1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Wireless utility functions 4 * 5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018-2022 Intel Corporation 9 */ 10 #include <linux/export.h> 11 #include <linux/bitops.h> 12 #include <linux/etherdevice.h> 13 #include <linux/slab.h> 14 #include <linux/ieee80211.h> 15 #include <net/cfg80211.h> 16 #include <net/ip.h> 17 #include <net/dsfield.h> 18 #include <linux/if_vlan.h> 19 #include <linux/mpls.h> 20 #include <linux/gcd.h> 21 #include <linux/bitfield.h> 22 #include <linux/nospec.h> 23 #include "core.h" 24 #include "rdev-ops.h" 25 26 27 const struct ieee80211_rate * 28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 29 u32 basic_rates, int bitrate) 30 { 31 struct ieee80211_rate *result = &sband->bitrates[0]; 32 int i; 33 34 for (i = 0; i < sband->n_bitrates; i++) { 35 if (!(basic_rates & BIT(i))) 36 continue; 37 if (sband->bitrates[i].bitrate > bitrate) 38 continue; 39 result = &sband->bitrates[i]; 40 } 41 42 return result; 43 } 44 EXPORT_SYMBOL(ieee80211_get_response_rate); 45 46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 47 enum nl80211_bss_scan_width scan_width) 48 { 49 struct ieee80211_rate *bitrates; 50 u32 mandatory_rates = 0; 51 enum ieee80211_rate_flags mandatory_flag; 52 int i; 53 54 if (WARN_ON(!sband)) 55 return 1; 56 57 if (sband->band == NL80211_BAND_2GHZ) { 58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 59 scan_width == NL80211_BSS_CHAN_WIDTH_10) 60 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 61 else 62 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 63 } else { 64 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 65 } 66 67 bitrates = sband->bitrates; 68 for (i = 0; i < sband->n_bitrates; i++) 69 if (bitrates[i].flags & mandatory_flag) 70 mandatory_rates |= BIT(i); 71 return mandatory_rates; 72 } 73 EXPORT_SYMBOL(ieee80211_mandatory_rates); 74 75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band) 76 { 77 /* see 802.11 17.3.8.3.2 and Annex J 78 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 79 if (chan <= 0) 80 return 0; /* not supported */ 81 switch (band) { 82 case NL80211_BAND_2GHZ: 83 case NL80211_BAND_LC: 84 if (chan == 14) 85 return MHZ_TO_KHZ(2484); 86 else if (chan < 14) 87 return MHZ_TO_KHZ(2407 + chan * 5); 88 break; 89 case NL80211_BAND_5GHZ: 90 if (chan >= 182 && chan <= 196) 91 return MHZ_TO_KHZ(4000 + chan * 5); 92 else 93 return MHZ_TO_KHZ(5000 + chan * 5); 94 break; 95 case NL80211_BAND_6GHZ: 96 /* see 802.11ax D6.1 27.3.23.2 */ 97 if (chan == 2) 98 return MHZ_TO_KHZ(5935); 99 if (chan <= 233) 100 return MHZ_TO_KHZ(5950 + chan * 5); 101 break; 102 case NL80211_BAND_60GHZ: 103 if (chan < 7) 104 return MHZ_TO_KHZ(56160 + chan * 2160); 105 break; 106 case NL80211_BAND_S1GHZ: 107 return 902000 + chan * 500; 108 default: 109 ; 110 } 111 return 0; /* not supported */ 112 } 113 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz); 114 115 enum nl80211_chan_width 116 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan) 117 { 118 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ)) 119 return NL80211_CHAN_WIDTH_20_NOHT; 120 121 /*S1G defines a single allowed channel width per channel. 122 * Extract that width here. 123 */ 124 if (chan->flags & IEEE80211_CHAN_1MHZ) 125 return NL80211_CHAN_WIDTH_1; 126 else if (chan->flags & IEEE80211_CHAN_2MHZ) 127 return NL80211_CHAN_WIDTH_2; 128 else if (chan->flags & IEEE80211_CHAN_4MHZ) 129 return NL80211_CHAN_WIDTH_4; 130 else if (chan->flags & IEEE80211_CHAN_8MHZ) 131 return NL80211_CHAN_WIDTH_8; 132 else if (chan->flags & IEEE80211_CHAN_16MHZ) 133 return NL80211_CHAN_WIDTH_16; 134 135 pr_err("unknown channel width for channel at %dKHz?\n", 136 ieee80211_channel_to_khz(chan)); 137 138 return NL80211_CHAN_WIDTH_1; 139 } 140 EXPORT_SYMBOL(ieee80211_s1g_channel_width); 141 142 int ieee80211_freq_khz_to_channel(u32 freq) 143 { 144 /* TODO: just handle MHz for now */ 145 freq = KHZ_TO_MHZ(freq); 146 147 /* see 802.11 17.3.8.3.2 and Annex J */ 148 if (freq == 2484) 149 return 14; 150 else if (freq < 2484) 151 return (freq - 2407) / 5; 152 else if (freq >= 4910 && freq <= 4980) 153 return (freq - 4000) / 5; 154 else if (freq < 5925) 155 return (freq - 5000) / 5; 156 else if (freq == 5935) 157 return 2; 158 else if (freq <= 45000) /* DMG band lower limit */ 159 /* see 802.11ax D6.1 27.3.22.2 */ 160 return (freq - 5950) / 5; 161 else if (freq >= 58320 && freq <= 70200) 162 return (freq - 56160) / 2160; 163 else 164 return 0; 165 } 166 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel); 167 168 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy, 169 u32 freq) 170 { 171 enum nl80211_band band; 172 struct ieee80211_supported_band *sband; 173 int i; 174 175 for (band = 0; band < NUM_NL80211_BANDS; band++) { 176 sband = wiphy->bands[band]; 177 178 if (!sband) 179 continue; 180 181 for (i = 0; i < sband->n_channels; i++) { 182 struct ieee80211_channel *chan = &sband->channels[i]; 183 184 if (ieee80211_channel_to_khz(chan) == freq) 185 return chan; 186 } 187 } 188 189 return NULL; 190 } 191 EXPORT_SYMBOL(ieee80211_get_channel_khz); 192 193 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) 194 { 195 int i, want; 196 197 switch (sband->band) { 198 case NL80211_BAND_5GHZ: 199 case NL80211_BAND_6GHZ: 200 want = 3; 201 for (i = 0; i < sband->n_bitrates; i++) { 202 if (sband->bitrates[i].bitrate == 60 || 203 sband->bitrates[i].bitrate == 120 || 204 sband->bitrates[i].bitrate == 240) { 205 sband->bitrates[i].flags |= 206 IEEE80211_RATE_MANDATORY_A; 207 want--; 208 } 209 } 210 WARN_ON(want); 211 break; 212 case NL80211_BAND_2GHZ: 213 case NL80211_BAND_LC: 214 want = 7; 215 for (i = 0; i < sband->n_bitrates; i++) { 216 switch (sband->bitrates[i].bitrate) { 217 case 10: 218 case 20: 219 case 55: 220 case 110: 221 sband->bitrates[i].flags |= 222 IEEE80211_RATE_MANDATORY_B | 223 IEEE80211_RATE_MANDATORY_G; 224 want--; 225 break; 226 case 60: 227 case 120: 228 case 240: 229 sband->bitrates[i].flags |= 230 IEEE80211_RATE_MANDATORY_G; 231 want--; 232 fallthrough; 233 default: 234 sband->bitrates[i].flags |= 235 IEEE80211_RATE_ERP_G; 236 break; 237 } 238 } 239 WARN_ON(want != 0 && want != 3); 240 break; 241 case NL80211_BAND_60GHZ: 242 /* check for mandatory HT MCS 1..4 */ 243 WARN_ON(!sband->ht_cap.ht_supported); 244 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 245 break; 246 case NL80211_BAND_S1GHZ: 247 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least 248 * mandatory is ok. 249 */ 250 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3); 251 break; 252 case NUM_NL80211_BANDS: 253 default: 254 WARN_ON(1); 255 break; 256 } 257 } 258 259 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 260 { 261 enum nl80211_band band; 262 263 for (band = 0; band < NUM_NL80211_BANDS; band++) 264 if (wiphy->bands[band]) 265 set_mandatory_flags_band(wiphy->bands[band]); 266 } 267 268 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 269 { 270 int i; 271 for (i = 0; i < wiphy->n_cipher_suites; i++) 272 if (cipher == wiphy->cipher_suites[i]) 273 return true; 274 return false; 275 } 276 277 static bool 278 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev) 279 { 280 struct wiphy *wiphy = &rdev->wiphy; 281 int i; 282 283 for (i = 0; i < wiphy->n_cipher_suites; i++) { 284 switch (wiphy->cipher_suites[i]) { 285 case WLAN_CIPHER_SUITE_AES_CMAC: 286 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 287 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 288 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 289 return true; 290 } 291 } 292 293 return false; 294 } 295 296 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev, 297 int key_idx, bool pairwise) 298 { 299 int max_key_idx; 300 301 if (pairwise) 302 max_key_idx = 3; 303 else if (wiphy_ext_feature_isset(&rdev->wiphy, 304 NL80211_EXT_FEATURE_BEACON_PROTECTION) || 305 wiphy_ext_feature_isset(&rdev->wiphy, 306 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT)) 307 max_key_idx = 7; 308 else if (cfg80211_igtk_cipher_supported(rdev)) 309 max_key_idx = 5; 310 else 311 max_key_idx = 3; 312 313 if (key_idx < 0 || key_idx > max_key_idx) 314 return false; 315 316 return true; 317 } 318 319 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 320 struct key_params *params, int key_idx, 321 bool pairwise, const u8 *mac_addr) 322 { 323 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise)) 324 return -EINVAL; 325 326 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 327 return -EINVAL; 328 329 if (pairwise && !mac_addr) 330 return -EINVAL; 331 332 switch (params->cipher) { 333 case WLAN_CIPHER_SUITE_TKIP: 334 /* Extended Key ID can only be used with CCMP/GCMP ciphers */ 335 if ((pairwise && key_idx) || 336 params->mode != NL80211_KEY_RX_TX) 337 return -EINVAL; 338 break; 339 case WLAN_CIPHER_SUITE_CCMP: 340 case WLAN_CIPHER_SUITE_CCMP_256: 341 case WLAN_CIPHER_SUITE_GCMP: 342 case WLAN_CIPHER_SUITE_GCMP_256: 343 /* IEEE802.11-2016 allows only 0 and - when supporting 344 * Extended Key ID - 1 as index for pairwise keys. 345 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when 346 * the driver supports Extended Key ID. 347 * @NL80211_KEY_SET_TX can't be set when installing and 348 * validating a key. 349 */ 350 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) || 351 params->mode == NL80211_KEY_SET_TX) 352 return -EINVAL; 353 if (wiphy_ext_feature_isset(&rdev->wiphy, 354 NL80211_EXT_FEATURE_EXT_KEY_ID)) { 355 if (pairwise && (key_idx < 0 || key_idx > 1)) 356 return -EINVAL; 357 } else if (pairwise && key_idx) { 358 return -EINVAL; 359 } 360 break; 361 case WLAN_CIPHER_SUITE_AES_CMAC: 362 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 363 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 364 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 365 /* Disallow BIP (group-only) cipher as pairwise cipher */ 366 if (pairwise) 367 return -EINVAL; 368 if (key_idx < 4) 369 return -EINVAL; 370 break; 371 case WLAN_CIPHER_SUITE_WEP40: 372 case WLAN_CIPHER_SUITE_WEP104: 373 if (key_idx > 3) 374 return -EINVAL; 375 break; 376 default: 377 break; 378 } 379 380 switch (params->cipher) { 381 case WLAN_CIPHER_SUITE_WEP40: 382 if (params->key_len != WLAN_KEY_LEN_WEP40) 383 return -EINVAL; 384 break; 385 case WLAN_CIPHER_SUITE_TKIP: 386 if (params->key_len != WLAN_KEY_LEN_TKIP) 387 return -EINVAL; 388 break; 389 case WLAN_CIPHER_SUITE_CCMP: 390 if (params->key_len != WLAN_KEY_LEN_CCMP) 391 return -EINVAL; 392 break; 393 case WLAN_CIPHER_SUITE_CCMP_256: 394 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 395 return -EINVAL; 396 break; 397 case WLAN_CIPHER_SUITE_GCMP: 398 if (params->key_len != WLAN_KEY_LEN_GCMP) 399 return -EINVAL; 400 break; 401 case WLAN_CIPHER_SUITE_GCMP_256: 402 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 403 return -EINVAL; 404 break; 405 case WLAN_CIPHER_SUITE_WEP104: 406 if (params->key_len != WLAN_KEY_LEN_WEP104) 407 return -EINVAL; 408 break; 409 case WLAN_CIPHER_SUITE_AES_CMAC: 410 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 411 return -EINVAL; 412 break; 413 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 414 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 415 return -EINVAL; 416 break; 417 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 418 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 419 return -EINVAL; 420 break; 421 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 422 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 423 return -EINVAL; 424 break; 425 default: 426 /* 427 * We don't know anything about this algorithm, 428 * allow using it -- but the driver must check 429 * all parameters! We still check below whether 430 * or not the driver supports this algorithm, 431 * of course. 432 */ 433 break; 434 } 435 436 if (params->seq) { 437 switch (params->cipher) { 438 case WLAN_CIPHER_SUITE_WEP40: 439 case WLAN_CIPHER_SUITE_WEP104: 440 /* These ciphers do not use key sequence */ 441 return -EINVAL; 442 case WLAN_CIPHER_SUITE_TKIP: 443 case WLAN_CIPHER_SUITE_CCMP: 444 case WLAN_CIPHER_SUITE_CCMP_256: 445 case WLAN_CIPHER_SUITE_GCMP: 446 case WLAN_CIPHER_SUITE_GCMP_256: 447 case WLAN_CIPHER_SUITE_AES_CMAC: 448 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 449 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 450 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 451 if (params->seq_len != 6) 452 return -EINVAL; 453 break; 454 } 455 } 456 457 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 458 return -EINVAL; 459 460 return 0; 461 } 462 463 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 464 { 465 unsigned int hdrlen = 24; 466 467 if (ieee80211_is_ext(fc)) { 468 hdrlen = 4; 469 goto out; 470 } 471 472 if (ieee80211_is_data(fc)) { 473 if (ieee80211_has_a4(fc)) 474 hdrlen = 30; 475 if (ieee80211_is_data_qos(fc)) { 476 hdrlen += IEEE80211_QOS_CTL_LEN; 477 if (ieee80211_has_order(fc)) 478 hdrlen += IEEE80211_HT_CTL_LEN; 479 } 480 goto out; 481 } 482 483 if (ieee80211_is_mgmt(fc)) { 484 if (ieee80211_has_order(fc)) 485 hdrlen += IEEE80211_HT_CTL_LEN; 486 goto out; 487 } 488 489 if (ieee80211_is_ctl(fc)) { 490 /* 491 * ACK and CTS are 10 bytes, all others 16. To see how 492 * to get this condition consider 493 * subtype mask: 0b0000000011110000 (0x00F0) 494 * ACK subtype: 0b0000000011010000 (0x00D0) 495 * CTS subtype: 0b0000000011000000 (0x00C0) 496 * bits that matter: ^^^ (0x00E0) 497 * value of those: 0b0000000011000000 (0x00C0) 498 */ 499 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 500 hdrlen = 10; 501 else 502 hdrlen = 16; 503 } 504 out: 505 return hdrlen; 506 } 507 EXPORT_SYMBOL(ieee80211_hdrlen); 508 509 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 510 { 511 const struct ieee80211_hdr *hdr = 512 (const struct ieee80211_hdr *)skb->data; 513 unsigned int hdrlen; 514 515 if (unlikely(skb->len < 10)) 516 return 0; 517 hdrlen = ieee80211_hdrlen(hdr->frame_control); 518 if (unlikely(hdrlen > skb->len)) 519 return 0; 520 return hdrlen; 521 } 522 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 523 524 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 525 { 526 int ae = flags & MESH_FLAGS_AE; 527 /* 802.11-2012, 8.2.4.7.3 */ 528 switch (ae) { 529 default: 530 case 0: 531 return 6; 532 case MESH_FLAGS_AE_A4: 533 return 12; 534 case MESH_FLAGS_AE_A5_A6: 535 return 18; 536 } 537 } 538 539 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 540 { 541 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 542 } 543 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 544 545 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 546 const u8 *addr, enum nl80211_iftype iftype, 547 u8 data_offset, bool is_amsdu) 548 { 549 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 550 struct { 551 u8 hdr[ETH_ALEN] __aligned(2); 552 __be16 proto; 553 } payload; 554 struct ethhdr tmp; 555 u16 hdrlen; 556 u8 mesh_flags = 0; 557 558 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 559 return -1; 560 561 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; 562 if (skb->len < hdrlen) 563 return -1; 564 565 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 566 * header 567 * IEEE 802.11 address fields: 568 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 569 * 0 0 DA SA BSSID n/a 570 * 0 1 DA BSSID SA n/a 571 * 1 0 BSSID SA DA n/a 572 * 1 1 RA TA DA SA 573 */ 574 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 575 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 576 577 if (iftype == NL80211_IFTYPE_MESH_POINT && 578 skb_copy_bits(skb, hdrlen, &mesh_flags, 1) < 0) 579 return -1; 580 581 mesh_flags &= MESH_FLAGS_AE; 582 583 switch (hdr->frame_control & 584 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 585 case cpu_to_le16(IEEE80211_FCTL_TODS): 586 if (unlikely(iftype != NL80211_IFTYPE_AP && 587 iftype != NL80211_IFTYPE_AP_VLAN && 588 iftype != NL80211_IFTYPE_P2P_GO)) 589 return -1; 590 break; 591 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 592 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT && 593 iftype != NL80211_IFTYPE_AP_VLAN && 594 iftype != NL80211_IFTYPE_STATION)) 595 return -1; 596 if (iftype == NL80211_IFTYPE_MESH_POINT) { 597 if (mesh_flags == MESH_FLAGS_AE_A4) 598 return -1; 599 if (mesh_flags == MESH_FLAGS_AE_A5_A6 && 600 skb_copy_bits(skb, hdrlen + 601 offsetof(struct ieee80211s_hdr, eaddr1), 602 tmp.h_dest, 2 * ETH_ALEN) < 0) 603 return -1; 604 605 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 606 } 607 break; 608 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 609 if ((iftype != NL80211_IFTYPE_STATION && 610 iftype != NL80211_IFTYPE_P2P_CLIENT && 611 iftype != NL80211_IFTYPE_MESH_POINT) || 612 (is_multicast_ether_addr(tmp.h_dest) && 613 ether_addr_equal(tmp.h_source, addr))) 614 return -1; 615 if (iftype == NL80211_IFTYPE_MESH_POINT) { 616 if (mesh_flags == MESH_FLAGS_AE_A5_A6) 617 return -1; 618 if (mesh_flags == MESH_FLAGS_AE_A4 && 619 skb_copy_bits(skb, hdrlen + 620 offsetof(struct ieee80211s_hdr, eaddr1), 621 tmp.h_source, ETH_ALEN) < 0) 622 return -1; 623 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 624 } 625 break; 626 case cpu_to_le16(0): 627 if (iftype != NL80211_IFTYPE_ADHOC && 628 iftype != NL80211_IFTYPE_STATION && 629 iftype != NL80211_IFTYPE_OCB) 630 return -1; 631 break; 632 } 633 634 if (likely(skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 && 635 ((!is_amsdu && ether_addr_equal(payload.hdr, rfc1042_header) && 636 payload.proto != htons(ETH_P_AARP) && 637 payload.proto != htons(ETH_P_IPX)) || 638 ether_addr_equal(payload.hdr, bridge_tunnel_header)))) { 639 /* remove RFC1042 or Bridge-Tunnel encapsulation and 640 * replace EtherType */ 641 hdrlen += ETH_ALEN + 2; 642 tmp.h_proto = payload.proto; 643 skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2); 644 } else { 645 tmp.h_proto = htons(skb->len - hdrlen); 646 } 647 648 pskb_pull(skb, hdrlen); 649 650 if (!ehdr) 651 ehdr = skb_push(skb, sizeof(struct ethhdr)); 652 memcpy(ehdr, &tmp, sizeof(tmp)); 653 654 return 0; 655 } 656 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 657 658 static void 659 __frame_add_frag(struct sk_buff *skb, struct page *page, 660 void *ptr, int len, int size) 661 { 662 struct skb_shared_info *sh = skb_shinfo(skb); 663 int page_offset; 664 665 get_page(page); 666 page_offset = ptr - page_address(page); 667 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 668 } 669 670 static void 671 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 672 int offset, int len) 673 { 674 struct skb_shared_info *sh = skb_shinfo(skb); 675 const skb_frag_t *frag = &sh->frags[0]; 676 struct page *frag_page; 677 void *frag_ptr; 678 int frag_len, frag_size; 679 int head_size = skb->len - skb->data_len; 680 int cur_len; 681 682 frag_page = virt_to_head_page(skb->head); 683 frag_ptr = skb->data; 684 frag_size = head_size; 685 686 while (offset >= frag_size) { 687 offset -= frag_size; 688 frag_page = skb_frag_page(frag); 689 frag_ptr = skb_frag_address(frag); 690 frag_size = skb_frag_size(frag); 691 frag++; 692 } 693 694 frag_ptr += offset; 695 frag_len = frag_size - offset; 696 697 cur_len = min(len, frag_len); 698 699 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 700 len -= cur_len; 701 702 while (len > 0) { 703 frag_len = skb_frag_size(frag); 704 cur_len = min(len, frag_len); 705 __frame_add_frag(frame, skb_frag_page(frag), 706 skb_frag_address(frag), cur_len, frag_len); 707 len -= cur_len; 708 frag++; 709 } 710 } 711 712 static struct sk_buff * 713 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 714 int offset, int len, bool reuse_frag) 715 { 716 struct sk_buff *frame; 717 int cur_len = len; 718 719 if (skb->len - offset < len) 720 return NULL; 721 722 /* 723 * When reusing framents, copy some data to the head to simplify 724 * ethernet header handling and speed up protocol header processing 725 * in the stack later. 726 */ 727 if (reuse_frag) 728 cur_len = min_t(int, len, 32); 729 730 /* 731 * Allocate and reserve two bytes more for payload 732 * alignment since sizeof(struct ethhdr) is 14. 733 */ 734 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 735 if (!frame) 736 return NULL; 737 738 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 739 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 740 741 len -= cur_len; 742 if (!len) 743 return frame; 744 745 offset += cur_len; 746 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 747 748 return frame; 749 } 750 751 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 752 const u8 *addr, enum nl80211_iftype iftype, 753 const unsigned int extra_headroom, 754 const u8 *check_da, const u8 *check_sa) 755 { 756 unsigned int hlen = ALIGN(extra_headroom, 4); 757 struct sk_buff *frame = NULL; 758 u16 ethertype; 759 u8 *payload; 760 int offset = 0, remaining; 761 struct ethhdr eth; 762 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 763 bool reuse_skb = false; 764 bool last = false; 765 766 while (!last) { 767 unsigned int subframe_len; 768 int len; 769 u8 padding; 770 771 skb_copy_bits(skb, offset, ð, sizeof(eth)); 772 len = ntohs(eth.h_proto); 773 subframe_len = sizeof(struct ethhdr) + len; 774 padding = (4 - subframe_len) & 0x3; 775 776 /* the last MSDU has no padding */ 777 remaining = skb->len - offset; 778 if (subframe_len > remaining) 779 goto purge; 780 /* mitigate A-MSDU aggregation injection attacks */ 781 if (ether_addr_equal(eth.h_dest, rfc1042_header)) 782 goto purge; 783 784 offset += sizeof(struct ethhdr); 785 last = remaining <= subframe_len + padding; 786 787 /* FIXME: should we really accept multicast DA? */ 788 if ((check_da && !is_multicast_ether_addr(eth.h_dest) && 789 !ether_addr_equal(check_da, eth.h_dest)) || 790 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) { 791 offset += len + padding; 792 continue; 793 } 794 795 /* reuse skb for the last subframe */ 796 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 797 skb_pull(skb, offset); 798 frame = skb; 799 reuse_skb = true; 800 } else { 801 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 802 reuse_frag); 803 if (!frame) 804 goto purge; 805 806 offset += len + padding; 807 } 808 809 skb_reset_network_header(frame); 810 frame->dev = skb->dev; 811 frame->priority = skb->priority; 812 813 payload = frame->data; 814 ethertype = (payload[6] << 8) | payload[7]; 815 if (likely((ether_addr_equal(payload, rfc1042_header) && 816 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 817 ether_addr_equal(payload, bridge_tunnel_header))) { 818 eth.h_proto = htons(ethertype); 819 skb_pull(frame, ETH_ALEN + 2); 820 } 821 822 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth)); 823 __skb_queue_tail(list, frame); 824 } 825 826 if (!reuse_skb) 827 dev_kfree_skb(skb); 828 829 return; 830 831 purge: 832 __skb_queue_purge(list); 833 dev_kfree_skb(skb); 834 } 835 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 836 837 /* Given a data frame determine the 802.1p/1d tag to use. */ 838 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 839 struct cfg80211_qos_map *qos_map) 840 { 841 unsigned int dscp; 842 unsigned char vlan_priority; 843 unsigned int ret; 844 845 /* skb->priority values from 256->263 are magic values to 846 * directly indicate a specific 802.1d priority. This is used 847 * to allow 802.1d priority to be passed directly in from VLAN 848 * tags, etc. 849 */ 850 if (skb->priority >= 256 && skb->priority <= 263) { 851 ret = skb->priority - 256; 852 goto out; 853 } 854 855 if (skb_vlan_tag_present(skb)) { 856 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 857 >> VLAN_PRIO_SHIFT; 858 if (vlan_priority > 0) { 859 ret = vlan_priority; 860 goto out; 861 } 862 } 863 864 switch (skb->protocol) { 865 case htons(ETH_P_IP): 866 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 867 break; 868 case htons(ETH_P_IPV6): 869 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 870 break; 871 case htons(ETH_P_MPLS_UC): 872 case htons(ETH_P_MPLS_MC): { 873 struct mpls_label mpls_tmp, *mpls; 874 875 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 876 sizeof(*mpls), &mpls_tmp); 877 if (!mpls) 878 return 0; 879 880 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 881 >> MPLS_LS_TC_SHIFT; 882 goto out; 883 } 884 case htons(ETH_P_80221): 885 /* 802.21 is always network control traffic */ 886 return 7; 887 default: 888 return 0; 889 } 890 891 if (qos_map) { 892 unsigned int i, tmp_dscp = dscp >> 2; 893 894 for (i = 0; i < qos_map->num_des; i++) { 895 if (tmp_dscp == qos_map->dscp_exception[i].dscp) { 896 ret = qos_map->dscp_exception[i].up; 897 goto out; 898 } 899 } 900 901 for (i = 0; i < 8; i++) { 902 if (tmp_dscp >= qos_map->up[i].low && 903 tmp_dscp <= qos_map->up[i].high) { 904 ret = i; 905 goto out; 906 } 907 } 908 } 909 910 ret = dscp >> 5; 911 out: 912 return array_index_nospec(ret, IEEE80211_NUM_TIDS); 913 } 914 EXPORT_SYMBOL(cfg80211_classify8021d); 915 916 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id) 917 { 918 const struct cfg80211_bss_ies *ies; 919 920 ies = rcu_dereference(bss->ies); 921 if (!ies) 922 return NULL; 923 924 return cfg80211_find_elem(id, ies->data, ies->len); 925 } 926 EXPORT_SYMBOL(ieee80211_bss_get_elem); 927 928 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 929 { 930 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 931 struct net_device *dev = wdev->netdev; 932 int i; 933 934 if (!wdev->connect_keys) 935 return; 936 937 for (i = 0; i < 4; i++) { 938 if (!wdev->connect_keys->params[i].cipher) 939 continue; 940 if (rdev_add_key(rdev, dev, -1, i, false, NULL, 941 &wdev->connect_keys->params[i])) { 942 netdev_err(dev, "failed to set key %d\n", i); 943 continue; 944 } 945 if (wdev->connect_keys->def == i && 946 rdev_set_default_key(rdev, dev, -1, i, true, true)) { 947 netdev_err(dev, "failed to set defkey %d\n", i); 948 continue; 949 } 950 } 951 952 kfree_sensitive(wdev->connect_keys); 953 wdev->connect_keys = NULL; 954 } 955 956 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 957 { 958 struct cfg80211_event *ev; 959 unsigned long flags; 960 961 spin_lock_irqsave(&wdev->event_lock, flags); 962 while (!list_empty(&wdev->event_list)) { 963 ev = list_first_entry(&wdev->event_list, 964 struct cfg80211_event, list); 965 list_del(&ev->list); 966 spin_unlock_irqrestore(&wdev->event_lock, flags); 967 968 wdev_lock(wdev); 969 switch (ev->type) { 970 case EVENT_CONNECT_RESULT: 971 __cfg80211_connect_result( 972 wdev->netdev, 973 &ev->cr, 974 ev->cr.status == WLAN_STATUS_SUCCESS); 975 break; 976 case EVENT_ROAMED: 977 __cfg80211_roamed(wdev, &ev->rm); 978 break; 979 case EVENT_DISCONNECTED: 980 __cfg80211_disconnected(wdev->netdev, 981 ev->dc.ie, ev->dc.ie_len, 982 ev->dc.reason, 983 !ev->dc.locally_generated); 984 break; 985 case EVENT_IBSS_JOINED: 986 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 987 ev->ij.channel); 988 break; 989 case EVENT_STOPPED: 990 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 991 break; 992 case EVENT_PORT_AUTHORIZED: 993 __cfg80211_port_authorized(wdev, ev->pa.bssid, 994 ev->pa.td_bitmap, 995 ev->pa.td_bitmap_len); 996 break; 997 } 998 wdev_unlock(wdev); 999 1000 kfree(ev); 1001 1002 spin_lock_irqsave(&wdev->event_lock, flags); 1003 } 1004 spin_unlock_irqrestore(&wdev->event_lock, flags); 1005 } 1006 1007 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 1008 { 1009 struct wireless_dev *wdev; 1010 1011 lockdep_assert_held(&rdev->wiphy.mtx); 1012 1013 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 1014 cfg80211_process_wdev_events(wdev); 1015 } 1016 1017 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 1018 struct net_device *dev, enum nl80211_iftype ntype, 1019 struct vif_params *params) 1020 { 1021 int err; 1022 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 1023 1024 lockdep_assert_held(&rdev->wiphy.mtx); 1025 1026 /* don't support changing VLANs, you just re-create them */ 1027 if (otype == NL80211_IFTYPE_AP_VLAN) 1028 return -EOPNOTSUPP; 1029 1030 /* cannot change into P2P device or NAN */ 1031 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 1032 ntype == NL80211_IFTYPE_NAN) 1033 return -EOPNOTSUPP; 1034 1035 if (!rdev->ops->change_virtual_intf || 1036 !(rdev->wiphy.interface_modes & (1 << ntype))) 1037 return -EOPNOTSUPP; 1038 1039 if (ntype != otype) { 1040 /* if it's part of a bridge, reject changing type to station/ibss */ 1041 if (netif_is_bridge_port(dev) && 1042 (ntype == NL80211_IFTYPE_ADHOC || 1043 ntype == NL80211_IFTYPE_STATION || 1044 ntype == NL80211_IFTYPE_P2P_CLIENT)) 1045 return -EBUSY; 1046 1047 dev->ieee80211_ptr->use_4addr = false; 1048 wdev_lock(dev->ieee80211_ptr); 1049 rdev_set_qos_map(rdev, dev, NULL); 1050 wdev_unlock(dev->ieee80211_ptr); 1051 1052 switch (otype) { 1053 case NL80211_IFTYPE_AP: 1054 case NL80211_IFTYPE_P2P_GO: 1055 cfg80211_stop_ap(rdev, dev, -1, true); 1056 break; 1057 case NL80211_IFTYPE_ADHOC: 1058 cfg80211_leave_ibss(rdev, dev, false); 1059 break; 1060 case NL80211_IFTYPE_STATION: 1061 case NL80211_IFTYPE_P2P_CLIENT: 1062 wdev_lock(dev->ieee80211_ptr); 1063 cfg80211_disconnect(rdev, dev, 1064 WLAN_REASON_DEAUTH_LEAVING, true); 1065 wdev_unlock(dev->ieee80211_ptr); 1066 break; 1067 case NL80211_IFTYPE_MESH_POINT: 1068 /* mesh should be handled? */ 1069 break; 1070 case NL80211_IFTYPE_OCB: 1071 cfg80211_leave_ocb(rdev, dev); 1072 break; 1073 default: 1074 break; 1075 } 1076 1077 cfg80211_process_rdev_events(rdev); 1078 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr); 1079 1080 memset(&dev->ieee80211_ptr->u, 0, 1081 sizeof(dev->ieee80211_ptr->u)); 1082 memset(&dev->ieee80211_ptr->links, 0, 1083 sizeof(dev->ieee80211_ptr->links)); 1084 } 1085 1086 err = rdev_change_virtual_intf(rdev, dev, ntype, params); 1087 1088 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 1089 1090 if (!err && params && params->use_4addr != -1) 1091 dev->ieee80211_ptr->use_4addr = params->use_4addr; 1092 1093 if (!err) { 1094 dev->priv_flags &= ~IFF_DONT_BRIDGE; 1095 switch (ntype) { 1096 case NL80211_IFTYPE_STATION: 1097 if (dev->ieee80211_ptr->use_4addr) 1098 break; 1099 fallthrough; 1100 case NL80211_IFTYPE_OCB: 1101 case NL80211_IFTYPE_P2P_CLIENT: 1102 case NL80211_IFTYPE_ADHOC: 1103 dev->priv_flags |= IFF_DONT_BRIDGE; 1104 break; 1105 case NL80211_IFTYPE_P2P_GO: 1106 case NL80211_IFTYPE_AP: 1107 case NL80211_IFTYPE_AP_VLAN: 1108 case NL80211_IFTYPE_MESH_POINT: 1109 /* bridging OK */ 1110 break; 1111 case NL80211_IFTYPE_MONITOR: 1112 /* monitor can't bridge anyway */ 1113 break; 1114 case NL80211_IFTYPE_UNSPECIFIED: 1115 case NUM_NL80211_IFTYPES: 1116 /* not happening */ 1117 break; 1118 case NL80211_IFTYPE_P2P_DEVICE: 1119 case NL80211_IFTYPE_WDS: 1120 case NL80211_IFTYPE_NAN: 1121 WARN_ON(1); 1122 break; 1123 } 1124 } 1125 1126 if (!err && ntype != otype && netif_running(dev)) { 1127 cfg80211_update_iface_num(rdev, ntype, 1); 1128 cfg80211_update_iface_num(rdev, otype, -1); 1129 } 1130 1131 return err; 1132 } 1133 1134 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) 1135 { 1136 int modulation, streams, bitrate; 1137 1138 /* the formula below does only work for MCS values smaller than 32 */ 1139 if (WARN_ON_ONCE(rate->mcs >= 32)) 1140 return 0; 1141 1142 modulation = rate->mcs & 7; 1143 streams = (rate->mcs >> 3) + 1; 1144 1145 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1146 1147 if (modulation < 4) 1148 bitrate *= (modulation + 1); 1149 else if (modulation == 4) 1150 bitrate *= (modulation + 2); 1151 else 1152 bitrate *= (modulation + 3); 1153 1154 bitrate *= streams; 1155 1156 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1157 bitrate = (bitrate / 9) * 10; 1158 1159 /* do NOT round down here */ 1160 return (bitrate + 50000) / 100000; 1161 } 1162 1163 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate) 1164 { 1165 static const u32 __mcs2bitrate[] = { 1166 /* control PHY */ 1167 [0] = 275, 1168 /* SC PHY */ 1169 [1] = 3850, 1170 [2] = 7700, 1171 [3] = 9625, 1172 [4] = 11550, 1173 [5] = 12512, /* 1251.25 mbps */ 1174 [6] = 15400, 1175 [7] = 19250, 1176 [8] = 23100, 1177 [9] = 25025, 1178 [10] = 30800, 1179 [11] = 38500, 1180 [12] = 46200, 1181 /* OFDM PHY */ 1182 [13] = 6930, 1183 [14] = 8662, /* 866.25 mbps */ 1184 [15] = 13860, 1185 [16] = 17325, 1186 [17] = 20790, 1187 [18] = 27720, 1188 [19] = 34650, 1189 [20] = 41580, 1190 [21] = 45045, 1191 [22] = 51975, 1192 [23] = 62370, 1193 [24] = 67568, /* 6756.75 mbps */ 1194 /* LP-SC PHY */ 1195 [25] = 6260, 1196 [26] = 8340, 1197 [27] = 11120, 1198 [28] = 12510, 1199 [29] = 16680, 1200 [30] = 22240, 1201 [31] = 25030, 1202 }; 1203 1204 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1205 return 0; 1206 1207 return __mcs2bitrate[rate->mcs]; 1208 } 1209 1210 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate) 1211 { 1212 static const u32 __mcs2bitrate[] = { 1213 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */ 1214 [7 - 6] = 50050, /* MCS 12.1 */ 1215 [8 - 6] = 53900, 1216 [9 - 6] = 57750, 1217 [10 - 6] = 63900, 1218 [11 - 6] = 75075, 1219 [12 - 6] = 80850, 1220 }; 1221 1222 /* Extended SC MCS not defined for base MCS below 6 or above 12 */ 1223 if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12)) 1224 return 0; 1225 1226 return __mcs2bitrate[rate->mcs - 6]; 1227 } 1228 1229 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate) 1230 { 1231 static const u32 __mcs2bitrate[] = { 1232 /* control PHY */ 1233 [0] = 275, 1234 /* SC PHY */ 1235 [1] = 3850, 1236 [2] = 7700, 1237 [3] = 9625, 1238 [4] = 11550, 1239 [5] = 12512, /* 1251.25 mbps */ 1240 [6] = 13475, 1241 [7] = 15400, 1242 [8] = 19250, 1243 [9] = 23100, 1244 [10] = 25025, 1245 [11] = 26950, 1246 [12] = 30800, 1247 [13] = 38500, 1248 [14] = 46200, 1249 [15] = 50050, 1250 [16] = 53900, 1251 [17] = 57750, 1252 [18] = 69300, 1253 [19] = 75075, 1254 [20] = 80850, 1255 }; 1256 1257 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1258 return 0; 1259 1260 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch; 1261 } 1262 1263 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1264 { 1265 static const u32 base[4][12] = { 1266 { 6500000, 1267 13000000, 1268 19500000, 1269 26000000, 1270 39000000, 1271 52000000, 1272 58500000, 1273 65000000, 1274 78000000, 1275 /* not in the spec, but some devices use this: */ 1276 86700000, 1277 97500000, 1278 108300000, 1279 }, 1280 { 13500000, 1281 27000000, 1282 40500000, 1283 54000000, 1284 81000000, 1285 108000000, 1286 121500000, 1287 135000000, 1288 162000000, 1289 180000000, 1290 202500000, 1291 225000000, 1292 }, 1293 { 29300000, 1294 58500000, 1295 87800000, 1296 117000000, 1297 175500000, 1298 234000000, 1299 263300000, 1300 292500000, 1301 351000000, 1302 390000000, 1303 438800000, 1304 487500000, 1305 }, 1306 { 58500000, 1307 117000000, 1308 175500000, 1309 234000000, 1310 351000000, 1311 468000000, 1312 526500000, 1313 585000000, 1314 702000000, 1315 780000000, 1316 877500000, 1317 975000000, 1318 }, 1319 }; 1320 u32 bitrate; 1321 int idx; 1322 1323 if (rate->mcs > 11) 1324 goto warn; 1325 1326 switch (rate->bw) { 1327 case RATE_INFO_BW_160: 1328 idx = 3; 1329 break; 1330 case RATE_INFO_BW_80: 1331 idx = 2; 1332 break; 1333 case RATE_INFO_BW_40: 1334 idx = 1; 1335 break; 1336 case RATE_INFO_BW_5: 1337 case RATE_INFO_BW_10: 1338 default: 1339 goto warn; 1340 case RATE_INFO_BW_20: 1341 idx = 0; 1342 } 1343 1344 bitrate = base[idx][rate->mcs]; 1345 bitrate *= rate->nss; 1346 1347 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1348 bitrate = (bitrate / 9) * 10; 1349 1350 /* do NOT round down here */ 1351 return (bitrate + 50000) / 100000; 1352 warn: 1353 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1354 rate->bw, rate->mcs, rate->nss); 1355 return 0; 1356 } 1357 1358 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) 1359 { 1360 #define SCALE 6144 1361 u32 mcs_divisors[14] = { 1362 102399, /* 16.666666... */ 1363 51201, /* 8.333333... */ 1364 34134, /* 5.555555... */ 1365 25599, /* 4.166666... */ 1366 17067, /* 2.777777... */ 1367 12801, /* 2.083333... */ 1368 11377, /* 1.851725... */ 1369 10239, /* 1.666666... */ 1370 8532, /* 1.388888... */ 1371 7680, /* 1.250000... */ 1372 6828, /* 1.111111... */ 1373 6144, /* 1.000000... */ 1374 5690, /* 0.926106... */ 1375 5120, /* 0.833333... */ 1376 }; 1377 u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; 1378 u32 rates_969[3] = { 480388888, 453700000, 408333333 }; 1379 u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1380 u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1381 u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1382 u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1383 u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1384 u64 tmp; 1385 u32 result; 1386 1387 if (WARN_ON_ONCE(rate->mcs > 13)) 1388 return 0; 1389 1390 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) 1391 return 0; 1392 if (WARN_ON_ONCE(rate->he_ru_alloc > 1393 NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1394 return 0; 1395 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1396 return 0; 1397 1398 if (rate->bw == RATE_INFO_BW_160) 1399 result = rates_160M[rate->he_gi]; 1400 else if (rate->bw == RATE_INFO_BW_80 || 1401 (rate->bw == RATE_INFO_BW_HE_RU && 1402 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) 1403 result = rates_969[rate->he_gi]; 1404 else if (rate->bw == RATE_INFO_BW_40 || 1405 (rate->bw == RATE_INFO_BW_HE_RU && 1406 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) 1407 result = rates_484[rate->he_gi]; 1408 else if (rate->bw == RATE_INFO_BW_20 || 1409 (rate->bw == RATE_INFO_BW_HE_RU && 1410 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) 1411 result = rates_242[rate->he_gi]; 1412 else if (rate->bw == RATE_INFO_BW_HE_RU && 1413 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) 1414 result = rates_106[rate->he_gi]; 1415 else if (rate->bw == RATE_INFO_BW_HE_RU && 1416 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) 1417 result = rates_52[rate->he_gi]; 1418 else if (rate->bw == RATE_INFO_BW_HE_RU && 1419 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) 1420 result = rates_26[rate->he_gi]; 1421 else { 1422 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", 1423 rate->bw, rate->he_ru_alloc); 1424 return 0; 1425 } 1426 1427 /* now scale to the appropriate MCS */ 1428 tmp = result; 1429 tmp *= SCALE; 1430 do_div(tmp, mcs_divisors[rate->mcs]); 1431 result = tmp; 1432 1433 /* and take NSS, DCM into account */ 1434 result = (result * rate->nss) / 8; 1435 if (rate->he_dcm) 1436 result /= 2; 1437 1438 return result / 10000; 1439 } 1440 1441 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate) 1442 { 1443 #define SCALE 6144 1444 static const u32 mcs_divisors[16] = { 1445 102399, /* 16.666666... */ 1446 51201, /* 8.333333... */ 1447 34134, /* 5.555555... */ 1448 25599, /* 4.166666... */ 1449 17067, /* 2.777777... */ 1450 12801, /* 2.083333... */ 1451 11377, /* 1.851725... */ 1452 10239, /* 1.666666... */ 1453 8532, /* 1.388888... */ 1454 7680, /* 1.250000... */ 1455 6828, /* 1.111111... */ 1456 6144, /* 1.000000... */ 1457 5690, /* 0.926106... */ 1458 5120, /* 0.833333... */ 1459 409600, /* 66.666666... */ 1460 204800, /* 33.333333... */ 1461 }; 1462 static const u32 rates_996[3] = { 480388888, 453700000, 408333333 }; 1463 static const u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1464 static const u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1465 static const u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1466 static const u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1467 static const u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1468 u64 tmp; 1469 u32 result; 1470 1471 if (WARN_ON_ONCE(rate->mcs > 15)) 1472 return 0; 1473 if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2)) 1474 return 0; 1475 if (WARN_ON_ONCE(rate->eht_ru_alloc > 1476 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) 1477 return 0; 1478 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1479 return 0; 1480 1481 /* Bandwidth checks for MCS 14 */ 1482 if (rate->mcs == 14) { 1483 if ((rate->bw != RATE_INFO_BW_EHT_RU && 1484 rate->bw != RATE_INFO_BW_80 && 1485 rate->bw != RATE_INFO_BW_160 && 1486 rate->bw != RATE_INFO_BW_320) || 1487 (rate->bw == RATE_INFO_BW_EHT_RU && 1488 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 && 1489 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 && 1490 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) { 1491 WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n", 1492 rate->bw, rate->eht_ru_alloc); 1493 return 0; 1494 } 1495 } 1496 1497 if (rate->bw == RATE_INFO_BW_320 || 1498 (rate->bw == RATE_INFO_BW_EHT_RU && 1499 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) 1500 result = 4 * rates_996[rate->eht_gi]; 1501 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1502 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484) 1503 result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1504 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1505 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996) 1506 result = 3 * rates_996[rate->eht_gi]; 1507 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1508 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484) 1509 result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1510 else if (rate->bw == RATE_INFO_BW_160 || 1511 (rate->bw == RATE_INFO_BW_EHT_RU && 1512 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996)) 1513 result = 2 * rates_996[rate->eht_gi]; 1514 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1515 rate->eht_ru_alloc == 1516 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242) 1517 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi] 1518 + rates_242[rate->eht_gi]; 1519 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1520 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484) 1521 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1522 else if (rate->bw == RATE_INFO_BW_80 || 1523 (rate->bw == RATE_INFO_BW_EHT_RU && 1524 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996)) 1525 result = rates_996[rate->eht_gi]; 1526 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1527 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242) 1528 result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi]; 1529 else if (rate->bw == RATE_INFO_BW_40 || 1530 (rate->bw == RATE_INFO_BW_EHT_RU && 1531 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484)) 1532 result = rates_484[rate->eht_gi]; 1533 else if (rate->bw == RATE_INFO_BW_20 || 1534 (rate->bw == RATE_INFO_BW_EHT_RU && 1535 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242)) 1536 result = rates_242[rate->eht_gi]; 1537 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1538 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26) 1539 result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi]; 1540 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1541 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106) 1542 result = rates_106[rate->eht_gi]; 1543 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1544 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26) 1545 result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi]; 1546 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1547 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52) 1548 result = rates_52[rate->eht_gi]; 1549 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1550 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26) 1551 result = rates_26[rate->eht_gi]; 1552 else { 1553 WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n", 1554 rate->bw, rate->eht_ru_alloc); 1555 return 0; 1556 } 1557 1558 /* now scale to the appropriate MCS */ 1559 tmp = result; 1560 tmp *= SCALE; 1561 do_div(tmp, mcs_divisors[rate->mcs]); 1562 1563 /* and take NSS */ 1564 tmp *= rate->nss; 1565 do_div(tmp, 8); 1566 1567 result = tmp; 1568 1569 return result / 10000; 1570 } 1571 1572 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1573 { 1574 if (rate->flags & RATE_INFO_FLAGS_MCS) 1575 return cfg80211_calculate_bitrate_ht(rate); 1576 if (rate->flags & RATE_INFO_FLAGS_DMG) 1577 return cfg80211_calculate_bitrate_dmg(rate); 1578 if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG) 1579 return cfg80211_calculate_bitrate_extended_sc_dmg(rate); 1580 if (rate->flags & RATE_INFO_FLAGS_EDMG) 1581 return cfg80211_calculate_bitrate_edmg(rate); 1582 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1583 return cfg80211_calculate_bitrate_vht(rate); 1584 if (rate->flags & RATE_INFO_FLAGS_HE_MCS) 1585 return cfg80211_calculate_bitrate_he(rate); 1586 if (rate->flags & RATE_INFO_FLAGS_EHT_MCS) 1587 return cfg80211_calculate_bitrate_eht(rate); 1588 1589 return rate->legacy; 1590 } 1591 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1592 1593 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1594 enum ieee80211_p2p_attr_id attr, 1595 u8 *buf, unsigned int bufsize) 1596 { 1597 u8 *out = buf; 1598 u16 attr_remaining = 0; 1599 bool desired_attr = false; 1600 u16 desired_len = 0; 1601 1602 while (len > 0) { 1603 unsigned int iedatalen; 1604 unsigned int copy; 1605 const u8 *iedata; 1606 1607 if (len < 2) 1608 return -EILSEQ; 1609 iedatalen = ies[1]; 1610 if (iedatalen + 2 > len) 1611 return -EILSEQ; 1612 1613 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1614 goto cont; 1615 1616 if (iedatalen < 4) 1617 goto cont; 1618 1619 iedata = ies + 2; 1620 1621 /* check WFA OUI, P2P subtype */ 1622 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1623 iedata[2] != 0x9a || iedata[3] != 0x09) 1624 goto cont; 1625 1626 iedatalen -= 4; 1627 iedata += 4; 1628 1629 /* check attribute continuation into this IE */ 1630 copy = min_t(unsigned int, attr_remaining, iedatalen); 1631 if (copy && desired_attr) { 1632 desired_len += copy; 1633 if (out) { 1634 memcpy(out, iedata, min(bufsize, copy)); 1635 out += min(bufsize, copy); 1636 bufsize -= min(bufsize, copy); 1637 } 1638 1639 1640 if (copy == attr_remaining) 1641 return desired_len; 1642 } 1643 1644 attr_remaining -= copy; 1645 if (attr_remaining) 1646 goto cont; 1647 1648 iedatalen -= copy; 1649 iedata += copy; 1650 1651 while (iedatalen > 0) { 1652 u16 attr_len; 1653 1654 /* P2P attribute ID & size must fit */ 1655 if (iedatalen < 3) 1656 return -EILSEQ; 1657 desired_attr = iedata[0] == attr; 1658 attr_len = get_unaligned_le16(iedata + 1); 1659 iedatalen -= 3; 1660 iedata += 3; 1661 1662 copy = min_t(unsigned int, attr_len, iedatalen); 1663 1664 if (desired_attr) { 1665 desired_len += copy; 1666 if (out) { 1667 memcpy(out, iedata, min(bufsize, copy)); 1668 out += min(bufsize, copy); 1669 bufsize -= min(bufsize, copy); 1670 } 1671 1672 if (copy == attr_len) 1673 return desired_len; 1674 } 1675 1676 iedata += copy; 1677 iedatalen -= copy; 1678 attr_remaining = attr_len - copy; 1679 } 1680 1681 cont: 1682 len -= ies[1] + 2; 1683 ies += ies[1] + 2; 1684 } 1685 1686 if (attr_remaining && desired_attr) 1687 return -EILSEQ; 1688 1689 return -ENOENT; 1690 } 1691 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1692 1693 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) 1694 { 1695 int i; 1696 1697 /* Make sure array values are legal */ 1698 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) 1699 return false; 1700 1701 i = 0; 1702 while (i < n_ids) { 1703 if (ids[i] == WLAN_EID_EXTENSION) { 1704 if (id_ext && (ids[i + 1] == id)) 1705 return true; 1706 1707 i += 2; 1708 continue; 1709 } 1710 1711 if (ids[i] == id && !id_ext) 1712 return true; 1713 1714 i++; 1715 } 1716 return false; 1717 } 1718 1719 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) 1720 { 1721 /* we assume a validly formed IEs buffer */ 1722 u8 len = ies[pos + 1]; 1723 1724 pos += 2 + len; 1725 1726 /* the IE itself must have 255 bytes for fragments to follow */ 1727 if (len < 255) 1728 return pos; 1729 1730 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { 1731 len = ies[pos + 1]; 1732 pos += 2 + len; 1733 } 1734 1735 return pos; 1736 } 1737 1738 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1739 const u8 *ids, int n_ids, 1740 const u8 *after_ric, int n_after_ric, 1741 size_t offset) 1742 { 1743 size_t pos = offset; 1744 1745 while (pos < ielen) { 1746 u8 ext = 0; 1747 1748 if (ies[pos] == WLAN_EID_EXTENSION) 1749 ext = 2; 1750 if ((pos + ext) >= ielen) 1751 break; 1752 1753 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], 1754 ies[pos] == WLAN_EID_EXTENSION)) 1755 break; 1756 1757 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1758 pos = skip_ie(ies, ielen, pos); 1759 1760 while (pos < ielen) { 1761 if (ies[pos] == WLAN_EID_EXTENSION) 1762 ext = 2; 1763 else 1764 ext = 0; 1765 1766 if ((pos + ext) >= ielen) 1767 break; 1768 1769 if (!ieee80211_id_in_list(after_ric, 1770 n_after_ric, 1771 ies[pos + ext], 1772 ext == 2)) 1773 pos = skip_ie(ies, ielen, pos); 1774 else 1775 break; 1776 } 1777 } else { 1778 pos = skip_ie(ies, ielen, pos); 1779 } 1780 } 1781 1782 return pos; 1783 } 1784 EXPORT_SYMBOL(ieee80211_ie_split_ric); 1785 1786 bool ieee80211_operating_class_to_band(u8 operating_class, 1787 enum nl80211_band *band) 1788 { 1789 switch (operating_class) { 1790 case 112: 1791 case 115 ... 127: 1792 case 128 ... 130: 1793 *band = NL80211_BAND_5GHZ; 1794 return true; 1795 case 131 ... 135: 1796 *band = NL80211_BAND_6GHZ; 1797 return true; 1798 case 81: 1799 case 82: 1800 case 83: 1801 case 84: 1802 *band = NL80211_BAND_2GHZ; 1803 return true; 1804 case 180: 1805 *band = NL80211_BAND_60GHZ; 1806 return true; 1807 } 1808 1809 return false; 1810 } 1811 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1812 1813 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 1814 u8 *op_class) 1815 { 1816 u8 vht_opclass; 1817 u32 freq = chandef->center_freq1; 1818 1819 if (freq >= 2412 && freq <= 2472) { 1820 if (chandef->width > NL80211_CHAN_WIDTH_40) 1821 return false; 1822 1823 /* 2.407 GHz, channels 1..13 */ 1824 if (chandef->width == NL80211_CHAN_WIDTH_40) { 1825 if (freq > chandef->chan->center_freq) 1826 *op_class = 83; /* HT40+ */ 1827 else 1828 *op_class = 84; /* HT40- */ 1829 } else { 1830 *op_class = 81; 1831 } 1832 1833 return true; 1834 } 1835 1836 if (freq == 2484) { 1837 /* channel 14 is only for IEEE 802.11b */ 1838 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT) 1839 return false; 1840 1841 *op_class = 82; /* channel 14 */ 1842 return true; 1843 } 1844 1845 switch (chandef->width) { 1846 case NL80211_CHAN_WIDTH_80: 1847 vht_opclass = 128; 1848 break; 1849 case NL80211_CHAN_WIDTH_160: 1850 vht_opclass = 129; 1851 break; 1852 case NL80211_CHAN_WIDTH_80P80: 1853 vht_opclass = 130; 1854 break; 1855 case NL80211_CHAN_WIDTH_10: 1856 case NL80211_CHAN_WIDTH_5: 1857 return false; /* unsupported for now */ 1858 default: 1859 vht_opclass = 0; 1860 break; 1861 } 1862 1863 /* 5 GHz, channels 36..48 */ 1864 if (freq >= 5180 && freq <= 5240) { 1865 if (vht_opclass) { 1866 *op_class = vht_opclass; 1867 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1868 if (freq > chandef->chan->center_freq) 1869 *op_class = 116; 1870 else 1871 *op_class = 117; 1872 } else { 1873 *op_class = 115; 1874 } 1875 1876 return true; 1877 } 1878 1879 /* 5 GHz, channels 52..64 */ 1880 if (freq >= 5260 && freq <= 5320) { 1881 if (vht_opclass) { 1882 *op_class = vht_opclass; 1883 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1884 if (freq > chandef->chan->center_freq) 1885 *op_class = 119; 1886 else 1887 *op_class = 120; 1888 } else { 1889 *op_class = 118; 1890 } 1891 1892 return true; 1893 } 1894 1895 /* 5 GHz, channels 100..144 */ 1896 if (freq >= 5500 && freq <= 5720) { 1897 if (vht_opclass) { 1898 *op_class = vht_opclass; 1899 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1900 if (freq > chandef->chan->center_freq) 1901 *op_class = 122; 1902 else 1903 *op_class = 123; 1904 } else { 1905 *op_class = 121; 1906 } 1907 1908 return true; 1909 } 1910 1911 /* 5 GHz, channels 149..169 */ 1912 if (freq >= 5745 && freq <= 5845) { 1913 if (vht_opclass) { 1914 *op_class = vht_opclass; 1915 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1916 if (freq > chandef->chan->center_freq) 1917 *op_class = 126; 1918 else 1919 *op_class = 127; 1920 } else if (freq <= 5805) { 1921 *op_class = 124; 1922 } else { 1923 *op_class = 125; 1924 } 1925 1926 return true; 1927 } 1928 1929 /* 56.16 GHz, channel 1..4 */ 1930 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { 1931 if (chandef->width >= NL80211_CHAN_WIDTH_40) 1932 return false; 1933 1934 *op_class = 180; 1935 return true; 1936 } 1937 1938 /* not supported yet */ 1939 return false; 1940 } 1941 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 1942 1943 static int cfg80211_wdev_bi(struct wireless_dev *wdev) 1944 { 1945 switch (wdev->iftype) { 1946 case NL80211_IFTYPE_AP: 1947 case NL80211_IFTYPE_P2P_GO: 1948 WARN_ON(wdev->valid_links); 1949 return wdev->links[0].ap.beacon_interval; 1950 case NL80211_IFTYPE_MESH_POINT: 1951 return wdev->u.mesh.beacon_interval; 1952 case NL80211_IFTYPE_ADHOC: 1953 return wdev->u.ibss.beacon_interval; 1954 default: 1955 break; 1956 } 1957 1958 return 0; 1959 } 1960 1961 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, 1962 u32 *beacon_int_gcd, 1963 bool *beacon_int_different) 1964 { 1965 struct wireless_dev *wdev; 1966 1967 *beacon_int_gcd = 0; 1968 *beacon_int_different = false; 1969 1970 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 1971 int wdev_bi; 1972 1973 /* this feature isn't supported with MLO */ 1974 if (wdev->valid_links) 1975 continue; 1976 1977 wdev_bi = cfg80211_wdev_bi(wdev); 1978 1979 if (!wdev_bi) 1980 continue; 1981 1982 if (!*beacon_int_gcd) { 1983 *beacon_int_gcd = wdev_bi; 1984 continue; 1985 } 1986 1987 if (wdev_bi == *beacon_int_gcd) 1988 continue; 1989 1990 *beacon_int_different = true; 1991 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi); 1992 } 1993 1994 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { 1995 if (*beacon_int_gcd) 1996 *beacon_int_different = true; 1997 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); 1998 } 1999 } 2000 2001 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 2002 enum nl80211_iftype iftype, u32 beacon_int) 2003 { 2004 /* 2005 * This is just a basic pre-condition check; if interface combinations 2006 * are possible the driver must already be checking those with a call 2007 * to cfg80211_check_combinations(), in which case we'll validate more 2008 * through the cfg80211_calculate_bi_data() call and code in 2009 * cfg80211_iter_combinations(). 2010 */ 2011 2012 if (beacon_int < 10 || beacon_int > 10000) 2013 return -EINVAL; 2014 2015 return 0; 2016 } 2017 2018 int cfg80211_iter_combinations(struct wiphy *wiphy, 2019 struct iface_combination_params *params, 2020 void (*iter)(const struct ieee80211_iface_combination *c, 2021 void *data), 2022 void *data) 2023 { 2024 const struct ieee80211_regdomain *regdom; 2025 enum nl80211_dfs_regions region = 0; 2026 int i, j, iftype; 2027 int num_interfaces = 0; 2028 u32 used_iftypes = 0; 2029 u32 beacon_int_gcd; 2030 bool beacon_int_different; 2031 2032 /* 2033 * This is a bit strange, since the iteration used to rely only on 2034 * the data given by the driver, but here it now relies on context, 2035 * in form of the currently operating interfaces. 2036 * This is OK for all current users, and saves us from having to 2037 * push the GCD calculations into all the drivers. 2038 * In the future, this should probably rely more on data that's in 2039 * cfg80211 already - the only thing not would appear to be any new 2040 * interfaces (while being brought up) and channel/radar data. 2041 */ 2042 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, 2043 &beacon_int_gcd, &beacon_int_different); 2044 2045 if (params->radar_detect) { 2046 rcu_read_lock(); 2047 regdom = rcu_dereference(cfg80211_regdomain); 2048 if (regdom) 2049 region = regdom->dfs_region; 2050 rcu_read_unlock(); 2051 } 2052 2053 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 2054 num_interfaces += params->iftype_num[iftype]; 2055 if (params->iftype_num[iftype] > 0 && 2056 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 2057 used_iftypes |= BIT(iftype); 2058 } 2059 2060 for (i = 0; i < wiphy->n_iface_combinations; i++) { 2061 const struct ieee80211_iface_combination *c; 2062 struct ieee80211_iface_limit *limits; 2063 u32 all_iftypes = 0; 2064 2065 c = &wiphy->iface_combinations[i]; 2066 2067 if (num_interfaces > c->max_interfaces) 2068 continue; 2069 if (params->num_different_channels > c->num_different_channels) 2070 continue; 2071 2072 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 2073 GFP_KERNEL); 2074 if (!limits) 2075 return -ENOMEM; 2076 2077 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 2078 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 2079 continue; 2080 for (j = 0; j < c->n_limits; j++) { 2081 all_iftypes |= limits[j].types; 2082 if (!(limits[j].types & BIT(iftype))) 2083 continue; 2084 if (limits[j].max < params->iftype_num[iftype]) 2085 goto cont; 2086 limits[j].max -= params->iftype_num[iftype]; 2087 } 2088 } 2089 2090 if (params->radar_detect != 2091 (c->radar_detect_widths & params->radar_detect)) 2092 goto cont; 2093 2094 if (params->radar_detect && c->radar_detect_regions && 2095 !(c->radar_detect_regions & BIT(region))) 2096 goto cont; 2097 2098 /* Finally check that all iftypes that we're currently 2099 * using are actually part of this combination. If they 2100 * aren't then we can't use this combination and have 2101 * to continue to the next. 2102 */ 2103 if ((all_iftypes & used_iftypes) != used_iftypes) 2104 goto cont; 2105 2106 if (beacon_int_gcd) { 2107 if (c->beacon_int_min_gcd && 2108 beacon_int_gcd < c->beacon_int_min_gcd) 2109 goto cont; 2110 if (!c->beacon_int_min_gcd && beacon_int_different) 2111 goto cont; 2112 } 2113 2114 /* This combination covered all interface types and 2115 * supported the requested numbers, so we're good. 2116 */ 2117 2118 (*iter)(c, data); 2119 cont: 2120 kfree(limits); 2121 } 2122 2123 return 0; 2124 } 2125 EXPORT_SYMBOL(cfg80211_iter_combinations); 2126 2127 static void 2128 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 2129 void *data) 2130 { 2131 int *num = data; 2132 (*num)++; 2133 } 2134 2135 int cfg80211_check_combinations(struct wiphy *wiphy, 2136 struct iface_combination_params *params) 2137 { 2138 int err, num = 0; 2139 2140 err = cfg80211_iter_combinations(wiphy, params, 2141 cfg80211_iter_sum_ifcombs, &num); 2142 if (err) 2143 return err; 2144 if (num == 0) 2145 return -EBUSY; 2146 2147 return 0; 2148 } 2149 EXPORT_SYMBOL(cfg80211_check_combinations); 2150 2151 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 2152 const u8 *rates, unsigned int n_rates, 2153 u32 *mask) 2154 { 2155 int i, j; 2156 2157 if (!sband) 2158 return -EINVAL; 2159 2160 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 2161 return -EINVAL; 2162 2163 *mask = 0; 2164 2165 for (i = 0; i < n_rates; i++) { 2166 int rate = (rates[i] & 0x7f) * 5; 2167 bool found = false; 2168 2169 for (j = 0; j < sband->n_bitrates; j++) { 2170 if (sband->bitrates[j].bitrate == rate) { 2171 found = true; 2172 *mask |= BIT(j); 2173 break; 2174 } 2175 } 2176 if (!found) 2177 return -EINVAL; 2178 } 2179 2180 /* 2181 * mask must have at least one bit set here since we 2182 * didn't accept a 0-length rates array nor allowed 2183 * entries in the array that didn't exist 2184 */ 2185 2186 return 0; 2187 } 2188 2189 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 2190 { 2191 enum nl80211_band band; 2192 unsigned int n_channels = 0; 2193 2194 for (band = 0; band < NUM_NL80211_BANDS; band++) 2195 if (wiphy->bands[band]) 2196 n_channels += wiphy->bands[band]->n_channels; 2197 2198 return n_channels; 2199 } 2200 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 2201 2202 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 2203 struct station_info *sinfo) 2204 { 2205 struct cfg80211_registered_device *rdev; 2206 struct wireless_dev *wdev; 2207 2208 wdev = dev->ieee80211_ptr; 2209 if (!wdev) 2210 return -EOPNOTSUPP; 2211 2212 rdev = wiphy_to_rdev(wdev->wiphy); 2213 if (!rdev->ops->get_station) 2214 return -EOPNOTSUPP; 2215 2216 memset(sinfo, 0, sizeof(*sinfo)); 2217 2218 return rdev_get_station(rdev, dev, mac_addr, sinfo); 2219 } 2220 EXPORT_SYMBOL(cfg80211_get_station); 2221 2222 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 2223 { 2224 int i; 2225 2226 if (!f) 2227 return; 2228 2229 kfree(f->serv_spec_info); 2230 kfree(f->srf_bf); 2231 kfree(f->srf_macs); 2232 for (i = 0; i < f->num_rx_filters; i++) 2233 kfree(f->rx_filters[i].filter); 2234 2235 for (i = 0; i < f->num_tx_filters; i++) 2236 kfree(f->tx_filters[i].filter); 2237 2238 kfree(f->rx_filters); 2239 kfree(f->tx_filters); 2240 kfree(f); 2241 } 2242 EXPORT_SYMBOL(cfg80211_free_nan_func); 2243 2244 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, 2245 u32 center_freq_khz, u32 bw_khz) 2246 { 2247 u32 start_freq_khz, end_freq_khz; 2248 2249 start_freq_khz = center_freq_khz - (bw_khz / 2); 2250 end_freq_khz = center_freq_khz + (bw_khz / 2); 2251 2252 if (start_freq_khz >= freq_range->start_freq_khz && 2253 end_freq_khz <= freq_range->end_freq_khz) 2254 return true; 2255 2256 return false; 2257 } 2258 2259 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) 2260 { 2261 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, 2262 sizeof(*(sinfo->pertid)), 2263 gfp); 2264 if (!sinfo->pertid) 2265 return -ENOMEM; 2266 2267 return 0; 2268 } 2269 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); 2270 2271 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 2272 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 2273 const unsigned char rfc1042_header[] __aligned(2) = 2274 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 2275 EXPORT_SYMBOL(rfc1042_header); 2276 2277 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 2278 const unsigned char bridge_tunnel_header[] __aligned(2) = 2279 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 2280 EXPORT_SYMBOL(bridge_tunnel_header); 2281 2282 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ 2283 struct iapp_layer2_update { 2284 u8 da[ETH_ALEN]; /* broadcast */ 2285 u8 sa[ETH_ALEN]; /* STA addr */ 2286 __be16 len; /* 6 */ 2287 u8 dsap; /* 0 */ 2288 u8 ssap; /* 0 */ 2289 u8 control; 2290 u8 xid_info[3]; 2291 } __packed; 2292 2293 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr) 2294 { 2295 struct iapp_layer2_update *msg; 2296 struct sk_buff *skb; 2297 2298 /* Send Level 2 Update Frame to update forwarding tables in layer 2 2299 * bridge devices */ 2300 2301 skb = dev_alloc_skb(sizeof(*msg)); 2302 if (!skb) 2303 return; 2304 msg = skb_put(skb, sizeof(*msg)); 2305 2306 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) 2307 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ 2308 2309 eth_broadcast_addr(msg->da); 2310 ether_addr_copy(msg->sa, addr); 2311 msg->len = htons(6); 2312 msg->dsap = 0; 2313 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ 2314 msg->control = 0xaf; /* XID response lsb.1111F101. 2315 * F=0 (no poll command; unsolicited frame) */ 2316 msg->xid_info[0] = 0x81; /* XID format identifier */ 2317 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ 2318 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ 2319 2320 skb->dev = dev; 2321 skb->protocol = eth_type_trans(skb, dev); 2322 memset(skb->cb, 0, sizeof(skb->cb)); 2323 netif_rx(skb); 2324 } 2325 EXPORT_SYMBOL(cfg80211_send_layer2_update); 2326 2327 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, 2328 enum ieee80211_vht_chanwidth bw, 2329 int mcs, bool ext_nss_bw_capable, 2330 unsigned int max_vht_nss) 2331 { 2332 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map); 2333 int ext_nss_bw; 2334 int supp_width; 2335 int i, mcs_encoding; 2336 2337 if (map == 0xffff) 2338 return 0; 2339 2340 if (WARN_ON(mcs > 9 || max_vht_nss > 8)) 2341 return 0; 2342 if (mcs <= 7) 2343 mcs_encoding = 0; 2344 else if (mcs == 8) 2345 mcs_encoding = 1; 2346 else 2347 mcs_encoding = 2; 2348 2349 if (!max_vht_nss) { 2350 /* find max_vht_nss for the given MCS */ 2351 for (i = 7; i >= 0; i--) { 2352 int supp = (map >> (2 * i)) & 3; 2353 2354 if (supp == 3) 2355 continue; 2356 2357 if (supp >= mcs_encoding) { 2358 max_vht_nss = i + 1; 2359 break; 2360 } 2361 } 2362 } 2363 2364 if (!(cap->supp_mcs.tx_mcs_map & 2365 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) 2366 return max_vht_nss; 2367 2368 ext_nss_bw = le32_get_bits(cap->vht_cap_info, 2369 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2370 supp_width = le32_get_bits(cap->vht_cap_info, 2371 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2372 2373 /* if not capable, treat ext_nss_bw as 0 */ 2374 if (!ext_nss_bw_capable) 2375 ext_nss_bw = 0; 2376 2377 /* This is invalid */ 2378 if (supp_width == 3) 2379 return 0; 2380 2381 /* This is an invalid combination so pretend nothing is supported */ 2382 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2)) 2383 return 0; 2384 2385 /* 2386 * Cover all the special cases according to IEEE 802.11-2016 2387 * Table 9-250. All other cases are either factor of 1 or not 2388 * valid/supported. 2389 */ 2390 switch (bw) { 2391 case IEEE80211_VHT_CHANWIDTH_USE_HT: 2392 case IEEE80211_VHT_CHANWIDTH_80MHZ: 2393 if ((supp_width == 1 || supp_width == 2) && 2394 ext_nss_bw == 3) 2395 return 2 * max_vht_nss; 2396 break; 2397 case IEEE80211_VHT_CHANWIDTH_160MHZ: 2398 if (supp_width == 0 && 2399 (ext_nss_bw == 1 || ext_nss_bw == 2)) 2400 return max_vht_nss / 2; 2401 if (supp_width == 0 && 2402 ext_nss_bw == 3) 2403 return (3 * max_vht_nss) / 4; 2404 if (supp_width == 1 && 2405 ext_nss_bw == 3) 2406 return 2 * max_vht_nss; 2407 break; 2408 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 2409 if (supp_width == 0 && ext_nss_bw == 1) 2410 return 0; /* not possible */ 2411 if (supp_width == 0 && 2412 ext_nss_bw == 2) 2413 return max_vht_nss / 2; 2414 if (supp_width == 0 && 2415 ext_nss_bw == 3) 2416 return (3 * max_vht_nss) / 4; 2417 if (supp_width == 1 && 2418 ext_nss_bw == 0) 2419 return 0; /* not possible */ 2420 if (supp_width == 1 && 2421 ext_nss_bw == 1) 2422 return max_vht_nss / 2; 2423 if (supp_width == 1 && 2424 ext_nss_bw == 2) 2425 return (3 * max_vht_nss) / 4; 2426 break; 2427 } 2428 2429 /* not covered or invalid combination received */ 2430 return max_vht_nss; 2431 } 2432 EXPORT_SYMBOL(ieee80211_get_vht_max_nss); 2433 2434 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype, 2435 bool is_4addr, u8 check_swif) 2436 2437 { 2438 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN; 2439 2440 switch (check_swif) { 2441 case 0: 2442 if (is_vlan && is_4addr) 2443 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2444 return wiphy->interface_modes & BIT(iftype); 2445 case 1: 2446 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan) 2447 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2448 return wiphy->software_iftypes & BIT(iftype); 2449 default: 2450 break; 2451 } 2452 2453 return false; 2454 } 2455 EXPORT_SYMBOL(cfg80211_iftype_allowed); 2456 2457 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id) 2458 { 2459 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 2460 2461 ASSERT_WDEV_LOCK(wdev); 2462 2463 switch (wdev->iftype) { 2464 case NL80211_IFTYPE_AP: 2465 case NL80211_IFTYPE_P2P_GO: 2466 __cfg80211_stop_ap(rdev, wdev->netdev, link_id, true); 2467 break; 2468 default: 2469 /* per-link not relevant */ 2470 break; 2471 } 2472 2473 wdev->valid_links &= ~BIT(link_id); 2474 2475 rdev_del_intf_link(rdev, wdev, link_id); 2476 2477 eth_zero_addr(wdev->links[link_id].addr); 2478 } 2479 2480 void cfg80211_remove_links(struct wireless_dev *wdev) 2481 { 2482 unsigned int link_id; 2483 2484 wdev_lock(wdev); 2485 if (wdev->valid_links) { 2486 for_each_valid_link(wdev, link_id) 2487 cfg80211_remove_link(wdev, link_id); 2488 } 2489 wdev_unlock(wdev); 2490 } 2491 2492 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev, 2493 struct wireless_dev *wdev) 2494 { 2495 cfg80211_remove_links(wdev); 2496 2497 return rdev_del_virtual_intf(rdev, wdev); 2498 } 2499 2500 const struct wiphy_iftype_ext_capab * 2501 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type) 2502 { 2503 int i; 2504 2505 for (i = 0; i < wiphy->num_iftype_ext_capab; i++) { 2506 if (wiphy->iftype_ext_capab[i].iftype == type) 2507 return &wiphy->iftype_ext_capab[i]; 2508 } 2509 2510 return NULL; 2511 } 2512 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa); 2513