xref: /openbmc/linux/net/wireless/util.c (revision 4f139972b489f8bc2c821aa25ac65018d92af3f7)
1 /*
2  * Wireless utility functions
3  *
4  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2013-2014  Intel Mobile Communications GmbH
6  */
7 #include <linux/export.h>
8 #include <linux/bitops.h>
9 #include <linux/etherdevice.h>
10 #include <linux/slab.h>
11 #include <net/cfg80211.h>
12 #include <net/ip.h>
13 #include <net/dsfield.h>
14 #include <linux/if_vlan.h>
15 #include <linux/mpls.h>
16 #include <linux/gcd.h>
17 #include "core.h"
18 #include "rdev-ops.h"
19 
20 
21 struct ieee80211_rate *
22 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
23 			    u32 basic_rates, int bitrate)
24 {
25 	struct ieee80211_rate *result = &sband->bitrates[0];
26 	int i;
27 
28 	for (i = 0; i < sband->n_bitrates; i++) {
29 		if (!(basic_rates & BIT(i)))
30 			continue;
31 		if (sband->bitrates[i].bitrate > bitrate)
32 			continue;
33 		result = &sband->bitrates[i];
34 	}
35 
36 	return result;
37 }
38 EXPORT_SYMBOL(ieee80211_get_response_rate);
39 
40 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
41 			      enum nl80211_bss_scan_width scan_width)
42 {
43 	struct ieee80211_rate *bitrates;
44 	u32 mandatory_rates = 0;
45 	enum ieee80211_rate_flags mandatory_flag;
46 	int i;
47 
48 	if (WARN_ON(!sband))
49 		return 1;
50 
51 	if (sband->band == NL80211_BAND_2GHZ) {
52 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
53 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
54 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
55 		else
56 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
57 	} else {
58 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
59 	}
60 
61 	bitrates = sband->bitrates;
62 	for (i = 0; i < sband->n_bitrates; i++)
63 		if (bitrates[i].flags & mandatory_flag)
64 			mandatory_rates |= BIT(i);
65 	return mandatory_rates;
66 }
67 EXPORT_SYMBOL(ieee80211_mandatory_rates);
68 
69 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
70 {
71 	/* see 802.11 17.3.8.3.2 and Annex J
72 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
73 	if (chan <= 0)
74 		return 0; /* not supported */
75 	switch (band) {
76 	case NL80211_BAND_2GHZ:
77 		if (chan == 14)
78 			return 2484;
79 		else if (chan < 14)
80 			return 2407 + chan * 5;
81 		break;
82 	case NL80211_BAND_5GHZ:
83 		if (chan >= 182 && chan <= 196)
84 			return 4000 + chan * 5;
85 		else
86 			return 5000 + chan * 5;
87 		break;
88 	case NL80211_BAND_60GHZ:
89 		if (chan < 5)
90 			return 56160 + chan * 2160;
91 		break;
92 	default:
93 		;
94 	}
95 	return 0; /* not supported */
96 }
97 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
98 
99 int ieee80211_frequency_to_channel(int freq)
100 {
101 	/* see 802.11 17.3.8.3.2 and Annex J */
102 	if (freq == 2484)
103 		return 14;
104 	else if (freq < 2484)
105 		return (freq - 2407) / 5;
106 	else if (freq >= 4910 && freq <= 4980)
107 		return (freq - 4000) / 5;
108 	else if (freq <= 45000) /* DMG band lower limit */
109 		return (freq - 5000) / 5;
110 	else if (freq >= 58320 && freq <= 64800)
111 		return (freq - 56160) / 2160;
112 	else
113 		return 0;
114 }
115 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
116 
117 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
118 {
119 	enum nl80211_band band;
120 	struct ieee80211_supported_band *sband;
121 	int i;
122 
123 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
124 		sband = wiphy->bands[band];
125 
126 		if (!sband)
127 			continue;
128 
129 		for (i = 0; i < sband->n_channels; i++) {
130 			if (sband->channels[i].center_freq == freq)
131 				return &sband->channels[i];
132 		}
133 	}
134 
135 	return NULL;
136 }
137 EXPORT_SYMBOL(ieee80211_get_channel);
138 
139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
140 {
141 	int i, want;
142 
143 	switch (sband->band) {
144 	case NL80211_BAND_5GHZ:
145 		want = 3;
146 		for (i = 0; i < sband->n_bitrates; i++) {
147 			if (sband->bitrates[i].bitrate == 60 ||
148 			    sband->bitrates[i].bitrate == 120 ||
149 			    sband->bitrates[i].bitrate == 240) {
150 				sband->bitrates[i].flags |=
151 					IEEE80211_RATE_MANDATORY_A;
152 				want--;
153 			}
154 		}
155 		WARN_ON(want);
156 		break;
157 	case NL80211_BAND_2GHZ:
158 		want = 7;
159 		for (i = 0; i < sband->n_bitrates; i++) {
160 			if (sband->bitrates[i].bitrate == 10) {
161 				sband->bitrates[i].flags |=
162 					IEEE80211_RATE_MANDATORY_B |
163 					IEEE80211_RATE_MANDATORY_G;
164 				want--;
165 			}
166 
167 			if (sband->bitrates[i].bitrate == 20 ||
168 			    sband->bitrates[i].bitrate == 55 ||
169 			    sband->bitrates[i].bitrate == 110 ||
170 			    sband->bitrates[i].bitrate == 60 ||
171 			    sband->bitrates[i].bitrate == 120 ||
172 			    sband->bitrates[i].bitrate == 240) {
173 				sband->bitrates[i].flags |=
174 					IEEE80211_RATE_MANDATORY_G;
175 				want--;
176 			}
177 
178 			if (sband->bitrates[i].bitrate != 10 &&
179 			    sband->bitrates[i].bitrate != 20 &&
180 			    sband->bitrates[i].bitrate != 55 &&
181 			    sband->bitrates[i].bitrate != 110)
182 				sband->bitrates[i].flags |=
183 					IEEE80211_RATE_ERP_G;
184 		}
185 		WARN_ON(want != 0 && want != 3 && want != 6);
186 		break;
187 	case NL80211_BAND_60GHZ:
188 		/* check for mandatory HT MCS 1..4 */
189 		WARN_ON(!sband->ht_cap.ht_supported);
190 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
191 		break;
192 	case NUM_NL80211_BANDS:
193 	default:
194 		WARN_ON(1);
195 		break;
196 	}
197 }
198 
199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
200 {
201 	enum nl80211_band band;
202 
203 	for (band = 0; band < NUM_NL80211_BANDS; band++)
204 		if (wiphy->bands[band])
205 			set_mandatory_flags_band(wiphy->bands[band]);
206 }
207 
208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
209 {
210 	int i;
211 	for (i = 0; i < wiphy->n_cipher_suites; i++)
212 		if (cipher == wiphy->cipher_suites[i])
213 			return true;
214 	return false;
215 }
216 
217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
218 				   struct key_params *params, int key_idx,
219 				   bool pairwise, const u8 *mac_addr)
220 {
221 	if (key_idx < 0 || key_idx > 5)
222 		return -EINVAL;
223 
224 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
225 		return -EINVAL;
226 
227 	if (pairwise && !mac_addr)
228 		return -EINVAL;
229 
230 	switch (params->cipher) {
231 	case WLAN_CIPHER_SUITE_TKIP:
232 	case WLAN_CIPHER_SUITE_CCMP:
233 	case WLAN_CIPHER_SUITE_CCMP_256:
234 	case WLAN_CIPHER_SUITE_GCMP:
235 	case WLAN_CIPHER_SUITE_GCMP_256:
236 		/* Disallow pairwise keys with non-zero index unless it's WEP
237 		 * or a vendor specific cipher (because current deployments use
238 		 * pairwise WEP keys with non-zero indices and for vendor
239 		 * specific ciphers this should be validated in the driver or
240 		 * hardware level - but 802.11i clearly specifies to use zero)
241 		 */
242 		if (pairwise && key_idx)
243 			return -EINVAL;
244 		break;
245 	case WLAN_CIPHER_SUITE_AES_CMAC:
246 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
247 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
248 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
249 		/* Disallow BIP (group-only) cipher as pairwise cipher */
250 		if (pairwise)
251 			return -EINVAL;
252 		if (key_idx < 4)
253 			return -EINVAL;
254 		break;
255 	case WLAN_CIPHER_SUITE_WEP40:
256 	case WLAN_CIPHER_SUITE_WEP104:
257 		if (key_idx > 3)
258 			return -EINVAL;
259 	default:
260 		break;
261 	}
262 
263 	switch (params->cipher) {
264 	case WLAN_CIPHER_SUITE_WEP40:
265 		if (params->key_len != WLAN_KEY_LEN_WEP40)
266 			return -EINVAL;
267 		break;
268 	case WLAN_CIPHER_SUITE_TKIP:
269 		if (params->key_len != WLAN_KEY_LEN_TKIP)
270 			return -EINVAL;
271 		break;
272 	case WLAN_CIPHER_SUITE_CCMP:
273 		if (params->key_len != WLAN_KEY_LEN_CCMP)
274 			return -EINVAL;
275 		break;
276 	case WLAN_CIPHER_SUITE_CCMP_256:
277 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
278 			return -EINVAL;
279 		break;
280 	case WLAN_CIPHER_SUITE_GCMP:
281 		if (params->key_len != WLAN_KEY_LEN_GCMP)
282 			return -EINVAL;
283 		break;
284 	case WLAN_CIPHER_SUITE_GCMP_256:
285 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
286 			return -EINVAL;
287 		break;
288 	case WLAN_CIPHER_SUITE_WEP104:
289 		if (params->key_len != WLAN_KEY_LEN_WEP104)
290 			return -EINVAL;
291 		break;
292 	case WLAN_CIPHER_SUITE_AES_CMAC:
293 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
294 			return -EINVAL;
295 		break;
296 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
297 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
298 			return -EINVAL;
299 		break;
300 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
301 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
302 			return -EINVAL;
303 		break;
304 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
305 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
306 			return -EINVAL;
307 		break;
308 	default:
309 		/*
310 		 * We don't know anything about this algorithm,
311 		 * allow using it -- but the driver must check
312 		 * all parameters! We still check below whether
313 		 * or not the driver supports this algorithm,
314 		 * of course.
315 		 */
316 		break;
317 	}
318 
319 	if (params->seq) {
320 		switch (params->cipher) {
321 		case WLAN_CIPHER_SUITE_WEP40:
322 		case WLAN_CIPHER_SUITE_WEP104:
323 			/* These ciphers do not use key sequence */
324 			return -EINVAL;
325 		case WLAN_CIPHER_SUITE_TKIP:
326 		case WLAN_CIPHER_SUITE_CCMP:
327 		case WLAN_CIPHER_SUITE_CCMP_256:
328 		case WLAN_CIPHER_SUITE_GCMP:
329 		case WLAN_CIPHER_SUITE_GCMP_256:
330 		case WLAN_CIPHER_SUITE_AES_CMAC:
331 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
332 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
333 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
334 			if (params->seq_len != 6)
335 				return -EINVAL;
336 			break;
337 		}
338 	}
339 
340 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
341 		return -EINVAL;
342 
343 	return 0;
344 }
345 
346 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
347 {
348 	unsigned int hdrlen = 24;
349 
350 	if (ieee80211_is_data(fc)) {
351 		if (ieee80211_has_a4(fc))
352 			hdrlen = 30;
353 		if (ieee80211_is_data_qos(fc)) {
354 			hdrlen += IEEE80211_QOS_CTL_LEN;
355 			if (ieee80211_has_order(fc))
356 				hdrlen += IEEE80211_HT_CTL_LEN;
357 		}
358 		goto out;
359 	}
360 
361 	if (ieee80211_is_mgmt(fc)) {
362 		if (ieee80211_has_order(fc))
363 			hdrlen += IEEE80211_HT_CTL_LEN;
364 		goto out;
365 	}
366 
367 	if (ieee80211_is_ctl(fc)) {
368 		/*
369 		 * ACK and CTS are 10 bytes, all others 16. To see how
370 		 * to get this condition consider
371 		 *   subtype mask:   0b0000000011110000 (0x00F0)
372 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
373 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
374 		 *   bits that matter:         ^^^      (0x00E0)
375 		 *   value of those: 0b0000000011000000 (0x00C0)
376 		 */
377 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
378 			hdrlen = 10;
379 		else
380 			hdrlen = 16;
381 	}
382 out:
383 	return hdrlen;
384 }
385 EXPORT_SYMBOL(ieee80211_hdrlen);
386 
387 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
388 {
389 	const struct ieee80211_hdr *hdr =
390 			(const struct ieee80211_hdr *)skb->data;
391 	unsigned int hdrlen;
392 
393 	if (unlikely(skb->len < 10))
394 		return 0;
395 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
396 	if (unlikely(hdrlen > skb->len))
397 		return 0;
398 	return hdrlen;
399 }
400 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
401 
402 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
403 {
404 	int ae = flags & MESH_FLAGS_AE;
405 	/* 802.11-2012, 8.2.4.7.3 */
406 	switch (ae) {
407 	default:
408 	case 0:
409 		return 6;
410 	case MESH_FLAGS_AE_A4:
411 		return 12;
412 	case MESH_FLAGS_AE_A5_A6:
413 		return 18;
414 	}
415 }
416 
417 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
418 {
419 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
420 }
421 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
422 
423 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
424 				  const u8 *addr, enum nl80211_iftype iftype)
425 {
426 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
427 	struct {
428 		u8 hdr[ETH_ALEN] __aligned(2);
429 		__be16 proto;
430 	} payload;
431 	struct ethhdr tmp;
432 	u16 hdrlen;
433 	u8 mesh_flags = 0;
434 
435 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
436 		return -1;
437 
438 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
439 	if (skb->len < hdrlen + 8)
440 		return -1;
441 
442 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
443 	 * header
444 	 * IEEE 802.11 address fields:
445 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
446 	 *   0     0   DA    SA    BSSID n/a
447 	 *   0     1   DA    BSSID SA    n/a
448 	 *   1     0   BSSID SA    DA    n/a
449 	 *   1     1   RA    TA    DA    SA
450 	 */
451 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
452 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
453 
454 	if (iftype == NL80211_IFTYPE_MESH_POINT)
455 		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
456 
457 	switch (hdr->frame_control &
458 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
459 	case cpu_to_le16(IEEE80211_FCTL_TODS):
460 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
461 			     iftype != NL80211_IFTYPE_AP_VLAN &&
462 			     iftype != NL80211_IFTYPE_P2P_GO))
463 			return -1;
464 		break;
465 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
466 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
467 			     iftype != NL80211_IFTYPE_MESH_POINT &&
468 			     iftype != NL80211_IFTYPE_AP_VLAN &&
469 			     iftype != NL80211_IFTYPE_STATION))
470 			return -1;
471 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
472 			if (mesh_flags & MESH_FLAGS_AE_A4)
473 				return -1;
474 			if (mesh_flags & MESH_FLAGS_AE_A5_A6) {
475 				skb_copy_bits(skb, hdrlen +
476 					offsetof(struct ieee80211s_hdr, eaddr1),
477 					tmp.h_dest, 2 * ETH_ALEN);
478 			}
479 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
480 		}
481 		break;
482 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
483 		if ((iftype != NL80211_IFTYPE_STATION &&
484 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
485 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
486 		    (is_multicast_ether_addr(tmp.h_dest) &&
487 		     ether_addr_equal(tmp.h_source, addr)))
488 			return -1;
489 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
490 			if (mesh_flags & MESH_FLAGS_AE_A5_A6)
491 				return -1;
492 			if (mesh_flags & MESH_FLAGS_AE_A4)
493 				skb_copy_bits(skb, hdrlen +
494 					offsetof(struct ieee80211s_hdr, eaddr1),
495 					tmp.h_source, ETH_ALEN);
496 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
497 		}
498 		break;
499 	case cpu_to_le16(0):
500 		if (iftype != NL80211_IFTYPE_ADHOC &&
501 		    iftype != NL80211_IFTYPE_STATION &&
502 		    iftype != NL80211_IFTYPE_OCB)
503 				return -1;
504 		break;
505 	}
506 
507 	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
508 	tmp.h_proto = payload.proto;
509 
510 	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
511 		    tmp.h_proto != htons(ETH_P_AARP) &&
512 		    tmp.h_proto != htons(ETH_P_IPX)) ||
513 		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
514 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
515 		 * replace EtherType */
516 		hdrlen += ETH_ALEN + 2;
517 	else
518 		tmp.h_proto = htons(skb->len - hdrlen);
519 
520 	pskb_pull(skb, hdrlen);
521 
522 	if (!ehdr)
523 		ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
524 	memcpy(ehdr, &tmp, sizeof(tmp));
525 
526 	return 0;
527 }
528 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
529 
530 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
531 			     enum nl80211_iftype iftype,
532 			     const u8 *bssid, bool qos)
533 {
534 	struct ieee80211_hdr hdr;
535 	u16 hdrlen, ethertype;
536 	__le16 fc;
537 	const u8 *encaps_data;
538 	int encaps_len, skip_header_bytes;
539 	int nh_pos, h_pos;
540 	int head_need;
541 
542 	if (unlikely(skb->len < ETH_HLEN))
543 		return -EINVAL;
544 
545 	nh_pos = skb_network_header(skb) - skb->data;
546 	h_pos = skb_transport_header(skb) - skb->data;
547 
548 	/* convert Ethernet header to proper 802.11 header (based on
549 	 * operation mode) */
550 	ethertype = (skb->data[12] << 8) | skb->data[13];
551 	fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
552 
553 	switch (iftype) {
554 	case NL80211_IFTYPE_AP:
555 	case NL80211_IFTYPE_AP_VLAN:
556 	case NL80211_IFTYPE_P2P_GO:
557 		fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
558 		/* DA BSSID SA */
559 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
560 		memcpy(hdr.addr2, addr, ETH_ALEN);
561 		memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
562 		hdrlen = 24;
563 		break;
564 	case NL80211_IFTYPE_STATION:
565 	case NL80211_IFTYPE_P2P_CLIENT:
566 		fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
567 		/* BSSID SA DA */
568 		memcpy(hdr.addr1, bssid, ETH_ALEN);
569 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
570 		memcpy(hdr.addr3, skb->data, ETH_ALEN);
571 		hdrlen = 24;
572 		break;
573 	case NL80211_IFTYPE_OCB:
574 	case NL80211_IFTYPE_ADHOC:
575 		/* DA SA BSSID */
576 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
577 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
578 		memcpy(hdr.addr3, bssid, ETH_ALEN);
579 		hdrlen = 24;
580 		break;
581 	default:
582 		return -EOPNOTSUPP;
583 	}
584 
585 	if (qos) {
586 		fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
587 		hdrlen += 2;
588 	}
589 
590 	hdr.frame_control = fc;
591 	hdr.duration_id = 0;
592 	hdr.seq_ctrl = 0;
593 
594 	skip_header_bytes = ETH_HLEN;
595 	if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
596 		encaps_data = bridge_tunnel_header;
597 		encaps_len = sizeof(bridge_tunnel_header);
598 		skip_header_bytes -= 2;
599 	} else if (ethertype >= ETH_P_802_3_MIN) {
600 		encaps_data = rfc1042_header;
601 		encaps_len = sizeof(rfc1042_header);
602 		skip_header_bytes -= 2;
603 	} else {
604 		encaps_data = NULL;
605 		encaps_len = 0;
606 	}
607 
608 	skb_pull(skb, skip_header_bytes);
609 	nh_pos -= skip_header_bytes;
610 	h_pos -= skip_header_bytes;
611 
612 	head_need = hdrlen + encaps_len - skb_headroom(skb);
613 
614 	if (head_need > 0 || skb_cloned(skb)) {
615 		head_need = max(head_need, 0);
616 		if (head_need)
617 			skb_orphan(skb);
618 
619 		if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
620 			return -ENOMEM;
621 	}
622 
623 	if (encaps_data) {
624 		memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
625 		nh_pos += encaps_len;
626 		h_pos += encaps_len;
627 	}
628 
629 	memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
630 
631 	nh_pos += hdrlen;
632 	h_pos += hdrlen;
633 
634 	/* Update skb pointers to various headers since this modified frame
635 	 * is going to go through Linux networking code that may potentially
636 	 * need things like pointer to IP header. */
637 	skb_reset_mac_header(skb);
638 	skb_set_network_header(skb, nh_pos);
639 	skb_set_transport_header(skb, h_pos);
640 
641 	return 0;
642 }
643 EXPORT_SYMBOL(ieee80211_data_from_8023);
644 
645 static void
646 __frame_add_frag(struct sk_buff *skb, struct page *page,
647 		 void *ptr, int len, int size)
648 {
649 	struct skb_shared_info *sh = skb_shinfo(skb);
650 	int page_offset;
651 
652 	page_ref_inc(page);
653 	page_offset = ptr - page_address(page);
654 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
655 }
656 
657 static void
658 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
659 			    int offset, int len)
660 {
661 	struct skb_shared_info *sh = skb_shinfo(skb);
662 	const skb_frag_t *frag = &sh->frags[-1];
663 	struct page *frag_page;
664 	void *frag_ptr;
665 	int frag_len, frag_size;
666 	int head_size = skb->len - skb->data_len;
667 	int cur_len;
668 
669 	frag_page = virt_to_head_page(skb->head);
670 	frag_ptr = skb->data;
671 	frag_size = head_size;
672 
673 	while (offset >= frag_size) {
674 		offset -= frag_size;
675 		frag++;
676 		frag_page = skb_frag_page(frag);
677 		frag_ptr = skb_frag_address(frag);
678 		frag_size = skb_frag_size(frag);
679 	}
680 
681 	frag_ptr += offset;
682 	frag_len = frag_size - offset;
683 
684 	cur_len = min(len, frag_len);
685 
686 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
687 	len -= cur_len;
688 
689 	while (len > 0) {
690 		frag++;
691 		frag_len = skb_frag_size(frag);
692 		cur_len = min(len, frag_len);
693 		__frame_add_frag(frame, skb_frag_page(frag),
694 				 skb_frag_address(frag), cur_len, frag_len);
695 		len -= cur_len;
696 	}
697 }
698 
699 static struct sk_buff *
700 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
701 		       int offset, int len, bool reuse_frag)
702 {
703 	struct sk_buff *frame;
704 	int cur_len = len;
705 
706 	if (skb->len - offset < len)
707 		return NULL;
708 
709 	/*
710 	 * When reusing framents, copy some data to the head to simplify
711 	 * ethernet header handling and speed up protocol header processing
712 	 * in the stack later.
713 	 */
714 	if (reuse_frag)
715 		cur_len = min_t(int, len, 32);
716 
717 	/*
718 	 * Allocate and reserve two bytes more for payload
719 	 * alignment since sizeof(struct ethhdr) is 14.
720 	 */
721 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
722 	if (!frame)
723 		return NULL;
724 
725 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
726 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
727 
728 	len -= cur_len;
729 	if (!len)
730 		return frame;
731 
732 	offset += cur_len;
733 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
734 
735 	return frame;
736 }
737 
738 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
739 			      const u8 *addr, enum nl80211_iftype iftype,
740 			      const unsigned int extra_headroom,
741 			      const u8 *check_da, const u8 *check_sa)
742 {
743 	unsigned int hlen = ALIGN(extra_headroom, 4);
744 	struct sk_buff *frame = NULL;
745 	u16 ethertype;
746 	u8 *payload;
747 	int offset = 0, remaining;
748 	struct ethhdr eth;
749 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
750 	bool reuse_skb = false;
751 	bool last = false;
752 
753 	while (!last) {
754 		unsigned int subframe_len;
755 		int len;
756 		u8 padding;
757 
758 		skb_copy_bits(skb, offset, &eth, sizeof(eth));
759 		len = ntohs(eth.h_proto);
760 		subframe_len = sizeof(struct ethhdr) + len;
761 		padding = (4 - subframe_len) & 0x3;
762 
763 		/* the last MSDU has no padding */
764 		remaining = skb->len - offset;
765 		if (subframe_len > remaining)
766 			goto purge;
767 
768 		offset += sizeof(struct ethhdr);
769 		last = remaining <= subframe_len + padding;
770 
771 		/* FIXME: should we really accept multicast DA? */
772 		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
773 		     !ether_addr_equal(check_da, eth.h_dest)) ||
774 		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
775 			offset += len + padding;
776 			continue;
777 		}
778 
779 		/* reuse skb for the last subframe */
780 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
781 			skb_pull(skb, offset);
782 			frame = skb;
783 			reuse_skb = true;
784 		} else {
785 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
786 						       reuse_frag);
787 			if (!frame)
788 				goto purge;
789 
790 			offset += len + padding;
791 		}
792 
793 		skb_reset_network_header(frame);
794 		frame->dev = skb->dev;
795 		frame->priority = skb->priority;
796 
797 		payload = frame->data;
798 		ethertype = (payload[6] << 8) | payload[7];
799 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
800 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
801 			   ether_addr_equal(payload, bridge_tunnel_header))) {
802 			eth.h_proto = htons(ethertype);
803 			skb_pull(frame, ETH_ALEN + 2);
804 		}
805 
806 		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
807 		__skb_queue_tail(list, frame);
808 	}
809 
810 	if (!reuse_skb)
811 		dev_kfree_skb(skb);
812 
813 	return;
814 
815  purge:
816 	__skb_queue_purge(list);
817 	dev_kfree_skb(skb);
818 }
819 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
820 
821 /* Given a data frame determine the 802.1p/1d tag to use. */
822 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
823 				    struct cfg80211_qos_map *qos_map)
824 {
825 	unsigned int dscp;
826 	unsigned char vlan_priority;
827 
828 	/* skb->priority values from 256->263 are magic values to
829 	 * directly indicate a specific 802.1d priority.  This is used
830 	 * to allow 802.1d priority to be passed directly in from VLAN
831 	 * tags, etc.
832 	 */
833 	if (skb->priority >= 256 && skb->priority <= 263)
834 		return skb->priority - 256;
835 
836 	if (skb_vlan_tag_present(skb)) {
837 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
838 			>> VLAN_PRIO_SHIFT;
839 		if (vlan_priority > 0)
840 			return vlan_priority;
841 	}
842 
843 	switch (skb->protocol) {
844 	case htons(ETH_P_IP):
845 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
846 		break;
847 	case htons(ETH_P_IPV6):
848 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
849 		break;
850 	case htons(ETH_P_MPLS_UC):
851 	case htons(ETH_P_MPLS_MC): {
852 		struct mpls_label mpls_tmp, *mpls;
853 
854 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
855 					  sizeof(*mpls), &mpls_tmp);
856 		if (!mpls)
857 			return 0;
858 
859 		return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
860 			>> MPLS_LS_TC_SHIFT;
861 	}
862 	case htons(ETH_P_80221):
863 		/* 802.21 is always network control traffic */
864 		return 7;
865 	default:
866 		return 0;
867 	}
868 
869 	if (qos_map) {
870 		unsigned int i, tmp_dscp = dscp >> 2;
871 
872 		for (i = 0; i < qos_map->num_des; i++) {
873 			if (tmp_dscp == qos_map->dscp_exception[i].dscp)
874 				return qos_map->dscp_exception[i].up;
875 		}
876 
877 		for (i = 0; i < 8; i++) {
878 			if (tmp_dscp >= qos_map->up[i].low &&
879 			    tmp_dscp <= qos_map->up[i].high)
880 				return i;
881 		}
882 	}
883 
884 	return dscp >> 5;
885 }
886 EXPORT_SYMBOL(cfg80211_classify8021d);
887 
888 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
889 {
890 	const struct cfg80211_bss_ies *ies;
891 
892 	ies = rcu_dereference(bss->ies);
893 	if (!ies)
894 		return NULL;
895 
896 	return cfg80211_find_ie(ie, ies->data, ies->len);
897 }
898 EXPORT_SYMBOL(ieee80211_bss_get_ie);
899 
900 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
901 {
902 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
903 	struct net_device *dev = wdev->netdev;
904 	int i;
905 
906 	if (!wdev->connect_keys)
907 		return;
908 
909 	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
910 		if (!wdev->connect_keys->params[i].cipher)
911 			continue;
912 		if (rdev_add_key(rdev, dev, i, false, NULL,
913 				 &wdev->connect_keys->params[i])) {
914 			netdev_err(dev, "failed to set key %d\n", i);
915 			continue;
916 		}
917 		if (wdev->connect_keys->def == i)
918 			if (rdev_set_default_key(rdev, dev, i, true, true)) {
919 				netdev_err(dev, "failed to set defkey %d\n", i);
920 				continue;
921 			}
922 	}
923 
924 	kzfree(wdev->connect_keys);
925 	wdev->connect_keys = NULL;
926 }
927 
928 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
929 {
930 	struct cfg80211_event *ev;
931 	unsigned long flags;
932 	const u8 *bssid = NULL;
933 
934 	spin_lock_irqsave(&wdev->event_lock, flags);
935 	while (!list_empty(&wdev->event_list)) {
936 		ev = list_first_entry(&wdev->event_list,
937 				      struct cfg80211_event, list);
938 		list_del(&ev->list);
939 		spin_unlock_irqrestore(&wdev->event_lock, flags);
940 
941 		wdev_lock(wdev);
942 		switch (ev->type) {
943 		case EVENT_CONNECT_RESULT:
944 			if (!is_zero_ether_addr(ev->cr.bssid))
945 				bssid = ev->cr.bssid;
946 			__cfg80211_connect_result(
947 				wdev->netdev, bssid,
948 				ev->cr.req_ie, ev->cr.req_ie_len,
949 				ev->cr.resp_ie, ev->cr.resp_ie_len,
950 				ev->cr.status,
951 				ev->cr.status == WLAN_STATUS_SUCCESS,
952 				ev->cr.bss, ev->cr.timeout_reason);
953 			break;
954 		case EVENT_ROAMED:
955 			__cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
956 					  ev->rm.req_ie_len, ev->rm.resp_ie,
957 					  ev->rm.resp_ie_len);
958 			break;
959 		case EVENT_DISCONNECTED:
960 			__cfg80211_disconnected(wdev->netdev,
961 						ev->dc.ie, ev->dc.ie_len,
962 						ev->dc.reason,
963 						!ev->dc.locally_generated);
964 			break;
965 		case EVENT_IBSS_JOINED:
966 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
967 					       ev->ij.channel);
968 			break;
969 		case EVENT_STOPPED:
970 			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
971 			break;
972 		}
973 		wdev_unlock(wdev);
974 
975 		kfree(ev);
976 
977 		spin_lock_irqsave(&wdev->event_lock, flags);
978 	}
979 	spin_unlock_irqrestore(&wdev->event_lock, flags);
980 }
981 
982 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
983 {
984 	struct wireless_dev *wdev;
985 
986 	ASSERT_RTNL();
987 
988 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
989 		cfg80211_process_wdev_events(wdev);
990 }
991 
992 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
993 			  struct net_device *dev, enum nl80211_iftype ntype,
994 			  u32 *flags, struct vif_params *params)
995 {
996 	int err;
997 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
998 
999 	ASSERT_RTNL();
1000 
1001 	/* don't support changing VLANs, you just re-create them */
1002 	if (otype == NL80211_IFTYPE_AP_VLAN)
1003 		return -EOPNOTSUPP;
1004 
1005 	/* cannot change into P2P device or NAN */
1006 	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1007 	    ntype == NL80211_IFTYPE_NAN)
1008 		return -EOPNOTSUPP;
1009 
1010 	if (!rdev->ops->change_virtual_intf ||
1011 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1012 		return -EOPNOTSUPP;
1013 
1014 	/* if it's part of a bridge, reject changing type to station/ibss */
1015 	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
1016 	    (ntype == NL80211_IFTYPE_ADHOC ||
1017 	     ntype == NL80211_IFTYPE_STATION ||
1018 	     ntype == NL80211_IFTYPE_P2P_CLIENT))
1019 		return -EBUSY;
1020 
1021 	if (ntype != otype) {
1022 		dev->ieee80211_ptr->use_4addr = false;
1023 		dev->ieee80211_ptr->mesh_id_up_len = 0;
1024 		wdev_lock(dev->ieee80211_ptr);
1025 		rdev_set_qos_map(rdev, dev, NULL);
1026 		wdev_unlock(dev->ieee80211_ptr);
1027 
1028 		switch (otype) {
1029 		case NL80211_IFTYPE_AP:
1030 			cfg80211_stop_ap(rdev, dev, true);
1031 			break;
1032 		case NL80211_IFTYPE_ADHOC:
1033 			cfg80211_leave_ibss(rdev, dev, false);
1034 			break;
1035 		case NL80211_IFTYPE_STATION:
1036 		case NL80211_IFTYPE_P2P_CLIENT:
1037 			wdev_lock(dev->ieee80211_ptr);
1038 			cfg80211_disconnect(rdev, dev,
1039 					    WLAN_REASON_DEAUTH_LEAVING, true);
1040 			wdev_unlock(dev->ieee80211_ptr);
1041 			break;
1042 		case NL80211_IFTYPE_MESH_POINT:
1043 			/* mesh should be handled? */
1044 			break;
1045 		default:
1046 			break;
1047 		}
1048 
1049 		cfg80211_process_rdev_events(rdev);
1050 	}
1051 
1052 	err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
1053 
1054 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1055 
1056 	if (!err && params && params->use_4addr != -1)
1057 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1058 
1059 	if (!err) {
1060 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1061 		switch (ntype) {
1062 		case NL80211_IFTYPE_STATION:
1063 			if (dev->ieee80211_ptr->use_4addr)
1064 				break;
1065 			/* fall through */
1066 		case NL80211_IFTYPE_OCB:
1067 		case NL80211_IFTYPE_P2P_CLIENT:
1068 		case NL80211_IFTYPE_ADHOC:
1069 			dev->priv_flags |= IFF_DONT_BRIDGE;
1070 			break;
1071 		case NL80211_IFTYPE_P2P_GO:
1072 		case NL80211_IFTYPE_AP:
1073 		case NL80211_IFTYPE_AP_VLAN:
1074 		case NL80211_IFTYPE_WDS:
1075 		case NL80211_IFTYPE_MESH_POINT:
1076 			/* bridging OK */
1077 			break;
1078 		case NL80211_IFTYPE_MONITOR:
1079 			/* monitor can't bridge anyway */
1080 			break;
1081 		case NL80211_IFTYPE_UNSPECIFIED:
1082 		case NUM_NL80211_IFTYPES:
1083 			/* not happening */
1084 			break;
1085 		case NL80211_IFTYPE_P2P_DEVICE:
1086 		case NL80211_IFTYPE_NAN:
1087 			WARN_ON(1);
1088 			break;
1089 		}
1090 	}
1091 
1092 	if (!err && ntype != otype && netif_running(dev)) {
1093 		cfg80211_update_iface_num(rdev, ntype, 1);
1094 		cfg80211_update_iface_num(rdev, otype, -1);
1095 	}
1096 
1097 	return err;
1098 }
1099 
1100 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1101 {
1102 	static const u32 __mcs2bitrate[] = {
1103 		/* control PHY */
1104 		[0] =   275,
1105 		/* SC PHY */
1106 		[1] =  3850,
1107 		[2] =  7700,
1108 		[3] =  9625,
1109 		[4] = 11550,
1110 		[5] = 12512, /* 1251.25 mbps */
1111 		[6] = 15400,
1112 		[7] = 19250,
1113 		[8] = 23100,
1114 		[9] = 25025,
1115 		[10] = 30800,
1116 		[11] = 38500,
1117 		[12] = 46200,
1118 		/* OFDM PHY */
1119 		[13] =  6930,
1120 		[14] =  8662, /* 866.25 mbps */
1121 		[15] = 13860,
1122 		[16] = 17325,
1123 		[17] = 20790,
1124 		[18] = 27720,
1125 		[19] = 34650,
1126 		[20] = 41580,
1127 		[21] = 45045,
1128 		[22] = 51975,
1129 		[23] = 62370,
1130 		[24] = 67568, /* 6756.75 mbps */
1131 		/* LP-SC PHY */
1132 		[25] =  6260,
1133 		[26] =  8340,
1134 		[27] = 11120,
1135 		[28] = 12510,
1136 		[29] = 16680,
1137 		[30] = 22240,
1138 		[31] = 25030,
1139 	};
1140 
1141 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1142 		return 0;
1143 
1144 	return __mcs2bitrate[rate->mcs];
1145 }
1146 
1147 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1148 {
1149 	static const u32 base[4][10] = {
1150 		{   6500000,
1151 		   13000000,
1152 		   19500000,
1153 		   26000000,
1154 		   39000000,
1155 		   52000000,
1156 		   58500000,
1157 		   65000000,
1158 		   78000000,
1159 		/* not in the spec, but some devices use this: */
1160 		   86500000,
1161 		},
1162 		{  13500000,
1163 		   27000000,
1164 		   40500000,
1165 		   54000000,
1166 		   81000000,
1167 		  108000000,
1168 		  121500000,
1169 		  135000000,
1170 		  162000000,
1171 		  180000000,
1172 		},
1173 		{  29300000,
1174 		   58500000,
1175 		   87800000,
1176 		  117000000,
1177 		  175500000,
1178 		  234000000,
1179 		  263300000,
1180 		  292500000,
1181 		  351000000,
1182 		  390000000,
1183 		},
1184 		{  58500000,
1185 		  117000000,
1186 		  175500000,
1187 		  234000000,
1188 		  351000000,
1189 		  468000000,
1190 		  526500000,
1191 		  585000000,
1192 		  702000000,
1193 		  780000000,
1194 		},
1195 	};
1196 	u32 bitrate;
1197 	int idx;
1198 
1199 	if (WARN_ON_ONCE(rate->mcs > 9))
1200 		return 0;
1201 
1202 	switch (rate->bw) {
1203 	case RATE_INFO_BW_160:
1204 		idx = 3;
1205 		break;
1206 	case RATE_INFO_BW_80:
1207 		idx = 2;
1208 		break;
1209 	case RATE_INFO_BW_40:
1210 		idx = 1;
1211 		break;
1212 	case RATE_INFO_BW_5:
1213 	case RATE_INFO_BW_10:
1214 	default:
1215 		WARN_ON(1);
1216 		/* fall through */
1217 	case RATE_INFO_BW_20:
1218 		idx = 0;
1219 	}
1220 
1221 	bitrate = base[idx][rate->mcs];
1222 	bitrate *= rate->nss;
1223 
1224 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1225 		bitrate = (bitrate / 9) * 10;
1226 
1227 	/* do NOT round down here */
1228 	return (bitrate + 50000) / 100000;
1229 }
1230 
1231 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1232 {
1233 	int modulation, streams, bitrate;
1234 
1235 	if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1236 	    !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1237 		return rate->legacy;
1238 	if (rate->flags & RATE_INFO_FLAGS_60G)
1239 		return cfg80211_calculate_bitrate_60g(rate);
1240 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1241 		return cfg80211_calculate_bitrate_vht(rate);
1242 
1243 	/* the formula below does only work for MCS values smaller than 32 */
1244 	if (WARN_ON_ONCE(rate->mcs >= 32))
1245 		return 0;
1246 
1247 	modulation = rate->mcs & 7;
1248 	streams = (rate->mcs >> 3) + 1;
1249 
1250 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1251 
1252 	if (modulation < 4)
1253 		bitrate *= (modulation + 1);
1254 	else if (modulation == 4)
1255 		bitrate *= (modulation + 2);
1256 	else
1257 		bitrate *= (modulation + 3);
1258 
1259 	bitrate *= streams;
1260 
1261 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1262 		bitrate = (bitrate / 9) * 10;
1263 
1264 	/* do NOT round down here */
1265 	return (bitrate + 50000) / 100000;
1266 }
1267 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1268 
1269 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1270 			  enum ieee80211_p2p_attr_id attr,
1271 			  u8 *buf, unsigned int bufsize)
1272 {
1273 	u8 *out = buf;
1274 	u16 attr_remaining = 0;
1275 	bool desired_attr = false;
1276 	u16 desired_len = 0;
1277 
1278 	while (len > 0) {
1279 		unsigned int iedatalen;
1280 		unsigned int copy;
1281 		const u8 *iedata;
1282 
1283 		if (len < 2)
1284 			return -EILSEQ;
1285 		iedatalen = ies[1];
1286 		if (iedatalen + 2 > len)
1287 			return -EILSEQ;
1288 
1289 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1290 			goto cont;
1291 
1292 		if (iedatalen < 4)
1293 			goto cont;
1294 
1295 		iedata = ies + 2;
1296 
1297 		/* check WFA OUI, P2P subtype */
1298 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1299 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1300 			goto cont;
1301 
1302 		iedatalen -= 4;
1303 		iedata += 4;
1304 
1305 		/* check attribute continuation into this IE */
1306 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1307 		if (copy && desired_attr) {
1308 			desired_len += copy;
1309 			if (out) {
1310 				memcpy(out, iedata, min(bufsize, copy));
1311 				out += min(bufsize, copy);
1312 				bufsize -= min(bufsize, copy);
1313 			}
1314 
1315 
1316 			if (copy == attr_remaining)
1317 				return desired_len;
1318 		}
1319 
1320 		attr_remaining -= copy;
1321 		if (attr_remaining)
1322 			goto cont;
1323 
1324 		iedatalen -= copy;
1325 		iedata += copy;
1326 
1327 		while (iedatalen > 0) {
1328 			u16 attr_len;
1329 
1330 			/* P2P attribute ID & size must fit */
1331 			if (iedatalen < 3)
1332 				return -EILSEQ;
1333 			desired_attr = iedata[0] == attr;
1334 			attr_len = get_unaligned_le16(iedata + 1);
1335 			iedatalen -= 3;
1336 			iedata += 3;
1337 
1338 			copy = min_t(unsigned int, attr_len, iedatalen);
1339 
1340 			if (desired_attr) {
1341 				desired_len += copy;
1342 				if (out) {
1343 					memcpy(out, iedata, min(bufsize, copy));
1344 					out += min(bufsize, copy);
1345 					bufsize -= min(bufsize, copy);
1346 				}
1347 
1348 				if (copy == attr_len)
1349 					return desired_len;
1350 			}
1351 
1352 			iedata += copy;
1353 			iedatalen -= copy;
1354 			attr_remaining = attr_len - copy;
1355 		}
1356 
1357  cont:
1358 		len -= ies[1] + 2;
1359 		ies += ies[1] + 2;
1360 	}
1361 
1362 	if (attr_remaining && desired_attr)
1363 		return -EILSEQ;
1364 
1365 	return -ENOENT;
1366 }
1367 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1368 
1369 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1370 {
1371 	int i;
1372 
1373 	for (i = 0; i < n_ids; i++)
1374 		if (ids[i] == id)
1375 			return true;
1376 	return false;
1377 }
1378 
1379 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1380 {
1381 	/* we assume a validly formed IEs buffer */
1382 	u8 len = ies[pos + 1];
1383 
1384 	pos += 2 + len;
1385 
1386 	/* the IE itself must have 255 bytes for fragments to follow */
1387 	if (len < 255)
1388 		return pos;
1389 
1390 	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1391 		len = ies[pos + 1];
1392 		pos += 2 + len;
1393 	}
1394 
1395 	return pos;
1396 }
1397 
1398 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1399 			      const u8 *ids, int n_ids,
1400 			      const u8 *after_ric, int n_after_ric,
1401 			      size_t offset)
1402 {
1403 	size_t pos = offset;
1404 
1405 	while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
1406 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1407 			pos = skip_ie(ies, ielen, pos);
1408 
1409 			while (pos < ielen &&
1410 			       !ieee80211_id_in_list(after_ric, n_after_ric,
1411 						     ies[pos]))
1412 				pos = skip_ie(ies, ielen, pos);
1413 		} else {
1414 			pos = skip_ie(ies, ielen, pos);
1415 		}
1416 	}
1417 
1418 	return pos;
1419 }
1420 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1421 
1422 bool ieee80211_operating_class_to_band(u8 operating_class,
1423 				       enum nl80211_band *band)
1424 {
1425 	switch (operating_class) {
1426 	case 112:
1427 	case 115 ... 127:
1428 	case 128 ... 130:
1429 		*band = NL80211_BAND_5GHZ;
1430 		return true;
1431 	case 81:
1432 	case 82:
1433 	case 83:
1434 	case 84:
1435 		*band = NL80211_BAND_2GHZ;
1436 		return true;
1437 	case 180:
1438 		*band = NL80211_BAND_60GHZ;
1439 		return true;
1440 	}
1441 
1442 	return false;
1443 }
1444 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1445 
1446 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1447 					  u8 *op_class)
1448 {
1449 	u8 vht_opclass;
1450 	u16 freq = chandef->center_freq1;
1451 
1452 	if (freq >= 2412 && freq <= 2472) {
1453 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1454 			return false;
1455 
1456 		/* 2.407 GHz, channels 1..13 */
1457 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1458 			if (freq > chandef->chan->center_freq)
1459 				*op_class = 83; /* HT40+ */
1460 			else
1461 				*op_class = 84; /* HT40- */
1462 		} else {
1463 			*op_class = 81;
1464 		}
1465 
1466 		return true;
1467 	}
1468 
1469 	if (freq == 2484) {
1470 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1471 			return false;
1472 
1473 		*op_class = 82; /* channel 14 */
1474 		return true;
1475 	}
1476 
1477 	switch (chandef->width) {
1478 	case NL80211_CHAN_WIDTH_80:
1479 		vht_opclass = 128;
1480 		break;
1481 	case NL80211_CHAN_WIDTH_160:
1482 		vht_opclass = 129;
1483 		break;
1484 	case NL80211_CHAN_WIDTH_80P80:
1485 		vht_opclass = 130;
1486 		break;
1487 	case NL80211_CHAN_WIDTH_10:
1488 	case NL80211_CHAN_WIDTH_5:
1489 		return false; /* unsupported for now */
1490 	default:
1491 		vht_opclass = 0;
1492 		break;
1493 	}
1494 
1495 	/* 5 GHz, channels 36..48 */
1496 	if (freq >= 5180 && freq <= 5240) {
1497 		if (vht_opclass) {
1498 			*op_class = vht_opclass;
1499 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1500 			if (freq > chandef->chan->center_freq)
1501 				*op_class = 116;
1502 			else
1503 				*op_class = 117;
1504 		} else {
1505 			*op_class = 115;
1506 		}
1507 
1508 		return true;
1509 	}
1510 
1511 	/* 5 GHz, channels 52..64 */
1512 	if (freq >= 5260 && freq <= 5320) {
1513 		if (vht_opclass) {
1514 			*op_class = vht_opclass;
1515 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1516 			if (freq > chandef->chan->center_freq)
1517 				*op_class = 119;
1518 			else
1519 				*op_class = 120;
1520 		} else {
1521 			*op_class = 118;
1522 		}
1523 
1524 		return true;
1525 	}
1526 
1527 	/* 5 GHz, channels 100..144 */
1528 	if (freq >= 5500 && freq <= 5720) {
1529 		if (vht_opclass) {
1530 			*op_class = vht_opclass;
1531 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1532 			if (freq > chandef->chan->center_freq)
1533 				*op_class = 122;
1534 			else
1535 				*op_class = 123;
1536 		} else {
1537 			*op_class = 121;
1538 		}
1539 
1540 		return true;
1541 	}
1542 
1543 	/* 5 GHz, channels 149..169 */
1544 	if (freq >= 5745 && freq <= 5845) {
1545 		if (vht_opclass) {
1546 			*op_class = vht_opclass;
1547 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1548 			if (freq > chandef->chan->center_freq)
1549 				*op_class = 126;
1550 			else
1551 				*op_class = 127;
1552 		} else if (freq <= 5805) {
1553 			*op_class = 124;
1554 		} else {
1555 			*op_class = 125;
1556 		}
1557 
1558 		return true;
1559 	}
1560 
1561 	/* 56.16 GHz, channel 1..4 */
1562 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1563 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1564 			return false;
1565 
1566 		*op_class = 180;
1567 		return true;
1568 	}
1569 
1570 	/* not supported yet */
1571 	return false;
1572 }
1573 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1574 
1575 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1576 				       u32 *beacon_int_gcd,
1577 				       bool *beacon_int_different)
1578 {
1579 	struct wireless_dev *wdev;
1580 
1581 	*beacon_int_gcd = 0;
1582 	*beacon_int_different = false;
1583 
1584 	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1585 		if (!wdev->beacon_interval)
1586 			continue;
1587 
1588 		if (!*beacon_int_gcd) {
1589 			*beacon_int_gcd = wdev->beacon_interval;
1590 			continue;
1591 		}
1592 
1593 		if (wdev->beacon_interval == *beacon_int_gcd)
1594 			continue;
1595 
1596 		*beacon_int_different = true;
1597 		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1598 	}
1599 
1600 	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1601 		if (*beacon_int_gcd)
1602 			*beacon_int_different = true;
1603 		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1604 	}
1605 }
1606 
1607 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1608 				 enum nl80211_iftype iftype, u32 beacon_int)
1609 {
1610 	/*
1611 	 * This is just a basic pre-condition check; if interface combinations
1612 	 * are possible the driver must already be checking those with a call
1613 	 * to cfg80211_check_combinations(), in which case we'll validate more
1614 	 * through the cfg80211_calculate_bi_data() call and code in
1615 	 * cfg80211_iter_combinations().
1616 	 */
1617 
1618 	if (beacon_int < 10 || beacon_int > 10000)
1619 		return -EINVAL;
1620 
1621 	return 0;
1622 }
1623 
1624 int cfg80211_iter_combinations(struct wiphy *wiphy,
1625 			       struct iface_combination_params *params,
1626 			       void (*iter)(const struct ieee80211_iface_combination *c,
1627 					    void *data),
1628 			       void *data)
1629 {
1630 	const struct ieee80211_regdomain *regdom;
1631 	enum nl80211_dfs_regions region = 0;
1632 	int i, j, iftype;
1633 	int num_interfaces = 0;
1634 	u32 used_iftypes = 0;
1635 	u32 beacon_int_gcd;
1636 	bool beacon_int_different;
1637 
1638 	/*
1639 	 * This is a bit strange, since the iteration used to rely only on
1640 	 * the data given by the driver, but here it now relies on context,
1641 	 * in form of the currently operating interfaces.
1642 	 * This is OK for all current users, and saves us from having to
1643 	 * push the GCD calculations into all the drivers.
1644 	 * In the future, this should probably rely more on data that's in
1645 	 * cfg80211 already - the only thing not would appear to be any new
1646 	 * interfaces (while being brought up) and channel/radar data.
1647 	 */
1648 	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1649 				   &beacon_int_gcd, &beacon_int_different);
1650 
1651 	if (params->radar_detect) {
1652 		rcu_read_lock();
1653 		regdom = rcu_dereference(cfg80211_regdomain);
1654 		if (regdom)
1655 			region = regdom->dfs_region;
1656 		rcu_read_unlock();
1657 	}
1658 
1659 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1660 		num_interfaces += params->iftype_num[iftype];
1661 		if (params->iftype_num[iftype] > 0 &&
1662 		    !(wiphy->software_iftypes & BIT(iftype)))
1663 			used_iftypes |= BIT(iftype);
1664 	}
1665 
1666 	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1667 		const struct ieee80211_iface_combination *c;
1668 		struct ieee80211_iface_limit *limits;
1669 		u32 all_iftypes = 0;
1670 
1671 		c = &wiphy->iface_combinations[i];
1672 
1673 		if (num_interfaces > c->max_interfaces)
1674 			continue;
1675 		if (params->num_different_channels > c->num_different_channels)
1676 			continue;
1677 
1678 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1679 				 GFP_KERNEL);
1680 		if (!limits)
1681 			return -ENOMEM;
1682 
1683 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1684 			if (wiphy->software_iftypes & BIT(iftype))
1685 				continue;
1686 			for (j = 0; j < c->n_limits; j++) {
1687 				all_iftypes |= limits[j].types;
1688 				if (!(limits[j].types & BIT(iftype)))
1689 					continue;
1690 				if (limits[j].max < params->iftype_num[iftype])
1691 					goto cont;
1692 				limits[j].max -= params->iftype_num[iftype];
1693 			}
1694 		}
1695 
1696 		if (params->radar_detect !=
1697 			(c->radar_detect_widths & params->radar_detect))
1698 			goto cont;
1699 
1700 		if (params->radar_detect && c->radar_detect_regions &&
1701 		    !(c->radar_detect_regions & BIT(region)))
1702 			goto cont;
1703 
1704 		/* Finally check that all iftypes that we're currently
1705 		 * using are actually part of this combination. If they
1706 		 * aren't then we can't use this combination and have
1707 		 * to continue to the next.
1708 		 */
1709 		if ((all_iftypes & used_iftypes) != used_iftypes)
1710 			goto cont;
1711 
1712 		if (beacon_int_gcd) {
1713 			if (c->beacon_int_min_gcd &&
1714 			    beacon_int_gcd < c->beacon_int_min_gcd)
1715 				goto cont;
1716 			if (!c->beacon_int_min_gcd && beacon_int_different)
1717 				goto cont;
1718 		}
1719 
1720 		/* This combination covered all interface types and
1721 		 * supported the requested numbers, so we're good.
1722 		 */
1723 
1724 		(*iter)(c, data);
1725  cont:
1726 		kfree(limits);
1727 	}
1728 
1729 	return 0;
1730 }
1731 EXPORT_SYMBOL(cfg80211_iter_combinations);
1732 
1733 static void
1734 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1735 			  void *data)
1736 {
1737 	int *num = data;
1738 	(*num)++;
1739 }
1740 
1741 int cfg80211_check_combinations(struct wiphy *wiphy,
1742 				struct iface_combination_params *params)
1743 {
1744 	int err, num = 0;
1745 
1746 	err = cfg80211_iter_combinations(wiphy, params,
1747 					 cfg80211_iter_sum_ifcombs, &num);
1748 	if (err)
1749 		return err;
1750 	if (num == 0)
1751 		return -EBUSY;
1752 
1753 	return 0;
1754 }
1755 EXPORT_SYMBOL(cfg80211_check_combinations);
1756 
1757 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1758 			   const u8 *rates, unsigned int n_rates,
1759 			   u32 *mask)
1760 {
1761 	int i, j;
1762 
1763 	if (!sband)
1764 		return -EINVAL;
1765 
1766 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1767 		return -EINVAL;
1768 
1769 	*mask = 0;
1770 
1771 	for (i = 0; i < n_rates; i++) {
1772 		int rate = (rates[i] & 0x7f) * 5;
1773 		bool found = false;
1774 
1775 		for (j = 0; j < sband->n_bitrates; j++) {
1776 			if (sband->bitrates[j].bitrate == rate) {
1777 				found = true;
1778 				*mask |= BIT(j);
1779 				break;
1780 			}
1781 		}
1782 		if (!found)
1783 			return -EINVAL;
1784 	}
1785 
1786 	/*
1787 	 * mask must have at least one bit set here since we
1788 	 * didn't accept a 0-length rates array nor allowed
1789 	 * entries in the array that didn't exist
1790 	 */
1791 
1792 	return 0;
1793 }
1794 
1795 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1796 {
1797 	enum nl80211_band band;
1798 	unsigned int n_channels = 0;
1799 
1800 	for (band = 0; band < NUM_NL80211_BANDS; band++)
1801 		if (wiphy->bands[band])
1802 			n_channels += wiphy->bands[band]->n_channels;
1803 
1804 	return n_channels;
1805 }
1806 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1807 
1808 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1809 			 struct station_info *sinfo)
1810 {
1811 	struct cfg80211_registered_device *rdev;
1812 	struct wireless_dev *wdev;
1813 
1814 	wdev = dev->ieee80211_ptr;
1815 	if (!wdev)
1816 		return -EOPNOTSUPP;
1817 
1818 	rdev = wiphy_to_rdev(wdev->wiphy);
1819 	if (!rdev->ops->get_station)
1820 		return -EOPNOTSUPP;
1821 
1822 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1823 }
1824 EXPORT_SYMBOL(cfg80211_get_station);
1825 
1826 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1827 {
1828 	int i;
1829 
1830 	if (!f)
1831 		return;
1832 
1833 	kfree(f->serv_spec_info);
1834 	kfree(f->srf_bf);
1835 	kfree(f->srf_macs);
1836 	for (i = 0; i < f->num_rx_filters; i++)
1837 		kfree(f->rx_filters[i].filter);
1838 
1839 	for (i = 0; i < f->num_tx_filters; i++)
1840 		kfree(f->tx_filters[i].filter);
1841 
1842 	kfree(f->rx_filters);
1843 	kfree(f->tx_filters);
1844 	kfree(f);
1845 }
1846 EXPORT_SYMBOL(cfg80211_free_nan_func);
1847 
1848 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1849 				u32 center_freq_khz, u32 bw_khz)
1850 {
1851 	u32 start_freq_khz, end_freq_khz;
1852 
1853 	start_freq_khz = center_freq_khz - (bw_khz / 2);
1854 	end_freq_khz = center_freq_khz + (bw_khz / 2);
1855 
1856 	if (start_freq_khz >= freq_range->start_freq_khz &&
1857 	    end_freq_khz <= freq_range->end_freq_khz)
1858 		return true;
1859 
1860 	return false;
1861 }
1862 
1863 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1864 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1865 const unsigned char rfc1042_header[] __aligned(2) =
1866 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1867 EXPORT_SYMBOL(rfc1042_header);
1868 
1869 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1870 const unsigned char bridge_tunnel_header[] __aligned(2) =
1871 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1872 EXPORT_SYMBOL(bridge_tunnel_header);
1873