1 /* 2 * Wireless utility functions 3 * 4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2013-2014 Intel Mobile Communications GmbH 6 */ 7 #include <linux/export.h> 8 #include <linux/bitops.h> 9 #include <linux/etherdevice.h> 10 #include <linux/slab.h> 11 #include <net/cfg80211.h> 12 #include <net/ip.h> 13 #include <net/dsfield.h> 14 #include <linux/if_vlan.h> 15 #include <linux/mpls.h> 16 #include <linux/gcd.h> 17 #include "core.h" 18 #include "rdev-ops.h" 19 20 21 struct ieee80211_rate * 22 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 23 u32 basic_rates, int bitrate) 24 { 25 struct ieee80211_rate *result = &sband->bitrates[0]; 26 int i; 27 28 for (i = 0; i < sband->n_bitrates; i++) { 29 if (!(basic_rates & BIT(i))) 30 continue; 31 if (sband->bitrates[i].bitrate > bitrate) 32 continue; 33 result = &sband->bitrates[i]; 34 } 35 36 return result; 37 } 38 EXPORT_SYMBOL(ieee80211_get_response_rate); 39 40 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 41 enum nl80211_bss_scan_width scan_width) 42 { 43 struct ieee80211_rate *bitrates; 44 u32 mandatory_rates = 0; 45 enum ieee80211_rate_flags mandatory_flag; 46 int i; 47 48 if (WARN_ON(!sband)) 49 return 1; 50 51 if (sband->band == NL80211_BAND_2GHZ) { 52 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 53 scan_width == NL80211_BSS_CHAN_WIDTH_10) 54 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 55 else 56 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 57 } else { 58 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 59 } 60 61 bitrates = sband->bitrates; 62 for (i = 0; i < sband->n_bitrates; i++) 63 if (bitrates[i].flags & mandatory_flag) 64 mandatory_rates |= BIT(i); 65 return mandatory_rates; 66 } 67 EXPORT_SYMBOL(ieee80211_mandatory_rates); 68 69 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band) 70 { 71 /* see 802.11 17.3.8.3.2 and Annex J 72 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 73 if (chan <= 0) 74 return 0; /* not supported */ 75 switch (band) { 76 case NL80211_BAND_2GHZ: 77 if (chan == 14) 78 return 2484; 79 else if (chan < 14) 80 return 2407 + chan * 5; 81 break; 82 case NL80211_BAND_5GHZ: 83 if (chan >= 182 && chan <= 196) 84 return 4000 + chan * 5; 85 else 86 return 5000 + chan * 5; 87 break; 88 case NL80211_BAND_60GHZ: 89 if (chan < 5) 90 return 56160 + chan * 2160; 91 break; 92 default: 93 ; 94 } 95 return 0; /* not supported */ 96 } 97 EXPORT_SYMBOL(ieee80211_channel_to_frequency); 98 99 int ieee80211_frequency_to_channel(int freq) 100 { 101 /* see 802.11 17.3.8.3.2 and Annex J */ 102 if (freq == 2484) 103 return 14; 104 else if (freq < 2484) 105 return (freq - 2407) / 5; 106 else if (freq >= 4910 && freq <= 4980) 107 return (freq - 4000) / 5; 108 else if (freq <= 45000) /* DMG band lower limit */ 109 return (freq - 5000) / 5; 110 else if (freq >= 58320 && freq <= 64800) 111 return (freq - 56160) / 2160; 112 else 113 return 0; 114 } 115 EXPORT_SYMBOL(ieee80211_frequency_to_channel); 116 117 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy, 118 int freq) 119 { 120 enum nl80211_band band; 121 struct ieee80211_supported_band *sband; 122 int i; 123 124 for (band = 0; band < NUM_NL80211_BANDS; band++) { 125 sband = wiphy->bands[band]; 126 127 if (!sband) 128 continue; 129 130 for (i = 0; i < sband->n_channels; i++) { 131 if (sband->channels[i].center_freq == freq) 132 return &sband->channels[i]; 133 } 134 } 135 136 return NULL; 137 } 138 EXPORT_SYMBOL(__ieee80211_get_channel); 139 140 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband, 141 enum nl80211_band band) 142 { 143 int i, want; 144 145 switch (band) { 146 case NL80211_BAND_5GHZ: 147 want = 3; 148 for (i = 0; i < sband->n_bitrates; i++) { 149 if (sband->bitrates[i].bitrate == 60 || 150 sband->bitrates[i].bitrate == 120 || 151 sband->bitrates[i].bitrate == 240) { 152 sband->bitrates[i].flags |= 153 IEEE80211_RATE_MANDATORY_A; 154 want--; 155 } 156 } 157 WARN_ON(want); 158 break; 159 case NL80211_BAND_2GHZ: 160 want = 7; 161 for (i = 0; i < sband->n_bitrates; i++) { 162 if (sband->bitrates[i].bitrate == 10) { 163 sband->bitrates[i].flags |= 164 IEEE80211_RATE_MANDATORY_B | 165 IEEE80211_RATE_MANDATORY_G; 166 want--; 167 } 168 169 if (sband->bitrates[i].bitrate == 20 || 170 sband->bitrates[i].bitrate == 55 || 171 sband->bitrates[i].bitrate == 110 || 172 sband->bitrates[i].bitrate == 60 || 173 sband->bitrates[i].bitrate == 120 || 174 sband->bitrates[i].bitrate == 240) { 175 sband->bitrates[i].flags |= 176 IEEE80211_RATE_MANDATORY_G; 177 want--; 178 } 179 180 if (sband->bitrates[i].bitrate != 10 && 181 sband->bitrates[i].bitrate != 20 && 182 sband->bitrates[i].bitrate != 55 && 183 sband->bitrates[i].bitrate != 110) 184 sband->bitrates[i].flags |= 185 IEEE80211_RATE_ERP_G; 186 } 187 WARN_ON(want != 0 && want != 3 && want != 6); 188 break; 189 case NL80211_BAND_60GHZ: 190 /* check for mandatory HT MCS 1..4 */ 191 WARN_ON(!sband->ht_cap.ht_supported); 192 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 193 break; 194 case NUM_NL80211_BANDS: 195 WARN_ON(1); 196 break; 197 } 198 } 199 200 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 201 { 202 enum nl80211_band band; 203 204 for (band = 0; band < NUM_NL80211_BANDS; band++) 205 if (wiphy->bands[band]) 206 set_mandatory_flags_band(wiphy->bands[band], band); 207 } 208 209 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 210 { 211 int i; 212 for (i = 0; i < wiphy->n_cipher_suites; i++) 213 if (cipher == wiphy->cipher_suites[i]) 214 return true; 215 return false; 216 } 217 218 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 219 struct key_params *params, int key_idx, 220 bool pairwise, const u8 *mac_addr) 221 { 222 if (key_idx < 0 || key_idx > 5) 223 return -EINVAL; 224 225 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 226 return -EINVAL; 227 228 if (pairwise && !mac_addr) 229 return -EINVAL; 230 231 switch (params->cipher) { 232 case WLAN_CIPHER_SUITE_TKIP: 233 case WLAN_CIPHER_SUITE_CCMP: 234 case WLAN_CIPHER_SUITE_CCMP_256: 235 case WLAN_CIPHER_SUITE_GCMP: 236 case WLAN_CIPHER_SUITE_GCMP_256: 237 /* Disallow pairwise keys with non-zero index unless it's WEP 238 * or a vendor specific cipher (because current deployments use 239 * pairwise WEP keys with non-zero indices and for vendor 240 * specific ciphers this should be validated in the driver or 241 * hardware level - but 802.11i clearly specifies to use zero) 242 */ 243 if (pairwise && key_idx) 244 return -EINVAL; 245 break; 246 case WLAN_CIPHER_SUITE_AES_CMAC: 247 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 248 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 249 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 250 /* Disallow BIP (group-only) cipher as pairwise cipher */ 251 if (pairwise) 252 return -EINVAL; 253 if (key_idx < 4) 254 return -EINVAL; 255 break; 256 case WLAN_CIPHER_SUITE_WEP40: 257 case WLAN_CIPHER_SUITE_WEP104: 258 if (key_idx > 3) 259 return -EINVAL; 260 default: 261 break; 262 } 263 264 switch (params->cipher) { 265 case WLAN_CIPHER_SUITE_WEP40: 266 if (params->key_len != WLAN_KEY_LEN_WEP40) 267 return -EINVAL; 268 break; 269 case WLAN_CIPHER_SUITE_TKIP: 270 if (params->key_len != WLAN_KEY_LEN_TKIP) 271 return -EINVAL; 272 break; 273 case WLAN_CIPHER_SUITE_CCMP: 274 if (params->key_len != WLAN_KEY_LEN_CCMP) 275 return -EINVAL; 276 break; 277 case WLAN_CIPHER_SUITE_CCMP_256: 278 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 279 return -EINVAL; 280 break; 281 case WLAN_CIPHER_SUITE_GCMP: 282 if (params->key_len != WLAN_KEY_LEN_GCMP) 283 return -EINVAL; 284 break; 285 case WLAN_CIPHER_SUITE_GCMP_256: 286 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 287 return -EINVAL; 288 break; 289 case WLAN_CIPHER_SUITE_WEP104: 290 if (params->key_len != WLAN_KEY_LEN_WEP104) 291 return -EINVAL; 292 break; 293 case WLAN_CIPHER_SUITE_AES_CMAC: 294 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 295 return -EINVAL; 296 break; 297 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 298 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 299 return -EINVAL; 300 break; 301 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 302 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 303 return -EINVAL; 304 break; 305 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 306 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 307 return -EINVAL; 308 break; 309 default: 310 /* 311 * We don't know anything about this algorithm, 312 * allow using it -- but the driver must check 313 * all parameters! We still check below whether 314 * or not the driver supports this algorithm, 315 * of course. 316 */ 317 break; 318 } 319 320 if (params->seq) { 321 switch (params->cipher) { 322 case WLAN_CIPHER_SUITE_WEP40: 323 case WLAN_CIPHER_SUITE_WEP104: 324 /* These ciphers do not use key sequence */ 325 return -EINVAL; 326 case WLAN_CIPHER_SUITE_TKIP: 327 case WLAN_CIPHER_SUITE_CCMP: 328 case WLAN_CIPHER_SUITE_CCMP_256: 329 case WLAN_CIPHER_SUITE_GCMP: 330 case WLAN_CIPHER_SUITE_GCMP_256: 331 case WLAN_CIPHER_SUITE_AES_CMAC: 332 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 333 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 334 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 335 if (params->seq_len != 6) 336 return -EINVAL; 337 break; 338 } 339 } 340 341 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 342 return -EINVAL; 343 344 return 0; 345 } 346 347 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 348 { 349 unsigned int hdrlen = 24; 350 351 if (ieee80211_is_data(fc)) { 352 if (ieee80211_has_a4(fc)) 353 hdrlen = 30; 354 if (ieee80211_is_data_qos(fc)) { 355 hdrlen += IEEE80211_QOS_CTL_LEN; 356 if (ieee80211_has_order(fc)) 357 hdrlen += IEEE80211_HT_CTL_LEN; 358 } 359 goto out; 360 } 361 362 if (ieee80211_is_mgmt(fc)) { 363 if (ieee80211_has_order(fc)) 364 hdrlen += IEEE80211_HT_CTL_LEN; 365 goto out; 366 } 367 368 if (ieee80211_is_ctl(fc)) { 369 /* 370 * ACK and CTS are 10 bytes, all others 16. To see how 371 * to get this condition consider 372 * subtype mask: 0b0000000011110000 (0x00F0) 373 * ACK subtype: 0b0000000011010000 (0x00D0) 374 * CTS subtype: 0b0000000011000000 (0x00C0) 375 * bits that matter: ^^^ (0x00E0) 376 * value of those: 0b0000000011000000 (0x00C0) 377 */ 378 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 379 hdrlen = 10; 380 else 381 hdrlen = 16; 382 } 383 out: 384 return hdrlen; 385 } 386 EXPORT_SYMBOL(ieee80211_hdrlen); 387 388 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 389 { 390 const struct ieee80211_hdr *hdr = 391 (const struct ieee80211_hdr *)skb->data; 392 unsigned int hdrlen; 393 394 if (unlikely(skb->len < 10)) 395 return 0; 396 hdrlen = ieee80211_hdrlen(hdr->frame_control); 397 if (unlikely(hdrlen > skb->len)) 398 return 0; 399 return hdrlen; 400 } 401 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 402 403 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 404 { 405 int ae = flags & MESH_FLAGS_AE; 406 /* 802.11-2012, 8.2.4.7.3 */ 407 switch (ae) { 408 default: 409 case 0: 410 return 6; 411 case MESH_FLAGS_AE_A4: 412 return 12; 413 case MESH_FLAGS_AE_A5_A6: 414 return 18; 415 } 416 } 417 418 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 419 { 420 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 421 } 422 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 423 424 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 425 const u8 *addr, enum nl80211_iftype iftype) 426 { 427 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 428 struct { 429 u8 hdr[ETH_ALEN] __aligned(2); 430 __be16 proto; 431 } payload; 432 struct ethhdr tmp; 433 u16 hdrlen; 434 u8 mesh_flags = 0; 435 436 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 437 return -1; 438 439 hdrlen = ieee80211_hdrlen(hdr->frame_control); 440 if (skb->len < hdrlen + 8) 441 return -1; 442 443 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 444 * header 445 * IEEE 802.11 address fields: 446 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 447 * 0 0 DA SA BSSID n/a 448 * 0 1 DA BSSID SA n/a 449 * 1 0 BSSID SA DA n/a 450 * 1 1 RA TA DA SA 451 */ 452 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 453 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 454 455 if (iftype == NL80211_IFTYPE_MESH_POINT) 456 skb_copy_bits(skb, hdrlen, &mesh_flags, 1); 457 458 switch (hdr->frame_control & 459 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 460 case cpu_to_le16(IEEE80211_FCTL_TODS): 461 if (unlikely(iftype != NL80211_IFTYPE_AP && 462 iftype != NL80211_IFTYPE_AP_VLAN && 463 iftype != NL80211_IFTYPE_P2P_GO)) 464 return -1; 465 break; 466 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 467 if (unlikely(iftype != NL80211_IFTYPE_WDS && 468 iftype != NL80211_IFTYPE_MESH_POINT && 469 iftype != NL80211_IFTYPE_AP_VLAN && 470 iftype != NL80211_IFTYPE_STATION)) 471 return -1; 472 if (iftype == NL80211_IFTYPE_MESH_POINT) { 473 if (mesh_flags & MESH_FLAGS_AE_A4) 474 return -1; 475 if (mesh_flags & MESH_FLAGS_AE_A5_A6) { 476 skb_copy_bits(skb, hdrlen + 477 offsetof(struct ieee80211s_hdr, eaddr1), 478 tmp.h_dest, 2 * ETH_ALEN); 479 } 480 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 481 } 482 break; 483 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 484 if ((iftype != NL80211_IFTYPE_STATION && 485 iftype != NL80211_IFTYPE_P2P_CLIENT && 486 iftype != NL80211_IFTYPE_MESH_POINT) || 487 (is_multicast_ether_addr(tmp.h_dest) && 488 ether_addr_equal(tmp.h_source, addr))) 489 return -1; 490 if (iftype == NL80211_IFTYPE_MESH_POINT) { 491 if (mesh_flags & MESH_FLAGS_AE_A5_A6) 492 return -1; 493 if (mesh_flags & MESH_FLAGS_AE_A4) 494 skb_copy_bits(skb, hdrlen + 495 offsetof(struct ieee80211s_hdr, eaddr1), 496 tmp.h_source, ETH_ALEN); 497 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 498 } 499 break; 500 case cpu_to_le16(0): 501 if (iftype != NL80211_IFTYPE_ADHOC && 502 iftype != NL80211_IFTYPE_STATION && 503 iftype != NL80211_IFTYPE_OCB) 504 return -1; 505 break; 506 } 507 508 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)); 509 tmp.h_proto = payload.proto; 510 511 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) && 512 tmp.h_proto != htons(ETH_P_AARP) && 513 tmp.h_proto != htons(ETH_P_IPX)) || 514 ether_addr_equal(payload.hdr, bridge_tunnel_header))) 515 /* remove RFC1042 or Bridge-Tunnel encapsulation and 516 * replace EtherType */ 517 hdrlen += ETH_ALEN + 2; 518 else 519 tmp.h_proto = htons(skb->len - hdrlen); 520 521 pskb_pull(skb, hdrlen); 522 523 if (!ehdr) 524 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr)); 525 memcpy(ehdr, &tmp, sizeof(tmp)); 526 527 return 0; 528 } 529 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 530 531 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr, 532 enum nl80211_iftype iftype, 533 const u8 *bssid, bool qos) 534 { 535 struct ieee80211_hdr hdr; 536 u16 hdrlen, ethertype; 537 __le16 fc; 538 const u8 *encaps_data; 539 int encaps_len, skip_header_bytes; 540 int nh_pos, h_pos; 541 int head_need; 542 543 if (unlikely(skb->len < ETH_HLEN)) 544 return -EINVAL; 545 546 nh_pos = skb_network_header(skb) - skb->data; 547 h_pos = skb_transport_header(skb) - skb->data; 548 549 /* convert Ethernet header to proper 802.11 header (based on 550 * operation mode) */ 551 ethertype = (skb->data[12] << 8) | skb->data[13]; 552 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); 553 554 switch (iftype) { 555 case NL80211_IFTYPE_AP: 556 case NL80211_IFTYPE_AP_VLAN: 557 case NL80211_IFTYPE_P2P_GO: 558 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); 559 /* DA BSSID SA */ 560 memcpy(hdr.addr1, skb->data, ETH_ALEN); 561 memcpy(hdr.addr2, addr, ETH_ALEN); 562 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 563 hdrlen = 24; 564 break; 565 case NL80211_IFTYPE_STATION: 566 case NL80211_IFTYPE_P2P_CLIENT: 567 fc |= cpu_to_le16(IEEE80211_FCTL_TODS); 568 /* BSSID SA DA */ 569 memcpy(hdr.addr1, bssid, ETH_ALEN); 570 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 571 memcpy(hdr.addr3, skb->data, ETH_ALEN); 572 hdrlen = 24; 573 break; 574 case NL80211_IFTYPE_OCB: 575 case NL80211_IFTYPE_ADHOC: 576 /* DA SA BSSID */ 577 memcpy(hdr.addr1, skb->data, ETH_ALEN); 578 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 579 memcpy(hdr.addr3, bssid, ETH_ALEN); 580 hdrlen = 24; 581 break; 582 default: 583 return -EOPNOTSUPP; 584 } 585 586 if (qos) { 587 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 588 hdrlen += 2; 589 } 590 591 hdr.frame_control = fc; 592 hdr.duration_id = 0; 593 hdr.seq_ctrl = 0; 594 595 skip_header_bytes = ETH_HLEN; 596 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 597 encaps_data = bridge_tunnel_header; 598 encaps_len = sizeof(bridge_tunnel_header); 599 skip_header_bytes -= 2; 600 } else if (ethertype >= ETH_P_802_3_MIN) { 601 encaps_data = rfc1042_header; 602 encaps_len = sizeof(rfc1042_header); 603 skip_header_bytes -= 2; 604 } else { 605 encaps_data = NULL; 606 encaps_len = 0; 607 } 608 609 skb_pull(skb, skip_header_bytes); 610 nh_pos -= skip_header_bytes; 611 h_pos -= skip_header_bytes; 612 613 head_need = hdrlen + encaps_len - skb_headroom(skb); 614 615 if (head_need > 0 || skb_cloned(skb)) { 616 head_need = max(head_need, 0); 617 if (head_need) 618 skb_orphan(skb); 619 620 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) 621 return -ENOMEM; 622 623 skb->truesize += head_need; 624 } 625 626 if (encaps_data) { 627 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 628 nh_pos += encaps_len; 629 h_pos += encaps_len; 630 } 631 632 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 633 634 nh_pos += hdrlen; 635 h_pos += hdrlen; 636 637 /* Update skb pointers to various headers since this modified frame 638 * is going to go through Linux networking code that may potentially 639 * need things like pointer to IP header. */ 640 skb_reset_mac_header(skb); 641 skb_set_network_header(skb, nh_pos); 642 skb_set_transport_header(skb, h_pos); 643 644 return 0; 645 } 646 EXPORT_SYMBOL(ieee80211_data_from_8023); 647 648 static void 649 __frame_add_frag(struct sk_buff *skb, struct page *page, 650 void *ptr, int len, int size) 651 { 652 struct skb_shared_info *sh = skb_shinfo(skb); 653 int page_offset; 654 655 page_ref_inc(page); 656 page_offset = ptr - page_address(page); 657 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 658 } 659 660 static void 661 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 662 int offset, int len) 663 { 664 struct skb_shared_info *sh = skb_shinfo(skb); 665 const skb_frag_t *frag = &sh->frags[-1]; 666 struct page *frag_page; 667 void *frag_ptr; 668 int frag_len, frag_size; 669 int head_size = skb->len - skb->data_len; 670 int cur_len; 671 672 frag_page = virt_to_head_page(skb->head); 673 frag_ptr = skb->data; 674 frag_size = head_size; 675 676 while (offset >= frag_size) { 677 offset -= frag_size; 678 frag++; 679 frag_page = skb_frag_page(frag); 680 frag_ptr = skb_frag_address(frag); 681 frag_size = skb_frag_size(frag); 682 } 683 684 frag_ptr += offset; 685 frag_len = frag_size - offset; 686 687 cur_len = min(len, frag_len); 688 689 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 690 len -= cur_len; 691 692 while (len > 0) { 693 frag++; 694 frag_len = skb_frag_size(frag); 695 cur_len = min(len, frag_len); 696 __frame_add_frag(frame, skb_frag_page(frag), 697 skb_frag_address(frag), cur_len, frag_len); 698 len -= cur_len; 699 } 700 } 701 702 static struct sk_buff * 703 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 704 int offset, int len, bool reuse_frag) 705 { 706 struct sk_buff *frame; 707 int cur_len = len; 708 709 if (skb->len - offset < len) 710 return NULL; 711 712 /* 713 * When reusing framents, copy some data to the head to simplify 714 * ethernet header handling and speed up protocol header processing 715 * in the stack later. 716 */ 717 if (reuse_frag) 718 cur_len = min_t(int, len, 32); 719 720 /* 721 * Allocate and reserve two bytes more for payload 722 * alignment since sizeof(struct ethhdr) is 14. 723 */ 724 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 725 if (!frame) 726 return NULL; 727 728 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 729 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 730 731 len -= cur_len; 732 if (!len) 733 return frame; 734 735 offset += cur_len; 736 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 737 738 return frame; 739 } 740 741 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 742 const u8 *addr, enum nl80211_iftype iftype, 743 const unsigned int extra_headroom, 744 const u8 *check_da, const u8 *check_sa) 745 { 746 unsigned int hlen = ALIGN(extra_headroom, 4); 747 struct sk_buff *frame = NULL; 748 u16 ethertype; 749 u8 *payload; 750 int offset = 0, remaining; 751 struct ethhdr eth; 752 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 753 bool reuse_skb = false; 754 bool last = false; 755 756 while (!last) { 757 unsigned int subframe_len; 758 int len; 759 u8 padding; 760 761 skb_copy_bits(skb, offset, ð, sizeof(eth)); 762 len = ntohs(eth.h_proto); 763 subframe_len = sizeof(struct ethhdr) + len; 764 padding = (4 - subframe_len) & 0x3; 765 766 /* the last MSDU has no padding */ 767 remaining = skb->len - offset; 768 if (subframe_len > remaining) 769 goto purge; 770 771 offset += sizeof(struct ethhdr); 772 last = remaining <= subframe_len + padding; 773 774 /* FIXME: should we really accept multicast DA? */ 775 if ((check_da && !is_multicast_ether_addr(eth.h_dest) && 776 !ether_addr_equal(check_da, eth.h_dest)) || 777 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) { 778 offset += len + padding; 779 continue; 780 } 781 782 /* reuse skb for the last subframe */ 783 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 784 skb_pull(skb, offset); 785 frame = skb; 786 reuse_skb = true; 787 } else { 788 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 789 reuse_frag); 790 if (!frame) 791 goto purge; 792 793 offset += len + padding; 794 } 795 796 skb_reset_network_header(frame); 797 frame->dev = skb->dev; 798 frame->priority = skb->priority; 799 800 payload = frame->data; 801 ethertype = (payload[6] << 8) | payload[7]; 802 if (likely((ether_addr_equal(payload, rfc1042_header) && 803 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 804 ether_addr_equal(payload, bridge_tunnel_header))) { 805 eth.h_proto = htons(ethertype); 806 skb_pull(frame, ETH_ALEN + 2); 807 } 808 809 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth)); 810 __skb_queue_tail(list, frame); 811 } 812 813 if (!reuse_skb) 814 dev_kfree_skb(skb); 815 816 return; 817 818 purge: 819 __skb_queue_purge(list); 820 dev_kfree_skb(skb); 821 } 822 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 823 824 /* Given a data frame determine the 802.1p/1d tag to use. */ 825 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 826 struct cfg80211_qos_map *qos_map) 827 { 828 unsigned int dscp; 829 unsigned char vlan_priority; 830 831 /* skb->priority values from 256->263 are magic values to 832 * directly indicate a specific 802.1d priority. This is used 833 * to allow 802.1d priority to be passed directly in from VLAN 834 * tags, etc. 835 */ 836 if (skb->priority >= 256 && skb->priority <= 263) 837 return skb->priority - 256; 838 839 if (skb_vlan_tag_present(skb)) { 840 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 841 >> VLAN_PRIO_SHIFT; 842 if (vlan_priority > 0) 843 return vlan_priority; 844 } 845 846 switch (skb->protocol) { 847 case htons(ETH_P_IP): 848 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 849 break; 850 case htons(ETH_P_IPV6): 851 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 852 break; 853 case htons(ETH_P_MPLS_UC): 854 case htons(ETH_P_MPLS_MC): { 855 struct mpls_label mpls_tmp, *mpls; 856 857 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 858 sizeof(*mpls), &mpls_tmp); 859 if (!mpls) 860 return 0; 861 862 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 863 >> MPLS_LS_TC_SHIFT; 864 } 865 case htons(ETH_P_80221): 866 /* 802.21 is always network control traffic */ 867 return 7; 868 default: 869 return 0; 870 } 871 872 if (qos_map) { 873 unsigned int i, tmp_dscp = dscp >> 2; 874 875 for (i = 0; i < qos_map->num_des; i++) { 876 if (tmp_dscp == qos_map->dscp_exception[i].dscp) 877 return qos_map->dscp_exception[i].up; 878 } 879 880 for (i = 0; i < 8; i++) { 881 if (tmp_dscp >= qos_map->up[i].low && 882 tmp_dscp <= qos_map->up[i].high) 883 return i; 884 } 885 } 886 887 return dscp >> 5; 888 } 889 EXPORT_SYMBOL(cfg80211_classify8021d); 890 891 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie) 892 { 893 const struct cfg80211_bss_ies *ies; 894 895 ies = rcu_dereference(bss->ies); 896 if (!ies) 897 return NULL; 898 899 return cfg80211_find_ie(ie, ies->data, ies->len); 900 } 901 EXPORT_SYMBOL(ieee80211_bss_get_ie); 902 903 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 904 { 905 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 906 struct net_device *dev = wdev->netdev; 907 int i; 908 909 if (!wdev->connect_keys) 910 return; 911 912 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) { 913 if (!wdev->connect_keys->params[i].cipher) 914 continue; 915 if (rdev_add_key(rdev, dev, i, false, NULL, 916 &wdev->connect_keys->params[i])) { 917 netdev_err(dev, "failed to set key %d\n", i); 918 continue; 919 } 920 if (wdev->connect_keys->def == i) 921 if (rdev_set_default_key(rdev, dev, i, true, true)) { 922 netdev_err(dev, "failed to set defkey %d\n", i); 923 continue; 924 } 925 } 926 927 kzfree(wdev->connect_keys); 928 wdev->connect_keys = NULL; 929 } 930 931 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 932 { 933 struct cfg80211_event *ev; 934 unsigned long flags; 935 const u8 *bssid = NULL; 936 937 spin_lock_irqsave(&wdev->event_lock, flags); 938 while (!list_empty(&wdev->event_list)) { 939 ev = list_first_entry(&wdev->event_list, 940 struct cfg80211_event, list); 941 list_del(&ev->list); 942 spin_unlock_irqrestore(&wdev->event_lock, flags); 943 944 wdev_lock(wdev); 945 switch (ev->type) { 946 case EVENT_CONNECT_RESULT: 947 if (!is_zero_ether_addr(ev->cr.bssid)) 948 bssid = ev->cr.bssid; 949 __cfg80211_connect_result( 950 wdev->netdev, bssid, 951 ev->cr.req_ie, ev->cr.req_ie_len, 952 ev->cr.resp_ie, ev->cr.resp_ie_len, 953 ev->cr.status, 954 ev->cr.status == WLAN_STATUS_SUCCESS, 955 ev->cr.bss); 956 break; 957 case EVENT_ROAMED: 958 __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie, 959 ev->rm.req_ie_len, ev->rm.resp_ie, 960 ev->rm.resp_ie_len); 961 break; 962 case EVENT_DISCONNECTED: 963 __cfg80211_disconnected(wdev->netdev, 964 ev->dc.ie, ev->dc.ie_len, 965 ev->dc.reason, 966 !ev->dc.locally_generated); 967 break; 968 case EVENT_IBSS_JOINED: 969 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 970 ev->ij.channel); 971 break; 972 case EVENT_STOPPED: 973 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 974 break; 975 } 976 wdev_unlock(wdev); 977 978 kfree(ev); 979 980 spin_lock_irqsave(&wdev->event_lock, flags); 981 } 982 spin_unlock_irqrestore(&wdev->event_lock, flags); 983 } 984 985 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 986 { 987 struct wireless_dev *wdev; 988 989 ASSERT_RTNL(); 990 991 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 992 cfg80211_process_wdev_events(wdev); 993 } 994 995 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 996 struct net_device *dev, enum nl80211_iftype ntype, 997 u32 *flags, struct vif_params *params) 998 { 999 int err; 1000 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 1001 1002 ASSERT_RTNL(); 1003 1004 /* don't support changing VLANs, you just re-create them */ 1005 if (otype == NL80211_IFTYPE_AP_VLAN) 1006 return -EOPNOTSUPP; 1007 1008 /* cannot change into P2P device or NAN */ 1009 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 1010 ntype == NL80211_IFTYPE_NAN) 1011 return -EOPNOTSUPP; 1012 1013 if (!rdev->ops->change_virtual_intf || 1014 !(rdev->wiphy.interface_modes & (1 << ntype))) 1015 return -EOPNOTSUPP; 1016 1017 /* if it's part of a bridge, reject changing type to station/ibss */ 1018 if ((dev->priv_flags & IFF_BRIDGE_PORT) && 1019 (ntype == NL80211_IFTYPE_ADHOC || 1020 ntype == NL80211_IFTYPE_STATION || 1021 ntype == NL80211_IFTYPE_P2P_CLIENT)) 1022 return -EBUSY; 1023 1024 if (ntype != otype) { 1025 dev->ieee80211_ptr->use_4addr = false; 1026 dev->ieee80211_ptr->mesh_id_up_len = 0; 1027 wdev_lock(dev->ieee80211_ptr); 1028 rdev_set_qos_map(rdev, dev, NULL); 1029 wdev_unlock(dev->ieee80211_ptr); 1030 1031 switch (otype) { 1032 case NL80211_IFTYPE_AP: 1033 cfg80211_stop_ap(rdev, dev, true); 1034 break; 1035 case NL80211_IFTYPE_ADHOC: 1036 cfg80211_leave_ibss(rdev, dev, false); 1037 break; 1038 case NL80211_IFTYPE_STATION: 1039 case NL80211_IFTYPE_P2P_CLIENT: 1040 wdev_lock(dev->ieee80211_ptr); 1041 cfg80211_disconnect(rdev, dev, 1042 WLAN_REASON_DEAUTH_LEAVING, true); 1043 wdev_unlock(dev->ieee80211_ptr); 1044 break; 1045 case NL80211_IFTYPE_MESH_POINT: 1046 /* mesh should be handled? */ 1047 break; 1048 default: 1049 break; 1050 } 1051 1052 cfg80211_process_rdev_events(rdev); 1053 } 1054 1055 err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params); 1056 1057 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 1058 1059 if (!err && params && params->use_4addr != -1) 1060 dev->ieee80211_ptr->use_4addr = params->use_4addr; 1061 1062 if (!err) { 1063 dev->priv_flags &= ~IFF_DONT_BRIDGE; 1064 switch (ntype) { 1065 case NL80211_IFTYPE_STATION: 1066 if (dev->ieee80211_ptr->use_4addr) 1067 break; 1068 /* fall through */ 1069 case NL80211_IFTYPE_OCB: 1070 case NL80211_IFTYPE_P2P_CLIENT: 1071 case NL80211_IFTYPE_ADHOC: 1072 dev->priv_flags |= IFF_DONT_BRIDGE; 1073 break; 1074 case NL80211_IFTYPE_P2P_GO: 1075 case NL80211_IFTYPE_AP: 1076 case NL80211_IFTYPE_AP_VLAN: 1077 case NL80211_IFTYPE_WDS: 1078 case NL80211_IFTYPE_MESH_POINT: 1079 /* bridging OK */ 1080 break; 1081 case NL80211_IFTYPE_MONITOR: 1082 /* monitor can't bridge anyway */ 1083 break; 1084 case NL80211_IFTYPE_UNSPECIFIED: 1085 case NUM_NL80211_IFTYPES: 1086 /* not happening */ 1087 break; 1088 case NL80211_IFTYPE_P2P_DEVICE: 1089 case NL80211_IFTYPE_NAN: 1090 WARN_ON(1); 1091 break; 1092 } 1093 } 1094 1095 if (!err && ntype != otype && netif_running(dev)) { 1096 cfg80211_update_iface_num(rdev, ntype, 1); 1097 cfg80211_update_iface_num(rdev, otype, -1); 1098 } 1099 1100 return err; 1101 } 1102 1103 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate) 1104 { 1105 static const u32 __mcs2bitrate[] = { 1106 /* control PHY */ 1107 [0] = 275, 1108 /* SC PHY */ 1109 [1] = 3850, 1110 [2] = 7700, 1111 [3] = 9625, 1112 [4] = 11550, 1113 [5] = 12512, /* 1251.25 mbps */ 1114 [6] = 15400, 1115 [7] = 19250, 1116 [8] = 23100, 1117 [9] = 25025, 1118 [10] = 30800, 1119 [11] = 38500, 1120 [12] = 46200, 1121 /* OFDM PHY */ 1122 [13] = 6930, 1123 [14] = 8662, /* 866.25 mbps */ 1124 [15] = 13860, 1125 [16] = 17325, 1126 [17] = 20790, 1127 [18] = 27720, 1128 [19] = 34650, 1129 [20] = 41580, 1130 [21] = 45045, 1131 [22] = 51975, 1132 [23] = 62370, 1133 [24] = 67568, /* 6756.75 mbps */ 1134 /* LP-SC PHY */ 1135 [25] = 6260, 1136 [26] = 8340, 1137 [27] = 11120, 1138 [28] = 12510, 1139 [29] = 16680, 1140 [30] = 22240, 1141 [31] = 25030, 1142 }; 1143 1144 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1145 return 0; 1146 1147 return __mcs2bitrate[rate->mcs]; 1148 } 1149 1150 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1151 { 1152 static const u32 base[4][10] = { 1153 { 6500000, 1154 13000000, 1155 19500000, 1156 26000000, 1157 39000000, 1158 52000000, 1159 58500000, 1160 65000000, 1161 78000000, 1162 /* not in the spec, but some devices use this: */ 1163 86500000, 1164 }, 1165 { 13500000, 1166 27000000, 1167 40500000, 1168 54000000, 1169 81000000, 1170 108000000, 1171 121500000, 1172 135000000, 1173 162000000, 1174 180000000, 1175 }, 1176 { 29300000, 1177 58500000, 1178 87800000, 1179 117000000, 1180 175500000, 1181 234000000, 1182 263300000, 1183 292500000, 1184 351000000, 1185 390000000, 1186 }, 1187 { 58500000, 1188 117000000, 1189 175500000, 1190 234000000, 1191 351000000, 1192 468000000, 1193 526500000, 1194 585000000, 1195 702000000, 1196 780000000, 1197 }, 1198 }; 1199 u32 bitrate; 1200 int idx; 1201 1202 if (WARN_ON_ONCE(rate->mcs > 9)) 1203 return 0; 1204 1205 switch (rate->bw) { 1206 case RATE_INFO_BW_160: 1207 idx = 3; 1208 break; 1209 case RATE_INFO_BW_80: 1210 idx = 2; 1211 break; 1212 case RATE_INFO_BW_40: 1213 idx = 1; 1214 break; 1215 case RATE_INFO_BW_5: 1216 case RATE_INFO_BW_10: 1217 default: 1218 WARN_ON(1); 1219 /* fall through */ 1220 case RATE_INFO_BW_20: 1221 idx = 0; 1222 } 1223 1224 bitrate = base[idx][rate->mcs]; 1225 bitrate *= rate->nss; 1226 1227 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1228 bitrate = (bitrate / 9) * 10; 1229 1230 /* do NOT round down here */ 1231 return (bitrate + 50000) / 100000; 1232 } 1233 1234 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1235 { 1236 int modulation, streams, bitrate; 1237 1238 if (!(rate->flags & RATE_INFO_FLAGS_MCS) && 1239 !(rate->flags & RATE_INFO_FLAGS_VHT_MCS)) 1240 return rate->legacy; 1241 if (rate->flags & RATE_INFO_FLAGS_60G) 1242 return cfg80211_calculate_bitrate_60g(rate); 1243 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1244 return cfg80211_calculate_bitrate_vht(rate); 1245 1246 /* the formula below does only work for MCS values smaller than 32 */ 1247 if (WARN_ON_ONCE(rate->mcs >= 32)) 1248 return 0; 1249 1250 modulation = rate->mcs & 7; 1251 streams = (rate->mcs >> 3) + 1; 1252 1253 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1254 1255 if (modulation < 4) 1256 bitrate *= (modulation + 1); 1257 else if (modulation == 4) 1258 bitrate *= (modulation + 2); 1259 else 1260 bitrate *= (modulation + 3); 1261 1262 bitrate *= streams; 1263 1264 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1265 bitrate = (bitrate / 9) * 10; 1266 1267 /* do NOT round down here */ 1268 return (bitrate + 50000) / 100000; 1269 } 1270 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1271 1272 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1273 enum ieee80211_p2p_attr_id attr, 1274 u8 *buf, unsigned int bufsize) 1275 { 1276 u8 *out = buf; 1277 u16 attr_remaining = 0; 1278 bool desired_attr = false; 1279 u16 desired_len = 0; 1280 1281 while (len > 0) { 1282 unsigned int iedatalen; 1283 unsigned int copy; 1284 const u8 *iedata; 1285 1286 if (len < 2) 1287 return -EILSEQ; 1288 iedatalen = ies[1]; 1289 if (iedatalen + 2 > len) 1290 return -EILSEQ; 1291 1292 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1293 goto cont; 1294 1295 if (iedatalen < 4) 1296 goto cont; 1297 1298 iedata = ies + 2; 1299 1300 /* check WFA OUI, P2P subtype */ 1301 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1302 iedata[2] != 0x9a || iedata[3] != 0x09) 1303 goto cont; 1304 1305 iedatalen -= 4; 1306 iedata += 4; 1307 1308 /* check attribute continuation into this IE */ 1309 copy = min_t(unsigned int, attr_remaining, iedatalen); 1310 if (copy && desired_attr) { 1311 desired_len += copy; 1312 if (out) { 1313 memcpy(out, iedata, min(bufsize, copy)); 1314 out += min(bufsize, copy); 1315 bufsize -= min(bufsize, copy); 1316 } 1317 1318 1319 if (copy == attr_remaining) 1320 return desired_len; 1321 } 1322 1323 attr_remaining -= copy; 1324 if (attr_remaining) 1325 goto cont; 1326 1327 iedatalen -= copy; 1328 iedata += copy; 1329 1330 while (iedatalen > 0) { 1331 u16 attr_len; 1332 1333 /* P2P attribute ID & size must fit */ 1334 if (iedatalen < 3) 1335 return -EILSEQ; 1336 desired_attr = iedata[0] == attr; 1337 attr_len = get_unaligned_le16(iedata + 1); 1338 iedatalen -= 3; 1339 iedata += 3; 1340 1341 copy = min_t(unsigned int, attr_len, iedatalen); 1342 1343 if (desired_attr) { 1344 desired_len += copy; 1345 if (out) { 1346 memcpy(out, iedata, min(bufsize, copy)); 1347 out += min(bufsize, copy); 1348 bufsize -= min(bufsize, copy); 1349 } 1350 1351 if (copy == attr_len) 1352 return desired_len; 1353 } 1354 1355 iedata += copy; 1356 iedatalen -= copy; 1357 attr_remaining = attr_len - copy; 1358 } 1359 1360 cont: 1361 len -= ies[1] + 2; 1362 ies += ies[1] + 2; 1363 } 1364 1365 if (attr_remaining && desired_attr) 1366 return -EILSEQ; 1367 1368 return -ENOENT; 1369 } 1370 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1371 1372 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id) 1373 { 1374 int i; 1375 1376 for (i = 0; i < n_ids; i++) 1377 if (ids[i] == id) 1378 return true; 1379 return false; 1380 } 1381 1382 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) 1383 { 1384 /* we assume a validly formed IEs buffer */ 1385 u8 len = ies[pos + 1]; 1386 1387 pos += 2 + len; 1388 1389 /* the IE itself must have 255 bytes for fragments to follow */ 1390 if (len < 255) 1391 return pos; 1392 1393 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { 1394 len = ies[pos + 1]; 1395 pos += 2 + len; 1396 } 1397 1398 return pos; 1399 } 1400 1401 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1402 const u8 *ids, int n_ids, 1403 const u8 *after_ric, int n_after_ric, 1404 size_t offset) 1405 { 1406 size_t pos = offset; 1407 1408 while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) { 1409 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1410 pos = skip_ie(ies, ielen, pos); 1411 1412 while (pos < ielen && 1413 !ieee80211_id_in_list(after_ric, n_after_ric, 1414 ies[pos])) 1415 pos = skip_ie(ies, ielen, pos); 1416 } else { 1417 pos = skip_ie(ies, ielen, pos); 1418 } 1419 } 1420 1421 return pos; 1422 } 1423 EXPORT_SYMBOL(ieee80211_ie_split_ric); 1424 1425 bool ieee80211_operating_class_to_band(u8 operating_class, 1426 enum nl80211_band *band) 1427 { 1428 switch (operating_class) { 1429 case 112: 1430 case 115 ... 127: 1431 case 128 ... 130: 1432 *band = NL80211_BAND_5GHZ; 1433 return true; 1434 case 81: 1435 case 82: 1436 case 83: 1437 case 84: 1438 *band = NL80211_BAND_2GHZ; 1439 return true; 1440 case 180: 1441 *band = NL80211_BAND_60GHZ; 1442 return true; 1443 } 1444 1445 return false; 1446 } 1447 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1448 1449 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 1450 u8 *op_class) 1451 { 1452 u8 vht_opclass; 1453 u16 freq = chandef->center_freq1; 1454 1455 if (freq >= 2412 && freq <= 2472) { 1456 if (chandef->width > NL80211_CHAN_WIDTH_40) 1457 return false; 1458 1459 /* 2.407 GHz, channels 1..13 */ 1460 if (chandef->width == NL80211_CHAN_WIDTH_40) { 1461 if (freq > chandef->chan->center_freq) 1462 *op_class = 83; /* HT40+ */ 1463 else 1464 *op_class = 84; /* HT40- */ 1465 } else { 1466 *op_class = 81; 1467 } 1468 1469 return true; 1470 } 1471 1472 if (freq == 2484) { 1473 if (chandef->width > NL80211_CHAN_WIDTH_40) 1474 return false; 1475 1476 *op_class = 82; /* channel 14 */ 1477 return true; 1478 } 1479 1480 switch (chandef->width) { 1481 case NL80211_CHAN_WIDTH_80: 1482 vht_opclass = 128; 1483 break; 1484 case NL80211_CHAN_WIDTH_160: 1485 vht_opclass = 129; 1486 break; 1487 case NL80211_CHAN_WIDTH_80P80: 1488 vht_opclass = 130; 1489 break; 1490 case NL80211_CHAN_WIDTH_10: 1491 case NL80211_CHAN_WIDTH_5: 1492 return false; /* unsupported for now */ 1493 default: 1494 vht_opclass = 0; 1495 break; 1496 } 1497 1498 /* 5 GHz, channels 36..48 */ 1499 if (freq >= 5180 && freq <= 5240) { 1500 if (vht_opclass) { 1501 *op_class = vht_opclass; 1502 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1503 if (freq > chandef->chan->center_freq) 1504 *op_class = 116; 1505 else 1506 *op_class = 117; 1507 } else { 1508 *op_class = 115; 1509 } 1510 1511 return true; 1512 } 1513 1514 /* 5 GHz, channels 52..64 */ 1515 if (freq >= 5260 && freq <= 5320) { 1516 if (vht_opclass) { 1517 *op_class = vht_opclass; 1518 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1519 if (freq > chandef->chan->center_freq) 1520 *op_class = 119; 1521 else 1522 *op_class = 120; 1523 } else { 1524 *op_class = 118; 1525 } 1526 1527 return true; 1528 } 1529 1530 /* 5 GHz, channels 100..144 */ 1531 if (freq >= 5500 && freq <= 5720) { 1532 if (vht_opclass) { 1533 *op_class = vht_opclass; 1534 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1535 if (freq > chandef->chan->center_freq) 1536 *op_class = 122; 1537 else 1538 *op_class = 123; 1539 } else { 1540 *op_class = 121; 1541 } 1542 1543 return true; 1544 } 1545 1546 /* 5 GHz, channels 149..169 */ 1547 if (freq >= 5745 && freq <= 5845) { 1548 if (vht_opclass) { 1549 *op_class = vht_opclass; 1550 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1551 if (freq > chandef->chan->center_freq) 1552 *op_class = 126; 1553 else 1554 *op_class = 127; 1555 } else if (freq <= 5805) { 1556 *op_class = 124; 1557 } else { 1558 *op_class = 125; 1559 } 1560 1561 return true; 1562 } 1563 1564 /* 56.16 GHz, channel 1..4 */ 1565 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) { 1566 if (chandef->width >= NL80211_CHAN_WIDTH_40) 1567 return false; 1568 1569 *op_class = 180; 1570 return true; 1571 } 1572 1573 /* not supported yet */ 1574 return false; 1575 } 1576 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 1577 1578 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, 1579 u32 *beacon_int_gcd, 1580 bool *beacon_int_different) 1581 { 1582 struct wireless_dev *wdev; 1583 1584 *beacon_int_gcd = 0; 1585 *beacon_int_different = false; 1586 1587 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 1588 if (!wdev->beacon_interval) 1589 continue; 1590 1591 if (!*beacon_int_gcd) { 1592 *beacon_int_gcd = wdev->beacon_interval; 1593 continue; 1594 } 1595 1596 if (wdev->beacon_interval == *beacon_int_gcd) 1597 continue; 1598 1599 *beacon_int_different = true; 1600 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval); 1601 } 1602 1603 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { 1604 if (*beacon_int_gcd) 1605 *beacon_int_different = true; 1606 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); 1607 } 1608 } 1609 1610 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 1611 enum nl80211_iftype iftype, u32 beacon_int) 1612 { 1613 /* 1614 * This is just a basic pre-condition check; if interface combinations 1615 * are possible the driver must already be checking those with a call 1616 * to cfg80211_check_combinations(), in which case we'll validate more 1617 * through the cfg80211_calculate_bi_data() call and code in 1618 * cfg80211_iter_combinations(). 1619 */ 1620 1621 if (beacon_int < 10 || beacon_int > 10000) 1622 return -EINVAL; 1623 1624 return 0; 1625 } 1626 1627 int cfg80211_iter_combinations(struct wiphy *wiphy, 1628 struct iface_combination_params *params, 1629 void (*iter)(const struct ieee80211_iface_combination *c, 1630 void *data), 1631 void *data) 1632 { 1633 const struct ieee80211_regdomain *regdom; 1634 enum nl80211_dfs_regions region = 0; 1635 int i, j, iftype; 1636 int num_interfaces = 0; 1637 u32 used_iftypes = 0; 1638 u32 beacon_int_gcd; 1639 bool beacon_int_different; 1640 1641 /* 1642 * This is a bit strange, since the iteration used to rely only on 1643 * the data given by the driver, but here it now relies on context, 1644 * in form of the currently operating interfaces. 1645 * This is OK for all current users, and saves us from having to 1646 * push the GCD calculations into all the drivers. 1647 * In the future, this should probably rely more on data that's in 1648 * cfg80211 already - the only thing not would appear to be any new 1649 * interfaces (while being brought up) and channel/radar data. 1650 */ 1651 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, 1652 &beacon_int_gcd, &beacon_int_different); 1653 1654 if (params->radar_detect) { 1655 rcu_read_lock(); 1656 regdom = rcu_dereference(cfg80211_regdomain); 1657 if (regdom) 1658 region = regdom->dfs_region; 1659 rcu_read_unlock(); 1660 } 1661 1662 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1663 num_interfaces += params->iftype_num[iftype]; 1664 if (params->iftype_num[iftype] > 0 && 1665 !(wiphy->software_iftypes & BIT(iftype))) 1666 used_iftypes |= BIT(iftype); 1667 } 1668 1669 for (i = 0; i < wiphy->n_iface_combinations; i++) { 1670 const struct ieee80211_iface_combination *c; 1671 struct ieee80211_iface_limit *limits; 1672 u32 all_iftypes = 0; 1673 1674 c = &wiphy->iface_combinations[i]; 1675 1676 if (num_interfaces > c->max_interfaces) 1677 continue; 1678 if (params->num_different_channels > c->num_different_channels) 1679 continue; 1680 1681 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 1682 GFP_KERNEL); 1683 if (!limits) 1684 return -ENOMEM; 1685 1686 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1687 if (wiphy->software_iftypes & BIT(iftype)) 1688 continue; 1689 for (j = 0; j < c->n_limits; j++) { 1690 all_iftypes |= limits[j].types; 1691 if (!(limits[j].types & BIT(iftype))) 1692 continue; 1693 if (limits[j].max < params->iftype_num[iftype]) 1694 goto cont; 1695 limits[j].max -= params->iftype_num[iftype]; 1696 } 1697 } 1698 1699 if (params->radar_detect != 1700 (c->radar_detect_widths & params->radar_detect)) 1701 goto cont; 1702 1703 if (params->radar_detect && c->radar_detect_regions && 1704 !(c->radar_detect_regions & BIT(region))) 1705 goto cont; 1706 1707 /* Finally check that all iftypes that we're currently 1708 * using are actually part of this combination. If they 1709 * aren't then we can't use this combination and have 1710 * to continue to the next. 1711 */ 1712 if ((all_iftypes & used_iftypes) != used_iftypes) 1713 goto cont; 1714 1715 if (beacon_int_gcd) { 1716 if (c->beacon_int_min_gcd && 1717 beacon_int_gcd < c->beacon_int_min_gcd) 1718 goto cont; 1719 if (!c->beacon_int_min_gcd && beacon_int_different) 1720 goto cont; 1721 } 1722 1723 /* This combination covered all interface types and 1724 * supported the requested numbers, so we're good. 1725 */ 1726 1727 (*iter)(c, data); 1728 cont: 1729 kfree(limits); 1730 } 1731 1732 return 0; 1733 } 1734 EXPORT_SYMBOL(cfg80211_iter_combinations); 1735 1736 static void 1737 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 1738 void *data) 1739 { 1740 int *num = data; 1741 (*num)++; 1742 } 1743 1744 int cfg80211_check_combinations(struct wiphy *wiphy, 1745 struct iface_combination_params *params) 1746 { 1747 int err, num = 0; 1748 1749 err = cfg80211_iter_combinations(wiphy, params, 1750 cfg80211_iter_sum_ifcombs, &num); 1751 if (err) 1752 return err; 1753 if (num == 0) 1754 return -EBUSY; 1755 1756 return 0; 1757 } 1758 EXPORT_SYMBOL(cfg80211_check_combinations); 1759 1760 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1761 const u8 *rates, unsigned int n_rates, 1762 u32 *mask) 1763 { 1764 int i, j; 1765 1766 if (!sband) 1767 return -EINVAL; 1768 1769 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1770 return -EINVAL; 1771 1772 *mask = 0; 1773 1774 for (i = 0; i < n_rates; i++) { 1775 int rate = (rates[i] & 0x7f) * 5; 1776 bool found = false; 1777 1778 for (j = 0; j < sband->n_bitrates; j++) { 1779 if (sband->bitrates[j].bitrate == rate) { 1780 found = true; 1781 *mask |= BIT(j); 1782 break; 1783 } 1784 } 1785 if (!found) 1786 return -EINVAL; 1787 } 1788 1789 /* 1790 * mask must have at least one bit set here since we 1791 * didn't accept a 0-length rates array nor allowed 1792 * entries in the array that didn't exist 1793 */ 1794 1795 return 0; 1796 } 1797 1798 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 1799 { 1800 enum nl80211_band band; 1801 unsigned int n_channels = 0; 1802 1803 for (band = 0; band < NUM_NL80211_BANDS; band++) 1804 if (wiphy->bands[band]) 1805 n_channels += wiphy->bands[band]->n_channels; 1806 1807 return n_channels; 1808 } 1809 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 1810 1811 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 1812 struct station_info *sinfo) 1813 { 1814 struct cfg80211_registered_device *rdev; 1815 struct wireless_dev *wdev; 1816 1817 wdev = dev->ieee80211_ptr; 1818 if (!wdev) 1819 return -EOPNOTSUPP; 1820 1821 rdev = wiphy_to_rdev(wdev->wiphy); 1822 if (!rdev->ops->get_station) 1823 return -EOPNOTSUPP; 1824 1825 return rdev_get_station(rdev, dev, mac_addr, sinfo); 1826 } 1827 EXPORT_SYMBOL(cfg80211_get_station); 1828 1829 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 1830 { 1831 int i; 1832 1833 if (!f) 1834 return; 1835 1836 kfree(f->serv_spec_info); 1837 kfree(f->srf_bf); 1838 kfree(f->srf_macs); 1839 for (i = 0; i < f->num_rx_filters; i++) 1840 kfree(f->rx_filters[i].filter); 1841 1842 for (i = 0; i < f->num_tx_filters; i++) 1843 kfree(f->tx_filters[i].filter); 1844 1845 kfree(f->rx_filters); 1846 kfree(f->tx_filters); 1847 kfree(f); 1848 } 1849 EXPORT_SYMBOL(cfg80211_free_nan_func); 1850 1851 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 1852 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 1853 const unsigned char rfc1042_header[] __aligned(2) = 1854 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 1855 EXPORT_SYMBOL(rfc1042_header); 1856 1857 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 1858 const unsigned char bridge_tunnel_header[] __aligned(2) = 1859 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 1860 EXPORT_SYMBOL(bridge_tunnel_header); 1861