1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Wireless utility functions 4 * 5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 Intel Corporation 9 */ 10 #include <linux/export.h> 11 #include <linux/bitops.h> 12 #include <linux/etherdevice.h> 13 #include <linux/slab.h> 14 #include <linux/ieee80211.h> 15 #include <net/cfg80211.h> 16 #include <net/ip.h> 17 #include <net/dsfield.h> 18 #include <linux/if_vlan.h> 19 #include <linux/mpls.h> 20 #include <linux/gcd.h> 21 #include <linux/bitfield.h> 22 #include "core.h" 23 #include "rdev-ops.h" 24 25 26 struct ieee80211_rate * 27 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 28 u32 basic_rates, int bitrate) 29 { 30 struct ieee80211_rate *result = &sband->bitrates[0]; 31 int i; 32 33 for (i = 0; i < sband->n_bitrates; i++) { 34 if (!(basic_rates & BIT(i))) 35 continue; 36 if (sband->bitrates[i].bitrate > bitrate) 37 continue; 38 result = &sband->bitrates[i]; 39 } 40 41 return result; 42 } 43 EXPORT_SYMBOL(ieee80211_get_response_rate); 44 45 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 46 enum nl80211_bss_scan_width scan_width) 47 { 48 struct ieee80211_rate *bitrates; 49 u32 mandatory_rates = 0; 50 enum ieee80211_rate_flags mandatory_flag; 51 int i; 52 53 if (WARN_ON(!sband)) 54 return 1; 55 56 if (sband->band == NL80211_BAND_2GHZ) { 57 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 58 scan_width == NL80211_BSS_CHAN_WIDTH_10) 59 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 60 else 61 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 62 } else { 63 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 64 } 65 66 bitrates = sband->bitrates; 67 for (i = 0; i < sband->n_bitrates; i++) 68 if (bitrates[i].flags & mandatory_flag) 69 mandatory_rates |= BIT(i); 70 return mandatory_rates; 71 } 72 EXPORT_SYMBOL(ieee80211_mandatory_rates); 73 74 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band) 75 { 76 /* see 802.11 17.3.8.3.2 and Annex J 77 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 78 if (chan <= 0) 79 return 0; /* not supported */ 80 switch (band) { 81 case NL80211_BAND_2GHZ: 82 if (chan == 14) 83 return 2484; 84 else if (chan < 14) 85 return 2407 + chan * 5; 86 break; 87 case NL80211_BAND_5GHZ: 88 if (chan >= 182 && chan <= 196) 89 return 4000 + chan * 5; 90 else 91 return 5000 + chan * 5; 92 break; 93 case NL80211_BAND_60GHZ: 94 if (chan < 7) 95 return 56160 + chan * 2160; 96 break; 97 default: 98 ; 99 } 100 return 0; /* not supported */ 101 } 102 EXPORT_SYMBOL(ieee80211_channel_to_frequency); 103 104 int ieee80211_frequency_to_channel(int freq) 105 { 106 /* see 802.11 17.3.8.3.2 and Annex J */ 107 if (freq == 2484) 108 return 14; 109 else if (freq < 2484) 110 return (freq - 2407) / 5; 111 else if (freq >= 4910 && freq <= 4980) 112 return (freq - 4000) / 5; 113 else if (freq <= 45000) /* DMG band lower limit */ 114 return (freq - 5000) / 5; 115 else if (freq >= 58320 && freq <= 70200) 116 return (freq - 56160) / 2160; 117 else 118 return 0; 119 } 120 EXPORT_SYMBOL(ieee80211_frequency_to_channel); 121 122 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq) 123 { 124 enum nl80211_band band; 125 struct ieee80211_supported_band *sband; 126 int i; 127 128 for (band = 0; band < NUM_NL80211_BANDS; band++) { 129 sband = wiphy->bands[band]; 130 131 if (!sband) 132 continue; 133 134 for (i = 0; i < sband->n_channels; i++) { 135 if (sband->channels[i].center_freq == freq) 136 return &sband->channels[i]; 137 } 138 } 139 140 return NULL; 141 } 142 EXPORT_SYMBOL(ieee80211_get_channel); 143 144 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) 145 { 146 int i, want; 147 148 switch (sband->band) { 149 case NL80211_BAND_5GHZ: 150 want = 3; 151 for (i = 0; i < sband->n_bitrates; i++) { 152 if (sband->bitrates[i].bitrate == 60 || 153 sband->bitrates[i].bitrate == 120 || 154 sband->bitrates[i].bitrate == 240) { 155 sband->bitrates[i].flags |= 156 IEEE80211_RATE_MANDATORY_A; 157 want--; 158 } 159 } 160 WARN_ON(want); 161 break; 162 case NL80211_BAND_2GHZ: 163 want = 7; 164 for (i = 0; i < sband->n_bitrates; i++) { 165 switch (sband->bitrates[i].bitrate) { 166 case 10: 167 case 20: 168 case 55: 169 case 110: 170 sband->bitrates[i].flags |= 171 IEEE80211_RATE_MANDATORY_B | 172 IEEE80211_RATE_MANDATORY_G; 173 want--; 174 break; 175 case 60: 176 case 120: 177 case 240: 178 sband->bitrates[i].flags |= 179 IEEE80211_RATE_MANDATORY_G; 180 want--; 181 /* fall through */ 182 default: 183 sband->bitrates[i].flags |= 184 IEEE80211_RATE_ERP_G; 185 break; 186 } 187 } 188 WARN_ON(want != 0 && want != 3); 189 break; 190 case NL80211_BAND_60GHZ: 191 /* check for mandatory HT MCS 1..4 */ 192 WARN_ON(!sband->ht_cap.ht_supported); 193 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 194 break; 195 case NUM_NL80211_BANDS: 196 default: 197 WARN_ON(1); 198 break; 199 } 200 } 201 202 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 203 { 204 enum nl80211_band band; 205 206 for (band = 0; band < NUM_NL80211_BANDS; band++) 207 if (wiphy->bands[band]) 208 set_mandatory_flags_band(wiphy->bands[band]); 209 } 210 211 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 212 { 213 int i; 214 for (i = 0; i < wiphy->n_cipher_suites; i++) 215 if (cipher == wiphy->cipher_suites[i]) 216 return true; 217 return false; 218 } 219 220 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 221 struct key_params *params, int key_idx, 222 bool pairwise, const u8 *mac_addr) 223 { 224 if (key_idx < 0 || key_idx > 5) 225 return -EINVAL; 226 227 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 228 return -EINVAL; 229 230 if (pairwise && !mac_addr) 231 return -EINVAL; 232 233 switch (params->cipher) { 234 case WLAN_CIPHER_SUITE_TKIP: 235 case WLAN_CIPHER_SUITE_CCMP: 236 case WLAN_CIPHER_SUITE_CCMP_256: 237 case WLAN_CIPHER_SUITE_GCMP: 238 case WLAN_CIPHER_SUITE_GCMP_256: 239 /* Disallow pairwise keys with non-zero index unless it's WEP 240 * or a vendor specific cipher (because current deployments use 241 * pairwise WEP keys with non-zero indices and for vendor 242 * specific ciphers this should be validated in the driver or 243 * hardware level - but 802.11i clearly specifies to use zero) 244 */ 245 if (pairwise && key_idx) 246 return -EINVAL; 247 break; 248 case WLAN_CIPHER_SUITE_AES_CMAC: 249 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 250 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 251 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 252 /* Disallow BIP (group-only) cipher as pairwise cipher */ 253 if (pairwise) 254 return -EINVAL; 255 if (key_idx < 4) 256 return -EINVAL; 257 break; 258 case WLAN_CIPHER_SUITE_WEP40: 259 case WLAN_CIPHER_SUITE_WEP104: 260 if (key_idx > 3) 261 return -EINVAL; 262 default: 263 break; 264 } 265 266 switch (params->cipher) { 267 case WLAN_CIPHER_SUITE_WEP40: 268 if (params->key_len != WLAN_KEY_LEN_WEP40) 269 return -EINVAL; 270 break; 271 case WLAN_CIPHER_SUITE_TKIP: 272 if (params->key_len != WLAN_KEY_LEN_TKIP) 273 return -EINVAL; 274 break; 275 case WLAN_CIPHER_SUITE_CCMP: 276 if (params->key_len != WLAN_KEY_LEN_CCMP) 277 return -EINVAL; 278 break; 279 case WLAN_CIPHER_SUITE_CCMP_256: 280 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 281 return -EINVAL; 282 break; 283 case WLAN_CIPHER_SUITE_GCMP: 284 if (params->key_len != WLAN_KEY_LEN_GCMP) 285 return -EINVAL; 286 break; 287 case WLAN_CIPHER_SUITE_GCMP_256: 288 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 289 return -EINVAL; 290 break; 291 case WLAN_CIPHER_SUITE_WEP104: 292 if (params->key_len != WLAN_KEY_LEN_WEP104) 293 return -EINVAL; 294 break; 295 case WLAN_CIPHER_SUITE_AES_CMAC: 296 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 297 return -EINVAL; 298 break; 299 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 300 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 301 return -EINVAL; 302 break; 303 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 304 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 305 return -EINVAL; 306 break; 307 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 308 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 309 return -EINVAL; 310 break; 311 default: 312 /* 313 * We don't know anything about this algorithm, 314 * allow using it -- but the driver must check 315 * all parameters! We still check below whether 316 * or not the driver supports this algorithm, 317 * of course. 318 */ 319 break; 320 } 321 322 if (params->seq) { 323 switch (params->cipher) { 324 case WLAN_CIPHER_SUITE_WEP40: 325 case WLAN_CIPHER_SUITE_WEP104: 326 /* These ciphers do not use key sequence */ 327 return -EINVAL; 328 case WLAN_CIPHER_SUITE_TKIP: 329 case WLAN_CIPHER_SUITE_CCMP: 330 case WLAN_CIPHER_SUITE_CCMP_256: 331 case WLAN_CIPHER_SUITE_GCMP: 332 case WLAN_CIPHER_SUITE_GCMP_256: 333 case WLAN_CIPHER_SUITE_AES_CMAC: 334 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 335 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 336 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 337 if (params->seq_len != 6) 338 return -EINVAL; 339 break; 340 } 341 } 342 343 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 344 return -EINVAL; 345 346 return 0; 347 } 348 349 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 350 { 351 unsigned int hdrlen = 24; 352 353 if (ieee80211_is_data(fc)) { 354 if (ieee80211_has_a4(fc)) 355 hdrlen = 30; 356 if (ieee80211_is_data_qos(fc)) { 357 hdrlen += IEEE80211_QOS_CTL_LEN; 358 if (ieee80211_has_order(fc)) 359 hdrlen += IEEE80211_HT_CTL_LEN; 360 } 361 goto out; 362 } 363 364 if (ieee80211_is_mgmt(fc)) { 365 if (ieee80211_has_order(fc)) 366 hdrlen += IEEE80211_HT_CTL_LEN; 367 goto out; 368 } 369 370 if (ieee80211_is_ctl(fc)) { 371 /* 372 * ACK and CTS are 10 bytes, all others 16. To see how 373 * to get this condition consider 374 * subtype mask: 0b0000000011110000 (0x00F0) 375 * ACK subtype: 0b0000000011010000 (0x00D0) 376 * CTS subtype: 0b0000000011000000 (0x00C0) 377 * bits that matter: ^^^ (0x00E0) 378 * value of those: 0b0000000011000000 (0x00C0) 379 */ 380 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 381 hdrlen = 10; 382 else 383 hdrlen = 16; 384 } 385 out: 386 return hdrlen; 387 } 388 EXPORT_SYMBOL(ieee80211_hdrlen); 389 390 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 391 { 392 const struct ieee80211_hdr *hdr = 393 (const struct ieee80211_hdr *)skb->data; 394 unsigned int hdrlen; 395 396 if (unlikely(skb->len < 10)) 397 return 0; 398 hdrlen = ieee80211_hdrlen(hdr->frame_control); 399 if (unlikely(hdrlen > skb->len)) 400 return 0; 401 return hdrlen; 402 } 403 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 404 405 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 406 { 407 int ae = flags & MESH_FLAGS_AE; 408 /* 802.11-2012, 8.2.4.7.3 */ 409 switch (ae) { 410 default: 411 case 0: 412 return 6; 413 case MESH_FLAGS_AE_A4: 414 return 12; 415 case MESH_FLAGS_AE_A5_A6: 416 return 18; 417 } 418 } 419 420 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 421 { 422 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 423 } 424 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 425 426 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 427 const u8 *addr, enum nl80211_iftype iftype, 428 u8 data_offset) 429 { 430 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 431 struct { 432 u8 hdr[ETH_ALEN] __aligned(2); 433 __be16 proto; 434 } payload; 435 struct ethhdr tmp; 436 u16 hdrlen; 437 u8 mesh_flags = 0; 438 439 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 440 return -1; 441 442 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; 443 if (skb->len < hdrlen + 8) 444 return -1; 445 446 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 447 * header 448 * IEEE 802.11 address fields: 449 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 450 * 0 0 DA SA BSSID n/a 451 * 0 1 DA BSSID SA n/a 452 * 1 0 BSSID SA DA n/a 453 * 1 1 RA TA DA SA 454 */ 455 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 456 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 457 458 if (iftype == NL80211_IFTYPE_MESH_POINT) 459 skb_copy_bits(skb, hdrlen, &mesh_flags, 1); 460 461 mesh_flags &= MESH_FLAGS_AE; 462 463 switch (hdr->frame_control & 464 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 465 case cpu_to_le16(IEEE80211_FCTL_TODS): 466 if (unlikely(iftype != NL80211_IFTYPE_AP && 467 iftype != NL80211_IFTYPE_AP_VLAN && 468 iftype != NL80211_IFTYPE_P2P_GO)) 469 return -1; 470 break; 471 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 472 if (unlikely(iftype != NL80211_IFTYPE_WDS && 473 iftype != NL80211_IFTYPE_MESH_POINT && 474 iftype != NL80211_IFTYPE_AP_VLAN && 475 iftype != NL80211_IFTYPE_STATION)) 476 return -1; 477 if (iftype == NL80211_IFTYPE_MESH_POINT) { 478 if (mesh_flags == MESH_FLAGS_AE_A4) 479 return -1; 480 if (mesh_flags == MESH_FLAGS_AE_A5_A6) { 481 skb_copy_bits(skb, hdrlen + 482 offsetof(struct ieee80211s_hdr, eaddr1), 483 tmp.h_dest, 2 * ETH_ALEN); 484 } 485 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 486 } 487 break; 488 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 489 if ((iftype != NL80211_IFTYPE_STATION && 490 iftype != NL80211_IFTYPE_P2P_CLIENT && 491 iftype != NL80211_IFTYPE_MESH_POINT) || 492 (is_multicast_ether_addr(tmp.h_dest) && 493 ether_addr_equal(tmp.h_source, addr))) 494 return -1; 495 if (iftype == NL80211_IFTYPE_MESH_POINT) { 496 if (mesh_flags == MESH_FLAGS_AE_A5_A6) 497 return -1; 498 if (mesh_flags == MESH_FLAGS_AE_A4) 499 skb_copy_bits(skb, hdrlen + 500 offsetof(struct ieee80211s_hdr, eaddr1), 501 tmp.h_source, ETH_ALEN); 502 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 503 } 504 break; 505 case cpu_to_le16(0): 506 if (iftype != NL80211_IFTYPE_ADHOC && 507 iftype != NL80211_IFTYPE_STATION && 508 iftype != NL80211_IFTYPE_OCB) 509 return -1; 510 break; 511 } 512 513 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)); 514 tmp.h_proto = payload.proto; 515 516 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) && 517 tmp.h_proto != htons(ETH_P_AARP) && 518 tmp.h_proto != htons(ETH_P_IPX)) || 519 ether_addr_equal(payload.hdr, bridge_tunnel_header))) 520 /* remove RFC1042 or Bridge-Tunnel encapsulation and 521 * replace EtherType */ 522 hdrlen += ETH_ALEN + 2; 523 else 524 tmp.h_proto = htons(skb->len - hdrlen); 525 526 pskb_pull(skb, hdrlen); 527 528 if (!ehdr) 529 ehdr = skb_push(skb, sizeof(struct ethhdr)); 530 memcpy(ehdr, &tmp, sizeof(tmp)); 531 532 return 0; 533 } 534 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 535 536 static void 537 __frame_add_frag(struct sk_buff *skb, struct page *page, 538 void *ptr, int len, int size) 539 { 540 struct skb_shared_info *sh = skb_shinfo(skb); 541 int page_offset; 542 543 page_ref_inc(page); 544 page_offset = ptr - page_address(page); 545 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 546 } 547 548 static void 549 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 550 int offset, int len) 551 { 552 struct skb_shared_info *sh = skb_shinfo(skb); 553 const skb_frag_t *frag = &sh->frags[0]; 554 struct page *frag_page; 555 void *frag_ptr; 556 int frag_len, frag_size; 557 int head_size = skb->len - skb->data_len; 558 int cur_len; 559 560 frag_page = virt_to_head_page(skb->head); 561 frag_ptr = skb->data; 562 frag_size = head_size; 563 564 while (offset >= frag_size) { 565 offset -= frag_size; 566 frag_page = skb_frag_page(frag); 567 frag_ptr = skb_frag_address(frag); 568 frag_size = skb_frag_size(frag); 569 frag++; 570 } 571 572 frag_ptr += offset; 573 frag_len = frag_size - offset; 574 575 cur_len = min(len, frag_len); 576 577 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 578 len -= cur_len; 579 580 while (len > 0) { 581 frag_len = skb_frag_size(frag); 582 cur_len = min(len, frag_len); 583 __frame_add_frag(frame, skb_frag_page(frag), 584 skb_frag_address(frag), cur_len, frag_len); 585 len -= cur_len; 586 frag++; 587 } 588 } 589 590 static struct sk_buff * 591 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 592 int offset, int len, bool reuse_frag) 593 { 594 struct sk_buff *frame; 595 int cur_len = len; 596 597 if (skb->len - offset < len) 598 return NULL; 599 600 /* 601 * When reusing framents, copy some data to the head to simplify 602 * ethernet header handling and speed up protocol header processing 603 * in the stack later. 604 */ 605 if (reuse_frag) 606 cur_len = min_t(int, len, 32); 607 608 /* 609 * Allocate and reserve two bytes more for payload 610 * alignment since sizeof(struct ethhdr) is 14. 611 */ 612 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 613 if (!frame) 614 return NULL; 615 616 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 617 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 618 619 len -= cur_len; 620 if (!len) 621 return frame; 622 623 offset += cur_len; 624 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 625 626 return frame; 627 } 628 629 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 630 const u8 *addr, enum nl80211_iftype iftype, 631 const unsigned int extra_headroom, 632 const u8 *check_da, const u8 *check_sa) 633 { 634 unsigned int hlen = ALIGN(extra_headroom, 4); 635 struct sk_buff *frame = NULL; 636 u16 ethertype; 637 u8 *payload; 638 int offset = 0, remaining; 639 struct ethhdr eth; 640 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 641 bool reuse_skb = false; 642 bool last = false; 643 644 while (!last) { 645 unsigned int subframe_len; 646 int len; 647 u8 padding; 648 649 skb_copy_bits(skb, offset, ð, sizeof(eth)); 650 len = ntohs(eth.h_proto); 651 subframe_len = sizeof(struct ethhdr) + len; 652 padding = (4 - subframe_len) & 0x3; 653 654 /* the last MSDU has no padding */ 655 remaining = skb->len - offset; 656 if (subframe_len > remaining) 657 goto purge; 658 659 offset += sizeof(struct ethhdr); 660 last = remaining <= subframe_len + padding; 661 662 /* FIXME: should we really accept multicast DA? */ 663 if ((check_da && !is_multicast_ether_addr(eth.h_dest) && 664 !ether_addr_equal(check_da, eth.h_dest)) || 665 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) { 666 offset += len + padding; 667 continue; 668 } 669 670 /* reuse skb for the last subframe */ 671 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 672 skb_pull(skb, offset); 673 frame = skb; 674 reuse_skb = true; 675 } else { 676 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 677 reuse_frag); 678 if (!frame) 679 goto purge; 680 681 offset += len + padding; 682 } 683 684 skb_reset_network_header(frame); 685 frame->dev = skb->dev; 686 frame->priority = skb->priority; 687 688 payload = frame->data; 689 ethertype = (payload[6] << 8) | payload[7]; 690 if (likely((ether_addr_equal(payload, rfc1042_header) && 691 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 692 ether_addr_equal(payload, bridge_tunnel_header))) { 693 eth.h_proto = htons(ethertype); 694 skb_pull(frame, ETH_ALEN + 2); 695 } 696 697 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth)); 698 __skb_queue_tail(list, frame); 699 } 700 701 if (!reuse_skb) 702 dev_kfree_skb(skb); 703 704 return; 705 706 purge: 707 __skb_queue_purge(list); 708 dev_kfree_skb(skb); 709 } 710 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 711 712 /* Given a data frame determine the 802.1p/1d tag to use. */ 713 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 714 struct cfg80211_qos_map *qos_map) 715 { 716 unsigned int dscp; 717 unsigned char vlan_priority; 718 719 /* skb->priority values from 256->263 are magic values to 720 * directly indicate a specific 802.1d priority. This is used 721 * to allow 802.1d priority to be passed directly in from VLAN 722 * tags, etc. 723 */ 724 if (skb->priority >= 256 && skb->priority <= 263) 725 return skb->priority - 256; 726 727 if (skb_vlan_tag_present(skb)) { 728 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 729 >> VLAN_PRIO_SHIFT; 730 if (vlan_priority > 0) 731 return vlan_priority; 732 } 733 734 switch (skb->protocol) { 735 case htons(ETH_P_IP): 736 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 737 break; 738 case htons(ETH_P_IPV6): 739 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 740 break; 741 case htons(ETH_P_MPLS_UC): 742 case htons(ETH_P_MPLS_MC): { 743 struct mpls_label mpls_tmp, *mpls; 744 745 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 746 sizeof(*mpls), &mpls_tmp); 747 if (!mpls) 748 return 0; 749 750 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 751 >> MPLS_LS_TC_SHIFT; 752 } 753 case htons(ETH_P_80221): 754 /* 802.21 is always network control traffic */ 755 return 7; 756 default: 757 return 0; 758 } 759 760 if (qos_map) { 761 unsigned int i, tmp_dscp = dscp >> 2; 762 763 for (i = 0; i < qos_map->num_des; i++) { 764 if (tmp_dscp == qos_map->dscp_exception[i].dscp) 765 return qos_map->dscp_exception[i].up; 766 } 767 768 for (i = 0; i < 8; i++) { 769 if (tmp_dscp >= qos_map->up[i].low && 770 tmp_dscp <= qos_map->up[i].high) 771 return i; 772 } 773 } 774 775 return dscp >> 5; 776 } 777 EXPORT_SYMBOL(cfg80211_classify8021d); 778 779 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie) 780 { 781 const struct cfg80211_bss_ies *ies; 782 783 ies = rcu_dereference(bss->ies); 784 if (!ies) 785 return NULL; 786 787 return cfg80211_find_ie(ie, ies->data, ies->len); 788 } 789 EXPORT_SYMBOL(ieee80211_bss_get_ie); 790 791 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 792 { 793 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 794 struct net_device *dev = wdev->netdev; 795 int i; 796 797 if (!wdev->connect_keys) 798 return; 799 800 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) { 801 if (!wdev->connect_keys->params[i].cipher) 802 continue; 803 if (rdev_add_key(rdev, dev, i, false, NULL, 804 &wdev->connect_keys->params[i])) { 805 netdev_err(dev, "failed to set key %d\n", i); 806 continue; 807 } 808 if (wdev->connect_keys->def == i && 809 rdev_set_default_key(rdev, dev, i, true, true)) { 810 netdev_err(dev, "failed to set defkey %d\n", i); 811 continue; 812 } 813 } 814 815 kzfree(wdev->connect_keys); 816 wdev->connect_keys = NULL; 817 } 818 819 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 820 { 821 struct cfg80211_event *ev; 822 unsigned long flags; 823 824 spin_lock_irqsave(&wdev->event_lock, flags); 825 while (!list_empty(&wdev->event_list)) { 826 ev = list_first_entry(&wdev->event_list, 827 struct cfg80211_event, list); 828 list_del(&ev->list); 829 spin_unlock_irqrestore(&wdev->event_lock, flags); 830 831 wdev_lock(wdev); 832 switch (ev->type) { 833 case EVENT_CONNECT_RESULT: 834 __cfg80211_connect_result( 835 wdev->netdev, 836 &ev->cr, 837 ev->cr.status == WLAN_STATUS_SUCCESS); 838 break; 839 case EVENT_ROAMED: 840 __cfg80211_roamed(wdev, &ev->rm); 841 break; 842 case EVENT_DISCONNECTED: 843 __cfg80211_disconnected(wdev->netdev, 844 ev->dc.ie, ev->dc.ie_len, 845 ev->dc.reason, 846 !ev->dc.locally_generated); 847 break; 848 case EVENT_IBSS_JOINED: 849 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 850 ev->ij.channel); 851 break; 852 case EVENT_STOPPED: 853 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 854 break; 855 case EVENT_PORT_AUTHORIZED: 856 __cfg80211_port_authorized(wdev, ev->pa.bssid); 857 break; 858 } 859 wdev_unlock(wdev); 860 861 kfree(ev); 862 863 spin_lock_irqsave(&wdev->event_lock, flags); 864 } 865 spin_unlock_irqrestore(&wdev->event_lock, flags); 866 } 867 868 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 869 { 870 struct wireless_dev *wdev; 871 872 ASSERT_RTNL(); 873 874 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 875 cfg80211_process_wdev_events(wdev); 876 } 877 878 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 879 struct net_device *dev, enum nl80211_iftype ntype, 880 struct vif_params *params) 881 { 882 int err; 883 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 884 885 ASSERT_RTNL(); 886 887 /* don't support changing VLANs, you just re-create them */ 888 if (otype == NL80211_IFTYPE_AP_VLAN) 889 return -EOPNOTSUPP; 890 891 /* cannot change into P2P device or NAN */ 892 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 893 ntype == NL80211_IFTYPE_NAN) 894 return -EOPNOTSUPP; 895 896 if (!rdev->ops->change_virtual_intf || 897 !(rdev->wiphy.interface_modes & (1 << ntype))) 898 return -EOPNOTSUPP; 899 900 /* if it's part of a bridge, reject changing type to station/ibss */ 901 if ((dev->priv_flags & IFF_BRIDGE_PORT) && 902 (ntype == NL80211_IFTYPE_ADHOC || 903 ntype == NL80211_IFTYPE_STATION || 904 ntype == NL80211_IFTYPE_P2P_CLIENT)) 905 return -EBUSY; 906 907 if (ntype != otype) { 908 dev->ieee80211_ptr->use_4addr = false; 909 dev->ieee80211_ptr->mesh_id_up_len = 0; 910 wdev_lock(dev->ieee80211_ptr); 911 rdev_set_qos_map(rdev, dev, NULL); 912 wdev_unlock(dev->ieee80211_ptr); 913 914 switch (otype) { 915 case NL80211_IFTYPE_AP: 916 cfg80211_stop_ap(rdev, dev, true); 917 break; 918 case NL80211_IFTYPE_ADHOC: 919 cfg80211_leave_ibss(rdev, dev, false); 920 break; 921 case NL80211_IFTYPE_STATION: 922 case NL80211_IFTYPE_P2P_CLIENT: 923 wdev_lock(dev->ieee80211_ptr); 924 cfg80211_disconnect(rdev, dev, 925 WLAN_REASON_DEAUTH_LEAVING, true); 926 wdev_unlock(dev->ieee80211_ptr); 927 break; 928 case NL80211_IFTYPE_MESH_POINT: 929 /* mesh should be handled? */ 930 break; 931 default: 932 break; 933 } 934 935 cfg80211_process_rdev_events(rdev); 936 } 937 938 err = rdev_change_virtual_intf(rdev, dev, ntype, params); 939 940 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 941 942 if (!err && params && params->use_4addr != -1) 943 dev->ieee80211_ptr->use_4addr = params->use_4addr; 944 945 if (!err) { 946 dev->priv_flags &= ~IFF_DONT_BRIDGE; 947 switch (ntype) { 948 case NL80211_IFTYPE_STATION: 949 if (dev->ieee80211_ptr->use_4addr) 950 break; 951 /* fall through */ 952 case NL80211_IFTYPE_OCB: 953 case NL80211_IFTYPE_P2P_CLIENT: 954 case NL80211_IFTYPE_ADHOC: 955 dev->priv_flags |= IFF_DONT_BRIDGE; 956 break; 957 case NL80211_IFTYPE_P2P_GO: 958 case NL80211_IFTYPE_AP: 959 case NL80211_IFTYPE_AP_VLAN: 960 case NL80211_IFTYPE_WDS: 961 case NL80211_IFTYPE_MESH_POINT: 962 /* bridging OK */ 963 break; 964 case NL80211_IFTYPE_MONITOR: 965 /* monitor can't bridge anyway */ 966 break; 967 case NL80211_IFTYPE_UNSPECIFIED: 968 case NUM_NL80211_IFTYPES: 969 /* not happening */ 970 break; 971 case NL80211_IFTYPE_P2P_DEVICE: 972 case NL80211_IFTYPE_NAN: 973 WARN_ON(1); 974 break; 975 } 976 } 977 978 if (!err && ntype != otype && netif_running(dev)) { 979 cfg80211_update_iface_num(rdev, ntype, 1); 980 cfg80211_update_iface_num(rdev, otype, -1); 981 } 982 983 return err; 984 } 985 986 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) 987 { 988 int modulation, streams, bitrate; 989 990 /* the formula below does only work for MCS values smaller than 32 */ 991 if (WARN_ON_ONCE(rate->mcs >= 32)) 992 return 0; 993 994 modulation = rate->mcs & 7; 995 streams = (rate->mcs >> 3) + 1; 996 997 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 998 999 if (modulation < 4) 1000 bitrate *= (modulation + 1); 1001 else if (modulation == 4) 1002 bitrate *= (modulation + 2); 1003 else 1004 bitrate *= (modulation + 3); 1005 1006 bitrate *= streams; 1007 1008 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1009 bitrate = (bitrate / 9) * 10; 1010 1011 /* do NOT round down here */ 1012 return (bitrate + 50000) / 100000; 1013 } 1014 1015 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate) 1016 { 1017 static const u32 __mcs2bitrate[] = { 1018 /* control PHY */ 1019 [0] = 275, 1020 /* SC PHY */ 1021 [1] = 3850, 1022 [2] = 7700, 1023 [3] = 9625, 1024 [4] = 11550, 1025 [5] = 12512, /* 1251.25 mbps */ 1026 [6] = 15400, 1027 [7] = 19250, 1028 [8] = 23100, 1029 [9] = 25025, 1030 [10] = 30800, 1031 [11] = 38500, 1032 [12] = 46200, 1033 /* OFDM PHY */ 1034 [13] = 6930, 1035 [14] = 8662, /* 866.25 mbps */ 1036 [15] = 13860, 1037 [16] = 17325, 1038 [17] = 20790, 1039 [18] = 27720, 1040 [19] = 34650, 1041 [20] = 41580, 1042 [21] = 45045, 1043 [22] = 51975, 1044 [23] = 62370, 1045 [24] = 67568, /* 6756.75 mbps */ 1046 /* LP-SC PHY */ 1047 [25] = 6260, 1048 [26] = 8340, 1049 [27] = 11120, 1050 [28] = 12510, 1051 [29] = 16680, 1052 [30] = 22240, 1053 [31] = 25030, 1054 }; 1055 1056 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1057 return 0; 1058 1059 return __mcs2bitrate[rate->mcs]; 1060 } 1061 1062 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1063 { 1064 static const u32 base[4][10] = { 1065 { 6500000, 1066 13000000, 1067 19500000, 1068 26000000, 1069 39000000, 1070 52000000, 1071 58500000, 1072 65000000, 1073 78000000, 1074 /* not in the spec, but some devices use this: */ 1075 86500000, 1076 }, 1077 { 13500000, 1078 27000000, 1079 40500000, 1080 54000000, 1081 81000000, 1082 108000000, 1083 121500000, 1084 135000000, 1085 162000000, 1086 180000000, 1087 }, 1088 { 29300000, 1089 58500000, 1090 87800000, 1091 117000000, 1092 175500000, 1093 234000000, 1094 263300000, 1095 292500000, 1096 351000000, 1097 390000000, 1098 }, 1099 { 58500000, 1100 117000000, 1101 175500000, 1102 234000000, 1103 351000000, 1104 468000000, 1105 526500000, 1106 585000000, 1107 702000000, 1108 780000000, 1109 }, 1110 }; 1111 u32 bitrate; 1112 int idx; 1113 1114 if (rate->mcs > 9) 1115 goto warn; 1116 1117 switch (rate->bw) { 1118 case RATE_INFO_BW_160: 1119 idx = 3; 1120 break; 1121 case RATE_INFO_BW_80: 1122 idx = 2; 1123 break; 1124 case RATE_INFO_BW_40: 1125 idx = 1; 1126 break; 1127 case RATE_INFO_BW_5: 1128 case RATE_INFO_BW_10: 1129 default: 1130 goto warn; 1131 case RATE_INFO_BW_20: 1132 idx = 0; 1133 } 1134 1135 bitrate = base[idx][rate->mcs]; 1136 bitrate *= rate->nss; 1137 1138 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1139 bitrate = (bitrate / 9) * 10; 1140 1141 /* do NOT round down here */ 1142 return (bitrate + 50000) / 100000; 1143 warn: 1144 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1145 rate->bw, rate->mcs, rate->nss); 1146 return 0; 1147 } 1148 1149 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) 1150 { 1151 #define SCALE 2048 1152 u16 mcs_divisors[12] = { 1153 34133, /* 16.666666... */ 1154 17067, /* 8.333333... */ 1155 11378, /* 5.555555... */ 1156 8533, /* 4.166666... */ 1157 5689, /* 2.777777... */ 1158 4267, /* 2.083333... */ 1159 3923, /* 1.851851... */ 1160 3413, /* 1.666666... */ 1161 2844, /* 1.388888... */ 1162 2560, /* 1.250000... */ 1163 2276, /* 1.111111... */ 1164 2048, /* 1.000000... */ 1165 }; 1166 u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; 1167 u32 rates_969[3] = { 480388888, 453700000, 408333333 }; 1168 u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1169 u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1170 u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1171 u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1172 u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1173 u64 tmp; 1174 u32 result; 1175 1176 if (WARN_ON_ONCE(rate->mcs > 11)) 1177 return 0; 1178 1179 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) 1180 return 0; 1181 if (WARN_ON_ONCE(rate->he_ru_alloc > 1182 NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1183 return 0; 1184 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1185 return 0; 1186 1187 if (rate->bw == RATE_INFO_BW_160) 1188 result = rates_160M[rate->he_gi]; 1189 else if (rate->bw == RATE_INFO_BW_80 || 1190 (rate->bw == RATE_INFO_BW_HE_RU && 1191 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) 1192 result = rates_969[rate->he_gi]; 1193 else if (rate->bw == RATE_INFO_BW_40 || 1194 (rate->bw == RATE_INFO_BW_HE_RU && 1195 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) 1196 result = rates_484[rate->he_gi]; 1197 else if (rate->bw == RATE_INFO_BW_20 || 1198 (rate->bw == RATE_INFO_BW_HE_RU && 1199 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) 1200 result = rates_242[rate->he_gi]; 1201 else if (rate->bw == RATE_INFO_BW_HE_RU && 1202 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) 1203 result = rates_106[rate->he_gi]; 1204 else if (rate->bw == RATE_INFO_BW_HE_RU && 1205 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) 1206 result = rates_52[rate->he_gi]; 1207 else if (rate->bw == RATE_INFO_BW_HE_RU && 1208 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) 1209 result = rates_26[rate->he_gi]; 1210 else if (WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", 1211 rate->bw, rate->he_ru_alloc)) 1212 return 0; 1213 1214 /* now scale to the appropriate MCS */ 1215 tmp = result; 1216 tmp *= SCALE; 1217 do_div(tmp, mcs_divisors[rate->mcs]); 1218 result = tmp; 1219 1220 /* and take NSS, DCM into account */ 1221 result = (result * rate->nss) / 8; 1222 if (rate->he_dcm) 1223 result /= 2; 1224 1225 return result; 1226 } 1227 1228 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1229 { 1230 if (rate->flags & RATE_INFO_FLAGS_MCS) 1231 return cfg80211_calculate_bitrate_ht(rate); 1232 if (rate->flags & RATE_INFO_FLAGS_60G) 1233 return cfg80211_calculate_bitrate_60g(rate); 1234 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1235 return cfg80211_calculate_bitrate_vht(rate); 1236 if (rate->flags & RATE_INFO_FLAGS_HE_MCS) 1237 return cfg80211_calculate_bitrate_he(rate); 1238 1239 return rate->legacy; 1240 } 1241 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1242 1243 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1244 enum ieee80211_p2p_attr_id attr, 1245 u8 *buf, unsigned int bufsize) 1246 { 1247 u8 *out = buf; 1248 u16 attr_remaining = 0; 1249 bool desired_attr = false; 1250 u16 desired_len = 0; 1251 1252 while (len > 0) { 1253 unsigned int iedatalen; 1254 unsigned int copy; 1255 const u8 *iedata; 1256 1257 if (len < 2) 1258 return -EILSEQ; 1259 iedatalen = ies[1]; 1260 if (iedatalen + 2 > len) 1261 return -EILSEQ; 1262 1263 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1264 goto cont; 1265 1266 if (iedatalen < 4) 1267 goto cont; 1268 1269 iedata = ies + 2; 1270 1271 /* check WFA OUI, P2P subtype */ 1272 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1273 iedata[2] != 0x9a || iedata[3] != 0x09) 1274 goto cont; 1275 1276 iedatalen -= 4; 1277 iedata += 4; 1278 1279 /* check attribute continuation into this IE */ 1280 copy = min_t(unsigned int, attr_remaining, iedatalen); 1281 if (copy && desired_attr) { 1282 desired_len += copy; 1283 if (out) { 1284 memcpy(out, iedata, min(bufsize, copy)); 1285 out += min(bufsize, copy); 1286 bufsize -= min(bufsize, copy); 1287 } 1288 1289 1290 if (copy == attr_remaining) 1291 return desired_len; 1292 } 1293 1294 attr_remaining -= copy; 1295 if (attr_remaining) 1296 goto cont; 1297 1298 iedatalen -= copy; 1299 iedata += copy; 1300 1301 while (iedatalen > 0) { 1302 u16 attr_len; 1303 1304 /* P2P attribute ID & size must fit */ 1305 if (iedatalen < 3) 1306 return -EILSEQ; 1307 desired_attr = iedata[0] == attr; 1308 attr_len = get_unaligned_le16(iedata + 1); 1309 iedatalen -= 3; 1310 iedata += 3; 1311 1312 copy = min_t(unsigned int, attr_len, iedatalen); 1313 1314 if (desired_attr) { 1315 desired_len += copy; 1316 if (out) { 1317 memcpy(out, iedata, min(bufsize, copy)); 1318 out += min(bufsize, copy); 1319 bufsize -= min(bufsize, copy); 1320 } 1321 1322 if (copy == attr_len) 1323 return desired_len; 1324 } 1325 1326 iedata += copy; 1327 iedatalen -= copy; 1328 attr_remaining = attr_len - copy; 1329 } 1330 1331 cont: 1332 len -= ies[1] + 2; 1333 ies += ies[1] + 2; 1334 } 1335 1336 if (attr_remaining && desired_attr) 1337 return -EILSEQ; 1338 1339 return -ENOENT; 1340 } 1341 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1342 1343 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) 1344 { 1345 int i; 1346 1347 /* Make sure array values are legal */ 1348 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) 1349 return false; 1350 1351 i = 0; 1352 while (i < n_ids) { 1353 if (ids[i] == WLAN_EID_EXTENSION) { 1354 if (id_ext && (ids[i + 1] == id)) 1355 return true; 1356 1357 i += 2; 1358 continue; 1359 } 1360 1361 if (ids[i] == id && !id_ext) 1362 return true; 1363 1364 i++; 1365 } 1366 return false; 1367 } 1368 1369 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) 1370 { 1371 /* we assume a validly formed IEs buffer */ 1372 u8 len = ies[pos + 1]; 1373 1374 pos += 2 + len; 1375 1376 /* the IE itself must have 255 bytes for fragments to follow */ 1377 if (len < 255) 1378 return pos; 1379 1380 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { 1381 len = ies[pos + 1]; 1382 pos += 2 + len; 1383 } 1384 1385 return pos; 1386 } 1387 1388 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1389 const u8 *ids, int n_ids, 1390 const u8 *after_ric, int n_after_ric, 1391 size_t offset) 1392 { 1393 size_t pos = offset; 1394 1395 while (pos < ielen) { 1396 u8 ext = 0; 1397 1398 if (ies[pos] == WLAN_EID_EXTENSION) 1399 ext = 2; 1400 if ((pos + ext) >= ielen) 1401 break; 1402 1403 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], 1404 ies[pos] == WLAN_EID_EXTENSION)) 1405 break; 1406 1407 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1408 pos = skip_ie(ies, ielen, pos); 1409 1410 while (pos < ielen) { 1411 if (ies[pos] == WLAN_EID_EXTENSION) 1412 ext = 2; 1413 else 1414 ext = 0; 1415 1416 if ((pos + ext) >= ielen) 1417 break; 1418 1419 if (!ieee80211_id_in_list(after_ric, 1420 n_after_ric, 1421 ies[pos + ext], 1422 ext == 2)) 1423 pos = skip_ie(ies, ielen, pos); 1424 else 1425 break; 1426 } 1427 } else { 1428 pos = skip_ie(ies, ielen, pos); 1429 } 1430 } 1431 1432 return pos; 1433 } 1434 EXPORT_SYMBOL(ieee80211_ie_split_ric); 1435 1436 bool ieee80211_operating_class_to_band(u8 operating_class, 1437 enum nl80211_band *band) 1438 { 1439 switch (operating_class) { 1440 case 112: 1441 case 115 ... 127: 1442 case 128 ... 130: 1443 *band = NL80211_BAND_5GHZ; 1444 return true; 1445 case 81: 1446 case 82: 1447 case 83: 1448 case 84: 1449 *band = NL80211_BAND_2GHZ; 1450 return true; 1451 case 180: 1452 *band = NL80211_BAND_60GHZ; 1453 return true; 1454 } 1455 1456 return false; 1457 } 1458 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1459 1460 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 1461 u8 *op_class) 1462 { 1463 u8 vht_opclass; 1464 u32 freq = chandef->center_freq1; 1465 1466 if (freq >= 2412 && freq <= 2472) { 1467 if (chandef->width > NL80211_CHAN_WIDTH_40) 1468 return false; 1469 1470 /* 2.407 GHz, channels 1..13 */ 1471 if (chandef->width == NL80211_CHAN_WIDTH_40) { 1472 if (freq > chandef->chan->center_freq) 1473 *op_class = 83; /* HT40+ */ 1474 else 1475 *op_class = 84; /* HT40- */ 1476 } else { 1477 *op_class = 81; 1478 } 1479 1480 return true; 1481 } 1482 1483 if (freq == 2484) { 1484 if (chandef->width > NL80211_CHAN_WIDTH_40) 1485 return false; 1486 1487 *op_class = 82; /* channel 14 */ 1488 return true; 1489 } 1490 1491 switch (chandef->width) { 1492 case NL80211_CHAN_WIDTH_80: 1493 vht_opclass = 128; 1494 break; 1495 case NL80211_CHAN_WIDTH_160: 1496 vht_opclass = 129; 1497 break; 1498 case NL80211_CHAN_WIDTH_80P80: 1499 vht_opclass = 130; 1500 break; 1501 case NL80211_CHAN_WIDTH_10: 1502 case NL80211_CHAN_WIDTH_5: 1503 return false; /* unsupported for now */ 1504 default: 1505 vht_opclass = 0; 1506 break; 1507 } 1508 1509 /* 5 GHz, channels 36..48 */ 1510 if (freq >= 5180 && freq <= 5240) { 1511 if (vht_opclass) { 1512 *op_class = vht_opclass; 1513 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1514 if (freq > chandef->chan->center_freq) 1515 *op_class = 116; 1516 else 1517 *op_class = 117; 1518 } else { 1519 *op_class = 115; 1520 } 1521 1522 return true; 1523 } 1524 1525 /* 5 GHz, channels 52..64 */ 1526 if (freq >= 5260 && freq <= 5320) { 1527 if (vht_opclass) { 1528 *op_class = vht_opclass; 1529 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1530 if (freq > chandef->chan->center_freq) 1531 *op_class = 119; 1532 else 1533 *op_class = 120; 1534 } else { 1535 *op_class = 118; 1536 } 1537 1538 return true; 1539 } 1540 1541 /* 5 GHz, channels 100..144 */ 1542 if (freq >= 5500 && freq <= 5720) { 1543 if (vht_opclass) { 1544 *op_class = vht_opclass; 1545 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1546 if (freq > chandef->chan->center_freq) 1547 *op_class = 122; 1548 else 1549 *op_class = 123; 1550 } else { 1551 *op_class = 121; 1552 } 1553 1554 return true; 1555 } 1556 1557 /* 5 GHz, channels 149..169 */ 1558 if (freq >= 5745 && freq <= 5845) { 1559 if (vht_opclass) { 1560 *op_class = vht_opclass; 1561 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1562 if (freq > chandef->chan->center_freq) 1563 *op_class = 126; 1564 else 1565 *op_class = 127; 1566 } else if (freq <= 5805) { 1567 *op_class = 124; 1568 } else { 1569 *op_class = 125; 1570 } 1571 1572 return true; 1573 } 1574 1575 /* 56.16 GHz, channel 1..4 */ 1576 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { 1577 if (chandef->width >= NL80211_CHAN_WIDTH_40) 1578 return false; 1579 1580 *op_class = 180; 1581 return true; 1582 } 1583 1584 /* not supported yet */ 1585 return false; 1586 } 1587 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 1588 1589 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, 1590 u32 *beacon_int_gcd, 1591 bool *beacon_int_different) 1592 { 1593 struct wireless_dev *wdev; 1594 1595 *beacon_int_gcd = 0; 1596 *beacon_int_different = false; 1597 1598 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 1599 if (!wdev->beacon_interval) 1600 continue; 1601 1602 if (!*beacon_int_gcd) { 1603 *beacon_int_gcd = wdev->beacon_interval; 1604 continue; 1605 } 1606 1607 if (wdev->beacon_interval == *beacon_int_gcd) 1608 continue; 1609 1610 *beacon_int_different = true; 1611 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval); 1612 } 1613 1614 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { 1615 if (*beacon_int_gcd) 1616 *beacon_int_different = true; 1617 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); 1618 } 1619 } 1620 1621 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 1622 enum nl80211_iftype iftype, u32 beacon_int) 1623 { 1624 /* 1625 * This is just a basic pre-condition check; if interface combinations 1626 * are possible the driver must already be checking those with a call 1627 * to cfg80211_check_combinations(), in which case we'll validate more 1628 * through the cfg80211_calculate_bi_data() call and code in 1629 * cfg80211_iter_combinations(). 1630 */ 1631 1632 if (beacon_int < 10 || beacon_int > 10000) 1633 return -EINVAL; 1634 1635 return 0; 1636 } 1637 1638 int cfg80211_iter_combinations(struct wiphy *wiphy, 1639 struct iface_combination_params *params, 1640 void (*iter)(const struct ieee80211_iface_combination *c, 1641 void *data), 1642 void *data) 1643 { 1644 const struct ieee80211_regdomain *regdom; 1645 enum nl80211_dfs_regions region = 0; 1646 int i, j, iftype; 1647 int num_interfaces = 0; 1648 u32 used_iftypes = 0; 1649 u32 beacon_int_gcd; 1650 bool beacon_int_different; 1651 1652 /* 1653 * This is a bit strange, since the iteration used to rely only on 1654 * the data given by the driver, but here it now relies on context, 1655 * in form of the currently operating interfaces. 1656 * This is OK for all current users, and saves us from having to 1657 * push the GCD calculations into all the drivers. 1658 * In the future, this should probably rely more on data that's in 1659 * cfg80211 already - the only thing not would appear to be any new 1660 * interfaces (while being brought up) and channel/radar data. 1661 */ 1662 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, 1663 &beacon_int_gcd, &beacon_int_different); 1664 1665 if (params->radar_detect) { 1666 rcu_read_lock(); 1667 regdom = rcu_dereference(cfg80211_regdomain); 1668 if (regdom) 1669 region = regdom->dfs_region; 1670 rcu_read_unlock(); 1671 } 1672 1673 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1674 num_interfaces += params->iftype_num[iftype]; 1675 if (params->iftype_num[iftype] > 0 && 1676 !(wiphy->software_iftypes & BIT(iftype))) 1677 used_iftypes |= BIT(iftype); 1678 } 1679 1680 for (i = 0; i < wiphy->n_iface_combinations; i++) { 1681 const struct ieee80211_iface_combination *c; 1682 struct ieee80211_iface_limit *limits; 1683 u32 all_iftypes = 0; 1684 1685 c = &wiphy->iface_combinations[i]; 1686 1687 if (num_interfaces > c->max_interfaces) 1688 continue; 1689 if (params->num_different_channels > c->num_different_channels) 1690 continue; 1691 1692 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 1693 GFP_KERNEL); 1694 if (!limits) 1695 return -ENOMEM; 1696 1697 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1698 if (wiphy->software_iftypes & BIT(iftype)) 1699 continue; 1700 for (j = 0; j < c->n_limits; j++) { 1701 all_iftypes |= limits[j].types; 1702 if (!(limits[j].types & BIT(iftype))) 1703 continue; 1704 if (limits[j].max < params->iftype_num[iftype]) 1705 goto cont; 1706 limits[j].max -= params->iftype_num[iftype]; 1707 } 1708 } 1709 1710 if (params->radar_detect != 1711 (c->radar_detect_widths & params->radar_detect)) 1712 goto cont; 1713 1714 if (params->radar_detect && c->radar_detect_regions && 1715 !(c->radar_detect_regions & BIT(region))) 1716 goto cont; 1717 1718 /* Finally check that all iftypes that we're currently 1719 * using are actually part of this combination. If they 1720 * aren't then we can't use this combination and have 1721 * to continue to the next. 1722 */ 1723 if ((all_iftypes & used_iftypes) != used_iftypes) 1724 goto cont; 1725 1726 if (beacon_int_gcd) { 1727 if (c->beacon_int_min_gcd && 1728 beacon_int_gcd < c->beacon_int_min_gcd) 1729 goto cont; 1730 if (!c->beacon_int_min_gcd && beacon_int_different) 1731 goto cont; 1732 } 1733 1734 /* This combination covered all interface types and 1735 * supported the requested numbers, so we're good. 1736 */ 1737 1738 (*iter)(c, data); 1739 cont: 1740 kfree(limits); 1741 } 1742 1743 return 0; 1744 } 1745 EXPORT_SYMBOL(cfg80211_iter_combinations); 1746 1747 static void 1748 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 1749 void *data) 1750 { 1751 int *num = data; 1752 (*num)++; 1753 } 1754 1755 int cfg80211_check_combinations(struct wiphy *wiphy, 1756 struct iface_combination_params *params) 1757 { 1758 int err, num = 0; 1759 1760 err = cfg80211_iter_combinations(wiphy, params, 1761 cfg80211_iter_sum_ifcombs, &num); 1762 if (err) 1763 return err; 1764 if (num == 0) 1765 return -EBUSY; 1766 1767 return 0; 1768 } 1769 EXPORT_SYMBOL(cfg80211_check_combinations); 1770 1771 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1772 const u8 *rates, unsigned int n_rates, 1773 u32 *mask) 1774 { 1775 int i, j; 1776 1777 if (!sband) 1778 return -EINVAL; 1779 1780 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1781 return -EINVAL; 1782 1783 *mask = 0; 1784 1785 for (i = 0; i < n_rates; i++) { 1786 int rate = (rates[i] & 0x7f) * 5; 1787 bool found = false; 1788 1789 for (j = 0; j < sband->n_bitrates; j++) { 1790 if (sband->bitrates[j].bitrate == rate) { 1791 found = true; 1792 *mask |= BIT(j); 1793 break; 1794 } 1795 } 1796 if (!found) 1797 return -EINVAL; 1798 } 1799 1800 /* 1801 * mask must have at least one bit set here since we 1802 * didn't accept a 0-length rates array nor allowed 1803 * entries in the array that didn't exist 1804 */ 1805 1806 return 0; 1807 } 1808 1809 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 1810 { 1811 enum nl80211_band band; 1812 unsigned int n_channels = 0; 1813 1814 for (band = 0; band < NUM_NL80211_BANDS; band++) 1815 if (wiphy->bands[band]) 1816 n_channels += wiphy->bands[band]->n_channels; 1817 1818 return n_channels; 1819 } 1820 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 1821 1822 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 1823 struct station_info *sinfo) 1824 { 1825 struct cfg80211_registered_device *rdev; 1826 struct wireless_dev *wdev; 1827 1828 wdev = dev->ieee80211_ptr; 1829 if (!wdev) 1830 return -EOPNOTSUPP; 1831 1832 rdev = wiphy_to_rdev(wdev->wiphy); 1833 if (!rdev->ops->get_station) 1834 return -EOPNOTSUPP; 1835 1836 memset(sinfo, 0, sizeof(*sinfo)); 1837 1838 return rdev_get_station(rdev, dev, mac_addr, sinfo); 1839 } 1840 EXPORT_SYMBOL(cfg80211_get_station); 1841 1842 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 1843 { 1844 int i; 1845 1846 if (!f) 1847 return; 1848 1849 kfree(f->serv_spec_info); 1850 kfree(f->srf_bf); 1851 kfree(f->srf_macs); 1852 for (i = 0; i < f->num_rx_filters; i++) 1853 kfree(f->rx_filters[i].filter); 1854 1855 for (i = 0; i < f->num_tx_filters; i++) 1856 kfree(f->tx_filters[i].filter); 1857 1858 kfree(f->rx_filters); 1859 kfree(f->tx_filters); 1860 kfree(f); 1861 } 1862 EXPORT_SYMBOL(cfg80211_free_nan_func); 1863 1864 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, 1865 u32 center_freq_khz, u32 bw_khz) 1866 { 1867 u32 start_freq_khz, end_freq_khz; 1868 1869 start_freq_khz = center_freq_khz - (bw_khz / 2); 1870 end_freq_khz = center_freq_khz + (bw_khz / 2); 1871 1872 if (start_freq_khz >= freq_range->start_freq_khz && 1873 end_freq_khz <= freq_range->end_freq_khz) 1874 return true; 1875 1876 return false; 1877 } 1878 1879 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) 1880 { 1881 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, 1882 sizeof(*(sinfo->pertid)), 1883 gfp); 1884 if (!sinfo->pertid) 1885 return -ENOMEM; 1886 1887 return 0; 1888 } 1889 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); 1890 1891 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 1892 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 1893 const unsigned char rfc1042_header[] __aligned(2) = 1894 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 1895 EXPORT_SYMBOL(rfc1042_header); 1896 1897 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 1898 const unsigned char bridge_tunnel_header[] __aligned(2) = 1899 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 1900 EXPORT_SYMBOL(bridge_tunnel_header); 1901 1902 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ 1903 struct iapp_layer2_update { 1904 u8 da[ETH_ALEN]; /* broadcast */ 1905 u8 sa[ETH_ALEN]; /* STA addr */ 1906 __be16 len; /* 6 */ 1907 u8 dsap; /* 0 */ 1908 u8 ssap; /* 0 */ 1909 u8 control; 1910 u8 xid_info[3]; 1911 } __packed; 1912 1913 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr) 1914 { 1915 struct iapp_layer2_update *msg; 1916 struct sk_buff *skb; 1917 1918 /* Send Level 2 Update Frame to update forwarding tables in layer 2 1919 * bridge devices */ 1920 1921 skb = dev_alloc_skb(sizeof(*msg)); 1922 if (!skb) 1923 return; 1924 msg = skb_put(skb, sizeof(*msg)); 1925 1926 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) 1927 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ 1928 1929 eth_broadcast_addr(msg->da); 1930 ether_addr_copy(msg->sa, addr); 1931 msg->len = htons(6); 1932 msg->dsap = 0; 1933 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ 1934 msg->control = 0xaf; /* XID response lsb.1111F101. 1935 * F=0 (no poll command; unsolicited frame) */ 1936 msg->xid_info[0] = 0x81; /* XID format identifier */ 1937 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ 1938 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ 1939 1940 skb->dev = dev; 1941 skb->protocol = eth_type_trans(skb, dev); 1942 memset(skb->cb, 0, sizeof(skb->cb)); 1943 netif_rx_ni(skb); 1944 } 1945 EXPORT_SYMBOL(cfg80211_send_layer2_update); 1946 1947 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, 1948 enum ieee80211_vht_chanwidth bw, 1949 int mcs, bool ext_nss_bw_capable) 1950 { 1951 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map); 1952 int max_vht_nss = 0; 1953 int ext_nss_bw; 1954 int supp_width; 1955 int i, mcs_encoding; 1956 1957 if (map == 0xffff) 1958 return 0; 1959 1960 if (WARN_ON(mcs > 9)) 1961 return 0; 1962 if (mcs <= 7) 1963 mcs_encoding = 0; 1964 else if (mcs == 8) 1965 mcs_encoding = 1; 1966 else 1967 mcs_encoding = 2; 1968 1969 /* find max_vht_nss for the given MCS */ 1970 for (i = 7; i >= 0; i--) { 1971 int supp = (map >> (2 * i)) & 3; 1972 1973 if (supp == 3) 1974 continue; 1975 1976 if (supp >= mcs_encoding) { 1977 max_vht_nss = i; 1978 break; 1979 } 1980 } 1981 1982 if (!(cap->supp_mcs.tx_mcs_map & 1983 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) 1984 return max_vht_nss; 1985 1986 ext_nss_bw = le32_get_bits(cap->vht_cap_info, 1987 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 1988 supp_width = le32_get_bits(cap->vht_cap_info, 1989 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 1990 1991 /* if not capable, treat ext_nss_bw as 0 */ 1992 if (!ext_nss_bw_capable) 1993 ext_nss_bw = 0; 1994 1995 /* This is invalid */ 1996 if (supp_width == 3) 1997 return 0; 1998 1999 /* This is an invalid combination so pretend nothing is supported */ 2000 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2)) 2001 return 0; 2002 2003 /* 2004 * Cover all the special cases according to IEEE 802.11-2016 2005 * Table 9-250. All other cases are either factor of 1 or not 2006 * valid/supported. 2007 */ 2008 switch (bw) { 2009 case IEEE80211_VHT_CHANWIDTH_USE_HT: 2010 case IEEE80211_VHT_CHANWIDTH_80MHZ: 2011 if ((supp_width == 1 || supp_width == 2) && 2012 ext_nss_bw == 3) 2013 return 2 * max_vht_nss; 2014 break; 2015 case IEEE80211_VHT_CHANWIDTH_160MHZ: 2016 if (supp_width == 0 && 2017 (ext_nss_bw == 1 || ext_nss_bw == 2)) 2018 return max_vht_nss / 2; 2019 if (supp_width == 0 && 2020 ext_nss_bw == 3) 2021 return (3 * max_vht_nss) / 4; 2022 if (supp_width == 1 && 2023 ext_nss_bw == 3) 2024 return 2 * max_vht_nss; 2025 break; 2026 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 2027 if (supp_width == 0 && ext_nss_bw == 1) 2028 return 0; /* not possible */ 2029 if (supp_width == 0 && 2030 ext_nss_bw == 2) 2031 return max_vht_nss / 2; 2032 if (supp_width == 0 && 2033 ext_nss_bw == 3) 2034 return (3 * max_vht_nss) / 4; 2035 if (supp_width == 1 && 2036 ext_nss_bw == 0) 2037 return 0; /* not possible */ 2038 if (supp_width == 1 && 2039 ext_nss_bw == 1) 2040 return max_vht_nss / 2; 2041 if (supp_width == 1 && 2042 ext_nss_bw == 2) 2043 return (3 * max_vht_nss) / 4; 2044 break; 2045 } 2046 2047 /* not covered or invalid combination received */ 2048 return max_vht_nss; 2049 } 2050 EXPORT_SYMBOL(ieee80211_get_vht_max_nss); 2051