xref: /openbmc/linux/net/wireless/util.c (revision a13f2ef1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017	Intel Deutschland GmbH
8  * Copyright (C) 2018-2020 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25 
26 
27 struct ieee80211_rate *
28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 			    u32 basic_rates, int bitrate)
30 {
31 	struct ieee80211_rate *result = &sband->bitrates[0];
32 	int i;
33 
34 	for (i = 0; i < sband->n_bitrates; i++) {
35 		if (!(basic_rates & BIT(i)))
36 			continue;
37 		if (sband->bitrates[i].bitrate > bitrate)
38 			continue;
39 		result = &sband->bitrates[i];
40 	}
41 
42 	return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45 
46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47 			      enum nl80211_bss_scan_width scan_width)
48 {
49 	struct ieee80211_rate *bitrates;
50 	u32 mandatory_rates = 0;
51 	enum ieee80211_rate_flags mandatory_flag;
52 	int i;
53 
54 	if (WARN_ON(!sband))
55 		return 1;
56 
57 	if (sband->band == NL80211_BAND_2GHZ) {
58 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
60 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61 		else
62 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63 	} else {
64 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65 	}
66 
67 	bitrates = sband->bitrates;
68 	for (i = 0; i < sband->n_bitrates; i++)
69 		if (bitrates[i].flags & mandatory_flag)
70 			mandatory_rates |= BIT(i);
71 	return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74 
75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77 	/* see 802.11 17.3.8.3.2 and Annex J
78 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79 	if (chan <= 0)
80 		return 0; /* not supported */
81 	switch (band) {
82 	case NL80211_BAND_2GHZ:
83 		if (chan == 14)
84 			return MHZ_TO_KHZ(2484);
85 		else if (chan < 14)
86 			return MHZ_TO_KHZ(2407 + chan * 5);
87 		break;
88 	case NL80211_BAND_5GHZ:
89 		if (chan >= 182 && chan <= 196)
90 			return MHZ_TO_KHZ(4000 + chan * 5);
91 		else
92 			return MHZ_TO_KHZ(5000 + chan * 5);
93 		break;
94 	case NL80211_BAND_6GHZ:
95 		/* see 802.11ax D6.1 27.3.23.2 */
96 		if (chan == 2)
97 			return MHZ_TO_KHZ(5935);
98 		if (chan <= 253)
99 			return MHZ_TO_KHZ(5950 + chan * 5);
100 		break;
101 	case NL80211_BAND_60GHZ:
102 		if (chan < 7)
103 			return MHZ_TO_KHZ(56160 + chan * 2160);
104 		break;
105 	default:
106 		;
107 	}
108 	return 0; /* not supported */
109 }
110 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
111 
112 int ieee80211_freq_khz_to_channel(u32 freq)
113 {
114 	/* TODO: just handle MHz for now */
115 	freq = KHZ_TO_MHZ(freq);
116 
117 	/* see 802.11 17.3.8.3.2 and Annex J */
118 	if (freq == 2484)
119 		return 14;
120 	else if (freq < 2484)
121 		return (freq - 2407) / 5;
122 	else if (freq >= 4910 && freq <= 4980)
123 		return (freq - 4000) / 5;
124 	else if (freq < 5945)
125 		return (freq - 5000) / 5;
126 	else if (freq <= 45000) /* DMG band lower limit */
127 		/* see 802.11ax D4.1 27.3.22.2 */
128 		return (freq - 5940) / 5;
129 	else if (freq >= 58320 && freq <= 70200)
130 		return (freq - 56160) / 2160;
131 	else
132 		return 0;
133 }
134 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
135 
136 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
137 						    u32 freq)
138 {
139 	enum nl80211_band band;
140 	struct ieee80211_supported_band *sband;
141 	int i;
142 
143 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
144 		sband = wiphy->bands[band];
145 
146 		if (!sband)
147 			continue;
148 
149 		for (i = 0; i < sband->n_channels; i++) {
150 			struct ieee80211_channel *chan = &sband->channels[i];
151 
152 			if (ieee80211_channel_to_khz(chan) == freq)
153 				return chan;
154 		}
155 	}
156 
157 	return NULL;
158 }
159 EXPORT_SYMBOL(ieee80211_get_channel_khz);
160 
161 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
162 {
163 	int i, want;
164 
165 	switch (sband->band) {
166 	case NL80211_BAND_5GHZ:
167 	case NL80211_BAND_6GHZ:
168 		want = 3;
169 		for (i = 0; i < sband->n_bitrates; i++) {
170 			if (sband->bitrates[i].bitrate == 60 ||
171 			    sband->bitrates[i].bitrate == 120 ||
172 			    sband->bitrates[i].bitrate == 240) {
173 				sband->bitrates[i].flags |=
174 					IEEE80211_RATE_MANDATORY_A;
175 				want--;
176 			}
177 		}
178 		WARN_ON(want);
179 		break;
180 	case NL80211_BAND_2GHZ:
181 		want = 7;
182 		for (i = 0; i < sband->n_bitrates; i++) {
183 			switch (sband->bitrates[i].bitrate) {
184 			case 10:
185 			case 20:
186 			case 55:
187 			case 110:
188 				sband->bitrates[i].flags |=
189 					IEEE80211_RATE_MANDATORY_B |
190 					IEEE80211_RATE_MANDATORY_G;
191 				want--;
192 				break;
193 			case 60:
194 			case 120:
195 			case 240:
196 				sband->bitrates[i].flags |=
197 					IEEE80211_RATE_MANDATORY_G;
198 				want--;
199 				/* fall through */
200 			default:
201 				sband->bitrates[i].flags |=
202 					IEEE80211_RATE_ERP_G;
203 				break;
204 			}
205 		}
206 		WARN_ON(want != 0 && want != 3);
207 		break;
208 	case NL80211_BAND_60GHZ:
209 		/* check for mandatory HT MCS 1..4 */
210 		WARN_ON(!sband->ht_cap.ht_supported);
211 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
212 		break;
213 	case NUM_NL80211_BANDS:
214 	default:
215 		WARN_ON(1);
216 		break;
217 	}
218 }
219 
220 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
221 {
222 	enum nl80211_band band;
223 
224 	for (band = 0; band < NUM_NL80211_BANDS; band++)
225 		if (wiphy->bands[band])
226 			set_mandatory_flags_band(wiphy->bands[band]);
227 }
228 
229 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
230 {
231 	int i;
232 	for (i = 0; i < wiphy->n_cipher_suites; i++)
233 		if (cipher == wiphy->cipher_suites[i])
234 			return true;
235 	return false;
236 }
237 
238 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
239 				   struct key_params *params, int key_idx,
240 				   bool pairwise, const u8 *mac_addr)
241 {
242 	int max_key_idx = 5;
243 
244 	if (wiphy_ext_feature_isset(&rdev->wiphy,
245 				    NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
246 	    wiphy_ext_feature_isset(&rdev->wiphy,
247 				    NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
248 		max_key_idx = 7;
249 	if (key_idx < 0 || key_idx > max_key_idx)
250 		return -EINVAL;
251 
252 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
253 		return -EINVAL;
254 
255 	if (pairwise && !mac_addr)
256 		return -EINVAL;
257 
258 	switch (params->cipher) {
259 	case WLAN_CIPHER_SUITE_TKIP:
260 		/* Extended Key ID can only be used with CCMP/GCMP ciphers */
261 		if ((pairwise && key_idx) ||
262 		    params->mode != NL80211_KEY_RX_TX)
263 			return -EINVAL;
264 		break;
265 	case WLAN_CIPHER_SUITE_CCMP:
266 	case WLAN_CIPHER_SUITE_CCMP_256:
267 	case WLAN_CIPHER_SUITE_GCMP:
268 	case WLAN_CIPHER_SUITE_GCMP_256:
269 		/* IEEE802.11-2016 allows only 0 and - when supporting
270 		 * Extended Key ID - 1 as index for pairwise keys.
271 		 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
272 		 * the driver supports Extended Key ID.
273 		 * @NL80211_KEY_SET_TX can't be set when installing and
274 		 * validating a key.
275 		 */
276 		if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
277 		    params->mode == NL80211_KEY_SET_TX)
278 			return -EINVAL;
279 		if (wiphy_ext_feature_isset(&rdev->wiphy,
280 					    NL80211_EXT_FEATURE_EXT_KEY_ID)) {
281 			if (pairwise && (key_idx < 0 || key_idx > 1))
282 				return -EINVAL;
283 		} else if (pairwise && key_idx) {
284 			return -EINVAL;
285 		}
286 		break;
287 	case WLAN_CIPHER_SUITE_AES_CMAC:
288 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
289 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
290 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
291 		/* Disallow BIP (group-only) cipher as pairwise cipher */
292 		if (pairwise)
293 			return -EINVAL;
294 		if (key_idx < 4)
295 			return -EINVAL;
296 		break;
297 	case WLAN_CIPHER_SUITE_WEP40:
298 	case WLAN_CIPHER_SUITE_WEP104:
299 		if (key_idx > 3)
300 			return -EINVAL;
301 	default:
302 		break;
303 	}
304 
305 	switch (params->cipher) {
306 	case WLAN_CIPHER_SUITE_WEP40:
307 		if (params->key_len != WLAN_KEY_LEN_WEP40)
308 			return -EINVAL;
309 		break;
310 	case WLAN_CIPHER_SUITE_TKIP:
311 		if (params->key_len != WLAN_KEY_LEN_TKIP)
312 			return -EINVAL;
313 		break;
314 	case WLAN_CIPHER_SUITE_CCMP:
315 		if (params->key_len != WLAN_KEY_LEN_CCMP)
316 			return -EINVAL;
317 		break;
318 	case WLAN_CIPHER_SUITE_CCMP_256:
319 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
320 			return -EINVAL;
321 		break;
322 	case WLAN_CIPHER_SUITE_GCMP:
323 		if (params->key_len != WLAN_KEY_LEN_GCMP)
324 			return -EINVAL;
325 		break;
326 	case WLAN_CIPHER_SUITE_GCMP_256:
327 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
328 			return -EINVAL;
329 		break;
330 	case WLAN_CIPHER_SUITE_WEP104:
331 		if (params->key_len != WLAN_KEY_LEN_WEP104)
332 			return -EINVAL;
333 		break;
334 	case WLAN_CIPHER_SUITE_AES_CMAC:
335 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
336 			return -EINVAL;
337 		break;
338 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
339 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
340 			return -EINVAL;
341 		break;
342 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
343 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
344 			return -EINVAL;
345 		break;
346 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
347 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
348 			return -EINVAL;
349 		break;
350 	default:
351 		/*
352 		 * We don't know anything about this algorithm,
353 		 * allow using it -- but the driver must check
354 		 * all parameters! We still check below whether
355 		 * or not the driver supports this algorithm,
356 		 * of course.
357 		 */
358 		break;
359 	}
360 
361 	if (params->seq) {
362 		switch (params->cipher) {
363 		case WLAN_CIPHER_SUITE_WEP40:
364 		case WLAN_CIPHER_SUITE_WEP104:
365 			/* These ciphers do not use key sequence */
366 			return -EINVAL;
367 		case WLAN_CIPHER_SUITE_TKIP:
368 		case WLAN_CIPHER_SUITE_CCMP:
369 		case WLAN_CIPHER_SUITE_CCMP_256:
370 		case WLAN_CIPHER_SUITE_GCMP:
371 		case WLAN_CIPHER_SUITE_GCMP_256:
372 		case WLAN_CIPHER_SUITE_AES_CMAC:
373 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
374 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
375 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
376 			if (params->seq_len != 6)
377 				return -EINVAL;
378 			break;
379 		}
380 	}
381 
382 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
383 		return -EINVAL;
384 
385 	return 0;
386 }
387 
388 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
389 {
390 	unsigned int hdrlen = 24;
391 
392 	if (ieee80211_is_data(fc)) {
393 		if (ieee80211_has_a4(fc))
394 			hdrlen = 30;
395 		if (ieee80211_is_data_qos(fc)) {
396 			hdrlen += IEEE80211_QOS_CTL_LEN;
397 			if (ieee80211_has_order(fc))
398 				hdrlen += IEEE80211_HT_CTL_LEN;
399 		}
400 		goto out;
401 	}
402 
403 	if (ieee80211_is_mgmt(fc)) {
404 		if (ieee80211_has_order(fc))
405 			hdrlen += IEEE80211_HT_CTL_LEN;
406 		goto out;
407 	}
408 
409 	if (ieee80211_is_ctl(fc)) {
410 		/*
411 		 * ACK and CTS are 10 bytes, all others 16. To see how
412 		 * to get this condition consider
413 		 *   subtype mask:   0b0000000011110000 (0x00F0)
414 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
415 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
416 		 *   bits that matter:         ^^^      (0x00E0)
417 		 *   value of those: 0b0000000011000000 (0x00C0)
418 		 */
419 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
420 			hdrlen = 10;
421 		else
422 			hdrlen = 16;
423 	}
424 out:
425 	return hdrlen;
426 }
427 EXPORT_SYMBOL(ieee80211_hdrlen);
428 
429 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
430 {
431 	const struct ieee80211_hdr *hdr =
432 			(const struct ieee80211_hdr *)skb->data;
433 	unsigned int hdrlen;
434 
435 	if (unlikely(skb->len < 10))
436 		return 0;
437 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
438 	if (unlikely(hdrlen > skb->len))
439 		return 0;
440 	return hdrlen;
441 }
442 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
443 
444 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
445 {
446 	int ae = flags & MESH_FLAGS_AE;
447 	/* 802.11-2012, 8.2.4.7.3 */
448 	switch (ae) {
449 	default:
450 	case 0:
451 		return 6;
452 	case MESH_FLAGS_AE_A4:
453 		return 12;
454 	case MESH_FLAGS_AE_A5_A6:
455 		return 18;
456 	}
457 }
458 
459 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
460 {
461 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
462 }
463 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
464 
465 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
466 				  const u8 *addr, enum nl80211_iftype iftype,
467 				  u8 data_offset)
468 {
469 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
470 	struct {
471 		u8 hdr[ETH_ALEN] __aligned(2);
472 		__be16 proto;
473 	} payload;
474 	struct ethhdr tmp;
475 	u16 hdrlen;
476 	u8 mesh_flags = 0;
477 
478 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
479 		return -1;
480 
481 	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
482 	if (skb->len < hdrlen + 8)
483 		return -1;
484 
485 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
486 	 * header
487 	 * IEEE 802.11 address fields:
488 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
489 	 *   0     0   DA    SA    BSSID n/a
490 	 *   0     1   DA    BSSID SA    n/a
491 	 *   1     0   BSSID SA    DA    n/a
492 	 *   1     1   RA    TA    DA    SA
493 	 */
494 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
495 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
496 
497 	if (iftype == NL80211_IFTYPE_MESH_POINT)
498 		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
499 
500 	mesh_flags &= MESH_FLAGS_AE;
501 
502 	switch (hdr->frame_control &
503 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
504 	case cpu_to_le16(IEEE80211_FCTL_TODS):
505 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
506 			     iftype != NL80211_IFTYPE_AP_VLAN &&
507 			     iftype != NL80211_IFTYPE_P2P_GO))
508 			return -1;
509 		break;
510 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
511 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
512 			     iftype != NL80211_IFTYPE_MESH_POINT &&
513 			     iftype != NL80211_IFTYPE_AP_VLAN &&
514 			     iftype != NL80211_IFTYPE_STATION))
515 			return -1;
516 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
517 			if (mesh_flags == MESH_FLAGS_AE_A4)
518 				return -1;
519 			if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
520 				skb_copy_bits(skb, hdrlen +
521 					offsetof(struct ieee80211s_hdr, eaddr1),
522 					tmp.h_dest, 2 * ETH_ALEN);
523 			}
524 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
525 		}
526 		break;
527 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
528 		if ((iftype != NL80211_IFTYPE_STATION &&
529 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
530 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
531 		    (is_multicast_ether_addr(tmp.h_dest) &&
532 		     ether_addr_equal(tmp.h_source, addr)))
533 			return -1;
534 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
535 			if (mesh_flags == MESH_FLAGS_AE_A5_A6)
536 				return -1;
537 			if (mesh_flags == MESH_FLAGS_AE_A4)
538 				skb_copy_bits(skb, hdrlen +
539 					offsetof(struct ieee80211s_hdr, eaddr1),
540 					tmp.h_source, ETH_ALEN);
541 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
542 		}
543 		break;
544 	case cpu_to_le16(0):
545 		if (iftype != NL80211_IFTYPE_ADHOC &&
546 		    iftype != NL80211_IFTYPE_STATION &&
547 		    iftype != NL80211_IFTYPE_OCB)
548 				return -1;
549 		break;
550 	}
551 
552 	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
553 	tmp.h_proto = payload.proto;
554 
555 	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
556 		    tmp.h_proto != htons(ETH_P_AARP) &&
557 		    tmp.h_proto != htons(ETH_P_IPX)) ||
558 		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
559 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
560 		 * replace EtherType */
561 		hdrlen += ETH_ALEN + 2;
562 	else
563 		tmp.h_proto = htons(skb->len - hdrlen);
564 
565 	pskb_pull(skb, hdrlen);
566 
567 	if (!ehdr)
568 		ehdr = skb_push(skb, sizeof(struct ethhdr));
569 	memcpy(ehdr, &tmp, sizeof(tmp));
570 
571 	return 0;
572 }
573 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
574 
575 static void
576 __frame_add_frag(struct sk_buff *skb, struct page *page,
577 		 void *ptr, int len, int size)
578 {
579 	struct skb_shared_info *sh = skb_shinfo(skb);
580 	int page_offset;
581 
582 	get_page(page);
583 	page_offset = ptr - page_address(page);
584 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
585 }
586 
587 static void
588 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
589 			    int offset, int len)
590 {
591 	struct skb_shared_info *sh = skb_shinfo(skb);
592 	const skb_frag_t *frag = &sh->frags[0];
593 	struct page *frag_page;
594 	void *frag_ptr;
595 	int frag_len, frag_size;
596 	int head_size = skb->len - skb->data_len;
597 	int cur_len;
598 
599 	frag_page = virt_to_head_page(skb->head);
600 	frag_ptr = skb->data;
601 	frag_size = head_size;
602 
603 	while (offset >= frag_size) {
604 		offset -= frag_size;
605 		frag_page = skb_frag_page(frag);
606 		frag_ptr = skb_frag_address(frag);
607 		frag_size = skb_frag_size(frag);
608 		frag++;
609 	}
610 
611 	frag_ptr += offset;
612 	frag_len = frag_size - offset;
613 
614 	cur_len = min(len, frag_len);
615 
616 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
617 	len -= cur_len;
618 
619 	while (len > 0) {
620 		frag_len = skb_frag_size(frag);
621 		cur_len = min(len, frag_len);
622 		__frame_add_frag(frame, skb_frag_page(frag),
623 				 skb_frag_address(frag), cur_len, frag_len);
624 		len -= cur_len;
625 		frag++;
626 	}
627 }
628 
629 static struct sk_buff *
630 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
631 		       int offset, int len, bool reuse_frag)
632 {
633 	struct sk_buff *frame;
634 	int cur_len = len;
635 
636 	if (skb->len - offset < len)
637 		return NULL;
638 
639 	/*
640 	 * When reusing framents, copy some data to the head to simplify
641 	 * ethernet header handling and speed up protocol header processing
642 	 * in the stack later.
643 	 */
644 	if (reuse_frag)
645 		cur_len = min_t(int, len, 32);
646 
647 	/*
648 	 * Allocate and reserve two bytes more for payload
649 	 * alignment since sizeof(struct ethhdr) is 14.
650 	 */
651 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
652 	if (!frame)
653 		return NULL;
654 
655 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
656 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
657 
658 	len -= cur_len;
659 	if (!len)
660 		return frame;
661 
662 	offset += cur_len;
663 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
664 
665 	return frame;
666 }
667 
668 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
669 			      const u8 *addr, enum nl80211_iftype iftype,
670 			      const unsigned int extra_headroom,
671 			      const u8 *check_da, const u8 *check_sa)
672 {
673 	unsigned int hlen = ALIGN(extra_headroom, 4);
674 	struct sk_buff *frame = NULL;
675 	u16 ethertype;
676 	u8 *payload;
677 	int offset = 0, remaining;
678 	struct ethhdr eth;
679 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
680 	bool reuse_skb = false;
681 	bool last = false;
682 
683 	while (!last) {
684 		unsigned int subframe_len;
685 		int len;
686 		u8 padding;
687 
688 		skb_copy_bits(skb, offset, &eth, sizeof(eth));
689 		len = ntohs(eth.h_proto);
690 		subframe_len = sizeof(struct ethhdr) + len;
691 		padding = (4 - subframe_len) & 0x3;
692 
693 		/* the last MSDU has no padding */
694 		remaining = skb->len - offset;
695 		if (subframe_len > remaining)
696 			goto purge;
697 
698 		offset += sizeof(struct ethhdr);
699 		last = remaining <= subframe_len + padding;
700 
701 		/* FIXME: should we really accept multicast DA? */
702 		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
703 		     !ether_addr_equal(check_da, eth.h_dest)) ||
704 		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
705 			offset += len + padding;
706 			continue;
707 		}
708 
709 		/* reuse skb for the last subframe */
710 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
711 			skb_pull(skb, offset);
712 			frame = skb;
713 			reuse_skb = true;
714 		} else {
715 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
716 						       reuse_frag);
717 			if (!frame)
718 				goto purge;
719 
720 			offset += len + padding;
721 		}
722 
723 		skb_reset_network_header(frame);
724 		frame->dev = skb->dev;
725 		frame->priority = skb->priority;
726 
727 		payload = frame->data;
728 		ethertype = (payload[6] << 8) | payload[7];
729 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
730 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
731 			   ether_addr_equal(payload, bridge_tunnel_header))) {
732 			eth.h_proto = htons(ethertype);
733 			skb_pull(frame, ETH_ALEN + 2);
734 		}
735 
736 		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
737 		__skb_queue_tail(list, frame);
738 	}
739 
740 	if (!reuse_skb)
741 		dev_kfree_skb(skb);
742 
743 	return;
744 
745  purge:
746 	__skb_queue_purge(list);
747 	dev_kfree_skb(skb);
748 }
749 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
750 
751 /* Given a data frame determine the 802.1p/1d tag to use. */
752 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
753 				    struct cfg80211_qos_map *qos_map)
754 {
755 	unsigned int dscp;
756 	unsigned char vlan_priority;
757 	unsigned int ret;
758 
759 	/* skb->priority values from 256->263 are magic values to
760 	 * directly indicate a specific 802.1d priority.  This is used
761 	 * to allow 802.1d priority to be passed directly in from VLAN
762 	 * tags, etc.
763 	 */
764 	if (skb->priority >= 256 && skb->priority <= 263) {
765 		ret = skb->priority - 256;
766 		goto out;
767 	}
768 
769 	if (skb_vlan_tag_present(skb)) {
770 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
771 			>> VLAN_PRIO_SHIFT;
772 		if (vlan_priority > 0) {
773 			ret = vlan_priority;
774 			goto out;
775 		}
776 	}
777 
778 	switch (skb->protocol) {
779 	case htons(ETH_P_IP):
780 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
781 		break;
782 	case htons(ETH_P_IPV6):
783 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
784 		break;
785 	case htons(ETH_P_MPLS_UC):
786 	case htons(ETH_P_MPLS_MC): {
787 		struct mpls_label mpls_tmp, *mpls;
788 
789 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
790 					  sizeof(*mpls), &mpls_tmp);
791 		if (!mpls)
792 			return 0;
793 
794 		ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
795 			>> MPLS_LS_TC_SHIFT;
796 		goto out;
797 	}
798 	case htons(ETH_P_80221):
799 		/* 802.21 is always network control traffic */
800 		return 7;
801 	default:
802 		return 0;
803 	}
804 
805 	if (qos_map) {
806 		unsigned int i, tmp_dscp = dscp >> 2;
807 
808 		for (i = 0; i < qos_map->num_des; i++) {
809 			if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
810 				ret = qos_map->dscp_exception[i].up;
811 				goto out;
812 			}
813 		}
814 
815 		for (i = 0; i < 8; i++) {
816 			if (tmp_dscp >= qos_map->up[i].low &&
817 			    tmp_dscp <= qos_map->up[i].high) {
818 				ret = i;
819 				goto out;
820 			}
821 		}
822 	}
823 
824 	ret = dscp >> 5;
825 out:
826 	return array_index_nospec(ret, IEEE80211_NUM_TIDS);
827 }
828 EXPORT_SYMBOL(cfg80211_classify8021d);
829 
830 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
831 {
832 	const struct cfg80211_bss_ies *ies;
833 
834 	ies = rcu_dereference(bss->ies);
835 	if (!ies)
836 		return NULL;
837 
838 	return cfg80211_find_elem(id, ies->data, ies->len);
839 }
840 EXPORT_SYMBOL(ieee80211_bss_get_elem);
841 
842 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
843 {
844 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
845 	struct net_device *dev = wdev->netdev;
846 	int i;
847 
848 	if (!wdev->connect_keys)
849 		return;
850 
851 	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
852 		if (!wdev->connect_keys->params[i].cipher)
853 			continue;
854 		if (rdev_add_key(rdev, dev, i, false, NULL,
855 				 &wdev->connect_keys->params[i])) {
856 			netdev_err(dev, "failed to set key %d\n", i);
857 			continue;
858 		}
859 		if (wdev->connect_keys->def == i &&
860 		    rdev_set_default_key(rdev, dev, i, true, true)) {
861 			netdev_err(dev, "failed to set defkey %d\n", i);
862 			continue;
863 		}
864 	}
865 
866 	kzfree(wdev->connect_keys);
867 	wdev->connect_keys = NULL;
868 }
869 
870 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
871 {
872 	struct cfg80211_event *ev;
873 	unsigned long flags;
874 
875 	spin_lock_irqsave(&wdev->event_lock, flags);
876 	while (!list_empty(&wdev->event_list)) {
877 		ev = list_first_entry(&wdev->event_list,
878 				      struct cfg80211_event, list);
879 		list_del(&ev->list);
880 		spin_unlock_irqrestore(&wdev->event_lock, flags);
881 
882 		wdev_lock(wdev);
883 		switch (ev->type) {
884 		case EVENT_CONNECT_RESULT:
885 			__cfg80211_connect_result(
886 				wdev->netdev,
887 				&ev->cr,
888 				ev->cr.status == WLAN_STATUS_SUCCESS);
889 			break;
890 		case EVENT_ROAMED:
891 			__cfg80211_roamed(wdev, &ev->rm);
892 			break;
893 		case EVENT_DISCONNECTED:
894 			__cfg80211_disconnected(wdev->netdev,
895 						ev->dc.ie, ev->dc.ie_len,
896 						ev->dc.reason,
897 						!ev->dc.locally_generated);
898 			break;
899 		case EVENT_IBSS_JOINED:
900 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
901 					       ev->ij.channel);
902 			break;
903 		case EVENT_STOPPED:
904 			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
905 			break;
906 		case EVENT_PORT_AUTHORIZED:
907 			__cfg80211_port_authorized(wdev, ev->pa.bssid);
908 			break;
909 		}
910 		wdev_unlock(wdev);
911 
912 		kfree(ev);
913 
914 		spin_lock_irqsave(&wdev->event_lock, flags);
915 	}
916 	spin_unlock_irqrestore(&wdev->event_lock, flags);
917 }
918 
919 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
920 {
921 	struct wireless_dev *wdev;
922 
923 	ASSERT_RTNL();
924 
925 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
926 		cfg80211_process_wdev_events(wdev);
927 }
928 
929 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
930 			  struct net_device *dev, enum nl80211_iftype ntype,
931 			  struct vif_params *params)
932 {
933 	int err;
934 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
935 
936 	ASSERT_RTNL();
937 
938 	/* don't support changing VLANs, you just re-create them */
939 	if (otype == NL80211_IFTYPE_AP_VLAN)
940 		return -EOPNOTSUPP;
941 
942 	/* cannot change into P2P device or NAN */
943 	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
944 	    ntype == NL80211_IFTYPE_NAN)
945 		return -EOPNOTSUPP;
946 
947 	if (!rdev->ops->change_virtual_intf ||
948 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
949 		return -EOPNOTSUPP;
950 
951 	/* if it's part of a bridge, reject changing type to station/ibss */
952 	if (netif_is_bridge_port(dev) &&
953 	    (ntype == NL80211_IFTYPE_ADHOC ||
954 	     ntype == NL80211_IFTYPE_STATION ||
955 	     ntype == NL80211_IFTYPE_P2P_CLIENT))
956 		return -EBUSY;
957 
958 	if (ntype != otype) {
959 		dev->ieee80211_ptr->use_4addr = false;
960 		dev->ieee80211_ptr->mesh_id_up_len = 0;
961 		wdev_lock(dev->ieee80211_ptr);
962 		rdev_set_qos_map(rdev, dev, NULL);
963 		wdev_unlock(dev->ieee80211_ptr);
964 
965 		switch (otype) {
966 		case NL80211_IFTYPE_AP:
967 			cfg80211_stop_ap(rdev, dev, true);
968 			break;
969 		case NL80211_IFTYPE_ADHOC:
970 			cfg80211_leave_ibss(rdev, dev, false);
971 			break;
972 		case NL80211_IFTYPE_STATION:
973 		case NL80211_IFTYPE_P2P_CLIENT:
974 			wdev_lock(dev->ieee80211_ptr);
975 			cfg80211_disconnect(rdev, dev,
976 					    WLAN_REASON_DEAUTH_LEAVING, true);
977 			wdev_unlock(dev->ieee80211_ptr);
978 			break;
979 		case NL80211_IFTYPE_MESH_POINT:
980 			/* mesh should be handled? */
981 			break;
982 		default:
983 			break;
984 		}
985 
986 		cfg80211_process_rdev_events(rdev);
987 		cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
988 	}
989 
990 	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
991 
992 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
993 
994 	if (!err && params && params->use_4addr != -1)
995 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
996 
997 	if (!err) {
998 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
999 		switch (ntype) {
1000 		case NL80211_IFTYPE_STATION:
1001 			if (dev->ieee80211_ptr->use_4addr)
1002 				break;
1003 			/* fall through */
1004 		case NL80211_IFTYPE_OCB:
1005 		case NL80211_IFTYPE_P2P_CLIENT:
1006 		case NL80211_IFTYPE_ADHOC:
1007 			dev->priv_flags |= IFF_DONT_BRIDGE;
1008 			break;
1009 		case NL80211_IFTYPE_P2P_GO:
1010 		case NL80211_IFTYPE_AP:
1011 		case NL80211_IFTYPE_AP_VLAN:
1012 		case NL80211_IFTYPE_WDS:
1013 		case NL80211_IFTYPE_MESH_POINT:
1014 			/* bridging OK */
1015 			break;
1016 		case NL80211_IFTYPE_MONITOR:
1017 			/* monitor can't bridge anyway */
1018 			break;
1019 		case NL80211_IFTYPE_UNSPECIFIED:
1020 		case NUM_NL80211_IFTYPES:
1021 			/* not happening */
1022 			break;
1023 		case NL80211_IFTYPE_P2P_DEVICE:
1024 		case NL80211_IFTYPE_NAN:
1025 			WARN_ON(1);
1026 			break;
1027 		}
1028 	}
1029 
1030 	if (!err && ntype != otype && netif_running(dev)) {
1031 		cfg80211_update_iface_num(rdev, ntype, 1);
1032 		cfg80211_update_iface_num(rdev, otype, -1);
1033 	}
1034 
1035 	return err;
1036 }
1037 
1038 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1039 {
1040 	int modulation, streams, bitrate;
1041 
1042 	/* the formula below does only work for MCS values smaller than 32 */
1043 	if (WARN_ON_ONCE(rate->mcs >= 32))
1044 		return 0;
1045 
1046 	modulation = rate->mcs & 7;
1047 	streams = (rate->mcs >> 3) + 1;
1048 
1049 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1050 
1051 	if (modulation < 4)
1052 		bitrate *= (modulation + 1);
1053 	else if (modulation == 4)
1054 		bitrate *= (modulation + 2);
1055 	else
1056 		bitrate *= (modulation + 3);
1057 
1058 	bitrate *= streams;
1059 
1060 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1061 		bitrate = (bitrate / 9) * 10;
1062 
1063 	/* do NOT round down here */
1064 	return (bitrate + 50000) / 100000;
1065 }
1066 
1067 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1068 {
1069 	static const u32 __mcs2bitrate[] = {
1070 		/* control PHY */
1071 		[0] =   275,
1072 		/* SC PHY */
1073 		[1] =  3850,
1074 		[2] =  7700,
1075 		[3] =  9625,
1076 		[4] = 11550,
1077 		[5] = 12512, /* 1251.25 mbps */
1078 		[6] = 15400,
1079 		[7] = 19250,
1080 		[8] = 23100,
1081 		[9] = 25025,
1082 		[10] = 30800,
1083 		[11] = 38500,
1084 		[12] = 46200,
1085 		/* OFDM PHY */
1086 		[13] =  6930,
1087 		[14] =  8662, /* 866.25 mbps */
1088 		[15] = 13860,
1089 		[16] = 17325,
1090 		[17] = 20790,
1091 		[18] = 27720,
1092 		[19] = 34650,
1093 		[20] = 41580,
1094 		[21] = 45045,
1095 		[22] = 51975,
1096 		[23] = 62370,
1097 		[24] = 67568, /* 6756.75 mbps */
1098 		/* LP-SC PHY */
1099 		[25] =  6260,
1100 		[26] =  8340,
1101 		[27] = 11120,
1102 		[28] = 12510,
1103 		[29] = 16680,
1104 		[30] = 22240,
1105 		[31] = 25030,
1106 	};
1107 
1108 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1109 		return 0;
1110 
1111 	return __mcs2bitrate[rate->mcs];
1112 }
1113 
1114 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1115 {
1116 	static const u32 __mcs2bitrate[] = {
1117 		/* control PHY */
1118 		[0] =   275,
1119 		/* SC PHY */
1120 		[1] =  3850,
1121 		[2] =  7700,
1122 		[3] =  9625,
1123 		[4] = 11550,
1124 		[5] = 12512, /* 1251.25 mbps */
1125 		[6] = 13475,
1126 		[7] = 15400,
1127 		[8] = 19250,
1128 		[9] = 23100,
1129 		[10] = 25025,
1130 		[11] = 26950,
1131 		[12] = 30800,
1132 		[13] = 38500,
1133 		[14] = 46200,
1134 		[15] = 50050,
1135 		[16] = 53900,
1136 		[17] = 57750,
1137 		[18] = 69300,
1138 		[19] = 75075,
1139 		[20] = 80850,
1140 	};
1141 
1142 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1143 		return 0;
1144 
1145 	return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1146 }
1147 
1148 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1149 {
1150 	static const u32 base[4][10] = {
1151 		{   6500000,
1152 		   13000000,
1153 		   19500000,
1154 		   26000000,
1155 		   39000000,
1156 		   52000000,
1157 		   58500000,
1158 		   65000000,
1159 		   78000000,
1160 		/* not in the spec, but some devices use this: */
1161 		   86500000,
1162 		},
1163 		{  13500000,
1164 		   27000000,
1165 		   40500000,
1166 		   54000000,
1167 		   81000000,
1168 		  108000000,
1169 		  121500000,
1170 		  135000000,
1171 		  162000000,
1172 		  180000000,
1173 		},
1174 		{  29300000,
1175 		   58500000,
1176 		   87800000,
1177 		  117000000,
1178 		  175500000,
1179 		  234000000,
1180 		  263300000,
1181 		  292500000,
1182 		  351000000,
1183 		  390000000,
1184 		},
1185 		{  58500000,
1186 		  117000000,
1187 		  175500000,
1188 		  234000000,
1189 		  351000000,
1190 		  468000000,
1191 		  526500000,
1192 		  585000000,
1193 		  702000000,
1194 		  780000000,
1195 		},
1196 	};
1197 	u32 bitrate;
1198 	int idx;
1199 
1200 	if (rate->mcs > 9)
1201 		goto warn;
1202 
1203 	switch (rate->bw) {
1204 	case RATE_INFO_BW_160:
1205 		idx = 3;
1206 		break;
1207 	case RATE_INFO_BW_80:
1208 		idx = 2;
1209 		break;
1210 	case RATE_INFO_BW_40:
1211 		idx = 1;
1212 		break;
1213 	case RATE_INFO_BW_5:
1214 	case RATE_INFO_BW_10:
1215 	default:
1216 		goto warn;
1217 	case RATE_INFO_BW_20:
1218 		idx = 0;
1219 	}
1220 
1221 	bitrate = base[idx][rate->mcs];
1222 	bitrate *= rate->nss;
1223 
1224 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1225 		bitrate = (bitrate / 9) * 10;
1226 
1227 	/* do NOT round down here */
1228 	return (bitrate + 50000) / 100000;
1229  warn:
1230 	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1231 		  rate->bw, rate->mcs, rate->nss);
1232 	return 0;
1233 }
1234 
1235 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1236 {
1237 #define SCALE 2048
1238 	u16 mcs_divisors[12] = {
1239 		34133, /* 16.666666... */
1240 		17067, /*  8.333333... */
1241 		11378, /*  5.555555... */
1242 		 8533, /*  4.166666... */
1243 		 5689, /*  2.777777... */
1244 		 4267, /*  2.083333... */
1245 		 3923, /*  1.851851... */
1246 		 3413, /*  1.666666... */
1247 		 2844, /*  1.388888... */
1248 		 2560, /*  1.250000... */
1249 		 2276, /*  1.111111... */
1250 		 2048, /*  1.000000... */
1251 	};
1252 	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1253 	u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1254 	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1255 	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1256 	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1257 	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1258 	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1259 	u64 tmp;
1260 	u32 result;
1261 
1262 	if (WARN_ON_ONCE(rate->mcs > 11))
1263 		return 0;
1264 
1265 	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1266 		return 0;
1267 	if (WARN_ON_ONCE(rate->he_ru_alloc >
1268 			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1269 		return 0;
1270 	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1271 		return 0;
1272 
1273 	if (rate->bw == RATE_INFO_BW_160)
1274 		result = rates_160M[rate->he_gi];
1275 	else if (rate->bw == RATE_INFO_BW_80 ||
1276 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1277 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1278 		result = rates_969[rate->he_gi];
1279 	else if (rate->bw == RATE_INFO_BW_40 ||
1280 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1281 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1282 		result = rates_484[rate->he_gi];
1283 	else if (rate->bw == RATE_INFO_BW_20 ||
1284 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1285 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1286 		result = rates_242[rate->he_gi];
1287 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1288 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1289 		result = rates_106[rate->he_gi];
1290 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1291 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1292 		result = rates_52[rate->he_gi];
1293 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1294 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1295 		result = rates_26[rate->he_gi];
1296 	else {
1297 		WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1298 		     rate->bw, rate->he_ru_alloc);
1299 		return 0;
1300 	}
1301 
1302 	/* now scale to the appropriate MCS */
1303 	tmp = result;
1304 	tmp *= SCALE;
1305 	do_div(tmp, mcs_divisors[rate->mcs]);
1306 	result = tmp;
1307 
1308 	/* and take NSS, DCM into account */
1309 	result = (result * rate->nss) / 8;
1310 	if (rate->he_dcm)
1311 		result /= 2;
1312 
1313 	return result / 10000;
1314 }
1315 
1316 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1317 {
1318 	if (rate->flags & RATE_INFO_FLAGS_MCS)
1319 		return cfg80211_calculate_bitrate_ht(rate);
1320 	if (rate->flags & RATE_INFO_FLAGS_DMG)
1321 		return cfg80211_calculate_bitrate_dmg(rate);
1322 	if (rate->flags & RATE_INFO_FLAGS_EDMG)
1323 		return cfg80211_calculate_bitrate_edmg(rate);
1324 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1325 		return cfg80211_calculate_bitrate_vht(rate);
1326 	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1327 		return cfg80211_calculate_bitrate_he(rate);
1328 
1329 	return rate->legacy;
1330 }
1331 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1332 
1333 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1334 			  enum ieee80211_p2p_attr_id attr,
1335 			  u8 *buf, unsigned int bufsize)
1336 {
1337 	u8 *out = buf;
1338 	u16 attr_remaining = 0;
1339 	bool desired_attr = false;
1340 	u16 desired_len = 0;
1341 
1342 	while (len > 0) {
1343 		unsigned int iedatalen;
1344 		unsigned int copy;
1345 		const u8 *iedata;
1346 
1347 		if (len < 2)
1348 			return -EILSEQ;
1349 		iedatalen = ies[1];
1350 		if (iedatalen + 2 > len)
1351 			return -EILSEQ;
1352 
1353 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1354 			goto cont;
1355 
1356 		if (iedatalen < 4)
1357 			goto cont;
1358 
1359 		iedata = ies + 2;
1360 
1361 		/* check WFA OUI, P2P subtype */
1362 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1363 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1364 			goto cont;
1365 
1366 		iedatalen -= 4;
1367 		iedata += 4;
1368 
1369 		/* check attribute continuation into this IE */
1370 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1371 		if (copy && desired_attr) {
1372 			desired_len += copy;
1373 			if (out) {
1374 				memcpy(out, iedata, min(bufsize, copy));
1375 				out += min(bufsize, copy);
1376 				bufsize -= min(bufsize, copy);
1377 			}
1378 
1379 
1380 			if (copy == attr_remaining)
1381 				return desired_len;
1382 		}
1383 
1384 		attr_remaining -= copy;
1385 		if (attr_remaining)
1386 			goto cont;
1387 
1388 		iedatalen -= copy;
1389 		iedata += copy;
1390 
1391 		while (iedatalen > 0) {
1392 			u16 attr_len;
1393 
1394 			/* P2P attribute ID & size must fit */
1395 			if (iedatalen < 3)
1396 				return -EILSEQ;
1397 			desired_attr = iedata[0] == attr;
1398 			attr_len = get_unaligned_le16(iedata + 1);
1399 			iedatalen -= 3;
1400 			iedata += 3;
1401 
1402 			copy = min_t(unsigned int, attr_len, iedatalen);
1403 
1404 			if (desired_attr) {
1405 				desired_len += copy;
1406 				if (out) {
1407 					memcpy(out, iedata, min(bufsize, copy));
1408 					out += min(bufsize, copy);
1409 					bufsize -= min(bufsize, copy);
1410 				}
1411 
1412 				if (copy == attr_len)
1413 					return desired_len;
1414 			}
1415 
1416 			iedata += copy;
1417 			iedatalen -= copy;
1418 			attr_remaining = attr_len - copy;
1419 		}
1420 
1421  cont:
1422 		len -= ies[1] + 2;
1423 		ies += ies[1] + 2;
1424 	}
1425 
1426 	if (attr_remaining && desired_attr)
1427 		return -EILSEQ;
1428 
1429 	return -ENOENT;
1430 }
1431 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1432 
1433 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1434 {
1435 	int i;
1436 
1437 	/* Make sure array values are legal */
1438 	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1439 		return false;
1440 
1441 	i = 0;
1442 	while (i < n_ids) {
1443 		if (ids[i] == WLAN_EID_EXTENSION) {
1444 			if (id_ext && (ids[i + 1] == id))
1445 				return true;
1446 
1447 			i += 2;
1448 			continue;
1449 		}
1450 
1451 		if (ids[i] == id && !id_ext)
1452 			return true;
1453 
1454 		i++;
1455 	}
1456 	return false;
1457 }
1458 
1459 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1460 {
1461 	/* we assume a validly formed IEs buffer */
1462 	u8 len = ies[pos + 1];
1463 
1464 	pos += 2 + len;
1465 
1466 	/* the IE itself must have 255 bytes for fragments to follow */
1467 	if (len < 255)
1468 		return pos;
1469 
1470 	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1471 		len = ies[pos + 1];
1472 		pos += 2 + len;
1473 	}
1474 
1475 	return pos;
1476 }
1477 
1478 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1479 			      const u8 *ids, int n_ids,
1480 			      const u8 *after_ric, int n_after_ric,
1481 			      size_t offset)
1482 {
1483 	size_t pos = offset;
1484 
1485 	while (pos < ielen) {
1486 		u8 ext = 0;
1487 
1488 		if (ies[pos] == WLAN_EID_EXTENSION)
1489 			ext = 2;
1490 		if ((pos + ext) >= ielen)
1491 			break;
1492 
1493 		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1494 					  ies[pos] == WLAN_EID_EXTENSION))
1495 			break;
1496 
1497 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1498 			pos = skip_ie(ies, ielen, pos);
1499 
1500 			while (pos < ielen) {
1501 				if (ies[pos] == WLAN_EID_EXTENSION)
1502 					ext = 2;
1503 				else
1504 					ext = 0;
1505 
1506 				if ((pos + ext) >= ielen)
1507 					break;
1508 
1509 				if (!ieee80211_id_in_list(after_ric,
1510 							  n_after_ric,
1511 							  ies[pos + ext],
1512 							  ext == 2))
1513 					pos = skip_ie(ies, ielen, pos);
1514 				else
1515 					break;
1516 			}
1517 		} else {
1518 			pos = skip_ie(ies, ielen, pos);
1519 		}
1520 	}
1521 
1522 	return pos;
1523 }
1524 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1525 
1526 bool ieee80211_operating_class_to_band(u8 operating_class,
1527 				       enum nl80211_band *band)
1528 {
1529 	switch (operating_class) {
1530 	case 112:
1531 	case 115 ... 127:
1532 	case 128 ... 130:
1533 		*band = NL80211_BAND_5GHZ;
1534 		return true;
1535 	case 131 ... 135:
1536 		*band = NL80211_BAND_6GHZ;
1537 		return true;
1538 	case 81:
1539 	case 82:
1540 	case 83:
1541 	case 84:
1542 		*band = NL80211_BAND_2GHZ;
1543 		return true;
1544 	case 180:
1545 		*band = NL80211_BAND_60GHZ;
1546 		return true;
1547 	}
1548 
1549 	return false;
1550 }
1551 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1552 
1553 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1554 					  u8 *op_class)
1555 {
1556 	u8 vht_opclass;
1557 	u32 freq = chandef->center_freq1;
1558 
1559 	if (freq >= 2412 && freq <= 2472) {
1560 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1561 			return false;
1562 
1563 		/* 2.407 GHz, channels 1..13 */
1564 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1565 			if (freq > chandef->chan->center_freq)
1566 				*op_class = 83; /* HT40+ */
1567 			else
1568 				*op_class = 84; /* HT40- */
1569 		} else {
1570 			*op_class = 81;
1571 		}
1572 
1573 		return true;
1574 	}
1575 
1576 	if (freq == 2484) {
1577 		/* channel 14 is only for IEEE 802.11b */
1578 		if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1579 			return false;
1580 
1581 		*op_class = 82; /* channel 14 */
1582 		return true;
1583 	}
1584 
1585 	switch (chandef->width) {
1586 	case NL80211_CHAN_WIDTH_80:
1587 		vht_opclass = 128;
1588 		break;
1589 	case NL80211_CHAN_WIDTH_160:
1590 		vht_opclass = 129;
1591 		break;
1592 	case NL80211_CHAN_WIDTH_80P80:
1593 		vht_opclass = 130;
1594 		break;
1595 	case NL80211_CHAN_WIDTH_10:
1596 	case NL80211_CHAN_WIDTH_5:
1597 		return false; /* unsupported for now */
1598 	default:
1599 		vht_opclass = 0;
1600 		break;
1601 	}
1602 
1603 	/* 5 GHz, channels 36..48 */
1604 	if (freq >= 5180 && freq <= 5240) {
1605 		if (vht_opclass) {
1606 			*op_class = vht_opclass;
1607 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1608 			if (freq > chandef->chan->center_freq)
1609 				*op_class = 116;
1610 			else
1611 				*op_class = 117;
1612 		} else {
1613 			*op_class = 115;
1614 		}
1615 
1616 		return true;
1617 	}
1618 
1619 	/* 5 GHz, channels 52..64 */
1620 	if (freq >= 5260 && freq <= 5320) {
1621 		if (vht_opclass) {
1622 			*op_class = vht_opclass;
1623 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1624 			if (freq > chandef->chan->center_freq)
1625 				*op_class = 119;
1626 			else
1627 				*op_class = 120;
1628 		} else {
1629 			*op_class = 118;
1630 		}
1631 
1632 		return true;
1633 	}
1634 
1635 	/* 5 GHz, channels 100..144 */
1636 	if (freq >= 5500 && freq <= 5720) {
1637 		if (vht_opclass) {
1638 			*op_class = vht_opclass;
1639 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1640 			if (freq > chandef->chan->center_freq)
1641 				*op_class = 122;
1642 			else
1643 				*op_class = 123;
1644 		} else {
1645 			*op_class = 121;
1646 		}
1647 
1648 		return true;
1649 	}
1650 
1651 	/* 5 GHz, channels 149..169 */
1652 	if (freq >= 5745 && freq <= 5845) {
1653 		if (vht_opclass) {
1654 			*op_class = vht_opclass;
1655 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1656 			if (freq > chandef->chan->center_freq)
1657 				*op_class = 126;
1658 			else
1659 				*op_class = 127;
1660 		} else if (freq <= 5805) {
1661 			*op_class = 124;
1662 		} else {
1663 			*op_class = 125;
1664 		}
1665 
1666 		return true;
1667 	}
1668 
1669 	/* 56.16 GHz, channel 1..4 */
1670 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1671 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1672 			return false;
1673 
1674 		*op_class = 180;
1675 		return true;
1676 	}
1677 
1678 	/* not supported yet */
1679 	return false;
1680 }
1681 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1682 
1683 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1684 				       u32 *beacon_int_gcd,
1685 				       bool *beacon_int_different)
1686 {
1687 	struct wireless_dev *wdev;
1688 
1689 	*beacon_int_gcd = 0;
1690 	*beacon_int_different = false;
1691 
1692 	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1693 		if (!wdev->beacon_interval)
1694 			continue;
1695 
1696 		if (!*beacon_int_gcd) {
1697 			*beacon_int_gcd = wdev->beacon_interval;
1698 			continue;
1699 		}
1700 
1701 		if (wdev->beacon_interval == *beacon_int_gcd)
1702 			continue;
1703 
1704 		*beacon_int_different = true;
1705 		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1706 	}
1707 
1708 	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1709 		if (*beacon_int_gcd)
1710 			*beacon_int_different = true;
1711 		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1712 	}
1713 }
1714 
1715 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1716 				 enum nl80211_iftype iftype, u32 beacon_int)
1717 {
1718 	/*
1719 	 * This is just a basic pre-condition check; if interface combinations
1720 	 * are possible the driver must already be checking those with a call
1721 	 * to cfg80211_check_combinations(), in which case we'll validate more
1722 	 * through the cfg80211_calculate_bi_data() call and code in
1723 	 * cfg80211_iter_combinations().
1724 	 */
1725 
1726 	if (beacon_int < 10 || beacon_int > 10000)
1727 		return -EINVAL;
1728 
1729 	return 0;
1730 }
1731 
1732 int cfg80211_iter_combinations(struct wiphy *wiphy,
1733 			       struct iface_combination_params *params,
1734 			       void (*iter)(const struct ieee80211_iface_combination *c,
1735 					    void *data),
1736 			       void *data)
1737 {
1738 	const struct ieee80211_regdomain *regdom;
1739 	enum nl80211_dfs_regions region = 0;
1740 	int i, j, iftype;
1741 	int num_interfaces = 0;
1742 	u32 used_iftypes = 0;
1743 	u32 beacon_int_gcd;
1744 	bool beacon_int_different;
1745 
1746 	/*
1747 	 * This is a bit strange, since the iteration used to rely only on
1748 	 * the data given by the driver, but here it now relies on context,
1749 	 * in form of the currently operating interfaces.
1750 	 * This is OK for all current users, and saves us from having to
1751 	 * push the GCD calculations into all the drivers.
1752 	 * In the future, this should probably rely more on data that's in
1753 	 * cfg80211 already - the only thing not would appear to be any new
1754 	 * interfaces (while being brought up) and channel/radar data.
1755 	 */
1756 	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1757 				   &beacon_int_gcd, &beacon_int_different);
1758 
1759 	if (params->radar_detect) {
1760 		rcu_read_lock();
1761 		regdom = rcu_dereference(cfg80211_regdomain);
1762 		if (regdom)
1763 			region = regdom->dfs_region;
1764 		rcu_read_unlock();
1765 	}
1766 
1767 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1768 		num_interfaces += params->iftype_num[iftype];
1769 		if (params->iftype_num[iftype] > 0 &&
1770 		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1771 			used_iftypes |= BIT(iftype);
1772 	}
1773 
1774 	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1775 		const struct ieee80211_iface_combination *c;
1776 		struct ieee80211_iface_limit *limits;
1777 		u32 all_iftypes = 0;
1778 
1779 		c = &wiphy->iface_combinations[i];
1780 
1781 		if (num_interfaces > c->max_interfaces)
1782 			continue;
1783 		if (params->num_different_channels > c->num_different_channels)
1784 			continue;
1785 
1786 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1787 				 GFP_KERNEL);
1788 		if (!limits)
1789 			return -ENOMEM;
1790 
1791 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1792 			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1793 				continue;
1794 			for (j = 0; j < c->n_limits; j++) {
1795 				all_iftypes |= limits[j].types;
1796 				if (!(limits[j].types & BIT(iftype)))
1797 					continue;
1798 				if (limits[j].max < params->iftype_num[iftype])
1799 					goto cont;
1800 				limits[j].max -= params->iftype_num[iftype];
1801 			}
1802 		}
1803 
1804 		if (params->radar_detect !=
1805 			(c->radar_detect_widths & params->radar_detect))
1806 			goto cont;
1807 
1808 		if (params->radar_detect && c->radar_detect_regions &&
1809 		    !(c->radar_detect_regions & BIT(region)))
1810 			goto cont;
1811 
1812 		/* Finally check that all iftypes that we're currently
1813 		 * using are actually part of this combination. If they
1814 		 * aren't then we can't use this combination and have
1815 		 * to continue to the next.
1816 		 */
1817 		if ((all_iftypes & used_iftypes) != used_iftypes)
1818 			goto cont;
1819 
1820 		if (beacon_int_gcd) {
1821 			if (c->beacon_int_min_gcd &&
1822 			    beacon_int_gcd < c->beacon_int_min_gcd)
1823 				goto cont;
1824 			if (!c->beacon_int_min_gcd && beacon_int_different)
1825 				goto cont;
1826 		}
1827 
1828 		/* This combination covered all interface types and
1829 		 * supported the requested numbers, so we're good.
1830 		 */
1831 
1832 		(*iter)(c, data);
1833  cont:
1834 		kfree(limits);
1835 	}
1836 
1837 	return 0;
1838 }
1839 EXPORT_SYMBOL(cfg80211_iter_combinations);
1840 
1841 static void
1842 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1843 			  void *data)
1844 {
1845 	int *num = data;
1846 	(*num)++;
1847 }
1848 
1849 int cfg80211_check_combinations(struct wiphy *wiphy,
1850 				struct iface_combination_params *params)
1851 {
1852 	int err, num = 0;
1853 
1854 	err = cfg80211_iter_combinations(wiphy, params,
1855 					 cfg80211_iter_sum_ifcombs, &num);
1856 	if (err)
1857 		return err;
1858 	if (num == 0)
1859 		return -EBUSY;
1860 
1861 	return 0;
1862 }
1863 EXPORT_SYMBOL(cfg80211_check_combinations);
1864 
1865 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1866 			   const u8 *rates, unsigned int n_rates,
1867 			   u32 *mask)
1868 {
1869 	int i, j;
1870 
1871 	if (!sband)
1872 		return -EINVAL;
1873 
1874 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1875 		return -EINVAL;
1876 
1877 	*mask = 0;
1878 
1879 	for (i = 0; i < n_rates; i++) {
1880 		int rate = (rates[i] & 0x7f) * 5;
1881 		bool found = false;
1882 
1883 		for (j = 0; j < sband->n_bitrates; j++) {
1884 			if (sband->bitrates[j].bitrate == rate) {
1885 				found = true;
1886 				*mask |= BIT(j);
1887 				break;
1888 			}
1889 		}
1890 		if (!found)
1891 			return -EINVAL;
1892 	}
1893 
1894 	/*
1895 	 * mask must have at least one bit set here since we
1896 	 * didn't accept a 0-length rates array nor allowed
1897 	 * entries in the array that didn't exist
1898 	 */
1899 
1900 	return 0;
1901 }
1902 
1903 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1904 {
1905 	enum nl80211_band band;
1906 	unsigned int n_channels = 0;
1907 
1908 	for (band = 0; band < NUM_NL80211_BANDS; band++)
1909 		if (wiphy->bands[band])
1910 			n_channels += wiphy->bands[band]->n_channels;
1911 
1912 	return n_channels;
1913 }
1914 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1915 
1916 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1917 			 struct station_info *sinfo)
1918 {
1919 	struct cfg80211_registered_device *rdev;
1920 	struct wireless_dev *wdev;
1921 
1922 	wdev = dev->ieee80211_ptr;
1923 	if (!wdev)
1924 		return -EOPNOTSUPP;
1925 
1926 	rdev = wiphy_to_rdev(wdev->wiphy);
1927 	if (!rdev->ops->get_station)
1928 		return -EOPNOTSUPP;
1929 
1930 	memset(sinfo, 0, sizeof(*sinfo));
1931 
1932 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1933 }
1934 EXPORT_SYMBOL(cfg80211_get_station);
1935 
1936 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1937 {
1938 	int i;
1939 
1940 	if (!f)
1941 		return;
1942 
1943 	kfree(f->serv_spec_info);
1944 	kfree(f->srf_bf);
1945 	kfree(f->srf_macs);
1946 	for (i = 0; i < f->num_rx_filters; i++)
1947 		kfree(f->rx_filters[i].filter);
1948 
1949 	for (i = 0; i < f->num_tx_filters; i++)
1950 		kfree(f->tx_filters[i].filter);
1951 
1952 	kfree(f->rx_filters);
1953 	kfree(f->tx_filters);
1954 	kfree(f);
1955 }
1956 EXPORT_SYMBOL(cfg80211_free_nan_func);
1957 
1958 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1959 				u32 center_freq_khz, u32 bw_khz)
1960 {
1961 	u32 start_freq_khz, end_freq_khz;
1962 
1963 	start_freq_khz = center_freq_khz - (bw_khz / 2);
1964 	end_freq_khz = center_freq_khz + (bw_khz / 2);
1965 
1966 	if (start_freq_khz >= freq_range->start_freq_khz &&
1967 	    end_freq_khz <= freq_range->end_freq_khz)
1968 		return true;
1969 
1970 	return false;
1971 }
1972 
1973 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1974 {
1975 	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1976 				sizeof(*(sinfo->pertid)),
1977 				gfp);
1978 	if (!sinfo->pertid)
1979 		return -ENOMEM;
1980 
1981 	return 0;
1982 }
1983 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1984 
1985 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1986 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1987 const unsigned char rfc1042_header[] __aligned(2) =
1988 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1989 EXPORT_SYMBOL(rfc1042_header);
1990 
1991 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1992 const unsigned char bridge_tunnel_header[] __aligned(2) =
1993 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1994 EXPORT_SYMBOL(bridge_tunnel_header);
1995 
1996 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
1997 struct iapp_layer2_update {
1998 	u8 da[ETH_ALEN];	/* broadcast */
1999 	u8 sa[ETH_ALEN];	/* STA addr */
2000 	__be16 len;		/* 6 */
2001 	u8 dsap;		/* 0 */
2002 	u8 ssap;		/* 0 */
2003 	u8 control;
2004 	u8 xid_info[3];
2005 } __packed;
2006 
2007 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2008 {
2009 	struct iapp_layer2_update *msg;
2010 	struct sk_buff *skb;
2011 
2012 	/* Send Level 2 Update Frame to update forwarding tables in layer 2
2013 	 * bridge devices */
2014 
2015 	skb = dev_alloc_skb(sizeof(*msg));
2016 	if (!skb)
2017 		return;
2018 	msg = skb_put(skb, sizeof(*msg));
2019 
2020 	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2021 	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2022 
2023 	eth_broadcast_addr(msg->da);
2024 	ether_addr_copy(msg->sa, addr);
2025 	msg->len = htons(6);
2026 	msg->dsap = 0;
2027 	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
2028 	msg->control = 0xaf;	/* XID response lsb.1111F101.
2029 				 * F=0 (no poll command; unsolicited frame) */
2030 	msg->xid_info[0] = 0x81;	/* XID format identifier */
2031 	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
2032 	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
2033 
2034 	skb->dev = dev;
2035 	skb->protocol = eth_type_trans(skb, dev);
2036 	memset(skb->cb, 0, sizeof(skb->cb));
2037 	netif_rx_ni(skb);
2038 }
2039 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2040 
2041 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2042 			      enum ieee80211_vht_chanwidth bw,
2043 			      int mcs, bool ext_nss_bw_capable,
2044 			      unsigned int max_vht_nss)
2045 {
2046 	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2047 	int ext_nss_bw;
2048 	int supp_width;
2049 	int i, mcs_encoding;
2050 
2051 	if (map == 0xffff)
2052 		return 0;
2053 
2054 	if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2055 		return 0;
2056 	if (mcs <= 7)
2057 		mcs_encoding = 0;
2058 	else if (mcs == 8)
2059 		mcs_encoding = 1;
2060 	else
2061 		mcs_encoding = 2;
2062 
2063 	if (!max_vht_nss) {
2064 		/* find max_vht_nss for the given MCS */
2065 		for (i = 7; i >= 0; i--) {
2066 			int supp = (map >> (2 * i)) & 3;
2067 
2068 			if (supp == 3)
2069 				continue;
2070 
2071 			if (supp >= mcs_encoding) {
2072 				max_vht_nss = i + 1;
2073 				break;
2074 			}
2075 		}
2076 	}
2077 
2078 	if (!(cap->supp_mcs.tx_mcs_map &
2079 			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2080 		return max_vht_nss;
2081 
2082 	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2083 				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2084 	supp_width = le32_get_bits(cap->vht_cap_info,
2085 				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2086 
2087 	/* if not capable, treat ext_nss_bw as 0 */
2088 	if (!ext_nss_bw_capable)
2089 		ext_nss_bw = 0;
2090 
2091 	/* This is invalid */
2092 	if (supp_width == 3)
2093 		return 0;
2094 
2095 	/* This is an invalid combination so pretend nothing is supported */
2096 	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2097 		return 0;
2098 
2099 	/*
2100 	 * Cover all the special cases according to IEEE 802.11-2016
2101 	 * Table 9-250. All other cases are either factor of 1 or not
2102 	 * valid/supported.
2103 	 */
2104 	switch (bw) {
2105 	case IEEE80211_VHT_CHANWIDTH_USE_HT:
2106 	case IEEE80211_VHT_CHANWIDTH_80MHZ:
2107 		if ((supp_width == 1 || supp_width == 2) &&
2108 		    ext_nss_bw == 3)
2109 			return 2 * max_vht_nss;
2110 		break;
2111 	case IEEE80211_VHT_CHANWIDTH_160MHZ:
2112 		if (supp_width == 0 &&
2113 		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2114 			return max_vht_nss / 2;
2115 		if (supp_width == 0 &&
2116 		    ext_nss_bw == 3)
2117 			return (3 * max_vht_nss) / 4;
2118 		if (supp_width == 1 &&
2119 		    ext_nss_bw == 3)
2120 			return 2 * max_vht_nss;
2121 		break;
2122 	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2123 		if (supp_width == 0 && ext_nss_bw == 1)
2124 			return 0; /* not possible */
2125 		if (supp_width == 0 &&
2126 		    ext_nss_bw == 2)
2127 			return max_vht_nss / 2;
2128 		if (supp_width == 0 &&
2129 		    ext_nss_bw == 3)
2130 			return (3 * max_vht_nss) / 4;
2131 		if (supp_width == 1 &&
2132 		    ext_nss_bw == 0)
2133 			return 0; /* not possible */
2134 		if (supp_width == 1 &&
2135 		    ext_nss_bw == 1)
2136 			return max_vht_nss / 2;
2137 		if (supp_width == 1 &&
2138 		    ext_nss_bw == 2)
2139 			return (3 * max_vht_nss) / 4;
2140 		break;
2141 	}
2142 
2143 	/* not covered or invalid combination received */
2144 	return max_vht_nss;
2145 }
2146 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2147 
2148 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2149 			     bool is_4addr, u8 check_swif)
2150 
2151 {
2152 	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2153 
2154 	switch (check_swif) {
2155 	case 0:
2156 		if (is_vlan && is_4addr)
2157 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2158 		return wiphy->interface_modes & BIT(iftype);
2159 	case 1:
2160 		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2161 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2162 		return wiphy->software_iftypes & BIT(iftype);
2163 	default:
2164 		break;
2165 	}
2166 
2167 	return false;
2168 }
2169 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2170