1 /* 2 * Wireless utility functions 3 * 4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2013-2014 Intel Mobile Communications GmbH 6 */ 7 #include <linux/export.h> 8 #include <linux/bitops.h> 9 #include <linux/etherdevice.h> 10 #include <linux/slab.h> 11 #include <net/cfg80211.h> 12 #include <net/ip.h> 13 #include <net/dsfield.h> 14 #include <linux/if_vlan.h> 15 #include <linux/mpls.h> 16 #include "core.h" 17 #include "rdev-ops.h" 18 19 20 struct ieee80211_rate * 21 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 22 u32 basic_rates, int bitrate) 23 { 24 struct ieee80211_rate *result = &sband->bitrates[0]; 25 int i; 26 27 for (i = 0; i < sband->n_bitrates; i++) { 28 if (!(basic_rates & BIT(i))) 29 continue; 30 if (sband->bitrates[i].bitrate > bitrate) 31 continue; 32 result = &sband->bitrates[i]; 33 } 34 35 return result; 36 } 37 EXPORT_SYMBOL(ieee80211_get_response_rate); 38 39 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 40 enum nl80211_bss_scan_width scan_width) 41 { 42 struct ieee80211_rate *bitrates; 43 u32 mandatory_rates = 0; 44 enum ieee80211_rate_flags mandatory_flag; 45 int i; 46 47 if (WARN_ON(!sband)) 48 return 1; 49 50 if (sband->band == NL80211_BAND_2GHZ) { 51 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 52 scan_width == NL80211_BSS_CHAN_WIDTH_10) 53 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 54 else 55 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 56 } else { 57 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 58 } 59 60 bitrates = sband->bitrates; 61 for (i = 0; i < sband->n_bitrates; i++) 62 if (bitrates[i].flags & mandatory_flag) 63 mandatory_rates |= BIT(i); 64 return mandatory_rates; 65 } 66 EXPORT_SYMBOL(ieee80211_mandatory_rates); 67 68 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band) 69 { 70 /* see 802.11 17.3.8.3.2 and Annex J 71 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 72 if (chan <= 0) 73 return 0; /* not supported */ 74 switch (band) { 75 case NL80211_BAND_2GHZ: 76 if (chan == 14) 77 return 2484; 78 else if (chan < 14) 79 return 2407 + chan * 5; 80 break; 81 case NL80211_BAND_5GHZ: 82 if (chan >= 182 && chan <= 196) 83 return 4000 + chan * 5; 84 else 85 return 5000 + chan * 5; 86 break; 87 case NL80211_BAND_60GHZ: 88 if (chan < 5) 89 return 56160 + chan * 2160; 90 break; 91 default: 92 ; 93 } 94 return 0; /* not supported */ 95 } 96 EXPORT_SYMBOL(ieee80211_channel_to_frequency); 97 98 int ieee80211_frequency_to_channel(int freq) 99 { 100 /* see 802.11 17.3.8.3.2 and Annex J */ 101 if (freq == 2484) 102 return 14; 103 else if (freq < 2484) 104 return (freq - 2407) / 5; 105 else if (freq >= 4910 && freq <= 4980) 106 return (freq - 4000) / 5; 107 else if (freq <= 45000) /* DMG band lower limit */ 108 return (freq - 5000) / 5; 109 else if (freq >= 58320 && freq <= 64800) 110 return (freq - 56160) / 2160; 111 else 112 return 0; 113 } 114 EXPORT_SYMBOL(ieee80211_frequency_to_channel); 115 116 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy, 117 int freq) 118 { 119 enum nl80211_band band; 120 struct ieee80211_supported_band *sband; 121 int i; 122 123 for (band = 0; band < NUM_NL80211_BANDS; band++) { 124 sband = wiphy->bands[band]; 125 126 if (!sband) 127 continue; 128 129 for (i = 0; i < sband->n_channels; i++) { 130 if (sband->channels[i].center_freq == freq) 131 return &sband->channels[i]; 132 } 133 } 134 135 return NULL; 136 } 137 EXPORT_SYMBOL(__ieee80211_get_channel); 138 139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband, 140 enum nl80211_band band) 141 { 142 int i, want; 143 144 switch (band) { 145 case NL80211_BAND_5GHZ: 146 want = 3; 147 for (i = 0; i < sband->n_bitrates; i++) { 148 if (sband->bitrates[i].bitrate == 60 || 149 sband->bitrates[i].bitrate == 120 || 150 sband->bitrates[i].bitrate == 240) { 151 sband->bitrates[i].flags |= 152 IEEE80211_RATE_MANDATORY_A; 153 want--; 154 } 155 } 156 WARN_ON(want); 157 break; 158 case NL80211_BAND_2GHZ: 159 want = 7; 160 for (i = 0; i < sband->n_bitrates; i++) { 161 if (sband->bitrates[i].bitrate == 10) { 162 sband->bitrates[i].flags |= 163 IEEE80211_RATE_MANDATORY_B | 164 IEEE80211_RATE_MANDATORY_G; 165 want--; 166 } 167 168 if (sband->bitrates[i].bitrate == 20 || 169 sband->bitrates[i].bitrate == 55 || 170 sband->bitrates[i].bitrate == 110 || 171 sband->bitrates[i].bitrate == 60 || 172 sband->bitrates[i].bitrate == 120 || 173 sband->bitrates[i].bitrate == 240) { 174 sband->bitrates[i].flags |= 175 IEEE80211_RATE_MANDATORY_G; 176 want--; 177 } 178 179 if (sband->bitrates[i].bitrate != 10 && 180 sband->bitrates[i].bitrate != 20 && 181 sband->bitrates[i].bitrate != 55 && 182 sband->bitrates[i].bitrate != 110) 183 sband->bitrates[i].flags |= 184 IEEE80211_RATE_ERP_G; 185 } 186 WARN_ON(want != 0 && want != 3 && want != 6); 187 break; 188 case NL80211_BAND_60GHZ: 189 /* check for mandatory HT MCS 1..4 */ 190 WARN_ON(!sband->ht_cap.ht_supported); 191 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 192 break; 193 case NUM_NL80211_BANDS: 194 WARN_ON(1); 195 break; 196 } 197 } 198 199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 200 { 201 enum nl80211_band band; 202 203 for (band = 0; band < NUM_NL80211_BANDS; band++) 204 if (wiphy->bands[band]) 205 set_mandatory_flags_band(wiphy->bands[band], band); 206 } 207 208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 209 { 210 int i; 211 for (i = 0; i < wiphy->n_cipher_suites; i++) 212 if (cipher == wiphy->cipher_suites[i]) 213 return true; 214 return false; 215 } 216 217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 218 struct key_params *params, int key_idx, 219 bool pairwise, const u8 *mac_addr) 220 { 221 if (key_idx < 0 || key_idx > 5) 222 return -EINVAL; 223 224 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 225 return -EINVAL; 226 227 if (pairwise && !mac_addr) 228 return -EINVAL; 229 230 switch (params->cipher) { 231 case WLAN_CIPHER_SUITE_TKIP: 232 case WLAN_CIPHER_SUITE_CCMP: 233 case WLAN_CIPHER_SUITE_CCMP_256: 234 case WLAN_CIPHER_SUITE_GCMP: 235 case WLAN_CIPHER_SUITE_GCMP_256: 236 /* Disallow pairwise keys with non-zero index unless it's WEP 237 * or a vendor specific cipher (because current deployments use 238 * pairwise WEP keys with non-zero indices and for vendor 239 * specific ciphers this should be validated in the driver or 240 * hardware level - but 802.11i clearly specifies to use zero) 241 */ 242 if (pairwise && key_idx) 243 return -EINVAL; 244 break; 245 case WLAN_CIPHER_SUITE_AES_CMAC: 246 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 247 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 248 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 249 /* Disallow BIP (group-only) cipher as pairwise cipher */ 250 if (pairwise) 251 return -EINVAL; 252 if (key_idx < 4) 253 return -EINVAL; 254 break; 255 case WLAN_CIPHER_SUITE_WEP40: 256 case WLAN_CIPHER_SUITE_WEP104: 257 if (key_idx > 3) 258 return -EINVAL; 259 default: 260 break; 261 } 262 263 switch (params->cipher) { 264 case WLAN_CIPHER_SUITE_WEP40: 265 if (params->key_len != WLAN_KEY_LEN_WEP40) 266 return -EINVAL; 267 break; 268 case WLAN_CIPHER_SUITE_TKIP: 269 if (params->key_len != WLAN_KEY_LEN_TKIP) 270 return -EINVAL; 271 break; 272 case WLAN_CIPHER_SUITE_CCMP: 273 if (params->key_len != WLAN_KEY_LEN_CCMP) 274 return -EINVAL; 275 break; 276 case WLAN_CIPHER_SUITE_CCMP_256: 277 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 278 return -EINVAL; 279 break; 280 case WLAN_CIPHER_SUITE_GCMP: 281 if (params->key_len != WLAN_KEY_LEN_GCMP) 282 return -EINVAL; 283 break; 284 case WLAN_CIPHER_SUITE_GCMP_256: 285 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 286 return -EINVAL; 287 break; 288 case WLAN_CIPHER_SUITE_WEP104: 289 if (params->key_len != WLAN_KEY_LEN_WEP104) 290 return -EINVAL; 291 break; 292 case WLAN_CIPHER_SUITE_AES_CMAC: 293 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 294 return -EINVAL; 295 break; 296 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 297 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 298 return -EINVAL; 299 break; 300 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 301 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 302 return -EINVAL; 303 break; 304 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 305 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 306 return -EINVAL; 307 break; 308 default: 309 /* 310 * We don't know anything about this algorithm, 311 * allow using it -- but the driver must check 312 * all parameters! We still check below whether 313 * or not the driver supports this algorithm, 314 * of course. 315 */ 316 break; 317 } 318 319 if (params->seq) { 320 switch (params->cipher) { 321 case WLAN_CIPHER_SUITE_WEP40: 322 case WLAN_CIPHER_SUITE_WEP104: 323 /* These ciphers do not use key sequence */ 324 return -EINVAL; 325 case WLAN_CIPHER_SUITE_TKIP: 326 case WLAN_CIPHER_SUITE_CCMP: 327 case WLAN_CIPHER_SUITE_CCMP_256: 328 case WLAN_CIPHER_SUITE_GCMP: 329 case WLAN_CIPHER_SUITE_GCMP_256: 330 case WLAN_CIPHER_SUITE_AES_CMAC: 331 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 332 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 333 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 334 if (params->seq_len != 6) 335 return -EINVAL; 336 break; 337 } 338 } 339 340 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 341 return -EINVAL; 342 343 return 0; 344 } 345 346 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 347 { 348 unsigned int hdrlen = 24; 349 350 if (ieee80211_is_data(fc)) { 351 if (ieee80211_has_a4(fc)) 352 hdrlen = 30; 353 if (ieee80211_is_data_qos(fc)) { 354 hdrlen += IEEE80211_QOS_CTL_LEN; 355 if (ieee80211_has_order(fc)) 356 hdrlen += IEEE80211_HT_CTL_LEN; 357 } 358 goto out; 359 } 360 361 if (ieee80211_is_mgmt(fc)) { 362 if (ieee80211_has_order(fc)) 363 hdrlen += IEEE80211_HT_CTL_LEN; 364 goto out; 365 } 366 367 if (ieee80211_is_ctl(fc)) { 368 /* 369 * ACK and CTS are 10 bytes, all others 16. To see how 370 * to get this condition consider 371 * subtype mask: 0b0000000011110000 (0x00F0) 372 * ACK subtype: 0b0000000011010000 (0x00D0) 373 * CTS subtype: 0b0000000011000000 (0x00C0) 374 * bits that matter: ^^^ (0x00E0) 375 * value of those: 0b0000000011000000 (0x00C0) 376 */ 377 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 378 hdrlen = 10; 379 else 380 hdrlen = 16; 381 } 382 out: 383 return hdrlen; 384 } 385 EXPORT_SYMBOL(ieee80211_hdrlen); 386 387 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 388 { 389 const struct ieee80211_hdr *hdr = 390 (const struct ieee80211_hdr *)skb->data; 391 unsigned int hdrlen; 392 393 if (unlikely(skb->len < 10)) 394 return 0; 395 hdrlen = ieee80211_hdrlen(hdr->frame_control); 396 if (unlikely(hdrlen > skb->len)) 397 return 0; 398 return hdrlen; 399 } 400 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 401 402 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 403 { 404 int ae = flags & MESH_FLAGS_AE; 405 /* 802.11-2012, 8.2.4.7.3 */ 406 switch (ae) { 407 default: 408 case 0: 409 return 6; 410 case MESH_FLAGS_AE_A4: 411 return 12; 412 case MESH_FLAGS_AE_A5_A6: 413 return 18; 414 } 415 } 416 417 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 418 { 419 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 420 } 421 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 422 423 static int __ieee80211_data_to_8023(struct sk_buff *skb, struct ethhdr *ehdr, 424 const u8 *addr, enum nl80211_iftype iftype) 425 { 426 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 427 struct { 428 u8 hdr[ETH_ALEN] __aligned(2); 429 __be16 proto; 430 } payload; 431 struct ethhdr tmp; 432 u16 hdrlen; 433 u8 mesh_flags = 0; 434 435 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 436 return -1; 437 438 hdrlen = ieee80211_hdrlen(hdr->frame_control); 439 if (skb->len < hdrlen + 8) 440 return -1; 441 442 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 443 * header 444 * IEEE 802.11 address fields: 445 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 446 * 0 0 DA SA BSSID n/a 447 * 0 1 DA BSSID SA n/a 448 * 1 0 BSSID SA DA n/a 449 * 1 1 RA TA DA SA 450 */ 451 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 452 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 453 454 if (iftype == NL80211_IFTYPE_MESH_POINT) 455 skb_copy_bits(skb, hdrlen, &mesh_flags, 1); 456 457 switch (hdr->frame_control & 458 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 459 case cpu_to_le16(IEEE80211_FCTL_TODS): 460 if (unlikely(iftype != NL80211_IFTYPE_AP && 461 iftype != NL80211_IFTYPE_AP_VLAN && 462 iftype != NL80211_IFTYPE_P2P_GO)) 463 return -1; 464 break; 465 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 466 if (unlikely(iftype != NL80211_IFTYPE_WDS && 467 iftype != NL80211_IFTYPE_MESH_POINT && 468 iftype != NL80211_IFTYPE_AP_VLAN && 469 iftype != NL80211_IFTYPE_STATION)) 470 return -1; 471 if (iftype == NL80211_IFTYPE_MESH_POINT) { 472 if (mesh_flags & MESH_FLAGS_AE_A4) 473 return -1; 474 if (mesh_flags & MESH_FLAGS_AE_A5_A6) { 475 skb_copy_bits(skb, hdrlen + 476 offsetof(struct ieee80211s_hdr, eaddr1), 477 tmp.h_dest, 2 * ETH_ALEN); 478 } 479 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 480 } 481 break; 482 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 483 if ((iftype != NL80211_IFTYPE_STATION && 484 iftype != NL80211_IFTYPE_P2P_CLIENT && 485 iftype != NL80211_IFTYPE_MESH_POINT) || 486 (is_multicast_ether_addr(tmp.h_dest) && 487 ether_addr_equal(tmp.h_source, addr))) 488 return -1; 489 if (iftype == NL80211_IFTYPE_MESH_POINT) { 490 if (mesh_flags & MESH_FLAGS_AE_A5_A6) 491 return -1; 492 if (mesh_flags & MESH_FLAGS_AE_A4) 493 skb_copy_bits(skb, hdrlen + 494 offsetof(struct ieee80211s_hdr, eaddr1), 495 tmp.h_source, ETH_ALEN); 496 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 497 } 498 break; 499 case cpu_to_le16(0): 500 if (iftype != NL80211_IFTYPE_ADHOC && 501 iftype != NL80211_IFTYPE_STATION && 502 iftype != NL80211_IFTYPE_OCB) 503 return -1; 504 break; 505 } 506 507 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)); 508 tmp.h_proto = payload.proto; 509 510 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) && 511 tmp.h_proto != htons(ETH_P_AARP) && 512 tmp.h_proto != htons(ETH_P_IPX)) || 513 ether_addr_equal(payload.hdr, bridge_tunnel_header))) 514 /* remove RFC1042 or Bridge-Tunnel encapsulation and 515 * replace EtherType */ 516 hdrlen += ETH_ALEN + 2; 517 else 518 tmp.h_proto = htons(skb->len - hdrlen); 519 520 pskb_pull(skb, hdrlen); 521 522 if (!ehdr) 523 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr)); 524 memcpy(ehdr, &tmp, sizeof(tmp)); 525 526 return 0; 527 } 528 529 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr, 530 enum nl80211_iftype iftype) 531 { 532 return __ieee80211_data_to_8023(skb, NULL, addr, iftype); 533 } 534 EXPORT_SYMBOL(ieee80211_data_to_8023); 535 536 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr, 537 enum nl80211_iftype iftype, 538 const u8 *bssid, bool qos) 539 { 540 struct ieee80211_hdr hdr; 541 u16 hdrlen, ethertype; 542 __le16 fc; 543 const u8 *encaps_data; 544 int encaps_len, skip_header_bytes; 545 int nh_pos, h_pos; 546 int head_need; 547 548 if (unlikely(skb->len < ETH_HLEN)) 549 return -EINVAL; 550 551 nh_pos = skb_network_header(skb) - skb->data; 552 h_pos = skb_transport_header(skb) - skb->data; 553 554 /* convert Ethernet header to proper 802.11 header (based on 555 * operation mode) */ 556 ethertype = (skb->data[12] << 8) | skb->data[13]; 557 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); 558 559 switch (iftype) { 560 case NL80211_IFTYPE_AP: 561 case NL80211_IFTYPE_AP_VLAN: 562 case NL80211_IFTYPE_P2P_GO: 563 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); 564 /* DA BSSID SA */ 565 memcpy(hdr.addr1, skb->data, ETH_ALEN); 566 memcpy(hdr.addr2, addr, ETH_ALEN); 567 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 568 hdrlen = 24; 569 break; 570 case NL80211_IFTYPE_STATION: 571 case NL80211_IFTYPE_P2P_CLIENT: 572 fc |= cpu_to_le16(IEEE80211_FCTL_TODS); 573 /* BSSID SA DA */ 574 memcpy(hdr.addr1, bssid, ETH_ALEN); 575 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 576 memcpy(hdr.addr3, skb->data, ETH_ALEN); 577 hdrlen = 24; 578 break; 579 case NL80211_IFTYPE_OCB: 580 case NL80211_IFTYPE_ADHOC: 581 /* DA SA BSSID */ 582 memcpy(hdr.addr1, skb->data, ETH_ALEN); 583 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 584 memcpy(hdr.addr3, bssid, ETH_ALEN); 585 hdrlen = 24; 586 break; 587 default: 588 return -EOPNOTSUPP; 589 } 590 591 if (qos) { 592 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 593 hdrlen += 2; 594 } 595 596 hdr.frame_control = fc; 597 hdr.duration_id = 0; 598 hdr.seq_ctrl = 0; 599 600 skip_header_bytes = ETH_HLEN; 601 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 602 encaps_data = bridge_tunnel_header; 603 encaps_len = sizeof(bridge_tunnel_header); 604 skip_header_bytes -= 2; 605 } else if (ethertype >= ETH_P_802_3_MIN) { 606 encaps_data = rfc1042_header; 607 encaps_len = sizeof(rfc1042_header); 608 skip_header_bytes -= 2; 609 } else { 610 encaps_data = NULL; 611 encaps_len = 0; 612 } 613 614 skb_pull(skb, skip_header_bytes); 615 nh_pos -= skip_header_bytes; 616 h_pos -= skip_header_bytes; 617 618 head_need = hdrlen + encaps_len - skb_headroom(skb); 619 620 if (head_need > 0 || skb_cloned(skb)) { 621 head_need = max(head_need, 0); 622 if (head_need) 623 skb_orphan(skb); 624 625 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) 626 return -ENOMEM; 627 628 skb->truesize += head_need; 629 } 630 631 if (encaps_data) { 632 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 633 nh_pos += encaps_len; 634 h_pos += encaps_len; 635 } 636 637 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 638 639 nh_pos += hdrlen; 640 h_pos += hdrlen; 641 642 /* Update skb pointers to various headers since this modified frame 643 * is going to go through Linux networking code that may potentially 644 * need things like pointer to IP header. */ 645 skb_reset_mac_header(skb); 646 skb_set_network_header(skb, nh_pos); 647 skb_set_transport_header(skb, h_pos); 648 649 return 0; 650 } 651 EXPORT_SYMBOL(ieee80211_data_from_8023); 652 653 static void 654 __frame_add_frag(struct sk_buff *skb, struct page *page, 655 void *ptr, int len, int size) 656 { 657 struct skb_shared_info *sh = skb_shinfo(skb); 658 int page_offset; 659 660 page_ref_inc(page); 661 page_offset = ptr - page_address(page); 662 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 663 } 664 665 static void 666 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 667 int offset, int len) 668 { 669 struct skb_shared_info *sh = skb_shinfo(skb); 670 const skb_frag_t *frag = &sh->frags[-1]; 671 struct page *frag_page; 672 void *frag_ptr; 673 int frag_len, frag_size; 674 int head_size = skb->len - skb->data_len; 675 int cur_len; 676 677 frag_page = virt_to_head_page(skb->head); 678 frag_ptr = skb->data; 679 frag_size = head_size; 680 681 while (offset >= frag_size) { 682 offset -= frag_size; 683 frag++; 684 frag_page = skb_frag_page(frag); 685 frag_ptr = skb_frag_address(frag); 686 frag_size = skb_frag_size(frag); 687 } 688 689 frag_ptr += offset; 690 frag_len = frag_size - offset; 691 692 cur_len = min(len, frag_len); 693 694 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 695 len -= cur_len; 696 697 while (len > 0) { 698 frag++; 699 frag_len = skb_frag_size(frag); 700 cur_len = min(len, frag_len); 701 __frame_add_frag(frame, skb_frag_page(frag), 702 skb_frag_address(frag), cur_len, frag_len); 703 len -= cur_len; 704 } 705 } 706 707 static struct sk_buff * 708 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 709 int offset, int len, bool reuse_frag) 710 { 711 struct sk_buff *frame; 712 int cur_len = len; 713 714 if (skb->len - offset < len) 715 return NULL; 716 717 /* 718 * When reusing framents, copy some data to the head to simplify 719 * ethernet header handling and speed up protocol header processing 720 * in the stack later. 721 */ 722 if (reuse_frag) 723 cur_len = min_t(int, len, 32); 724 725 /* 726 * Allocate and reserve two bytes more for payload 727 * alignment since sizeof(struct ethhdr) is 14. 728 */ 729 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 730 if (!frame) 731 return NULL; 732 733 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 734 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 735 736 len -= cur_len; 737 if (!len) 738 return frame; 739 740 offset += cur_len; 741 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 742 743 return frame; 744 } 745 746 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 747 const u8 *addr, enum nl80211_iftype iftype, 748 const unsigned int extra_headroom, 749 bool has_80211_header) 750 { 751 unsigned int hlen = ALIGN(extra_headroom, 4); 752 struct sk_buff *frame = NULL; 753 u16 ethertype; 754 u8 *payload; 755 int offset = 0, remaining, err; 756 struct ethhdr eth; 757 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 758 bool reuse_skb = false; 759 bool last = false; 760 761 if (has_80211_header) { 762 err = __ieee80211_data_to_8023(skb, ð, addr, iftype); 763 if (err) 764 goto out; 765 } 766 767 while (!last) { 768 unsigned int subframe_len; 769 int len; 770 u8 padding; 771 772 skb_copy_bits(skb, offset, ð, sizeof(eth)); 773 len = ntohs(eth.h_proto); 774 subframe_len = sizeof(struct ethhdr) + len; 775 padding = (4 - subframe_len) & 0x3; 776 777 /* the last MSDU has no padding */ 778 remaining = skb->len - offset; 779 if (subframe_len > remaining) 780 goto purge; 781 782 offset += sizeof(struct ethhdr); 783 /* reuse skb for the last subframe */ 784 last = remaining <= subframe_len + padding; 785 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 786 skb_pull(skb, offset); 787 frame = skb; 788 reuse_skb = true; 789 } else { 790 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 791 reuse_frag); 792 if (!frame) 793 goto purge; 794 795 offset += len + padding; 796 } 797 798 skb_reset_network_header(frame); 799 frame->dev = skb->dev; 800 frame->priority = skb->priority; 801 802 payload = frame->data; 803 ethertype = (payload[6] << 8) | payload[7]; 804 if (likely((ether_addr_equal(payload, rfc1042_header) && 805 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 806 ether_addr_equal(payload, bridge_tunnel_header))) { 807 eth.h_proto = htons(ethertype); 808 skb_pull(frame, ETH_ALEN + 2); 809 } 810 811 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth)); 812 __skb_queue_tail(list, frame); 813 } 814 815 if (!reuse_skb) 816 dev_kfree_skb(skb); 817 818 return; 819 820 purge: 821 __skb_queue_purge(list); 822 out: 823 dev_kfree_skb(skb); 824 } 825 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 826 827 /* Given a data frame determine the 802.1p/1d tag to use. */ 828 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 829 struct cfg80211_qos_map *qos_map) 830 { 831 unsigned int dscp; 832 unsigned char vlan_priority; 833 834 /* skb->priority values from 256->263 are magic values to 835 * directly indicate a specific 802.1d priority. This is used 836 * to allow 802.1d priority to be passed directly in from VLAN 837 * tags, etc. 838 */ 839 if (skb->priority >= 256 && skb->priority <= 263) 840 return skb->priority - 256; 841 842 if (skb_vlan_tag_present(skb)) { 843 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 844 >> VLAN_PRIO_SHIFT; 845 if (vlan_priority > 0) 846 return vlan_priority; 847 } 848 849 switch (skb->protocol) { 850 case htons(ETH_P_IP): 851 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 852 break; 853 case htons(ETH_P_IPV6): 854 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 855 break; 856 case htons(ETH_P_MPLS_UC): 857 case htons(ETH_P_MPLS_MC): { 858 struct mpls_label mpls_tmp, *mpls; 859 860 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 861 sizeof(*mpls), &mpls_tmp); 862 if (!mpls) 863 return 0; 864 865 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 866 >> MPLS_LS_TC_SHIFT; 867 } 868 case htons(ETH_P_80221): 869 /* 802.21 is always network control traffic */ 870 return 7; 871 default: 872 return 0; 873 } 874 875 if (qos_map) { 876 unsigned int i, tmp_dscp = dscp >> 2; 877 878 for (i = 0; i < qos_map->num_des; i++) { 879 if (tmp_dscp == qos_map->dscp_exception[i].dscp) 880 return qos_map->dscp_exception[i].up; 881 } 882 883 for (i = 0; i < 8; i++) { 884 if (tmp_dscp >= qos_map->up[i].low && 885 tmp_dscp <= qos_map->up[i].high) 886 return i; 887 } 888 } 889 890 return dscp >> 5; 891 } 892 EXPORT_SYMBOL(cfg80211_classify8021d); 893 894 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie) 895 { 896 const struct cfg80211_bss_ies *ies; 897 898 ies = rcu_dereference(bss->ies); 899 if (!ies) 900 return NULL; 901 902 return cfg80211_find_ie(ie, ies->data, ies->len); 903 } 904 EXPORT_SYMBOL(ieee80211_bss_get_ie); 905 906 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 907 { 908 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 909 struct net_device *dev = wdev->netdev; 910 int i; 911 912 if (!wdev->connect_keys) 913 return; 914 915 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) { 916 if (!wdev->connect_keys->params[i].cipher) 917 continue; 918 if (rdev_add_key(rdev, dev, i, false, NULL, 919 &wdev->connect_keys->params[i])) { 920 netdev_err(dev, "failed to set key %d\n", i); 921 continue; 922 } 923 if (wdev->connect_keys->def == i) 924 if (rdev_set_default_key(rdev, dev, i, true, true)) { 925 netdev_err(dev, "failed to set defkey %d\n", i); 926 continue; 927 } 928 } 929 930 kzfree(wdev->connect_keys); 931 wdev->connect_keys = NULL; 932 } 933 934 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 935 { 936 struct cfg80211_event *ev; 937 unsigned long flags; 938 const u8 *bssid = NULL; 939 940 spin_lock_irqsave(&wdev->event_lock, flags); 941 while (!list_empty(&wdev->event_list)) { 942 ev = list_first_entry(&wdev->event_list, 943 struct cfg80211_event, list); 944 list_del(&ev->list); 945 spin_unlock_irqrestore(&wdev->event_lock, flags); 946 947 wdev_lock(wdev); 948 switch (ev->type) { 949 case EVENT_CONNECT_RESULT: 950 if (!is_zero_ether_addr(ev->cr.bssid)) 951 bssid = ev->cr.bssid; 952 __cfg80211_connect_result( 953 wdev->netdev, bssid, 954 ev->cr.req_ie, ev->cr.req_ie_len, 955 ev->cr.resp_ie, ev->cr.resp_ie_len, 956 ev->cr.status, 957 ev->cr.status == WLAN_STATUS_SUCCESS, 958 ev->cr.bss); 959 break; 960 case EVENT_ROAMED: 961 __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie, 962 ev->rm.req_ie_len, ev->rm.resp_ie, 963 ev->rm.resp_ie_len); 964 break; 965 case EVENT_DISCONNECTED: 966 __cfg80211_disconnected(wdev->netdev, 967 ev->dc.ie, ev->dc.ie_len, 968 ev->dc.reason, 969 !ev->dc.locally_generated); 970 break; 971 case EVENT_IBSS_JOINED: 972 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 973 ev->ij.channel); 974 break; 975 case EVENT_STOPPED: 976 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 977 break; 978 } 979 wdev_unlock(wdev); 980 981 kfree(ev); 982 983 spin_lock_irqsave(&wdev->event_lock, flags); 984 } 985 spin_unlock_irqrestore(&wdev->event_lock, flags); 986 } 987 988 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 989 { 990 struct wireless_dev *wdev; 991 992 ASSERT_RTNL(); 993 994 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 995 cfg80211_process_wdev_events(wdev); 996 } 997 998 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 999 struct net_device *dev, enum nl80211_iftype ntype, 1000 u32 *flags, struct vif_params *params) 1001 { 1002 int err; 1003 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 1004 1005 ASSERT_RTNL(); 1006 1007 /* don't support changing VLANs, you just re-create them */ 1008 if (otype == NL80211_IFTYPE_AP_VLAN) 1009 return -EOPNOTSUPP; 1010 1011 /* cannot change into P2P device or NAN */ 1012 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 1013 ntype == NL80211_IFTYPE_NAN) 1014 return -EOPNOTSUPP; 1015 1016 if (!rdev->ops->change_virtual_intf || 1017 !(rdev->wiphy.interface_modes & (1 << ntype))) 1018 return -EOPNOTSUPP; 1019 1020 /* if it's part of a bridge, reject changing type to station/ibss */ 1021 if ((dev->priv_flags & IFF_BRIDGE_PORT) && 1022 (ntype == NL80211_IFTYPE_ADHOC || 1023 ntype == NL80211_IFTYPE_STATION || 1024 ntype == NL80211_IFTYPE_P2P_CLIENT)) 1025 return -EBUSY; 1026 1027 if (ntype != otype) { 1028 dev->ieee80211_ptr->use_4addr = false; 1029 dev->ieee80211_ptr->mesh_id_up_len = 0; 1030 wdev_lock(dev->ieee80211_ptr); 1031 rdev_set_qos_map(rdev, dev, NULL); 1032 wdev_unlock(dev->ieee80211_ptr); 1033 1034 switch (otype) { 1035 case NL80211_IFTYPE_AP: 1036 cfg80211_stop_ap(rdev, dev, true); 1037 break; 1038 case NL80211_IFTYPE_ADHOC: 1039 cfg80211_leave_ibss(rdev, dev, false); 1040 break; 1041 case NL80211_IFTYPE_STATION: 1042 case NL80211_IFTYPE_P2P_CLIENT: 1043 wdev_lock(dev->ieee80211_ptr); 1044 cfg80211_disconnect(rdev, dev, 1045 WLAN_REASON_DEAUTH_LEAVING, true); 1046 wdev_unlock(dev->ieee80211_ptr); 1047 break; 1048 case NL80211_IFTYPE_MESH_POINT: 1049 /* mesh should be handled? */ 1050 break; 1051 default: 1052 break; 1053 } 1054 1055 cfg80211_process_rdev_events(rdev); 1056 } 1057 1058 err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params); 1059 1060 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 1061 1062 if (!err && params && params->use_4addr != -1) 1063 dev->ieee80211_ptr->use_4addr = params->use_4addr; 1064 1065 if (!err) { 1066 dev->priv_flags &= ~IFF_DONT_BRIDGE; 1067 switch (ntype) { 1068 case NL80211_IFTYPE_STATION: 1069 if (dev->ieee80211_ptr->use_4addr) 1070 break; 1071 /* fall through */ 1072 case NL80211_IFTYPE_OCB: 1073 case NL80211_IFTYPE_P2P_CLIENT: 1074 case NL80211_IFTYPE_ADHOC: 1075 dev->priv_flags |= IFF_DONT_BRIDGE; 1076 break; 1077 case NL80211_IFTYPE_P2P_GO: 1078 case NL80211_IFTYPE_AP: 1079 case NL80211_IFTYPE_AP_VLAN: 1080 case NL80211_IFTYPE_WDS: 1081 case NL80211_IFTYPE_MESH_POINT: 1082 /* bridging OK */ 1083 break; 1084 case NL80211_IFTYPE_MONITOR: 1085 /* monitor can't bridge anyway */ 1086 break; 1087 case NL80211_IFTYPE_UNSPECIFIED: 1088 case NUM_NL80211_IFTYPES: 1089 /* not happening */ 1090 break; 1091 case NL80211_IFTYPE_P2P_DEVICE: 1092 case NL80211_IFTYPE_NAN: 1093 WARN_ON(1); 1094 break; 1095 } 1096 } 1097 1098 if (!err && ntype != otype && netif_running(dev)) { 1099 cfg80211_update_iface_num(rdev, ntype, 1); 1100 cfg80211_update_iface_num(rdev, otype, -1); 1101 } 1102 1103 return err; 1104 } 1105 1106 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate) 1107 { 1108 static const u32 __mcs2bitrate[] = { 1109 /* control PHY */ 1110 [0] = 275, 1111 /* SC PHY */ 1112 [1] = 3850, 1113 [2] = 7700, 1114 [3] = 9625, 1115 [4] = 11550, 1116 [5] = 12512, /* 1251.25 mbps */ 1117 [6] = 15400, 1118 [7] = 19250, 1119 [8] = 23100, 1120 [9] = 25025, 1121 [10] = 30800, 1122 [11] = 38500, 1123 [12] = 46200, 1124 /* OFDM PHY */ 1125 [13] = 6930, 1126 [14] = 8662, /* 866.25 mbps */ 1127 [15] = 13860, 1128 [16] = 17325, 1129 [17] = 20790, 1130 [18] = 27720, 1131 [19] = 34650, 1132 [20] = 41580, 1133 [21] = 45045, 1134 [22] = 51975, 1135 [23] = 62370, 1136 [24] = 67568, /* 6756.75 mbps */ 1137 /* LP-SC PHY */ 1138 [25] = 6260, 1139 [26] = 8340, 1140 [27] = 11120, 1141 [28] = 12510, 1142 [29] = 16680, 1143 [30] = 22240, 1144 [31] = 25030, 1145 }; 1146 1147 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1148 return 0; 1149 1150 return __mcs2bitrate[rate->mcs]; 1151 } 1152 1153 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1154 { 1155 static const u32 base[4][10] = { 1156 { 6500000, 1157 13000000, 1158 19500000, 1159 26000000, 1160 39000000, 1161 52000000, 1162 58500000, 1163 65000000, 1164 78000000, 1165 0, 1166 }, 1167 { 13500000, 1168 27000000, 1169 40500000, 1170 54000000, 1171 81000000, 1172 108000000, 1173 121500000, 1174 135000000, 1175 162000000, 1176 180000000, 1177 }, 1178 { 29300000, 1179 58500000, 1180 87800000, 1181 117000000, 1182 175500000, 1183 234000000, 1184 263300000, 1185 292500000, 1186 351000000, 1187 390000000, 1188 }, 1189 { 58500000, 1190 117000000, 1191 175500000, 1192 234000000, 1193 351000000, 1194 468000000, 1195 526500000, 1196 585000000, 1197 702000000, 1198 780000000, 1199 }, 1200 }; 1201 u32 bitrate; 1202 int idx; 1203 1204 if (WARN_ON_ONCE(rate->mcs > 9)) 1205 return 0; 1206 1207 switch (rate->bw) { 1208 case RATE_INFO_BW_160: 1209 idx = 3; 1210 break; 1211 case RATE_INFO_BW_80: 1212 idx = 2; 1213 break; 1214 case RATE_INFO_BW_40: 1215 idx = 1; 1216 break; 1217 case RATE_INFO_BW_5: 1218 case RATE_INFO_BW_10: 1219 default: 1220 WARN_ON(1); 1221 /* fall through */ 1222 case RATE_INFO_BW_20: 1223 idx = 0; 1224 } 1225 1226 bitrate = base[idx][rate->mcs]; 1227 bitrate *= rate->nss; 1228 1229 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1230 bitrate = (bitrate / 9) * 10; 1231 1232 /* do NOT round down here */ 1233 return (bitrate + 50000) / 100000; 1234 } 1235 1236 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1237 { 1238 int modulation, streams, bitrate; 1239 1240 if (!(rate->flags & RATE_INFO_FLAGS_MCS) && 1241 !(rate->flags & RATE_INFO_FLAGS_VHT_MCS)) 1242 return rate->legacy; 1243 if (rate->flags & RATE_INFO_FLAGS_60G) 1244 return cfg80211_calculate_bitrate_60g(rate); 1245 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1246 return cfg80211_calculate_bitrate_vht(rate); 1247 1248 /* the formula below does only work for MCS values smaller than 32 */ 1249 if (WARN_ON_ONCE(rate->mcs >= 32)) 1250 return 0; 1251 1252 modulation = rate->mcs & 7; 1253 streams = (rate->mcs >> 3) + 1; 1254 1255 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1256 1257 if (modulation < 4) 1258 bitrate *= (modulation + 1); 1259 else if (modulation == 4) 1260 bitrate *= (modulation + 2); 1261 else 1262 bitrate *= (modulation + 3); 1263 1264 bitrate *= streams; 1265 1266 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1267 bitrate = (bitrate / 9) * 10; 1268 1269 /* do NOT round down here */ 1270 return (bitrate + 50000) / 100000; 1271 } 1272 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1273 1274 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1275 enum ieee80211_p2p_attr_id attr, 1276 u8 *buf, unsigned int bufsize) 1277 { 1278 u8 *out = buf; 1279 u16 attr_remaining = 0; 1280 bool desired_attr = false; 1281 u16 desired_len = 0; 1282 1283 while (len > 0) { 1284 unsigned int iedatalen; 1285 unsigned int copy; 1286 const u8 *iedata; 1287 1288 if (len < 2) 1289 return -EILSEQ; 1290 iedatalen = ies[1]; 1291 if (iedatalen + 2 > len) 1292 return -EILSEQ; 1293 1294 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1295 goto cont; 1296 1297 if (iedatalen < 4) 1298 goto cont; 1299 1300 iedata = ies + 2; 1301 1302 /* check WFA OUI, P2P subtype */ 1303 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1304 iedata[2] != 0x9a || iedata[3] != 0x09) 1305 goto cont; 1306 1307 iedatalen -= 4; 1308 iedata += 4; 1309 1310 /* check attribute continuation into this IE */ 1311 copy = min_t(unsigned int, attr_remaining, iedatalen); 1312 if (copy && desired_attr) { 1313 desired_len += copy; 1314 if (out) { 1315 memcpy(out, iedata, min(bufsize, copy)); 1316 out += min(bufsize, copy); 1317 bufsize -= min(bufsize, copy); 1318 } 1319 1320 1321 if (copy == attr_remaining) 1322 return desired_len; 1323 } 1324 1325 attr_remaining -= copy; 1326 if (attr_remaining) 1327 goto cont; 1328 1329 iedatalen -= copy; 1330 iedata += copy; 1331 1332 while (iedatalen > 0) { 1333 u16 attr_len; 1334 1335 /* P2P attribute ID & size must fit */ 1336 if (iedatalen < 3) 1337 return -EILSEQ; 1338 desired_attr = iedata[0] == attr; 1339 attr_len = get_unaligned_le16(iedata + 1); 1340 iedatalen -= 3; 1341 iedata += 3; 1342 1343 copy = min_t(unsigned int, attr_len, iedatalen); 1344 1345 if (desired_attr) { 1346 desired_len += copy; 1347 if (out) { 1348 memcpy(out, iedata, min(bufsize, copy)); 1349 out += min(bufsize, copy); 1350 bufsize -= min(bufsize, copy); 1351 } 1352 1353 if (copy == attr_len) 1354 return desired_len; 1355 } 1356 1357 iedata += copy; 1358 iedatalen -= copy; 1359 attr_remaining = attr_len - copy; 1360 } 1361 1362 cont: 1363 len -= ies[1] + 2; 1364 ies += ies[1] + 2; 1365 } 1366 1367 if (attr_remaining && desired_attr) 1368 return -EILSEQ; 1369 1370 return -ENOENT; 1371 } 1372 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1373 1374 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id) 1375 { 1376 int i; 1377 1378 for (i = 0; i < n_ids; i++) 1379 if (ids[i] == id) 1380 return true; 1381 return false; 1382 } 1383 1384 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1385 const u8 *ids, int n_ids, 1386 const u8 *after_ric, int n_after_ric, 1387 size_t offset) 1388 { 1389 size_t pos = offset; 1390 1391 while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) { 1392 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1393 pos += 2 + ies[pos + 1]; 1394 1395 while (pos < ielen && 1396 !ieee80211_id_in_list(after_ric, n_after_ric, 1397 ies[pos])) 1398 pos += 2 + ies[pos + 1]; 1399 } else { 1400 pos += 2 + ies[pos + 1]; 1401 } 1402 } 1403 1404 return pos; 1405 } 1406 EXPORT_SYMBOL(ieee80211_ie_split_ric); 1407 1408 bool ieee80211_operating_class_to_band(u8 operating_class, 1409 enum nl80211_band *band) 1410 { 1411 switch (operating_class) { 1412 case 112: 1413 case 115 ... 127: 1414 case 128 ... 130: 1415 *band = NL80211_BAND_5GHZ; 1416 return true; 1417 case 81: 1418 case 82: 1419 case 83: 1420 case 84: 1421 *band = NL80211_BAND_2GHZ; 1422 return true; 1423 case 180: 1424 *band = NL80211_BAND_60GHZ; 1425 return true; 1426 } 1427 1428 return false; 1429 } 1430 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1431 1432 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 1433 u8 *op_class) 1434 { 1435 u8 vht_opclass; 1436 u16 freq = chandef->center_freq1; 1437 1438 if (freq >= 2412 && freq <= 2472) { 1439 if (chandef->width > NL80211_CHAN_WIDTH_40) 1440 return false; 1441 1442 /* 2.407 GHz, channels 1..13 */ 1443 if (chandef->width == NL80211_CHAN_WIDTH_40) { 1444 if (freq > chandef->chan->center_freq) 1445 *op_class = 83; /* HT40+ */ 1446 else 1447 *op_class = 84; /* HT40- */ 1448 } else { 1449 *op_class = 81; 1450 } 1451 1452 return true; 1453 } 1454 1455 if (freq == 2484) { 1456 if (chandef->width > NL80211_CHAN_WIDTH_40) 1457 return false; 1458 1459 *op_class = 82; /* channel 14 */ 1460 return true; 1461 } 1462 1463 switch (chandef->width) { 1464 case NL80211_CHAN_WIDTH_80: 1465 vht_opclass = 128; 1466 break; 1467 case NL80211_CHAN_WIDTH_160: 1468 vht_opclass = 129; 1469 break; 1470 case NL80211_CHAN_WIDTH_80P80: 1471 vht_opclass = 130; 1472 break; 1473 case NL80211_CHAN_WIDTH_10: 1474 case NL80211_CHAN_WIDTH_5: 1475 return false; /* unsupported for now */ 1476 default: 1477 vht_opclass = 0; 1478 break; 1479 } 1480 1481 /* 5 GHz, channels 36..48 */ 1482 if (freq >= 5180 && freq <= 5240) { 1483 if (vht_opclass) { 1484 *op_class = vht_opclass; 1485 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1486 if (freq > chandef->chan->center_freq) 1487 *op_class = 116; 1488 else 1489 *op_class = 117; 1490 } else { 1491 *op_class = 115; 1492 } 1493 1494 return true; 1495 } 1496 1497 /* 5 GHz, channels 52..64 */ 1498 if (freq >= 5260 && freq <= 5320) { 1499 if (vht_opclass) { 1500 *op_class = vht_opclass; 1501 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1502 if (freq > chandef->chan->center_freq) 1503 *op_class = 119; 1504 else 1505 *op_class = 120; 1506 } else { 1507 *op_class = 118; 1508 } 1509 1510 return true; 1511 } 1512 1513 /* 5 GHz, channels 100..144 */ 1514 if (freq >= 5500 && freq <= 5720) { 1515 if (vht_opclass) { 1516 *op_class = vht_opclass; 1517 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1518 if (freq > chandef->chan->center_freq) 1519 *op_class = 122; 1520 else 1521 *op_class = 123; 1522 } else { 1523 *op_class = 121; 1524 } 1525 1526 return true; 1527 } 1528 1529 /* 5 GHz, channels 149..169 */ 1530 if (freq >= 5745 && freq <= 5845) { 1531 if (vht_opclass) { 1532 *op_class = vht_opclass; 1533 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1534 if (freq > chandef->chan->center_freq) 1535 *op_class = 126; 1536 else 1537 *op_class = 127; 1538 } else if (freq <= 5805) { 1539 *op_class = 124; 1540 } else { 1541 *op_class = 125; 1542 } 1543 1544 return true; 1545 } 1546 1547 /* 56.16 GHz, channel 1..4 */ 1548 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) { 1549 if (chandef->width >= NL80211_CHAN_WIDTH_40) 1550 return false; 1551 1552 *op_class = 180; 1553 return true; 1554 } 1555 1556 /* not supported yet */ 1557 return false; 1558 } 1559 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 1560 1561 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 1562 u32 beacon_int) 1563 { 1564 struct wireless_dev *wdev; 1565 int res = 0; 1566 1567 if (beacon_int < 10 || beacon_int > 10000) 1568 return -EINVAL; 1569 1570 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) { 1571 if (!wdev->beacon_interval) 1572 continue; 1573 if (wdev->beacon_interval != beacon_int) { 1574 res = -EINVAL; 1575 break; 1576 } 1577 } 1578 1579 return res; 1580 } 1581 1582 int cfg80211_iter_combinations(struct wiphy *wiphy, 1583 const int num_different_channels, 1584 const u8 radar_detect, 1585 const int iftype_num[NUM_NL80211_IFTYPES], 1586 void (*iter)(const struct ieee80211_iface_combination *c, 1587 void *data), 1588 void *data) 1589 { 1590 const struct ieee80211_regdomain *regdom; 1591 enum nl80211_dfs_regions region = 0; 1592 int i, j, iftype; 1593 int num_interfaces = 0; 1594 u32 used_iftypes = 0; 1595 1596 if (radar_detect) { 1597 rcu_read_lock(); 1598 regdom = rcu_dereference(cfg80211_regdomain); 1599 if (regdom) 1600 region = regdom->dfs_region; 1601 rcu_read_unlock(); 1602 } 1603 1604 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1605 num_interfaces += iftype_num[iftype]; 1606 if (iftype_num[iftype] > 0 && 1607 !(wiphy->software_iftypes & BIT(iftype))) 1608 used_iftypes |= BIT(iftype); 1609 } 1610 1611 for (i = 0; i < wiphy->n_iface_combinations; i++) { 1612 const struct ieee80211_iface_combination *c; 1613 struct ieee80211_iface_limit *limits; 1614 u32 all_iftypes = 0; 1615 1616 c = &wiphy->iface_combinations[i]; 1617 1618 if (num_interfaces > c->max_interfaces) 1619 continue; 1620 if (num_different_channels > c->num_different_channels) 1621 continue; 1622 1623 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 1624 GFP_KERNEL); 1625 if (!limits) 1626 return -ENOMEM; 1627 1628 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1629 if (wiphy->software_iftypes & BIT(iftype)) 1630 continue; 1631 for (j = 0; j < c->n_limits; j++) { 1632 all_iftypes |= limits[j].types; 1633 if (!(limits[j].types & BIT(iftype))) 1634 continue; 1635 if (limits[j].max < iftype_num[iftype]) 1636 goto cont; 1637 limits[j].max -= iftype_num[iftype]; 1638 } 1639 } 1640 1641 if (radar_detect != (c->radar_detect_widths & radar_detect)) 1642 goto cont; 1643 1644 if (radar_detect && c->radar_detect_regions && 1645 !(c->radar_detect_regions & BIT(region))) 1646 goto cont; 1647 1648 /* Finally check that all iftypes that we're currently 1649 * using are actually part of this combination. If they 1650 * aren't then we can't use this combination and have 1651 * to continue to the next. 1652 */ 1653 if ((all_iftypes & used_iftypes) != used_iftypes) 1654 goto cont; 1655 1656 /* This combination covered all interface types and 1657 * supported the requested numbers, so we're good. 1658 */ 1659 1660 (*iter)(c, data); 1661 cont: 1662 kfree(limits); 1663 } 1664 1665 return 0; 1666 } 1667 EXPORT_SYMBOL(cfg80211_iter_combinations); 1668 1669 static void 1670 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 1671 void *data) 1672 { 1673 int *num = data; 1674 (*num)++; 1675 } 1676 1677 int cfg80211_check_combinations(struct wiphy *wiphy, 1678 const int num_different_channels, 1679 const u8 radar_detect, 1680 const int iftype_num[NUM_NL80211_IFTYPES]) 1681 { 1682 int err, num = 0; 1683 1684 err = cfg80211_iter_combinations(wiphy, num_different_channels, 1685 radar_detect, iftype_num, 1686 cfg80211_iter_sum_ifcombs, &num); 1687 if (err) 1688 return err; 1689 if (num == 0) 1690 return -EBUSY; 1691 1692 return 0; 1693 } 1694 EXPORT_SYMBOL(cfg80211_check_combinations); 1695 1696 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1697 const u8 *rates, unsigned int n_rates, 1698 u32 *mask) 1699 { 1700 int i, j; 1701 1702 if (!sband) 1703 return -EINVAL; 1704 1705 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1706 return -EINVAL; 1707 1708 *mask = 0; 1709 1710 for (i = 0; i < n_rates; i++) { 1711 int rate = (rates[i] & 0x7f) * 5; 1712 bool found = false; 1713 1714 for (j = 0; j < sband->n_bitrates; j++) { 1715 if (sband->bitrates[j].bitrate == rate) { 1716 found = true; 1717 *mask |= BIT(j); 1718 break; 1719 } 1720 } 1721 if (!found) 1722 return -EINVAL; 1723 } 1724 1725 /* 1726 * mask must have at least one bit set here since we 1727 * didn't accept a 0-length rates array nor allowed 1728 * entries in the array that didn't exist 1729 */ 1730 1731 return 0; 1732 } 1733 1734 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 1735 { 1736 enum nl80211_band band; 1737 unsigned int n_channels = 0; 1738 1739 for (band = 0; band < NUM_NL80211_BANDS; band++) 1740 if (wiphy->bands[band]) 1741 n_channels += wiphy->bands[band]->n_channels; 1742 1743 return n_channels; 1744 } 1745 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 1746 1747 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 1748 struct station_info *sinfo) 1749 { 1750 struct cfg80211_registered_device *rdev; 1751 struct wireless_dev *wdev; 1752 1753 wdev = dev->ieee80211_ptr; 1754 if (!wdev) 1755 return -EOPNOTSUPP; 1756 1757 rdev = wiphy_to_rdev(wdev->wiphy); 1758 if (!rdev->ops->get_station) 1759 return -EOPNOTSUPP; 1760 1761 return rdev_get_station(rdev, dev, mac_addr, sinfo); 1762 } 1763 EXPORT_SYMBOL(cfg80211_get_station); 1764 1765 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 1766 { 1767 int i; 1768 1769 if (!f) 1770 return; 1771 1772 kfree(f->serv_spec_info); 1773 kfree(f->srf_bf); 1774 kfree(f->srf_macs); 1775 for (i = 0; i < f->num_rx_filters; i++) 1776 kfree(f->rx_filters[i].filter); 1777 1778 for (i = 0; i < f->num_tx_filters; i++) 1779 kfree(f->tx_filters[i].filter); 1780 1781 kfree(f->rx_filters); 1782 kfree(f->tx_filters); 1783 kfree(f); 1784 } 1785 EXPORT_SYMBOL(cfg80211_free_nan_func); 1786 1787 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 1788 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 1789 const unsigned char rfc1042_header[] __aligned(2) = 1790 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 1791 EXPORT_SYMBOL(rfc1042_header); 1792 1793 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 1794 const unsigned char bridge_tunnel_header[] __aligned(2) = 1795 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 1796 EXPORT_SYMBOL(bridge_tunnel_header); 1797