xref: /openbmc/linux/net/wireless/util.c (revision 6dfcd296)
1 /*
2  * Wireless utility functions
3  *
4  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2013-2014  Intel Mobile Communications GmbH
6  */
7 #include <linux/export.h>
8 #include <linux/bitops.h>
9 #include <linux/etherdevice.h>
10 #include <linux/slab.h>
11 #include <net/cfg80211.h>
12 #include <net/ip.h>
13 #include <net/dsfield.h>
14 #include <linux/if_vlan.h>
15 #include <linux/mpls.h>
16 #include "core.h"
17 #include "rdev-ops.h"
18 
19 
20 struct ieee80211_rate *
21 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
22 			    u32 basic_rates, int bitrate)
23 {
24 	struct ieee80211_rate *result = &sband->bitrates[0];
25 	int i;
26 
27 	for (i = 0; i < sband->n_bitrates; i++) {
28 		if (!(basic_rates & BIT(i)))
29 			continue;
30 		if (sband->bitrates[i].bitrate > bitrate)
31 			continue;
32 		result = &sband->bitrates[i];
33 	}
34 
35 	return result;
36 }
37 EXPORT_SYMBOL(ieee80211_get_response_rate);
38 
39 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
40 			      enum nl80211_bss_scan_width scan_width)
41 {
42 	struct ieee80211_rate *bitrates;
43 	u32 mandatory_rates = 0;
44 	enum ieee80211_rate_flags mandatory_flag;
45 	int i;
46 
47 	if (WARN_ON(!sband))
48 		return 1;
49 
50 	if (sband->band == NL80211_BAND_2GHZ) {
51 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
52 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
53 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
54 		else
55 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
56 	} else {
57 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
58 	}
59 
60 	bitrates = sband->bitrates;
61 	for (i = 0; i < sband->n_bitrates; i++)
62 		if (bitrates[i].flags & mandatory_flag)
63 			mandatory_rates |= BIT(i);
64 	return mandatory_rates;
65 }
66 EXPORT_SYMBOL(ieee80211_mandatory_rates);
67 
68 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
69 {
70 	/* see 802.11 17.3.8.3.2 and Annex J
71 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
72 	if (chan <= 0)
73 		return 0; /* not supported */
74 	switch (band) {
75 	case NL80211_BAND_2GHZ:
76 		if (chan == 14)
77 			return 2484;
78 		else if (chan < 14)
79 			return 2407 + chan * 5;
80 		break;
81 	case NL80211_BAND_5GHZ:
82 		if (chan >= 182 && chan <= 196)
83 			return 4000 + chan * 5;
84 		else
85 			return 5000 + chan * 5;
86 		break;
87 	case NL80211_BAND_60GHZ:
88 		if (chan < 5)
89 			return 56160 + chan * 2160;
90 		break;
91 	default:
92 		;
93 	}
94 	return 0; /* not supported */
95 }
96 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
97 
98 int ieee80211_frequency_to_channel(int freq)
99 {
100 	/* see 802.11 17.3.8.3.2 and Annex J */
101 	if (freq == 2484)
102 		return 14;
103 	else if (freq < 2484)
104 		return (freq - 2407) / 5;
105 	else if (freq >= 4910 && freq <= 4980)
106 		return (freq - 4000) / 5;
107 	else if (freq <= 45000) /* DMG band lower limit */
108 		return (freq - 5000) / 5;
109 	else if (freq >= 58320 && freq <= 64800)
110 		return (freq - 56160) / 2160;
111 	else
112 		return 0;
113 }
114 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
115 
116 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
117 						  int freq)
118 {
119 	enum nl80211_band band;
120 	struct ieee80211_supported_band *sband;
121 	int i;
122 
123 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
124 		sband = wiphy->bands[band];
125 
126 		if (!sband)
127 			continue;
128 
129 		for (i = 0; i < sband->n_channels; i++) {
130 			if (sband->channels[i].center_freq == freq)
131 				return &sband->channels[i];
132 		}
133 	}
134 
135 	return NULL;
136 }
137 EXPORT_SYMBOL(__ieee80211_get_channel);
138 
139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
140 				     enum nl80211_band band)
141 {
142 	int i, want;
143 
144 	switch (band) {
145 	case NL80211_BAND_5GHZ:
146 		want = 3;
147 		for (i = 0; i < sband->n_bitrates; i++) {
148 			if (sband->bitrates[i].bitrate == 60 ||
149 			    sband->bitrates[i].bitrate == 120 ||
150 			    sband->bitrates[i].bitrate == 240) {
151 				sband->bitrates[i].flags |=
152 					IEEE80211_RATE_MANDATORY_A;
153 				want--;
154 			}
155 		}
156 		WARN_ON(want);
157 		break;
158 	case NL80211_BAND_2GHZ:
159 		want = 7;
160 		for (i = 0; i < sband->n_bitrates; i++) {
161 			if (sband->bitrates[i].bitrate == 10) {
162 				sband->bitrates[i].flags |=
163 					IEEE80211_RATE_MANDATORY_B |
164 					IEEE80211_RATE_MANDATORY_G;
165 				want--;
166 			}
167 
168 			if (sband->bitrates[i].bitrate == 20 ||
169 			    sband->bitrates[i].bitrate == 55 ||
170 			    sband->bitrates[i].bitrate == 110 ||
171 			    sband->bitrates[i].bitrate == 60 ||
172 			    sband->bitrates[i].bitrate == 120 ||
173 			    sband->bitrates[i].bitrate == 240) {
174 				sband->bitrates[i].flags |=
175 					IEEE80211_RATE_MANDATORY_G;
176 				want--;
177 			}
178 
179 			if (sband->bitrates[i].bitrate != 10 &&
180 			    sband->bitrates[i].bitrate != 20 &&
181 			    sband->bitrates[i].bitrate != 55 &&
182 			    sband->bitrates[i].bitrate != 110)
183 				sband->bitrates[i].flags |=
184 					IEEE80211_RATE_ERP_G;
185 		}
186 		WARN_ON(want != 0 && want != 3 && want != 6);
187 		break;
188 	case NL80211_BAND_60GHZ:
189 		/* check for mandatory HT MCS 1..4 */
190 		WARN_ON(!sband->ht_cap.ht_supported);
191 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
192 		break;
193 	case NUM_NL80211_BANDS:
194 		WARN_ON(1);
195 		break;
196 	}
197 }
198 
199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
200 {
201 	enum nl80211_band band;
202 
203 	for (band = 0; band < NUM_NL80211_BANDS; band++)
204 		if (wiphy->bands[band])
205 			set_mandatory_flags_band(wiphy->bands[band], band);
206 }
207 
208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
209 {
210 	int i;
211 	for (i = 0; i < wiphy->n_cipher_suites; i++)
212 		if (cipher == wiphy->cipher_suites[i])
213 			return true;
214 	return false;
215 }
216 
217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
218 				   struct key_params *params, int key_idx,
219 				   bool pairwise, const u8 *mac_addr)
220 {
221 	if (key_idx < 0 || key_idx > 5)
222 		return -EINVAL;
223 
224 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
225 		return -EINVAL;
226 
227 	if (pairwise && !mac_addr)
228 		return -EINVAL;
229 
230 	switch (params->cipher) {
231 	case WLAN_CIPHER_SUITE_TKIP:
232 	case WLAN_CIPHER_SUITE_CCMP:
233 	case WLAN_CIPHER_SUITE_CCMP_256:
234 	case WLAN_CIPHER_SUITE_GCMP:
235 	case WLAN_CIPHER_SUITE_GCMP_256:
236 		/* Disallow pairwise keys with non-zero index unless it's WEP
237 		 * or a vendor specific cipher (because current deployments use
238 		 * pairwise WEP keys with non-zero indices and for vendor
239 		 * specific ciphers this should be validated in the driver or
240 		 * hardware level - but 802.11i clearly specifies to use zero)
241 		 */
242 		if (pairwise && key_idx)
243 			return -EINVAL;
244 		break;
245 	case WLAN_CIPHER_SUITE_AES_CMAC:
246 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
247 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
248 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
249 		/* Disallow BIP (group-only) cipher as pairwise cipher */
250 		if (pairwise)
251 			return -EINVAL;
252 		if (key_idx < 4)
253 			return -EINVAL;
254 		break;
255 	case WLAN_CIPHER_SUITE_WEP40:
256 	case WLAN_CIPHER_SUITE_WEP104:
257 		if (key_idx > 3)
258 			return -EINVAL;
259 	default:
260 		break;
261 	}
262 
263 	switch (params->cipher) {
264 	case WLAN_CIPHER_SUITE_WEP40:
265 		if (params->key_len != WLAN_KEY_LEN_WEP40)
266 			return -EINVAL;
267 		break;
268 	case WLAN_CIPHER_SUITE_TKIP:
269 		if (params->key_len != WLAN_KEY_LEN_TKIP)
270 			return -EINVAL;
271 		break;
272 	case WLAN_CIPHER_SUITE_CCMP:
273 		if (params->key_len != WLAN_KEY_LEN_CCMP)
274 			return -EINVAL;
275 		break;
276 	case WLAN_CIPHER_SUITE_CCMP_256:
277 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
278 			return -EINVAL;
279 		break;
280 	case WLAN_CIPHER_SUITE_GCMP:
281 		if (params->key_len != WLAN_KEY_LEN_GCMP)
282 			return -EINVAL;
283 		break;
284 	case WLAN_CIPHER_SUITE_GCMP_256:
285 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
286 			return -EINVAL;
287 		break;
288 	case WLAN_CIPHER_SUITE_WEP104:
289 		if (params->key_len != WLAN_KEY_LEN_WEP104)
290 			return -EINVAL;
291 		break;
292 	case WLAN_CIPHER_SUITE_AES_CMAC:
293 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
294 			return -EINVAL;
295 		break;
296 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
297 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
298 			return -EINVAL;
299 		break;
300 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
301 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
302 			return -EINVAL;
303 		break;
304 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
305 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
306 			return -EINVAL;
307 		break;
308 	default:
309 		/*
310 		 * We don't know anything about this algorithm,
311 		 * allow using it -- but the driver must check
312 		 * all parameters! We still check below whether
313 		 * or not the driver supports this algorithm,
314 		 * of course.
315 		 */
316 		break;
317 	}
318 
319 	if (params->seq) {
320 		switch (params->cipher) {
321 		case WLAN_CIPHER_SUITE_WEP40:
322 		case WLAN_CIPHER_SUITE_WEP104:
323 			/* These ciphers do not use key sequence */
324 			return -EINVAL;
325 		case WLAN_CIPHER_SUITE_TKIP:
326 		case WLAN_CIPHER_SUITE_CCMP:
327 		case WLAN_CIPHER_SUITE_CCMP_256:
328 		case WLAN_CIPHER_SUITE_GCMP:
329 		case WLAN_CIPHER_SUITE_GCMP_256:
330 		case WLAN_CIPHER_SUITE_AES_CMAC:
331 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
332 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
333 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
334 			if (params->seq_len != 6)
335 				return -EINVAL;
336 			break;
337 		}
338 	}
339 
340 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
341 		return -EINVAL;
342 
343 	return 0;
344 }
345 
346 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
347 {
348 	unsigned int hdrlen = 24;
349 
350 	if (ieee80211_is_data(fc)) {
351 		if (ieee80211_has_a4(fc))
352 			hdrlen = 30;
353 		if (ieee80211_is_data_qos(fc)) {
354 			hdrlen += IEEE80211_QOS_CTL_LEN;
355 			if (ieee80211_has_order(fc))
356 				hdrlen += IEEE80211_HT_CTL_LEN;
357 		}
358 		goto out;
359 	}
360 
361 	if (ieee80211_is_mgmt(fc)) {
362 		if (ieee80211_has_order(fc))
363 			hdrlen += IEEE80211_HT_CTL_LEN;
364 		goto out;
365 	}
366 
367 	if (ieee80211_is_ctl(fc)) {
368 		/*
369 		 * ACK and CTS are 10 bytes, all others 16. To see how
370 		 * to get this condition consider
371 		 *   subtype mask:   0b0000000011110000 (0x00F0)
372 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
373 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
374 		 *   bits that matter:         ^^^      (0x00E0)
375 		 *   value of those: 0b0000000011000000 (0x00C0)
376 		 */
377 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
378 			hdrlen = 10;
379 		else
380 			hdrlen = 16;
381 	}
382 out:
383 	return hdrlen;
384 }
385 EXPORT_SYMBOL(ieee80211_hdrlen);
386 
387 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
388 {
389 	const struct ieee80211_hdr *hdr =
390 			(const struct ieee80211_hdr *)skb->data;
391 	unsigned int hdrlen;
392 
393 	if (unlikely(skb->len < 10))
394 		return 0;
395 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
396 	if (unlikely(hdrlen > skb->len))
397 		return 0;
398 	return hdrlen;
399 }
400 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
401 
402 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
403 {
404 	int ae = flags & MESH_FLAGS_AE;
405 	/* 802.11-2012, 8.2.4.7.3 */
406 	switch (ae) {
407 	default:
408 	case 0:
409 		return 6;
410 	case MESH_FLAGS_AE_A4:
411 		return 12;
412 	case MESH_FLAGS_AE_A5_A6:
413 		return 18;
414 	}
415 }
416 
417 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
418 {
419 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
420 }
421 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
422 
423 static int __ieee80211_data_to_8023(struct sk_buff *skb, struct ethhdr *ehdr,
424 				    const u8 *addr, enum nl80211_iftype iftype)
425 {
426 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
427 	struct {
428 		u8 hdr[ETH_ALEN] __aligned(2);
429 		__be16 proto;
430 	} payload;
431 	struct ethhdr tmp;
432 	u16 hdrlen;
433 	u8 mesh_flags = 0;
434 
435 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
436 		return -1;
437 
438 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
439 	if (skb->len < hdrlen + 8)
440 		return -1;
441 
442 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
443 	 * header
444 	 * IEEE 802.11 address fields:
445 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
446 	 *   0     0   DA    SA    BSSID n/a
447 	 *   0     1   DA    BSSID SA    n/a
448 	 *   1     0   BSSID SA    DA    n/a
449 	 *   1     1   RA    TA    DA    SA
450 	 */
451 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
452 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
453 
454 	if (iftype == NL80211_IFTYPE_MESH_POINT)
455 		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
456 
457 	switch (hdr->frame_control &
458 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
459 	case cpu_to_le16(IEEE80211_FCTL_TODS):
460 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
461 			     iftype != NL80211_IFTYPE_AP_VLAN &&
462 			     iftype != NL80211_IFTYPE_P2P_GO))
463 			return -1;
464 		break;
465 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
466 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
467 			     iftype != NL80211_IFTYPE_MESH_POINT &&
468 			     iftype != NL80211_IFTYPE_AP_VLAN &&
469 			     iftype != NL80211_IFTYPE_STATION))
470 			return -1;
471 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
472 			if (mesh_flags & MESH_FLAGS_AE_A4)
473 				return -1;
474 			if (mesh_flags & MESH_FLAGS_AE_A5_A6) {
475 				skb_copy_bits(skb, hdrlen +
476 					offsetof(struct ieee80211s_hdr, eaddr1),
477 					tmp.h_dest, 2 * ETH_ALEN);
478 			}
479 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
480 		}
481 		break;
482 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
483 		if ((iftype != NL80211_IFTYPE_STATION &&
484 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
485 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
486 		    (is_multicast_ether_addr(tmp.h_dest) &&
487 		     ether_addr_equal(tmp.h_source, addr)))
488 			return -1;
489 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
490 			if (mesh_flags & MESH_FLAGS_AE_A5_A6)
491 				return -1;
492 			if (mesh_flags & MESH_FLAGS_AE_A4)
493 				skb_copy_bits(skb, hdrlen +
494 					offsetof(struct ieee80211s_hdr, eaddr1),
495 					tmp.h_source, ETH_ALEN);
496 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
497 		}
498 		break;
499 	case cpu_to_le16(0):
500 		if (iftype != NL80211_IFTYPE_ADHOC &&
501 		    iftype != NL80211_IFTYPE_STATION &&
502 		    iftype != NL80211_IFTYPE_OCB)
503 				return -1;
504 		break;
505 	}
506 
507 	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
508 	tmp.h_proto = payload.proto;
509 
510 	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
511 		    tmp.h_proto != htons(ETH_P_AARP) &&
512 		    tmp.h_proto != htons(ETH_P_IPX)) ||
513 		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
514 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
515 		 * replace EtherType */
516 		hdrlen += ETH_ALEN + 2;
517 	else
518 		tmp.h_proto = htons(skb->len - hdrlen);
519 
520 	pskb_pull(skb, hdrlen);
521 
522 	if (!ehdr)
523 		ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
524 	memcpy(ehdr, &tmp, sizeof(tmp));
525 
526 	return 0;
527 }
528 
529 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
530 			   enum nl80211_iftype iftype)
531 {
532 	return __ieee80211_data_to_8023(skb, NULL, addr, iftype);
533 }
534 EXPORT_SYMBOL(ieee80211_data_to_8023);
535 
536 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
537 			     enum nl80211_iftype iftype,
538 			     const u8 *bssid, bool qos)
539 {
540 	struct ieee80211_hdr hdr;
541 	u16 hdrlen, ethertype;
542 	__le16 fc;
543 	const u8 *encaps_data;
544 	int encaps_len, skip_header_bytes;
545 	int nh_pos, h_pos;
546 	int head_need;
547 
548 	if (unlikely(skb->len < ETH_HLEN))
549 		return -EINVAL;
550 
551 	nh_pos = skb_network_header(skb) - skb->data;
552 	h_pos = skb_transport_header(skb) - skb->data;
553 
554 	/* convert Ethernet header to proper 802.11 header (based on
555 	 * operation mode) */
556 	ethertype = (skb->data[12] << 8) | skb->data[13];
557 	fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
558 
559 	switch (iftype) {
560 	case NL80211_IFTYPE_AP:
561 	case NL80211_IFTYPE_AP_VLAN:
562 	case NL80211_IFTYPE_P2P_GO:
563 		fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
564 		/* DA BSSID SA */
565 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
566 		memcpy(hdr.addr2, addr, ETH_ALEN);
567 		memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
568 		hdrlen = 24;
569 		break;
570 	case NL80211_IFTYPE_STATION:
571 	case NL80211_IFTYPE_P2P_CLIENT:
572 		fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
573 		/* BSSID SA DA */
574 		memcpy(hdr.addr1, bssid, ETH_ALEN);
575 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
576 		memcpy(hdr.addr3, skb->data, ETH_ALEN);
577 		hdrlen = 24;
578 		break;
579 	case NL80211_IFTYPE_OCB:
580 	case NL80211_IFTYPE_ADHOC:
581 		/* DA SA BSSID */
582 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
583 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
584 		memcpy(hdr.addr3, bssid, ETH_ALEN);
585 		hdrlen = 24;
586 		break;
587 	default:
588 		return -EOPNOTSUPP;
589 	}
590 
591 	if (qos) {
592 		fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
593 		hdrlen += 2;
594 	}
595 
596 	hdr.frame_control = fc;
597 	hdr.duration_id = 0;
598 	hdr.seq_ctrl = 0;
599 
600 	skip_header_bytes = ETH_HLEN;
601 	if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
602 		encaps_data = bridge_tunnel_header;
603 		encaps_len = sizeof(bridge_tunnel_header);
604 		skip_header_bytes -= 2;
605 	} else if (ethertype >= ETH_P_802_3_MIN) {
606 		encaps_data = rfc1042_header;
607 		encaps_len = sizeof(rfc1042_header);
608 		skip_header_bytes -= 2;
609 	} else {
610 		encaps_data = NULL;
611 		encaps_len = 0;
612 	}
613 
614 	skb_pull(skb, skip_header_bytes);
615 	nh_pos -= skip_header_bytes;
616 	h_pos -= skip_header_bytes;
617 
618 	head_need = hdrlen + encaps_len - skb_headroom(skb);
619 
620 	if (head_need > 0 || skb_cloned(skb)) {
621 		head_need = max(head_need, 0);
622 		if (head_need)
623 			skb_orphan(skb);
624 
625 		if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
626 			return -ENOMEM;
627 
628 		skb->truesize += head_need;
629 	}
630 
631 	if (encaps_data) {
632 		memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
633 		nh_pos += encaps_len;
634 		h_pos += encaps_len;
635 	}
636 
637 	memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
638 
639 	nh_pos += hdrlen;
640 	h_pos += hdrlen;
641 
642 	/* Update skb pointers to various headers since this modified frame
643 	 * is going to go through Linux networking code that may potentially
644 	 * need things like pointer to IP header. */
645 	skb_reset_mac_header(skb);
646 	skb_set_network_header(skb, nh_pos);
647 	skb_set_transport_header(skb, h_pos);
648 
649 	return 0;
650 }
651 EXPORT_SYMBOL(ieee80211_data_from_8023);
652 
653 static void
654 __frame_add_frag(struct sk_buff *skb, struct page *page,
655 		 void *ptr, int len, int size)
656 {
657 	struct skb_shared_info *sh = skb_shinfo(skb);
658 	int page_offset;
659 
660 	page_ref_inc(page);
661 	page_offset = ptr - page_address(page);
662 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
663 }
664 
665 static void
666 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
667 			    int offset, int len)
668 {
669 	struct skb_shared_info *sh = skb_shinfo(skb);
670 	const skb_frag_t *frag = &sh->frags[-1];
671 	struct page *frag_page;
672 	void *frag_ptr;
673 	int frag_len, frag_size;
674 	int head_size = skb->len - skb->data_len;
675 	int cur_len;
676 
677 	frag_page = virt_to_head_page(skb->head);
678 	frag_ptr = skb->data;
679 	frag_size = head_size;
680 
681 	while (offset >= frag_size) {
682 		offset -= frag_size;
683 		frag++;
684 		frag_page = skb_frag_page(frag);
685 		frag_ptr = skb_frag_address(frag);
686 		frag_size = skb_frag_size(frag);
687 	}
688 
689 	frag_ptr += offset;
690 	frag_len = frag_size - offset;
691 
692 	cur_len = min(len, frag_len);
693 
694 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
695 	len -= cur_len;
696 
697 	while (len > 0) {
698 		frag++;
699 		frag_len = skb_frag_size(frag);
700 		cur_len = min(len, frag_len);
701 		__frame_add_frag(frame, skb_frag_page(frag),
702 				 skb_frag_address(frag), cur_len, frag_len);
703 		len -= cur_len;
704 	}
705 }
706 
707 static struct sk_buff *
708 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
709 		       int offset, int len, bool reuse_frag)
710 {
711 	struct sk_buff *frame;
712 	int cur_len = len;
713 
714 	if (skb->len - offset < len)
715 		return NULL;
716 
717 	/*
718 	 * When reusing framents, copy some data to the head to simplify
719 	 * ethernet header handling and speed up protocol header processing
720 	 * in the stack later.
721 	 */
722 	if (reuse_frag)
723 		cur_len = min_t(int, len, 32);
724 
725 	/*
726 	 * Allocate and reserve two bytes more for payload
727 	 * alignment since sizeof(struct ethhdr) is 14.
728 	 */
729 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
730 	if (!frame)
731 		return NULL;
732 
733 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
734 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
735 
736 	len -= cur_len;
737 	if (!len)
738 		return frame;
739 
740 	offset += cur_len;
741 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
742 
743 	return frame;
744 }
745 
746 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
747 			      const u8 *addr, enum nl80211_iftype iftype,
748 			      const unsigned int extra_headroom,
749 			      bool has_80211_header)
750 {
751 	unsigned int hlen = ALIGN(extra_headroom, 4);
752 	struct sk_buff *frame = NULL;
753 	u16 ethertype;
754 	u8 *payload;
755 	int offset = 0, remaining, err;
756 	struct ethhdr eth;
757 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
758 	bool reuse_skb = false;
759 	bool last = false;
760 
761 	if (has_80211_header) {
762 		err = __ieee80211_data_to_8023(skb, &eth, addr, iftype);
763 		if (err)
764 			goto out;
765 	}
766 
767 	while (!last) {
768 		unsigned int subframe_len;
769 		int len;
770 		u8 padding;
771 
772 		skb_copy_bits(skb, offset, &eth, sizeof(eth));
773 		len = ntohs(eth.h_proto);
774 		subframe_len = sizeof(struct ethhdr) + len;
775 		padding = (4 - subframe_len) & 0x3;
776 
777 		/* the last MSDU has no padding */
778 		remaining = skb->len - offset;
779 		if (subframe_len > remaining)
780 			goto purge;
781 
782 		offset += sizeof(struct ethhdr);
783 		/* reuse skb for the last subframe */
784 		last = remaining <= subframe_len + padding;
785 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
786 			skb_pull(skb, offset);
787 			frame = skb;
788 			reuse_skb = true;
789 		} else {
790 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
791 						       reuse_frag);
792 			if (!frame)
793 				goto purge;
794 
795 			offset += len + padding;
796 		}
797 
798 		skb_reset_network_header(frame);
799 		frame->dev = skb->dev;
800 		frame->priority = skb->priority;
801 
802 		payload = frame->data;
803 		ethertype = (payload[6] << 8) | payload[7];
804 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
805 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
806 			   ether_addr_equal(payload, bridge_tunnel_header))) {
807 			eth.h_proto = htons(ethertype);
808 			skb_pull(frame, ETH_ALEN + 2);
809 		}
810 
811 		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
812 		__skb_queue_tail(list, frame);
813 	}
814 
815 	if (!reuse_skb)
816 		dev_kfree_skb(skb);
817 
818 	return;
819 
820  purge:
821 	__skb_queue_purge(list);
822  out:
823 	dev_kfree_skb(skb);
824 }
825 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
826 
827 /* Given a data frame determine the 802.1p/1d tag to use. */
828 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
829 				    struct cfg80211_qos_map *qos_map)
830 {
831 	unsigned int dscp;
832 	unsigned char vlan_priority;
833 
834 	/* skb->priority values from 256->263 are magic values to
835 	 * directly indicate a specific 802.1d priority.  This is used
836 	 * to allow 802.1d priority to be passed directly in from VLAN
837 	 * tags, etc.
838 	 */
839 	if (skb->priority >= 256 && skb->priority <= 263)
840 		return skb->priority - 256;
841 
842 	if (skb_vlan_tag_present(skb)) {
843 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
844 			>> VLAN_PRIO_SHIFT;
845 		if (vlan_priority > 0)
846 			return vlan_priority;
847 	}
848 
849 	switch (skb->protocol) {
850 	case htons(ETH_P_IP):
851 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
852 		break;
853 	case htons(ETH_P_IPV6):
854 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
855 		break;
856 	case htons(ETH_P_MPLS_UC):
857 	case htons(ETH_P_MPLS_MC): {
858 		struct mpls_label mpls_tmp, *mpls;
859 
860 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
861 					  sizeof(*mpls), &mpls_tmp);
862 		if (!mpls)
863 			return 0;
864 
865 		return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
866 			>> MPLS_LS_TC_SHIFT;
867 	}
868 	case htons(ETH_P_80221):
869 		/* 802.21 is always network control traffic */
870 		return 7;
871 	default:
872 		return 0;
873 	}
874 
875 	if (qos_map) {
876 		unsigned int i, tmp_dscp = dscp >> 2;
877 
878 		for (i = 0; i < qos_map->num_des; i++) {
879 			if (tmp_dscp == qos_map->dscp_exception[i].dscp)
880 				return qos_map->dscp_exception[i].up;
881 		}
882 
883 		for (i = 0; i < 8; i++) {
884 			if (tmp_dscp >= qos_map->up[i].low &&
885 			    tmp_dscp <= qos_map->up[i].high)
886 				return i;
887 		}
888 	}
889 
890 	return dscp >> 5;
891 }
892 EXPORT_SYMBOL(cfg80211_classify8021d);
893 
894 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
895 {
896 	const struct cfg80211_bss_ies *ies;
897 
898 	ies = rcu_dereference(bss->ies);
899 	if (!ies)
900 		return NULL;
901 
902 	return cfg80211_find_ie(ie, ies->data, ies->len);
903 }
904 EXPORT_SYMBOL(ieee80211_bss_get_ie);
905 
906 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
907 {
908 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
909 	struct net_device *dev = wdev->netdev;
910 	int i;
911 
912 	if (!wdev->connect_keys)
913 		return;
914 
915 	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
916 		if (!wdev->connect_keys->params[i].cipher)
917 			continue;
918 		if (rdev_add_key(rdev, dev, i, false, NULL,
919 				 &wdev->connect_keys->params[i])) {
920 			netdev_err(dev, "failed to set key %d\n", i);
921 			continue;
922 		}
923 		if (wdev->connect_keys->def == i)
924 			if (rdev_set_default_key(rdev, dev, i, true, true)) {
925 				netdev_err(dev, "failed to set defkey %d\n", i);
926 				continue;
927 			}
928 	}
929 
930 	kzfree(wdev->connect_keys);
931 	wdev->connect_keys = NULL;
932 }
933 
934 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
935 {
936 	struct cfg80211_event *ev;
937 	unsigned long flags;
938 	const u8 *bssid = NULL;
939 
940 	spin_lock_irqsave(&wdev->event_lock, flags);
941 	while (!list_empty(&wdev->event_list)) {
942 		ev = list_first_entry(&wdev->event_list,
943 				      struct cfg80211_event, list);
944 		list_del(&ev->list);
945 		spin_unlock_irqrestore(&wdev->event_lock, flags);
946 
947 		wdev_lock(wdev);
948 		switch (ev->type) {
949 		case EVENT_CONNECT_RESULT:
950 			if (!is_zero_ether_addr(ev->cr.bssid))
951 				bssid = ev->cr.bssid;
952 			__cfg80211_connect_result(
953 				wdev->netdev, bssid,
954 				ev->cr.req_ie, ev->cr.req_ie_len,
955 				ev->cr.resp_ie, ev->cr.resp_ie_len,
956 				ev->cr.status,
957 				ev->cr.status == WLAN_STATUS_SUCCESS,
958 				ev->cr.bss);
959 			break;
960 		case EVENT_ROAMED:
961 			__cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
962 					  ev->rm.req_ie_len, ev->rm.resp_ie,
963 					  ev->rm.resp_ie_len);
964 			break;
965 		case EVENT_DISCONNECTED:
966 			__cfg80211_disconnected(wdev->netdev,
967 						ev->dc.ie, ev->dc.ie_len,
968 						ev->dc.reason,
969 						!ev->dc.locally_generated);
970 			break;
971 		case EVENT_IBSS_JOINED:
972 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
973 					       ev->ij.channel);
974 			break;
975 		case EVENT_STOPPED:
976 			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
977 			break;
978 		}
979 		wdev_unlock(wdev);
980 
981 		kfree(ev);
982 
983 		spin_lock_irqsave(&wdev->event_lock, flags);
984 	}
985 	spin_unlock_irqrestore(&wdev->event_lock, flags);
986 }
987 
988 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
989 {
990 	struct wireless_dev *wdev;
991 
992 	ASSERT_RTNL();
993 
994 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
995 		cfg80211_process_wdev_events(wdev);
996 }
997 
998 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
999 			  struct net_device *dev, enum nl80211_iftype ntype,
1000 			  u32 *flags, struct vif_params *params)
1001 {
1002 	int err;
1003 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1004 
1005 	ASSERT_RTNL();
1006 
1007 	/* don't support changing VLANs, you just re-create them */
1008 	if (otype == NL80211_IFTYPE_AP_VLAN)
1009 		return -EOPNOTSUPP;
1010 
1011 	/* cannot change into P2P device or NAN */
1012 	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1013 	    ntype == NL80211_IFTYPE_NAN)
1014 		return -EOPNOTSUPP;
1015 
1016 	if (!rdev->ops->change_virtual_intf ||
1017 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1018 		return -EOPNOTSUPP;
1019 
1020 	/* if it's part of a bridge, reject changing type to station/ibss */
1021 	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
1022 	    (ntype == NL80211_IFTYPE_ADHOC ||
1023 	     ntype == NL80211_IFTYPE_STATION ||
1024 	     ntype == NL80211_IFTYPE_P2P_CLIENT))
1025 		return -EBUSY;
1026 
1027 	if (ntype != otype) {
1028 		dev->ieee80211_ptr->use_4addr = false;
1029 		dev->ieee80211_ptr->mesh_id_up_len = 0;
1030 		wdev_lock(dev->ieee80211_ptr);
1031 		rdev_set_qos_map(rdev, dev, NULL);
1032 		wdev_unlock(dev->ieee80211_ptr);
1033 
1034 		switch (otype) {
1035 		case NL80211_IFTYPE_AP:
1036 			cfg80211_stop_ap(rdev, dev, true);
1037 			break;
1038 		case NL80211_IFTYPE_ADHOC:
1039 			cfg80211_leave_ibss(rdev, dev, false);
1040 			break;
1041 		case NL80211_IFTYPE_STATION:
1042 		case NL80211_IFTYPE_P2P_CLIENT:
1043 			wdev_lock(dev->ieee80211_ptr);
1044 			cfg80211_disconnect(rdev, dev,
1045 					    WLAN_REASON_DEAUTH_LEAVING, true);
1046 			wdev_unlock(dev->ieee80211_ptr);
1047 			break;
1048 		case NL80211_IFTYPE_MESH_POINT:
1049 			/* mesh should be handled? */
1050 			break;
1051 		default:
1052 			break;
1053 		}
1054 
1055 		cfg80211_process_rdev_events(rdev);
1056 	}
1057 
1058 	err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
1059 
1060 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1061 
1062 	if (!err && params && params->use_4addr != -1)
1063 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1064 
1065 	if (!err) {
1066 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1067 		switch (ntype) {
1068 		case NL80211_IFTYPE_STATION:
1069 			if (dev->ieee80211_ptr->use_4addr)
1070 				break;
1071 			/* fall through */
1072 		case NL80211_IFTYPE_OCB:
1073 		case NL80211_IFTYPE_P2P_CLIENT:
1074 		case NL80211_IFTYPE_ADHOC:
1075 			dev->priv_flags |= IFF_DONT_BRIDGE;
1076 			break;
1077 		case NL80211_IFTYPE_P2P_GO:
1078 		case NL80211_IFTYPE_AP:
1079 		case NL80211_IFTYPE_AP_VLAN:
1080 		case NL80211_IFTYPE_WDS:
1081 		case NL80211_IFTYPE_MESH_POINT:
1082 			/* bridging OK */
1083 			break;
1084 		case NL80211_IFTYPE_MONITOR:
1085 			/* monitor can't bridge anyway */
1086 			break;
1087 		case NL80211_IFTYPE_UNSPECIFIED:
1088 		case NUM_NL80211_IFTYPES:
1089 			/* not happening */
1090 			break;
1091 		case NL80211_IFTYPE_P2P_DEVICE:
1092 		case NL80211_IFTYPE_NAN:
1093 			WARN_ON(1);
1094 			break;
1095 		}
1096 	}
1097 
1098 	if (!err && ntype != otype && netif_running(dev)) {
1099 		cfg80211_update_iface_num(rdev, ntype, 1);
1100 		cfg80211_update_iface_num(rdev, otype, -1);
1101 	}
1102 
1103 	return err;
1104 }
1105 
1106 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1107 {
1108 	static const u32 __mcs2bitrate[] = {
1109 		/* control PHY */
1110 		[0] =   275,
1111 		/* SC PHY */
1112 		[1] =  3850,
1113 		[2] =  7700,
1114 		[3] =  9625,
1115 		[4] = 11550,
1116 		[5] = 12512, /* 1251.25 mbps */
1117 		[6] = 15400,
1118 		[7] = 19250,
1119 		[8] = 23100,
1120 		[9] = 25025,
1121 		[10] = 30800,
1122 		[11] = 38500,
1123 		[12] = 46200,
1124 		/* OFDM PHY */
1125 		[13] =  6930,
1126 		[14] =  8662, /* 866.25 mbps */
1127 		[15] = 13860,
1128 		[16] = 17325,
1129 		[17] = 20790,
1130 		[18] = 27720,
1131 		[19] = 34650,
1132 		[20] = 41580,
1133 		[21] = 45045,
1134 		[22] = 51975,
1135 		[23] = 62370,
1136 		[24] = 67568, /* 6756.75 mbps */
1137 		/* LP-SC PHY */
1138 		[25] =  6260,
1139 		[26] =  8340,
1140 		[27] = 11120,
1141 		[28] = 12510,
1142 		[29] = 16680,
1143 		[30] = 22240,
1144 		[31] = 25030,
1145 	};
1146 
1147 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1148 		return 0;
1149 
1150 	return __mcs2bitrate[rate->mcs];
1151 }
1152 
1153 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1154 {
1155 	static const u32 base[4][10] = {
1156 		{   6500000,
1157 		   13000000,
1158 		   19500000,
1159 		   26000000,
1160 		   39000000,
1161 		   52000000,
1162 		   58500000,
1163 		   65000000,
1164 		   78000000,
1165 		   0,
1166 		},
1167 		{  13500000,
1168 		   27000000,
1169 		   40500000,
1170 		   54000000,
1171 		   81000000,
1172 		  108000000,
1173 		  121500000,
1174 		  135000000,
1175 		  162000000,
1176 		  180000000,
1177 		},
1178 		{  29300000,
1179 		   58500000,
1180 		   87800000,
1181 		  117000000,
1182 		  175500000,
1183 		  234000000,
1184 		  263300000,
1185 		  292500000,
1186 		  351000000,
1187 		  390000000,
1188 		},
1189 		{  58500000,
1190 		  117000000,
1191 		  175500000,
1192 		  234000000,
1193 		  351000000,
1194 		  468000000,
1195 		  526500000,
1196 		  585000000,
1197 		  702000000,
1198 		  780000000,
1199 		},
1200 	};
1201 	u32 bitrate;
1202 	int idx;
1203 
1204 	if (WARN_ON_ONCE(rate->mcs > 9))
1205 		return 0;
1206 
1207 	switch (rate->bw) {
1208 	case RATE_INFO_BW_160:
1209 		idx = 3;
1210 		break;
1211 	case RATE_INFO_BW_80:
1212 		idx = 2;
1213 		break;
1214 	case RATE_INFO_BW_40:
1215 		idx = 1;
1216 		break;
1217 	case RATE_INFO_BW_5:
1218 	case RATE_INFO_BW_10:
1219 	default:
1220 		WARN_ON(1);
1221 		/* fall through */
1222 	case RATE_INFO_BW_20:
1223 		idx = 0;
1224 	}
1225 
1226 	bitrate = base[idx][rate->mcs];
1227 	bitrate *= rate->nss;
1228 
1229 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1230 		bitrate = (bitrate / 9) * 10;
1231 
1232 	/* do NOT round down here */
1233 	return (bitrate + 50000) / 100000;
1234 }
1235 
1236 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1237 {
1238 	int modulation, streams, bitrate;
1239 
1240 	if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1241 	    !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1242 		return rate->legacy;
1243 	if (rate->flags & RATE_INFO_FLAGS_60G)
1244 		return cfg80211_calculate_bitrate_60g(rate);
1245 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1246 		return cfg80211_calculate_bitrate_vht(rate);
1247 
1248 	/* the formula below does only work for MCS values smaller than 32 */
1249 	if (WARN_ON_ONCE(rate->mcs >= 32))
1250 		return 0;
1251 
1252 	modulation = rate->mcs & 7;
1253 	streams = (rate->mcs >> 3) + 1;
1254 
1255 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1256 
1257 	if (modulation < 4)
1258 		bitrate *= (modulation + 1);
1259 	else if (modulation == 4)
1260 		bitrate *= (modulation + 2);
1261 	else
1262 		bitrate *= (modulation + 3);
1263 
1264 	bitrate *= streams;
1265 
1266 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1267 		bitrate = (bitrate / 9) * 10;
1268 
1269 	/* do NOT round down here */
1270 	return (bitrate + 50000) / 100000;
1271 }
1272 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1273 
1274 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1275 			  enum ieee80211_p2p_attr_id attr,
1276 			  u8 *buf, unsigned int bufsize)
1277 {
1278 	u8 *out = buf;
1279 	u16 attr_remaining = 0;
1280 	bool desired_attr = false;
1281 	u16 desired_len = 0;
1282 
1283 	while (len > 0) {
1284 		unsigned int iedatalen;
1285 		unsigned int copy;
1286 		const u8 *iedata;
1287 
1288 		if (len < 2)
1289 			return -EILSEQ;
1290 		iedatalen = ies[1];
1291 		if (iedatalen + 2 > len)
1292 			return -EILSEQ;
1293 
1294 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1295 			goto cont;
1296 
1297 		if (iedatalen < 4)
1298 			goto cont;
1299 
1300 		iedata = ies + 2;
1301 
1302 		/* check WFA OUI, P2P subtype */
1303 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1304 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1305 			goto cont;
1306 
1307 		iedatalen -= 4;
1308 		iedata += 4;
1309 
1310 		/* check attribute continuation into this IE */
1311 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1312 		if (copy && desired_attr) {
1313 			desired_len += copy;
1314 			if (out) {
1315 				memcpy(out, iedata, min(bufsize, copy));
1316 				out += min(bufsize, copy);
1317 				bufsize -= min(bufsize, copy);
1318 			}
1319 
1320 
1321 			if (copy == attr_remaining)
1322 				return desired_len;
1323 		}
1324 
1325 		attr_remaining -= copy;
1326 		if (attr_remaining)
1327 			goto cont;
1328 
1329 		iedatalen -= copy;
1330 		iedata += copy;
1331 
1332 		while (iedatalen > 0) {
1333 			u16 attr_len;
1334 
1335 			/* P2P attribute ID & size must fit */
1336 			if (iedatalen < 3)
1337 				return -EILSEQ;
1338 			desired_attr = iedata[0] == attr;
1339 			attr_len = get_unaligned_le16(iedata + 1);
1340 			iedatalen -= 3;
1341 			iedata += 3;
1342 
1343 			copy = min_t(unsigned int, attr_len, iedatalen);
1344 
1345 			if (desired_attr) {
1346 				desired_len += copy;
1347 				if (out) {
1348 					memcpy(out, iedata, min(bufsize, copy));
1349 					out += min(bufsize, copy);
1350 					bufsize -= min(bufsize, copy);
1351 				}
1352 
1353 				if (copy == attr_len)
1354 					return desired_len;
1355 			}
1356 
1357 			iedata += copy;
1358 			iedatalen -= copy;
1359 			attr_remaining = attr_len - copy;
1360 		}
1361 
1362  cont:
1363 		len -= ies[1] + 2;
1364 		ies += ies[1] + 2;
1365 	}
1366 
1367 	if (attr_remaining && desired_attr)
1368 		return -EILSEQ;
1369 
1370 	return -ENOENT;
1371 }
1372 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1373 
1374 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1375 {
1376 	int i;
1377 
1378 	for (i = 0; i < n_ids; i++)
1379 		if (ids[i] == id)
1380 			return true;
1381 	return false;
1382 }
1383 
1384 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1385 			      const u8 *ids, int n_ids,
1386 			      const u8 *after_ric, int n_after_ric,
1387 			      size_t offset)
1388 {
1389 	size_t pos = offset;
1390 
1391 	while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
1392 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1393 			pos += 2 + ies[pos + 1];
1394 
1395 			while (pos < ielen &&
1396 			       !ieee80211_id_in_list(after_ric, n_after_ric,
1397 						     ies[pos]))
1398 				pos += 2 + ies[pos + 1];
1399 		} else {
1400 			pos += 2 + ies[pos + 1];
1401 		}
1402 	}
1403 
1404 	return pos;
1405 }
1406 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1407 
1408 bool ieee80211_operating_class_to_band(u8 operating_class,
1409 				       enum nl80211_band *band)
1410 {
1411 	switch (operating_class) {
1412 	case 112:
1413 	case 115 ... 127:
1414 	case 128 ... 130:
1415 		*band = NL80211_BAND_5GHZ;
1416 		return true;
1417 	case 81:
1418 	case 82:
1419 	case 83:
1420 	case 84:
1421 		*band = NL80211_BAND_2GHZ;
1422 		return true;
1423 	case 180:
1424 		*band = NL80211_BAND_60GHZ;
1425 		return true;
1426 	}
1427 
1428 	return false;
1429 }
1430 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1431 
1432 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1433 					  u8 *op_class)
1434 {
1435 	u8 vht_opclass;
1436 	u16 freq = chandef->center_freq1;
1437 
1438 	if (freq >= 2412 && freq <= 2472) {
1439 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1440 			return false;
1441 
1442 		/* 2.407 GHz, channels 1..13 */
1443 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1444 			if (freq > chandef->chan->center_freq)
1445 				*op_class = 83; /* HT40+ */
1446 			else
1447 				*op_class = 84; /* HT40- */
1448 		} else {
1449 			*op_class = 81;
1450 		}
1451 
1452 		return true;
1453 	}
1454 
1455 	if (freq == 2484) {
1456 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1457 			return false;
1458 
1459 		*op_class = 82; /* channel 14 */
1460 		return true;
1461 	}
1462 
1463 	switch (chandef->width) {
1464 	case NL80211_CHAN_WIDTH_80:
1465 		vht_opclass = 128;
1466 		break;
1467 	case NL80211_CHAN_WIDTH_160:
1468 		vht_opclass = 129;
1469 		break;
1470 	case NL80211_CHAN_WIDTH_80P80:
1471 		vht_opclass = 130;
1472 		break;
1473 	case NL80211_CHAN_WIDTH_10:
1474 	case NL80211_CHAN_WIDTH_5:
1475 		return false; /* unsupported for now */
1476 	default:
1477 		vht_opclass = 0;
1478 		break;
1479 	}
1480 
1481 	/* 5 GHz, channels 36..48 */
1482 	if (freq >= 5180 && freq <= 5240) {
1483 		if (vht_opclass) {
1484 			*op_class = vht_opclass;
1485 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1486 			if (freq > chandef->chan->center_freq)
1487 				*op_class = 116;
1488 			else
1489 				*op_class = 117;
1490 		} else {
1491 			*op_class = 115;
1492 		}
1493 
1494 		return true;
1495 	}
1496 
1497 	/* 5 GHz, channels 52..64 */
1498 	if (freq >= 5260 && freq <= 5320) {
1499 		if (vht_opclass) {
1500 			*op_class = vht_opclass;
1501 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1502 			if (freq > chandef->chan->center_freq)
1503 				*op_class = 119;
1504 			else
1505 				*op_class = 120;
1506 		} else {
1507 			*op_class = 118;
1508 		}
1509 
1510 		return true;
1511 	}
1512 
1513 	/* 5 GHz, channels 100..144 */
1514 	if (freq >= 5500 && freq <= 5720) {
1515 		if (vht_opclass) {
1516 			*op_class = vht_opclass;
1517 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1518 			if (freq > chandef->chan->center_freq)
1519 				*op_class = 122;
1520 			else
1521 				*op_class = 123;
1522 		} else {
1523 			*op_class = 121;
1524 		}
1525 
1526 		return true;
1527 	}
1528 
1529 	/* 5 GHz, channels 149..169 */
1530 	if (freq >= 5745 && freq <= 5845) {
1531 		if (vht_opclass) {
1532 			*op_class = vht_opclass;
1533 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1534 			if (freq > chandef->chan->center_freq)
1535 				*op_class = 126;
1536 			else
1537 				*op_class = 127;
1538 		} else if (freq <= 5805) {
1539 			*op_class = 124;
1540 		} else {
1541 			*op_class = 125;
1542 		}
1543 
1544 		return true;
1545 	}
1546 
1547 	/* 56.16 GHz, channel 1..4 */
1548 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1549 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1550 			return false;
1551 
1552 		*op_class = 180;
1553 		return true;
1554 	}
1555 
1556 	/* not supported yet */
1557 	return false;
1558 }
1559 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1560 
1561 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1562 				 u32 beacon_int)
1563 {
1564 	struct wireless_dev *wdev;
1565 	int res = 0;
1566 
1567 	if (beacon_int < 10 || beacon_int > 10000)
1568 		return -EINVAL;
1569 
1570 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
1571 		if (!wdev->beacon_interval)
1572 			continue;
1573 		if (wdev->beacon_interval != beacon_int) {
1574 			res = -EINVAL;
1575 			break;
1576 		}
1577 	}
1578 
1579 	return res;
1580 }
1581 
1582 int cfg80211_iter_combinations(struct wiphy *wiphy,
1583 			       const int num_different_channels,
1584 			       const u8 radar_detect,
1585 			       const int iftype_num[NUM_NL80211_IFTYPES],
1586 			       void (*iter)(const struct ieee80211_iface_combination *c,
1587 					    void *data),
1588 			       void *data)
1589 {
1590 	const struct ieee80211_regdomain *regdom;
1591 	enum nl80211_dfs_regions region = 0;
1592 	int i, j, iftype;
1593 	int num_interfaces = 0;
1594 	u32 used_iftypes = 0;
1595 
1596 	if (radar_detect) {
1597 		rcu_read_lock();
1598 		regdom = rcu_dereference(cfg80211_regdomain);
1599 		if (regdom)
1600 			region = regdom->dfs_region;
1601 		rcu_read_unlock();
1602 	}
1603 
1604 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1605 		num_interfaces += iftype_num[iftype];
1606 		if (iftype_num[iftype] > 0 &&
1607 		    !(wiphy->software_iftypes & BIT(iftype)))
1608 			used_iftypes |= BIT(iftype);
1609 	}
1610 
1611 	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1612 		const struct ieee80211_iface_combination *c;
1613 		struct ieee80211_iface_limit *limits;
1614 		u32 all_iftypes = 0;
1615 
1616 		c = &wiphy->iface_combinations[i];
1617 
1618 		if (num_interfaces > c->max_interfaces)
1619 			continue;
1620 		if (num_different_channels > c->num_different_channels)
1621 			continue;
1622 
1623 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1624 				 GFP_KERNEL);
1625 		if (!limits)
1626 			return -ENOMEM;
1627 
1628 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1629 			if (wiphy->software_iftypes & BIT(iftype))
1630 				continue;
1631 			for (j = 0; j < c->n_limits; j++) {
1632 				all_iftypes |= limits[j].types;
1633 				if (!(limits[j].types & BIT(iftype)))
1634 					continue;
1635 				if (limits[j].max < iftype_num[iftype])
1636 					goto cont;
1637 				limits[j].max -= iftype_num[iftype];
1638 			}
1639 		}
1640 
1641 		if (radar_detect != (c->radar_detect_widths & radar_detect))
1642 			goto cont;
1643 
1644 		if (radar_detect && c->radar_detect_regions &&
1645 		    !(c->radar_detect_regions & BIT(region)))
1646 			goto cont;
1647 
1648 		/* Finally check that all iftypes that we're currently
1649 		 * using are actually part of this combination. If they
1650 		 * aren't then we can't use this combination and have
1651 		 * to continue to the next.
1652 		 */
1653 		if ((all_iftypes & used_iftypes) != used_iftypes)
1654 			goto cont;
1655 
1656 		/* This combination covered all interface types and
1657 		 * supported the requested numbers, so we're good.
1658 		 */
1659 
1660 		(*iter)(c, data);
1661  cont:
1662 		kfree(limits);
1663 	}
1664 
1665 	return 0;
1666 }
1667 EXPORT_SYMBOL(cfg80211_iter_combinations);
1668 
1669 static void
1670 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1671 			  void *data)
1672 {
1673 	int *num = data;
1674 	(*num)++;
1675 }
1676 
1677 int cfg80211_check_combinations(struct wiphy *wiphy,
1678 				const int num_different_channels,
1679 				const u8 radar_detect,
1680 				const int iftype_num[NUM_NL80211_IFTYPES])
1681 {
1682 	int err, num = 0;
1683 
1684 	err = cfg80211_iter_combinations(wiphy, num_different_channels,
1685 					 radar_detect, iftype_num,
1686 					 cfg80211_iter_sum_ifcombs, &num);
1687 	if (err)
1688 		return err;
1689 	if (num == 0)
1690 		return -EBUSY;
1691 
1692 	return 0;
1693 }
1694 EXPORT_SYMBOL(cfg80211_check_combinations);
1695 
1696 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1697 			   const u8 *rates, unsigned int n_rates,
1698 			   u32 *mask)
1699 {
1700 	int i, j;
1701 
1702 	if (!sband)
1703 		return -EINVAL;
1704 
1705 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1706 		return -EINVAL;
1707 
1708 	*mask = 0;
1709 
1710 	for (i = 0; i < n_rates; i++) {
1711 		int rate = (rates[i] & 0x7f) * 5;
1712 		bool found = false;
1713 
1714 		for (j = 0; j < sband->n_bitrates; j++) {
1715 			if (sband->bitrates[j].bitrate == rate) {
1716 				found = true;
1717 				*mask |= BIT(j);
1718 				break;
1719 			}
1720 		}
1721 		if (!found)
1722 			return -EINVAL;
1723 	}
1724 
1725 	/*
1726 	 * mask must have at least one bit set here since we
1727 	 * didn't accept a 0-length rates array nor allowed
1728 	 * entries in the array that didn't exist
1729 	 */
1730 
1731 	return 0;
1732 }
1733 
1734 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1735 {
1736 	enum nl80211_band band;
1737 	unsigned int n_channels = 0;
1738 
1739 	for (band = 0; band < NUM_NL80211_BANDS; band++)
1740 		if (wiphy->bands[band])
1741 			n_channels += wiphy->bands[band]->n_channels;
1742 
1743 	return n_channels;
1744 }
1745 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1746 
1747 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1748 			 struct station_info *sinfo)
1749 {
1750 	struct cfg80211_registered_device *rdev;
1751 	struct wireless_dev *wdev;
1752 
1753 	wdev = dev->ieee80211_ptr;
1754 	if (!wdev)
1755 		return -EOPNOTSUPP;
1756 
1757 	rdev = wiphy_to_rdev(wdev->wiphy);
1758 	if (!rdev->ops->get_station)
1759 		return -EOPNOTSUPP;
1760 
1761 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1762 }
1763 EXPORT_SYMBOL(cfg80211_get_station);
1764 
1765 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1766 {
1767 	int i;
1768 
1769 	if (!f)
1770 		return;
1771 
1772 	kfree(f->serv_spec_info);
1773 	kfree(f->srf_bf);
1774 	kfree(f->srf_macs);
1775 	for (i = 0; i < f->num_rx_filters; i++)
1776 		kfree(f->rx_filters[i].filter);
1777 
1778 	for (i = 0; i < f->num_tx_filters; i++)
1779 		kfree(f->tx_filters[i].filter);
1780 
1781 	kfree(f->rx_filters);
1782 	kfree(f->tx_filters);
1783 	kfree(f);
1784 }
1785 EXPORT_SYMBOL(cfg80211_free_nan_func);
1786 
1787 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1788 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1789 const unsigned char rfc1042_header[] __aligned(2) =
1790 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1791 EXPORT_SYMBOL(rfc1042_header);
1792 
1793 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1794 const unsigned char bridge_tunnel_header[] __aligned(2) =
1795 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1796 EXPORT_SYMBOL(bridge_tunnel_header);
1797