xref: /openbmc/linux/net/wireless/util.c (revision a89988a6)
1 /*
2  * Wireless utility functions
3  *
4  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2013-2014  Intel Mobile Communications GmbH
6  */
7 #include <linux/export.h>
8 #include <linux/bitops.h>
9 #include <linux/etherdevice.h>
10 #include <linux/slab.h>
11 #include <net/cfg80211.h>
12 #include <net/ip.h>
13 #include <net/dsfield.h>
14 #include <linux/if_vlan.h>
15 #include <linux/mpls.h>
16 #include <linux/gcd.h>
17 #include "core.h"
18 #include "rdev-ops.h"
19 
20 
21 struct ieee80211_rate *
22 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
23 			    u32 basic_rates, int bitrate)
24 {
25 	struct ieee80211_rate *result = &sband->bitrates[0];
26 	int i;
27 
28 	for (i = 0; i < sband->n_bitrates; i++) {
29 		if (!(basic_rates & BIT(i)))
30 			continue;
31 		if (sband->bitrates[i].bitrate > bitrate)
32 			continue;
33 		result = &sband->bitrates[i];
34 	}
35 
36 	return result;
37 }
38 EXPORT_SYMBOL(ieee80211_get_response_rate);
39 
40 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
41 			      enum nl80211_bss_scan_width scan_width)
42 {
43 	struct ieee80211_rate *bitrates;
44 	u32 mandatory_rates = 0;
45 	enum ieee80211_rate_flags mandatory_flag;
46 	int i;
47 
48 	if (WARN_ON(!sband))
49 		return 1;
50 
51 	if (sband->band == NL80211_BAND_2GHZ) {
52 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
53 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
54 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
55 		else
56 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
57 	} else {
58 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
59 	}
60 
61 	bitrates = sband->bitrates;
62 	for (i = 0; i < sband->n_bitrates; i++)
63 		if (bitrates[i].flags & mandatory_flag)
64 			mandatory_rates |= BIT(i);
65 	return mandatory_rates;
66 }
67 EXPORT_SYMBOL(ieee80211_mandatory_rates);
68 
69 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
70 {
71 	/* see 802.11 17.3.8.3.2 and Annex J
72 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
73 	if (chan <= 0)
74 		return 0; /* not supported */
75 	switch (band) {
76 	case NL80211_BAND_2GHZ:
77 		if (chan == 14)
78 			return 2484;
79 		else if (chan < 14)
80 			return 2407 + chan * 5;
81 		break;
82 	case NL80211_BAND_5GHZ:
83 		if (chan >= 182 && chan <= 196)
84 			return 4000 + chan * 5;
85 		else
86 			return 5000 + chan * 5;
87 		break;
88 	case NL80211_BAND_60GHZ:
89 		if (chan < 5)
90 			return 56160 + chan * 2160;
91 		break;
92 	default:
93 		;
94 	}
95 	return 0; /* not supported */
96 }
97 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
98 
99 int ieee80211_frequency_to_channel(int freq)
100 {
101 	/* see 802.11 17.3.8.3.2 and Annex J */
102 	if (freq == 2484)
103 		return 14;
104 	else if (freq < 2484)
105 		return (freq - 2407) / 5;
106 	else if (freq >= 4910 && freq <= 4980)
107 		return (freq - 4000) / 5;
108 	else if (freq <= 45000) /* DMG band lower limit */
109 		return (freq - 5000) / 5;
110 	else if (freq >= 58320 && freq <= 64800)
111 		return (freq - 56160) / 2160;
112 	else
113 		return 0;
114 }
115 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
116 
117 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
118 {
119 	enum nl80211_band band;
120 	struct ieee80211_supported_band *sband;
121 	int i;
122 
123 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
124 		sband = wiphy->bands[band];
125 
126 		if (!sband)
127 			continue;
128 
129 		for (i = 0; i < sband->n_channels; i++) {
130 			if (sband->channels[i].center_freq == freq)
131 				return &sband->channels[i];
132 		}
133 	}
134 
135 	return NULL;
136 }
137 EXPORT_SYMBOL(ieee80211_get_channel);
138 
139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
140 {
141 	int i, want;
142 
143 	switch (sband->band) {
144 	case NL80211_BAND_5GHZ:
145 		want = 3;
146 		for (i = 0; i < sband->n_bitrates; i++) {
147 			if (sband->bitrates[i].bitrate == 60 ||
148 			    sband->bitrates[i].bitrate == 120 ||
149 			    sband->bitrates[i].bitrate == 240) {
150 				sband->bitrates[i].flags |=
151 					IEEE80211_RATE_MANDATORY_A;
152 				want--;
153 			}
154 		}
155 		WARN_ON(want);
156 		break;
157 	case NL80211_BAND_2GHZ:
158 		want = 7;
159 		for (i = 0; i < sband->n_bitrates; i++) {
160 			if (sband->bitrates[i].bitrate == 10) {
161 				sband->bitrates[i].flags |=
162 					IEEE80211_RATE_MANDATORY_B |
163 					IEEE80211_RATE_MANDATORY_G;
164 				want--;
165 			}
166 
167 			if (sband->bitrates[i].bitrate == 20 ||
168 			    sband->bitrates[i].bitrate == 55 ||
169 			    sband->bitrates[i].bitrate == 110 ||
170 			    sband->bitrates[i].bitrate == 60 ||
171 			    sband->bitrates[i].bitrate == 120 ||
172 			    sband->bitrates[i].bitrate == 240) {
173 				sband->bitrates[i].flags |=
174 					IEEE80211_RATE_MANDATORY_G;
175 				want--;
176 			}
177 
178 			if (sband->bitrates[i].bitrate != 10 &&
179 			    sband->bitrates[i].bitrate != 20 &&
180 			    sband->bitrates[i].bitrate != 55 &&
181 			    sband->bitrates[i].bitrate != 110)
182 				sband->bitrates[i].flags |=
183 					IEEE80211_RATE_ERP_G;
184 		}
185 		WARN_ON(want != 0 && want != 3 && want != 6);
186 		break;
187 	case NL80211_BAND_60GHZ:
188 		/* check for mandatory HT MCS 1..4 */
189 		WARN_ON(!sband->ht_cap.ht_supported);
190 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
191 		break;
192 	case NUM_NL80211_BANDS:
193 	default:
194 		WARN_ON(1);
195 		break;
196 	}
197 }
198 
199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
200 {
201 	enum nl80211_band band;
202 
203 	for (band = 0; band < NUM_NL80211_BANDS; band++)
204 		if (wiphy->bands[band])
205 			set_mandatory_flags_band(wiphy->bands[band]);
206 }
207 
208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
209 {
210 	int i;
211 	for (i = 0; i < wiphy->n_cipher_suites; i++)
212 		if (cipher == wiphy->cipher_suites[i])
213 			return true;
214 	return false;
215 }
216 
217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
218 				   struct key_params *params, int key_idx,
219 				   bool pairwise, const u8 *mac_addr)
220 {
221 	if (key_idx < 0 || key_idx > 5)
222 		return -EINVAL;
223 
224 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
225 		return -EINVAL;
226 
227 	if (pairwise && !mac_addr)
228 		return -EINVAL;
229 
230 	switch (params->cipher) {
231 	case WLAN_CIPHER_SUITE_TKIP:
232 	case WLAN_CIPHER_SUITE_CCMP:
233 	case WLAN_CIPHER_SUITE_CCMP_256:
234 	case WLAN_CIPHER_SUITE_GCMP:
235 	case WLAN_CIPHER_SUITE_GCMP_256:
236 		/* Disallow pairwise keys with non-zero index unless it's WEP
237 		 * or a vendor specific cipher (because current deployments use
238 		 * pairwise WEP keys with non-zero indices and for vendor
239 		 * specific ciphers this should be validated in the driver or
240 		 * hardware level - but 802.11i clearly specifies to use zero)
241 		 */
242 		if (pairwise && key_idx)
243 			return -EINVAL;
244 		break;
245 	case WLAN_CIPHER_SUITE_AES_CMAC:
246 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
247 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
248 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
249 		/* Disallow BIP (group-only) cipher as pairwise cipher */
250 		if (pairwise)
251 			return -EINVAL;
252 		if (key_idx < 4)
253 			return -EINVAL;
254 		break;
255 	case WLAN_CIPHER_SUITE_WEP40:
256 	case WLAN_CIPHER_SUITE_WEP104:
257 		if (key_idx > 3)
258 			return -EINVAL;
259 	default:
260 		break;
261 	}
262 
263 	switch (params->cipher) {
264 	case WLAN_CIPHER_SUITE_WEP40:
265 		if (params->key_len != WLAN_KEY_LEN_WEP40)
266 			return -EINVAL;
267 		break;
268 	case WLAN_CIPHER_SUITE_TKIP:
269 		if (params->key_len != WLAN_KEY_LEN_TKIP)
270 			return -EINVAL;
271 		break;
272 	case WLAN_CIPHER_SUITE_CCMP:
273 		if (params->key_len != WLAN_KEY_LEN_CCMP)
274 			return -EINVAL;
275 		break;
276 	case WLAN_CIPHER_SUITE_CCMP_256:
277 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
278 			return -EINVAL;
279 		break;
280 	case WLAN_CIPHER_SUITE_GCMP:
281 		if (params->key_len != WLAN_KEY_LEN_GCMP)
282 			return -EINVAL;
283 		break;
284 	case WLAN_CIPHER_SUITE_GCMP_256:
285 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
286 			return -EINVAL;
287 		break;
288 	case WLAN_CIPHER_SUITE_WEP104:
289 		if (params->key_len != WLAN_KEY_LEN_WEP104)
290 			return -EINVAL;
291 		break;
292 	case WLAN_CIPHER_SUITE_AES_CMAC:
293 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
294 			return -EINVAL;
295 		break;
296 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
297 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
298 			return -EINVAL;
299 		break;
300 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
301 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
302 			return -EINVAL;
303 		break;
304 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
305 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
306 			return -EINVAL;
307 		break;
308 	default:
309 		/*
310 		 * We don't know anything about this algorithm,
311 		 * allow using it -- but the driver must check
312 		 * all parameters! We still check below whether
313 		 * or not the driver supports this algorithm,
314 		 * of course.
315 		 */
316 		break;
317 	}
318 
319 	if (params->seq) {
320 		switch (params->cipher) {
321 		case WLAN_CIPHER_SUITE_WEP40:
322 		case WLAN_CIPHER_SUITE_WEP104:
323 			/* These ciphers do not use key sequence */
324 			return -EINVAL;
325 		case WLAN_CIPHER_SUITE_TKIP:
326 		case WLAN_CIPHER_SUITE_CCMP:
327 		case WLAN_CIPHER_SUITE_CCMP_256:
328 		case WLAN_CIPHER_SUITE_GCMP:
329 		case WLAN_CIPHER_SUITE_GCMP_256:
330 		case WLAN_CIPHER_SUITE_AES_CMAC:
331 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
332 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
333 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
334 			if (params->seq_len != 6)
335 				return -EINVAL;
336 			break;
337 		}
338 	}
339 
340 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
341 		return -EINVAL;
342 
343 	return 0;
344 }
345 
346 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
347 {
348 	unsigned int hdrlen = 24;
349 
350 	if (ieee80211_is_data(fc)) {
351 		if (ieee80211_has_a4(fc))
352 			hdrlen = 30;
353 		if (ieee80211_is_data_qos(fc)) {
354 			hdrlen += IEEE80211_QOS_CTL_LEN;
355 			if (ieee80211_has_order(fc))
356 				hdrlen += IEEE80211_HT_CTL_LEN;
357 		}
358 		goto out;
359 	}
360 
361 	if (ieee80211_is_mgmt(fc)) {
362 		if (ieee80211_has_order(fc))
363 			hdrlen += IEEE80211_HT_CTL_LEN;
364 		goto out;
365 	}
366 
367 	if (ieee80211_is_ctl(fc)) {
368 		/*
369 		 * ACK and CTS are 10 bytes, all others 16. To see how
370 		 * to get this condition consider
371 		 *   subtype mask:   0b0000000011110000 (0x00F0)
372 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
373 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
374 		 *   bits that matter:         ^^^      (0x00E0)
375 		 *   value of those: 0b0000000011000000 (0x00C0)
376 		 */
377 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
378 			hdrlen = 10;
379 		else
380 			hdrlen = 16;
381 	}
382 out:
383 	return hdrlen;
384 }
385 EXPORT_SYMBOL(ieee80211_hdrlen);
386 
387 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
388 {
389 	const struct ieee80211_hdr *hdr =
390 			(const struct ieee80211_hdr *)skb->data;
391 	unsigned int hdrlen;
392 
393 	if (unlikely(skb->len < 10))
394 		return 0;
395 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
396 	if (unlikely(hdrlen > skb->len))
397 		return 0;
398 	return hdrlen;
399 }
400 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
401 
402 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
403 {
404 	int ae = flags & MESH_FLAGS_AE;
405 	/* 802.11-2012, 8.2.4.7.3 */
406 	switch (ae) {
407 	default:
408 	case 0:
409 		return 6;
410 	case MESH_FLAGS_AE_A4:
411 		return 12;
412 	case MESH_FLAGS_AE_A5_A6:
413 		return 18;
414 	}
415 }
416 
417 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
418 {
419 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
420 }
421 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
422 
423 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
424 				  const u8 *addr, enum nl80211_iftype iftype)
425 {
426 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
427 	struct {
428 		u8 hdr[ETH_ALEN] __aligned(2);
429 		__be16 proto;
430 	} payload;
431 	struct ethhdr tmp;
432 	u16 hdrlen;
433 	u8 mesh_flags = 0;
434 
435 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
436 		return -1;
437 
438 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
439 	if (skb->len < hdrlen + 8)
440 		return -1;
441 
442 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
443 	 * header
444 	 * IEEE 802.11 address fields:
445 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
446 	 *   0     0   DA    SA    BSSID n/a
447 	 *   0     1   DA    BSSID SA    n/a
448 	 *   1     0   BSSID SA    DA    n/a
449 	 *   1     1   RA    TA    DA    SA
450 	 */
451 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
452 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
453 
454 	if (iftype == NL80211_IFTYPE_MESH_POINT)
455 		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
456 
457 	switch (hdr->frame_control &
458 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
459 	case cpu_to_le16(IEEE80211_FCTL_TODS):
460 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
461 			     iftype != NL80211_IFTYPE_AP_VLAN &&
462 			     iftype != NL80211_IFTYPE_P2P_GO))
463 			return -1;
464 		break;
465 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
466 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
467 			     iftype != NL80211_IFTYPE_MESH_POINT &&
468 			     iftype != NL80211_IFTYPE_AP_VLAN &&
469 			     iftype != NL80211_IFTYPE_STATION))
470 			return -1;
471 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
472 			if (mesh_flags & MESH_FLAGS_AE_A4)
473 				return -1;
474 			if (mesh_flags & MESH_FLAGS_AE_A5_A6) {
475 				skb_copy_bits(skb, hdrlen +
476 					offsetof(struct ieee80211s_hdr, eaddr1),
477 					tmp.h_dest, 2 * ETH_ALEN);
478 			}
479 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
480 		}
481 		break;
482 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
483 		if ((iftype != NL80211_IFTYPE_STATION &&
484 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
485 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
486 		    (is_multicast_ether_addr(tmp.h_dest) &&
487 		     ether_addr_equal(tmp.h_source, addr)))
488 			return -1;
489 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
490 			if (mesh_flags & MESH_FLAGS_AE_A5_A6)
491 				return -1;
492 			if (mesh_flags & MESH_FLAGS_AE_A4)
493 				skb_copy_bits(skb, hdrlen +
494 					offsetof(struct ieee80211s_hdr, eaddr1),
495 					tmp.h_source, ETH_ALEN);
496 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
497 		}
498 		break;
499 	case cpu_to_le16(0):
500 		if (iftype != NL80211_IFTYPE_ADHOC &&
501 		    iftype != NL80211_IFTYPE_STATION &&
502 		    iftype != NL80211_IFTYPE_OCB)
503 				return -1;
504 		break;
505 	}
506 
507 	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
508 	tmp.h_proto = payload.proto;
509 
510 	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
511 		    tmp.h_proto != htons(ETH_P_AARP) &&
512 		    tmp.h_proto != htons(ETH_P_IPX)) ||
513 		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
514 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
515 		 * replace EtherType */
516 		hdrlen += ETH_ALEN + 2;
517 	else
518 		tmp.h_proto = htons(skb->len - hdrlen);
519 
520 	pskb_pull(skb, hdrlen);
521 
522 	if (!ehdr)
523 		ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
524 	memcpy(ehdr, &tmp, sizeof(tmp));
525 
526 	return 0;
527 }
528 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
529 
530 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
531 			     enum nl80211_iftype iftype,
532 			     const u8 *bssid, bool qos)
533 {
534 	struct ieee80211_hdr hdr;
535 	u16 hdrlen, ethertype;
536 	__le16 fc;
537 	const u8 *encaps_data;
538 	int encaps_len, skip_header_bytes;
539 	int nh_pos, h_pos;
540 	int head_need;
541 
542 	if (unlikely(skb->len < ETH_HLEN))
543 		return -EINVAL;
544 
545 	nh_pos = skb_network_header(skb) - skb->data;
546 	h_pos = skb_transport_header(skb) - skb->data;
547 
548 	/* convert Ethernet header to proper 802.11 header (based on
549 	 * operation mode) */
550 	ethertype = (skb->data[12] << 8) | skb->data[13];
551 	fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
552 
553 	switch (iftype) {
554 	case NL80211_IFTYPE_AP:
555 	case NL80211_IFTYPE_AP_VLAN:
556 	case NL80211_IFTYPE_P2P_GO:
557 		fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
558 		/* DA BSSID SA */
559 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
560 		memcpy(hdr.addr2, addr, ETH_ALEN);
561 		memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
562 		hdrlen = 24;
563 		break;
564 	case NL80211_IFTYPE_STATION:
565 	case NL80211_IFTYPE_P2P_CLIENT:
566 		fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
567 		/* BSSID SA DA */
568 		memcpy(hdr.addr1, bssid, ETH_ALEN);
569 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
570 		memcpy(hdr.addr3, skb->data, ETH_ALEN);
571 		hdrlen = 24;
572 		break;
573 	case NL80211_IFTYPE_OCB:
574 	case NL80211_IFTYPE_ADHOC:
575 		/* DA SA BSSID */
576 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
577 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
578 		memcpy(hdr.addr3, bssid, ETH_ALEN);
579 		hdrlen = 24;
580 		break;
581 	default:
582 		return -EOPNOTSUPP;
583 	}
584 
585 	if (qos) {
586 		fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
587 		hdrlen += 2;
588 	}
589 
590 	hdr.frame_control = fc;
591 	hdr.duration_id = 0;
592 	hdr.seq_ctrl = 0;
593 
594 	skip_header_bytes = ETH_HLEN;
595 	if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
596 		encaps_data = bridge_tunnel_header;
597 		encaps_len = sizeof(bridge_tunnel_header);
598 		skip_header_bytes -= 2;
599 	} else if (ethertype >= ETH_P_802_3_MIN) {
600 		encaps_data = rfc1042_header;
601 		encaps_len = sizeof(rfc1042_header);
602 		skip_header_bytes -= 2;
603 	} else {
604 		encaps_data = NULL;
605 		encaps_len = 0;
606 	}
607 
608 	skb_pull(skb, skip_header_bytes);
609 	nh_pos -= skip_header_bytes;
610 	h_pos -= skip_header_bytes;
611 
612 	head_need = hdrlen + encaps_len - skb_headroom(skb);
613 
614 	if (head_need > 0 || skb_cloned(skb)) {
615 		head_need = max(head_need, 0);
616 		if (head_need)
617 			skb_orphan(skb);
618 
619 		if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
620 			return -ENOMEM;
621 	}
622 
623 	if (encaps_data) {
624 		memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
625 		nh_pos += encaps_len;
626 		h_pos += encaps_len;
627 	}
628 
629 	memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
630 
631 	nh_pos += hdrlen;
632 	h_pos += hdrlen;
633 
634 	/* Update skb pointers to various headers since this modified frame
635 	 * is going to go through Linux networking code that may potentially
636 	 * need things like pointer to IP header. */
637 	skb_reset_mac_header(skb);
638 	skb_set_network_header(skb, nh_pos);
639 	skb_set_transport_header(skb, h_pos);
640 
641 	return 0;
642 }
643 EXPORT_SYMBOL(ieee80211_data_from_8023);
644 
645 static void
646 __frame_add_frag(struct sk_buff *skb, struct page *page,
647 		 void *ptr, int len, int size)
648 {
649 	struct skb_shared_info *sh = skb_shinfo(skb);
650 	int page_offset;
651 
652 	page_ref_inc(page);
653 	page_offset = ptr - page_address(page);
654 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
655 }
656 
657 static void
658 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
659 			    int offset, int len)
660 {
661 	struct skb_shared_info *sh = skb_shinfo(skb);
662 	const skb_frag_t *frag = &sh->frags[0];
663 	struct page *frag_page;
664 	void *frag_ptr;
665 	int frag_len, frag_size;
666 	int head_size = skb->len - skb->data_len;
667 	int cur_len;
668 
669 	frag_page = virt_to_head_page(skb->head);
670 	frag_ptr = skb->data;
671 	frag_size = head_size;
672 
673 	while (offset >= frag_size) {
674 		offset -= frag_size;
675 		frag_page = skb_frag_page(frag);
676 		frag_ptr = skb_frag_address(frag);
677 		frag_size = skb_frag_size(frag);
678 		frag++;
679 	}
680 
681 	frag_ptr += offset;
682 	frag_len = frag_size - offset;
683 
684 	cur_len = min(len, frag_len);
685 
686 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
687 	len -= cur_len;
688 
689 	while (len > 0) {
690 		frag_len = skb_frag_size(frag);
691 		cur_len = min(len, frag_len);
692 		__frame_add_frag(frame, skb_frag_page(frag),
693 				 skb_frag_address(frag), cur_len, frag_len);
694 		len -= cur_len;
695 		frag++;
696 	}
697 }
698 
699 static struct sk_buff *
700 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
701 		       int offset, int len, bool reuse_frag)
702 {
703 	struct sk_buff *frame;
704 	int cur_len = len;
705 
706 	if (skb->len - offset < len)
707 		return NULL;
708 
709 	/*
710 	 * When reusing framents, copy some data to the head to simplify
711 	 * ethernet header handling and speed up protocol header processing
712 	 * in the stack later.
713 	 */
714 	if (reuse_frag)
715 		cur_len = min_t(int, len, 32);
716 
717 	/*
718 	 * Allocate and reserve two bytes more for payload
719 	 * alignment since sizeof(struct ethhdr) is 14.
720 	 */
721 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
722 	if (!frame)
723 		return NULL;
724 
725 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
726 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
727 
728 	len -= cur_len;
729 	if (!len)
730 		return frame;
731 
732 	offset += cur_len;
733 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
734 
735 	return frame;
736 }
737 
738 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
739 			      const u8 *addr, enum nl80211_iftype iftype,
740 			      const unsigned int extra_headroom,
741 			      const u8 *check_da, const u8 *check_sa)
742 {
743 	unsigned int hlen = ALIGN(extra_headroom, 4);
744 	struct sk_buff *frame = NULL;
745 	u16 ethertype;
746 	u8 *payload;
747 	int offset = 0, remaining;
748 	struct ethhdr eth;
749 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
750 	bool reuse_skb = false;
751 	bool last = false;
752 
753 	while (!last) {
754 		unsigned int subframe_len;
755 		int len;
756 		u8 padding;
757 
758 		skb_copy_bits(skb, offset, &eth, sizeof(eth));
759 		len = ntohs(eth.h_proto);
760 		subframe_len = sizeof(struct ethhdr) + len;
761 		padding = (4 - subframe_len) & 0x3;
762 
763 		/* the last MSDU has no padding */
764 		remaining = skb->len - offset;
765 		if (subframe_len > remaining)
766 			goto purge;
767 
768 		offset += sizeof(struct ethhdr);
769 		last = remaining <= subframe_len + padding;
770 
771 		/* FIXME: should we really accept multicast DA? */
772 		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
773 		     !ether_addr_equal(check_da, eth.h_dest)) ||
774 		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
775 			offset += len + padding;
776 			continue;
777 		}
778 
779 		/* reuse skb for the last subframe */
780 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
781 			skb_pull(skb, offset);
782 			frame = skb;
783 			reuse_skb = true;
784 		} else {
785 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
786 						       reuse_frag);
787 			if (!frame)
788 				goto purge;
789 
790 			offset += len + padding;
791 		}
792 
793 		skb_reset_network_header(frame);
794 		frame->dev = skb->dev;
795 		frame->priority = skb->priority;
796 
797 		payload = frame->data;
798 		ethertype = (payload[6] << 8) | payload[7];
799 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
800 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
801 			   ether_addr_equal(payload, bridge_tunnel_header))) {
802 			eth.h_proto = htons(ethertype);
803 			skb_pull(frame, ETH_ALEN + 2);
804 		}
805 
806 		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
807 		__skb_queue_tail(list, frame);
808 	}
809 
810 	if (!reuse_skb)
811 		dev_kfree_skb(skb);
812 
813 	return;
814 
815  purge:
816 	__skb_queue_purge(list);
817 	dev_kfree_skb(skb);
818 }
819 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
820 
821 /* Given a data frame determine the 802.1p/1d tag to use. */
822 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
823 				    struct cfg80211_qos_map *qos_map)
824 {
825 	unsigned int dscp;
826 	unsigned char vlan_priority;
827 
828 	/* skb->priority values from 256->263 are magic values to
829 	 * directly indicate a specific 802.1d priority.  This is used
830 	 * to allow 802.1d priority to be passed directly in from VLAN
831 	 * tags, etc.
832 	 */
833 	if (skb->priority >= 256 && skb->priority <= 263)
834 		return skb->priority - 256;
835 
836 	if (skb_vlan_tag_present(skb)) {
837 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
838 			>> VLAN_PRIO_SHIFT;
839 		if (vlan_priority > 0)
840 			return vlan_priority;
841 	}
842 
843 	switch (skb->protocol) {
844 	case htons(ETH_P_IP):
845 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
846 		break;
847 	case htons(ETH_P_IPV6):
848 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
849 		break;
850 	case htons(ETH_P_MPLS_UC):
851 	case htons(ETH_P_MPLS_MC): {
852 		struct mpls_label mpls_tmp, *mpls;
853 
854 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
855 					  sizeof(*mpls), &mpls_tmp);
856 		if (!mpls)
857 			return 0;
858 
859 		return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
860 			>> MPLS_LS_TC_SHIFT;
861 	}
862 	case htons(ETH_P_80221):
863 		/* 802.21 is always network control traffic */
864 		return 7;
865 	default:
866 		return 0;
867 	}
868 
869 	if (qos_map) {
870 		unsigned int i, tmp_dscp = dscp >> 2;
871 
872 		for (i = 0; i < qos_map->num_des; i++) {
873 			if (tmp_dscp == qos_map->dscp_exception[i].dscp)
874 				return qos_map->dscp_exception[i].up;
875 		}
876 
877 		for (i = 0; i < 8; i++) {
878 			if (tmp_dscp >= qos_map->up[i].low &&
879 			    tmp_dscp <= qos_map->up[i].high)
880 				return i;
881 		}
882 	}
883 
884 	return dscp >> 5;
885 }
886 EXPORT_SYMBOL(cfg80211_classify8021d);
887 
888 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
889 {
890 	const struct cfg80211_bss_ies *ies;
891 
892 	ies = rcu_dereference(bss->ies);
893 	if (!ies)
894 		return NULL;
895 
896 	return cfg80211_find_ie(ie, ies->data, ies->len);
897 }
898 EXPORT_SYMBOL(ieee80211_bss_get_ie);
899 
900 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
901 {
902 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
903 	struct net_device *dev = wdev->netdev;
904 	int i;
905 
906 	if (!wdev->connect_keys)
907 		return;
908 
909 	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
910 		if (!wdev->connect_keys->params[i].cipher)
911 			continue;
912 		if (rdev_add_key(rdev, dev, i, false, NULL,
913 				 &wdev->connect_keys->params[i])) {
914 			netdev_err(dev, "failed to set key %d\n", i);
915 			continue;
916 		}
917 		if (wdev->connect_keys->def == i &&
918 		    rdev_set_default_key(rdev, dev, i, true, true)) {
919 			netdev_err(dev, "failed to set defkey %d\n", i);
920 			continue;
921 		}
922 	}
923 
924 	kzfree(wdev->connect_keys);
925 	wdev->connect_keys = NULL;
926 }
927 
928 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
929 {
930 	struct cfg80211_event *ev;
931 	unsigned long flags;
932 
933 	spin_lock_irqsave(&wdev->event_lock, flags);
934 	while (!list_empty(&wdev->event_list)) {
935 		ev = list_first_entry(&wdev->event_list,
936 				      struct cfg80211_event, list);
937 		list_del(&ev->list);
938 		spin_unlock_irqrestore(&wdev->event_lock, flags);
939 
940 		wdev_lock(wdev);
941 		switch (ev->type) {
942 		case EVENT_CONNECT_RESULT:
943 			__cfg80211_connect_result(
944 				wdev->netdev,
945 				&ev->cr,
946 				ev->cr.status == WLAN_STATUS_SUCCESS);
947 			break;
948 		case EVENT_ROAMED:
949 			__cfg80211_roamed(wdev, &ev->rm);
950 			break;
951 		case EVENT_DISCONNECTED:
952 			__cfg80211_disconnected(wdev->netdev,
953 						ev->dc.ie, ev->dc.ie_len,
954 						ev->dc.reason,
955 						!ev->dc.locally_generated);
956 			break;
957 		case EVENT_IBSS_JOINED:
958 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
959 					       ev->ij.channel);
960 			break;
961 		case EVENT_STOPPED:
962 			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
963 			break;
964 		}
965 		wdev_unlock(wdev);
966 
967 		kfree(ev);
968 
969 		spin_lock_irqsave(&wdev->event_lock, flags);
970 	}
971 	spin_unlock_irqrestore(&wdev->event_lock, flags);
972 }
973 
974 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
975 {
976 	struct wireless_dev *wdev;
977 
978 	ASSERT_RTNL();
979 
980 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
981 		cfg80211_process_wdev_events(wdev);
982 }
983 
984 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
985 			  struct net_device *dev, enum nl80211_iftype ntype,
986 			  struct vif_params *params)
987 {
988 	int err;
989 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
990 
991 	ASSERT_RTNL();
992 
993 	/* don't support changing VLANs, you just re-create them */
994 	if (otype == NL80211_IFTYPE_AP_VLAN)
995 		return -EOPNOTSUPP;
996 
997 	/* cannot change into P2P device or NAN */
998 	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
999 	    ntype == NL80211_IFTYPE_NAN)
1000 		return -EOPNOTSUPP;
1001 
1002 	if (!rdev->ops->change_virtual_intf ||
1003 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1004 		return -EOPNOTSUPP;
1005 
1006 	/* if it's part of a bridge, reject changing type to station/ibss */
1007 	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
1008 	    (ntype == NL80211_IFTYPE_ADHOC ||
1009 	     ntype == NL80211_IFTYPE_STATION ||
1010 	     ntype == NL80211_IFTYPE_P2P_CLIENT))
1011 		return -EBUSY;
1012 
1013 	if (ntype != otype) {
1014 		dev->ieee80211_ptr->use_4addr = false;
1015 		dev->ieee80211_ptr->mesh_id_up_len = 0;
1016 		wdev_lock(dev->ieee80211_ptr);
1017 		rdev_set_qos_map(rdev, dev, NULL);
1018 		wdev_unlock(dev->ieee80211_ptr);
1019 
1020 		switch (otype) {
1021 		case NL80211_IFTYPE_AP:
1022 			cfg80211_stop_ap(rdev, dev, true);
1023 			break;
1024 		case NL80211_IFTYPE_ADHOC:
1025 			cfg80211_leave_ibss(rdev, dev, false);
1026 			break;
1027 		case NL80211_IFTYPE_STATION:
1028 		case NL80211_IFTYPE_P2P_CLIENT:
1029 			wdev_lock(dev->ieee80211_ptr);
1030 			cfg80211_disconnect(rdev, dev,
1031 					    WLAN_REASON_DEAUTH_LEAVING, true);
1032 			wdev_unlock(dev->ieee80211_ptr);
1033 			break;
1034 		case NL80211_IFTYPE_MESH_POINT:
1035 			/* mesh should be handled? */
1036 			break;
1037 		default:
1038 			break;
1039 		}
1040 
1041 		cfg80211_process_rdev_events(rdev);
1042 	}
1043 
1044 	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1045 
1046 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1047 
1048 	if (!err && params && params->use_4addr != -1)
1049 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1050 
1051 	if (!err) {
1052 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1053 		switch (ntype) {
1054 		case NL80211_IFTYPE_STATION:
1055 			if (dev->ieee80211_ptr->use_4addr)
1056 				break;
1057 			/* fall through */
1058 		case NL80211_IFTYPE_OCB:
1059 		case NL80211_IFTYPE_P2P_CLIENT:
1060 		case NL80211_IFTYPE_ADHOC:
1061 			dev->priv_flags |= IFF_DONT_BRIDGE;
1062 			break;
1063 		case NL80211_IFTYPE_P2P_GO:
1064 		case NL80211_IFTYPE_AP:
1065 		case NL80211_IFTYPE_AP_VLAN:
1066 		case NL80211_IFTYPE_WDS:
1067 		case NL80211_IFTYPE_MESH_POINT:
1068 			/* bridging OK */
1069 			break;
1070 		case NL80211_IFTYPE_MONITOR:
1071 			/* monitor can't bridge anyway */
1072 			break;
1073 		case NL80211_IFTYPE_UNSPECIFIED:
1074 		case NUM_NL80211_IFTYPES:
1075 			/* not happening */
1076 			break;
1077 		case NL80211_IFTYPE_P2P_DEVICE:
1078 		case NL80211_IFTYPE_NAN:
1079 			WARN_ON(1);
1080 			break;
1081 		}
1082 	}
1083 
1084 	if (!err && ntype != otype && netif_running(dev)) {
1085 		cfg80211_update_iface_num(rdev, ntype, 1);
1086 		cfg80211_update_iface_num(rdev, otype, -1);
1087 	}
1088 
1089 	return err;
1090 }
1091 
1092 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1093 {
1094 	int modulation, streams, bitrate;
1095 
1096 	/* the formula below does only work for MCS values smaller than 32 */
1097 	if (WARN_ON_ONCE(rate->mcs >= 32))
1098 		return 0;
1099 
1100 	modulation = rate->mcs & 7;
1101 	streams = (rate->mcs >> 3) + 1;
1102 
1103 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1104 
1105 	if (modulation < 4)
1106 		bitrate *= (modulation + 1);
1107 	else if (modulation == 4)
1108 		bitrate *= (modulation + 2);
1109 	else
1110 		bitrate *= (modulation + 3);
1111 
1112 	bitrate *= streams;
1113 
1114 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1115 		bitrate = (bitrate / 9) * 10;
1116 
1117 	/* do NOT round down here */
1118 	return (bitrate + 50000) / 100000;
1119 }
1120 
1121 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1122 {
1123 	static const u32 __mcs2bitrate[] = {
1124 		/* control PHY */
1125 		[0] =   275,
1126 		/* SC PHY */
1127 		[1] =  3850,
1128 		[2] =  7700,
1129 		[3] =  9625,
1130 		[4] = 11550,
1131 		[5] = 12512, /* 1251.25 mbps */
1132 		[6] = 15400,
1133 		[7] = 19250,
1134 		[8] = 23100,
1135 		[9] = 25025,
1136 		[10] = 30800,
1137 		[11] = 38500,
1138 		[12] = 46200,
1139 		/* OFDM PHY */
1140 		[13] =  6930,
1141 		[14] =  8662, /* 866.25 mbps */
1142 		[15] = 13860,
1143 		[16] = 17325,
1144 		[17] = 20790,
1145 		[18] = 27720,
1146 		[19] = 34650,
1147 		[20] = 41580,
1148 		[21] = 45045,
1149 		[22] = 51975,
1150 		[23] = 62370,
1151 		[24] = 67568, /* 6756.75 mbps */
1152 		/* LP-SC PHY */
1153 		[25] =  6260,
1154 		[26] =  8340,
1155 		[27] = 11120,
1156 		[28] = 12510,
1157 		[29] = 16680,
1158 		[30] = 22240,
1159 		[31] = 25030,
1160 	};
1161 
1162 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1163 		return 0;
1164 
1165 	return __mcs2bitrate[rate->mcs];
1166 }
1167 
1168 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1169 {
1170 	static const u32 base[4][10] = {
1171 		{   6500000,
1172 		   13000000,
1173 		   19500000,
1174 		   26000000,
1175 		   39000000,
1176 		   52000000,
1177 		   58500000,
1178 		   65000000,
1179 		   78000000,
1180 		/* not in the spec, but some devices use this: */
1181 		   86500000,
1182 		},
1183 		{  13500000,
1184 		   27000000,
1185 		   40500000,
1186 		   54000000,
1187 		   81000000,
1188 		  108000000,
1189 		  121500000,
1190 		  135000000,
1191 		  162000000,
1192 		  180000000,
1193 		},
1194 		{  29300000,
1195 		   58500000,
1196 		   87800000,
1197 		  117000000,
1198 		  175500000,
1199 		  234000000,
1200 		  263300000,
1201 		  292500000,
1202 		  351000000,
1203 		  390000000,
1204 		},
1205 		{  58500000,
1206 		  117000000,
1207 		  175500000,
1208 		  234000000,
1209 		  351000000,
1210 		  468000000,
1211 		  526500000,
1212 		  585000000,
1213 		  702000000,
1214 		  780000000,
1215 		},
1216 	};
1217 	u32 bitrate;
1218 	int idx;
1219 
1220 	if (WARN_ON_ONCE(rate->mcs > 9))
1221 		return 0;
1222 
1223 	switch (rate->bw) {
1224 	case RATE_INFO_BW_160:
1225 		idx = 3;
1226 		break;
1227 	case RATE_INFO_BW_80:
1228 		idx = 2;
1229 		break;
1230 	case RATE_INFO_BW_40:
1231 		idx = 1;
1232 		break;
1233 	case RATE_INFO_BW_5:
1234 	case RATE_INFO_BW_10:
1235 	default:
1236 		WARN_ON(1);
1237 		/* fall through */
1238 	case RATE_INFO_BW_20:
1239 		idx = 0;
1240 	}
1241 
1242 	bitrate = base[idx][rate->mcs];
1243 	bitrate *= rate->nss;
1244 
1245 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1246 		bitrate = (bitrate / 9) * 10;
1247 
1248 	/* do NOT round down here */
1249 	return (bitrate + 50000) / 100000;
1250 }
1251 
1252 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1253 {
1254 	if (rate->flags & RATE_INFO_FLAGS_MCS)
1255 		return cfg80211_calculate_bitrate_ht(rate);
1256 	if (rate->flags & RATE_INFO_FLAGS_60G)
1257 		return cfg80211_calculate_bitrate_60g(rate);
1258 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1259 		return cfg80211_calculate_bitrate_vht(rate);
1260 
1261 	return rate->legacy;
1262 }
1263 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1264 
1265 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1266 			  enum ieee80211_p2p_attr_id attr,
1267 			  u8 *buf, unsigned int bufsize)
1268 {
1269 	u8 *out = buf;
1270 	u16 attr_remaining = 0;
1271 	bool desired_attr = false;
1272 	u16 desired_len = 0;
1273 
1274 	while (len > 0) {
1275 		unsigned int iedatalen;
1276 		unsigned int copy;
1277 		const u8 *iedata;
1278 
1279 		if (len < 2)
1280 			return -EILSEQ;
1281 		iedatalen = ies[1];
1282 		if (iedatalen + 2 > len)
1283 			return -EILSEQ;
1284 
1285 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1286 			goto cont;
1287 
1288 		if (iedatalen < 4)
1289 			goto cont;
1290 
1291 		iedata = ies + 2;
1292 
1293 		/* check WFA OUI, P2P subtype */
1294 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1295 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1296 			goto cont;
1297 
1298 		iedatalen -= 4;
1299 		iedata += 4;
1300 
1301 		/* check attribute continuation into this IE */
1302 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1303 		if (copy && desired_attr) {
1304 			desired_len += copy;
1305 			if (out) {
1306 				memcpy(out, iedata, min(bufsize, copy));
1307 				out += min(bufsize, copy);
1308 				bufsize -= min(bufsize, copy);
1309 			}
1310 
1311 
1312 			if (copy == attr_remaining)
1313 				return desired_len;
1314 		}
1315 
1316 		attr_remaining -= copy;
1317 		if (attr_remaining)
1318 			goto cont;
1319 
1320 		iedatalen -= copy;
1321 		iedata += copy;
1322 
1323 		while (iedatalen > 0) {
1324 			u16 attr_len;
1325 
1326 			/* P2P attribute ID & size must fit */
1327 			if (iedatalen < 3)
1328 				return -EILSEQ;
1329 			desired_attr = iedata[0] == attr;
1330 			attr_len = get_unaligned_le16(iedata + 1);
1331 			iedatalen -= 3;
1332 			iedata += 3;
1333 
1334 			copy = min_t(unsigned int, attr_len, iedatalen);
1335 
1336 			if (desired_attr) {
1337 				desired_len += copy;
1338 				if (out) {
1339 					memcpy(out, iedata, min(bufsize, copy));
1340 					out += min(bufsize, copy);
1341 					bufsize -= min(bufsize, copy);
1342 				}
1343 
1344 				if (copy == attr_len)
1345 					return desired_len;
1346 			}
1347 
1348 			iedata += copy;
1349 			iedatalen -= copy;
1350 			attr_remaining = attr_len - copy;
1351 		}
1352 
1353  cont:
1354 		len -= ies[1] + 2;
1355 		ies += ies[1] + 2;
1356 	}
1357 
1358 	if (attr_remaining && desired_attr)
1359 		return -EILSEQ;
1360 
1361 	return -ENOENT;
1362 }
1363 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1364 
1365 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1366 {
1367 	int i;
1368 
1369 	for (i = 0; i < n_ids; i++)
1370 		if (ids[i] == id)
1371 			return true;
1372 	return false;
1373 }
1374 
1375 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1376 {
1377 	/* we assume a validly formed IEs buffer */
1378 	u8 len = ies[pos + 1];
1379 
1380 	pos += 2 + len;
1381 
1382 	/* the IE itself must have 255 bytes for fragments to follow */
1383 	if (len < 255)
1384 		return pos;
1385 
1386 	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1387 		len = ies[pos + 1];
1388 		pos += 2 + len;
1389 	}
1390 
1391 	return pos;
1392 }
1393 
1394 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1395 			      const u8 *ids, int n_ids,
1396 			      const u8 *after_ric, int n_after_ric,
1397 			      size_t offset)
1398 {
1399 	size_t pos = offset;
1400 
1401 	while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
1402 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1403 			pos = skip_ie(ies, ielen, pos);
1404 
1405 			while (pos < ielen &&
1406 			       !ieee80211_id_in_list(after_ric, n_after_ric,
1407 						     ies[pos]))
1408 				pos = skip_ie(ies, ielen, pos);
1409 		} else {
1410 			pos = skip_ie(ies, ielen, pos);
1411 		}
1412 	}
1413 
1414 	return pos;
1415 }
1416 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1417 
1418 bool ieee80211_operating_class_to_band(u8 operating_class,
1419 				       enum nl80211_band *band)
1420 {
1421 	switch (operating_class) {
1422 	case 112:
1423 	case 115 ... 127:
1424 	case 128 ... 130:
1425 		*band = NL80211_BAND_5GHZ;
1426 		return true;
1427 	case 81:
1428 	case 82:
1429 	case 83:
1430 	case 84:
1431 		*band = NL80211_BAND_2GHZ;
1432 		return true;
1433 	case 180:
1434 		*band = NL80211_BAND_60GHZ;
1435 		return true;
1436 	}
1437 
1438 	return false;
1439 }
1440 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1441 
1442 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1443 					  u8 *op_class)
1444 {
1445 	u8 vht_opclass;
1446 	u16 freq = chandef->center_freq1;
1447 
1448 	if (freq >= 2412 && freq <= 2472) {
1449 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1450 			return false;
1451 
1452 		/* 2.407 GHz, channels 1..13 */
1453 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1454 			if (freq > chandef->chan->center_freq)
1455 				*op_class = 83; /* HT40+ */
1456 			else
1457 				*op_class = 84; /* HT40- */
1458 		} else {
1459 			*op_class = 81;
1460 		}
1461 
1462 		return true;
1463 	}
1464 
1465 	if (freq == 2484) {
1466 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1467 			return false;
1468 
1469 		*op_class = 82; /* channel 14 */
1470 		return true;
1471 	}
1472 
1473 	switch (chandef->width) {
1474 	case NL80211_CHAN_WIDTH_80:
1475 		vht_opclass = 128;
1476 		break;
1477 	case NL80211_CHAN_WIDTH_160:
1478 		vht_opclass = 129;
1479 		break;
1480 	case NL80211_CHAN_WIDTH_80P80:
1481 		vht_opclass = 130;
1482 		break;
1483 	case NL80211_CHAN_WIDTH_10:
1484 	case NL80211_CHAN_WIDTH_5:
1485 		return false; /* unsupported for now */
1486 	default:
1487 		vht_opclass = 0;
1488 		break;
1489 	}
1490 
1491 	/* 5 GHz, channels 36..48 */
1492 	if (freq >= 5180 && freq <= 5240) {
1493 		if (vht_opclass) {
1494 			*op_class = vht_opclass;
1495 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1496 			if (freq > chandef->chan->center_freq)
1497 				*op_class = 116;
1498 			else
1499 				*op_class = 117;
1500 		} else {
1501 			*op_class = 115;
1502 		}
1503 
1504 		return true;
1505 	}
1506 
1507 	/* 5 GHz, channels 52..64 */
1508 	if (freq >= 5260 && freq <= 5320) {
1509 		if (vht_opclass) {
1510 			*op_class = vht_opclass;
1511 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1512 			if (freq > chandef->chan->center_freq)
1513 				*op_class = 119;
1514 			else
1515 				*op_class = 120;
1516 		} else {
1517 			*op_class = 118;
1518 		}
1519 
1520 		return true;
1521 	}
1522 
1523 	/* 5 GHz, channels 100..144 */
1524 	if (freq >= 5500 && freq <= 5720) {
1525 		if (vht_opclass) {
1526 			*op_class = vht_opclass;
1527 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1528 			if (freq > chandef->chan->center_freq)
1529 				*op_class = 122;
1530 			else
1531 				*op_class = 123;
1532 		} else {
1533 			*op_class = 121;
1534 		}
1535 
1536 		return true;
1537 	}
1538 
1539 	/* 5 GHz, channels 149..169 */
1540 	if (freq >= 5745 && freq <= 5845) {
1541 		if (vht_opclass) {
1542 			*op_class = vht_opclass;
1543 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1544 			if (freq > chandef->chan->center_freq)
1545 				*op_class = 126;
1546 			else
1547 				*op_class = 127;
1548 		} else if (freq <= 5805) {
1549 			*op_class = 124;
1550 		} else {
1551 			*op_class = 125;
1552 		}
1553 
1554 		return true;
1555 	}
1556 
1557 	/* 56.16 GHz, channel 1..4 */
1558 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1559 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1560 			return false;
1561 
1562 		*op_class = 180;
1563 		return true;
1564 	}
1565 
1566 	/* not supported yet */
1567 	return false;
1568 }
1569 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1570 
1571 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1572 				       u32 *beacon_int_gcd,
1573 				       bool *beacon_int_different)
1574 {
1575 	struct wireless_dev *wdev;
1576 
1577 	*beacon_int_gcd = 0;
1578 	*beacon_int_different = false;
1579 
1580 	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1581 		if (!wdev->beacon_interval)
1582 			continue;
1583 
1584 		if (!*beacon_int_gcd) {
1585 			*beacon_int_gcd = wdev->beacon_interval;
1586 			continue;
1587 		}
1588 
1589 		if (wdev->beacon_interval == *beacon_int_gcd)
1590 			continue;
1591 
1592 		*beacon_int_different = true;
1593 		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1594 	}
1595 
1596 	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1597 		if (*beacon_int_gcd)
1598 			*beacon_int_different = true;
1599 		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1600 	}
1601 }
1602 
1603 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1604 				 enum nl80211_iftype iftype, u32 beacon_int)
1605 {
1606 	/*
1607 	 * This is just a basic pre-condition check; if interface combinations
1608 	 * are possible the driver must already be checking those with a call
1609 	 * to cfg80211_check_combinations(), in which case we'll validate more
1610 	 * through the cfg80211_calculate_bi_data() call and code in
1611 	 * cfg80211_iter_combinations().
1612 	 */
1613 
1614 	if (beacon_int < 10 || beacon_int > 10000)
1615 		return -EINVAL;
1616 
1617 	return 0;
1618 }
1619 
1620 int cfg80211_iter_combinations(struct wiphy *wiphy,
1621 			       struct iface_combination_params *params,
1622 			       void (*iter)(const struct ieee80211_iface_combination *c,
1623 					    void *data),
1624 			       void *data)
1625 {
1626 	const struct ieee80211_regdomain *regdom;
1627 	enum nl80211_dfs_regions region = 0;
1628 	int i, j, iftype;
1629 	int num_interfaces = 0;
1630 	u32 used_iftypes = 0;
1631 	u32 beacon_int_gcd;
1632 	bool beacon_int_different;
1633 
1634 	/*
1635 	 * This is a bit strange, since the iteration used to rely only on
1636 	 * the data given by the driver, but here it now relies on context,
1637 	 * in form of the currently operating interfaces.
1638 	 * This is OK for all current users, and saves us from having to
1639 	 * push the GCD calculations into all the drivers.
1640 	 * In the future, this should probably rely more on data that's in
1641 	 * cfg80211 already - the only thing not would appear to be any new
1642 	 * interfaces (while being brought up) and channel/radar data.
1643 	 */
1644 	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1645 				   &beacon_int_gcd, &beacon_int_different);
1646 
1647 	if (params->radar_detect) {
1648 		rcu_read_lock();
1649 		regdom = rcu_dereference(cfg80211_regdomain);
1650 		if (regdom)
1651 			region = regdom->dfs_region;
1652 		rcu_read_unlock();
1653 	}
1654 
1655 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1656 		num_interfaces += params->iftype_num[iftype];
1657 		if (params->iftype_num[iftype] > 0 &&
1658 		    !(wiphy->software_iftypes & BIT(iftype)))
1659 			used_iftypes |= BIT(iftype);
1660 	}
1661 
1662 	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1663 		const struct ieee80211_iface_combination *c;
1664 		struct ieee80211_iface_limit *limits;
1665 		u32 all_iftypes = 0;
1666 
1667 		c = &wiphy->iface_combinations[i];
1668 
1669 		if (num_interfaces > c->max_interfaces)
1670 			continue;
1671 		if (params->num_different_channels > c->num_different_channels)
1672 			continue;
1673 
1674 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1675 				 GFP_KERNEL);
1676 		if (!limits)
1677 			return -ENOMEM;
1678 
1679 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1680 			if (wiphy->software_iftypes & BIT(iftype))
1681 				continue;
1682 			for (j = 0; j < c->n_limits; j++) {
1683 				all_iftypes |= limits[j].types;
1684 				if (!(limits[j].types & BIT(iftype)))
1685 					continue;
1686 				if (limits[j].max < params->iftype_num[iftype])
1687 					goto cont;
1688 				limits[j].max -= params->iftype_num[iftype];
1689 			}
1690 		}
1691 
1692 		if (params->radar_detect !=
1693 			(c->radar_detect_widths & params->radar_detect))
1694 			goto cont;
1695 
1696 		if (params->radar_detect && c->radar_detect_regions &&
1697 		    !(c->radar_detect_regions & BIT(region)))
1698 			goto cont;
1699 
1700 		/* Finally check that all iftypes that we're currently
1701 		 * using are actually part of this combination. If they
1702 		 * aren't then we can't use this combination and have
1703 		 * to continue to the next.
1704 		 */
1705 		if ((all_iftypes & used_iftypes) != used_iftypes)
1706 			goto cont;
1707 
1708 		if (beacon_int_gcd) {
1709 			if (c->beacon_int_min_gcd &&
1710 			    beacon_int_gcd < c->beacon_int_min_gcd)
1711 				goto cont;
1712 			if (!c->beacon_int_min_gcd && beacon_int_different)
1713 				goto cont;
1714 		}
1715 
1716 		/* This combination covered all interface types and
1717 		 * supported the requested numbers, so we're good.
1718 		 */
1719 
1720 		(*iter)(c, data);
1721  cont:
1722 		kfree(limits);
1723 	}
1724 
1725 	return 0;
1726 }
1727 EXPORT_SYMBOL(cfg80211_iter_combinations);
1728 
1729 static void
1730 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1731 			  void *data)
1732 {
1733 	int *num = data;
1734 	(*num)++;
1735 }
1736 
1737 int cfg80211_check_combinations(struct wiphy *wiphy,
1738 				struct iface_combination_params *params)
1739 {
1740 	int err, num = 0;
1741 
1742 	err = cfg80211_iter_combinations(wiphy, params,
1743 					 cfg80211_iter_sum_ifcombs, &num);
1744 	if (err)
1745 		return err;
1746 	if (num == 0)
1747 		return -EBUSY;
1748 
1749 	return 0;
1750 }
1751 EXPORT_SYMBOL(cfg80211_check_combinations);
1752 
1753 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1754 			   const u8 *rates, unsigned int n_rates,
1755 			   u32 *mask)
1756 {
1757 	int i, j;
1758 
1759 	if (!sband)
1760 		return -EINVAL;
1761 
1762 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1763 		return -EINVAL;
1764 
1765 	*mask = 0;
1766 
1767 	for (i = 0; i < n_rates; i++) {
1768 		int rate = (rates[i] & 0x7f) * 5;
1769 		bool found = false;
1770 
1771 		for (j = 0; j < sband->n_bitrates; j++) {
1772 			if (sband->bitrates[j].bitrate == rate) {
1773 				found = true;
1774 				*mask |= BIT(j);
1775 				break;
1776 			}
1777 		}
1778 		if (!found)
1779 			return -EINVAL;
1780 	}
1781 
1782 	/*
1783 	 * mask must have at least one bit set here since we
1784 	 * didn't accept a 0-length rates array nor allowed
1785 	 * entries in the array that didn't exist
1786 	 */
1787 
1788 	return 0;
1789 }
1790 
1791 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1792 {
1793 	enum nl80211_band band;
1794 	unsigned int n_channels = 0;
1795 
1796 	for (band = 0; band < NUM_NL80211_BANDS; band++)
1797 		if (wiphy->bands[band])
1798 			n_channels += wiphy->bands[band]->n_channels;
1799 
1800 	return n_channels;
1801 }
1802 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1803 
1804 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1805 			 struct station_info *sinfo)
1806 {
1807 	struct cfg80211_registered_device *rdev;
1808 	struct wireless_dev *wdev;
1809 
1810 	wdev = dev->ieee80211_ptr;
1811 	if (!wdev)
1812 		return -EOPNOTSUPP;
1813 
1814 	rdev = wiphy_to_rdev(wdev->wiphy);
1815 	if (!rdev->ops->get_station)
1816 		return -EOPNOTSUPP;
1817 
1818 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1819 }
1820 EXPORT_SYMBOL(cfg80211_get_station);
1821 
1822 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1823 {
1824 	int i;
1825 
1826 	if (!f)
1827 		return;
1828 
1829 	kfree(f->serv_spec_info);
1830 	kfree(f->srf_bf);
1831 	kfree(f->srf_macs);
1832 	for (i = 0; i < f->num_rx_filters; i++)
1833 		kfree(f->rx_filters[i].filter);
1834 
1835 	for (i = 0; i < f->num_tx_filters; i++)
1836 		kfree(f->tx_filters[i].filter);
1837 
1838 	kfree(f->rx_filters);
1839 	kfree(f->tx_filters);
1840 	kfree(f);
1841 }
1842 EXPORT_SYMBOL(cfg80211_free_nan_func);
1843 
1844 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1845 				u32 center_freq_khz, u32 bw_khz)
1846 {
1847 	u32 start_freq_khz, end_freq_khz;
1848 
1849 	start_freq_khz = center_freq_khz - (bw_khz / 2);
1850 	end_freq_khz = center_freq_khz + (bw_khz / 2);
1851 
1852 	if (start_freq_khz >= freq_range->start_freq_khz &&
1853 	    end_freq_khz <= freq_range->end_freq_khz)
1854 		return true;
1855 
1856 	return false;
1857 }
1858 
1859 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1860 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1861 const unsigned char rfc1042_header[] __aligned(2) =
1862 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1863 EXPORT_SYMBOL(rfc1042_header);
1864 
1865 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1866 const unsigned char bridge_tunnel_header[] __aligned(2) =
1867 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1868 EXPORT_SYMBOL(bridge_tunnel_header);
1869