1 /* 2 * Wireless utility functions 3 * 4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 5 */ 6 #include <linux/export.h> 7 #include <linux/bitops.h> 8 #include <linux/etherdevice.h> 9 #include <linux/slab.h> 10 #include <net/cfg80211.h> 11 #include <net/ip.h> 12 #include <net/dsfield.h> 13 #include <linux/if_vlan.h> 14 #include <linux/mpls.h> 15 #include "core.h" 16 #include "rdev-ops.h" 17 18 19 struct ieee80211_rate * 20 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 21 u32 basic_rates, int bitrate) 22 { 23 struct ieee80211_rate *result = &sband->bitrates[0]; 24 int i; 25 26 for (i = 0; i < sband->n_bitrates; i++) { 27 if (!(basic_rates & BIT(i))) 28 continue; 29 if (sband->bitrates[i].bitrate > bitrate) 30 continue; 31 result = &sband->bitrates[i]; 32 } 33 34 return result; 35 } 36 EXPORT_SYMBOL(ieee80211_get_response_rate); 37 38 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 39 enum nl80211_bss_scan_width scan_width) 40 { 41 struct ieee80211_rate *bitrates; 42 u32 mandatory_rates = 0; 43 enum ieee80211_rate_flags mandatory_flag; 44 int i; 45 46 if (WARN_ON(!sband)) 47 return 1; 48 49 if (sband->band == IEEE80211_BAND_2GHZ) { 50 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 51 scan_width == NL80211_BSS_CHAN_WIDTH_10) 52 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 53 else 54 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 55 } else { 56 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 57 } 58 59 bitrates = sband->bitrates; 60 for (i = 0; i < sband->n_bitrates; i++) 61 if (bitrates[i].flags & mandatory_flag) 62 mandatory_rates |= BIT(i); 63 return mandatory_rates; 64 } 65 EXPORT_SYMBOL(ieee80211_mandatory_rates); 66 67 int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band) 68 { 69 /* see 802.11 17.3.8.3.2 and Annex J 70 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 71 if (chan <= 0) 72 return 0; /* not supported */ 73 switch (band) { 74 case IEEE80211_BAND_2GHZ: 75 if (chan == 14) 76 return 2484; 77 else if (chan < 14) 78 return 2407 + chan * 5; 79 break; 80 case IEEE80211_BAND_5GHZ: 81 if (chan >= 182 && chan <= 196) 82 return 4000 + chan * 5; 83 else 84 return 5000 + chan * 5; 85 break; 86 case IEEE80211_BAND_60GHZ: 87 if (chan < 5) 88 return 56160 + chan * 2160; 89 break; 90 default: 91 ; 92 } 93 return 0; /* not supported */ 94 } 95 EXPORT_SYMBOL(ieee80211_channel_to_frequency); 96 97 int ieee80211_frequency_to_channel(int freq) 98 { 99 /* see 802.11 17.3.8.3.2 and Annex J */ 100 if (freq == 2484) 101 return 14; 102 else if (freq < 2484) 103 return (freq - 2407) / 5; 104 else if (freq >= 4910 && freq <= 4980) 105 return (freq - 4000) / 5; 106 else if (freq <= 45000) /* DMG band lower limit */ 107 return (freq - 5000) / 5; 108 else if (freq >= 58320 && freq <= 64800) 109 return (freq - 56160) / 2160; 110 else 111 return 0; 112 } 113 EXPORT_SYMBOL(ieee80211_frequency_to_channel); 114 115 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy, 116 int freq) 117 { 118 enum ieee80211_band band; 119 struct ieee80211_supported_band *sband; 120 int i; 121 122 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 123 sband = wiphy->bands[band]; 124 125 if (!sband) 126 continue; 127 128 for (i = 0; i < sband->n_channels; i++) { 129 if (sband->channels[i].center_freq == freq) 130 return &sband->channels[i]; 131 } 132 } 133 134 return NULL; 135 } 136 EXPORT_SYMBOL(__ieee80211_get_channel); 137 138 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband, 139 enum ieee80211_band band) 140 { 141 int i, want; 142 143 switch (band) { 144 case IEEE80211_BAND_5GHZ: 145 want = 3; 146 for (i = 0; i < sband->n_bitrates; i++) { 147 if (sband->bitrates[i].bitrate == 60 || 148 sband->bitrates[i].bitrate == 120 || 149 sband->bitrates[i].bitrate == 240) { 150 sband->bitrates[i].flags |= 151 IEEE80211_RATE_MANDATORY_A; 152 want--; 153 } 154 } 155 WARN_ON(want); 156 break; 157 case IEEE80211_BAND_2GHZ: 158 want = 7; 159 for (i = 0; i < sband->n_bitrates; i++) { 160 if (sband->bitrates[i].bitrate == 10) { 161 sband->bitrates[i].flags |= 162 IEEE80211_RATE_MANDATORY_B | 163 IEEE80211_RATE_MANDATORY_G; 164 want--; 165 } 166 167 if (sband->bitrates[i].bitrate == 20 || 168 sband->bitrates[i].bitrate == 55 || 169 sband->bitrates[i].bitrate == 110 || 170 sband->bitrates[i].bitrate == 60 || 171 sband->bitrates[i].bitrate == 120 || 172 sband->bitrates[i].bitrate == 240) { 173 sband->bitrates[i].flags |= 174 IEEE80211_RATE_MANDATORY_G; 175 want--; 176 } 177 178 if (sband->bitrates[i].bitrate != 10 && 179 sband->bitrates[i].bitrate != 20 && 180 sband->bitrates[i].bitrate != 55 && 181 sband->bitrates[i].bitrate != 110) 182 sband->bitrates[i].flags |= 183 IEEE80211_RATE_ERP_G; 184 } 185 WARN_ON(want != 0 && want != 3 && want != 6); 186 break; 187 case IEEE80211_BAND_60GHZ: 188 /* check for mandatory HT MCS 1..4 */ 189 WARN_ON(!sband->ht_cap.ht_supported); 190 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 191 break; 192 case IEEE80211_NUM_BANDS: 193 WARN_ON(1); 194 break; 195 } 196 } 197 198 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 199 { 200 enum ieee80211_band band; 201 202 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 203 if (wiphy->bands[band]) 204 set_mandatory_flags_band(wiphy->bands[band], band); 205 } 206 207 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 208 { 209 int i; 210 for (i = 0; i < wiphy->n_cipher_suites; i++) 211 if (cipher == wiphy->cipher_suites[i]) 212 return true; 213 return false; 214 } 215 216 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 217 struct key_params *params, int key_idx, 218 bool pairwise, const u8 *mac_addr) 219 { 220 if (key_idx > 5) 221 return -EINVAL; 222 223 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 224 return -EINVAL; 225 226 if (pairwise && !mac_addr) 227 return -EINVAL; 228 229 /* 230 * Disallow pairwise keys with non-zero index unless it's WEP 231 * or a vendor specific cipher (because current deployments use 232 * pairwise WEP keys with non-zero indices and for vendor specific 233 * ciphers this should be validated in the driver or hardware level 234 * - but 802.11i clearly specifies to use zero) 235 */ 236 if (pairwise && key_idx && 237 ((params->cipher == WLAN_CIPHER_SUITE_TKIP) || 238 (params->cipher == WLAN_CIPHER_SUITE_CCMP) || 239 (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC))) 240 return -EINVAL; 241 242 switch (params->cipher) { 243 case WLAN_CIPHER_SUITE_WEP40: 244 if (params->key_len != WLAN_KEY_LEN_WEP40) 245 return -EINVAL; 246 break; 247 case WLAN_CIPHER_SUITE_TKIP: 248 if (params->key_len != WLAN_KEY_LEN_TKIP) 249 return -EINVAL; 250 break; 251 case WLAN_CIPHER_SUITE_CCMP: 252 if (params->key_len != WLAN_KEY_LEN_CCMP) 253 return -EINVAL; 254 break; 255 case WLAN_CIPHER_SUITE_WEP104: 256 if (params->key_len != WLAN_KEY_LEN_WEP104) 257 return -EINVAL; 258 break; 259 case WLAN_CIPHER_SUITE_AES_CMAC: 260 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 261 return -EINVAL; 262 break; 263 default: 264 /* 265 * We don't know anything about this algorithm, 266 * allow using it -- but the driver must check 267 * all parameters! We still check below whether 268 * or not the driver supports this algorithm, 269 * of course. 270 */ 271 break; 272 } 273 274 if (params->seq) { 275 switch (params->cipher) { 276 case WLAN_CIPHER_SUITE_WEP40: 277 case WLAN_CIPHER_SUITE_WEP104: 278 /* These ciphers do not use key sequence */ 279 return -EINVAL; 280 case WLAN_CIPHER_SUITE_TKIP: 281 case WLAN_CIPHER_SUITE_CCMP: 282 case WLAN_CIPHER_SUITE_AES_CMAC: 283 if (params->seq_len != 6) 284 return -EINVAL; 285 break; 286 } 287 } 288 289 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 290 return -EINVAL; 291 292 return 0; 293 } 294 295 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 296 { 297 unsigned int hdrlen = 24; 298 299 if (ieee80211_is_data(fc)) { 300 if (ieee80211_has_a4(fc)) 301 hdrlen = 30; 302 if (ieee80211_is_data_qos(fc)) { 303 hdrlen += IEEE80211_QOS_CTL_LEN; 304 if (ieee80211_has_order(fc)) 305 hdrlen += IEEE80211_HT_CTL_LEN; 306 } 307 goto out; 308 } 309 310 if (ieee80211_is_ctl(fc)) { 311 /* 312 * ACK and CTS are 10 bytes, all others 16. To see how 313 * to get this condition consider 314 * subtype mask: 0b0000000011110000 (0x00F0) 315 * ACK subtype: 0b0000000011010000 (0x00D0) 316 * CTS subtype: 0b0000000011000000 (0x00C0) 317 * bits that matter: ^^^ (0x00E0) 318 * value of those: 0b0000000011000000 (0x00C0) 319 */ 320 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 321 hdrlen = 10; 322 else 323 hdrlen = 16; 324 } 325 out: 326 return hdrlen; 327 } 328 EXPORT_SYMBOL(ieee80211_hdrlen); 329 330 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 331 { 332 const struct ieee80211_hdr *hdr = 333 (const struct ieee80211_hdr *)skb->data; 334 unsigned int hdrlen; 335 336 if (unlikely(skb->len < 10)) 337 return 0; 338 hdrlen = ieee80211_hdrlen(hdr->frame_control); 339 if (unlikely(hdrlen > skb->len)) 340 return 0; 341 return hdrlen; 342 } 343 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 344 345 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 346 { 347 int ae = meshhdr->flags & MESH_FLAGS_AE; 348 /* 802.11-2012, 8.2.4.7.3 */ 349 switch (ae) { 350 default: 351 case 0: 352 return 6; 353 case MESH_FLAGS_AE_A4: 354 return 12; 355 case MESH_FLAGS_AE_A5_A6: 356 return 18; 357 } 358 } 359 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 360 361 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr, 362 enum nl80211_iftype iftype) 363 { 364 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 365 u16 hdrlen, ethertype; 366 u8 *payload; 367 u8 dst[ETH_ALEN]; 368 u8 src[ETH_ALEN] __aligned(2); 369 370 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 371 return -1; 372 373 hdrlen = ieee80211_hdrlen(hdr->frame_control); 374 375 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 376 * header 377 * IEEE 802.11 address fields: 378 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 379 * 0 0 DA SA BSSID n/a 380 * 0 1 DA BSSID SA n/a 381 * 1 0 BSSID SA DA n/a 382 * 1 1 RA TA DA SA 383 */ 384 memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN); 385 memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN); 386 387 switch (hdr->frame_control & 388 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 389 case cpu_to_le16(IEEE80211_FCTL_TODS): 390 if (unlikely(iftype != NL80211_IFTYPE_AP && 391 iftype != NL80211_IFTYPE_AP_VLAN && 392 iftype != NL80211_IFTYPE_P2P_GO)) 393 return -1; 394 break; 395 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 396 if (unlikely(iftype != NL80211_IFTYPE_WDS && 397 iftype != NL80211_IFTYPE_MESH_POINT && 398 iftype != NL80211_IFTYPE_AP_VLAN && 399 iftype != NL80211_IFTYPE_STATION)) 400 return -1; 401 if (iftype == NL80211_IFTYPE_MESH_POINT) { 402 struct ieee80211s_hdr *meshdr = 403 (struct ieee80211s_hdr *) (skb->data + hdrlen); 404 /* make sure meshdr->flags is on the linear part */ 405 if (!pskb_may_pull(skb, hdrlen + 1)) 406 return -1; 407 if (meshdr->flags & MESH_FLAGS_AE_A4) 408 return -1; 409 if (meshdr->flags & MESH_FLAGS_AE_A5_A6) { 410 skb_copy_bits(skb, hdrlen + 411 offsetof(struct ieee80211s_hdr, eaddr1), 412 dst, ETH_ALEN); 413 skb_copy_bits(skb, hdrlen + 414 offsetof(struct ieee80211s_hdr, eaddr2), 415 src, ETH_ALEN); 416 } 417 hdrlen += ieee80211_get_mesh_hdrlen(meshdr); 418 } 419 break; 420 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 421 if ((iftype != NL80211_IFTYPE_STATION && 422 iftype != NL80211_IFTYPE_P2P_CLIENT && 423 iftype != NL80211_IFTYPE_MESH_POINT) || 424 (is_multicast_ether_addr(dst) && 425 ether_addr_equal(src, addr))) 426 return -1; 427 if (iftype == NL80211_IFTYPE_MESH_POINT) { 428 struct ieee80211s_hdr *meshdr = 429 (struct ieee80211s_hdr *) (skb->data + hdrlen); 430 /* make sure meshdr->flags is on the linear part */ 431 if (!pskb_may_pull(skb, hdrlen + 1)) 432 return -1; 433 if (meshdr->flags & MESH_FLAGS_AE_A5_A6) 434 return -1; 435 if (meshdr->flags & MESH_FLAGS_AE_A4) 436 skb_copy_bits(skb, hdrlen + 437 offsetof(struct ieee80211s_hdr, eaddr1), 438 src, ETH_ALEN); 439 hdrlen += ieee80211_get_mesh_hdrlen(meshdr); 440 } 441 break; 442 case cpu_to_le16(0): 443 if (iftype != NL80211_IFTYPE_ADHOC && 444 iftype != NL80211_IFTYPE_STATION) 445 return -1; 446 break; 447 } 448 449 if (!pskb_may_pull(skb, hdrlen + 8)) 450 return -1; 451 452 payload = skb->data + hdrlen; 453 ethertype = (payload[6] << 8) | payload[7]; 454 455 if (likely((ether_addr_equal(payload, rfc1042_header) && 456 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 457 ether_addr_equal(payload, bridge_tunnel_header))) { 458 /* remove RFC1042 or Bridge-Tunnel encapsulation and 459 * replace EtherType */ 460 skb_pull(skb, hdrlen + 6); 461 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN); 462 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN); 463 } else { 464 struct ethhdr *ehdr; 465 __be16 len; 466 467 skb_pull(skb, hdrlen); 468 len = htons(skb->len); 469 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr)); 470 memcpy(ehdr->h_dest, dst, ETH_ALEN); 471 memcpy(ehdr->h_source, src, ETH_ALEN); 472 ehdr->h_proto = len; 473 } 474 return 0; 475 } 476 EXPORT_SYMBOL(ieee80211_data_to_8023); 477 478 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr, 479 enum nl80211_iftype iftype, 480 const u8 *bssid, bool qos) 481 { 482 struct ieee80211_hdr hdr; 483 u16 hdrlen, ethertype; 484 __le16 fc; 485 const u8 *encaps_data; 486 int encaps_len, skip_header_bytes; 487 int nh_pos, h_pos; 488 int head_need; 489 490 if (unlikely(skb->len < ETH_HLEN)) 491 return -EINVAL; 492 493 nh_pos = skb_network_header(skb) - skb->data; 494 h_pos = skb_transport_header(skb) - skb->data; 495 496 /* convert Ethernet header to proper 802.11 header (based on 497 * operation mode) */ 498 ethertype = (skb->data[12] << 8) | skb->data[13]; 499 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); 500 501 switch (iftype) { 502 case NL80211_IFTYPE_AP: 503 case NL80211_IFTYPE_AP_VLAN: 504 case NL80211_IFTYPE_P2P_GO: 505 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); 506 /* DA BSSID SA */ 507 memcpy(hdr.addr1, skb->data, ETH_ALEN); 508 memcpy(hdr.addr2, addr, ETH_ALEN); 509 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 510 hdrlen = 24; 511 break; 512 case NL80211_IFTYPE_STATION: 513 case NL80211_IFTYPE_P2P_CLIENT: 514 fc |= cpu_to_le16(IEEE80211_FCTL_TODS); 515 /* BSSID SA DA */ 516 memcpy(hdr.addr1, bssid, ETH_ALEN); 517 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 518 memcpy(hdr.addr3, skb->data, ETH_ALEN); 519 hdrlen = 24; 520 break; 521 case NL80211_IFTYPE_ADHOC: 522 /* DA SA BSSID */ 523 memcpy(hdr.addr1, skb->data, ETH_ALEN); 524 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 525 memcpy(hdr.addr3, bssid, ETH_ALEN); 526 hdrlen = 24; 527 break; 528 default: 529 return -EOPNOTSUPP; 530 } 531 532 if (qos) { 533 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 534 hdrlen += 2; 535 } 536 537 hdr.frame_control = fc; 538 hdr.duration_id = 0; 539 hdr.seq_ctrl = 0; 540 541 skip_header_bytes = ETH_HLEN; 542 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 543 encaps_data = bridge_tunnel_header; 544 encaps_len = sizeof(bridge_tunnel_header); 545 skip_header_bytes -= 2; 546 } else if (ethertype >= ETH_P_802_3_MIN) { 547 encaps_data = rfc1042_header; 548 encaps_len = sizeof(rfc1042_header); 549 skip_header_bytes -= 2; 550 } else { 551 encaps_data = NULL; 552 encaps_len = 0; 553 } 554 555 skb_pull(skb, skip_header_bytes); 556 nh_pos -= skip_header_bytes; 557 h_pos -= skip_header_bytes; 558 559 head_need = hdrlen + encaps_len - skb_headroom(skb); 560 561 if (head_need > 0 || skb_cloned(skb)) { 562 head_need = max(head_need, 0); 563 if (head_need) 564 skb_orphan(skb); 565 566 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) 567 return -ENOMEM; 568 569 skb->truesize += head_need; 570 } 571 572 if (encaps_data) { 573 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 574 nh_pos += encaps_len; 575 h_pos += encaps_len; 576 } 577 578 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 579 580 nh_pos += hdrlen; 581 h_pos += hdrlen; 582 583 /* Update skb pointers to various headers since this modified frame 584 * is going to go through Linux networking code that may potentially 585 * need things like pointer to IP header. */ 586 skb_set_mac_header(skb, 0); 587 skb_set_network_header(skb, nh_pos); 588 skb_set_transport_header(skb, h_pos); 589 590 return 0; 591 } 592 EXPORT_SYMBOL(ieee80211_data_from_8023); 593 594 595 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 596 const u8 *addr, enum nl80211_iftype iftype, 597 const unsigned int extra_headroom, 598 bool has_80211_header) 599 { 600 struct sk_buff *frame = NULL; 601 u16 ethertype; 602 u8 *payload; 603 const struct ethhdr *eth; 604 int remaining, err; 605 u8 dst[ETH_ALEN], src[ETH_ALEN]; 606 607 if (has_80211_header) { 608 err = ieee80211_data_to_8023(skb, addr, iftype); 609 if (err) 610 goto out; 611 612 /* skip the wrapping header */ 613 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr)); 614 if (!eth) 615 goto out; 616 } else { 617 eth = (struct ethhdr *) skb->data; 618 } 619 620 while (skb != frame) { 621 u8 padding; 622 __be16 len = eth->h_proto; 623 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len); 624 625 remaining = skb->len; 626 memcpy(dst, eth->h_dest, ETH_ALEN); 627 memcpy(src, eth->h_source, ETH_ALEN); 628 629 padding = (4 - subframe_len) & 0x3; 630 /* the last MSDU has no padding */ 631 if (subframe_len > remaining) 632 goto purge; 633 634 skb_pull(skb, sizeof(struct ethhdr)); 635 /* reuse skb for the last subframe */ 636 if (remaining <= subframe_len + padding) 637 frame = skb; 638 else { 639 unsigned int hlen = ALIGN(extra_headroom, 4); 640 /* 641 * Allocate and reserve two bytes more for payload 642 * alignment since sizeof(struct ethhdr) is 14. 643 */ 644 frame = dev_alloc_skb(hlen + subframe_len + 2); 645 if (!frame) 646 goto purge; 647 648 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 649 memcpy(skb_put(frame, ntohs(len)), skb->data, 650 ntohs(len)); 651 652 eth = (struct ethhdr *)skb_pull(skb, ntohs(len) + 653 padding); 654 if (!eth) { 655 dev_kfree_skb(frame); 656 goto purge; 657 } 658 } 659 660 skb_reset_network_header(frame); 661 frame->dev = skb->dev; 662 frame->priority = skb->priority; 663 664 payload = frame->data; 665 ethertype = (payload[6] << 8) | payload[7]; 666 667 if (likely((ether_addr_equal(payload, rfc1042_header) && 668 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 669 ether_addr_equal(payload, bridge_tunnel_header))) { 670 /* remove RFC1042 or Bridge-Tunnel 671 * encapsulation and replace EtherType */ 672 skb_pull(frame, 6); 673 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); 674 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); 675 } else { 676 memcpy(skb_push(frame, sizeof(__be16)), &len, 677 sizeof(__be16)); 678 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); 679 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); 680 } 681 __skb_queue_tail(list, frame); 682 } 683 684 return; 685 686 purge: 687 __skb_queue_purge(list); 688 out: 689 dev_kfree_skb(skb); 690 } 691 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 692 693 /* Given a data frame determine the 802.1p/1d tag to use. */ 694 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 695 struct cfg80211_qos_map *qos_map) 696 { 697 unsigned int dscp; 698 unsigned char vlan_priority; 699 700 /* skb->priority values from 256->263 are magic values to 701 * directly indicate a specific 802.1d priority. This is used 702 * to allow 802.1d priority to be passed directly in from VLAN 703 * tags, etc. 704 */ 705 if (skb->priority >= 256 && skb->priority <= 263) 706 return skb->priority - 256; 707 708 if (vlan_tx_tag_present(skb)) { 709 vlan_priority = (vlan_tx_tag_get(skb) & VLAN_PRIO_MASK) 710 >> VLAN_PRIO_SHIFT; 711 if (vlan_priority > 0) 712 return vlan_priority; 713 } 714 715 switch (skb->protocol) { 716 case htons(ETH_P_IP): 717 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 718 break; 719 case htons(ETH_P_IPV6): 720 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 721 break; 722 case htons(ETH_P_MPLS_UC): 723 case htons(ETH_P_MPLS_MC): { 724 struct mpls_label mpls_tmp, *mpls; 725 726 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 727 sizeof(*mpls), &mpls_tmp); 728 if (!mpls) 729 return 0; 730 731 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 732 >> MPLS_LS_TC_SHIFT; 733 } 734 case htons(ETH_P_80221): 735 /* 802.21 is always network control traffic */ 736 return 7; 737 default: 738 return 0; 739 } 740 741 if (qos_map) { 742 unsigned int i, tmp_dscp = dscp >> 2; 743 744 for (i = 0; i < qos_map->num_des; i++) { 745 if (tmp_dscp == qos_map->dscp_exception[i].dscp) 746 return qos_map->dscp_exception[i].up; 747 } 748 749 for (i = 0; i < 8; i++) { 750 if (tmp_dscp >= qos_map->up[i].low && 751 tmp_dscp <= qos_map->up[i].high) 752 return i; 753 } 754 } 755 756 return dscp >> 5; 757 } 758 EXPORT_SYMBOL(cfg80211_classify8021d); 759 760 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie) 761 { 762 const struct cfg80211_bss_ies *ies; 763 764 ies = rcu_dereference(bss->ies); 765 if (!ies) 766 return NULL; 767 768 return cfg80211_find_ie(ie, ies->data, ies->len); 769 } 770 EXPORT_SYMBOL(ieee80211_bss_get_ie); 771 772 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 773 { 774 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 775 struct net_device *dev = wdev->netdev; 776 int i; 777 778 if (!wdev->connect_keys) 779 return; 780 781 for (i = 0; i < 6; i++) { 782 if (!wdev->connect_keys->params[i].cipher) 783 continue; 784 if (rdev_add_key(rdev, dev, i, false, NULL, 785 &wdev->connect_keys->params[i])) { 786 netdev_err(dev, "failed to set key %d\n", i); 787 continue; 788 } 789 if (wdev->connect_keys->def == i) 790 if (rdev_set_default_key(rdev, dev, i, true, true)) { 791 netdev_err(dev, "failed to set defkey %d\n", i); 792 continue; 793 } 794 if (wdev->connect_keys->defmgmt == i) 795 if (rdev_set_default_mgmt_key(rdev, dev, i)) 796 netdev_err(dev, "failed to set mgtdef %d\n", i); 797 } 798 799 kfree(wdev->connect_keys); 800 wdev->connect_keys = NULL; 801 } 802 803 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 804 { 805 struct cfg80211_event *ev; 806 unsigned long flags; 807 const u8 *bssid = NULL; 808 809 spin_lock_irqsave(&wdev->event_lock, flags); 810 while (!list_empty(&wdev->event_list)) { 811 ev = list_first_entry(&wdev->event_list, 812 struct cfg80211_event, list); 813 list_del(&ev->list); 814 spin_unlock_irqrestore(&wdev->event_lock, flags); 815 816 wdev_lock(wdev); 817 switch (ev->type) { 818 case EVENT_CONNECT_RESULT: 819 if (!is_zero_ether_addr(ev->cr.bssid)) 820 bssid = ev->cr.bssid; 821 __cfg80211_connect_result( 822 wdev->netdev, bssid, 823 ev->cr.req_ie, ev->cr.req_ie_len, 824 ev->cr.resp_ie, ev->cr.resp_ie_len, 825 ev->cr.status, 826 ev->cr.status == WLAN_STATUS_SUCCESS, 827 NULL); 828 break; 829 case EVENT_ROAMED: 830 __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie, 831 ev->rm.req_ie_len, ev->rm.resp_ie, 832 ev->rm.resp_ie_len); 833 break; 834 case EVENT_DISCONNECTED: 835 __cfg80211_disconnected(wdev->netdev, 836 ev->dc.ie, ev->dc.ie_len, 837 ev->dc.reason, true); 838 break; 839 case EVENT_IBSS_JOINED: 840 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 841 ev->ij.channel); 842 break; 843 case EVENT_STOPPED: 844 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 845 break; 846 } 847 wdev_unlock(wdev); 848 849 kfree(ev); 850 851 spin_lock_irqsave(&wdev->event_lock, flags); 852 } 853 spin_unlock_irqrestore(&wdev->event_lock, flags); 854 } 855 856 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 857 { 858 struct wireless_dev *wdev; 859 860 ASSERT_RTNL(); 861 862 list_for_each_entry(wdev, &rdev->wdev_list, list) 863 cfg80211_process_wdev_events(wdev); 864 } 865 866 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 867 struct net_device *dev, enum nl80211_iftype ntype, 868 u32 *flags, struct vif_params *params) 869 { 870 int err; 871 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 872 873 ASSERT_RTNL(); 874 875 /* don't support changing VLANs, you just re-create them */ 876 if (otype == NL80211_IFTYPE_AP_VLAN) 877 return -EOPNOTSUPP; 878 879 /* cannot change into P2P device type */ 880 if (ntype == NL80211_IFTYPE_P2P_DEVICE) 881 return -EOPNOTSUPP; 882 883 if (!rdev->ops->change_virtual_intf || 884 !(rdev->wiphy.interface_modes & (1 << ntype))) 885 return -EOPNOTSUPP; 886 887 /* if it's part of a bridge, reject changing type to station/ibss */ 888 if ((dev->priv_flags & IFF_BRIDGE_PORT) && 889 (ntype == NL80211_IFTYPE_ADHOC || 890 ntype == NL80211_IFTYPE_STATION || 891 ntype == NL80211_IFTYPE_P2P_CLIENT)) 892 return -EBUSY; 893 894 if (ntype != otype && netif_running(dev)) { 895 dev->ieee80211_ptr->use_4addr = false; 896 dev->ieee80211_ptr->mesh_id_up_len = 0; 897 wdev_lock(dev->ieee80211_ptr); 898 rdev_set_qos_map(rdev, dev, NULL); 899 wdev_unlock(dev->ieee80211_ptr); 900 901 switch (otype) { 902 case NL80211_IFTYPE_AP: 903 cfg80211_stop_ap(rdev, dev, true); 904 break; 905 case NL80211_IFTYPE_ADHOC: 906 cfg80211_leave_ibss(rdev, dev, false); 907 break; 908 case NL80211_IFTYPE_STATION: 909 case NL80211_IFTYPE_P2P_CLIENT: 910 wdev_lock(dev->ieee80211_ptr); 911 cfg80211_disconnect(rdev, dev, 912 WLAN_REASON_DEAUTH_LEAVING, true); 913 wdev_unlock(dev->ieee80211_ptr); 914 break; 915 case NL80211_IFTYPE_MESH_POINT: 916 /* mesh should be handled? */ 917 break; 918 default: 919 break; 920 } 921 922 cfg80211_process_rdev_events(rdev); 923 } 924 925 err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params); 926 927 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 928 929 if (!err && params && params->use_4addr != -1) 930 dev->ieee80211_ptr->use_4addr = params->use_4addr; 931 932 if (!err) { 933 dev->priv_flags &= ~IFF_DONT_BRIDGE; 934 switch (ntype) { 935 case NL80211_IFTYPE_STATION: 936 if (dev->ieee80211_ptr->use_4addr) 937 break; 938 /* fall through */ 939 case NL80211_IFTYPE_P2P_CLIENT: 940 case NL80211_IFTYPE_ADHOC: 941 dev->priv_flags |= IFF_DONT_BRIDGE; 942 break; 943 case NL80211_IFTYPE_P2P_GO: 944 case NL80211_IFTYPE_AP: 945 case NL80211_IFTYPE_AP_VLAN: 946 case NL80211_IFTYPE_WDS: 947 case NL80211_IFTYPE_MESH_POINT: 948 /* bridging OK */ 949 break; 950 case NL80211_IFTYPE_MONITOR: 951 /* monitor can't bridge anyway */ 952 break; 953 case NL80211_IFTYPE_UNSPECIFIED: 954 case NUM_NL80211_IFTYPES: 955 /* not happening */ 956 break; 957 case NL80211_IFTYPE_P2P_DEVICE: 958 WARN_ON(1); 959 break; 960 } 961 } 962 963 if (!err && ntype != otype && netif_running(dev)) { 964 cfg80211_update_iface_num(rdev, ntype, 1); 965 cfg80211_update_iface_num(rdev, otype, -1); 966 } 967 968 return err; 969 } 970 971 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate) 972 { 973 static const u32 __mcs2bitrate[] = { 974 /* control PHY */ 975 [0] = 275, 976 /* SC PHY */ 977 [1] = 3850, 978 [2] = 7700, 979 [3] = 9625, 980 [4] = 11550, 981 [5] = 12512, /* 1251.25 mbps */ 982 [6] = 15400, 983 [7] = 19250, 984 [8] = 23100, 985 [9] = 25025, 986 [10] = 30800, 987 [11] = 38500, 988 [12] = 46200, 989 /* OFDM PHY */ 990 [13] = 6930, 991 [14] = 8662, /* 866.25 mbps */ 992 [15] = 13860, 993 [16] = 17325, 994 [17] = 20790, 995 [18] = 27720, 996 [19] = 34650, 997 [20] = 41580, 998 [21] = 45045, 999 [22] = 51975, 1000 [23] = 62370, 1001 [24] = 67568, /* 6756.75 mbps */ 1002 /* LP-SC PHY */ 1003 [25] = 6260, 1004 [26] = 8340, 1005 [27] = 11120, 1006 [28] = 12510, 1007 [29] = 16680, 1008 [30] = 22240, 1009 [31] = 25030, 1010 }; 1011 1012 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1013 return 0; 1014 1015 return __mcs2bitrate[rate->mcs]; 1016 } 1017 1018 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1019 { 1020 static const u32 base[4][10] = { 1021 { 6500000, 1022 13000000, 1023 19500000, 1024 26000000, 1025 39000000, 1026 52000000, 1027 58500000, 1028 65000000, 1029 78000000, 1030 0, 1031 }, 1032 { 13500000, 1033 27000000, 1034 40500000, 1035 54000000, 1036 81000000, 1037 108000000, 1038 121500000, 1039 135000000, 1040 162000000, 1041 180000000, 1042 }, 1043 { 29300000, 1044 58500000, 1045 87800000, 1046 117000000, 1047 175500000, 1048 234000000, 1049 263300000, 1050 292500000, 1051 351000000, 1052 390000000, 1053 }, 1054 { 58500000, 1055 117000000, 1056 175500000, 1057 234000000, 1058 351000000, 1059 468000000, 1060 526500000, 1061 585000000, 1062 702000000, 1063 780000000, 1064 }, 1065 }; 1066 u32 bitrate; 1067 int idx; 1068 1069 if (WARN_ON_ONCE(rate->mcs > 9)) 1070 return 0; 1071 1072 idx = rate->flags & (RATE_INFO_FLAGS_160_MHZ_WIDTH | 1073 RATE_INFO_FLAGS_80P80_MHZ_WIDTH) ? 3 : 1074 rate->flags & RATE_INFO_FLAGS_80_MHZ_WIDTH ? 2 : 1075 rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH ? 1 : 0; 1076 1077 bitrate = base[idx][rate->mcs]; 1078 bitrate *= rate->nss; 1079 1080 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1081 bitrate = (bitrate / 9) * 10; 1082 1083 /* do NOT round down here */ 1084 return (bitrate + 50000) / 100000; 1085 } 1086 1087 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1088 { 1089 int modulation, streams, bitrate; 1090 1091 if (!(rate->flags & RATE_INFO_FLAGS_MCS) && 1092 !(rate->flags & RATE_INFO_FLAGS_VHT_MCS)) 1093 return rate->legacy; 1094 if (rate->flags & RATE_INFO_FLAGS_60G) 1095 return cfg80211_calculate_bitrate_60g(rate); 1096 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1097 return cfg80211_calculate_bitrate_vht(rate); 1098 1099 /* the formula below does only work for MCS values smaller than 32 */ 1100 if (WARN_ON_ONCE(rate->mcs >= 32)) 1101 return 0; 1102 1103 modulation = rate->mcs & 7; 1104 streams = (rate->mcs >> 3) + 1; 1105 1106 bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ? 1107 13500000 : 6500000; 1108 1109 if (modulation < 4) 1110 bitrate *= (modulation + 1); 1111 else if (modulation == 4) 1112 bitrate *= (modulation + 2); 1113 else 1114 bitrate *= (modulation + 3); 1115 1116 bitrate *= streams; 1117 1118 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1119 bitrate = (bitrate / 9) * 10; 1120 1121 /* do NOT round down here */ 1122 return (bitrate + 50000) / 100000; 1123 } 1124 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1125 1126 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1127 enum ieee80211_p2p_attr_id attr, 1128 u8 *buf, unsigned int bufsize) 1129 { 1130 u8 *out = buf; 1131 u16 attr_remaining = 0; 1132 bool desired_attr = false; 1133 u16 desired_len = 0; 1134 1135 while (len > 0) { 1136 unsigned int iedatalen; 1137 unsigned int copy; 1138 const u8 *iedata; 1139 1140 if (len < 2) 1141 return -EILSEQ; 1142 iedatalen = ies[1]; 1143 if (iedatalen + 2 > len) 1144 return -EILSEQ; 1145 1146 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1147 goto cont; 1148 1149 if (iedatalen < 4) 1150 goto cont; 1151 1152 iedata = ies + 2; 1153 1154 /* check WFA OUI, P2P subtype */ 1155 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1156 iedata[2] != 0x9a || iedata[3] != 0x09) 1157 goto cont; 1158 1159 iedatalen -= 4; 1160 iedata += 4; 1161 1162 /* check attribute continuation into this IE */ 1163 copy = min_t(unsigned int, attr_remaining, iedatalen); 1164 if (copy && desired_attr) { 1165 desired_len += copy; 1166 if (out) { 1167 memcpy(out, iedata, min(bufsize, copy)); 1168 out += min(bufsize, copy); 1169 bufsize -= min(bufsize, copy); 1170 } 1171 1172 1173 if (copy == attr_remaining) 1174 return desired_len; 1175 } 1176 1177 attr_remaining -= copy; 1178 if (attr_remaining) 1179 goto cont; 1180 1181 iedatalen -= copy; 1182 iedata += copy; 1183 1184 while (iedatalen > 0) { 1185 u16 attr_len; 1186 1187 /* P2P attribute ID & size must fit */ 1188 if (iedatalen < 3) 1189 return -EILSEQ; 1190 desired_attr = iedata[0] == attr; 1191 attr_len = get_unaligned_le16(iedata + 1); 1192 iedatalen -= 3; 1193 iedata += 3; 1194 1195 copy = min_t(unsigned int, attr_len, iedatalen); 1196 1197 if (desired_attr) { 1198 desired_len += copy; 1199 if (out) { 1200 memcpy(out, iedata, min(bufsize, copy)); 1201 out += min(bufsize, copy); 1202 bufsize -= min(bufsize, copy); 1203 } 1204 1205 if (copy == attr_len) 1206 return desired_len; 1207 } 1208 1209 iedata += copy; 1210 iedatalen -= copy; 1211 attr_remaining = attr_len - copy; 1212 } 1213 1214 cont: 1215 len -= ies[1] + 2; 1216 ies += ies[1] + 2; 1217 } 1218 1219 if (attr_remaining && desired_attr) 1220 return -EILSEQ; 1221 1222 return -ENOENT; 1223 } 1224 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1225 1226 bool ieee80211_operating_class_to_band(u8 operating_class, 1227 enum ieee80211_band *band) 1228 { 1229 switch (operating_class) { 1230 case 112: 1231 case 115 ... 127: 1232 *band = IEEE80211_BAND_5GHZ; 1233 return true; 1234 case 81: 1235 case 82: 1236 case 83: 1237 case 84: 1238 *band = IEEE80211_BAND_2GHZ; 1239 return true; 1240 case 180: 1241 *band = IEEE80211_BAND_60GHZ; 1242 return true; 1243 } 1244 1245 return false; 1246 } 1247 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1248 1249 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 1250 u32 beacon_int) 1251 { 1252 struct wireless_dev *wdev; 1253 int res = 0; 1254 1255 if (!beacon_int) 1256 return -EINVAL; 1257 1258 list_for_each_entry(wdev, &rdev->wdev_list, list) { 1259 if (!wdev->beacon_interval) 1260 continue; 1261 if (wdev->beacon_interval != beacon_int) { 1262 res = -EINVAL; 1263 break; 1264 } 1265 } 1266 1267 return res; 1268 } 1269 1270 int cfg80211_iter_combinations(struct wiphy *wiphy, 1271 const int num_different_channels, 1272 const u8 radar_detect, 1273 const int iftype_num[NUM_NL80211_IFTYPES], 1274 void (*iter)(const struct ieee80211_iface_combination *c, 1275 void *data), 1276 void *data) 1277 { 1278 const struct ieee80211_regdomain *regdom; 1279 enum nl80211_dfs_regions region = 0; 1280 int i, j, iftype; 1281 int num_interfaces = 0; 1282 u32 used_iftypes = 0; 1283 1284 if (radar_detect) { 1285 rcu_read_lock(); 1286 regdom = rcu_dereference(cfg80211_regdomain); 1287 if (regdom) 1288 region = regdom->dfs_region; 1289 rcu_read_unlock(); 1290 } 1291 1292 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1293 num_interfaces += iftype_num[iftype]; 1294 if (iftype_num[iftype] > 0 && 1295 !(wiphy->software_iftypes & BIT(iftype))) 1296 used_iftypes |= BIT(iftype); 1297 } 1298 1299 for (i = 0; i < wiphy->n_iface_combinations; i++) { 1300 const struct ieee80211_iface_combination *c; 1301 struct ieee80211_iface_limit *limits; 1302 u32 all_iftypes = 0; 1303 1304 c = &wiphy->iface_combinations[i]; 1305 1306 if (num_interfaces > c->max_interfaces) 1307 continue; 1308 if (num_different_channels > c->num_different_channels) 1309 continue; 1310 1311 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 1312 GFP_KERNEL); 1313 if (!limits) 1314 return -ENOMEM; 1315 1316 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1317 if (wiphy->software_iftypes & BIT(iftype)) 1318 continue; 1319 for (j = 0; j < c->n_limits; j++) { 1320 all_iftypes |= limits[j].types; 1321 if (!(limits[j].types & BIT(iftype))) 1322 continue; 1323 if (limits[j].max < iftype_num[iftype]) 1324 goto cont; 1325 limits[j].max -= iftype_num[iftype]; 1326 } 1327 } 1328 1329 if (radar_detect != (c->radar_detect_widths & radar_detect)) 1330 goto cont; 1331 1332 if (radar_detect && c->radar_detect_regions && 1333 !(c->radar_detect_regions & BIT(region))) 1334 goto cont; 1335 1336 /* Finally check that all iftypes that we're currently 1337 * using are actually part of this combination. If they 1338 * aren't then we can't use this combination and have 1339 * to continue to the next. 1340 */ 1341 if ((all_iftypes & used_iftypes) != used_iftypes) 1342 goto cont; 1343 1344 /* This combination covered all interface types and 1345 * supported the requested numbers, so we're good. 1346 */ 1347 1348 (*iter)(c, data); 1349 cont: 1350 kfree(limits); 1351 } 1352 1353 return 0; 1354 } 1355 EXPORT_SYMBOL(cfg80211_iter_combinations); 1356 1357 static void 1358 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 1359 void *data) 1360 { 1361 int *num = data; 1362 (*num)++; 1363 } 1364 1365 int cfg80211_check_combinations(struct wiphy *wiphy, 1366 const int num_different_channels, 1367 const u8 radar_detect, 1368 const int iftype_num[NUM_NL80211_IFTYPES]) 1369 { 1370 int err, num = 0; 1371 1372 err = cfg80211_iter_combinations(wiphy, num_different_channels, 1373 radar_detect, iftype_num, 1374 cfg80211_iter_sum_ifcombs, &num); 1375 if (err) 1376 return err; 1377 if (num == 0) 1378 return -EBUSY; 1379 1380 return 0; 1381 } 1382 EXPORT_SYMBOL(cfg80211_check_combinations); 1383 1384 int cfg80211_can_use_iftype_chan(struct cfg80211_registered_device *rdev, 1385 struct wireless_dev *wdev, 1386 enum nl80211_iftype iftype, 1387 struct ieee80211_channel *chan, 1388 enum cfg80211_chan_mode chanmode, 1389 u8 radar_detect) 1390 { 1391 struct wireless_dev *wdev_iter; 1392 int num[NUM_NL80211_IFTYPES]; 1393 struct ieee80211_channel 1394 *used_channels[CFG80211_MAX_NUM_DIFFERENT_CHANNELS]; 1395 struct ieee80211_channel *ch; 1396 enum cfg80211_chan_mode chmode; 1397 int num_different_channels = 0; 1398 int total = 1; 1399 int i; 1400 1401 ASSERT_RTNL(); 1402 1403 if (WARN_ON(hweight32(radar_detect) > 1)) 1404 return -EINVAL; 1405 1406 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 1407 return -EINVAL; 1408 1409 /* Always allow software iftypes */ 1410 if (rdev->wiphy.software_iftypes & BIT(iftype)) { 1411 if (radar_detect) 1412 return -EINVAL; 1413 return 0; 1414 } 1415 1416 memset(num, 0, sizeof(num)); 1417 memset(used_channels, 0, sizeof(used_channels)); 1418 1419 num[iftype] = 1; 1420 1421 /* TODO: We'll probably not need this anymore, since this 1422 * should only be called with CHAN_MODE_UNDEFINED. There are 1423 * still a couple of pending calls where other chanmodes are 1424 * used, but we should get rid of them. 1425 */ 1426 switch (chanmode) { 1427 case CHAN_MODE_UNDEFINED: 1428 break; 1429 case CHAN_MODE_SHARED: 1430 WARN_ON(!chan); 1431 used_channels[0] = chan; 1432 num_different_channels++; 1433 break; 1434 case CHAN_MODE_EXCLUSIVE: 1435 num_different_channels++; 1436 break; 1437 } 1438 1439 list_for_each_entry(wdev_iter, &rdev->wdev_list, list) { 1440 if (wdev_iter == wdev) 1441 continue; 1442 if (wdev_iter->iftype == NL80211_IFTYPE_P2P_DEVICE) { 1443 if (!wdev_iter->p2p_started) 1444 continue; 1445 } else if (wdev_iter->netdev) { 1446 if (!netif_running(wdev_iter->netdev)) 1447 continue; 1448 } else { 1449 WARN_ON(1); 1450 } 1451 1452 if (rdev->wiphy.software_iftypes & BIT(wdev_iter->iftype)) 1453 continue; 1454 1455 /* 1456 * We may be holding the "wdev" mutex, but now need to lock 1457 * wdev_iter. This is OK because once we get here wdev_iter 1458 * is not wdev (tested above), but we need to use the nested 1459 * locking for lockdep. 1460 */ 1461 mutex_lock_nested(&wdev_iter->mtx, 1); 1462 __acquire(wdev_iter->mtx); 1463 cfg80211_get_chan_state(wdev_iter, &ch, &chmode, &radar_detect); 1464 wdev_unlock(wdev_iter); 1465 1466 switch (chmode) { 1467 case CHAN_MODE_UNDEFINED: 1468 break; 1469 case CHAN_MODE_SHARED: 1470 for (i = 0; i < CFG80211_MAX_NUM_DIFFERENT_CHANNELS; i++) 1471 if (!used_channels[i] || used_channels[i] == ch) 1472 break; 1473 1474 if (i == CFG80211_MAX_NUM_DIFFERENT_CHANNELS) 1475 return -EBUSY; 1476 1477 if (used_channels[i] == NULL) { 1478 used_channels[i] = ch; 1479 num_different_channels++; 1480 } 1481 break; 1482 case CHAN_MODE_EXCLUSIVE: 1483 num_different_channels++; 1484 break; 1485 } 1486 1487 num[wdev_iter->iftype]++; 1488 total++; 1489 } 1490 1491 if (total == 1 && !radar_detect) 1492 return 0; 1493 1494 return cfg80211_check_combinations(&rdev->wiphy, num_different_channels, 1495 radar_detect, num); 1496 } 1497 1498 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1499 const u8 *rates, unsigned int n_rates, 1500 u32 *mask) 1501 { 1502 int i, j; 1503 1504 if (!sband) 1505 return -EINVAL; 1506 1507 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1508 return -EINVAL; 1509 1510 *mask = 0; 1511 1512 for (i = 0; i < n_rates; i++) { 1513 int rate = (rates[i] & 0x7f) * 5; 1514 bool found = false; 1515 1516 for (j = 0; j < sband->n_bitrates; j++) { 1517 if (sband->bitrates[j].bitrate == rate) { 1518 found = true; 1519 *mask |= BIT(j); 1520 break; 1521 } 1522 } 1523 if (!found) 1524 return -EINVAL; 1525 } 1526 1527 /* 1528 * mask must have at least one bit set here since we 1529 * didn't accept a 0-length rates array nor allowed 1530 * entries in the array that didn't exist 1531 */ 1532 1533 return 0; 1534 } 1535 1536 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 1537 { 1538 enum ieee80211_band band; 1539 unsigned int n_channels = 0; 1540 1541 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 1542 if (wiphy->bands[band]) 1543 n_channels += wiphy->bands[band]->n_channels; 1544 1545 return n_channels; 1546 } 1547 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 1548 1549 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 1550 struct station_info *sinfo) 1551 { 1552 struct cfg80211_registered_device *rdev; 1553 struct wireless_dev *wdev; 1554 1555 wdev = dev->ieee80211_ptr; 1556 if (!wdev) 1557 return -EOPNOTSUPP; 1558 1559 rdev = wiphy_to_rdev(wdev->wiphy); 1560 if (!rdev->ops->get_station) 1561 return -EOPNOTSUPP; 1562 1563 return rdev_get_station(rdev, dev, mac_addr, sinfo); 1564 } 1565 EXPORT_SYMBOL(cfg80211_get_station); 1566 1567 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 1568 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 1569 const unsigned char rfc1042_header[] __aligned(2) = 1570 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 1571 EXPORT_SYMBOL(rfc1042_header); 1572 1573 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 1574 const unsigned char bridge_tunnel_header[] __aligned(2) = 1575 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 1576 EXPORT_SYMBOL(bridge_tunnel_header); 1577