xref: /openbmc/linux/net/wireless/util.c (revision 8fedf805)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017	Intel Deutschland GmbH
8  * Copyright (C) 2018-2019 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25 
26 
27 struct ieee80211_rate *
28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 			    u32 basic_rates, int bitrate)
30 {
31 	struct ieee80211_rate *result = &sband->bitrates[0];
32 	int i;
33 
34 	for (i = 0; i < sband->n_bitrates; i++) {
35 		if (!(basic_rates & BIT(i)))
36 			continue;
37 		if (sband->bitrates[i].bitrate > bitrate)
38 			continue;
39 		result = &sband->bitrates[i];
40 	}
41 
42 	return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45 
46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47 			      enum nl80211_bss_scan_width scan_width)
48 {
49 	struct ieee80211_rate *bitrates;
50 	u32 mandatory_rates = 0;
51 	enum ieee80211_rate_flags mandatory_flag;
52 	int i;
53 
54 	if (WARN_ON(!sband))
55 		return 1;
56 
57 	if (sband->band == NL80211_BAND_2GHZ) {
58 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
60 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61 		else
62 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63 	} else {
64 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65 	}
66 
67 	bitrates = sband->bitrates;
68 	for (i = 0; i < sband->n_bitrates; i++)
69 		if (bitrates[i].flags & mandatory_flag)
70 			mandatory_rates |= BIT(i);
71 	return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74 
75 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
76 {
77 	/* see 802.11 17.3.8.3.2 and Annex J
78 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79 	if (chan <= 0)
80 		return 0; /* not supported */
81 	switch (band) {
82 	case NL80211_BAND_2GHZ:
83 		if (chan == 14)
84 			return 2484;
85 		else if (chan < 14)
86 			return 2407 + chan * 5;
87 		break;
88 	case NL80211_BAND_5GHZ:
89 		if (chan >= 182 && chan <= 196)
90 			return 4000 + chan * 5;
91 		else
92 			return 5000 + chan * 5;
93 		break;
94 	case NL80211_BAND_60GHZ:
95 		if (chan < 7)
96 			return 56160 + chan * 2160;
97 		break;
98 	default:
99 		;
100 	}
101 	return 0; /* not supported */
102 }
103 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
104 
105 int ieee80211_frequency_to_channel(int freq)
106 {
107 	/* see 802.11 17.3.8.3.2 and Annex J */
108 	if (freq == 2484)
109 		return 14;
110 	else if (freq < 2484)
111 		return (freq - 2407) / 5;
112 	else if (freq >= 4910 && freq <= 4980)
113 		return (freq - 4000) / 5;
114 	else if (freq <= 45000) /* DMG band lower limit */
115 		return (freq - 5000) / 5;
116 	else if (freq >= 58320 && freq <= 70200)
117 		return (freq - 56160) / 2160;
118 	else
119 		return 0;
120 }
121 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
122 
123 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
124 {
125 	enum nl80211_band band;
126 	struct ieee80211_supported_band *sband;
127 	int i;
128 
129 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
130 		sband = wiphy->bands[band];
131 
132 		if (!sband)
133 			continue;
134 
135 		for (i = 0; i < sband->n_channels; i++) {
136 			if (sband->channels[i].center_freq == freq)
137 				return &sband->channels[i];
138 		}
139 	}
140 
141 	return NULL;
142 }
143 EXPORT_SYMBOL(ieee80211_get_channel);
144 
145 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
146 {
147 	int i, want;
148 
149 	switch (sband->band) {
150 	case NL80211_BAND_5GHZ:
151 		want = 3;
152 		for (i = 0; i < sband->n_bitrates; i++) {
153 			if (sband->bitrates[i].bitrate == 60 ||
154 			    sband->bitrates[i].bitrate == 120 ||
155 			    sband->bitrates[i].bitrate == 240) {
156 				sband->bitrates[i].flags |=
157 					IEEE80211_RATE_MANDATORY_A;
158 				want--;
159 			}
160 		}
161 		WARN_ON(want);
162 		break;
163 	case NL80211_BAND_2GHZ:
164 		want = 7;
165 		for (i = 0; i < sband->n_bitrates; i++) {
166 			switch (sband->bitrates[i].bitrate) {
167 			case 10:
168 			case 20:
169 			case 55:
170 			case 110:
171 				sband->bitrates[i].flags |=
172 					IEEE80211_RATE_MANDATORY_B |
173 					IEEE80211_RATE_MANDATORY_G;
174 				want--;
175 				break;
176 			case 60:
177 			case 120:
178 			case 240:
179 				sband->bitrates[i].flags |=
180 					IEEE80211_RATE_MANDATORY_G;
181 				want--;
182 				/* fall through */
183 			default:
184 				sband->bitrates[i].flags |=
185 					IEEE80211_RATE_ERP_G;
186 				break;
187 			}
188 		}
189 		WARN_ON(want != 0 && want != 3);
190 		break;
191 	case NL80211_BAND_60GHZ:
192 		/* check for mandatory HT MCS 1..4 */
193 		WARN_ON(!sband->ht_cap.ht_supported);
194 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
195 		break;
196 	case NUM_NL80211_BANDS:
197 	default:
198 		WARN_ON(1);
199 		break;
200 	}
201 }
202 
203 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
204 {
205 	enum nl80211_band band;
206 
207 	for (band = 0; band < NUM_NL80211_BANDS; band++)
208 		if (wiphy->bands[band])
209 			set_mandatory_flags_band(wiphy->bands[band]);
210 }
211 
212 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
213 {
214 	int i;
215 	for (i = 0; i < wiphy->n_cipher_suites; i++)
216 		if (cipher == wiphy->cipher_suites[i])
217 			return true;
218 	return false;
219 }
220 
221 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
222 				   struct key_params *params, int key_idx,
223 				   bool pairwise, const u8 *mac_addr)
224 {
225 	if (key_idx < 0 || key_idx > 5)
226 		return -EINVAL;
227 
228 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
229 		return -EINVAL;
230 
231 	if (pairwise && !mac_addr)
232 		return -EINVAL;
233 
234 	switch (params->cipher) {
235 	case WLAN_CIPHER_SUITE_TKIP:
236 		/* Extended Key ID can only be used with CCMP/GCMP ciphers */
237 		if ((pairwise && key_idx) ||
238 		    params->mode != NL80211_KEY_RX_TX)
239 			return -EINVAL;
240 		break;
241 	case WLAN_CIPHER_SUITE_CCMP:
242 	case WLAN_CIPHER_SUITE_CCMP_256:
243 	case WLAN_CIPHER_SUITE_GCMP:
244 	case WLAN_CIPHER_SUITE_GCMP_256:
245 		/* IEEE802.11-2016 allows only 0 and - when supporting
246 		 * Extended Key ID - 1 as index for pairwise keys.
247 		 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
248 		 * the driver supports Extended Key ID.
249 		 * @NL80211_KEY_SET_TX can't be set when installing and
250 		 * validating a key.
251 		 */
252 		if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
253 		    params->mode == NL80211_KEY_SET_TX)
254 			return -EINVAL;
255 		if (wiphy_ext_feature_isset(&rdev->wiphy,
256 					    NL80211_EXT_FEATURE_EXT_KEY_ID)) {
257 			if (pairwise && (key_idx < 0 || key_idx > 1))
258 				return -EINVAL;
259 		} else if (pairwise && key_idx) {
260 			return -EINVAL;
261 		}
262 		break;
263 	case WLAN_CIPHER_SUITE_AES_CMAC:
264 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
265 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
266 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
267 		/* Disallow BIP (group-only) cipher as pairwise cipher */
268 		if (pairwise)
269 			return -EINVAL;
270 		if (key_idx < 4)
271 			return -EINVAL;
272 		break;
273 	case WLAN_CIPHER_SUITE_WEP40:
274 	case WLAN_CIPHER_SUITE_WEP104:
275 		if (key_idx > 3)
276 			return -EINVAL;
277 	default:
278 		break;
279 	}
280 
281 	switch (params->cipher) {
282 	case WLAN_CIPHER_SUITE_WEP40:
283 		if (params->key_len != WLAN_KEY_LEN_WEP40)
284 			return -EINVAL;
285 		break;
286 	case WLAN_CIPHER_SUITE_TKIP:
287 		if (params->key_len != WLAN_KEY_LEN_TKIP)
288 			return -EINVAL;
289 		break;
290 	case WLAN_CIPHER_SUITE_CCMP:
291 		if (params->key_len != WLAN_KEY_LEN_CCMP)
292 			return -EINVAL;
293 		break;
294 	case WLAN_CIPHER_SUITE_CCMP_256:
295 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
296 			return -EINVAL;
297 		break;
298 	case WLAN_CIPHER_SUITE_GCMP:
299 		if (params->key_len != WLAN_KEY_LEN_GCMP)
300 			return -EINVAL;
301 		break;
302 	case WLAN_CIPHER_SUITE_GCMP_256:
303 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
304 			return -EINVAL;
305 		break;
306 	case WLAN_CIPHER_SUITE_WEP104:
307 		if (params->key_len != WLAN_KEY_LEN_WEP104)
308 			return -EINVAL;
309 		break;
310 	case WLAN_CIPHER_SUITE_AES_CMAC:
311 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
312 			return -EINVAL;
313 		break;
314 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
315 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
316 			return -EINVAL;
317 		break;
318 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
319 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
320 			return -EINVAL;
321 		break;
322 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
323 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
324 			return -EINVAL;
325 		break;
326 	default:
327 		/*
328 		 * We don't know anything about this algorithm,
329 		 * allow using it -- but the driver must check
330 		 * all parameters! We still check below whether
331 		 * or not the driver supports this algorithm,
332 		 * of course.
333 		 */
334 		break;
335 	}
336 
337 	if (params->seq) {
338 		switch (params->cipher) {
339 		case WLAN_CIPHER_SUITE_WEP40:
340 		case WLAN_CIPHER_SUITE_WEP104:
341 			/* These ciphers do not use key sequence */
342 			return -EINVAL;
343 		case WLAN_CIPHER_SUITE_TKIP:
344 		case WLAN_CIPHER_SUITE_CCMP:
345 		case WLAN_CIPHER_SUITE_CCMP_256:
346 		case WLAN_CIPHER_SUITE_GCMP:
347 		case WLAN_CIPHER_SUITE_GCMP_256:
348 		case WLAN_CIPHER_SUITE_AES_CMAC:
349 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
350 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
351 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
352 			if (params->seq_len != 6)
353 				return -EINVAL;
354 			break;
355 		}
356 	}
357 
358 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
359 		return -EINVAL;
360 
361 	return 0;
362 }
363 
364 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
365 {
366 	unsigned int hdrlen = 24;
367 
368 	if (ieee80211_is_data(fc)) {
369 		if (ieee80211_has_a4(fc))
370 			hdrlen = 30;
371 		if (ieee80211_is_data_qos(fc)) {
372 			hdrlen += IEEE80211_QOS_CTL_LEN;
373 			if (ieee80211_has_order(fc))
374 				hdrlen += IEEE80211_HT_CTL_LEN;
375 		}
376 		goto out;
377 	}
378 
379 	if (ieee80211_is_mgmt(fc)) {
380 		if (ieee80211_has_order(fc))
381 			hdrlen += IEEE80211_HT_CTL_LEN;
382 		goto out;
383 	}
384 
385 	if (ieee80211_is_ctl(fc)) {
386 		/*
387 		 * ACK and CTS are 10 bytes, all others 16. To see how
388 		 * to get this condition consider
389 		 *   subtype mask:   0b0000000011110000 (0x00F0)
390 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
391 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
392 		 *   bits that matter:         ^^^      (0x00E0)
393 		 *   value of those: 0b0000000011000000 (0x00C0)
394 		 */
395 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
396 			hdrlen = 10;
397 		else
398 			hdrlen = 16;
399 	}
400 out:
401 	return hdrlen;
402 }
403 EXPORT_SYMBOL(ieee80211_hdrlen);
404 
405 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
406 {
407 	const struct ieee80211_hdr *hdr =
408 			(const struct ieee80211_hdr *)skb->data;
409 	unsigned int hdrlen;
410 
411 	if (unlikely(skb->len < 10))
412 		return 0;
413 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
414 	if (unlikely(hdrlen > skb->len))
415 		return 0;
416 	return hdrlen;
417 }
418 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
419 
420 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
421 {
422 	int ae = flags & MESH_FLAGS_AE;
423 	/* 802.11-2012, 8.2.4.7.3 */
424 	switch (ae) {
425 	default:
426 	case 0:
427 		return 6;
428 	case MESH_FLAGS_AE_A4:
429 		return 12;
430 	case MESH_FLAGS_AE_A5_A6:
431 		return 18;
432 	}
433 }
434 
435 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
436 {
437 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
438 }
439 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
440 
441 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
442 				  const u8 *addr, enum nl80211_iftype iftype,
443 				  u8 data_offset)
444 {
445 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
446 	struct {
447 		u8 hdr[ETH_ALEN] __aligned(2);
448 		__be16 proto;
449 	} payload;
450 	struct ethhdr tmp;
451 	u16 hdrlen;
452 	u8 mesh_flags = 0;
453 
454 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
455 		return -1;
456 
457 	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
458 	if (skb->len < hdrlen + 8)
459 		return -1;
460 
461 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
462 	 * header
463 	 * IEEE 802.11 address fields:
464 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
465 	 *   0     0   DA    SA    BSSID n/a
466 	 *   0     1   DA    BSSID SA    n/a
467 	 *   1     0   BSSID SA    DA    n/a
468 	 *   1     1   RA    TA    DA    SA
469 	 */
470 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
471 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
472 
473 	if (iftype == NL80211_IFTYPE_MESH_POINT)
474 		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
475 
476 	mesh_flags &= MESH_FLAGS_AE;
477 
478 	switch (hdr->frame_control &
479 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
480 	case cpu_to_le16(IEEE80211_FCTL_TODS):
481 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
482 			     iftype != NL80211_IFTYPE_AP_VLAN &&
483 			     iftype != NL80211_IFTYPE_P2P_GO))
484 			return -1;
485 		break;
486 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
487 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
488 			     iftype != NL80211_IFTYPE_MESH_POINT &&
489 			     iftype != NL80211_IFTYPE_AP_VLAN &&
490 			     iftype != NL80211_IFTYPE_STATION))
491 			return -1;
492 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
493 			if (mesh_flags == MESH_FLAGS_AE_A4)
494 				return -1;
495 			if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
496 				skb_copy_bits(skb, hdrlen +
497 					offsetof(struct ieee80211s_hdr, eaddr1),
498 					tmp.h_dest, 2 * ETH_ALEN);
499 			}
500 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
501 		}
502 		break;
503 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
504 		if ((iftype != NL80211_IFTYPE_STATION &&
505 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
506 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
507 		    (is_multicast_ether_addr(tmp.h_dest) &&
508 		     ether_addr_equal(tmp.h_source, addr)))
509 			return -1;
510 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
511 			if (mesh_flags == MESH_FLAGS_AE_A5_A6)
512 				return -1;
513 			if (mesh_flags == MESH_FLAGS_AE_A4)
514 				skb_copy_bits(skb, hdrlen +
515 					offsetof(struct ieee80211s_hdr, eaddr1),
516 					tmp.h_source, ETH_ALEN);
517 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
518 		}
519 		break;
520 	case cpu_to_le16(0):
521 		if (iftype != NL80211_IFTYPE_ADHOC &&
522 		    iftype != NL80211_IFTYPE_STATION &&
523 		    iftype != NL80211_IFTYPE_OCB)
524 				return -1;
525 		break;
526 	}
527 
528 	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
529 	tmp.h_proto = payload.proto;
530 
531 	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
532 		    tmp.h_proto != htons(ETH_P_AARP) &&
533 		    tmp.h_proto != htons(ETH_P_IPX)) ||
534 		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
535 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
536 		 * replace EtherType */
537 		hdrlen += ETH_ALEN + 2;
538 	else
539 		tmp.h_proto = htons(skb->len - hdrlen);
540 
541 	pskb_pull(skb, hdrlen);
542 
543 	if (!ehdr)
544 		ehdr = skb_push(skb, sizeof(struct ethhdr));
545 	memcpy(ehdr, &tmp, sizeof(tmp));
546 
547 	return 0;
548 }
549 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
550 
551 static void
552 __frame_add_frag(struct sk_buff *skb, struct page *page,
553 		 void *ptr, int len, int size)
554 {
555 	struct skb_shared_info *sh = skb_shinfo(skb);
556 	int page_offset;
557 
558 	page_ref_inc(page);
559 	page_offset = ptr - page_address(page);
560 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
561 }
562 
563 static void
564 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
565 			    int offset, int len)
566 {
567 	struct skb_shared_info *sh = skb_shinfo(skb);
568 	const skb_frag_t *frag = &sh->frags[0];
569 	struct page *frag_page;
570 	void *frag_ptr;
571 	int frag_len, frag_size;
572 	int head_size = skb->len - skb->data_len;
573 	int cur_len;
574 
575 	frag_page = virt_to_head_page(skb->head);
576 	frag_ptr = skb->data;
577 	frag_size = head_size;
578 
579 	while (offset >= frag_size) {
580 		offset -= frag_size;
581 		frag_page = skb_frag_page(frag);
582 		frag_ptr = skb_frag_address(frag);
583 		frag_size = skb_frag_size(frag);
584 		frag++;
585 	}
586 
587 	frag_ptr += offset;
588 	frag_len = frag_size - offset;
589 
590 	cur_len = min(len, frag_len);
591 
592 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
593 	len -= cur_len;
594 
595 	while (len > 0) {
596 		frag_len = skb_frag_size(frag);
597 		cur_len = min(len, frag_len);
598 		__frame_add_frag(frame, skb_frag_page(frag),
599 				 skb_frag_address(frag), cur_len, frag_len);
600 		len -= cur_len;
601 		frag++;
602 	}
603 }
604 
605 static struct sk_buff *
606 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
607 		       int offset, int len, bool reuse_frag)
608 {
609 	struct sk_buff *frame;
610 	int cur_len = len;
611 
612 	if (skb->len - offset < len)
613 		return NULL;
614 
615 	/*
616 	 * When reusing framents, copy some data to the head to simplify
617 	 * ethernet header handling and speed up protocol header processing
618 	 * in the stack later.
619 	 */
620 	if (reuse_frag)
621 		cur_len = min_t(int, len, 32);
622 
623 	/*
624 	 * Allocate and reserve two bytes more for payload
625 	 * alignment since sizeof(struct ethhdr) is 14.
626 	 */
627 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
628 	if (!frame)
629 		return NULL;
630 
631 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
632 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
633 
634 	len -= cur_len;
635 	if (!len)
636 		return frame;
637 
638 	offset += cur_len;
639 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
640 
641 	return frame;
642 }
643 
644 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
645 			      const u8 *addr, enum nl80211_iftype iftype,
646 			      const unsigned int extra_headroom,
647 			      const u8 *check_da, const u8 *check_sa)
648 {
649 	unsigned int hlen = ALIGN(extra_headroom, 4);
650 	struct sk_buff *frame = NULL;
651 	u16 ethertype;
652 	u8 *payload;
653 	int offset = 0, remaining;
654 	struct ethhdr eth;
655 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
656 	bool reuse_skb = false;
657 	bool last = false;
658 
659 	while (!last) {
660 		unsigned int subframe_len;
661 		int len;
662 		u8 padding;
663 
664 		skb_copy_bits(skb, offset, &eth, sizeof(eth));
665 		len = ntohs(eth.h_proto);
666 		subframe_len = sizeof(struct ethhdr) + len;
667 		padding = (4 - subframe_len) & 0x3;
668 
669 		/* the last MSDU has no padding */
670 		remaining = skb->len - offset;
671 		if (subframe_len > remaining)
672 			goto purge;
673 
674 		offset += sizeof(struct ethhdr);
675 		last = remaining <= subframe_len + padding;
676 
677 		/* FIXME: should we really accept multicast DA? */
678 		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
679 		     !ether_addr_equal(check_da, eth.h_dest)) ||
680 		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
681 			offset += len + padding;
682 			continue;
683 		}
684 
685 		/* reuse skb for the last subframe */
686 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
687 			skb_pull(skb, offset);
688 			frame = skb;
689 			reuse_skb = true;
690 		} else {
691 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
692 						       reuse_frag);
693 			if (!frame)
694 				goto purge;
695 
696 			offset += len + padding;
697 		}
698 
699 		skb_reset_network_header(frame);
700 		frame->dev = skb->dev;
701 		frame->priority = skb->priority;
702 
703 		payload = frame->data;
704 		ethertype = (payload[6] << 8) | payload[7];
705 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
706 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
707 			   ether_addr_equal(payload, bridge_tunnel_header))) {
708 			eth.h_proto = htons(ethertype);
709 			skb_pull(frame, ETH_ALEN + 2);
710 		}
711 
712 		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
713 		__skb_queue_tail(list, frame);
714 	}
715 
716 	if (!reuse_skb)
717 		dev_kfree_skb(skb);
718 
719 	return;
720 
721  purge:
722 	__skb_queue_purge(list);
723 	dev_kfree_skb(skb);
724 }
725 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
726 
727 /* Given a data frame determine the 802.1p/1d tag to use. */
728 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
729 				    struct cfg80211_qos_map *qos_map)
730 {
731 	unsigned int dscp;
732 	unsigned char vlan_priority;
733 	unsigned int ret;
734 
735 	/* skb->priority values from 256->263 are magic values to
736 	 * directly indicate a specific 802.1d priority.  This is used
737 	 * to allow 802.1d priority to be passed directly in from VLAN
738 	 * tags, etc.
739 	 */
740 	if (skb->priority >= 256 && skb->priority <= 263) {
741 		ret = skb->priority - 256;
742 		goto out;
743 	}
744 
745 	if (skb_vlan_tag_present(skb)) {
746 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
747 			>> VLAN_PRIO_SHIFT;
748 		if (vlan_priority > 0) {
749 			ret = vlan_priority;
750 			goto out;
751 		}
752 	}
753 
754 	switch (skb->protocol) {
755 	case htons(ETH_P_IP):
756 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
757 		break;
758 	case htons(ETH_P_IPV6):
759 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
760 		break;
761 	case htons(ETH_P_MPLS_UC):
762 	case htons(ETH_P_MPLS_MC): {
763 		struct mpls_label mpls_tmp, *mpls;
764 
765 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
766 					  sizeof(*mpls), &mpls_tmp);
767 		if (!mpls)
768 			return 0;
769 
770 		ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
771 			>> MPLS_LS_TC_SHIFT;
772 		goto out;
773 	}
774 	case htons(ETH_P_80221):
775 		/* 802.21 is always network control traffic */
776 		return 7;
777 	default:
778 		return 0;
779 	}
780 
781 	if (qos_map) {
782 		unsigned int i, tmp_dscp = dscp >> 2;
783 
784 		for (i = 0; i < qos_map->num_des; i++) {
785 			if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
786 				ret = qos_map->dscp_exception[i].up;
787 				goto out;
788 			}
789 		}
790 
791 		for (i = 0; i < 8; i++) {
792 			if (tmp_dscp >= qos_map->up[i].low &&
793 			    tmp_dscp <= qos_map->up[i].high) {
794 				ret = i;
795 				goto out;
796 			}
797 		}
798 	}
799 
800 	ret = dscp >> 5;
801 out:
802 	return array_index_nospec(ret, IEEE80211_NUM_TIDS);
803 }
804 EXPORT_SYMBOL(cfg80211_classify8021d);
805 
806 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
807 {
808 	const struct cfg80211_bss_ies *ies;
809 
810 	ies = rcu_dereference(bss->ies);
811 	if (!ies)
812 		return NULL;
813 
814 	return cfg80211_find_elem(id, ies->data, ies->len);
815 }
816 EXPORT_SYMBOL(ieee80211_bss_get_elem);
817 
818 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
819 {
820 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
821 	struct net_device *dev = wdev->netdev;
822 	int i;
823 
824 	if (!wdev->connect_keys)
825 		return;
826 
827 	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
828 		if (!wdev->connect_keys->params[i].cipher)
829 			continue;
830 		if (rdev_add_key(rdev, dev, i, false, NULL,
831 				 &wdev->connect_keys->params[i])) {
832 			netdev_err(dev, "failed to set key %d\n", i);
833 			continue;
834 		}
835 		if (wdev->connect_keys->def == i &&
836 		    rdev_set_default_key(rdev, dev, i, true, true)) {
837 			netdev_err(dev, "failed to set defkey %d\n", i);
838 			continue;
839 		}
840 	}
841 
842 	kzfree(wdev->connect_keys);
843 	wdev->connect_keys = NULL;
844 }
845 
846 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
847 {
848 	struct cfg80211_event *ev;
849 	unsigned long flags;
850 
851 	spin_lock_irqsave(&wdev->event_lock, flags);
852 	while (!list_empty(&wdev->event_list)) {
853 		ev = list_first_entry(&wdev->event_list,
854 				      struct cfg80211_event, list);
855 		list_del(&ev->list);
856 		spin_unlock_irqrestore(&wdev->event_lock, flags);
857 
858 		wdev_lock(wdev);
859 		switch (ev->type) {
860 		case EVENT_CONNECT_RESULT:
861 			__cfg80211_connect_result(
862 				wdev->netdev,
863 				&ev->cr,
864 				ev->cr.status == WLAN_STATUS_SUCCESS);
865 			break;
866 		case EVENT_ROAMED:
867 			__cfg80211_roamed(wdev, &ev->rm);
868 			break;
869 		case EVENT_DISCONNECTED:
870 			__cfg80211_disconnected(wdev->netdev,
871 						ev->dc.ie, ev->dc.ie_len,
872 						ev->dc.reason,
873 						!ev->dc.locally_generated);
874 			break;
875 		case EVENT_IBSS_JOINED:
876 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
877 					       ev->ij.channel);
878 			break;
879 		case EVENT_STOPPED:
880 			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
881 			break;
882 		case EVENT_PORT_AUTHORIZED:
883 			__cfg80211_port_authorized(wdev, ev->pa.bssid);
884 			break;
885 		}
886 		wdev_unlock(wdev);
887 
888 		kfree(ev);
889 
890 		spin_lock_irqsave(&wdev->event_lock, flags);
891 	}
892 	spin_unlock_irqrestore(&wdev->event_lock, flags);
893 }
894 
895 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
896 {
897 	struct wireless_dev *wdev;
898 
899 	ASSERT_RTNL();
900 
901 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
902 		cfg80211_process_wdev_events(wdev);
903 }
904 
905 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
906 			  struct net_device *dev, enum nl80211_iftype ntype,
907 			  struct vif_params *params)
908 {
909 	int err;
910 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
911 
912 	ASSERT_RTNL();
913 
914 	/* don't support changing VLANs, you just re-create them */
915 	if (otype == NL80211_IFTYPE_AP_VLAN)
916 		return -EOPNOTSUPP;
917 
918 	/* cannot change into P2P device or NAN */
919 	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
920 	    ntype == NL80211_IFTYPE_NAN)
921 		return -EOPNOTSUPP;
922 
923 	if (!rdev->ops->change_virtual_intf ||
924 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
925 		return -EOPNOTSUPP;
926 
927 	/* if it's part of a bridge, reject changing type to station/ibss */
928 	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
929 	    (ntype == NL80211_IFTYPE_ADHOC ||
930 	     ntype == NL80211_IFTYPE_STATION ||
931 	     ntype == NL80211_IFTYPE_P2P_CLIENT))
932 		return -EBUSY;
933 
934 	if (ntype != otype) {
935 		dev->ieee80211_ptr->use_4addr = false;
936 		dev->ieee80211_ptr->mesh_id_up_len = 0;
937 		wdev_lock(dev->ieee80211_ptr);
938 		rdev_set_qos_map(rdev, dev, NULL);
939 		wdev_unlock(dev->ieee80211_ptr);
940 
941 		switch (otype) {
942 		case NL80211_IFTYPE_AP:
943 			cfg80211_stop_ap(rdev, dev, true);
944 			break;
945 		case NL80211_IFTYPE_ADHOC:
946 			cfg80211_leave_ibss(rdev, dev, false);
947 			break;
948 		case NL80211_IFTYPE_STATION:
949 		case NL80211_IFTYPE_P2P_CLIENT:
950 			wdev_lock(dev->ieee80211_ptr);
951 			cfg80211_disconnect(rdev, dev,
952 					    WLAN_REASON_DEAUTH_LEAVING, true);
953 			wdev_unlock(dev->ieee80211_ptr);
954 			break;
955 		case NL80211_IFTYPE_MESH_POINT:
956 			/* mesh should be handled? */
957 			break;
958 		default:
959 			break;
960 		}
961 
962 		cfg80211_process_rdev_events(rdev);
963 	}
964 
965 	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
966 
967 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
968 
969 	if (!err && params && params->use_4addr != -1)
970 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
971 
972 	if (!err) {
973 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
974 		switch (ntype) {
975 		case NL80211_IFTYPE_STATION:
976 			if (dev->ieee80211_ptr->use_4addr)
977 				break;
978 			/* fall through */
979 		case NL80211_IFTYPE_OCB:
980 		case NL80211_IFTYPE_P2P_CLIENT:
981 		case NL80211_IFTYPE_ADHOC:
982 			dev->priv_flags |= IFF_DONT_BRIDGE;
983 			break;
984 		case NL80211_IFTYPE_P2P_GO:
985 		case NL80211_IFTYPE_AP:
986 		case NL80211_IFTYPE_AP_VLAN:
987 		case NL80211_IFTYPE_WDS:
988 		case NL80211_IFTYPE_MESH_POINT:
989 			/* bridging OK */
990 			break;
991 		case NL80211_IFTYPE_MONITOR:
992 			/* monitor can't bridge anyway */
993 			break;
994 		case NL80211_IFTYPE_UNSPECIFIED:
995 		case NUM_NL80211_IFTYPES:
996 			/* not happening */
997 			break;
998 		case NL80211_IFTYPE_P2P_DEVICE:
999 		case NL80211_IFTYPE_NAN:
1000 			WARN_ON(1);
1001 			break;
1002 		}
1003 	}
1004 
1005 	if (!err && ntype != otype && netif_running(dev)) {
1006 		cfg80211_update_iface_num(rdev, ntype, 1);
1007 		cfg80211_update_iface_num(rdev, otype, -1);
1008 	}
1009 
1010 	return err;
1011 }
1012 
1013 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1014 {
1015 	int modulation, streams, bitrate;
1016 
1017 	/* the formula below does only work for MCS values smaller than 32 */
1018 	if (WARN_ON_ONCE(rate->mcs >= 32))
1019 		return 0;
1020 
1021 	modulation = rate->mcs & 7;
1022 	streams = (rate->mcs >> 3) + 1;
1023 
1024 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1025 
1026 	if (modulation < 4)
1027 		bitrate *= (modulation + 1);
1028 	else if (modulation == 4)
1029 		bitrate *= (modulation + 2);
1030 	else
1031 		bitrate *= (modulation + 3);
1032 
1033 	bitrate *= streams;
1034 
1035 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1036 		bitrate = (bitrate / 9) * 10;
1037 
1038 	/* do NOT round down here */
1039 	return (bitrate + 50000) / 100000;
1040 }
1041 
1042 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1043 {
1044 	static const u32 __mcs2bitrate[] = {
1045 		/* control PHY */
1046 		[0] =   275,
1047 		/* SC PHY */
1048 		[1] =  3850,
1049 		[2] =  7700,
1050 		[3] =  9625,
1051 		[4] = 11550,
1052 		[5] = 12512, /* 1251.25 mbps */
1053 		[6] = 15400,
1054 		[7] = 19250,
1055 		[8] = 23100,
1056 		[9] = 25025,
1057 		[10] = 30800,
1058 		[11] = 38500,
1059 		[12] = 46200,
1060 		/* OFDM PHY */
1061 		[13] =  6930,
1062 		[14] =  8662, /* 866.25 mbps */
1063 		[15] = 13860,
1064 		[16] = 17325,
1065 		[17] = 20790,
1066 		[18] = 27720,
1067 		[19] = 34650,
1068 		[20] = 41580,
1069 		[21] = 45045,
1070 		[22] = 51975,
1071 		[23] = 62370,
1072 		[24] = 67568, /* 6756.75 mbps */
1073 		/* LP-SC PHY */
1074 		[25] =  6260,
1075 		[26] =  8340,
1076 		[27] = 11120,
1077 		[28] = 12510,
1078 		[29] = 16680,
1079 		[30] = 22240,
1080 		[31] = 25030,
1081 	};
1082 
1083 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1084 		return 0;
1085 
1086 	return __mcs2bitrate[rate->mcs];
1087 }
1088 
1089 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1090 {
1091 	static const u32 base[4][10] = {
1092 		{   6500000,
1093 		   13000000,
1094 		   19500000,
1095 		   26000000,
1096 		   39000000,
1097 		   52000000,
1098 		   58500000,
1099 		   65000000,
1100 		   78000000,
1101 		/* not in the spec, but some devices use this: */
1102 		   86500000,
1103 		},
1104 		{  13500000,
1105 		   27000000,
1106 		   40500000,
1107 		   54000000,
1108 		   81000000,
1109 		  108000000,
1110 		  121500000,
1111 		  135000000,
1112 		  162000000,
1113 		  180000000,
1114 		},
1115 		{  29300000,
1116 		   58500000,
1117 		   87800000,
1118 		  117000000,
1119 		  175500000,
1120 		  234000000,
1121 		  263300000,
1122 		  292500000,
1123 		  351000000,
1124 		  390000000,
1125 		},
1126 		{  58500000,
1127 		  117000000,
1128 		  175500000,
1129 		  234000000,
1130 		  351000000,
1131 		  468000000,
1132 		  526500000,
1133 		  585000000,
1134 		  702000000,
1135 		  780000000,
1136 		},
1137 	};
1138 	u32 bitrate;
1139 	int idx;
1140 
1141 	if (rate->mcs > 9)
1142 		goto warn;
1143 
1144 	switch (rate->bw) {
1145 	case RATE_INFO_BW_160:
1146 		idx = 3;
1147 		break;
1148 	case RATE_INFO_BW_80:
1149 		idx = 2;
1150 		break;
1151 	case RATE_INFO_BW_40:
1152 		idx = 1;
1153 		break;
1154 	case RATE_INFO_BW_5:
1155 	case RATE_INFO_BW_10:
1156 	default:
1157 		goto warn;
1158 	case RATE_INFO_BW_20:
1159 		idx = 0;
1160 	}
1161 
1162 	bitrate = base[idx][rate->mcs];
1163 	bitrate *= rate->nss;
1164 
1165 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1166 		bitrate = (bitrate / 9) * 10;
1167 
1168 	/* do NOT round down here */
1169 	return (bitrate + 50000) / 100000;
1170  warn:
1171 	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1172 		  rate->bw, rate->mcs, rate->nss);
1173 	return 0;
1174 }
1175 
1176 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1177 {
1178 #define SCALE 2048
1179 	u16 mcs_divisors[12] = {
1180 		34133, /* 16.666666... */
1181 		17067, /*  8.333333... */
1182 		11378, /*  5.555555... */
1183 		 8533, /*  4.166666... */
1184 		 5689, /*  2.777777... */
1185 		 4267, /*  2.083333... */
1186 		 3923, /*  1.851851... */
1187 		 3413, /*  1.666666... */
1188 		 2844, /*  1.388888... */
1189 		 2560, /*  1.250000... */
1190 		 2276, /*  1.111111... */
1191 		 2048, /*  1.000000... */
1192 	};
1193 	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1194 	u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1195 	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1196 	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1197 	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1198 	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1199 	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1200 	u64 tmp;
1201 	u32 result;
1202 
1203 	if (WARN_ON_ONCE(rate->mcs > 11))
1204 		return 0;
1205 
1206 	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1207 		return 0;
1208 	if (WARN_ON_ONCE(rate->he_ru_alloc >
1209 			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1210 		return 0;
1211 	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1212 		return 0;
1213 
1214 	if (rate->bw == RATE_INFO_BW_160)
1215 		result = rates_160M[rate->he_gi];
1216 	else if (rate->bw == RATE_INFO_BW_80 ||
1217 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1218 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1219 		result = rates_969[rate->he_gi];
1220 	else if (rate->bw == RATE_INFO_BW_40 ||
1221 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1222 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1223 		result = rates_484[rate->he_gi];
1224 	else if (rate->bw == RATE_INFO_BW_20 ||
1225 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1226 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1227 		result = rates_242[rate->he_gi];
1228 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1229 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1230 		result = rates_106[rate->he_gi];
1231 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1232 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1233 		result = rates_52[rate->he_gi];
1234 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1235 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1236 		result = rates_26[rate->he_gi];
1237 	else {
1238 		WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1239 		     rate->bw, rate->he_ru_alloc);
1240 		return 0;
1241 	}
1242 
1243 	/* now scale to the appropriate MCS */
1244 	tmp = result;
1245 	tmp *= SCALE;
1246 	do_div(tmp, mcs_divisors[rate->mcs]);
1247 	result = tmp;
1248 
1249 	/* and take NSS, DCM into account */
1250 	result = (result * rate->nss) / 8;
1251 	if (rate->he_dcm)
1252 		result /= 2;
1253 
1254 	return result / 10000;
1255 }
1256 
1257 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1258 {
1259 	if (rate->flags & RATE_INFO_FLAGS_MCS)
1260 		return cfg80211_calculate_bitrate_ht(rate);
1261 	if (rate->flags & RATE_INFO_FLAGS_60G)
1262 		return cfg80211_calculate_bitrate_60g(rate);
1263 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1264 		return cfg80211_calculate_bitrate_vht(rate);
1265 	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1266 		return cfg80211_calculate_bitrate_he(rate);
1267 
1268 	return rate->legacy;
1269 }
1270 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1271 
1272 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1273 			  enum ieee80211_p2p_attr_id attr,
1274 			  u8 *buf, unsigned int bufsize)
1275 {
1276 	u8 *out = buf;
1277 	u16 attr_remaining = 0;
1278 	bool desired_attr = false;
1279 	u16 desired_len = 0;
1280 
1281 	while (len > 0) {
1282 		unsigned int iedatalen;
1283 		unsigned int copy;
1284 		const u8 *iedata;
1285 
1286 		if (len < 2)
1287 			return -EILSEQ;
1288 		iedatalen = ies[1];
1289 		if (iedatalen + 2 > len)
1290 			return -EILSEQ;
1291 
1292 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1293 			goto cont;
1294 
1295 		if (iedatalen < 4)
1296 			goto cont;
1297 
1298 		iedata = ies + 2;
1299 
1300 		/* check WFA OUI, P2P subtype */
1301 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1302 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1303 			goto cont;
1304 
1305 		iedatalen -= 4;
1306 		iedata += 4;
1307 
1308 		/* check attribute continuation into this IE */
1309 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1310 		if (copy && desired_attr) {
1311 			desired_len += copy;
1312 			if (out) {
1313 				memcpy(out, iedata, min(bufsize, copy));
1314 				out += min(bufsize, copy);
1315 				bufsize -= min(bufsize, copy);
1316 			}
1317 
1318 
1319 			if (copy == attr_remaining)
1320 				return desired_len;
1321 		}
1322 
1323 		attr_remaining -= copy;
1324 		if (attr_remaining)
1325 			goto cont;
1326 
1327 		iedatalen -= copy;
1328 		iedata += copy;
1329 
1330 		while (iedatalen > 0) {
1331 			u16 attr_len;
1332 
1333 			/* P2P attribute ID & size must fit */
1334 			if (iedatalen < 3)
1335 				return -EILSEQ;
1336 			desired_attr = iedata[0] == attr;
1337 			attr_len = get_unaligned_le16(iedata + 1);
1338 			iedatalen -= 3;
1339 			iedata += 3;
1340 
1341 			copy = min_t(unsigned int, attr_len, iedatalen);
1342 
1343 			if (desired_attr) {
1344 				desired_len += copy;
1345 				if (out) {
1346 					memcpy(out, iedata, min(bufsize, copy));
1347 					out += min(bufsize, copy);
1348 					bufsize -= min(bufsize, copy);
1349 				}
1350 
1351 				if (copy == attr_len)
1352 					return desired_len;
1353 			}
1354 
1355 			iedata += copy;
1356 			iedatalen -= copy;
1357 			attr_remaining = attr_len - copy;
1358 		}
1359 
1360  cont:
1361 		len -= ies[1] + 2;
1362 		ies += ies[1] + 2;
1363 	}
1364 
1365 	if (attr_remaining && desired_attr)
1366 		return -EILSEQ;
1367 
1368 	return -ENOENT;
1369 }
1370 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1371 
1372 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1373 {
1374 	int i;
1375 
1376 	/* Make sure array values are legal */
1377 	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1378 		return false;
1379 
1380 	i = 0;
1381 	while (i < n_ids) {
1382 		if (ids[i] == WLAN_EID_EXTENSION) {
1383 			if (id_ext && (ids[i + 1] == id))
1384 				return true;
1385 
1386 			i += 2;
1387 			continue;
1388 		}
1389 
1390 		if (ids[i] == id && !id_ext)
1391 			return true;
1392 
1393 		i++;
1394 	}
1395 	return false;
1396 }
1397 
1398 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1399 {
1400 	/* we assume a validly formed IEs buffer */
1401 	u8 len = ies[pos + 1];
1402 
1403 	pos += 2 + len;
1404 
1405 	/* the IE itself must have 255 bytes for fragments to follow */
1406 	if (len < 255)
1407 		return pos;
1408 
1409 	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1410 		len = ies[pos + 1];
1411 		pos += 2 + len;
1412 	}
1413 
1414 	return pos;
1415 }
1416 
1417 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1418 			      const u8 *ids, int n_ids,
1419 			      const u8 *after_ric, int n_after_ric,
1420 			      size_t offset)
1421 {
1422 	size_t pos = offset;
1423 
1424 	while (pos < ielen) {
1425 		u8 ext = 0;
1426 
1427 		if (ies[pos] == WLAN_EID_EXTENSION)
1428 			ext = 2;
1429 		if ((pos + ext) >= ielen)
1430 			break;
1431 
1432 		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1433 					  ies[pos] == WLAN_EID_EXTENSION))
1434 			break;
1435 
1436 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1437 			pos = skip_ie(ies, ielen, pos);
1438 
1439 			while (pos < ielen) {
1440 				if (ies[pos] == WLAN_EID_EXTENSION)
1441 					ext = 2;
1442 				else
1443 					ext = 0;
1444 
1445 				if ((pos + ext) >= ielen)
1446 					break;
1447 
1448 				if (!ieee80211_id_in_list(after_ric,
1449 							  n_after_ric,
1450 							  ies[pos + ext],
1451 							  ext == 2))
1452 					pos = skip_ie(ies, ielen, pos);
1453 				else
1454 					break;
1455 			}
1456 		} else {
1457 			pos = skip_ie(ies, ielen, pos);
1458 		}
1459 	}
1460 
1461 	return pos;
1462 }
1463 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1464 
1465 bool ieee80211_operating_class_to_band(u8 operating_class,
1466 				       enum nl80211_band *band)
1467 {
1468 	switch (operating_class) {
1469 	case 112:
1470 	case 115 ... 127:
1471 	case 128 ... 130:
1472 		*band = NL80211_BAND_5GHZ;
1473 		return true;
1474 	case 81:
1475 	case 82:
1476 	case 83:
1477 	case 84:
1478 		*band = NL80211_BAND_2GHZ;
1479 		return true;
1480 	case 180:
1481 		*band = NL80211_BAND_60GHZ;
1482 		return true;
1483 	}
1484 
1485 	return false;
1486 }
1487 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1488 
1489 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1490 					  u8 *op_class)
1491 {
1492 	u8 vht_opclass;
1493 	u32 freq = chandef->center_freq1;
1494 
1495 	if (freq >= 2412 && freq <= 2472) {
1496 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1497 			return false;
1498 
1499 		/* 2.407 GHz, channels 1..13 */
1500 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1501 			if (freq > chandef->chan->center_freq)
1502 				*op_class = 83; /* HT40+ */
1503 			else
1504 				*op_class = 84; /* HT40- */
1505 		} else {
1506 			*op_class = 81;
1507 		}
1508 
1509 		return true;
1510 	}
1511 
1512 	if (freq == 2484) {
1513 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1514 			return false;
1515 
1516 		*op_class = 82; /* channel 14 */
1517 		return true;
1518 	}
1519 
1520 	switch (chandef->width) {
1521 	case NL80211_CHAN_WIDTH_80:
1522 		vht_opclass = 128;
1523 		break;
1524 	case NL80211_CHAN_WIDTH_160:
1525 		vht_opclass = 129;
1526 		break;
1527 	case NL80211_CHAN_WIDTH_80P80:
1528 		vht_opclass = 130;
1529 		break;
1530 	case NL80211_CHAN_WIDTH_10:
1531 	case NL80211_CHAN_WIDTH_5:
1532 		return false; /* unsupported for now */
1533 	default:
1534 		vht_opclass = 0;
1535 		break;
1536 	}
1537 
1538 	/* 5 GHz, channels 36..48 */
1539 	if (freq >= 5180 && freq <= 5240) {
1540 		if (vht_opclass) {
1541 			*op_class = vht_opclass;
1542 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1543 			if (freq > chandef->chan->center_freq)
1544 				*op_class = 116;
1545 			else
1546 				*op_class = 117;
1547 		} else {
1548 			*op_class = 115;
1549 		}
1550 
1551 		return true;
1552 	}
1553 
1554 	/* 5 GHz, channels 52..64 */
1555 	if (freq >= 5260 && freq <= 5320) {
1556 		if (vht_opclass) {
1557 			*op_class = vht_opclass;
1558 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1559 			if (freq > chandef->chan->center_freq)
1560 				*op_class = 119;
1561 			else
1562 				*op_class = 120;
1563 		} else {
1564 			*op_class = 118;
1565 		}
1566 
1567 		return true;
1568 	}
1569 
1570 	/* 5 GHz, channels 100..144 */
1571 	if (freq >= 5500 && freq <= 5720) {
1572 		if (vht_opclass) {
1573 			*op_class = vht_opclass;
1574 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1575 			if (freq > chandef->chan->center_freq)
1576 				*op_class = 122;
1577 			else
1578 				*op_class = 123;
1579 		} else {
1580 			*op_class = 121;
1581 		}
1582 
1583 		return true;
1584 	}
1585 
1586 	/* 5 GHz, channels 149..169 */
1587 	if (freq >= 5745 && freq <= 5845) {
1588 		if (vht_opclass) {
1589 			*op_class = vht_opclass;
1590 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1591 			if (freq > chandef->chan->center_freq)
1592 				*op_class = 126;
1593 			else
1594 				*op_class = 127;
1595 		} else if (freq <= 5805) {
1596 			*op_class = 124;
1597 		} else {
1598 			*op_class = 125;
1599 		}
1600 
1601 		return true;
1602 	}
1603 
1604 	/* 56.16 GHz, channel 1..4 */
1605 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1606 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1607 			return false;
1608 
1609 		*op_class = 180;
1610 		return true;
1611 	}
1612 
1613 	/* not supported yet */
1614 	return false;
1615 }
1616 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1617 
1618 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1619 				       u32 *beacon_int_gcd,
1620 				       bool *beacon_int_different)
1621 {
1622 	struct wireless_dev *wdev;
1623 
1624 	*beacon_int_gcd = 0;
1625 	*beacon_int_different = false;
1626 
1627 	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1628 		if (!wdev->beacon_interval)
1629 			continue;
1630 
1631 		if (!*beacon_int_gcd) {
1632 			*beacon_int_gcd = wdev->beacon_interval;
1633 			continue;
1634 		}
1635 
1636 		if (wdev->beacon_interval == *beacon_int_gcd)
1637 			continue;
1638 
1639 		*beacon_int_different = true;
1640 		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1641 	}
1642 
1643 	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1644 		if (*beacon_int_gcd)
1645 			*beacon_int_different = true;
1646 		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1647 	}
1648 }
1649 
1650 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1651 				 enum nl80211_iftype iftype, u32 beacon_int)
1652 {
1653 	/*
1654 	 * This is just a basic pre-condition check; if interface combinations
1655 	 * are possible the driver must already be checking those with a call
1656 	 * to cfg80211_check_combinations(), in which case we'll validate more
1657 	 * through the cfg80211_calculate_bi_data() call and code in
1658 	 * cfg80211_iter_combinations().
1659 	 */
1660 
1661 	if (beacon_int < 10 || beacon_int > 10000)
1662 		return -EINVAL;
1663 
1664 	return 0;
1665 }
1666 
1667 int cfg80211_iter_combinations(struct wiphy *wiphy,
1668 			       struct iface_combination_params *params,
1669 			       void (*iter)(const struct ieee80211_iface_combination *c,
1670 					    void *data),
1671 			       void *data)
1672 {
1673 	const struct ieee80211_regdomain *regdom;
1674 	enum nl80211_dfs_regions region = 0;
1675 	int i, j, iftype;
1676 	int num_interfaces = 0;
1677 	u32 used_iftypes = 0;
1678 	u32 beacon_int_gcd;
1679 	bool beacon_int_different;
1680 
1681 	/*
1682 	 * This is a bit strange, since the iteration used to rely only on
1683 	 * the data given by the driver, but here it now relies on context,
1684 	 * in form of the currently operating interfaces.
1685 	 * This is OK for all current users, and saves us from having to
1686 	 * push the GCD calculations into all the drivers.
1687 	 * In the future, this should probably rely more on data that's in
1688 	 * cfg80211 already - the only thing not would appear to be any new
1689 	 * interfaces (while being brought up) and channel/radar data.
1690 	 */
1691 	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1692 				   &beacon_int_gcd, &beacon_int_different);
1693 
1694 	if (params->radar_detect) {
1695 		rcu_read_lock();
1696 		regdom = rcu_dereference(cfg80211_regdomain);
1697 		if (regdom)
1698 			region = regdom->dfs_region;
1699 		rcu_read_unlock();
1700 	}
1701 
1702 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1703 		num_interfaces += params->iftype_num[iftype];
1704 		if (params->iftype_num[iftype] > 0 &&
1705 		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1706 			used_iftypes |= BIT(iftype);
1707 	}
1708 
1709 	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1710 		const struct ieee80211_iface_combination *c;
1711 		struct ieee80211_iface_limit *limits;
1712 		u32 all_iftypes = 0;
1713 
1714 		c = &wiphy->iface_combinations[i];
1715 
1716 		if (num_interfaces > c->max_interfaces)
1717 			continue;
1718 		if (params->num_different_channels > c->num_different_channels)
1719 			continue;
1720 
1721 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1722 				 GFP_KERNEL);
1723 		if (!limits)
1724 			return -ENOMEM;
1725 
1726 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1727 			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1728 				continue;
1729 			for (j = 0; j < c->n_limits; j++) {
1730 				all_iftypes |= limits[j].types;
1731 				if (!(limits[j].types & BIT(iftype)))
1732 					continue;
1733 				if (limits[j].max < params->iftype_num[iftype])
1734 					goto cont;
1735 				limits[j].max -= params->iftype_num[iftype];
1736 			}
1737 		}
1738 
1739 		if (params->radar_detect !=
1740 			(c->radar_detect_widths & params->radar_detect))
1741 			goto cont;
1742 
1743 		if (params->radar_detect && c->radar_detect_regions &&
1744 		    !(c->radar_detect_regions & BIT(region)))
1745 			goto cont;
1746 
1747 		/* Finally check that all iftypes that we're currently
1748 		 * using are actually part of this combination. If they
1749 		 * aren't then we can't use this combination and have
1750 		 * to continue to the next.
1751 		 */
1752 		if ((all_iftypes & used_iftypes) != used_iftypes)
1753 			goto cont;
1754 
1755 		if (beacon_int_gcd) {
1756 			if (c->beacon_int_min_gcd &&
1757 			    beacon_int_gcd < c->beacon_int_min_gcd)
1758 				goto cont;
1759 			if (!c->beacon_int_min_gcd && beacon_int_different)
1760 				goto cont;
1761 		}
1762 
1763 		/* This combination covered all interface types and
1764 		 * supported the requested numbers, so we're good.
1765 		 */
1766 
1767 		(*iter)(c, data);
1768  cont:
1769 		kfree(limits);
1770 	}
1771 
1772 	return 0;
1773 }
1774 EXPORT_SYMBOL(cfg80211_iter_combinations);
1775 
1776 static void
1777 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1778 			  void *data)
1779 {
1780 	int *num = data;
1781 	(*num)++;
1782 }
1783 
1784 int cfg80211_check_combinations(struct wiphy *wiphy,
1785 				struct iface_combination_params *params)
1786 {
1787 	int err, num = 0;
1788 
1789 	err = cfg80211_iter_combinations(wiphy, params,
1790 					 cfg80211_iter_sum_ifcombs, &num);
1791 	if (err)
1792 		return err;
1793 	if (num == 0)
1794 		return -EBUSY;
1795 
1796 	return 0;
1797 }
1798 EXPORT_SYMBOL(cfg80211_check_combinations);
1799 
1800 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1801 			   const u8 *rates, unsigned int n_rates,
1802 			   u32 *mask)
1803 {
1804 	int i, j;
1805 
1806 	if (!sband)
1807 		return -EINVAL;
1808 
1809 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1810 		return -EINVAL;
1811 
1812 	*mask = 0;
1813 
1814 	for (i = 0; i < n_rates; i++) {
1815 		int rate = (rates[i] & 0x7f) * 5;
1816 		bool found = false;
1817 
1818 		for (j = 0; j < sband->n_bitrates; j++) {
1819 			if (sband->bitrates[j].bitrate == rate) {
1820 				found = true;
1821 				*mask |= BIT(j);
1822 				break;
1823 			}
1824 		}
1825 		if (!found)
1826 			return -EINVAL;
1827 	}
1828 
1829 	/*
1830 	 * mask must have at least one bit set here since we
1831 	 * didn't accept a 0-length rates array nor allowed
1832 	 * entries in the array that didn't exist
1833 	 */
1834 
1835 	return 0;
1836 }
1837 
1838 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1839 {
1840 	enum nl80211_band band;
1841 	unsigned int n_channels = 0;
1842 
1843 	for (band = 0; band < NUM_NL80211_BANDS; band++)
1844 		if (wiphy->bands[band])
1845 			n_channels += wiphy->bands[band]->n_channels;
1846 
1847 	return n_channels;
1848 }
1849 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1850 
1851 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1852 			 struct station_info *sinfo)
1853 {
1854 	struct cfg80211_registered_device *rdev;
1855 	struct wireless_dev *wdev;
1856 
1857 	wdev = dev->ieee80211_ptr;
1858 	if (!wdev)
1859 		return -EOPNOTSUPP;
1860 
1861 	rdev = wiphy_to_rdev(wdev->wiphy);
1862 	if (!rdev->ops->get_station)
1863 		return -EOPNOTSUPP;
1864 
1865 	memset(sinfo, 0, sizeof(*sinfo));
1866 
1867 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1868 }
1869 EXPORT_SYMBOL(cfg80211_get_station);
1870 
1871 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1872 {
1873 	int i;
1874 
1875 	if (!f)
1876 		return;
1877 
1878 	kfree(f->serv_spec_info);
1879 	kfree(f->srf_bf);
1880 	kfree(f->srf_macs);
1881 	for (i = 0; i < f->num_rx_filters; i++)
1882 		kfree(f->rx_filters[i].filter);
1883 
1884 	for (i = 0; i < f->num_tx_filters; i++)
1885 		kfree(f->tx_filters[i].filter);
1886 
1887 	kfree(f->rx_filters);
1888 	kfree(f->tx_filters);
1889 	kfree(f);
1890 }
1891 EXPORT_SYMBOL(cfg80211_free_nan_func);
1892 
1893 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1894 				u32 center_freq_khz, u32 bw_khz)
1895 {
1896 	u32 start_freq_khz, end_freq_khz;
1897 
1898 	start_freq_khz = center_freq_khz - (bw_khz / 2);
1899 	end_freq_khz = center_freq_khz + (bw_khz / 2);
1900 
1901 	if (start_freq_khz >= freq_range->start_freq_khz &&
1902 	    end_freq_khz <= freq_range->end_freq_khz)
1903 		return true;
1904 
1905 	return false;
1906 }
1907 
1908 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1909 {
1910 	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1911 				sizeof(*(sinfo->pertid)),
1912 				gfp);
1913 	if (!sinfo->pertid)
1914 		return -ENOMEM;
1915 
1916 	return 0;
1917 }
1918 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1919 
1920 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1921 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1922 const unsigned char rfc1042_header[] __aligned(2) =
1923 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1924 EXPORT_SYMBOL(rfc1042_header);
1925 
1926 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1927 const unsigned char bridge_tunnel_header[] __aligned(2) =
1928 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1929 EXPORT_SYMBOL(bridge_tunnel_header);
1930 
1931 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
1932 struct iapp_layer2_update {
1933 	u8 da[ETH_ALEN];	/* broadcast */
1934 	u8 sa[ETH_ALEN];	/* STA addr */
1935 	__be16 len;		/* 6 */
1936 	u8 dsap;		/* 0 */
1937 	u8 ssap;		/* 0 */
1938 	u8 control;
1939 	u8 xid_info[3];
1940 } __packed;
1941 
1942 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
1943 {
1944 	struct iapp_layer2_update *msg;
1945 	struct sk_buff *skb;
1946 
1947 	/* Send Level 2 Update Frame to update forwarding tables in layer 2
1948 	 * bridge devices */
1949 
1950 	skb = dev_alloc_skb(sizeof(*msg));
1951 	if (!skb)
1952 		return;
1953 	msg = skb_put(skb, sizeof(*msg));
1954 
1955 	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
1956 	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
1957 
1958 	eth_broadcast_addr(msg->da);
1959 	ether_addr_copy(msg->sa, addr);
1960 	msg->len = htons(6);
1961 	msg->dsap = 0;
1962 	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
1963 	msg->control = 0xaf;	/* XID response lsb.1111F101.
1964 				 * F=0 (no poll command; unsolicited frame) */
1965 	msg->xid_info[0] = 0x81;	/* XID format identifier */
1966 	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
1967 	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
1968 
1969 	skb->dev = dev;
1970 	skb->protocol = eth_type_trans(skb, dev);
1971 	memset(skb->cb, 0, sizeof(skb->cb));
1972 	netif_rx_ni(skb);
1973 }
1974 EXPORT_SYMBOL(cfg80211_send_layer2_update);
1975 
1976 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
1977 			      enum ieee80211_vht_chanwidth bw,
1978 			      int mcs, bool ext_nss_bw_capable)
1979 {
1980 	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
1981 	int max_vht_nss = 0;
1982 	int ext_nss_bw;
1983 	int supp_width;
1984 	int i, mcs_encoding;
1985 
1986 	if (map == 0xffff)
1987 		return 0;
1988 
1989 	if (WARN_ON(mcs > 9))
1990 		return 0;
1991 	if (mcs <= 7)
1992 		mcs_encoding = 0;
1993 	else if (mcs == 8)
1994 		mcs_encoding = 1;
1995 	else
1996 		mcs_encoding = 2;
1997 
1998 	/* find max_vht_nss for the given MCS */
1999 	for (i = 7; i >= 0; i--) {
2000 		int supp = (map >> (2 * i)) & 3;
2001 
2002 		if (supp == 3)
2003 			continue;
2004 
2005 		if (supp >= mcs_encoding) {
2006 			max_vht_nss = i + 1;
2007 			break;
2008 		}
2009 	}
2010 
2011 	if (!(cap->supp_mcs.tx_mcs_map &
2012 			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2013 		return max_vht_nss;
2014 
2015 	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2016 				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2017 	supp_width = le32_get_bits(cap->vht_cap_info,
2018 				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2019 
2020 	/* if not capable, treat ext_nss_bw as 0 */
2021 	if (!ext_nss_bw_capable)
2022 		ext_nss_bw = 0;
2023 
2024 	/* This is invalid */
2025 	if (supp_width == 3)
2026 		return 0;
2027 
2028 	/* This is an invalid combination so pretend nothing is supported */
2029 	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2030 		return 0;
2031 
2032 	/*
2033 	 * Cover all the special cases according to IEEE 802.11-2016
2034 	 * Table 9-250. All other cases are either factor of 1 or not
2035 	 * valid/supported.
2036 	 */
2037 	switch (bw) {
2038 	case IEEE80211_VHT_CHANWIDTH_USE_HT:
2039 	case IEEE80211_VHT_CHANWIDTH_80MHZ:
2040 		if ((supp_width == 1 || supp_width == 2) &&
2041 		    ext_nss_bw == 3)
2042 			return 2 * max_vht_nss;
2043 		break;
2044 	case IEEE80211_VHT_CHANWIDTH_160MHZ:
2045 		if (supp_width == 0 &&
2046 		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2047 			return max_vht_nss / 2;
2048 		if (supp_width == 0 &&
2049 		    ext_nss_bw == 3)
2050 			return (3 * max_vht_nss) / 4;
2051 		if (supp_width == 1 &&
2052 		    ext_nss_bw == 3)
2053 			return 2 * max_vht_nss;
2054 		break;
2055 	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2056 		if (supp_width == 0 && ext_nss_bw == 1)
2057 			return 0; /* not possible */
2058 		if (supp_width == 0 &&
2059 		    ext_nss_bw == 2)
2060 			return max_vht_nss / 2;
2061 		if (supp_width == 0 &&
2062 		    ext_nss_bw == 3)
2063 			return (3 * max_vht_nss) / 4;
2064 		if (supp_width == 1 &&
2065 		    ext_nss_bw == 0)
2066 			return 0; /* not possible */
2067 		if (supp_width == 1 &&
2068 		    ext_nss_bw == 1)
2069 			return max_vht_nss / 2;
2070 		if (supp_width == 1 &&
2071 		    ext_nss_bw == 2)
2072 			return (3 * max_vht_nss) / 4;
2073 		break;
2074 	}
2075 
2076 	/* not covered or invalid combination received */
2077 	return max_vht_nss;
2078 }
2079 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2080 
2081 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2082 			     bool is_4addr, u8 check_swif)
2083 
2084 {
2085 	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2086 
2087 	switch (check_swif) {
2088 	case 0:
2089 		if (is_vlan && is_4addr)
2090 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2091 		return wiphy->interface_modes & BIT(iftype);
2092 	case 1:
2093 		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2094 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2095 		return wiphy->software_iftypes & BIT(iftype);
2096 	default:
2097 		break;
2098 	}
2099 
2100 	return false;
2101 }
2102 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2103