1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Wireless utility functions 4 * 5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018-2019 Intel Corporation 9 */ 10 #include <linux/export.h> 11 #include <linux/bitops.h> 12 #include <linux/etherdevice.h> 13 #include <linux/slab.h> 14 #include <linux/ieee80211.h> 15 #include <net/cfg80211.h> 16 #include <net/ip.h> 17 #include <net/dsfield.h> 18 #include <linux/if_vlan.h> 19 #include <linux/mpls.h> 20 #include <linux/gcd.h> 21 #include <linux/bitfield.h> 22 #include <linux/nospec.h> 23 #include "core.h" 24 #include "rdev-ops.h" 25 26 27 struct ieee80211_rate * 28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 29 u32 basic_rates, int bitrate) 30 { 31 struct ieee80211_rate *result = &sband->bitrates[0]; 32 int i; 33 34 for (i = 0; i < sband->n_bitrates; i++) { 35 if (!(basic_rates & BIT(i))) 36 continue; 37 if (sband->bitrates[i].bitrate > bitrate) 38 continue; 39 result = &sband->bitrates[i]; 40 } 41 42 return result; 43 } 44 EXPORT_SYMBOL(ieee80211_get_response_rate); 45 46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 47 enum nl80211_bss_scan_width scan_width) 48 { 49 struct ieee80211_rate *bitrates; 50 u32 mandatory_rates = 0; 51 enum ieee80211_rate_flags mandatory_flag; 52 int i; 53 54 if (WARN_ON(!sband)) 55 return 1; 56 57 if (sband->band == NL80211_BAND_2GHZ) { 58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 59 scan_width == NL80211_BSS_CHAN_WIDTH_10) 60 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 61 else 62 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 63 } else { 64 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 65 } 66 67 bitrates = sband->bitrates; 68 for (i = 0; i < sband->n_bitrates; i++) 69 if (bitrates[i].flags & mandatory_flag) 70 mandatory_rates |= BIT(i); 71 return mandatory_rates; 72 } 73 EXPORT_SYMBOL(ieee80211_mandatory_rates); 74 75 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band) 76 { 77 /* see 802.11 17.3.8.3.2 and Annex J 78 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 79 if (chan <= 0) 80 return 0; /* not supported */ 81 switch (band) { 82 case NL80211_BAND_2GHZ: 83 if (chan == 14) 84 return 2484; 85 else if (chan < 14) 86 return 2407 + chan * 5; 87 break; 88 case NL80211_BAND_5GHZ: 89 if (chan >= 182 && chan <= 196) 90 return 4000 + chan * 5; 91 else 92 return 5000 + chan * 5; 93 break; 94 case NL80211_BAND_6GHZ: 95 /* see 802.11ax D4.1 27.3.22.2 */ 96 if (chan <= 253) 97 return 5940 + chan * 5; 98 break; 99 case NL80211_BAND_60GHZ: 100 if (chan < 7) 101 return 56160 + chan * 2160; 102 break; 103 default: 104 ; 105 } 106 return 0; /* not supported */ 107 } 108 EXPORT_SYMBOL(ieee80211_channel_to_frequency); 109 110 int ieee80211_frequency_to_channel(int freq) 111 { 112 /* see 802.11 17.3.8.3.2 and Annex J */ 113 if (freq == 2484) 114 return 14; 115 else if (freq < 2484) 116 return (freq - 2407) / 5; 117 else if (freq >= 4910 && freq <= 4980) 118 return (freq - 4000) / 5; 119 else if (freq < 5945) 120 return (freq - 5000) / 5; 121 else if (freq <= 45000) /* DMG band lower limit */ 122 /* see 802.11ax D4.1 27.3.22.2 */ 123 return (freq - 5940) / 5; 124 else if (freq >= 58320 && freq <= 70200) 125 return (freq - 56160) / 2160; 126 else 127 return 0; 128 } 129 EXPORT_SYMBOL(ieee80211_frequency_to_channel); 130 131 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq) 132 { 133 enum nl80211_band band; 134 struct ieee80211_supported_band *sband; 135 int i; 136 137 for (band = 0; band < NUM_NL80211_BANDS; band++) { 138 sband = wiphy->bands[band]; 139 140 if (!sband) 141 continue; 142 143 for (i = 0; i < sband->n_channels; i++) { 144 if (sband->channels[i].center_freq == freq) 145 return &sband->channels[i]; 146 } 147 } 148 149 return NULL; 150 } 151 EXPORT_SYMBOL(ieee80211_get_channel); 152 153 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) 154 { 155 int i, want; 156 157 switch (sband->band) { 158 case NL80211_BAND_5GHZ: 159 case NL80211_BAND_6GHZ: 160 want = 3; 161 for (i = 0; i < sband->n_bitrates; i++) { 162 if (sband->bitrates[i].bitrate == 60 || 163 sband->bitrates[i].bitrate == 120 || 164 sband->bitrates[i].bitrate == 240) { 165 sband->bitrates[i].flags |= 166 IEEE80211_RATE_MANDATORY_A; 167 want--; 168 } 169 } 170 WARN_ON(want); 171 break; 172 case NL80211_BAND_2GHZ: 173 want = 7; 174 for (i = 0; i < sband->n_bitrates; i++) { 175 switch (sband->bitrates[i].bitrate) { 176 case 10: 177 case 20: 178 case 55: 179 case 110: 180 sband->bitrates[i].flags |= 181 IEEE80211_RATE_MANDATORY_B | 182 IEEE80211_RATE_MANDATORY_G; 183 want--; 184 break; 185 case 60: 186 case 120: 187 case 240: 188 sband->bitrates[i].flags |= 189 IEEE80211_RATE_MANDATORY_G; 190 want--; 191 /* fall through */ 192 default: 193 sband->bitrates[i].flags |= 194 IEEE80211_RATE_ERP_G; 195 break; 196 } 197 } 198 WARN_ON(want != 0 && want != 3); 199 break; 200 case NL80211_BAND_60GHZ: 201 /* check for mandatory HT MCS 1..4 */ 202 WARN_ON(!sband->ht_cap.ht_supported); 203 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 204 break; 205 case NUM_NL80211_BANDS: 206 default: 207 WARN_ON(1); 208 break; 209 } 210 } 211 212 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 213 { 214 enum nl80211_band band; 215 216 for (band = 0; band < NUM_NL80211_BANDS; band++) 217 if (wiphy->bands[band]) 218 set_mandatory_flags_band(wiphy->bands[band]); 219 } 220 221 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 222 { 223 int i; 224 for (i = 0; i < wiphy->n_cipher_suites; i++) 225 if (cipher == wiphy->cipher_suites[i]) 226 return true; 227 return false; 228 } 229 230 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 231 struct key_params *params, int key_idx, 232 bool pairwise, const u8 *mac_addr) 233 { 234 if (key_idx < 0 || key_idx > 5) 235 return -EINVAL; 236 237 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 238 return -EINVAL; 239 240 if (pairwise && !mac_addr) 241 return -EINVAL; 242 243 switch (params->cipher) { 244 case WLAN_CIPHER_SUITE_TKIP: 245 /* Extended Key ID can only be used with CCMP/GCMP ciphers */ 246 if ((pairwise && key_idx) || 247 params->mode != NL80211_KEY_RX_TX) 248 return -EINVAL; 249 break; 250 case WLAN_CIPHER_SUITE_CCMP: 251 case WLAN_CIPHER_SUITE_CCMP_256: 252 case WLAN_CIPHER_SUITE_GCMP: 253 case WLAN_CIPHER_SUITE_GCMP_256: 254 /* IEEE802.11-2016 allows only 0 and - when supporting 255 * Extended Key ID - 1 as index for pairwise keys. 256 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when 257 * the driver supports Extended Key ID. 258 * @NL80211_KEY_SET_TX can't be set when installing and 259 * validating a key. 260 */ 261 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) || 262 params->mode == NL80211_KEY_SET_TX) 263 return -EINVAL; 264 if (wiphy_ext_feature_isset(&rdev->wiphy, 265 NL80211_EXT_FEATURE_EXT_KEY_ID)) { 266 if (pairwise && (key_idx < 0 || key_idx > 1)) 267 return -EINVAL; 268 } else if (pairwise && key_idx) { 269 return -EINVAL; 270 } 271 break; 272 case WLAN_CIPHER_SUITE_AES_CMAC: 273 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 274 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 275 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 276 /* Disallow BIP (group-only) cipher as pairwise cipher */ 277 if (pairwise) 278 return -EINVAL; 279 if (key_idx < 4) 280 return -EINVAL; 281 break; 282 case WLAN_CIPHER_SUITE_WEP40: 283 case WLAN_CIPHER_SUITE_WEP104: 284 if (key_idx > 3) 285 return -EINVAL; 286 default: 287 break; 288 } 289 290 switch (params->cipher) { 291 case WLAN_CIPHER_SUITE_WEP40: 292 if (params->key_len != WLAN_KEY_LEN_WEP40) 293 return -EINVAL; 294 break; 295 case WLAN_CIPHER_SUITE_TKIP: 296 if (params->key_len != WLAN_KEY_LEN_TKIP) 297 return -EINVAL; 298 break; 299 case WLAN_CIPHER_SUITE_CCMP: 300 if (params->key_len != WLAN_KEY_LEN_CCMP) 301 return -EINVAL; 302 break; 303 case WLAN_CIPHER_SUITE_CCMP_256: 304 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 305 return -EINVAL; 306 break; 307 case WLAN_CIPHER_SUITE_GCMP: 308 if (params->key_len != WLAN_KEY_LEN_GCMP) 309 return -EINVAL; 310 break; 311 case WLAN_CIPHER_SUITE_GCMP_256: 312 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 313 return -EINVAL; 314 break; 315 case WLAN_CIPHER_SUITE_WEP104: 316 if (params->key_len != WLAN_KEY_LEN_WEP104) 317 return -EINVAL; 318 break; 319 case WLAN_CIPHER_SUITE_AES_CMAC: 320 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 321 return -EINVAL; 322 break; 323 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 324 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 325 return -EINVAL; 326 break; 327 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 328 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 329 return -EINVAL; 330 break; 331 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 332 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 333 return -EINVAL; 334 break; 335 default: 336 /* 337 * We don't know anything about this algorithm, 338 * allow using it -- but the driver must check 339 * all parameters! We still check below whether 340 * or not the driver supports this algorithm, 341 * of course. 342 */ 343 break; 344 } 345 346 if (params->seq) { 347 switch (params->cipher) { 348 case WLAN_CIPHER_SUITE_WEP40: 349 case WLAN_CIPHER_SUITE_WEP104: 350 /* These ciphers do not use key sequence */ 351 return -EINVAL; 352 case WLAN_CIPHER_SUITE_TKIP: 353 case WLAN_CIPHER_SUITE_CCMP: 354 case WLAN_CIPHER_SUITE_CCMP_256: 355 case WLAN_CIPHER_SUITE_GCMP: 356 case WLAN_CIPHER_SUITE_GCMP_256: 357 case WLAN_CIPHER_SUITE_AES_CMAC: 358 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 359 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 360 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 361 if (params->seq_len != 6) 362 return -EINVAL; 363 break; 364 } 365 } 366 367 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 368 return -EINVAL; 369 370 return 0; 371 } 372 373 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 374 { 375 unsigned int hdrlen = 24; 376 377 if (ieee80211_is_data(fc)) { 378 if (ieee80211_has_a4(fc)) 379 hdrlen = 30; 380 if (ieee80211_is_data_qos(fc)) { 381 hdrlen += IEEE80211_QOS_CTL_LEN; 382 if (ieee80211_has_order(fc)) 383 hdrlen += IEEE80211_HT_CTL_LEN; 384 } 385 goto out; 386 } 387 388 if (ieee80211_is_mgmt(fc)) { 389 if (ieee80211_has_order(fc)) 390 hdrlen += IEEE80211_HT_CTL_LEN; 391 goto out; 392 } 393 394 if (ieee80211_is_ctl(fc)) { 395 /* 396 * ACK and CTS are 10 bytes, all others 16. To see how 397 * to get this condition consider 398 * subtype mask: 0b0000000011110000 (0x00F0) 399 * ACK subtype: 0b0000000011010000 (0x00D0) 400 * CTS subtype: 0b0000000011000000 (0x00C0) 401 * bits that matter: ^^^ (0x00E0) 402 * value of those: 0b0000000011000000 (0x00C0) 403 */ 404 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 405 hdrlen = 10; 406 else 407 hdrlen = 16; 408 } 409 out: 410 return hdrlen; 411 } 412 EXPORT_SYMBOL(ieee80211_hdrlen); 413 414 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 415 { 416 const struct ieee80211_hdr *hdr = 417 (const struct ieee80211_hdr *)skb->data; 418 unsigned int hdrlen; 419 420 if (unlikely(skb->len < 10)) 421 return 0; 422 hdrlen = ieee80211_hdrlen(hdr->frame_control); 423 if (unlikely(hdrlen > skb->len)) 424 return 0; 425 return hdrlen; 426 } 427 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 428 429 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 430 { 431 int ae = flags & MESH_FLAGS_AE; 432 /* 802.11-2012, 8.2.4.7.3 */ 433 switch (ae) { 434 default: 435 case 0: 436 return 6; 437 case MESH_FLAGS_AE_A4: 438 return 12; 439 case MESH_FLAGS_AE_A5_A6: 440 return 18; 441 } 442 } 443 444 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 445 { 446 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 447 } 448 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 449 450 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 451 const u8 *addr, enum nl80211_iftype iftype, 452 u8 data_offset) 453 { 454 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 455 struct { 456 u8 hdr[ETH_ALEN] __aligned(2); 457 __be16 proto; 458 } payload; 459 struct ethhdr tmp; 460 u16 hdrlen; 461 u8 mesh_flags = 0; 462 463 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 464 return -1; 465 466 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; 467 if (skb->len < hdrlen + 8) 468 return -1; 469 470 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 471 * header 472 * IEEE 802.11 address fields: 473 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 474 * 0 0 DA SA BSSID n/a 475 * 0 1 DA BSSID SA n/a 476 * 1 0 BSSID SA DA n/a 477 * 1 1 RA TA DA SA 478 */ 479 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 480 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 481 482 if (iftype == NL80211_IFTYPE_MESH_POINT) 483 skb_copy_bits(skb, hdrlen, &mesh_flags, 1); 484 485 mesh_flags &= MESH_FLAGS_AE; 486 487 switch (hdr->frame_control & 488 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 489 case cpu_to_le16(IEEE80211_FCTL_TODS): 490 if (unlikely(iftype != NL80211_IFTYPE_AP && 491 iftype != NL80211_IFTYPE_AP_VLAN && 492 iftype != NL80211_IFTYPE_P2P_GO)) 493 return -1; 494 break; 495 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 496 if (unlikely(iftype != NL80211_IFTYPE_WDS && 497 iftype != NL80211_IFTYPE_MESH_POINT && 498 iftype != NL80211_IFTYPE_AP_VLAN && 499 iftype != NL80211_IFTYPE_STATION)) 500 return -1; 501 if (iftype == NL80211_IFTYPE_MESH_POINT) { 502 if (mesh_flags == MESH_FLAGS_AE_A4) 503 return -1; 504 if (mesh_flags == MESH_FLAGS_AE_A5_A6) { 505 skb_copy_bits(skb, hdrlen + 506 offsetof(struct ieee80211s_hdr, eaddr1), 507 tmp.h_dest, 2 * ETH_ALEN); 508 } 509 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 510 } 511 break; 512 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 513 if ((iftype != NL80211_IFTYPE_STATION && 514 iftype != NL80211_IFTYPE_P2P_CLIENT && 515 iftype != NL80211_IFTYPE_MESH_POINT) || 516 (is_multicast_ether_addr(tmp.h_dest) && 517 ether_addr_equal(tmp.h_source, addr))) 518 return -1; 519 if (iftype == NL80211_IFTYPE_MESH_POINT) { 520 if (mesh_flags == MESH_FLAGS_AE_A5_A6) 521 return -1; 522 if (mesh_flags == MESH_FLAGS_AE_A4) 523 skb_copy_bits(skb, hdrlen + 524 offsetof(struct ieee80211s_hdr, eaddr1), 525 tmp.h_source, ETH_ALEN); 526 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 527 } 528 break; 529 case cpu_to_le16(0): 530 if (iftype != NL80211_IFTYPE_ADHOC && 531 iftype != NL80211_IFTYPE_STATION && 532 iftype != NL80211_IFTYPE_OCB) 533 return -1; 534 break; 535 } 536 537 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)); 538 tmp.h_proto = payload.proto; 539 540 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) && 541 tmp.h_proto != htons(ETH_P_AARP) && 542 tmp.h_proto != htons(ETH_P_IPX)) || 543 ether_addr_equal(payload.hdr, bridge_tunnel_header))) 544 /* remove RFC1042 or Bridge-Tunnel encapsulation and 545 * replace EtherType */ 546 hdrlen += ETH_ALEN + 2; 547 else 548 tmp.h_proto = htons(skb->len - hdrlen); 549 550 pskb_pull(skb, hdrlen); 551 552 if (!ehdr) 553 ehdr = skb_push(skb, sizeof(struct ethhdr)); 554 memcpy(ehdr, &tmp, sizeof(tmp)); 555 556 return 0; 557 } 558 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 559 560 static void 561 __frame_add_frag(struct sk_buff *skb, struct page *page, 562 void *ptr, int len, int size) 563 { 564 struct skb_shared_info *sh = skb_shinfo(skb); 565 int page_offset; 566 567 page_ref_inc(page); 568 page_offset = ptr - page_address(page); 569 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 570 } 571 572 static void 573 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 574 int offset, int len) 575 { 576 struct skb_shared_info *sh = skb_shinfo(skb); 577 const skb_frag_t *frag = &sh->frags[0]; 578 struct page *frag_page; 579 void *frag_ptr; 580 int frag_len, frag_size; 581 int head_size = skb->len - skb->data_len; 582 int cur_len; 583 584 frag_page = virt_to_head_page(skb->head); 585 frag_ptr = skb->data; 586 frag_size = head_size; 587 588 while (offset >= frag_size) { 589 offset -= frag_size; 590 frag_page = skb_frag_page(frag); 591 frag_ptr = skb_frag_address(frag); 592 frag_size = skb_frag_size(frag); 593 frag++; 594 } 595 596 frag_ptr += offset; 597 frag_len = frag_size - offset; 598 599 cur_len = min(len, frag_len); 600 601 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 602 len -= cur_len; 603 604 while (len > 0) { 605 frag_len = skb_frag_size(frag); 606 cur_len = min(len, frag_len); 607 __frame_add_frag(frame, skb_frag_page(frag), 608 skb_frag_address(frag), cur_len, frag_len); 609 len -= cur_len; 610 frag++; 611 } 612 } 613 614 static struct sk_buff * 615 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 616 int offset, int len, bool reuse_frag) 617 { 618 struct sk_buff *frame; 619 int cur_len = len; 620 621 if (skb->len - offset < len) 622 return NULL; 623 624 /* 625 * When reusing framents, copy some data to the head to simplify 626 * ethernet header handling and speed up protocol header processing 627 * in the stack later. 628 */ 629 if (reuse_frag) 630 cur_len = min_t(int, len, 32); 631 632 /* 633 * Allocate and reserve two bytes more for payload 634 * alignment since sizeof(struct ethhdr) is 14. 635 */ 636 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 637 if (!frame) 638 return NULL; 639 640 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 641 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 642 643 len -= cur_len; 644 if (!len) 645 return frame; 646 647 offset += cur_len; 648 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 649 650 return frame; 651 } 652 653 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 654 const u8 *addr, enum nl80211_iftype iftype, 655 const unsigned int extra_headroom, 656 const u8 *check_da, const u8 *check_sa) 657 { 658 unsigned int hlen = ALIGN(extra_headroom, 4); 659 struct sk_buff *frame = NULL; 660 u16 ethertype; 661 u8 *payload; 662 int offset = 0, remaining; 663 struct ethhdr eth; 664 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 665 bool reuse_skb = false; 666 bool last = false; 667 668 while (!last) { 669 unsigned int subframe_len; 670 int len; 671 u8 padding; 672 673 skb_copy_bits(skb, offset, ð, sizeof(eth)); 674 len = ntohs(eth.h_proto); 675 subframe_len = sizeof(struct ethhdr) + len; 676 padding = (4 - subframe_len) & 0x3; 677 678 /* the last MSDU has no padding */ 679 remaining = skb->len - offset; 680 if (subframe_len > remaining) 681 goto purge; 682 683 offset += sizeof(struct ethhdr); 684 last = remaining <= subframe_len + padding; 685 686 /* FIXME: should we really accept multicast DA? */ 687 if ((check_da && !is_multicast_ether_addr(eth.h_dest) && 688 !ether_addr_equal(check_da, eth.h_dest)) || 689 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) { 690 offset += len + padding; 691 continue; 692 } 693 694 /* reuse skb for the last subframe */ 695 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 696 skb_pull(skb, offset); 697 frame = skb; 698 reuse_skb = true; 699 } else { 700 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 701 reuse_frag); 702 if (!frame) 703 goto purge; 704 705 offset += len + padding; 706 } 707 708 skb_reset_network_header(frame); 709 frame->dev = skb->dev; 710 frame->priority = skb->priority; 711 712 payload = frame->data; 713 ethertype = (payload[6] << 8) | payload[7]; 714 if (likely((ether_addr_equal(payload, rfc1042_header) && 715 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 716 ether_addr_equal(payload, bridge_tunnel_header))) { 717 eth.h_proto = htons(ethertype); 718 skb_pull(frame, ETH_ALEN + 2); 719 } 720 721 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth)); 722 __skb_queue_tail(list, frame); 723 } 724 725 if (!reuse_skb) 726 dev_kfree_skb(skb); 727 728 return; 729 730 purge: 731 __skb_queue_purge(list); 732 dev_kfree_skb(skb); 733 } 734 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 735 736 /* Given a data frame determine the 802.1p/1d tag to use. */ 737 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 738 struct cfg80211_qos_map *qos_map) 739 { 740 unsigned int dscp; 741 unsigned char vlan_priority; 742 unsigned int ret; 743 744 /* skb->priority values from 256->263 are magic values to 745 * directly indicate a specific 802.1d priority. This is used 746 * to allow 802.1d priority to be passed directly in from VLAN 747 * tags, etc. 748 */ 749 if (skb->priority >= 256 && skb->priority <= 263) { 750 ret = skb->priority - 256; 751 goto out; 752 } 753 754 if (skb_vlan_tag_present(skb)) { 755 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 756 >> VLAN_PRIO_SHIFT; 757 if (vlan_priority > 0) { 758 ret = vlan_priority; 759 goto out; 760 } 761 } 762 763 switch (skb->protocol) { 764 case htons(ETH_P_IP): 765 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 766 break; 767 case htons(ETH_P_IPV6): 768 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 769 break; 770 case htons(ETH_P_MPLS_UC): 771 case htons(ETH_P_MPLS_MC): { 772 struct mpls_label mpls_tmp, *mpls; 773 774 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 775 sizeof(*mpls), &mpls_tmp); 776 if (!mpls) 777 return 0; 778 779 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 780 >> MPLS_LS_TC_SHIFT; 781 goto out; 782 } 783 case htons(ETH_P_80221): 784 /* 802.21 is always network control traffic */ 785 return 7; 786 default: 787 return 0; 788 } 789 790 if (qos_map) { 791 unsigned int i, tmp_dscp = dscp >> 2; 792 793 for (i = 0; i < qos_map->num_des; i++) { 794 if (tmp_dscp == qos_map->dscp_exception[i].dscp) { 795 ret = qos_map->dscp_exception[i].up; 796 goto out; 797 } 798 } 799 800 for (i = 0; i < 8; i++) { 801 if (tmp_dscp >= qos_map->up[i].low && 802 tmp_dscp <= qos_map->up[i].high) { 803 ret = i; 804 goto out; 805 } 806 } 807 } 808 809 ret = dscp >> 5; 810 out: 811 return array_index_nospec(ret, IEEE80211_NUM_TIDS); 812 } 813 EXPORT_SYMBOL(cfg80211_classify8021d); 814 815 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id) 816 { 817 const struct cfg80211_bss_ies *ies; 818 819 ies = rcu_dereference(bss->ies); 820 if (!ies) 821 return NULL; 822 823 return cfg80211_find_elem(id, ies->data, ies->len); 824 } 825 EXPORT_SYMBOL(ieee80211_bss_get_elem); 826 827 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 828 { 829 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 830 struct net_device *dev = wdev->netdev; 831 int i; 832 833 if (!wdev->connect_keys) 834 return; 835 836 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) { 837 if (!wdev->connect_keys->params[i].cipher) 838 continue; 839 if (rdev_add_key(rdev, dev, i, false, NULL, 840 &wdev->connect_keys->params[i])) { 841 netdev_err(dev, "failed to set key %d\n", i); 842 continue; 843 } 844 if (wdev->connect_keys->def == i && 845 rdev_set_default_key(rdev, dev, i, true, true)) { 846 netdev_err(dev, "failed to set defkey %d\n", i); 847 continue; 848 } 849 } 850 851 kzfree(wdev->connect_keys); 852 wdev->connect_keys = NULL; 853 } 854 855 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 856 { 857 struct cfg80211_event *ev; 858 unsigned long flags; 859 860 spin_lock_irqsave(&wdev->event_lock, flags); 861 while (!list_empty(&wdev->event_list)) { 862 ev = list_first_entry(&wdev->event_list, 863 struct cfg80211_event, list); 864 list_del(&ev->list); 865 spin_unlock_irqrestore(&wdev->event_lock, flags); 866 867 wdev_lock(wdev); 868 switch (ev->type) { 869 case EVENT_CONNECT_RESULT: 870 __cfg80211_connect_result( 871 wdev->netdev, 872 &ev->cr, 873 ev->cr.status == WLAN_STATUS_SUCCESS); 874 break; 875 case EVENT_ROAMED: 876 __cfg80211_roamed(wdev, &ev->rm); 877 break; 878 case EVENT_DISCONNECTED: 879 __cfg80211_disconnected(wdev->netdev, 880 ev->dc.ie, ev->dc.ie_len, 881 ev->dc.reason, 882 !ev->dc.locally_generated); 883 break; 884 case EVENT_IBSS_JOINED: 885 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 886 ev->ij.channel); 887 break; 888 case EVENT_STOPPED: 889 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 890 break; 891 case EVENT_PORT_AUTHORIZED: 892 __cfg80211_port_authorized(wdev, ev->pa.bssid); 893 break; 894 } 895 wdev_unlock(wdev); 896 897 kfree(ev); 898 899 spin_lock_irqsave(&wdev->event_lock, flags); 900 } 901 spin_unlock_irqrestore(&wdev->event_lock, flags); 902 } 903 904 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 905 { 906 struct wireless_dev *wdev; 907 908 ASSERT_RTNL(); 909 910 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 911 cfg80211_process_wdev_events(wdev); 912 } 913 914 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 915 struct net_device *dev, enum nl80211_iftype ntype, 916 struct vif_params *params) 917 { 918 int err; 919 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 920 921 ASSERT_RTNL(); 922 923 /* don't support changing VLANs, you just re-create them */ 924 if (otype == NL80211_IFTYPE_AP_VLAN) 925 return -EOPNOTSUPP; 926 927 /* cannot change into P2P device or NAN */ 928 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 929 ntype == NL80211_IFTYPE_NAN) 930 return -EOPNOTSUPP; 931 932 if (!rdev->ops->change_virtual_intf || 933 !(rdev->wiphy.interface_modes & (1 << ntype))) 934 return -EOPNOTSUPP; 935 936 /* if it's part of a bridge, reject changing type to station/ibss */ 937 if ((dev->priv_flags & IFF_BRIDGE_PORT) && 938 (ntype == NL80211_IFTYPE_ADHOC || 939 ntype == NL80211_IFTYPE_STATION || 940 ntype == NL80211_IFTYPE_P2P_CLIENT)) 941 return -EBUSY; 942 943 if (ntype != otype) { 944 dev->ieee80211_ptr->use_4addr = false; 945 dev->ieee80211_ptr->mesh_id_up_len = 0; 946 wdev_lock(dev->ieee80211_ptr); 947 rdev_set_qos_map(rdev, dev, NULL); 948 wdev_unlock(dev->ieee80211_ptr); 949 950 switch (otype) { 951 case NL80211_IFTYPE_AP: 952 cfg80211_stop_ap(rdev, dev, true); 953 break; 954 case NL80211_IFTYPE_ADHOC: 955 cfg80211_leave_ibss(rdev, dev, false); 956 break; 957 case NL80211_IFTYPE_STATION: 958 case NL80211_IFTYPE_P2P_CLIENT: 959 wdev_lock(dev->ieee80211_ptr); 960 cfg80211_disconnect(rdev, dev, 961 WLAN_REASON_DEAUTH_LEAVING, true); 962 wdev_unlock(dev->ieee80211_ptr); 963 break; 964 case NL80211_IFTYPE_MESH_POINT: 965 /* mesh should be handled? */ 966 break; 967 default: 968 break; 969 } 970 971 cfg80211_process_rdev_events(rdev); 972 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr); 973 } 974 975 err = rdev_change_virtual_intf(rdev, dev, ntype, params); 976 977 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 978 979 if (!err && params && params->use_4addr != -1) 980 dev->ieee80211_ptr->use_4addr = params->use_4addr; 981 982 if (!err) { 983 dev->priv_flags &= ~IFF_DONT_BRIDGE; 984 switch (ntype) { 985 case NL80211_IFTYPE_STATION: 986 if (dev->ieee80211_ptr->use_4addr) 987 break; 988 /* fall through */ 989 case NL80211_IFTYPE_OCB: 990 case NL80211_IFTYPE_P2P_CLIENT: 991 case NL80211_IFTYPE_ADHOC: 992 dev->priv_flags |= IFF_DONT_BRIDGE; 993 break; 994 case NL80211_IFTYPE_P2P_GO: 995 case NL80211_IFTYPE_AP: 996 case NL80211_IFTYPE_AP_VLAN: 997 case NL80211_IFTYPE_WDS: 998 case NL80211_IFTYPE_MESH_POINT: 999 /* bridging OK */ 1000 break; 1001 case NL80211_IFTYPE_MONITOR: 1002 /* monitor can't bridge anyway */ 1003 break; 1004 case NL80211_IFTYPE_UNSPECIFIED: 1005 case NUM_NL80211_IFTYPES: 1006 /* not happening */ 1007 break; 1008 case NL80211_IFTYPE_P2P_DEVICE: 1009 case NL80211_IFTYPE_NAN: 1010 WARN_ON(1); 1011 break; 1012 } 1013 } 1014 1015 if (!err && ntype != otype && netif_running(dev)) { 1016 cfg80211_update_iface_num(rdev, ntype, 1); 1017 cfg80211_update_iface_num(rdev, otype, -1); 1018 } 1019 1020 return err; 1021 } 1022 1023 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) 1024 { 1025 int modulation, streams, bitrate; 1026 1027 /* the formula below does only work for MCS values smaller than 32 */ 1028 if (WARN_ON_ONCE(rate->mcs >= 32)) 1029 return 0; 1030 1031 modulation = rate->mcs & 7; 1032 streams = (rate->mcs >> 3) + 1; 1033 1034 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1035 1036 if (modulation < 4) 1037 bitrate *= (modulation + 1); 1038 else if (modulation == 4) 1039 bitrate *= (modulation + 2); 1040 else 1041 bitrate *= (modulation + 3); 1042 1043 bitrate *= streams; 1044 1045 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1046 bitrate = (bitrate / 9) * 10; 1047 1048 /* do NOT round down here */ 1049 return (bitrate + 50000) / 100000; 1050 } 1051 1052 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate) 1053 { 1054 static const u32 __mcs2bitrate[] = { 1055 /* control PHY */ 1056 [0] = 275, 1057 /* SC PHY */ 1058 [1] = 3850, 1059 [2] = 7700, 1060 [3] = 9625, 1061 [4] = 11550, 1062 [5] = 12512, /* 1251.25 mbps */ 1063 [6] = 15400, 1064 [7] = 19250, 1065 [8] = 23100, 1066 [9] = 25025, 1067 [10] = 30800, 1068 [11] = 38500, 1069 [12] = 46200, 1070 /* OFDM PHY */ 1071 [13] = 6930, 1072 [14] = 8662, /* 866.25 mbps */ 1073 [15] = 13860, 1074 [16] = 17325, 1075 [17] = 20790, 1076 [18] = 27720, 1077 [19] = 34650, 1078 [20] = 41580, 1079 [21] = 45045, 1080 [22] = 51975, 1081 [23] = 62370, 1082 [24] = 67568, /* 6756.75 mbps */ 1083 /* LP-SC PHY */ 1084 [25] = 6260, 1085 [26] = 8340, 1086 [27] = 11120, 1087 [28] = 12510, 1088 [29] = 16680, 1089 [30] = 22240, 1090 [31] = 25030, 1091 }; 1092 1093 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1094 return 0; 1095 1096 return __mcs2bitrate[rate->mcs]; 1097 } 1098 1099 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate) 1100 { 1101 static const u32 __mcs2bitrate[] = { 1102 /* control PHY */ 1103 [0] = 275, 1104 /* SC PHY */ 1105 [1] = 3850, 1106 [2] = 7700, 1107 [3] = 9625, 1108 [4] = 11550, 1109 [5] = 12512, /* 1251.25 mbps */ 1110 [6] = 13475, 1111 [7] = 15400, 1112 [8] = 19250, 1113 [9] = 23100, 1114 [10] = 25025, 1115 [11] = 26950, 1116 [12] = 30800, 1117 [13] = 38500, 1118 [14] = 46200, 1119 [15] = 50050, 1120 [16] = 53900, 1121 [17] = 57750, 1122 [18] = 69300, 1123 [19] = 75075, 1124 [20] = 80850, 1125 }; 1126 1127 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1128 return 0; 1129 1130 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch; 1131 } 1132 1133 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1134 { 1135 static const u32 base[4][10] = { 1136 { 6500000, 1137 13000000, 1138 19500000, 1139 26000000, 1140 39000000, 1141 52000000, 1142 58500000, 1143 65000000, 1144 78000000, 1145 /* not in the spec, but some devices use this: */ 1146 86500000, 1147 }, 1148 { 13500000, 1149 27000000, 1150 40500000, 1151 54000000, 1152 81000000, 1153 108000000, 1154 121500000, 1155 135000000, 1156 162000000, 1157 180000000, 1158 }, 1159 { 29300000, 1160 58500000, 1161 87800000, 1162 117000000, 1163 175500000, 1164 234000000, 1165 263300000, 1166 292500000, 1167 351000000, 1168 390000000, 1169 }, 1170 { 58500000, 1171 117000000, 1172 175500000, 1173 234000000, 1174 351000000, 1175 468000000, 1176 526500000, 1177 585000000, 1178 702000000, 1179 780000000, 1180 }, 1181 }; 1182 u32 bitrate; 1183 int idx; 1184 1185 if (rate->mcs > 9) 1186 goto warn; 1187 1188 switch (rate->bw) { 1189 case RATE_INFO_BW_160: 1190 idx = 3; 1191 break; 1192 case RATE_INFO_BW_80: 1193 idx = 2; 1194 break; 1195 case RATE_INFO_BW_40: 1196 idx = 1; 1197 break; 1198 case RATE_INFO_BW_5: 1199 case RATE_INFO_BW_10: 1200 default: 1201 goto warn; 1202 case RATE_INFO_BW_20: 1203 idx = 0; 1204 } 1205 1206 bitrate = base[idx][rate->mcs]; 1207 bitrate *= rate->nss; 1208 1209 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1210 bitrate = (bitrate / 9) * 10; 1211 1212 /* do NOT round down here */ 1213 return (bitrate + 50000) / 100000; 1214 warn: 1215 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1216 rate->bw, rate->mcs, rate->nss); 1217 return 0; 1218 } 1219 1220 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) 1221 { 1222 #define SCALE 2048 1223 u16 mcs_divisors[12] = { 1224 34133, /* 16.666666... */ 1225 17067, /* 8.333333... */ 1226 11378, /* 5.555555... */ 1227 8533, /* 4.166666... */ 1228 5689, /* 2.777777... */ 1229 4267, /* 2.083333... */ 1230 3923, /* 1.851851... */ 1231 3413, /* 1.666666... */ 1232 2844, /* 1.388888... */ 1233 2560, /* 1.250000... */ 1234 2276, /* 1.111111... */ 1235 2048, /* 1.000000... */ 1236 }; 1237 u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; 1238 u32 rates_969[3] = { 480388888, 453700000, 408333333 }; 1239 u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1240 u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1241 u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1242 u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1243 u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1244 u64 tmp; 1245 u32 result; 1246 1247 if (WARN_ON_ONCE(rate->mcs > 11)) 1248 return 0; 1249 1250 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) 1251 return 0; 1252 if (WARN_ON_ONCE(rate->he_ru_alloc > 1253 NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1254 return 0; 1255 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1256 return 0; 1257 1258 if (rate->bw == RATE_INFO_BW_160) 1259 result = rates_160M[rate->he_gi]; 1260 else if (rate->bw == RATE_INFO_BW_80 || 1261 (rate->bw == RATE_INFO_BW_HE_RU && 1262 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) 1263 result = rates_969[rate->he_gi]; 1264 else if (rate->bw == RATE_INFO_BW_40 || 1265 (rate->bw == RATE_INFO_BW_HE_RU && 1266 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) 1267 result = rates_484[rate->he_gi]; 1268 else if (rate->bw == RATE_INFO_BW_20 || 1269 (rate->bw == RATE_INFO_BW_HE_RU && 1270 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) 1271 result = rates_242[rate->he_gi]; 1272 else if (rate->bw == RATE_INFO_BW_HE_RU && 1273 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) 1274 result = rates_106[rate->he_gi]; 1275 else if (rate->bw == RATE_INFO_BW_HE_RU && 1276 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) 1277 result = rates_52[rate->he_gi]; 1278 else if (rate->bw == RATE_INFO_BW_HE_RU && 1279 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) 1280 result = rates_26[rate->he_gi]; 1281 else { 1282 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", 1283 rate->bw, rate->he_ru_alloc); 1284 return 0; 1285 } 1286 1287 /* now scale to the appropriate MCS */ 1288 tmp = result; 1289 tmp *= SCALE; 1290 do_div(tmp, mcs_divisors[rate->mcs]); 1291 result = tmp; 1292 1293 /* and take NSS, DCM into account */ 1294 result = (result * rate->nss) / 8; 1295 if (rate->he_dcm) 1296 result /= 2; 1297 1298 return result / 10000; 1299 } 1300 1301 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1302 { 1303 if (rate->flags & RATE_INFO_FLAGS_MCS) 1304 return cfg80211_calculate_bitrate_ht(rate); 1305 if (rate->flags & RATE_INFO_FLAGS_DMG) 1306 return cfg80211_calculate_bitrate_dmg(rate); 1307 if (rate->flags & RATE_INFO_FLAGS_EDMG) 1308 return cfg80211_calculate_bitrate_edmg(rate); 1309 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1310 return cfg80211_calculate_bitrate_vht(rate); 1311 if (rate->flags & RATE_INFO_FLAGS_HE_MCS) 1312 return cfg80211_calculate_bitrate_he(rate); 1313 1314 return rate->legacy; 1315 } 1316 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1317 1318 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1319 enum ieee80211_p2p_attr_id attr, 1320 u8 *buf, unsigned int bufsize) 1321 { 1322 u8 *out = buf; 1323 u16 attr_remaining = 0; 1324 bool desired_attr = false; 1325 u16 desired_len = 0; 1326 1327 while (len > 0) { 1328 unsigned int iedatalen; 1329 unsigned int copy; 1330 const u8 *iedata; 1331 1332 if (len < 2) 1333 return -EILSEQ; 1334 iedatalen = ies[1]; 1335 if (iedatalen + 2 > len) 1336 return -EILSEQ; 1337 1338 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1339 goto cont; 1340 1341 if (iedatalen < 4) 1342 goto cont; 1343 1344 iedata = ies + 2; 1345 1346 /* check WFA OUI, P2P subtype */ 1347 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1348 iedata[2] != 0x9a || iedata[3] != 0x09) 1349 goto cont; 1350 1351 iedatalen -= 4; 1352 iedata += 4; 1353 1354 /* check attribute continuation into this IE */ 1355 copy = min_t(unsigned int, attr_remaining, iedatalen); 1356 if (copy && desired_attr) { 1357 desired_len += copy; 1358 if (out) { 1359 memcpy(out, iedata, min(bufsize, copy)); 1360 out += min(bufsize, copy); 1361 bufsize -= min(bufsize, copy); 1362 } 1363 1364 1365 if (copy == attr_remaining) 1366 return desired_len; 1367 } 1368 1369 attr_remaining -= copy; 1370 if (attr_remaining) 1371 goto cont; 1372 1373 iedatalen -= copy; 1374 iedata += copy; 1375 1376 while (iedatalen > 0) { 1377 u16 attr_len; 1378 1379 /* P2P attribute ID & size must fit */ 1380 if (iedatalen < 3) 1381 return -EILSEQ; 1382 desired_attr = iedata[0] == attr; 1383 attr_len = get_unaligned_le16(iedata + 1); 1384 iedatalen -= 3; 1385 iedata += 3; 1386 1387 copy = min_t(unsigned int, attr_len, iedatalen); 1388 1389 if (desired_attr) { 1390 desired_len += copy; 1391 if (out) { 1392 memcpy(out, iedata, min(bufsize, copy)); 1393 out += min(bufsize, copy); 1394 bufsize -= min(bufsize, copy); 1395 } 1396 1397 if (copy == attr_len) 1398 return desired_len; 1399 } 1400 1401 iedata += copy; 1402 iedatalen -= copy; 1403 attr_remaining = attr_len - copy; 1404 } 1405 1406 cont: 1407 len -= ies[1] + 2; 1408 ies += ies[1] + 2; 1409 } 1410 1411 if (attr_remaining && desired_attr) 1412 return -EILSEQ; 1413 1414 return -ENOENT; 1415 } 1416 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1417 1418 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) 1419 { 1420 int i; 1421 1422 /* Make sure array values are legal */ 1423 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) 1424 return false; 1425 1426 i = 0; 1427 while (i < n_ids) { 1428 if (ids[i] == WLAN_EID_EXTENSION) { 1429 if (id_ext && (ids[i + 1] == id)) 1430 return true; 1431 1432 i += 2; 1433 continue; 1434 } 1435 1436 if (ids[i] == id && !id_ext) 1437 return true; 1438 1439 i++; 1440 } 1441 return false; 1442 } 1443 1444 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) 1445 { 1446 /* we assume a validly formed IEs buffer */ 1447 u8 len = ies[pos + 1]; 1448 1449 pos += 2 + len; 1450 1451 /* the IE itself must have 255 bytes for fragments to follow */ 1452 if (len < 255) 1453 return pos; 1454 1455 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { 1456 len = ies[pos + 1]; 1457 pos += 2 + len; 1458 } 1459 1460 return pos; 1461 } 1462 1463 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1464 const u8 *ids, int n_ids, 1465 const u8 *after_ric, int n_after_ric, 1466 size_t offset) 1467 { 1468 size_t pos = offset; 1469 1470 while (pos < ielen) { 1471 u8 ext = 0; 1472 1473 if (ies[pos] == WLAN_EID_EXTENSION) 1474 ext = 2; 1475 if ((pos + ext) >= ielen) 1476 break; 1477 1478 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], 1479 ies[pos] == WLAN_EID_EXTENSION)) 1480 break; 1481 1482 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1483 pos = skip_ie(ies, ielen, pos); 1484 1485 while (pos < ielen) { 1486 if (ies[pos] == WLAN_EID_EXTENSION) 1487 ext = 2; 1488 else 1489 ext = 0; 1490 1491 if ((pos + ext) >= ielen) 1492 break; 1493 1494 if (!ieee80211_id_in_list(after_ric, 1495 n_after_ric, 1496 ies[pos + ext], 1497 ext == 2)) 1498 pos = skip_ie(ies, ielen, pos); 1499 else 1500 break; 1501 } 1502 } else { 1503 pos = skip_ie(ies, ielen, pos); 1504 } 1505 } 1506 1507 return pos; 1508 } 1509 EXPORT_SYMBOL(ieee80211_ie_split_ric); 1510 1511 bool ieee80211_operating_class_to_band(u8 operating_class, 1512 enum nl80211_band *band) 1513 { 1514 switch (operating_class) { 1515 case 112: 1516 case 115 ... 127: 1517 case 128 ... 130: 1518 *band = NL80211_BAND_5GHZ; 1519 return true; 1520 case 131 ... 135: 1521 *band = NL80211_BAND_6GHZ; 1522 return true; 1523 case 81: 1524 case 82: 1525 case 83: 1526 case 84: 1527 *band = NL80211_BAND_2GHZ; 1528 return true; 1529 case 180: 1530 *band = NL80211_BAND_60GHZ; 1531 return true; 1532 } 1533 1534 return false; 1535 } 1536 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1537 1538 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 1539 u8 *op_class) 1540 { 1541 u8 vht_opclass; 1542 u32 freq = chandef->center_freq1; 1543 1544 if (freq >= 2412 && freq <= 2472) { 1545 if (chandef->width > NL80211_CHAN_WIDTH_40) 1546 return false; 1547 1548 /* 2.407 GHz, channels 1..13 */ 1549 if (chandef->width == NL80211_CHAN_WIDTH_40) { 1550 if (freq > chandef->chan->center_freq) 1551 *op_class = 83; /* HT40+ */ 1552 else 1553 *op_class = 84; /* HT40- */ 1554 } else { 1555 *op_class = 81; 1556 } 1557 1558 return true; 1559 } 1560 1561 if (freq == 2484) { 1562 /* channel 14 is only for IEEE 802.11b */ 1563 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT) 1564 return false; 1565 1566 *op_class = 82; /* channel 14 */ 1567 return true; 1568 } 1569 1570 switch (chandef->width) { 1571 case NL80211_CHAN_WIDTH_80: 1572 vht_opclass = 128; 1573 break; 1574 case NL80211_CHAN_WIDTH_160: 1575 vht_opclass = 129; 1576 break; 1577 case NL80211_CHAN_WIDTH_80P80: 1578 vht_opclass = 130; 1579 break; 1580 case NL80211_CHAN_WIDTH_10: 1581 case NL80211_CHAN_WIDTH_5: 1582 return false; /* unsupported for now */ 1583 default: 1584 vht_opclass = 0; 1585 break; 1586 } 1587 1588 /* 5 GHz, channels 36..48 */ 1589 if (freq >= 5180 && freq <= 5240) { 1590 if (vht_opclass) { 1591 *op_class = vht_opclass; 1592 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1593 if (freq > chandef->chan->center_freq) 1594 *op_class = 116; 1595 else 1596 *op_class = 117; 1597 } else { 1598 *op_class = 115; 1599 } 1600 1601 return true; 1602 } 1603 1604 /* 5 GHz, channels 52..64 */ 1605 if (freq >= 5260 && freq <= 5320) { 1606 if (vht_opclass) { 1607 *op_class = vht_opclass; 1608 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1609 if (freq > chandef->chan->center_freq) 1610 *op_class = 119; 1611 else 1612 *op_class = 120; 1613 } else { 1614 *op_class = 118; 1615 } 1616 1617 return true; 1618 } 1619 1620 /* 5 GHz, channels 100..144 */ 1621 if (freq >= 5500 && freq <= 5720) { 1622 if (vht_opclass) { 1623 *op_class = vht_opclass; 1624 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1625 if (freq > chandef->chan->center_freq) 1626 *op_class = 122; 1627 else 1628 *op_class = 123; 1629 } else { 1630 *op_class = 121; 1631 } 1632 1633 return true; 1634 } 1635 1636 /* 5 GHz, channels 149..169 */ 1637 if (freq >= 5745 && freq <= 5845) { 1638 if (vht_opclass) { 1639 *op_class = vht_opclass; 1640 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1641 if (freq > chandef->chan->center_freq) 1642 *op_class = 126; 1643 else 1644 *op_class = 127; 1645 } else if (freq <= 5805) { 1646 *op_class = 124; 1647 } else { 1648 *op_class = 125; 1649 } 1650 1651 return true; 1652 } 1653 1654 /* 56.16 GHz, channel 1..4 */ 1655 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { 1656 if (chandef->width >= NL80211_CHAN_WIDTH_40) 1657 return false; 1658 1659 *op_class = 180; 1660 return true; 1661 } 1662 1663 /* not supported yet */ 1664 return false; 1665 } 1666 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 1667 1668 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, 1669 u32 *beacon_int_gcd, 1670 bool *beacon_int_different) 1671 { 1672 struct wireless_dev *wdev; 1673 1674 *beacon_int_gcd = 0; 1675 *beacon_int_different = false; 1676 1677 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 1678 if (!wdev->beacon_interval) 1679 continue; 1680 1681 if (!*beacon_int_gcd) { 1682 *beacon_int_gcd = wdev->beacon_interval; 1683 continue; 1684 } 1685 1686 if (wdev->beacon_interval == *beacon_int_gcd) 1687 continue; 1688 1689 *beacon_int_different = true; 1690 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval); 1691 } 1692 1693 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { 1694 if (*beacon_int_gcd) 1695 *beacon_int_different = true; 1696 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); 1697 } 1698 } 1699 1700 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 1701 enum nl80211_iftype iftype, u32 beacon_int) 1702 { 1703 /* 1704 * This is just a basic pre-condition check; if interface combinations 1705 * are possible the driver must already be checking those with a call 1706 * to cfg80211_check_combinations(), in which case we'll validate more 1707 * through the cfg80211_calculate_bi_data() call and code in 1708 * cfg80211_iter_combinations(). 1709 */ 1710 1711 if (beacon_int < 10 || beacon_int > 10000) 1712 return -EINVAL; 1713 1714 return 0; 1715 } 1716 1717 int cfg80211_iter_combinations(struct wiphy *wiphy, 1718 struct iface_combination_params *params, 1719 void (*iter)(const struct ieee80211_iface_combination *c, 1720 void *data), 1721 void *data) 1722 { 1723 const struct ieee80211_regdomain *regdom; 1724 enum nl80211_dfs_regions region = 0; 1725 int i, j, iftype; 1726 int num_interfaces = 0; 1727 u32 used_iftypes = 0; 1728 u32 beacon_int_gcd; 1729 bool beacon_int_different; 1730 1731 /* 1732 * This is a bit strange, since the iteration used to rely only on 1733 * the data given by the driver, but here it now relies on context, 1734 * in form of the currently operating interfaces. 1735 * This is OK for all current users, and saves us from having to 1736 * push the GCD calculations into all the drivers. 1737 * In the future, this should probably rely more on data that's in 1738 * cfg80211 already - the only thing not would appear to be any new 1739 * interfaces (while being brought up) and channel/radar data. 1740 */ 1741 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, 1742 &beacon_int_gcd, &beacon_int_different); 1743 1744 if (params->radar_detect) { 1745 rcu_read_lock(); 1746 regdom = rcu_dereference(cfg80211_regdomain); 1747 if (regdom) 1748 region = regdom->dfs_region; 1749 rcu_read_unlock(); 1750 } 1751 1752 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1753 num_interfaces += params->iftype_num[iftype]; 1754 if (params->iftype_num[iftype] > 0 && 1755 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 1756 used_iftypes |= BIT(iftype); 1757 } 1758 1759 for (i = 0; i < wiphy->n_iface_combinations; i++) { 1760 const struct ieee80211_iface_combination *c; 1761 struct ieee80211_iface_limit *limits; 1762 u32 all_iftypes = 0; 1763 1764 c = &wiphy->iface_combinations[i]; 1765 1766 if (num_interfaces > c->max_interfaces) 1767 continue; 1768 if (params->num_different_channels > c->num_different_channels) 1769 continue; 1770 1771 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 1772 GFP_KERNEL); 1773 if (!limits) 1774 return -ENOMEM; 1775 1776 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1777 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 1778 continue; 1779 for (j = 0; j < c->n_limits; j++) { 1780 all_iftypes |= limits[j].types; 1781 if (!(limits[j].types & BIT(iftype))) 1782 continue; 1783 if (limits[j].max < params->iftype_num[iftype]) 1784 goto cont; 1785 limits[j].max -= params->iftype_num[iftype]; 1786 } 1787 } 1788 1789 if (params->radar_detect != 1790 (c->radar_detect_widths & params->radar_detect)) 1791 goto cont; 1792 1793 if (params->radar_detect && c->radar_detect_regions && 1794 !(c->radar_detect_regions & BIT(region))) 1795 goto cont; 1796 1797 /* Finally check that all iftypes that we're currently 1798 * using are actually part of this combination. If they 1799 * aren't then we can't use this combination and have 1800 * to continue to the next. 1801 */ 1802 if ((all_iftypes & used_iftypes) != used_iftypes) 1803 goto cont; 1804 1805 if (beacon_int_gcd) { 1806 if (c->beacon_int_min_gcd && 1807 beacon_int_gcd < c->beacon_int_min_gcd) 1808 goto cont; 1809 if (!c->beacon_int_min_gcd && beacon_int_different) 1810 goto cont; 1811 } 1812 1813 /* This combination covered all interface types and 1814 * supported the requested numbers, so we're good. 1815 */ 1816 1817 (*iter)(c, data); 1818 cont: 1819 kfree(limits); 1820 } 1821 1822 return 0; 1823 } 1824 EXPORT_SYMBOL(cfg80211_iter_combinations); 1825 1826 static void 1827 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 1828 void *data) 1829 { 1830 int *num = data; 1831 (*num)++; 1832 } 1833 1834 int cfg80211_check_combinations(struct wiphy *wiphy, 1835 struct iface_combination_params *params) 1836 { 1837 int err, num = 0; 1838 1839 err = cfg80211_iter_combinations(wiphy, params, 1840 cfg80211_iter_sum_ifcombs, &num); 1841 if (err) 1842 return err; 1843 if (num == 0) 1844 return -EBUSY; 1845 1846 return 0; 1847 } 1848 EXPORT_SYMBOL(cfg80211_check_combinations); 1849 1850 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1851 const u8 *rates, unsigned int n_rates, 1852 u32 *mask) 1853 { 1854 int i, j; 1855 1856 if (!sband) 1857 return -EINVAL; 1858 1859 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1860 return -EINVAL; 1861 1862 *mask = 0; 1863 1864 for (i = 0; i < n_rates; i++) { 1865 int rate = (rates[i] & 0x7f) * 5; 1866 bool found = false; 1867 1868 for (j = 0; j < sband->n_bitrates; j++) { 1869 if (sband->bitrates[j].bitrate == rate) { 1870 found = true; 1871 *mask |= BIT(j); 1872 break; 1873 } 1874 } 1875 if (!found) 1876 return -EINVAL; 1877 } 1878 1879 /* 1880 * mask must have at least one bit set here since we 1881 * didn't accept a 0-length rates array nor allowed 1882 * entries in the array that didn't exist 1883 */ 1884 1885 return 0; 1886 } 1887 1888 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 1889 { 1890 enum nl80211_band band; 1891 unsigned int n_channels = 0; 1892 1893 for (band = 0; band < NUM_NL80211_BANDS; band++) 1894 if (wiphy->bands[band]) 1895 n_channels += wiphy->bands[band]->n_channels; 1896 1897 return n_channels; 1898 } 1899 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 1900 1901 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 1902 struct station_info *sinfo) 1903 { 1904 struct cfg80211_registered_device *rdev; 1905 struct wireless_dev *wdev; 1906 1907 wdev = dev->ieee80211_ptr; 1908 if (!wdev) 1909 return -EOPNOTSUPP; 1910 1911 rdev = wiphy_to_rdev(wdev->wiphy); 1912 if (!rdev->ops->get_station) 1913 return -EOPNOTSUPP; 1914 1915 memset(sinfo, 0, sizeof(*sinfo)); 1916 1917 return rdev_get_station(rdev, dev, mac_addr, sinfo); 1918 } 1919 EXPORT_SYMBOL(cfg80211_get_station); 1920 1921 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 1922 { 1923 int i; 1924 1925 if (!f) 1926 return; 1927 1928 kfree(f->serv_spec_info); 1929 kfree(f->srf_bf); 1930 kfree(f->srf_macs); 1931 for (i = 0; i < f->num_rx_filters; i++) 1932 kfree(f->rx_filters[i].filter); 1933 1934 for (i = 0; i < f->num_tx_filters; i++) 1935 kfree(f->tx_filters[i].filter); 1936 1937 kfree(f->rx_filters); 1938 kfree(f->tx_filters); 1939 kfree(f); 1940 } 1941 EXPORT_SYMBOL(cfg80211_free_nan_func); 1942 1943 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, 1944 u32 center_freq_khz, u32 bw_khz) 1945 { 1946 u32 start_freq_khz, end_freq_khz; 1947 1948 start_freq_khz = center_freq_khz - (bw_khz / 2); 1949 end_freq_khz = center_freq_khz + (bw_khz / 2); 1950 1951 if (start_freq_khz >= freq_range->start_freq_khz && 1952 end_freq_khz <= freq_range->end_freq_khz) 1953 return true; 1954 1955 return false; 1956 } 1957 1958 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) 1959 { 1960 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, 1961 sizeof(*(sinfo->pertid)), 1962 gfp); 1963 if (!sinfo->pertid) 1964 return -ENOMEM; 1965 1966 return 0; 1967 } 1968 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); 1969 1970 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 1971 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 1972 const unsigned char rfc1042_header[] __aligned(2) = 1973 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 1974 EXPORT_SYMBOL(rfc1042_header); 1975 1976 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 1977 const unsigned char bridge_tunnel_header[] __aligned(2) = 1978 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 1979 EXPORT_SYMBOL(bridge_tunnel_header); 1980 1981 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ 1982 struct iapp_layer2_update { 1983 u8 da[ETH_ALEN]; /* broadcast */ 1984 u8 sa[ETH_ALEN]; /* STA addr */ 1985 __be16 len; /* 6 */ 1986 u8 dsap; /* 0 */ 1987 u8 ssap; /* 0 */ 1988 u8 control; 1989 u8 xid_info[3]; 1990 } __packed; 1991 1992 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr) 1993 { 1994 struct iapp_layer2_update *msg; 1995 struct sk_buff *skb; 1996 1997 /* Send Level 2 Update Frame to update forwarding tables in layer 2 1998 * bridge devices */ 1999 2000 skb = dev_alloc_skb(sizeof(*msg)); 2001 if (!skb) 2002 return; 2003 msg = skb_put(skb, sizeof(*msg)); 2004 2005 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) 2006 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ 2007 2008 eth_broadcast_addr(msg->da); 2009 ether_addr_copy(msg->sa, addr); 2010 msg->len = htons(6); 2011 msg->dsap = 0; 2012 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ 2013 msg->control = 0xaf; /* XID response lsb.1111F101. 2014 * F=0 (no poll command; unsolicited frame) */ 2015 msg->xid_info[0] = 0x81; /* XID format identifier */ 2016 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ 2017 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ 2018 2019 skb->dev = dev; 2020 skb->protocol = eth_type_trans(skb, dev); 2021 memset(skb->cb, 0, sizeof(skb->cb)); 2022 netif_rx_ni(skb); 2023 } 2024 EXPORT_SYMBOL(cfg80211_send_layer2_update); 2025 2026 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, 2027 enum ieee80211_vht_chanwidth bw, 2028 int mcs, bool ext_nss_bw_capable) 2029 { 2030 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map); 2031 int max_vht_nss = 0; 2032 int ext_nss_bw; 2033 int supp_width; 2034 int i, mcs_encoding; 2035 2036 if (map == 0xffff) 2037 return 0; 2038 2039 if (WARN_ON(mcs > 9)) 2040 return 0; 2041 if (mcs <= 7) 2042 mcs_encoding = 0; 2043 else if (mcs == 8) 2044 mcs_encoding = 1; 2045 else 2046 mcs_encoding = 2; 2047 2048 /* find max_vht_nss for the given MCS */ 2049 for (i = 7; i >= 0; i--) { 2050 int supp = (map >> (2 * i)) & 3; 2051 2052 if (supp == 3) 2053 continue; 2054 2055 if (supp >= mcs_encoding) { 2056 max_vht_nss = i + 1; 2057 break; 2058 } 2059 } 2060 2061 if (!(cap->supp_mcs.tx_mcs_map & 2062 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) 2063 return max_vht_nss; 2064 2065 ext_nss_bw = le32_get_bits(cap->vht_cap_info, 2066 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2067 supp_width = le32_get_bits(cap->vht_cap_info, 2068 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2069 2070 /* if not capable, treat ext_nss_bw as 0 */ 2071 if (!ext_nss_bw_capable) 2072 ext_nss_bw = 0; 2073 2074 /* This is invalid */ 2075 if (supp_width == 3) 2076 return 0; 2077 2078 /* This is an invalid combination so pretend nothing is supported */ 2079 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2)) 2080 return 0; 2081 2082 /* 2083 * Cover all the special cases according to IEEE 802.11-2016 2084 * Table 9-250. All other cases are either factor of 1 or not 2085 * valid/supported. 2086 */ 2087 switch (bw) { 2088 case IEEE80211_VHT_CHANWIDTH_USE_HT: 2089 case IEEE80211_VHT_CHANWIDTH_80MHZ: 2090 if ((supp_width == 1 || supp_width == 2) && 2091 ext_nss_bw == 3) 2092 return 2 * max_vht_nss; 2093 break; 2094 case IEEE80211_VHT_CHANWIDTH_160MHZ: 2095 if (supp_width == 0 && 2096 (ext_nss_bw == 1 || ext_nss_bw == 2)) 2097 return max_vht_nss / 2; 2098 if (supp_width == 0 && 2099 ext_nss_bw == 3) 2100 return (3 * max_vht_nss) / 4; 2101 if (supp_width == 1 && 2102 ext_nss_bw == 3) 2103 return 2 * max_vht_nss; 2104 break; 2105 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 2106 if (supp_width == 0 && ext_nss_bw == 1) 2107 return 0; /* not possible */ 2108 if (supp_width == 0 && 2109 ext_nss_bw == 2) 2110 return max_vht_nss / 2; 2111 if (supp_width == 0 && 2112 ext_nss_bw == 3) 2113 return (3 * max_vht_nss) / 4; 2114 if (supp_width == 1 && 2115 ext_nss_bw == 0) 2116 return 0; /* not possible */ 2117 if (supp_width == 1 && 2118 ext_nss_bw == 1) 2119 return max_vht_nss / 2; 2120 if (supp_width == 1 && 2121 ext_nss_bw == 2) 2122 return (3 * max_vht_nss) / 4; 2123 break; 2124 } 2125 2126 /* not covered or invalid combination received */ 2127 return max_vht_nss; 2128 } 2129 EXPORT_SYMBOL(ieee80211_get_vht_max_nss); 2130 2131 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype, 2132 bool is_4addr, u8 check_swif) 2133 2134 { 2135 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN; 2136 2137 switch (check_swif) { 2138 case 0: 2139 if (is_vlan && is_4addr) 2140 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2141 return wiphy->interface_modes & BIT(iftype); 2142 case 1: 2143 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan) 2144 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2145 return wiphy->software_iftypes & BIT(iftype); 2146 default: 2147 break; 2148 } 2149 2150 return false; 2151 } 2152 EXPORT_SYMBOL(cfg80211_iftype_allowed); 2153