 	return cfg80211_find_ie(ie, ies->data, ies->len);
769 }
770 EXPORT_SYMBOL(ieee80211_bss_get_ie);
771 
772 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
773 {
774 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
775 	struct net_device *dev = wdev->netdev;
776 	int i;
777 
778 	if (!wdev->connect_keys)
779 		return;
780 
781 	for (i = 0; i < 6; i++) {
782 		if (!wdev->connect_keys->params[i].cipher)
783 			continue;
784 		if (rdev_add_key(rdev, dev, i, false, NULL,
785 				 &wdev->connect_keys->params[i])) {
786 			netdev_err(dev, "failed to set key %d\n", i);
787 			continue;
788 		}
789 		if (wdev->connect_keys->def == i)
790 			if (rdev_set_default_key(rdev, dev, i, true, true)) {
791 				netdev_err(dev, "failed to set defkey %d\n", i);
792 				continue;
793 			}
794 		if (wdev->connect_keys->defmgmt == i)
795 			if (rdev_set_default_mgmt_key(rdev, dev, i))
796 				netdev_err(dev, "failed to set mgtdef %d\n", i);
797 	}
798 
799 	kfree(wdev->connect_keys);
800 	wdev->connect_keys = NULL;
801 }
802 
803 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
804 {
805 	struct cfg80211_event *ev;
806 	unsigned long flags;
807 	const u8 *bssid = NULL;
808 
809 	spin_lock_irqsave(&wdev->event_lock, flags);
810 	while (!list_empty(&wdev->event_list)) {
811 		ev = list_first_entry(&wdev->event_list,
812 				      struct cfg80211_event, list);
813 		list_del(&ev->list);
814 		spin_unlock_irqrestore(&wdev->event_lock, flags);
815 
816 		wdev_lock(wdev);
817 		switch (ev->type) {
818 		case EVENT_CONNECT_RESULT:
819 			if (!is_zero_ether_addr(ev->cr.bssid))
820 				bssid = ev->cr.bssid;
821 			__cfg80211_connect_result(
822 				wdev->netdev, bssid,
823 				ev->cr.req_ie, ev->cr.req_ie_len,
824 				ev->cr.resp_ie, ev->cr.resp_ie_len,
825 				ev->cr.status,
826 				ev->cr.status == WLAN_STATUS_SUCCESS,
827 				NULL);
828 			break;
829 		case EVENT_ROAMED:
830 			__cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
831 					  ev->rm.req_ie_len, ev->rm.resp_ie,
832 					  ev->rm.resp_ie_len);
833 			break;
834 		case EVENT_DISCONNECTED:
835 			__cfg80211_disconnected(wdev->netdev,
836 						ev->dc.ie, ev->dc.ie_len,
837 						ev->dc.reason, true);
838 			break;
839 		case EVENT_IBSS_JOINED:
840 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
841 					       ev->ij.channel);
842 			break;
843 		case EVENT_STOPPED:
844 			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
845 			break;
846 		}
847 		wdev_unlock(wdev);
848 
849 		kfree(ev);
850 
851 		spin_lock_irqsave(&wdev->event_lock, flags);
852 	}
853 	spin_unlock_irqrestore(&wdev->event_lock, flags);
854 }
855 
856 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
857 {
858 	struct wireless_dev *wdev;
859 
860 	ASSERT_RTNL();
861 
862 	list_for_each_entry(wdev, &rdev->wdev_list, list)
863 		cfg80211_process_wdev_events(wdev);
864 }
865 
866 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
867 			  struct net_device *dev, enum nl80211_iftype ntype,
868 			  u32 *flags, struct vif_params *params)
869 {
870 	int err;
871 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
872 
873 	ASSERT_RTNL();
874 
875 	/* don't support changing VLANs, you just re-create them */
876 	if (otype == NL80211_IFTYPE_AP_VLAN)
877 		return -EOPNOTSUPP;
878 
879 	/* cannot change into P2P device type */
880 	if (ntype == NL80211_IFTYPE_P2P_DEVICE)
881 		return -EOPNOTSUPP;
882 
883 	if (!rdev->ops->change_virtual_intf ||
884 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
885 		return -EOPNOTSUPP;
886 
887 	/* if it's part of a bridge, reject changing type to station/ibss */
888 	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
889 	    (ntype == NL80211_IFTYPE_ADHOC ||
890 	     ntype == NL80211_IFTYPE_STATION ||
891 	     ntype == NL80211_IFTYPE_P2P_CLIENT))
892 		return -EBUSY;
893 
894 	if (ntype != otype && netif_running(dev)) {
895 		dev->ieee80211_ptr->use_4addr = false;
896 		dev->ieee80211_ptr->mesh_id_up_len = 0;
897 		wdev_lock(dev->ieee80211_ptr);
898 		rdev_set_qos_map(rdev, dev, NULL);
899 		wdev_unlock(dev->ieee80211_ptr);
900 
901 		switch (otype) {
902 		case NL80211_IFTYPE_AP:
903 			cfg80211_stop_ap(rdev, dev, true);
904 			break;
905 		case NL80211_IFTYPE_ADHOC:
906 			cfg80211_leave_ibss(rdev, dev, false);
907 			break;
908 		case NL80211_IFTYPE_STATION:
909 		case NL80211_IFTYPE_P2P_CLIENT:
910 			wdev_lock(dev->ieee80211_ptr);
911 			cfg80211_disconnect(rdev, dev,
912 					    WLAN_REASON_DEAUTH_LEAVING, true);
913 			wdev_unlock(dev->ieee80211_ptr);
914 			break;
915 		case NL80211_IFTYPE_MESH_POINT:
916 			/* mesh should be handled? */
917 			break;
918 		default:
919 			break;
920 		}
921 
922 		cfg80211_process_rdev_events(rdev);
923 	}
924 
925 	err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
926 
927 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
928 
929 	if (!err && params && params->use_4addr != -1)
930 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
931 
932 	if (!err) {
933 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
934 		switch (ntype) {
935 		case NL80211_IFTYPE_STATION:
936 			if (dev->ieee80211_ptr->use_4addr)
937 				break;
938 			/* fall through */
939 		case NL80211_IFTYPE_P2P_CLIENT:
940 		case NL80211_IFTYPE_ADHOC:
941 			dev->priv_flags |= IFF_DONT_BRIDGE;
942 			break;
943 		case NL80211_IFTYPE_P2P_GO:
944 		case NL80211_IFTYPE_AP:
945 		case NL80211_IFTYPE_AP_VLAN:
946 		case NL80211_IFTYPE_WDS:
947 		case NL80211_IFTYPE_MESH_POINT:
948 			/* bridging OK */
949 			break;
950 		case NL80211_IFTYPE_MONITOR:
951 			/* monitor can't bridge anyway */
952 			break;
953 		case NL80211_IFTYPE_UNSPECIFIED:
954 		case NUM_NL80211_IFTYPES:
955 			/* not happening */
956 			break;
957 		case NL80211_IFTYPE_P2P_DEVICE:
958 			WARN_ON(1);
959 			break;
960 		}
961 	}
962 
963 	if (!err && ntype != otype && netif_running(dev)) {
964 		cfg80211_update_iface_num(rdev, ntype, 1);
965 		cfg80211_update_iface_num(rdev, otype, -1);
966 	}
967 
968 	return err;
969 }
970 
971 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
972 {
973 	static const u32 __mcs2bitrate[] = {
974 		/* control PHY */
975 		[0] =   275,
976 		/* SC PHY */
977 		[1] =  3850,
978 		[2] =  7700,
979 		[3] =  9625,
980 		[4] = 11550,
981 		[5] = 12512, /* 1251.25 mbps */
982 		[6] = 15400,
983 		[7] = 19250,
984 		[8] = 23100,
985 		[9] = 25025,
986 		[10] = 30800,
987 		[11] = 38500,
988 		[12] = 46200,
989 		/* OFDM PHY */
990 		[13] =  6930,
991 		[14] =  8662, /* 866.25 mbps */
992 		[15] = 13860,
993 		[16] = 17325,
994 		[17] = 20790,
995 		[18] = 27720,
996 		[19] = 34650,
997 		[20] = 41580,
998 		[21] = 45045,
999 		[22] = 51975,
1000 		[23] = 62370,
1001 		[24] = 67568, /* 6756.75 mbps */
1002 		/* LP-SC PHY */
1003 		[25] =  6260,
1004 		[26] =  8340,
1005 		[27] = 11120,
1006 		[28] = 12510,
1007 		[29] = 16680,
1008 		[30] = 22240,
1009 		[31] = 25030,
1010 	};
1011 
1012 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1013 		return 0;
1014 
1015 	return __mcs2bitrate[rate->mcs];
1016 }
1017 
1018 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1019 {
1020 	static const u32 base[4][10] = {
1021 		{   6500000,
1022 		   13000000,
1023 		   19500000,
1024 		   26000000,
1025 		   39000000,
1026 		   52000000,
1027 		   58500000,
1028 		   65000000,
1029 		   78000000,
1030 		   0,
1031 		},
1032 		{  13500000,
1033 		   27000000,
1034 		   40500000,
1035 		   54000000,
1036 		   81000000,
1037 		  108000000,
1038 		  121500000,
1039 		  135000000,
1040 		  162000000,
1041 		  180000000,
1042 		},
1043 		{  29300000,
1044 		   58500000,
1045 		   87800000,
1046 		  117000000,
1047 		  175500000,
1048 		  234000000,
1049 		  263300000,
1050 		  292500000,
1051 		  351000000,
1052 		  390000000,
1053 		},
1054 		{  58500000,
1055 		  117000000,
1056 		  175500000,
1057 		  234000000,
1058 		  351000000,
1059 		  468000000,
1060 		  526500000,
1061 		  585000000,
1062 		  702000000,
1063 		  780000000,
1064 		},
1065 	};
1066 	u32 bitrate;
1067 	int idx;
1068 
1069 	if (WARN_ON_ONCE(rate->mcs > 9))
1070 		return 0;
1071 
1072 	idx = rate->flags & (RATE_INFO_FLAGS_160_MHZ_WIDTH |
1073 			     RATE_INFO_FLAGS_80P80_MHZ_WIDTH) ? 3 :
1074 		  rate->flags & RATE_INFO_FLAGS_80_MHZ_WIDTH ? 2 :
1075 		  rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH ? 1 : 0;
1076 
1077 	bitrate = base[idx][rate->mcs];
1078 	bitrate *= rate->nss;
1079 
1080 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1081 		bitrate = (bitrate / 9) * 10;
1082 
1083 	/* do NOT round down here */
1084 	return (bitrate + 50000) / 100000;
1085 }
1086 
1087 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1088 {
1089 	int modulation, streams, bitrate;
1090 
1091 	if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1092 	    !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1093 		return rate->legacy;
1094 	if (rate->flags & RATE_INFO_FLAGS_60G)
1095 		return cfg80211_calculate_bitrate_60g(rate);
1096 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1097 		return cfg80211_calculate_bitrate_vht(rate);
1098 
1099 	/* the formula below does only work for MCS values smaller than 32 */
1100 	if (WARN_ON_ONCE(rate->mcs >= 32))
1101 		return 0;
1102 
1103 	modulation = rate->mcs & 7;
1104 	streams = (rate->mcs >> 3) + 1;
1105 
1106 	bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ?
1107 			13500000 : 6500000;
1108 
1109 	if (modulation < 4)
1110 		bitrate *= (modulation + 1);
1111 	else if (modulation == 4)
1112 		bitrate *= (modulation + 2);
1113 	else
1114 		bitrate *= (modulation + 3);
1115 
1116 	bitrate *= streams;
1117 
1118 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1119 		bitrate = (bitrate / 9) * 10;
1120 
1121 	/* do NOT round down here */
1122 	return (bitrate + 50000) / 100000;
1123 }
1124 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1125 
1126 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1127 			  enum ieee80211_p2p_attr_id attr,
1128 			  u8 *buf, unsigned int bufsize)
1129 {
1130 	u8 *out = buf;
1131 	u16 attr_remaining = 0;
1132 	bool desired_attr = false;
1133 	u16 desired_len = 0;
1134 
1135 	while (len > 0) {
1136 		unsigned int iedatalen;
1137 		unsigned int copy;
1138 		const u8 *iedata;
1139 
1140 		if (len < 2)
1141 			return -EILSEQ;
1142 		iedatalen = ies[1];
1143 		if (iedatalen + 2 > len)
1144 			return -EILSEQ;
1145 
1146 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1147 			goto cont;
1148 
1149 		if (iedatalen < 4)
1150 			goto cont;
1151 
1152 		iedata = ies + 2;
1153 
1154 		/* check WFA OUI, P2P subtype */
1155 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1156 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1157 			goto cont;
1158 
1159 		iedatalen -= 4;
1160 		iedata += 4;
1161 
1162 		/* check attribute continuation into this IE */
1163 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1164 		if (copy && desired_attr) {
1165 			desired_len += copy;
1166 			if (out) {
1167 				memcpy(out, iedata, min(bufsize, copy));
1168 				out += min(bufsize, copy);
1169 				bufsize -= min(bufsize, copy);
1170 			}
1171 
1172 
1173 			if (copy == attr_remaining)
1174 				return desired_len;
1175 		}
1176 
1177 		attr_remaining -= copy;
1178 		if (attr_remaining)
1179 			goto cont;
1180 
1181 		iedatalen -= copy;
1182 		iedata += copy;
1183 
1184 		while (iedatalen > 0) {
1185 			u16 attr_len;
1186 
1187 			/* P2P attribute ID & size must fit */
1188 			if (iedatalen < 3)
1189 				return -EILSEQ;
1190 			desired_attr = iedata[0] == attr;
1191 			attr_len = get_unaligned_le16(iedata + 1);
1192 			iedatalen -= 3;
1193 			iedata += 3;
1194 
1195 			copy = min_t(unsigned int, attr_len, iedatalen);
1196 
1197 			if (desired_attr) {
1198 				desired_len += copy;
1199 				if (out) {
1200 					memcpy(out, iedata, min(bufsize, copy));
1201 					out += min(bufsize, copy);
1202 					bufsize -= min(bufsize, copy);
1203 				}
1204 
1205 				if (copy == attr_len)
1206 					return desired_len;
1207 			}
1208 
1209 			iedata += copy;
1210 			iedatalen -= copy;
1211 			attr_remaining = attr_len - copy;
1212 		}
1213 
1214  cont:
1215 		len -= ies[1] + 2;
1216 		ies += ies[1] + 2;
1217 	}
1218 
1219 	if (attr_remaining && desired_attr)
1220 		return -EILSEQ;
1221 
1222 	return -ENOENT;
1223 }
1224 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1225 
1226 bool ieee80211_operating_class_to_band(u8 operating_class,
1227 				       enum ieee80211_band *band)
1228 {
1229 	switch (operating_class) {
1230 	case 112:
1231 	case 115 ... 127:
1232 		*band = IEEE80211_BAND_5GHZ;
1233 		return true;
1234 	case 81:
1235 	case 82:
1236 	case 83:
1237 	case 84:
1238 		*band = IEEE80211_BAND_2GHZ;
1239 		return true;
1240 	case 180:
1241 		*band = IEEE80211_BAND_60GHZ;
1242 		return true;
1243 	}
1244 
1245 	return false;
1246 }
1247 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1248 
1249 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1250 				 u32 beacon_int)
1251 {
1252 	struct wireless_dev *wdev;
1253 	int res = 0;
1254 
1255 	if (!beacon_int)
1256 		return -EINVAL;
1257 
1258 	list_for_each_entry(wdev, &rdev->wdev_list, list) {
1259 		if (!wdev->beacon_interval)
1260 			continue;
1261 		if (wdev->beacon_interval != beacon_int) {
1262 			res = -EINVAL;
1263 			break;
1264 		}
1265 	}
1266 
1267 	return res;
1268 }
1269 
1270 int cfg80211_iter_combinations(struct wiphy *wiphy,
1271 			       const int num_different_channels,
1272 			       const u8 radar_detect,
1273 			       const int iftype_num[NUM_NL80211_IFTYPES],
1274 			       void (*iter)(const struct ieee80211_iface_combination *c,
1275 					    void *data),
1276 			       void *data)
1277 {
1278 	const struct ieee80211_regdomain *regdom;
1279 	enum nl80211_dfs_regions region = 0;
1280 	int i, j, iftype;
1281 	int num_interfaces = 0;
1282 	u32 used_iftypes = 0;
1283 
1284 	if (radar_detect) {
1285 		rcu_read_lock();
1286 		regdom = rcu_dereference(cfg80211_regdomain);
1287 		if (regdom)
1288 			region = regdom->dfs_region;
1289 		rcu_read_unlock();
1290 	}
1291 
1292 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1293 		num_interfaces += iftype_num[iftype];
1294 		if (iftype_num[iftype] > 0 &&
1295 		    !(wiphy->software_iftypes & BIT(iftype)))
1296 			used_iftypes |= BIT(iftype);
1297 	}
1298 
1299 	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1300 		const struct ieee80211_iface_combination *c;
1301 		struct ieee80211_iface_limit *limits;
1302 		u32 all_iftypes = 0;
1303 
1304 		c = &wiphy->iface_combinations[i];
1305 
1306 		if (num_interfaces > c->max_interfaces)
1307 			continue;
1308 		if (num_different_channels > c->num_different_channels)
1309 			continue;
1310 
1311 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1312 				 GFP_KERNEL);
1313 		if (!limits)
1314 			return -ENOMEM;
1315 
1316 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1317 			if (wiphy->software_iftypes & BIT(iftype))
1318 				continue;
1319 			for (j = 0; j < c->n_limits; j++) {
1320 				all_iftypes |= limits[j].types;
1321 				if (!(limits[j].types & BIT(iftype)))
1322 					continue;
1323 				if (limits[j].max < iftype_num[iftype])
1324 					goto cont;
1325 				limits[j].max -= iftype_num[iftype];
1326 			}
1327 		}
1328 
1329 		if (radar_detect != (c->radar_detect_widths & radar_detect))
1330 			goto cont;
1331 
1332 		if (radar_detect && c->radar_detect_regions &&
1333 		    !(c->radar_detect_regions & BIT(region)))
1334 			goto cont;
1335 
1336 		/* Finally check that all iftypes that we're currently
1337 		 * using are actually part of this combination. If they
1338 		 * aren't then we can't use this combination and have
1339 		 * to continue to the next.
1340 		 */
1341 		if ((all_iftypes & used_iftypes) != used_iftypes)
1342 			goto cont;
1343 
1344 		/* This combination covered all interface types and
1345 		 * supported the requested numbers, so we're good.
1346 		 */
1347 
1348 		(*iter)(c, data);
1349  cont:
1350 		kfree(limits);
1351 	}
1352 
1353 	return 0;
1354 }
1355 EXPORT_SYMBOL(cfg80211_iter_combinations);
1356 
1357 static void
1358 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1359 			  void *data)
1360 {
1361 	int *num = data;
1362 	(*num)++;
1363 }
1364 
1365 int cfg80211_check_combinations(struct wiphy *wiphy,
1366 				const int num_different_channels,
1367 				const u8 radar_detect,
1368 				const int iftype_num[NUM_NL80211_IFTYPES])
1369 {
1370 	int err, num = 0;
1371 
1372 	err = cfg80211_iter_combinations(wiphy, num_different_channels,
1373 					 radar_detect, iftype_num,
1374 					 cfg80211_iter_sum_ifcombs, &num);
1375 	if (err)
1376 		return err;
1377 	if (num == 0)
1378 		return -EBUSY;
1379 
1380 	return 0;
1381 }
1382 EXPORT_SYMBOL(cfg80211_check_combinations);
1383 
1384 int cfg80211_can_use_iftype_chan(struct cfg80211_registered_device *rdev,
1385 				 struct wireless_dev *wdev,
1386 				 enum nl80211_iftype iftype,
1387 				 struct ieee80211_channel *chan,
1388 				 enum cfg80211_chan_mode chanmode,
1389 				 u8 radar_detect)
1390 {
1391 	struct wireless_dev *wdev_iter;
1392 	int num[NUM_NL80211_IFTYPES];
1393 	struct ieee80211_channel
1394 			*used_channels[CFG80211_MAX_NUM_DIFFERENT_CHANNELS];
1395 	struct ieee80211_channel *ch;
1396 	enum cfg80211_chan_mode chmode;
1397 	int num_different_channels = 0;
1398 	int total = 1;
1399 	int i;
1400 
1401 	ASSERT_RTNL();
1402 
1403 	if (WARN_ON(hweight32(radar_detect) > 1))
1404 		return -EINVAL;
1405 
1406 	if (WARN_ON(iftype >= NUM_NL80211_IFTYPES))
1407 		return -EINVAL;
1408 
1409 	/* Always allow software iftypes */
1410 	if (rdev->wiphy.software_iftypes & BIT(iftype)) {
1411 		if (radar_detect)
1412 			return -EINVAL;
1413 		return 0;
1414 	}
1415 
1416 	memset(num, 0, sizeof(num));
1417 	memset(used_channels, 0, sizeof(used_channels));
1418 
1419 	num[iftype] = 1;
1420 
1421 	/* TODO: We'll probably not need this anymore, since this
1422 	 * should only be called with CHAN_MODE_UNDEFINED. There are
1423 	 * still a couple of pending calls where other chanmodes are
1424 	 * used, but we should get rid of them.
1425 	 */
1426 	switch (chanmode) {
1427 	case CHAN_MODE_UNDEFINED:
1428 		break;
1429 	case CHAN_MODE_SHARED:
1430 		WARN_ON(!chan);
1431 		used_channels[0] = chan;
1432 		num_different_channels++;
1433 		break;
1434 	case CHAN_MODE_EXCLUSIVE:
1435 		num_different_channels++;
1436 		break;
1437 	}
1438 
1439 	list_for_each_entry(wdev_iter, &rdev->wdev_list, list) {
1440 		if (wdev_iter == wdev)
1441 			continue;
1442 		if (wdev_iter->iftype == NL80211_IFTYPE_P2P_DEVICE) {
1443 			if (!wdev_iter->p2p_started)
1444 				continue;
1445 		} else if (wdev_iter->netdev) {
1446 			if (!netif_running(wdev_iter->netdev))
1447 				continue;
1448 		} else {
1449 			WARN_ON(1);
1450 		}
1451 
1452 		if (rdev->wiphy.software_iftypes & BIT(wdev_iter->iftype))
1453 			continue;
1454 
1455 		/*
1456 		 * We may be holding the "wdev" mutex, but now need to lock
1457 		 * wdev_iter. This is OK because once we get here wdev_iter
1458 		 * is not wdev (tested above), but we need to use the nested
1459 		 * locking for lockdep.
1460 		 */
1461 		mutex_lock_nested(&wdev_iter->mtx, 1);
1462 		__acquire(wdev_iter->mtx);
1463 		cfg80211_get_chan_state(wdev_iter, &ch, &chmode, &radar_detect);
1464 		wdev_unlock(wdev_iter);
1465 
1466 		switch (chmode) {
1467 		case CHAN_MODE_UNDEFINED:
1468 			break;
1469 		case CHAN_MODE_SHARED:
1470 			for (i = 0; i < CFG80211_MAX_NUM_DIFFERENT_CHANNELS; i++)
1471 				if (!used_channels[i] || used_channels[i] == ch)
1472 					break;
1473 
1474 			if (i == CFG80211_MAX_NUM_DIFFERENT_CHANNELS)
1475 				return -EBUSY;
1476 
1477 			if (used_channels[i] == NULL) {
1478 				used_channels[i] = ch;
1479 				num_different_channels++;
1480 			}
1481 			break;
1482 		case CHAN_MODE_EXCLUSIVE:
1483 			num_different_channels++;
1484 			break;
1485 		}
1486 
1487 		num[wdev_iter->iftype]++;
1488 		total++;
1489 	}
1490 
1491 	if (total == 1 && !radar_detect)
1492 		return 0;
1493 
1494 	return cfg80211_check_combinations(&rdev->wiphy, num_different_channels,
1495 					   radar_detect, num);
1496 }
1497 
1498 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1499 			   const u8 *rates, unsigned int n_rates,
1500 			   u32 *mask)
1501 {
1502 	int i, j;
1503 
1504 	if (!sband)
1505 		return -EINVAL;
1506 
1507 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1508 		return -EINVAL;
1509 
1510 	*mask = 0;
1511 
1512 	for (i = 0; i < n_rates; i++) {
1513 		int rate = (rates[i] & 0x7f) * 5;
1514 		bool found = false;
1515 
1516 		for (j = 0; j < sband->n_bitrates; j++) {
1517 			if (sband->bitrates[j].bitrate == rate) {
1518 				found = true;
1519 				*mask |= BIT(j);
1520 				break;
1521 			}
1522 		}
1523 		if (!found)
1524 			return -EINVAL;
1525 	}
1526 
1527 	/*
1528 	 * mask must have at least one bit set here since we
1529 	 * didn't accept a 0-length rates array nor allowed
1530 	 * entries in the array that didn't exist
1531 	 */
1532 
1533 	return 0;
1534 }
1535 
1536 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1537 {
1538 	enum ieee80211_band band;
1539 	unsigned int n_channels = 0;
1540 
1541 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1542 		if (wiphy->bands[band])
1543 			n_channels += wiphy->bands[band]->n_channels;
1544 
1545 	return n_channels;
1546 }
1547 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1548 
1549 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1550 			 struct station_info *sinfo)
1551 {
1552 	struct cfg80211_registered_device *rdev;
1553 	struct wireless_dev *wdev;
1554 
1555 	wdev = dev->ieee80211_ptr;
1556 	if (!wdev)
1557 		return -EOPNOTSUPP;
1558 
1559 	rdev = wiphy_to_rdev(wdev->wiphy);
1560 	if (!rdev->ops->get_station)
1561 		return -EOPNOTSUPP;
1562 
1563 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1564 }
1565 EXPORT_SYMBOL(cfg80211_get_station);
1566 
1567 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1568 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1569 const unsigned char rfc1042_header[] __aligned(2) =
1570 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1571 EXPORT_SYMBOL(rfc1042_header);
1572 
1573 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1574 const unsigned char bridge_tunnel_header[] __aligned(2) =
1575 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1576 EXPORT_SYMBOL(bridge_tunnel_header);
1577