xref: /openbmc/linux/net/wireless/util.c (revision 781095f903f398148cd0b646d3984234a715f29e)
1 /*
2  * Wireless utility functions
3  *
4  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2013-2014  Intel Mobile Communications GmbH
6  */
7 #include <linux/export.h>
8 #include <linux/bitops.h>
9 #include <linux/etherdevice.h>
10 #include <linux/slab.h>
11 #include <net/cfg80211.h>
12 #include <net/ip.h>
13 #include <net/dsfield.h>
14 #include <linux/if_vlan.h>
15 #include <linux/mpls.h>
16 #include "core.h"
17 #include "rdev-ops.h"
18 
19 
20 struct ieee80211_rate *
21 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
22 			    u32 basic_rates, int bitrate)
23 {
24 	struct ieee80211_rate *result = &sband->bitrates[0];
25 	int i;
26 
27 	for (i = 0; i < sband->n_bitrates; i++) {
28 		if (!(basic_rates & BIT(i)))
29 			continue;
30 		if (sband->bitrates[i].bitrate > bitrate)
31 			continue;
32 		result = &sband->bitrates[i];
33 	}
34 
35 	return result;
36 }
37 EXPORT_SYMBOL(ieee80211_get_response_rate);
38 
39 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
40 			      enum nl80211_bss_scan_width scan_width)
41 {
42 	struct ieee80211_rate *bitrates;
43 	u32 mandatory_rates = 0;
44 	enum ieee80211_rate_flags mandatory_flag;
45 	int i;
46 
47 	if (WARN_ON(!sband))
48 		return 1;
49 
50 	if (sband->band == IEEE80211_BAND_2GHZ) {
51 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
52 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
53 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
54 		else
55 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
56 	} else {
57 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
58 	}
59 
60 	bitrates = sband->bitrates;
61 	for (i = 0; i < sband->n_bitrates; i++)
62 		if (bitrates[i].flags & mandatory_flag)
63 			mandatory_rates |= BIT(i);
64 	return mandatory_rates;
65 }
66 EXPORT_SYMBOL(ieee80211_mandatory_rates);
67 
68 int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band)
69 {
70 	/* see 802.11 17.3.8.3.2 and Annex J
71 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
72 	if (chan <= 0)
73 		return 0; /* not supported */
74 	switch (band) {
75 	case IEEE80211_BAND_2GHZ:
76 		if (chan == 14)
77 			return 2484;
78 		else if (chan < 14)
79 			return 2407 + chan * 5;
80 		break;
81 	case IEEE80211_BAND_5GHZ:
82 		if (chan >= 182 && chan <= 196)
83 			return 4000 + chan * 5;
84 		else
85 			return 5000 + chan * 5;
86 		break;
87 	case IEEE80211_BAND_60GHZ:
88 		if (chan < 5)
89 			return 56160 + chan * 2160;
90 		break;
91 	default:
92 		;
93 	}
94 	return 0; /* not supported */
95 }
96 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
97 
98 int ieee80211_frequency_to_channel(int freq)
99 {
100 	/* see 802.11 17.3.8.3.2 and Annex J */
101 	if (freq == 2484)
102 		return 14;
103 	else if (freq < 2484)
104 		return (freq - 2407) / 5;
105 	else if (freq >= 4910 && freq <= 4980)
106 		return (freq - 4000) / 5;
107 	else if (freq <= 45000) /* DMG band lower limit */
108 		return (freq - 5000) / 5;
109 	else if (freq >= 58320 && freq <= 64800)
110 		return (freq - 56160) / 2160;
111 	else
112 		return 0;
113 }
114 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
115 
116 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
117 						  int freq)
118 {
119 	enum ieee80211_band band;
120 	struct ieee80211_supported_band *sband;
121 	int i;
122 
123 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
124 		sband = wiphy->bands[band];
125 
126 		if (!sband)
127 			continue;
128 
129 		for (i = 0; i < sband->n_channels; i++) {
130 			if (sband->channels[i].center_freq == freq)
131 				return &sband->channels[i];
132 		}
133 	}
134 
135 	return NULL;
136 }
137 EXPORT_SYMBOL(__ieee80211_get_channel);
138 
139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
140 				     enum ieee80211_band band)
141 {
142 	int i, want;
143 
144 	switch (band) {
145 	case IEEE80211_BAND_5GHZ:
146 		want = 3;
147 		for (i = 0; i < sband->n_bitrates; i++) {
148 			if (sband->bitrates[i].bitrate == 60 ||
149 			    sband->bitrates[i].bitrate == 120 ||
150 			    sband->bitrates[i].bitrate == 240) {
151 				sband->bitrates[i].flags |=
152 					IEEE80211_RATE_MANDATORY_A;
153 				want--;
154 			}
155 		}
156 		WARN_ON(want);
157 		break;
158 	case IEEE80211_BAND_2GHZ:
159 		want = 7;
160 		for (i = 0; i < sband->n_bitrates; i++) {
161 			if (sband->bitrates[i].bitrate == 10) {
162 				sband->bitrates[i].flags |=
163 					IEEE80211_RATE_MANDATORY_B |
164 					IEEE80211_RATE_MANDATORY_G;
165 				want--;
166 			}
167 
168 			if (sband->bitrates[i].bitrate == 20 ||
169 			    sband->bitrates[i].bitrate == 55 ||
170 			    sband->bitrates[i].bitrate == 110 ||
171 			    sband->bitrates[i].bitrate == 60 ||
172 			    sband->bitrates[i].bitrate == 120 ||
173 			    sband->bitrates[i].bitrate == 240) {
174 				sband->bitrates[i].flags |=
175 					IEEE80211_RATE_MANDATORY_G;
176 				want--;
177 			}
178 
179 			if (sband->bitrates[i].bitrate != 10 &&
180 			    sband->bitrates[i].bitrate != 20 &&
181 			    sband->bitrates[i].bitrate != 55 &&
182 			    sband->bitrates[i].bitrate != 110)
183 				sband->bitrates[i].flags |=
184 					IEEE80211_RATE_ERP_G;
185 		}
186 		WARN_ON(want != 0 && want != 3 && want != 6);
187 		break;
188 	case IEEE80211_BAND_60GHZ:
189 		/* check for mandatory HT MCS 1..4 */
190 		WARN_ON(!sband->ht_cap.ht_supported);
191 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
192 		break;
193 	case IEEE80211_NUM_BANDS:
194 		WARN_ON(1);
195 		break;
196 	}
197 }
198 
199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
200 {
201 	enum ieee80211_band band;
202 
203 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
204 		if (wiphy->bands[band])
205 			set_mandatory_flags_band(wiphy->bands[band], band);
206 }
207 
208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
209 {
210 	int i;
211 	for (i = 0; i < wiphy->n_cipher_suites; i++)
212 		if (cipher == wiphy->cipher_suites[i])
213 			return true;
214 	return false;
215 }
216 
217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
218 				   struct key_params *params, int key_idx,
219 				   bool pairwise, const u8 *mac_addr)
220 {
221 	if (key_idx > 5)
222 		return -EINVAL;
223 
224 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
225 		return -EINVAL;
226 
227 	if (pairwise && !mac_addr)
228 		return -EINVAL;
229 
230 	switch (params->cipher) {
231 	case WLAN_CIPHER_SUITE_TKIP:
232 	case WLAN_CIPHER_SUITE_CCMP:
233 	case WLAN_CIPHER_SUITE_CCMP_256:
234 	case WLAN_CIPHER_SUITE_GCMP:
235 	case WLAN_CIPHER_SUITE_GCMP_256:
236 		/* Disallow pairwise keys with non-zero index unless it's WEP
237 		 * or a vendor specific cipher (because current deployments use
238 		 * pairwise WEP keys with non-zero indices and for vendor
239 		 * specific ciphers this should be validated in the driver or
240 		 * hardware level - but 802.11i clearly specifies to use zero)
241 		 */
242 		if (pairwise && key_idx)
243 			return -EINVAL;
244 		break;
245 	case WLAN_CIPHER_SUITE_AES_CMAC:
246 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
247 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
248 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
249 		/* Disallow BIP (group-only) cipher as pairwise cipher */
250 		if (pairwise)
251 			return -EINVAL;
252 		break;
253 	default:
254 		break;
255 	}
256 
257 	switch (params->cipher) {
258 	case WLAN_CIPHER_SUITE_WEP40:
259 		if (params->key_len != WLAN_KEY_LEN_WEP40)
260 			return -EINVAL;
261 		break;
262 	case WLAN_CIPHER_SUITE_TKIP:
263 		if (params->key_len != WLAN_KEY_LEN_TKIP)
264 			return -EINVAL;
265 		break;
266 	case WLAN_CIPHER_SUITE_CCMP:
267 		if (params->key_len != WLAN_KEY_LEN_CCMP)
268 			return -EINVAL;
269 		break;
270 	case WLAN_CIPHER_SUITE_CCMP_256:
271 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
272 			return -EINVAL;
273 		break;
274 	case WLAN_CIPHER_SUITE_GCMP:
275 		if (params->key_len != WLAN_KEY_LEN_GCMP)
276 			return -EINVAL;
277 		break;
278 	case WLAN_CIPHER_SUITE_GCMP_256:
279 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
280 			return -EINVAL;
281 		break;
282 	case WLAN_CIPHER_SUITE_WEP104:
283 		if (params->key_len != WLAN_KEY_LEN_WEP104)
284 			return -EINVAL;
285 		break;
286 	case WLAN_CIPHER_SUITE_AES_CMAC:
287 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
288 			return -EINVAL;
289 		break;
290 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
291 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
292 			return -EINVAL;
293 		break;
294 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
295 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
296 			return -EINVAL;
297 		break;
298 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
299 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
300 			return -EINVAL;
301 		break;
302 	default:
303 		/*
304 		 * We don't know anything about this algorithm,
305 		 * allow using it -- but the driver must check
306 		 * all parameters! We still check below whether
307 		 * or not the driver supports this algorithm,
308 		 * of course.
309 		 */
310 		break;
311 	}
312 
313 	if (params->seq) {
314 		switch (params->cipher) {
315 		case WLAN_CIPHER_SUITE_WEP40:
316 		case WLAN_CIPHER_SUITE_WEP104:
317 			/* These ciphers do not use key sequence */
318 			return -EINVAL;
319 		case WLAN_CIPHER_SUITE_TKIP:
320 		case WLAN_CIPHER_SUITE_CCMP:
321 		case WLAN_CIPHER_SUITE_CCMP_256:
322 		case WLAN_CIPHER_SUITE_GCMP:
323 		case WLAN_CIPHER_SUITE_GCMP_256:
324 		case WLAN_CIPHER_SUITE_AES_CMAC:
325 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
326 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
327 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
328 			if (params->seq_len != 6)
329 				return -EINVAL;
330 			break;
331 		}
332 	}
333 
334 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
335 		return -EINVAL;
336 
337 	return 0;
338 }
339 
340 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
341 {
342 	unsigned int hdrlen = 24;
343 
344 	if (ieee80211_is_data(fc)) {
345 		if (ieee80211_has_a4(fc))
346 			hdrlen = 30;
347 		if (ieee80211_is_data_qos(fc)) {
348 			hdrlen += IEEE80211_QOS_CTL_LEN;
349 			if (ieee80211_has_order(fc))
350 				hdrlen += IEEE80211_HT_CTL_LEN;
351 		}
352 		goto out;
353 	}
354 
355 	if (ieee80211_is_mgmt(fc)) {
356 		if (ieee80211_has_order(fc))
357 			hdrlen += IEEE80211_HT_CTL_LEN;
358 		goto out;
359 	}
360 
361 	if (ieee80211_is_ctl(fc)) {
362 		/*
363 		 * ACK and CTS are 10 bytes, all others 16. To see how
364 		 * to get this condition consider
365 		 *   subtype mask:   0b0000000011110000 (0x00F0)
366 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
367 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
368 		 *   bits that matter:         ^^^      (0x00E0)
369 		 *   value of those: 0b0000000011000000 (0x00C0)
370 		 */
371 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
372 			hdrlen = 10;
373 		else
374 			hdrlen = 16;
375 	}
376 out:
377 	return hdrlen;
378 }
379 EXPORT_SYMBOL(ieee80211_hdrlen);
380 
381 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
382 {
383 	const struct ieee80211_hdr *hdr =
384 			(const struct ieee80211_hdr *)skb->data;
385 	unsigned int hdrlen;
386 
387 	if (unlikely(skb->len < 10))
388 		return 0;
389 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
390 	if (unlikely(hdrlen > skb->len))
391 		return 0;
392 	return hdrlen;
393 }
394 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
395 
396 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
397 {
398 	int ae = meshhdr->flags & MESH_FLAGS_AE;
399 	/* 802.11-2012, 8.2.4.7.3 */
400 	switch (ae) {
401 	default:
402 	case 0:
403 		return 6;
404 	case MESH_FLAGS_AE_A4:
405 		return 12;
406 	case MESH_FLAGS_AE_A5_A6:
407 		return 18;
408 	}
409 }
410 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
411 
412 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
413 			   enum nl80211_iftype iftype)
414 {
415 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
416 	u16 hdrlen, ethertype;
417 	u8 *payload;
418 	u8 dst[ETH_ALEN];
419 	u8 src[ETH_ALEN] __aligned(2);
420 
421 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
422 		return -1;
423 
424 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
425 
426 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
427 	 * header
428 	 * IEEE 802.11 address fields:
429 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
430 	 *   0     0   DA    SA    BSSID n/a
431 	 *   0     1   DA    BSSID SA    n/a
432 	 *   1     0   BSSID SA    DA    n/a
433 	 *   1     1   RA    TA    DA    SA
434 	 */
435 	memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
436 	memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
437 
438 	switch (hdr->frame_control &
439 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
440 	case cpu_to_le16(IEEE80211_FCTL_TODS):
441 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
442 			     iftype != NL80211_IFTYPE_AP_VLAN &&
443 			     iftype != NL80211_IFTYPE_P2P_GO))
444 			return -1;
445 		break;
446 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
447 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
448 			     iftype != NL80211_IFTYPE_MESH_POINT &&
449 			     iftype != NL80211_IFTYPE_AP_VLAN &&
450 			     iftype != NL80211_IFTYPE_STATION))
451 			return -1;
452 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
453 			struct ieee80211s_hdr *meshdr =
454 				(struct ieee80211s_hdr *) (skb->data + hdrlen);
455 			/* make sure meshdr->flags is on the linear part */
456 			if (!pskb_may_pull(skb, hdrlen + 1))
457 				return -1;
458 			if (meshdr->flags & MESH_FLAGS_AE_A4)
459 				return -1;
460 			if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
461 				skb_copy_bits(skb, hdrlen +
462 					offsetof(struct ieee80211s_hdr, eaddr1),
463 				       	dst, ETH_ALEN);
464 				skb_copy_bits(skb, hdrlen +
465 					offsetof(struct ieee80211s_hdr, eaddr2),
466 				        src, ETH_ALEN);
467 			}
468 			hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
469 		}
470 		break;
471 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
472 		if ((iftype != NL80211_IFTYPE_STATION &&
473 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
474 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
475 		    (is_multicast_ether_addr(dst) &&
476 		     ether_addr_equal(src, addr)))
477 			return -1;
478 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
479 			struct ieee80211s_hdr *meshdr =
480 				(struct ieee80211s_hdr *) (skb->data + hdrlen);
481 			/* make sure meshdr->flags is on the linear part */
482 			if (!pskb_may_pull(skb, hdrlen + 1))
483 				return -1;
484 			if (meshdr->flags & MESH_FLAGS_AE_A5_A6)
485 				return -1;
486 			if (meshdr->flags & MESH_FLAGS_AE_A4)
487 				skb_copy_bits(skb, hdrlen +
488 					offsetof(struct ieee80211s_hdr, eaddr1),
489 					src, ETH_ALEN);
490 			hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
491 		}
492 		break;
493 	case cpu_to_le16(0):
494 		if (iftype != NL80211_IFTYPE_ADHOC &&
495 		    iftype != NL80211_IFTYPE_STATION &&
496 		    iftype != NL80211_IFTYPE_OCB)
497 				return -1;
498 		break;
499 	}
500 
501 	if (!pskb_may_pull(skb, hdrlen + 8))
502 		return -1;
503 
504 	payload = skb->data + hdrlen;
505 	ethertype = (payload[6] << 8) | payload[7];
506 
507 	if (likely((ether_addr_equal(payload, rfc1042_header) &&
508 		    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
509 		   ether_addr_equal(payload, bridge_tunnel_header))) {
510 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
511 		 * replace EtherType */
512 		skb_pull(skb, hdrlen + 6);
513 		memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
514 		memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
515 	} else {
516 		struct ethhdr *ehdr;
517 		__be16 len;
518 
519 		skb_pull(skb, hdrlen);
520 		len = htons(skb->len);
521 		ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
522 		memcpy(ehdr->h_dest, dst, ETH_ALEN);
523 		memcpy(ehdr->h_source, src, ETH_ALEN);
524 		ehdr->h_proto = len;
525 	}
526 	return 0;
527 }
528 EXPORT_SYMBOL(ieee80211_data_to_8023);
529 
530 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
531 			     enum nl80211_iftype iftype,
532 			     const u8 *bssid, bool qos)
533 {
534 	struct ieee80211_hdr hdr;
535 	u16 hdrlen, ethertype;
536 	__le16 fc;
537 	const u8 *encaps_data;
538 	int encaps_len, skip_header_bytes;
539 	int nh_pos, h_pos;
540 	int head_need;
541 
542 	if (unlikely(skb->len < ETH_HLEN))
543 		return -EINVAL;
544 
545 	nh_pos = skb_network_header(skb) - skb->data;
546 	h_pos = skb_transport_header(skb) - skb->data;
547 
548 	/* convert Ethernet header to proper 802.11 header (based on
549 	 * operation mode) */
550 	ethertype = (skb->data[12] << 8) | skb->data[13];
551 	fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
552 
553 	switch (iftype) {
554 	case NL80211_IFTYPE_AP:
555 	case NL80211_IFTYPE_AP_VLAN:
556 	case NL80211_IFTYPE_P2P_GO:
557 		fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
558 		/* DA BSSID SA */
559 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
560 		memcpy(hdr.addr2, addr, ETH_ALEN);
561 		memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
562 		hdrlen = 24;
563 		break;
564 	case NL80211_IFTYPE_STATION:
565 	case NL80211_IFTYPE_P2P_CLIENT:
566 		fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
567 		/* BSSID SA DA */
568 		memcpy(hdr.addr1, bssid, ETH_ALEN);
569 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
570 		memcpy(hdr.addr3, skb->data, ETH_ALEN);
571 		hdrlen = 24;
572 		break;
573 	case NL80211_IFTYPE_OCB:
574 	case NL80211_IFTYPE_ADHOC:
575 		/* DA SA BSSID */
576 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
577 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
578 		memcpy(hdr.addr3, bssid, ETH_ALEN);
579 		hdrlen = 24;
580 		break;
581 	default:
582 		return -EOPNOTSUPP;
583 	}
584 
585 	if (qos) {
586 		fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
587 		hdrlen += 2;
588 	}
589 
590 	hdr.frame_control = fc;
591 	hdr.duration_id = 0;
592 	hdr.seq_ctrl = 0;
593 
594 	skip_header_bytes = ETH_HLEN;
595 	if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
596 		encaps_data = bridge_tunnel_header;
597 		encaps_len = sizeof(bridge_tunnel_header);
598 		skip_header_bytes -= 2;
599 	} else if (ethertype >= ETH_P_802_3_MIN) {
600 		encaps_data = rfc1042_header;
601 		encaps_len = sizeof(rfc1042_header);
602 		skip_header_bytes -= 2;
603 	} else {
604 		encaps_data = NULL;
605 		encaps_len = 0;
606 	}
607 
608 	skb_pull(skb, skip_header_bytes);
609 	nh_pos -= skip_header_bytes;
610 	h_pos -= skip_header_bytes;
611 
612 	head_need = hdrlen + encaps_len - skb_headroom(skb);
613 
614 	if (head_need > 0 || skb_cloned(skb)) {
615 		head_need = max(head_need, 0);
616 		if (head_need)
617 			skb_orphan(skb);
618 
619 		if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
620 			return -ENOMEM;
621 
622 		skb->truesize += head_need;
623 	}
624 
625 	if (encaps_data) {
626 		memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
627 		nh_pos += encaps_len;
628 		h_pos += encaps_len;
629 	}
630 
631 	memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
632 
633 	nh_pos += hdrlen;
634 	h_pos += hdrlen;
635 
636 	/* Update skb pointers to various headers since this modified frame
637 	 * is going to go through Linux networking code that may potentially
638 	 * need things like pointer to IP header. */
639 	skb_set_mac_header(skb, 0);
640 	skb_set_network_header(skb, nh_pos);
641 	skb_set_transport_header(skb, h_pos);
642 
643 	return 0;
644 }
645 EXPORT_SYMBOL(ieee80211_data_from_8023);
646 
647 
648 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
649 			      const u8 *addr, enum nl80211_iftype iftype,
650 			      const unsigned int extra_headroom,
651 			      bool has_80211_header)
652 {
653 	struct sk_buff *frame = NULL;
654 	u16 ethertype;
655 	u8 *payload;
656 	const struct ethhdr *eth;
657 	int remaining, err;
658 	u8 dst[ETH_ALEN], src[ETH_ALEN];
659 
660 	if (has_80211_header) {
661 		err = ieee80211_data_to_8023(skb, addr, iftype);
662 		if (err)
663 			goto out;
664 
665 		/* skip the wrapping header */
666 		eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
667 		if (!eth)
668 			goto out;
669 	} else {
670 		eth = (struct ethhdr *) skb->data;
671 	}
672 
673 	while (skb != frame) {
674 		u8 padding;
675 		__be16 len = eth->h_proto;
676 		unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
677 
678 		remaining = skb->len;
679 		memcpy(dst, eth->h_dest, ETH_ALEN);
680 		memcpy(src, eth->h_source, ETH_ALEN);
681 
682 		padding = (4 - subframe_len) & 0x3;
683 		/* the last MSDU has no padding */
684 		if (subframe_len > remaining)
685 			goto purge;
686 
687 		skb_pull(skb, sizeof(struct ethhdr));
688 		/* reuse skb for the last subframe */
689 		if (remaining <= subframe_len + padding)
690 			frame = skb;
691 		else {
692 			unsigned int hlen = ALIGN(extra_headroom, 4);
693 			/*
694 			 * Allocate and reserve two bytes more for payload
695 			 * alignment since sizeof(struct ethhdr) is 14.
696 			 */
697 			frame = dev_alloc_skb(hlen + subframe_len + 2);
698 			if (!frame)
699 				goto purge;
700 
701 			skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
702 			memcpy(skb_put(frame, ntohs(len)), skb->data,
703 				ntohs(len));
704 
705 			eth = (struct ethhdr *)skb_pull(skb, ntohs(len) +
706 							padding);
707 			if (!eth) {
708 				dev_kfree_skb(frame);
709 				goto purge;
710 			}
711 		}
712 
713 		skb_reset_network_header(frame);
714 		frame->dev = skb->dev;
715 		frame->priority = skb->priority;
716 
717 		payload = frame->data;
718 		ethertype = (payload[6] << 8) | payload[7];
719 
720 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
721 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
722 			   ether_addr_equal(payload, bridge_tunnel_header))) {
723 			/* remove RFC1042 or Bridge-Tunnel
724 			 * encapsulation and replace EtherType */
725 			skb_pull(frame, 6);
726 			memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
727 			memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
728 		} else {
729 			memcpy(skb_push(frame, sizeof(__be16)), &len,
730 				sizeof(__be16));
731 			memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
732 			memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
733 		}
734 		__skb_queue_tail(list, frame);
735 	}
736 
737 	return;
738 
739  purge:
740 	__skb_queue_purge(list);
741  out:
742 	dev_kfree_skb(skb);
743 }
744 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
745 
746 /* Given a data frame determine the 802.1p/1d tag to use. */
747 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
748 				    struct cfg80211_qos_map *qos_map)
749 {
750 	unsigned int dscp;
751 	unsigned char vlan_priority;
752 
753 	/* skb->priority values from 256->263 are magic values to
754 	 * directly indicate a specific 802.1d priority.  This is used
755 	 * to allow 802.1d priority to be passed directly in from VLAN
756 	 * tags, etc.
757 	 */
758 	if (skb->priority >= 256 && skb->priority <= 263)
759 		return skb->priority - 256;
760 
761 	if (skb_vlan_tag_present(skb)) {
762 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
763 			>> VLAN_PRIO_SHIFT;
764 		if (vlan_priority > 0)
765 			return vlan_priority;
766 	}
767 
768 	switch (skb->protocol) {
769 	case htons(ETH_P_IP):
770 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
771 		break;
772 	case htons(ETH_P_IPV6):
773 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
774 		break;
775 	case htons(ETH_P_MPLS_UC):
776 	case htons(ETH_P_MPLS_MC): {
777 		struct mpls_label mpls_tmp, *mpls;
778 
779 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
780 					  sizeof(*mpls), &mpls_tmp);
781 		if (!mpls)
782 			return 0;
783 
784 		return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
785 			>> MPLS_LS_TC_SHIFT;
786 	}
787 	case htons(ETH_P_80221):
788 		/* 802.21 is always network control traffic */
789 		return 7;
790 	default:
791 		return 0;
792 	}
793 
794 	if (qos_map) {
795 		unsigned int i, tmp_dscp = dscp >> 2;
796 
797 		for (i = 0; i < qos_map->num_des; i++) {
798 			if (tmp_dscp == qos_map->dscp_exception[i].dscp)
799 				return qos_map->dscp_exception[i].up;
800 		}
801 
802 		for (i = 0; i < 8; i++) {
803 			if (tmp_dscp >= qos_map->up[i].low &&
804 			    tmp_dscp <= qos_map->up[i].high)
805 				return i;
806 		}
807 	}
808 
809 	return dscp >> 5;
810 }
811 EXPORT_SYMBOL(cfg80211_classify8021d);
812 
813 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
814 {
815 	const struct cfg80211_bss_ies *ies;
816 
817 	ies = rcu_dereference(bss->ies);
818 	if (!ies)
819 		return NULL;
820 
821 	return cfg80211_find_ie(ie, ies->data, ies->len);
822 }
823 EXPORT_SYMBOL(ieee80211_bss_get_ie);
824 
825 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
826 {
827 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
828 	struct net_device *dev = wdev->netdev;
829 	int i;
830 
831 	if (!wdev->connect_keys)
832 		return;
833 
834 	for (i = 0; i < 6; i++) {
835 		if (!wdev->connect_keys->params[i].cipher)
836 			continue;
837 		if (rdev_add_key(rdev, dev, i, false, NULL,
838 				 &wdev->connect_keys->params[i])) {
839 			netdev_err(dev, "failed to set key %d\n", i);
840 			continue;
841 		}
842 		if (wdev->connect_keys->def == i)
843 			if (rdev_set_default_key(rdev, dev, i, true, true)) {
844 				netdev_err(dev, "failed to set defkey %d\n", i);
845 				continue;
846 			}
847 		if (wdev->connect_keys->defmgmt == i)
848 			if (rdev_set_default_mgmt_key(rdev, dev, i))
849 				netdev_err(dev, "failed to set mgtdef %d\n", i);
850 	}
851 
852 	kzfree(wdev->connect_keys);
853 	wdev->connect_keys = NULL;
854 }
855 
856 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
857 {
858 	struct cfg80211_event *ev;
859 	unsigned long flags;
860 	const u8 *bssid = NULL;
861 
862 	spin_lock_irqsave(&wdev->event_lock, flags);
863 	while (!list_empty(&wdev->event_list)) {
864 		ev = list_first_entry(&wdev->event_list,
865 				      struct cfg80211_event, list);
866 		list_del(&ev->list);
867 		spin_unlock_irqrestore(&wdev->event_lock, flags);
868 
869 		wdev_lock(wdev);
870 		switch (ev->type) {
871 		case EVENT_CONNECT_RESULT:
872 			if (!is_zero_ether_addr(ev->cr.bssid))
873 				bssid = ev->cr.bssid;
874 			__cfg80211_connect_result(
875 				wdev->netdev, bssid,
876 				ev->cr.req_ie, ev->cr.req_ie_len,
877 				ev->cr.resp_ie, ev->cr.resp_ie_len,
878 				ev->cr.status,
879 				ev->cr.status == WLAN_STATUS_SUCCESS,
880 				NULL);
881 			break;
882 		case EVENT_ROAMED:
883 			__cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
884 					  ev->rm.req_ie_len, ev->rm.resp_ie,
885 					  ev->rm.resp_ie_len);
886 			break;
887 		case EVENT_DISCONNECTED:
888 			__cfg80211_disconnected(wdev->netdev,
889 						ev->dc.ie, ev->dc.ie_len,
890 						ev->dc.reason,
891 						!ev->dc.locally_generated);
892 			break;
893 		case EVENT_IBSS_JOINED:
894 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
895 					       ev->ij.channel);
896 			break;
897 		case EVENT_STOPPED:
898 			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
899 			break;
900 		}
901 		wdev_unlock(wdev);
902 
903 		kfree(ev);
904 
905 		spin_lock_irqsave(&wdev->event_lock, flags);
906 	}
907 	spin_unlock_irqrestore(&wdev->event_lock, flags);
908 }
909 
910 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
911 {
912 	struct wireless_dev *wdev;
913 
914 	ASSERT_RTNL();
915 
916 	list_for_each_entry(wdev, &rdev->wdev_list, list)
917 		cfg80211_process_wdev_events(wdev);
918 }
919 
920 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
921 			  struct net_device *dev, enum nl80211_iftype ntype,
922 			  u32 *flags, struct vif_params *params)
923 {
924 	int err;
925 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
926 
927 	ASSERT_RTNL();
928 
929 	/* don't support changing VLANs, you just re-create them */
930 	if (otype == NL80211_IFTYPE_AP_VLAN)
931 		return -EOPNOTSUPP;
932 
933 	/* cannot change into P2P device type */
934 	if (ntype == NL80211_IFTYPE_P2P_DEVICE)
935 		return -EOPNOTSUPP;
936 
937 	if (!rdev->ops->change_virtual_intf ||
938 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
939 		return -EOPNOTSUPP;
940 
941 	/* if it's part of a bridge, reject changing type to station/ibss */
942 	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
943 	    (ntype == NL80211_IFTYPE_ADHOC ||
944 	     ntype == NL80211_IFTYPE_STATION ||
945 	     ntype == NL80211_IFTYPE_P2P_CLIENT))
946 		return -EBUSY;
947 
948 	if (ntype != otype) {
949 		dev->ieee80211_ptr->use_4addr = false;
950 		dev->ieee80211_ptr->mesh_id_up_len = 0;
951 		wdev_lock(dev->ieee80211_ptr);
952 		rdev_set_qos_map(rdev, dev, NULL);
953 		wdev_unlock(dev->ieee80211_ptr);
954 
955 		switch (otype) {
956 		case NL80211_IFTYPE_AP:
957 			cfg80211_stop_ap(rdev, dev, true);
958 			break;
959 		case NL80211_IFTYPE_ADHOC:
960 			cfg80211_leave_ibss(rdev, dev, false);
961 			break;
962 		case NL80211_IFTYPE_STATION:
963 		case NL80211_IFTYPE_P2P_CLIENT:
964 			wdev_lock(dev->ieee80211_ptr);
965 			cfg80211_disconnect(rdev, dev,
966 					    WLAN_REASON_DEAUTH_LEAVING, true);
967 			wdev_unlock(dev->ieee80211_ptr);
968 			break;
969 		case NL80211_IFTYPE_MESH_POINT:
970 			/* mesh should be handled? */
971 			break;
972 		default:
973 			break;
974 		}
975 
976 		cfg80211_process_rdev_events(rdev);
977 	}
978 
979 	err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
980 
981 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
982 
983 	if (!err && params && params->use_4addr != -1)
984 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
985 
986 	if (!err) {
987 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
988 		switch (ntype) {
989 		case NL80211_IFTYPE_STATION:
990 			if (dev->ieee80211_ptr->use_4addr)
991 				break;
992 			/* fall through */
993 		case NL80211_IFTYPE_OCB:
994 		case NL80211_IFTYPE_P2P_CLIENT:
995 		case NL80211_IFTYPE_ADHOC:
996 			dev->priv_flags |= IFF_DONT_BRIDGE;
997 			break;
998 		case NL80211_IFTYPE_P2P_GO:
999 		case NL80211_IFTYPE_AP:
1000 		case NL80211_IFTYPE_AP_VLAN:
1001 		case NL80211_IFTYPE_WDS:
1002 		case NL80211_IFTYPE_MESH_POINT:
1003 			/* bridging OK */
1004 			break;
1005 		case NL80211_IFTYPE_MONITOR:
1006 			/* monitor can't bridge anyway */
1007 			break;
1008 		case NL80211_IFTYPE_UNSPECIFIED:
1009 		case NUM_NL80211_IFTYPES:
1010 			/* not happening */
1011 			break;
1012 		case NL80211_IFTYPE_P2P_DEVICE:
1013 			WARN_ON(1);
1014 			break;
1015 		}
1016 	}
1017 
1018 	if (!err && ntype != otype && netif_running(dev)) {
1019 		cfg80211_update_iface_num(rdev, ntype, 1);
1020 		cfg80211_update_iface_num(rdev, otype, -1);
1021 	}
1022 
1023 	return err;
1024 }
1025 
1026 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1027 {
1028 	static const u32 __mcs2bitrate[] = {
1029 		/* control PHY */
1030 		[0] =   275,
1031 		/* SC PHY */
1032 		[1] =  3850,
1033 		[2] =  7700,
1034 		[3] =  9625,
1035 		[4] = 11550,
1036 		[5] = 12512, /* 1251.25 mbps */
1037 		[6] = 15400,
1038 		[7] = 19250,
1039 		[8] = 23100,
1040 		[9] = 25025,
1041 		[10] = 30800,
1042 		[11] = 38500,
1043 		[12] = 46200,
1044 		/* OFDM PHY */
1045 		[13] =  6930,
1046 		[14] =  8662, /* 866.25 mbps */
1047 		[15] = 13860,
1048 		[16] = 17325,
1049 		[17] = 20790,
1050 		[18] = 27720,
1051 		[19] = 34650,
1052 		[20] = 41580,
1053 		[21] = 45045,
1054 		[22] = 51975,
1055 		[23] = 62370,
1056 		[24] = 67568, /* 6756.75 mbps */
1057 		/* LP-SC PHY */
1058 		[25] =  6260,
1059 		[26] =  8340,
1060 		[27] = 11120,
1061 		[28] = 12510,
1062 		[29] = 16680,
1063 		[30] = 22240,
1064 		[31] = 25030,
1065 	};
1066 
1067 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1068 		return 0;
1069 
1070 	return __mcs2bitrate[rate->mcs];
1071 }
1072 
1073 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1074 {
1075 	static const u32 base[4][10] = {
1076 		{   6500000,
1077 		   13000000,
1078 		   19500000,
1079 		   26000000,
1080 		   39000000,
1081 		   52000000,
1082 		   58500000,
1083 		   65000000,
1084 		   78000000,
1085 		   0,
1086 		},
1087 		{  13500000,
1088 		   27000000,
1089 		   40500000,
1090 		   54000000,
1091 		   81000000,
1092 		  108000000,
1093 		  121500000,
1094 		  135000000,
1095 		  162000000,
1096 		  180000000,
1097 		},
1098 		{  29300000,
1099 		   58500000,
1100 		   87800000,
1101 		  117000000,
1102 		  175500000,
1103 		  234000000,
1104 		  263300000,
1105 		  292500000,
1106 		  351000000,
1107 		  390000000,
1108 		},
1109 		{  58500000,
1110 		  117000000,
1111 		  175500000,
1112 		  234000000,
1113 		  351000000,
1114 		  468000000,
1115 		  526500000,
1116 		  585000000,
1117 		  702000000,
1118 		  780000000,
1119 		},
1120 	};
1121 	u32 bitrate;
1122 	int idx;
1123 
1124 	if (WARN_ON_ONCE(rate->mcs > 9))
1125 		return 0;
1126 
1127 	switch (rate->bw) {
1128 	case RATE_INFO_BW_160:
1129 		idx = 3;
1130 		break;
1131 	case RATE_INFO_BW_80:
1132 		idx = 2;
1133 		break;
1134 	case RATE_INFO_BW_40:
1135 		idx = 1;
1136 		break;
1137 	case RATE_INFO_BW_5:
1138 	case RATE_INFO_BW_10:
1139 	default:
1140 		WARN_ON(1);
1141 		/* fall through */
1142 	case RATE_INFO_BW_20:
1143 		idx = 0;
1144 	}
1145 
1146 	bitrate = base[idx][rate->mcs];
1147 	bitrate *= rate->nss;
1148 
1149 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1150 		bitrate = (bitrate / 9) * 10;
1151 
1152 	/* do NOT round down here */
1153 	return (bitrate + 50000) / 100000;
1154 }
1155 
1156 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1157 {
1158 	int modulation, streams, bitrate;
1159 
1160 	if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1161 	    !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1162 		return rate->legacy;
1163 	if (rate->flags & RATE_INFO_FLAGS_60G)
1164 		return cfg80211_calculate_bitrate_60g(rate);
1165 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1166 		return cfg80211_calculate_bitrate_vht(rate);
1167 
1168 	/* the formula below does only work for MCS values smaller than 32 */
1169 	if (WARN_ON_ONCE(rate->mcs >= 32))
1170 		return 0;
1171 
1172 	modulation = rate->mcs & 7;
1173 	streams = (rate->mcs >> 3) + 1;
1174 
1175 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1176 
1177 	if (modulation < 4)
1178 		bitrate *= (modulation + 1);
1179 	else if (modulation == 4)
1180 		bitrate *= (modulation + 2);
1181 	else
1182 		bitrate *= (modulation + 3);
1183 
1184 	bitrate *= streams;
1185 
1186 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1187 		bitrate = (bitrate / 9) * 10;
1188 
1189 	/* do NOT round down here */
1190 	return (bitrate + 50000) / 100000;
1191 }
1192 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1193 
1194 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1195 			  enum ieee80211_p2p_attr_id attr,
1196 			  u8 *buf, unsigned int bufsize)
1197 {
1198 	u8 *out = buf;
1199 	u16 attr_remaining = 0;
1200 	bool desired_attr = false;
1201 	u16 desired_len = 0;
1202 
1203 	while (len > 0) {
1204 		unsigned int iedatalen;
1205 		unsigned int copy;
1206 		const u8 *iedata;
1207 
1208 		if (len < 2)
1209 			return -EILSEQ;
1210 		iedatalen = ies[1];
1211 		if (iedatalen + 2 > len)
1212 			return -EILSEQ;
1213 
1214 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1215 			goto cont;
1216 
1217 		if (iedatalen < 4)
1218 			goto cont;
1219 
1220 		iedata = ies + 2;
1221 
1222 		/* check WFA OUI, P2P subtype */
1223 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1224 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1225 			goto cont;
1226 
1227 		iedatalen -= 4;
1228 		iedata += 4;
1229 
1230 		/* check attribute continuation into this IE */
1231 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1232 		if (copy && desired_attr) {
1233 			desired_len += copy;
1234 			if (out) {
1235 				memcpy(out, iedata, min(bufsize, copy));
1236 				out += min(bufsize, copy);
1237 				bufsize -= min(bufsize, copy);
1238 			}
1239 
1240 
1241 			if (copy == attr_remaining)
1242 				return desired_len;
1243 		}
1244 
1245 		attr_remaining -= copy;
1246 		if (attr_remaining)
1247 			goto cont;
1248 
1249 		iedatalen -= copy;
1250 		iedata += copy;
1251 
1252 		while (iedatalen > 0) {
1253 			u16 attr_len;
1254 
1255 			/* P2P attribute ID & size must fit */
1256 			if (iedatalen < 3)
1257 				return -EILSEQ;
1258 			desired_attr = iedata[0] == attr;
1259 			attr_len = get_unaligned_le16(iedata + 1);
1260 			iedatalen -= 3;
1261 			iedata += 3;
1262 
1263 			copy = min_t(unsigned int, attr_len, iedatalen);
1264 
1265 			if (desired_attr) {
1266 				desired_len += copy;
1267 				if (out) {
1268 					memcpy(out, iedata, min(bufsize, copy));
1269 					out += min(bufsize, copy);
1270 					bufsize -= min(bufsize, copy);
1271 				}
1272 
1273 				if (copy == attr_len)
1274 					return desired_len;
1275 			}
1276 
1277 			iedata += copy;
1278 			iedatalen -= copy;
1279 			attr_remaining = attr_len - copy;
1280 		}
1281 
1282  cont:
1283 		len -= ies[1] + 2;
1284 		ies += ies[1] + 2;
1285 	}
1286 
1287 	if (attr_remaining && desired_attr)
1288 		return -EILSEQ;
1289 
1290 	return -ENOENT;
1291 }
1292 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1293 
1294 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1295 {
1296 	int i;
1297 
1298 	for (i = 0; i < n_ids; i++)
1299 		if (ids[i] == id)
1300 			return true;
1301 	return false;
1302 }
1303 
1304 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1305 			      const u8 *ids, int n_ids,
1306 			      const u8 *after_ric, int n_after_ric,
1307 			      size_t offset)
1308 {
1309 	size_t pos = offset;
1310 
1311 	while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
1312 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1313 			pos += 2 + ies[pos + 1];
1314 
1315 			while (pos < ielen &&
1316 			       !ieee80211_id_in_list(after_ric, n_after_ric,
1317 						     ies[pos]))
1318 				pos += 2 + ies[pos + 1];
1319 		} else {
1320 			pos += 2 + ies[pos + 1];
1321 		}
1322 	}
1323 
1324 	return pos;
1325 }
1326 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1327 
1328 bool ieee80211_operating_class_to_band(u8 operating_class,
1329 				       enum ieee80211_band *band)
1330 {
1331 	switch (operating_class) {
1332 	case 112:
1333 	case 115 ... 127:
1334 	case 128 ... 130:
1335 		*band = IEEE80211_BAND_5GHZ;
1336 		return true;
1337 	case 81:
1338 	case 82:
1339 	case 83:
1340 	case 84:
1341 		*band = IEEE80211_BAND_2GHZ;
1342 		return true;
1343 	case 180:
1344 		*band = IEEE80211_BAND_60GHZ;
1345 		return true;
1346 	}
1347 
1348 	return false;
1349 }
1350 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1351 
1352 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1353 					  u8 *op_class)
1354 {
1355 	u8 vht_opclass;
1356 	u16 freq = chandef->center_freq1;
1357 
1358 	if (freq >= 2412 && freq <= 2472) {
1359 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1360 			return false;
1361 
1362 		/* 2.407 GHz, channels 1..13 */
1363 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1364 			if (freq > chandef->chan->center_freq)
1365 				*op_class = 83; /* HT40+ */
1366 			else
1367 				*op_class = 84; /* HT40- */
1368 		} else {
1369 			*op_class = 81;
1370 		}
1371 
1372 		return true;
1373 	}
1374 
1375 	if (freq == 2484) {
1376 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1377 			return false;
1378 
1379 		*op_class = 82; /* channel 14 */
1380 		return true;
1381 	}
1382 
1383 	switch (chandef->width) {
1384 	case NL80211_CHAN_WIDTH_80:
1385 		vht_opclass = 128;
1386 		break;
1387 	case NL80211_CHAN_WIDTH_160:
1388 		vht_opclass = 129;
1389 		break;
1390 	case NL80211_CHAN_WIDTH_80P80:
1391 		vht_opclass = 130;
1392 		break;
1393 	case NL80211_CHAN_WIDTH_10:
1394 	case NL80211_CHAN_WIDTH_5:
1395 		return false; /* unsupported for now */
1396 	default:
1397 		vht_opclass = 0;
1398 		break;
1399 	}
1400 
1401 	/* 5 GHz, channels 36..48 */
1402 	if (freq >= 5180 && freq <= 5240) {
1403 		if (vht_opclass) {
1404 			*op_class = vht_opclass;
1405 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1406 			if (freq > chandef->chan->center_freq)
1407 				*op_class = 116;
1408 			else
1409 				*op_class = 117;
1410 		} else {
1411 			*op_class = 115;
1412 		}
1413 
1414 		return true;
1415 	}
1416 
1417 	/* 5 GHz, channels 52..64 */
1418 	if (freq >= 5260 && freq <= 5320) {
1419 		if (vht_opclass) {
1420 			*op_class = vht_opclass;
1421 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1422 			if (freq > chandef->chan->center_freq)
1423 				*op_class = 119;
1424 			else
1425 				*op_class = 120;
1426 		} else {
1427 			*op_class = 118;
1428 		}
1429 
1430 		return true;
1431 	}
1432 
1433 	/* 5 GHz, channels 100..144 */
1434 	if (freq >= 5500 && freq <= 5720) {
1435 		if (vht_opclass) {
1436 			*op_class = vht_opclass;
1437 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1438 			if (freq > chandef->chan->center_freq)
1439 				*op_class = 122;
1440 			else
1441 				*op_class = 123;
1442 		} else {
1443 			*op_class = 121;
1444 		}
1445 
1446 		return true;
1447 	}
1448 
1449 	/* 5 GHz, channels 149..169 */
1450 	if (freq >= 5745 && freq <= 5845) {
1451 		if (vht_opclass) {
1452 			*op_class = vht_opclass;
1453 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1454 			if (freq > chandef->chan->center_freq)
1455 				*op_class = 126;
1456 			else
1457 				*op_class = 127;
1458 		} else if (freq <= 5805) {
1459 			*op_class = 124;
1460 		} else {
1461 			*op_class = 125;
1462 		}
1463 
1464 		return true;
1465 	}
1466 
1467 	/* 56.16 GHz, channel 1..4 */
1468 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1469 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1470 			return false;
1471 
1472 		*op_class = 180;
1473 		return true;
1474 	}
1475 
1476 	/* not supported yet */
1477 	return false;
1478 }
1479 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1480 
1481 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1482 				 u32 beacon_int)
1483 {
1484 	struct wireless_dev *wdev;
1485 	int res = 0;
1486 
1487 	if (!beacon_int)
1488 		return -EINVAL;
1489 
1490 	list_for_each_entry(wdev, &rdev->wdev_list, list) {
1491 		if (!wdev->beacon_interval)
1492 			continue;
1493 		if (wdev->beacon_interval != beacon_int) {
1494 			res = -EINVAL;
1495 			break;
1496 		}
1497 	}
1498 
1499 	return res;
1500 }
1501 
1502 int cfg80211_iter_combinations(struct wiphy *wiphy,
1503 			       const int num_different_channels,
1504 			       const u8 radar_detect,
1505 			       const int iftype_num[NUM_NL80211_IFTYPES],
1506 			       void (*iter)(const struct ieee80211_iface_combination *c,
1507 					    void *data),
1508 			       void *data)
1509 {
1510 	const struct ieee80211_regdomain *regdom;
1511 	enum nl80211_dfs_regions region = 0;
1512 	int i, j, iftype;
1513 	int num_interfaces = 0;
1514 	u32 used_iftypes = 0;
1515 
1516 	if (radar_detect) {
1517 		rcu_read_lock();
1518 		regdom = rcu_dereference(cfg80211_regdomain);
1519 		if (regdom)
1520 			region = regdom->dfs_region;
1521 		rcu_read_unlock();
1522 	}
1523 
1524 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1525 		num_interfaces += iftype_num[iftype];
1526 		if (iftype_num[iftype] > 0 &&
1527 		    !(wiphy->software_iftypes & BIT(iftype)))
1528 			used_iftypes |= BIT(iftype);
1529 	}
1530 
1531 	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1532 		const struct ieee80211_iface_combination *c;
1533 		struct ieee80211_iface_limit *limits;
1534 		u32 all_iftypes = 0;
1535 
1536 		c = &wiphy->iface_combinations[i];
1537 
1538 		if (num_interfaces > c->max_interfaces)
1539 			continue;
1540 		if (num_different_channels > c->num_different_channels)
1541 			continue;
1542 
1543 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1544 				 GFP_KERNEL);
1545 		if (!limits)
1546 			return -ENOMEM;
1547 
1548 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1549 			if (wiphy->software_iftypes & BIT(iftype))
1550 				continue;
1551 			for (j = 0; j < c->n_limits; j++) {
1552 				all_iftypes |= limits[j].types;
1553 				if (!(limits[j].types & BIT(iftype)))
1554 					continue;
1555 				if (limits[j].max < iftype_num[iftype])
1556 					goto cont;
1557 				limits[j].max -= iftype_num[iftype];
1558 			}
1559 		}
1560 
1561 		if (radar_detect != (c->radar_detect_widths & radar_detect))
1562 			goto cont;
1563 
1564 		if (radar_detect && c->radar_detect_regions &&
1565 		    !(c->radar_detect_regions & BIT(region)))
1566 			goto cont;
1567 
1568 		/* Finally check that all iftypes that we're currently
1569 		 * using are actually part of this combination. If they
1570 		 * aren't then we can't use this combination and have
1571 		 * to continue to the next.
1572 		 */
1573 		if ((all_iftypes & used_iftypes) != used_iftypes)
1574 			goto cont;
1575 
1576 		/* This combination covered all interface types and
1577 		 * supported the requested numbers, so we're good.
1578 		 */
1579 
1580 		(*iter)(c, data);
1581  cont:
1582 		kfree(limits);
1583 	}
1584 
1585 	return 0;
1586 }
1587 EXPORT_SYMBOL(cfg80211_iter_combinations);
1588 
1589 static void
1590 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1591 			  void *data)
1592 {
1593 	int *num = data;
1594 	(*num)++;
1595 }
1596 
1597 int cfg80211_check_combinations(struct wiphy *wiphy,
1598 				const int num_different_channels,
1599 				const u8 radar_detect,
1600 				const int iftype_num[NUM_NL80211_IFTYPES])
1601 {
1602 	int err, num = 0;
1603 
1604 	err = cfg80211_iter_combinations(wiphy, num_different_channels,
1605 					 radar_detect, iftype_num,
1606 					 cfg80211_iter_sum_ifcombs, &num);
1607 	if (err)
1608 		return err;
1609 	if (num == 0)
1610 		return -EBUSY;
1611 
1612 	return 0;
1613 }
1614 EXPORT_SYMBOL(cfg80211_check_combinations);
1615 
1616 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1617 			   const u8 *rates, unsigned int n_rates,
1618 			   u32 *mask)
1619 {
1620 	int i, j;
1621 
1622 	if (!sband)
1623 		return -EINVAL;
1624 
1625 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1626 		return -EINVAL;
1627 
1628 	*mask = 0;
1629 
1630 	for (i = 0; i < n_rates; i++) {
1631 		int rate = (rates[i] & 0x7f) * 5;
1632 		bool found = false;
1633 
1634 		for (j = 0; j < sband->n_bitrates; j++) {
1635 			if (sband->bitrates[j].bitrate == rate) {
1636 				found = true;
1637 				*mask |= BIT(j);
1638 				break;
1639 			}
1640 		}
1641 		if (!found)
1642 			return -EINVAL;
1643 	}
1644 
1645 	/*
1646 	 * mask must have at least one bit set here since we
1647 	 * didn't accept a 0-length rates array nor allowed
1648 	 * entries in the array that didn't exist
1649 	 */
1650 
1651 	return 0;
1652 }
1653 
1654 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1655 {
1656 	enum ieee80211_band band;
1657 	unsigned int n_channels = 0;
1658 
1659 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1660 		if (wiphy->bands[band])
1661 			n_channels += wiphy->bands[band]->n_channels;
1662 
1663 	return n_channels;
1664 }
1665 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1666 
1667 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1668 			 struct station_info *sinfo)
1669 {
1670 	struct cfg80211_registered_device *rdev;
1671 	struct wireless_dev *wdev;
1672 
1673 	wdev = dev->ieee80211_ptr;
1674 	if (!wdev)
1675 		return -EOPNOTSUPP;
1676 
1677 	rdev = wiphy_to_rdev(wdev->wiphy);
1678 	if (!rdev->ops->get_station)
1679 		return -EOPNOTSUPP;
1680 
1681 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1682 }
1683 EXPORT_SYMBOL(cfg80211_get_station);
1684 
1685 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1686 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1687 const unsigned char rfc1042_header[] __aligned(2) =
1688 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1689 EXPORT_SYMBOL(rfc1042_header);
1690 
1691 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1692 const unsigned char bridge_tunnel_header[] __aligned(2) =
1693 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1694 EXPORT_SYMBOL(bridge_tunnel_header);
1695