1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Wireless utility functions 4 * 5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018-2020 Intel Corporation 9 */ 10 #include <linux/export.h> 11 #include <linux/bitops.h> 12 #include <linux/etherdevice.h> 13 #include <linux/slab.h> 14 #include <linux/ieee80211.h> 15 #include <net/cfg80211.h> 16 #include <net/ip.h> 17 #include <net/dsfield.h> 18 #include <linux/if_vlan.h> 19 #include <linux/mpls.h> 20 #include <linux/gcd.h> 21 #include <linux/bitfield.h> 22 #include <linux/nospec.h> 23 #include "core.h" 24 #include "rdev-ops.h" 25 26 27 struct ieee80211_rate * 28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 29 u32 basic_rates, int bitrate) 30 { 31 struct ieee80211_rate *result = &sband->bitrates[0]; 32 int i; 33 34 for (i = 0; i < sband->n_bitrates; i++) { 35 if (!(basic_rates & BIT(i))) 36 continue; 37 if (sband->bitrates[i].bitrate > bitrate) 38 continue; 39 result = &sband->bitrates[i]; 40 } 41 42 return result; 43 } 44 EXPORT_SYMBOL(ieee80211_get_response_rate); 45 46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 47 enum nl80211_bss_scan_width scan_width) 48 { 49 struct ieee80211_rate *bitrates; 50 u32 mandatory_rates = 0; 51 enum ieee80211_rate_flags mandatory_flag; 52 int i; 53 54 if (WARN_ON(!sband)) 55 return 1; 56 57 if (sband->band == NL80211_BAND_2GHZ) { 58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 59 scan_width == NL80211_BSS_CHAN_WIDTH_10) 60 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 61 else 62 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 63 } else { 64 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 65 } 66 67 bitrates = sband->bitrates; 68 for (i = 0; i < sband->n_bitrates; i++) 69 if (bitrates[i].flags & mandatory_flag) 70 mandatory_rates |= BIT(i); 71 return mandatory_rates; 72 } 73 EXPORT_SYMBOL(ieee80211_mandatory_rates); 74 75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band) 76 { 77 /* see 802.11 17.3.8.3.2 and Annex J 78 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 79 if (chan <= 0) 80 return 0; /* not supported */ 81 switch (band) { 82 case NL80211_BAND_2GHZ: 83 if (chan == 14) 84 return MHZ_TO_KHZ(2484); 85 else if (chan < 14) 86 return MHZ_TO_KHZ(2407 + chan * 5); 87 break; 88 case NL80211_BAND_5GHZ: 89 if (chan >= 182 && chan <= 196) 90 return MHZ_TO_KHZ(4000 + chan * 5); 91 else 92 return MHZ_TO_KHZ(5000 + chan * 5); 93 break; 94 case NL80211_BAND_6GHZ: 95 /* see 802.11ax D6.1 27.3.23.2 */ 96 if (chan == 2) 97 return MHZ_TO_KHZ(5935); 98 if (chan <= 233) 99 return MHZ_TO_KHZ(5950 + chan * 5); 100 break; 101 case NL80211_BAND_60GHZ: 102 if (chan < 7) 103 return MHZ_TO_KHZ(56160 + chan * 2160); 104 break; 105 case NL80211_BAND_S1GHZ: 106 return 902000 + chan * 500; 107 default: 108 ; 109 } 110 return 0; /* not supported */ 111 } 112 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz); 113 114 enum nl80211_chan_width 115 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan) 116 { 117 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ)) 118 return NL80211_CHAN_WIDTH_20_NOHT; 119 120 /*S1G defines a single allowed channel width per channel. 121 * Extract that width here. 122 */ 123 if (chan->flags & IEEE80211_CHAN_1MHZ) 124 return NL80211_CHAN_WIDTH_1; 125 else if (chan->flags & IEEE80211_CHAN_2MHZ) 126 return NL80211_CHAN_WIDTH_2; 127 else if (chan->flags & IEEE80211_CHAN_4MHZ) 128 return NL80211_CHAN_WIDTH_4; 129 else if (chan->flags & IEEE80211_CHAN_8MHZ) 130 return NL80211_CHAN_WIDTH_8; 131 else if (chan->flags & IEEE80211_CHAN_16MHZ) 132 return NL80211_CHAN_WIDTH_16; 133 134 pr_err("unknown channel width for channel at %dKHz?\n", 135 ieee80211_channel_to_khz(chan)); 136 137 return NL80211_CHAN_WIDTH_1; 138 } 139 EXPORT_SYMBOL(ieee80211_s1g_channel_width); 140 141 int ieee80211_freq_khz_to_channel(u32 freq) 142 { 143 /* TODO: just handle MHz for now */ 144 freq = KHZ_TO_MHZ(freq); 145 146 /* see 802.11 17.3.8.3.2 and Annex J */ 147 if (freq == 2484) 148 return 14; 149 else if (freq < 2484) 150 return (freq - 2407) / 5; 151 else if (freq >= 4910 && freq <= 4980) 152 return (freq - 4000) / 5; 153 else if (freq < 5925) 154 return (freq - 5000) / 5; 155 else if (freq == 5935) 156 return 2; 157 else if (freq <= 45000) /* DMG band lower limit */ 158 /* see 802.11ax D6.1 27.3.22.2 */ 159 return (freq - 5950) / 5; 160 else if (freq >= 58320 && freq <= 70200) 161 return (freq - 56160) / 2160; 162 else 163 return 0; 164 } 165 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel); 166 167 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy, 168 u32 freq) 169 { 170 enum nl80211_band band; 171 struct ieee80211_supported_band *sband; 172 int i; 173 174 for (band = 0; band < NUM_NL80211_BANDS; band++) { 175 sband = wiphy->bands[band]; 176 177 if (!sband) 178 continue; 179 180 for (i = 0; i < sband->n_channels; i++) { 181 struct ieee80211_channel *chan = &sband->channels[i]; 182 183 if (ieee80211_channel_to_khz(chan) == freq) 184 return chan; 185 } 186 } 187 188 return NULL; 189 } 190 EXPORT_SYMBOL(ieee80211_get_channel_khz); 191 192 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) 193 { 194 int i, want; 195 196 switch (sband->band) { 197 case NL80211_BAND_5GHZ: 198 case NL80211_BAND_6GHZ: 199 want = 3; 200 for (i = 0; i < sband->n_bitrates; i++) { 201 if (sband->bitrates[i].bitrate == 60 || 202 sband->bitrates[i].bitrate == 120 || 203 sband->bitrates[i].bitrate == 240) { 204 sband->bitrates[i].flags |= 205 IEEE80211_RATE_MANDATORY_A; 206 want--; 207 } 208 } 209 WARN_ON(want); 210 break; 211 case NL80211_BAND_2GHZ: 212 want = 7; 213 for (i = 0; i < sband->n_bitrates; i++) { 214 switch (sband->bitrates[i].bitrate) { 215 case 10: 216 case 20: 217 case 55: 218 case 110: 219 sband->bitrates[i].flags |= 220 IEEE80211_RATE_MANDATORY_B | 221 IEEE80211_RATE_MANDATORY_G; 222 want--; 223 break; 224 case 60: 225 case 120: 226 case 240: 227 sband->bitrates[i].flags |= 228 IEEE80211_RATE_MANDATORY_G; 229 want--; 230 fallthrough; 231 default: 232 sband->bitrates[i].flags |= 233 IEEE80211_RATE_ERP_G; 234 break; 235 } 236 } 237 WARN_ON(want != 0 && want != 3); 238 break; 239 case NL80211_BAND_60GHZ: 240 /* check for mandatory HT MCS 1..4 */ 241 WARN_ON(!sband->ht_cap.ht_supported); 242 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 243 break; 244 case NL80211_BAND_S1GHZ: 245 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least 246 * mandatory is ok. 247 */ 248 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3); 249 break; 250 case NUM_NL80211_BANDS: 251 default: 252 WARN_ON(1); 253 break; 254 } 255 } 256 257 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 258 { 259 enum nl80211_band band; 260 261 for (band = 0; band < NUM_NL80211_BANDS; band++) 262 if (wiphy->bands[band]) 263 set_mandatory_flags_band(wiphy->bands[band]); 264 } 265 266 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 267 { 268 int i; 269 for (i = 0; i < wiphy->n_cipher_suites; i++) 270 if (cipher == wiphy->cipher_suites[i]) 271 return true; 272 return false; 273 } 274 275 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 276 struct key_params *params, int key_idx, 277 bool pairwise, const u8 *mac_addr) 278 { 279 int max_key_idx = 5; 280 281 if (wiphy_ext_feature_isset(&rdev->wiphy, 282 NL80211_EXT_FEATURE_BEACON_PROTECTION) || 283 wiphy_ext_feature_isset(&rdev->wiphy, 284 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT)) 285 max_key_idx = 7; 286 if (key_idx < 0 || key_idx > max_key_idx) 287 return -EINVAL; 288 289 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 290 return -EINVAL; 291 292 if (pairwise && !mac_addr) 293 return -EINVAL; 294 295 switch (params->cipher) { 296 case WLAN_CIPHER_SUITE_TKIP: 297 /* Extended Key ID can only be used with CCMP/GCMP ciphers */ 298 if ((pairwise && key_idx) || 299 params->mode != NL80211_KEY_RX_TX) 300 return -EINVAL; 301 break; 302 case WLAN_CIPHER_SUITE_CCMP: 303 case WLAN_CIPHER_SUITE_CCMP_256: 304 case WLAN_CIPHER_SUITE_GCMP: 305 case WLAN_CIPHER_SUITE_GCMP_256: 306 /* IEEE802.11-2016 allows only 0 and - when supporting 307 * Extended Key ID - 1 as index for pairwise keys. 308 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when 309 * the driver supports Extended Key ID. 310 * @NL80211_KEY_SET_TX can't be set when installing and 311 * validating a key. 312 */ 313 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) || 314 params->mode == NL80211_KEY_SET_TX) 315 return -EINVAL; 316 if (wiphy_ext_feature_isset(&rdev->wiphy, 317 NL80211_EXT_FEATURE_EXT_KEY_ID)) { 318 if (pairwise && (key_idx < 0 || key_idx > 1)) 319 return -EINVAL; 320 } else if (pairwise && key_idx) { 321 return -EINVAL; 322 } 323 break; 324 case WLAN_CIPHER_SUITE_AES_CMAC: 325 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 326 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 327 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 328 /* Disallow BIP (group-only) cipher as pairwise cipher */ 329 if (pairwise) 330 return -EINVAL; 331 if (key_idx < 4) 332 return -EINVAL; 333 break; 334 case WLAN_CIPHER_SUITE_WEP40: 335 case WLAN_CIPHER_SUITE_WEP104: 336 if (key_idx > 3) 337 return -EINVAL; 338 default: 339 break; 340 } 341 342 switch (params->cipher) { 343 case WLAN_CIPHER_SUITE_WEP40: 344 if (params->key_len != WLAN_KEY_LEN_WEP40) 345 return -EINVAL; 346 break; 347 case WLAN_CIPHER_SUITE_TKIP: 348 if (params->key_len != WLAN_KEY_LEN_TKIP) 349 return -EINVAL; 350 break; 351 case WLAN_CIPHER_SUITE_CCMP: 352 if (params->key_len != WLAN_KEY_LEN_CCMP) 353 return -EINVAL; 354 break; 355 case WLAN_CIPHER_SUITE_CCMP_256: 356 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 357 return -EINVAL; 358 break; 359 case WLAN_CIPHER_SUITE_GCMP: 360 if (params->key_len != WLAN_KEY_LEN_GCMP) 361 return -EINVAL; 362 break; 363 case WLAN_CIPHER_SUITE_GCMP_256: 364 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 365 return -EINVAL; 366 break; 367 case WLAN_CIPHER_SUITE_WEP104: 368 if (params->key_len != WLAN_KEY_LEN_WEP104) 369 return -EINVAL; 370 break; 371 case WLAN_CIPHER_SUITE_AES_CMAC: 372 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 373 return -EINVAL; 374 break; 375 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 376 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 377 return -EINVAL; 378 break; 379 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 380 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 381 return -EINVAL; 382 break; 383 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 384 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 385 return -EINVAL; 386 break; 387 default: 388 /* 389 * We don't know anything about this algorithm, 390 * allow using it -- but the driver must check 391 * all parameters! We still check below whether 392 * or not the driver supports this algorithm, 393 * of course. 394 */ 395 break; 396 } 397 398 if (params->seq) { 399 switch (params->cipher) { 400 case WLAN_CIPHER_SUITE_WEP40: 401 case WLAN_CIPHER_SUITE_WEP104: 402 /* These ciphers do not use key sequence */ 403 return -EINVAL; 404 case WLAN_CIPHER_SUITE_TKIP: 405 case WLAN_CIPHER_SUITE_CCMP: 406 case WLAN_CIPHER_SUITE_CCMP_256: 407 case WLAN_CIPHER_SUITE_GCMP: 408 case WLAN_CIPHER_SUITE_GCMP_256: 409 case WLAN_CIPHER_SUITE_AES_CMAC: 410 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 411 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 412 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 413 if (params->seq_len != 6) 414 return -EINVAL; 415 break; 416 } 417 } 418 419 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 420 return -EINVAL; 421 422 return 0; 423 } 424 425 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 426 { 427 unsigned int hdrlen = 24; 428 429 if (ieee80211_is_ext(fc)) { 430 hdrlen = 4; 431 goto out; 432 } 433 434 if (ieee80211_is_data(fc)) { 435 if (ieee80211_has_a4(fc)) 436 hdrlen = 30; 437 if (ieee80211_is_data_qos(fc)) { 438 hdrlen += IEEE80211_QOS_CTL_LEN; 439 if (ieee80211_has_order(fc)) 440 hdrlen += IEEE80211_HT_CTL_LEN; 441 } 442 goto out; 443 } 444 445 if (ieee80211_is_mgmt(fc)) { 446 if (ieee80211_has_order(fc)) 447 hdrlen += IEEE80211_HT_CTL_LEN; 448 goto out; 449 } 450 451 if (ieee80211_is_ctl(fc)) { 452 /* 453 * ACK and CTS are 10 bytes, all others 16. To see how 454 * to get this condition consider 455 * subtype mask: 0b0000000011110000 (0x00F0) 456 * ACK subtype: 0b0000000011010000 (0x00D0) 457 * CTS subtype: 0b0000000011000000 (0x00C0) 458 * bits that matter: ^^^ (0x00E0) 459 * value of those: 0b0000000011000000 (0x00C0) 460 */ 461 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 462 hdrlen = 10; 463 else 464 hdrlen = 16; 465 } 466 out: 467 return hdrlen; 468 } 469 EXPORT_SYMBOL(ieee80211_hdrlen); 470 471 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 472 { 473 const struct ieee80211_hdr *hdr = 474 (const struct ieee80211_hdr *)skb->data; 475 unsigned int hdrlen; 476 477 if (unlikely(skb->len < 10)) 478 return 0; 479 hdrlen = ieee80211_hdrlen(hdr->frame_control); 480 if (unlikely(hdrlen > skb->len)) 481 return 0; 482 return hdrlen; 483 } 484 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 485 486 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 487 { 488 int ae = flags & MESH_FLAGS_AE; 489 /* 802.11-2012, 8.2.4.7.3 */ 490 switch (ae) { 491 default: 492 case 0: 493 return 6; 494 case MESH_FLAGS_AE_A4: 495 return 12; 496 case MESH_FLAGS_AE_A5_A6: 497 return 18; 498 } 499 } 500 501 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 502 { 503 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 504 } 505 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 506 507 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 508 const u8 *addr, enum nl80211_iftype iftype, 509 u8 data_offset) 510 { 511 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 512 struct { 513 u8 hdr[ETH_ALEN] __aligned(2); 514 __be16 proto; 515 } payload; 516 struct ethhdr tmp; 517 u16 hdrlen; 518 u8 mesh_flags = 0; 519 520 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 521 return -1; 522 523 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; 524 if (skb->len < hdrlen + 8) 525 return -1; 526 527 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 528 * header 529 * IEEE 802.11 address fields: 530 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 531 * 0 0 DA SA BSSID n/a 532 * 0 1 DA BSSID SA n/a 533 * 1 0 BSSID SA DA n/a 534 * 1 1 RA TA DA SA 535 */ 536 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 537 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 538 539 if (iftype == NL80211_IFTYPE_MESH_POINT) 540 skb_copy_bits(skb, hdrlen, &mesh_flags, 1); 541 542 mesh_flags &= MESH_FLAGS_AE; 543 544 switch (hdr->frame_control & 545 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 546 case cpu_to_le16(IEEE80211_FCTL_TODS): 547 if (unlikely(iftype != NL80211_IFTYPE_AP && 548 iftype != NL80211_IFTYPE_AP_VLAN && 549 iftype != NL80211_IFTYPE_P2P_GO)) 550 return -1; 551 break; 552 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 553 if (unlikely(iftype != NL80211_IFTYPE_WDS && 554 iftype != NL80211_IFTYPE_MESH_POINT && 555 iftype != NL80211_IFTYPE_AP_VLAN && 556 iftype != NL80211_IFTYPE_STATION)) 557 return -1; 558 if (iftype == NL80211_IFTYPE_MESH_POINT) { 559 if (mesh_flags == MESH_FLAGS_AE_A4) 560 return -1; 561 if (mesh_flags == MESH_FLAGS_AE_A5_A6) { 562 skb_copy_bits(skb, hdrlen + 563 offsetof(struct ieee80211s_hdr, eaddr1), 564 tmp.h_dest, 2 * ETH_ALEN); 565 } 566 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 567 } 568 break; 569 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 570 if ((iftype != NL80211_IFTYPE_STATION && 571 iftype != NL80211_IFTYPE_P2P_CLIENT && 572 iftype != NL80211_IFTYPE_MESH_POINT) || 573 (is_multicast_ether_addr(tmp.h_dest) && 574 ether_addr_equal(tmp.h_source, addr))) 575 return -1; 576 if (iftype == NL80211_IFTYPE_MESH_POINT) { 577 if (mesh_flags == MESH_FLAGS_AE_A5_A6) 578 return -1; 579 if (mesh_flags == MESH_FLAGS_AE_A4) 580 skb_copy_bits(skb, hdrlen + 581 offsetof(struct ieee80211s_hdr, eaddr1), 582 tmp.h_source, ETH_ALEN); 583 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 584 } 585 break; 586 case cpu_to_le16(0): 587 if (iftype != NL80211_IFTYPE_ADHOC && 588 iftype != NL80211_IFTYPE_STATION && 589 iftype != NL80211_IFTYPE_OCB) 590 return -1; 591 break; 592 } 593 594 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)); 595 tmp.h_proto = payload.proto; 596 597 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) && 598 tmp.h_proto != htons(ETH_P_AARP) && 599 tmp.h_proto != htons(ETH_P_IPX)) || 600 ether_addr_equal(payload.hdr, bridge_tunnel_header))) 601 /* remove RFC1042 or Bridge-Tunnel encapsulation and 602 * replace EtherType */ 603 hdrlen += ETH_ALEN + 2; 604 else 605 tmp.h_proto = htons(skb->len - hdrlen); 606 607 pskb_pull(skb, hdrlen); 608 609 if (!ehdr) 610 ehdr = skb_push(skb, sizeof(struct ethhdr)); 611 memcpy(ehdr, &tmp, sizeof(tmp)); 612 613 return 0; 614 } 615 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 616 617 static void 618 __frame_add_frag(struct sk_buff *skb, struct page *page, 619 void *ptr, int len, int size) 620 { 621 struct skb_shared_info *sh = skb_shinfo(skb); 622 int page_offset; 623 624 get_page(page); 625 page_offset = ptr - page_address(page); 626 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 627 } 628 629 static void 630 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 631 int offset, int len) 632 { 633 struct skb_shared_info *sh = skb_shinfo(skb); 634 const skb_frag_t *frag = &sh->frags[0]; 635 struct page *frag_page; 636 void *frag_ptr; 637 int frag_len, frag_size; 638 int head_size = skb->len - skb->data_len; 639 int cur_len; 640 641 frag_page = virt_to_head_page(skb->head); 642 frag_ptr = skb->data; 643 frag_size = head_size; 644 645 while (offset >= frag_size) { 646 offset -= frag_size; 647 frag_page = skb_frag_page(frag); 648 frag_ptr = skb_frag_address(frag); 649 frag_size = skb_frag_size(frag); 650 frag++; 651 } 652 653 frag_ptr += offset; 654 frag_len = frag_size - offset; 655 656 cur_len = min(len, frag_len); 657 658 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 659 len -= cur_len; 660 661 while (len > 0) { 662 frag_len = skb_frag_size(frag); 663 cur_len = min(len, frag_len); 664 __frame_add_frag(frame, skb_frag_page(frag), 665 skb_frag_address(frag), cur_len, frag_len); 666 len -= cur_len; 667 frag++; 668 } 669 } 670 671 static struct sk_buff * 672 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 673 int offset, int len, bool reuse_frag) 674 { 675 struct sk_buff *frame; 676 int cur_len = len; 677 678 if (skb->len - offset < len) 679 return NULL; 680 681 /* 682 * When reusing framents, copy some data to the head to simplify 683 * ethernet header handling and speed up protocol header processing 684 * in the stack later. 685 */ 686 if (reuse_frag) 687 cur_len = min_t(int, len, 32); 688 689 /* 690 * Allocate and reserve two bytes more for payload 691 * alignment since sizeof(struct ethhdr) is 14. 692 */ 693 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 694 if (!frame) 695 return NULL; 696 697 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 698 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 699 700 len -= cur_len; 701 if (!len) 702 return frame; 703 704 offset += cur_len; 705 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 706 707 return frame; 708 } 709 710 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 711 const u8 *addr, enum nl80211_iftype iftype, 712 const unsigned int extra_headroom, 713 const u8 *check_da, const u8 *check_sa) 714 { 715 unsigned int hlen = ALIGN(extra_headroom, 4); 716 struct sk_buff *frame = NULL; 717 u16 ethertype; 718 u8 *payload; 719 int offset = 0, remaining; 720 struct ethhdr eth; 721 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 722 bool reuse_skb = false; 723 bool last = false; 724 725 while (!last) { 726 unsigned int subframe_len; 727 int len; 728 u8 padding; 729 730 skb_copy_bits(skb, offset, ð, sizeof(eth)); 731 len = ntohs(eth.h_proto); 732 subframe_len = sizeof(struct ethhdr) + len; 733 padding = (4 - subframe_len) & 0x3; 734 735 /* the last MSDU has no padding */ 736 remaining = skb->len - offset; 737 if (subframe_len > remaining) 738 goto purge; 739 740 offset += sizeof(struct ethhdr); 741 last = remaining <= subframe_len + padding; 742 743 /* FIXME: should we really accept multicast DA? */ 744 if ((check_da && !is_multicast_ether_addr(eth.h_dest) && 745 !ether_addr_equal(check_da, eth.h_dest)) || 746 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) { 747 offset += len + padding; 748 continue; 749 } 750 751 /* reuse skb for the last subframe */ 752 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 753 skb_pull(skb, offset); 754 frame = skb; 755 reuse_skb = true; 756 } else { 757 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 758 reuse_frag); 759 if (!frame) 760 goto purge; 761 762 offset += len + padding; 763 } 764 765 skb_reset_network_header(frame); 766 frame->dev = skb->dev; 767 frame->priority = skb->priority; 768 769 payload = frame->data; 770 ethertype = (payload[6] << 8) | payload[7]; 771 if (likely((ether_addr_equal(payload, rfc1042_header) && 772 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 773 ether_addr_equal(payload, bridge_tunnel_header))) { 774 eth.h_proto = htons(ethertype); 775 skb_pull(frame, ETH_ALEN + 2); 776 } 777 778 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth)); 779 __skb_queue_tail(list, frame); 780 } 781 782 if (!reuse_skb) 783 dev_kfree_skb(skb); 784 785 return; 786 787 purge: 788 __skb_queue_purge(list); 789 dev_kfree_skb(skb); 790 } 791 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 792 793 /* Given a data frame determine the 802.1p/1d tag to use. */ 794 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 795 struct cfg80211_qos_map *qos_map) 796 { 797 unsigned int dscp; 798 unsigned char vlan_priority; 799 unsigned int ret; 800 801 /* skb->priority values from 256->263 are magic values to 802 * directly indicate a specific 802.1d priority. This is used 803 * to allow 802.1d priority to be passed directly in from VLAN 804 * tags, etc. 805 */ 806 if (skb->priority >= 256 && skb->priority <= 263) { 807 ret = skb->priority - 256; 808 goto out; 809 } 810 811 if (skb_vlan_tag_present(skb)) { 812 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 813 >> VLAN_PRIO_SHIFT; 814 if (vlan_priority > 0) { 815 ret = vlan_priority; 816 goto out; 817 } 818 } 819 820 switch (skb->protocol) { 821 case htons(ETH_P_IP): 822 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 823 break; 824 case htons(ETH_P_IPV6): 825 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 826 break; 827 case htons(ETH_P_MPLS_UC): 828 case htons(ETH_P_MPLS_MC): { 829 struct mpls_label mpls_tmp, *mpls; 830 831 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 832 sizeof(*mpls), &mpls_tmp); 833 if (!mpls) 834 return 0; 835 836 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 837 >> MPLS_LS_TC_SHIFT; 838 goto out; 839 } 840 case htons(ETH_P_80221): 841 /* 802.21 is always network control traffic */ 842 return 7; 843 default: 844 return 0; 845 } 846 847 if (qos_map) { 848 unsigned int i, tmp_dscp = dscp >> 2; 849 850 for (i = 0; i < qos_map->num_des; i++) { 851 if (tmp_dscp == qos_map->dscp_exception[i].dscp) { 852 ret = qos_map->dscp_exception[i].up; 853 goto out; 854 } 855 } 856 857 for (i = 0; i < 8; i++) { 858 if (tmp_dscp >= qos_map->up[i].low && 859 tmp_dscp <= qos_map->up[i].high) { 860 ret = i; 861 goto out; 862 } 863 } 864 } 865 866 ret = dscp >> 5; 867 out: 868 return array_index_nospec(ret, IEEE80211_NUM_TIDS); 869 } 870 EXPORT_SYMBOL(cfg80211_classify8021d); 871 872 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id) 873 { 874 const struct cfg80211_bss_ies *ies; 875 876 ies = rcu_dereference(bss->ies); 877 if (!ies) 878 return NULL; 879 880 return cfg80211_find_elem(id, ies->data, ies->len); 881 } 882 EXPORT_SYMBOL(ieee80211_bss_get_elem); 883 884 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 885 { 886 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 887 struct net_device *dev = wdev->netdev; 888 int i; 889 890 if (!wdev->connect_keys) 891 return; 892 893 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) { 894 if (!wdev->connect_keys->params[i].cipher) 895 continue; 896 if (rdev_add_key(rdev, dev, i, false, NULL, 897 &wdev->connect_keys->params[i])) { 898 netdev_err(dev, "failed to set key %d\n", i); 899 continue; 900 } 901 if (wdev->connect_keys->def == i && 902 rdev_set_default_key(rdev, dev, i, true, true)) { 903 netdev_err(dev, "failed to set defkey %d\n", i); 904 continue; 905 } 906 } 907 908 kfree_sensitive(wdev->connect_keys); 909 wdev->connect_keys = NULL; 910 } 911 912 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 913 { 914 struct cfg80211_event *ev; 915 unsigned long flags; 916 917 spin_lock_irqsave(&wdev->event_lock, flags); 918 while (!list_empty(&wdev->event_list)) { 919 ev = list_first_entry(&wdev->event_list, 920 struct cfg80211_event, list); 921 list_del(&ev->list); 922 spin_unlock_irqrestore(&wdev->event_lock, flags); 923 924 wdev_lock(wdev); 925 switch (ev->type) { 926 case EVENT_CONNECT_RESULT: 927 __cfg80211_connect_result( 928 wdev->netdev, 929 &ev->cr, 930 ev->cr.status == WLAN_STATUS_SUCCESS); 931 break; 932 case EVENT_ROAMED: 933 __cfg80211_roamed(wdev, &ev->rm); 934 break; 935 case EVENT_DISCONNECTED: 936 __cfg80211_disconnected(wdev->netdev, 937 ev->dc.ie, ev->dc.ie_len, 938 ev->dc.reason, 939 !ev->dc.locally_generated); 940 break; 941 case EVENT_IBSS_JOINED: 942 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 943 ev->ij.channel); 944 break; 945 case EVENT_STOPPED: 946 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 947 break; 948 case EVENT_PORT_AUTHORIZED: 949 __cfg80211_port_authorized(wdev, ev->pa.bssid); 950 break; 951 } 952 wdev_unlock(wdev); 953 954 kfree(ev); 955 956 spin_lock_irqsave(&wdev->event_lock, flags); 957 } 958 spin_unlock_irqrestore(&wdev->event_lock, flags); 959 } 960 961 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 962 { 963 struct wireless_dev *wdev; 964 965 ASSERT_RTNL(); 966 967 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 968 cfg80211_process_wdev_events(wdev); 969 } 970 971 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 972 struct net_device *dev, enum nl80211_iftype ntype, 973 struct vif_params *params) 974 { 975 int err; 976 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 977 978 ASSERT_RTNL(); 979 980 /* don't support changing VLANs, you just re-create them */ 981 if (otype == NL80211_IFTYPE_AP_VLAN) 982 return -EOPNOTSUPP; 983 984 /* cannot change into P2P device or NAN */ 985 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 986 ntype == NL80211_IFTYPE_NAN) 987 return -EOPNOTSUPP; 988 989 if (!rdev->ops->change_virtual_intf || 990 !(rdev->wiphy.interface_modes & (1 << ntype))) 991 return -EOPNOTSUPP; 992 993 /* if it's part of a bridge, reject changing type to station/ibss */ 994 if (netif_is_bridge_port(dev) && 995 (ntype == NL80211_IFTYPE_ADHOC || 996 ntype == NL80211_IFTYPE_STATION || 997 ntype == NL80211_IFTYPE_P2P_CLIENT)) 998 return -EBUSY; 999 1000 if (ntype != otype) { 1001 dev->ieee80211_ptr->use_4addr = false; 1002 dev->ieee80211_ptr->mesh_id_up_len = 0; 1003 wdev_lock(dev->ieee80211_ptr); 1004 rdev_set_qos_map(rdev, dev, NULL); 1005 wdev_unlock(dev->ieee80211_ptr); 1006 1007 switch (otype) { 1008 case NL80211_IFTYPE_AP: 1009 cfg80211_stop_ap(rdev, dev, true); 1010 break; 1011 case NL80211_IFTYPE_ADHOC: 1012 cfg80211_leave_ibss(rdev, dev, false); 1013 break; 1014 case NL80211_IFTYPE_STATION: 1015 case NL80211_IFTYPE_P2P_CLIENT: 1016 wdev_lock(dev->ieee80211_ptr); 1017 cfg80211_disconnect(rdev, dev, 1018 WLAN_REASON_DEAUTH_LEAVING, true); 1019 wdev_unlock(dev->ieee80211_ptr); 1020 break; 1021 case NL80211_IFTYPE_MESH_POINT: 1022 /* mesh should be handled? */ 1023 break; 1024 default: 1025 break; 1026 } 1027 1028 cfg80211_process_rdev_events(rdev); 1029 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr); 1030 } 1031 1032 err = rdev_change_virtual_intf(rdev, dev, ntype, params); 1033 1034 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 1035 1036 if (!err && params && params->use_4addr != -1) 1037 dev->ieee80211_ptr->use_4addr = params->use_4addr; 1038 1039 if (!err) { 1040 dev->priv_flags &= ~IFF_DONT_BRIDGE; 1041 switch (ntype) { 1042 case NL80211_IFTYPE_STATION: 1043 if (dev->ieee80211_ptr->use_4addr) 1044 break; 1045 fallthrough; 1046 case NL80211_IFTYPE_OCB: 1047 case NL80211_IFTYPE_P2P_CLIENT: 1048 case NL80211_IFTYPE_ADHOC: 1049 dev->priv_flags |= IFF_DONT_BRIDGE; 1050 break; 1051 case NL80211_IFTYPE_P2P_GO: 1052 case NL80211_IFTYPE_AP: 1053 case NL80211_IFTYPE_AP_VLAN: 1054 case NL80211_IFTYPE_WDS: 1055 case NL80211_IFTYPE_MESH_POINT: 1056 /* bridging OK */ 1057 break; 1058 case NL80211_IFTYPE_MONITOR: 1059 /* monitor can't bridge anyway */ 1060 break; 1061 case NL80211_IFTYPE_UNSPECIFIED: 1062 case NUM_NL80211_IFTYPES: 1063 /* not happening */ 1064 break; 1065 case NL80211_IFTYPE_P2P_DEVICE: 1066 case NL80211_IFTYPE_NAN: 1067 WARN_ON(1); 1068 break; 1069 } 1070 } 1071 1072 if (!err && ntype != otype && netif_running(dev)) { 1073 cfg80211_update_iface_num(rdev, ntype, 1); 1074 cfg80211_update_iface_num(rdev, otype, -1); 1075 } 1076 1077 return err; 1078 } 1079 1080 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) 1081 { 1082 int modulation, streams, bitrate; 1083 1084 /* the formula below does only work for MCS values smaller than 32 */ 1085 if (WARN_ON_ONCE(rate->mcs >= 32)) 1086 return 0; 1087 1088 modulation = rate->mcs & 7; 1089 streams = (rate->mcs >> 3) + 1; 1090 1091 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1092 1093 if (modulation < 4) 1094 bitrate *= (modulation + 1); 1095 else if (modulation == 4) 1096 bitrate *= (modulation + 2); 1097 else 1098 bitrate *= (modulation + 3); 1099 1100 bitrate *= streams; 1101 1102 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1103 bitrate = (bitrate / 9) * 10; 1104 1105 /* do NOT round down here */ 1106 return (bitrate + 50000) / 100000; 1107 } 1108 1109 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate) 1110 { 1111 static const u32 __mcs2bitrate[] = { 1112 /* control PHY */ 1113 [0] = 275, 1114 /* SC PHY */ 1115 [1] = 3850, 1116 [2] = 7700, 1117 [3] = 9625, 1118 [4] = 11550, 1119 [5] = 12512, /* 1251.25 mbps */ 1120 [6] = 15400, 1121 [7] = 19250, 1122 [8] = 23100, 1123 [9] = 25025, 1124 [10] = 30800, 1125 [11] = 38500, 1126 [12] = 46200, 1127 /* OFDM PHY */ 1128 [13] = 6930, 1129 [14] = 8662, /* 866.25 mbps */ 1130 [15] = 13860, 1131 [16] = 17325, 1132 [17] = 20790, 1133 [18] = 27720, 1134 [19] = 34650, 1135 [20] = 41580, 1136 [21] = 45045, 1137 [22] = 51975, 1138 [23] = 62370, 1139 [24] = 67568, /* 6756.75 mbps */ 1140 /* LP-SC PHY */ 1141 [25] = 6260, 1142 [26] = 8340, 1143 [27] = 11120, 1144 [28] = 12510, 1145 [29] = 16680, 1146 [30] = 22240, 1147 [31] = 25030, 1148 }; 1149 1150 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1151 return 0; 1152 1153 return __mcs2bitrate[rate->mcs]; 1154 } 1155 1156 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate) 1157 { 1158 static const u32 __mcs2bitrate[] = { 1159 /* control PHY */ 1160 [0] = 275, 1161 /* SC PHY */ 1162 [1] = 3850, 1163 [2] = 7700, 1164 [3] = 9625, 1165 [4] = 11550, 1166 [5] = 12512, /* 1251.25 mbps */ 1167 [6] = 13475, 1168 [7] = 15400, 1169 [8] = 19250, 1170 [9] = 23100, 1171 [10] = 25025, 1172 [11] = 26950, 1173 [12] = 30800, 1174 [13] = 38500, 1175 [14] = 46200, 1176 [15] = 50050, 1177 [16] = 53900, 1178 [17] = 57750, 1179 [18] = 69300, 1180 [19] = 75075, 1181 [20] = 80850, 1182 }; 1183 1184 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1185 return 0; 1186 1187 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch; 1188 } 1189 1190 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1191 { 1192 static const u32 base[4][10] = { 1193 { 6500000, 1194 13000000, 1195 19500000, 1196 26000000, 1197 39000000, 1198 52000000, 1199 58500000, 1200 65000000, 1201 78000000, 1202 /* not in the spec, but some devices use this: */ 1203 86500000, 1204 }, 1205 { 13500000, 1206 27000000, 1207 40500000, 1208 54000000, 1209 81000000, 1210 108000000, 1211 121500000, 1212 135000000, 1213 162000000, 1214 180000000, 1215 }, 1216 { 29300000, 1217 58500000, 1218 87800000, 1219 117000000, 1220 175500000, 1221 234000000, 1222 263300000, 1223 292500000, 1224 351000000, 1225 390000000, 1226 }, 1227 { 58500000, 1228 117000000, 1229 175500000, 1230 234000000, 1231 351000000, 1232 468000000, 1233 526500000, 1234 585000000, 1235 702000000, 1236 780000000, 1237 }, 1238 }; 1239 u32 bitrate; 1240 int idx; 1241 1242 if (rate->mcs > 9) 1243 goto warn; 1244 1245 switch (rate->bw) { 1246 case RATE_INFO_BW_160: 1247 idx = 3; 1248 break; 1249 case RATE_INFO_BW_80: 1250 idx = 2; 1251 break; 1252 case RATE_INFO_BW_40: 1253 idx = 1; 1254 break; 1255 case RATE_INFO_BW_5: 1256 case RATE_INFO_BW_10: 1257 default: 1258 goto warn; 1259 case RATE_INFO_BW_20: 1260 idx = 0; 1261 } 1262 1263 bitrate = base[idx][rate->mcs]; 1264 bitrate *= rate->nss; 1265 1266 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1267 bitrate = (bitrate / 9) * 10; 1268 1269 /* do NOT round down here */ 1270 return (bitrate + 50000) / 100000; 1271 warn: 1272 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1273 rate->bw, rate->mcs, rate->nss); 1274 return 0; 1275 } 1276 1277 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) 1278 { 1279 #define SCALE 2048 1280 u16 mcs_divisors[12] = { 1281 34133, /* 16.666666... */ 1282 17067, /* 8.333333... */ 1283 11378, /* 5.555555... */ 1284 8533, /* 4.166666... */ 1285 5689, /* 2.777777... */ 1286 4267, /* 2.083333... */ 1287 3923, /* 1.851851... */ 1288 3413, /* 1.666666... */ 1289 2844, /* 1.388888... */ 1290 2560, /* 1.250000... */ 1291 2276, /* 1.111111... */ 1292 2048, /* 1.000000... */ 1293 }; 1294 u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; 1295 u32 rates_969[3] = { 480388888, 453700000, 408333333 }; 1296 u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1297 u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1298 u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1299 u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1300 u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1301 u64 tmp; 1302 u32 result; 1303 1304 if (WARN_ON_ONCE(rate->mcs > 11)) 1305 return 0; 1306 1307 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) 1308 return 0; 1309 if (WARN_ON_ONCE(rate->he_ru_alloc > 1310 NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1311 return 0; 1312 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1313 return 0; 1314 1315 if (rate->bw == RATE_INFO_BW_160) 1316 result = rates_160M[rate->he_gi]; 1317 else if (rate->bw == RATE_INFO_BW_80 || 1318 (rate->bw == RATE_INFO_BW_HE_RU && 1319 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) 1320 result = rates_969[rate->he_gi]; 1321 else if (rate->bw == RATE_INFO_BW_40 || 1322 (rate->bw == RATE_INFO_BW_HE_RU && 1323 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) 1324 result = rates_484[rate->he_gi]; 1325 else if (rate->bw == RATE_INFO_BW_20 || 1326 (rate->bw == RATE_INFO_BW_HE_RU && 1327 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) 1328 result = rates_242[rate->he_gi]; 1329 else if (rate->bw == RATE_INFO_BW_HE_RU && 1330 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) 1331 result = rates_106[rate->he_gi]; 1332 else if (rate->bw == RATE_INFO_BW_HE_RU && 1333 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) 1334 result = rates_52[rate->he_gi]; 1335 else if (rate->bw == RATE_INFO_BW_HE_RU && 1336 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) 1337 result = rates_26[rate->he_gi]; 1338 else { 1339 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", 1340 rate->bw, rate->he_ru_alloc); 1341 return 0; 1342 } 1343 1344 /* now scale to the appropriate MCS */ 1345 tmp = result; 1346 tmp *= SCALE; 1347 do_div(tmp, mcs_divisors[rate->mcs]); 1348 result = tmp; 1349 1350 /* and take NSS, DCM into account */ 1351 result = (result * rate->nss) / 8; 1352 if (rate->he_dcm) 1353 result /= 2; 1354 1355 return result / 10000; 1356 } 1357 1358 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1359 { 1360 if (rate->flags & RATE_INFO_FLAGS_MCS) 1361 return cfg80211_calculate_bitrate_ht(rate); 1362 if (rate->flags & RATE_INFO_FLAGS_DMG) 1363 return cfg80211_calculate_bitrate_dmg(rate); 1364 if (rate->flags & RATE_INFO_FLAGS_EDMG) 1365 return cfg80211_calculate_bitrate_edmg(rate); 1366 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1367 return cfg80211_calculate_bitrate_vht(rate); 1368 if (rate->flags & RATE_INFO_FLAGS_HE_MCS) 1369 return cfg80211_calculate_bitrate_he(rate); 1370 1371 return rate->legacy; 1372 } 1373 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1374 1375 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1376 enum ieee80211_p2p_attr_id attr, 1377 u8 *buf, unsigned int bufsize) 1378 { 1379 u8 *out = buf; 1380 u16 attr_remaining = 0; 1381 bool desired_attr = false; 1382 u16 desired_len = 0; 1383 1384 while (len > 0) { 1385 unsigned int iedatalen; 1386 unsigned int copy; 1387 const u8 *iedata; 1388 1389 if (len < 2) 1390 return -EILSEQ; 1391 iedatalen = ies[1]; 1392 if (iedatalen + 2 > len) 1393 return -EILSEQ; 1394 1395 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1396 goto cont; 1397 1398 if (iedatalen < 4) 1399 goto cont; 1400 1401 iedata = ies + 2; 1402 1403 /* check WFA OUI, P2P subtype */ 1404 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1405 iedata[2] != 0x9a || iedata[3] != 0x09) 1406 goto cont; 1407 1408 iedatalen -= 4; 1409 iedata += 4; 1410 1411 /* check attribute continuation into this IE */ 1412 copy = min_t(unsigned int, attr_remaining, iedatalen); 1413 if (copy && desired_attr) { 1414 desired_len += copy; 1415 if (out) { 1416 memcpy(out, iedata, min(bufsize, copy)); 1417 out += min(bufsize, copy); 1418 bufsize -= min(bufsize, copy); 1419 } 1420 1421 1422 if (copy == attr_remaining) 1423 return desired_len; 1424 } 1425 1426 attr_remaining -= copy; 1427 if (attr_remaining) 1428 goto cont; 1429 1430 iedatalen -= copy; 1431 iedata += copy; 1432 1433 while (iedatalen > 0) { 1434 u16 attr_len; 1435 1436 /* P2P attribute ID & size must fit */ 1437 if (iedatalen < 3) 1438 return -EILSEQ; 1439 desired_attr = iedata[0] == attr; 1440 attr_len = get_unaligned_le16(iedata + 1); 1441 iedatalen -= 3; 1442 iedata += 3; 1443 1444 copy = min_t(unsigned int, attr_len, iedatalen); 1445 1446 if (desired_attr) { 1447 desired_len += copy; 1448 if (out) { 1449 memcpy(out, iedata, min(bufsize, copy)); 1450 out += min(bufsize, copy); 1451 bufsize -= min(bufsize, copy); 1452 } 1453 1454 if (copy == attr_len) 1455 return desired_len; 1456 } 1457 1458 iedata += copy; 1459 iedatalen -= copy; 1460 attr_remaining = attr_len - copy; 1461 } 1462 1463 cont: 1464 len -= ies[1] + 2; 1465 ies += ies[1] + 2; 1466 } 1467 1468 if (attr_remaining && desired_attr) 1469 return -EILSEQ; 1470 1471 return -ENOENT; 1472 } 1473 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1474 1475 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) 1476 { 1477 int i; 1478 1479 /* Make sure array values are legal */ 1480 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) 1481 return false; 1482 1483 i = 0; 1484 while (i < n_ids) { 1485 if (ids[i] == WLAN_EID_EXTENSION) { 1486 if (id_ext && (ids[i + 1] == id)) 1487 return true; 1488 1489 i += 2; 1490 continue; 1491 } 1492 1493 if (ids[i] == id && !id_ext) 1494 return true; 1495 1496 i++; 1497 } 1498 return false; 1499 } 1500 1501 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) 1502 { 1503 /* we assume a validly formed IEs buffer */ 1504 u8 len = ies[pos + 1]; 1505 1506 pos += 2 + len; 1507 1508 /* the IE itself must have 255 bytes for fragments to follow */ 1509 if (len < 255) 1510 return pos; 1511 1512 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { 1513 len = ies[pos + 1]; 1514 pos += 2 + len; 1515 } 1516 1517 return pos; 1518 } 1519 1520 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1521 const u8 *ids, int n_ids, 1522 const u8 *after_ric, int n_after_ric, 1523 size_t offset) 1524 { 1525 size_t pos = offset; 1526 1527 while (pos < ielen) { 1528 u8 ext = 0; 1529 1530 if (ies[pos] == WLAN_EID_EXTENSION) 1531 ext = 2; 1532 if ((pos + ext) >= ielen) 1533 break; 1534 1535 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], 1536 ies[pos] == WLAN_EID_EXTENSION)) 1537 break; 1538 1539 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1540 pos = skip_ie(ies, ielen, pos); 1541 1542 while (pos < ielen) { 1543 if (ies[pos] == WLAN_EID_EXTENSION) 1544 ext = 2; 1545 else 1546 ext = 0; 1547 1548 if ((pos + ext) >= ielen) 1549 break; 1550 1551 if (!ieee80211_id_in_list(after_ric, 1552 n_after_ric, 1553 ies[pos + ext], 1554 ext == 2)) 1555 pos = skip_ie(ies, ielen, pos); 1556 else 1557 break; 1558 } 1559 } else { 1560 pos = skip_ie(ies, ielen, pos); 1561 } 1562 } 1563 1564 return pos; 1565 } 1566 EXPORT_SYMBOL(ieee80211_ie_split_ric); 1567 1568 bool ieee80211_operating_class_to_band(u8 operating_class, 1569 enum nl80211_band *band) 1570 { 1571 switch (operating_class) { 1572 case 112: 1573 case 115 ... 127: 1574 case 128 ... 130: 1575 *band = NL80211_BAND_5GHZ; 1576 return true; 1577 case 131 ... 135: 1578 *band = NL80211_BAND_6GHZ; 1579 return true; 1580 case 81: 1581 case 82: 1582 case 83: 1583 case 84: 1584 *band = NL80211_BAND_2GHZ; 1585 return true; 1586 case 180: 1587 *band = NL80211_BAND_60GHZ; 1588 return true; 1589 } 1590 1591 return false; 1592 } 1593 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1594 1595 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 1596 u8 *op_class) 1597 { 1598 u8 vht_opclass; 1599 u32 freq = chandef->center_freq1; 1600 1601 if (freq >= 2412 && freq <= 2472) { 1602 if (chandef->width > NL80211_CHAN_WIDTH_40) 1603 return false; 1604 1605 /* 2.407 GHz, channels 1..13 */ 1606 if (chandef->width == NL80211_CHAN_WIDTH_40) { 1607 if (freq > chandef->chan->center_freq) 1608 *op_class = 83; /* HT40+ */ 1609 else 1610 *op_class = 84; /* HT40- */ 1611 } else { 1612 *op_class = 81; 1613 } 1614 1615 return true; 1616 } 1617 1618 if (freq == 2484) { 1619 /* channel 14 is only for IEEE 802.11b */ 1620 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT) 1621 return false; 1622 1623 *op_class = 82; /* channel 14 */ 1624 return true; 1625 } 1626 1627 switch (chandef->width) { 1628 case NL80211_CHAN_WIDTH_80: 1629 vht_opclass = 128; 1630 break; 1631 case NL80211_CHAN_WIDTH_160: 1632 vht_opclass = 129; 1633 break; 1634 case NL80211_CHAN_WIDTH_80P80: 1635 vht_opclass = 130; 1636 break; 1637 case NL80211_CHAN_WIDTH_10: 1638 case NL80211_CHAN_WIDTH_5: 1639 return false; /* unsupported for now */ 1640 default: 1641 vht_opclass = 0; 1642 break; 1643 } 1644 1645 /* 5 GHz, channels 36..48 */ 1646 if (freq >= 5180 && freq <= 5240) { 1647 if (vht_opclass) { 1648 *op_class = vht_opclass; 1649 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1650 if (freq > chandef->chan->center_freq) 1651 *op_class = 116; 1652 else 1653 *op_class = 117; 1654 } else { 1655 *op_class = 115; 1656 } 1657 1658 return true; 1659 } 1660 1661 /* 5 GHz, channels 52..64 */ 1662 if (freq >= 5260 && freq <= 5320) { 1663 if (vht_opclass) { 1664 *op_class = vht_opclass; 1665 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1666 if (freq > chandef->chan->center_freq) 1667 *op_class = 119; 1668 else 1669 *op_class = 120; 1670 } else { 1671 *op_class = 118; 1672 } 1673 1674 return true; 1675 } 1676 1677 /* 5 GHz, channels 100..144 */ 1678 if (freq >= 5500 && freq <= 5720) { 1679 if (vht_opclass) { 1680 *op_class = vht_opclass; 1681 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1682 if (freq > chandef->chan->center_freq) 1683 *op_class = 122; 1684 else 1685 *op_class = 123; 1686 } else { 1687 *op_class = 121; 1688 } 1689 1690 return true; 1691 } 1692 1693 /* 5 GHz, channels 149..169 */ 1694 if (freq >= 5745 && freq <= 5845) { 1695 if (vht_opclass) { 1696 *op_class = vht_opclass; 1697 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1698 if (freq > chandef->chan->center_freq) 1699 *op_class = 126; 1700 else 1701 *op_class = 127; 1702 } else if (freq <= 5805) { 1703 *op_class = 124; 1704 } else { 1705 *op_class = 125; 1706 } 1707 1708 return true; 1709 } 1710 1711 /* 56.16 GHz, channel 1..4 */ 1712 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { 1713 if (chandef->width >= NL80211_CHAN_WIDTH_40) 1714 return false; 1715 1716 *op_class = 180; 1717 return true; 1718 } 1719 1720 /* not supported yet */ 1721 return false; 1722 } 1723 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 1724 1725 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, 1726 u32 *beacon_int_gcd, 1727 bool *beacon_int_different) 1728 { 1729 struct wireless_dev *wdev; 1730 1731 *beacon_int_gcd = 0; 1732 *beacon_int_different = false; 1733 1734 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 1735 if (!wdev->beacon_interval) 1736 continue; 1737 1738 if (!*beacon_int_gcd) { 1739 *beacon_int_gcd = wdev->beacon_interval; 1740 continue; 1741 } 1742 1743 if (wdev->beacon_interval == *beacon_int_gcd) 1744 continue; 1745 1746 *beacon_int_different = true; 1747 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval); 1748 } 1749 1750 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { 1751 if (*beacon_int_gcd) 1752 *beacon_int_different = true; 1753 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); 1754 } 1755 } 1756 1757 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 1758 enum nl80211_iftype iftype, u32 beacon_int) 1759 { 1760 /* 1761 * This is just a basic pre-condition check; if interface combinations 1762 * are possible the driver must already be checking those with a call 1763 * to cfg80211_check_combinations(), in which case we'll validate more 1764 * through the cfg80211_calculate_bi_data() call and code in 1765 * cfg80211_iter_combinations(). 1766 */ 1767 1768 if (beacon_int < 10 || beacon_int > 10000) 1769 return -EINVAL; 1770 1771 return 0; 1772 } 1773 1774 int cfg80211_iter_combinations(struct wiphy *wiphy, 1775 struct iface_combination_params *params, 1776 void (*iter)(const struct ieee80211_iface_combination *c, 1777 void *data), 1778 void *data) 1779 { 1780 const struct ieee80211_regdomain *regdom; 1781 enum nl80211_dfs_regions region = 0; 1782 int i, j, iftype; 1783 int num_interfaces = 0; 1784 u32 used_iftypes = 0; 1785 u32 beacon_int_gcd; 1786 bool beacon_int_different; 1787 1788 /* 1789 * This is a bit strange, since the iteration used to rely only on 1790 * the data given by the driver, but here it now relies on context, 1791 * in form of the currently operating interfaces. 1792 * This is OK for all current users, and saves us from having to 1793 * push the GCD calculations into all the drivers. 1794 * In the future, this should probably rely more on data that's in 1795 * cfg80211 already - the only thing not would appear to be any new 1796 * interfaces (while being brought up) and channel/radar data. 1797 */ 1798 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, 1799 &beacon_int_gcd, &beacon_int_different); 1800 1801 if (params->radar_detect) { 1802 rcu_read_lock(); 1803 regdom = rcu_dereference(cfg80211_regdomain); 1804 if (regdom) 1805 region = regdom->dfs_region; 1806 rcu_read_unlock(); 1807 } 1808 1809 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1810 num_interfaces += params->iftype_num[iftype]; 1811 if (params->iftype_num[iftype] > 0 && 1812 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 1813 used_iftypes |= BIT(iftype); 1814 } 1815 1816 for (i = 0; i < wiphy->n_iface_combinations; i++) { 1817 const struct ieee80211_iface_combination *c; 1818 struct ieee80211_iface_limit *limits; 1819 u32 all_iftypes = 0; 1820 1821 c = &wiphy->iface_combinations[i]; 1822 1823 if (num_interfaces > c->max_interfaces) 1824 continue; 1825 if (params->num_different_channels > c->num_different_channels) 1826 continue; 1827 1828 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 1829 GFP_KERNEL); 1830 if (!limits) 1831 return -ENOMEM; 1832 1833 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1834 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 1835 continue; 1836 for (j = 0; j < c->n_limits; j++) { 1837 all_iftypes |= limits[j].types; 1838 if (!(limits[j].types & BIT(iftype))) 1839 continue; 1840 if (limits[j].max < params->iftype_num[iftype]) 1841 goto cont; 1842 limits[j].max -= params->iftype_num[iftype]; 1843 } 1844 } 1845 1846 if (params->radar_detect != 1847 (c->radar_detect_widths & params->radar_detect)) 1848 goto cont; 1849 1850 if (params->radar_detect && c->radar_detect_regions && 1851 !(c->radar_detect_regions & BIT(region))) 1852 goto cont; 1853 1854 /* Finally check that all iftypes that we're currently 1855 * using are actually part of this combination. If they 1856 * aren't then we can't use this combination and have 1857 * to continue to the next. 1858 */ 1859 if ((all_iftypes & used_iftypes) != used_iftypes) 1860 goto cont; 1861 1862 if (beacon_int_gcd) { 1863 if (c->beacon_int_min_gcd && 1864 beacon_int_gcd < c->beacon_int_min_gcd) 1865 goto cont; 1866 if (!c->beacon_int_min_gcd && beacon_int_different) 1867 goto cont; 1868 } 1869 1870 /* This combination covered all interface types and 1871 * supported the requested numbers, so we're good. 1872 */ 1873 1874 (*iter)(c, data); 1875 cont: 1876 kfree(limits); 1877 } 1878 1879 return 0; 1880 } 1881 EXPORT_SYMBOL(cfg80211_iter_combinations); 1882 1883 static void 1884 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 1885 void *data) 1886 { 1887 int *num = data; 1888 (*num)++; 1889 } 1890 1891 int cfg80211_check_combinations(struct wiphy *wiphy, 1892 struct iface_combination_params *params) 1893 { 1894 int err, num = 0; 1895 1896 err = cfg80211_iter_combinations(wiphy, params, 1897 cfg80211_iter_sum_ifcombs, &num); 1898 if (err) 1899 return err; 1900 if (num == 0) 1901 return -EBUSY; 1902 1903 return 0; 1904 } 1905 EXPORT_SYMBOL(cfg80211_check_combinations); 1906 1907 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1908 const u8 *rates, unsigned int n_rates, 1909 u32 *mask) 1910 { 1911 int i, j; 1912 1913 if (!sband) 1914 return -EINVAL; 1915 1916 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1917 return -EINVAL; 1918 1919 *mask = 0; 1920 1921 for (i = 0; i < n_rates; i++) { 1922 int rate = (rates[i] & 0x7f) * 5; 1923 bool found = false; 1924 1925 for (j = 0; j < sband->n_bitrates; j++) { 1926 if (sband->bitrates[j].bitrate == rate) { 1927 found = true; 1928 *mask |= BIT(j); 1929 break; 1930 } 1931 } 1932 if (!found) 1933 return -EINVAL; 1934 } 1935 1936 /* 1937 * mask must have at least one bit set here since we 1938 * didn't accept a 0-length rates array nor allowed 1939 * entries in the array that didn't exist 1940 */ 1941 1942 return 0; 1943 } 1944 1945 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 1946 { 1947 enum nl80211_band band; 1948 unsigned int n_channels = 0; 1949 1950 for (band = 0; band < NUM_NL80211_BANDS; band++) 1951 if (wiphy->bands[band]) 1952 n_channels += wiphy->bands[band]->n_channels; 1953 1954 return n_channels; 1955 } 1956 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 1957 1958 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 1959 struct station_info *sinfo) 1960 { 1961 struct cfg80211_registered_device *rdev; 1962 struct wireless_dev *wdev; 1963 1964 wdev = dev->ieee80211_ptr; 1965 if (!wdev) 1966 return -EOPNOTSUPP; 1967 1968 rdev = wiphy_to_rdev(wdev->wiphy); 1969 if (!rdev->ops->get_station) 1970 return -EOPNOTSUPP; 1971 1972 memset(sinfo, 0, sizeof(*sinfo)); 1973 1974 return rdev_get_station(rdev, dev, mac_addr, sinfo); 1975 } 1976 EXPORT_SYMBOL(cfg80211_get_station); 1977 1978 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 1979 { 1980 int i; 1981 1982 if (!f) 1983 return; 1984 1985 kfree(f->serv_spec_info); 1986 kfree(f->srf_bf); 1987 kfree(f->srf_macs); 1988 for (i = 0; i < f->num_rx_filters; i++) 1989 kfree(f->rx_filters[i].filter); 1990 1991 for (i = 0; i < f->num_tx_filters; i++) 1992 kfree(f->tx_filters[i].filter); 1993 1994 kfree(f->rx_filters); 1995 kfree(f->tx_filters); 1996 kfree(f); 1997 } 1998 EXPORT_SYMBOL(cfg80211_free_nan_func); 1999 2000 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, 2001 u32 center_freq_khz, u32 bw_khz) 2002 { 2003 u32 start_freq_khz, end_freq_khz; 2004 2005 start_freq_khz = center_freq_khz - (bw_khz / 2); 2006 end_freq_khz = center_freq_khz + (bw_khz / 2); 2007 2008 if (start_freq_khz >= freq_range->start_freq_khz && 2009 end_freq_khz <= freq_range->end_freq_khz) 2010 return true; 2011 2012 return false; 2013 } 2014 2015 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) 2016 { 2017 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, 2018 sizeof(*(sinfo->pertid)), 2019 gfp); 2020 if (!sinfo->pertid) 2021 return -ENOMEM; 2022 2023 return 0; 2024 } 2025 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); 2026 2027 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 2028 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 2029 const unsigned char rfc1042_header[] __aligned(2) = 2030 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 2031 EXPORT_SYMBOL(rfc1042_header); 2032 2033 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 2034 const unsigned char bridge_tunnel_header[] __aligned(2) = 2035 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 2036 EXPORT_SYMBOL(bridge_tunnel_header); 2037 2038 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ 2039 struct iapp_layer2_update { 2040 u8 da[ETH_ALEN]; /* broadcast */ 2041 u8 sa[ETH_ALEN]; /* STA addr */ 2042 __be16 len; /* 6 */ 2043 u8 dsap; /* 0 */ 2044 u8 ssap; /* 0 */ 2045 u8 control; 2046 u8 xid_info[3]; 2047 } __packed; 2048 2049 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr) 2050 { 2051 struct iapp_layer2_update *msg; 2052 struct sk_buff *skb; 2053 2054 /* Send Level 2 Update Frame to update forwarding tables in layer 2 2055 * bridge devices */ 2056 2057 skb = dev_alloc_skb(sizeof(*msg)); 2058 if (!skb) 2059 return; 2060 msg = skb_put(skb, sizeof(*msg)); 2061 2062 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) 2063 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ 2064 2065 eth_broadcast_addr(msg->da); 2066 ether_addr_copy(msg->sa, addr); 2067 msg->len = htons(6); 2068 msg->dsap = 0; 2069 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ 2070 msg->control = 0xaf; /* XID response lsb.1111F101. 2071 * F=0 (no poll command; unsolicited frame) */ 2072 msg->xid_info[0] = 0x81; /* XID format identifier */ 2073 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ 2074 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ 2075 2076 skb->dev = dev; 2077 skb->protocol = eth_type_trans(skb, dev); 2078 memset(skb->cb, 0, sizeof(skb->cb)); 2079 netif_rx_ni(skb); 2080 } 2081 EXPORT_SYMBOL(cfg80211_send_layer2_update); 2082 2083 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, 2084 enum ieee80211_vht_chanwidth bw, 2085 int mcs, bool ext_nss_bw_capable, 2086 unsigned int max_vht_nss) 2087 { 2088 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map); 2089 int ext_nss_bw; 2090 int supp_width; 2091 int i, mcs_encoding; 2092 2093 if (map == 0xffff) 2094 return 0; 2095 2096 if (WARN_ON(mcs > 9 || max_vht_nss > 8)) 2097 return 0; 2098 if (mcs <= 7) 2099 mcs_encoding = 0; 2100 else if (mcs == 8) 2101 mcs_encoding = 1; 2102 else 2103 mcs_encoding = 2; 2104 2105 if (!max_vht_nss) { 2106 /* find max_vht_nss for the given MCS */ 2107 for (i = 7; i >= 0; i--) { 2108 int supp = (map >> (2 * i)) & 3; 2109 2110 if (supp == 3) 2111 continue; 2112 2113 if (supp >= mcs_encoding) { 2114 max_vht_nss = i + 1; 2115 break; 2116 } 2117 } 2118 } 2119 2120 if (!(cap->supp_mcs.tx_mcs_map & 2121 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) 2122 return max_vht_nss; 2123 2124 ext_nss_bw = le32_get_bits(cap->vht_cap_info, 2125 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2126 supp_width = le32_get_bits(cap->vht_cap_info, 2127 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2128 2129 /* if not capable, treat ext_nss_bw as 0 */ 2130 if (!ext_nss_bw_capable) 2131 ext_nss_bw = 0; 2132 2133 /* This is invalid */ 2134 if (supp_width == 3) 2135 return 0; 2136 2137 /* This is an invalid combination so pretend nothing is supported */ 2138 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2)) 2139 return 0; 2140 2141 /* 2142 * Cover all the special cases according to IEEE 802.11-2016 2143 * Table 9-250. All other cases are either factor of 1 or not 2144 * valid/supported. 2145 */ 2146 switch (bw) { 2147 case IEEE80211_VHT_CHANWIDTH_USE_HT: 2148 case IEEE80211_VHT_CHANWIDTH_80MHZ: 2149 if ((supp_width == 1 || supp_width == 2) && 2150 ext_nss_bw == 3) 2151 return 2 * max_vht_nss; 2152 break; 2153 case IEEE80211_VHT_CHANWIDTH_160MHZ: 2154 if (supp_width == 0 && 2155 (ext_nss_bw == 1 || ext_nss_bw == 2)) 2156 return max_vht_nss / 2; 2157 if (supp_width == 0 && 2158 ext_nss_bw == 3) 2159 return (3 * max_vht_nss) / 4; 2160 if (supp_width == 1 && 2161 ext_nss_bw == 3) 2162 return 2 * max_vht_nss; 2163 break; 2164 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 2165 if (supp_width == 0 && ext_nss_bw == 1) 2166 return 0; /* not possible */ 2167 if (supp_width == 0 && 2168 ext_nss_bw == 2) 2169 return max_vht_nss / 2; 2170 if (supp_width == 0 && 2171 ext_nss_bw == 3) 2172 return (3 * max_vht_nss) / 4; 2173 if (supp_width == 1 && 2174 ext_nss_bw == 0) 2175 return 0; /* not possible */ 2176 if (supp_width == 1 && 2177 ext_nss_bw == 1) 2178 return max_vht_nss / 2; 2179 if (supp_width == 1 && 2180 ext_nss_bw == 2) 2181 return (3 * max_vht_nss) / 4; 2182 break; 2183 } 2184 2185 /* not covered or invalid combination received */ 2186 return max_vht_nss; 2187 } 2188 EXPORT_SYMBOL(ieee80211_get_vht_max_nss); 2189 2190 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype, 2191 bool is_4addr, u8 check_swif) 2192 2193 { 2194 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN; 2195 2196 switch (check_swif) { 2197 case 0: 2198 if (is_vlan && is_4addr) 2199 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2200 return wiphy->interface_modes & BIT(iftype); 2201 case 1: 2202 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan) 2203 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2204 return wiphy->software_iftypes & BIT(iftype); 2205 default: 2206 break; 2207 } 2208 2209 return false; 2210 } 2211 EXPORT_SYMBOL(cfg80211_iftype_allowed); 2212