xref: /openbmc/linux/net/wireless/util.c (revision 4cff79e9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  */
8 #include <linux/export.h>
9 #include <linux/bitops.h>
10 #include <linux/etherdevice.h>
11 #include <linux/slab.h>
12 #include <net/cfg80211.h>
13 #include <net/ip.h>
14 #include <net/dsfield.h>
15 #include <linux/if_vlan.h>
16 #include <linux/mpls.h>
17 #include <linux/gcd.h>
18 #include "core.h"
19 #include "rdev-ops.h"
20 
21 
22 struct ieee80211_rate *
23 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
24 			    u32 basic_rates, int bitrate)
25 {
26 	struct ieee80211_rate *result = &sband->bitrates[0];
27 	int i;
28 
29 	for (i = 0; i < sband->n_bitrates; i++) {
30 		if (!(basic_rates & BIT(i)))
31 			continue;
32 		if (sband->bitrates[i].bitrate > bitrate)
33 			continue;
34 		result = &sband->bitrates[i];
35 	}
36 
37 	return result;
38 }
39 EXPORT_SYMBOL(ieee80211_get_response_rate);
40 
41 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
42 			      enum nl80211_bss_scan_width scan_width)
43 {
44 	struct ieee80211_rate *bitrates;
45 	u32 mandatory_rates = 0;
46 	enum ieee80211_rate_flags mandatory_flag;
47 	int i;
48 
49 	if (WARN_ON(!sband))
50 		return 1;
51 
52 	if (sband->band == NL80211_BAND_2GHZ) {
53 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
54 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
55 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
56 		else
57 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
58 	} else {
59 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
60 	}
61 
62 	bitrates = sband->bitrates;
63 	for (i = 0; i < sband->n_bitrates; i++)
64 		if (bitrates[i].flags & mandatory_flag)
65 			mandatory_rates |= BIT(i);
66 	return mandatory_rates;
67 }
68 EXPORT_SYMBOL(ieee80211_mandatory_rates);
69 
70 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
71 {
72 	/* see 802.11 17.3.8.3.2 and Annex J
73 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
74 	if (chan <= 0)
75 		return 0; /* not supported */
76 	switch (band) {
77 	case NL80211_BAND_2GHZ:
78 		if (chan == 14)
79 			return 2484;
80 		else if (chan < 14)
81 			return 2407 + chan * 5;
82 		break;
83 	case NL80211_BAND_5GHZ:
84 		if (chan >= 182 && chan <= 196)
85 			return 4000 + chan * 5;
86 		else
87 			return 5000 + chan * 5;
88 		break;
89 	case NL80211_BAND_60GHZ:
90 		if (chan < 5)
91 			return 56160 + chan * 2160;
92 		break;
93 	default:
94 		;
95 	}
96 	return 0; /* not supported */
97 }
98 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
99 
100 int ieee80211_frequency_to_channel(int freq)
101 {
102 	/* see 802.11 17.3.8.3.2 and Annex J */
103 	if (freq == 2484)
104 		return 14;
105 	else if (freq < 2484)
106 		return (freq - 2407) / 5;
107 	else if (freq >= 4910 && freq <= 4980)
108 		return (freq - 4000) / 5;
109 	else if (freq <= 45000) /* DMG band lower limit */
110 		return (freq - 5000) / 5;
111 	else if (freq >= 58320 && freq <= 64800)
112 		return (freq - 56160) / 2160;
113 	else
114 		return 0;
115 }
116 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
117 
118 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
119 {
120 	enum nl80211_band band;
121 	struct ieee80211_supported_band *sband;
122 	int i;
123 
124 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
125 		sband = wiphy->bands[band];
126 
127 		if (!sband)
128 			continue;
129 
130 		for (i = 0; i < sband->n_channels; i++) {
131 			if (sband->channels[i].center_freq == freq)
132 				return &sband->channels[i];
133 		}
134 	}
135 
136 	return NULL;
137 }
138 EXPORT_SYMBOL(ieee80211_get_channel);
139 
140 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
141 {
142 	int i, want;
143 
144 	switch (sband->band) {
145 	case NL80211_BAND_5GHZ:
146 		want = 3;
147 		for (i = 0; i < sband->n_bitrates; i++) {
148 			if (sband->bitrates[i].bitrate == 60 ||
149 			    sband->bitrates[i].bitrate == 120 ||
150 			    sband->bitrates[i].bitrate == 240) {
151 				sband->bitrates[i].flags |=
152 					IEEE80211_RATE_MANDATORY_A;
153 				want--;
154 			}
155 		}
156 		WARN_ON(want);
157 		break;
158 	case NL80211_BAND_2GHZ:
159 		want = 7;
160 		for (i = 0; i < sband->n_bitrates; i++) {
161 			switch (sband->bitrates[i].bitrate) {
162 			case 10:
163 			case 20:
164 			case 55:
165 			case 110:
166 				sband->bitrates[i].flags |=
167 					IEEE80211_RATE_MANDATORY_B |
168 					IEEE80211_RATE_MANDATORY_G;
169 				want--;
170 				break;
171 			case 60:
172 			case 120:
173 			case 240:
174 				sband->bitrates[i].flags |=
175 					IEEE80211_RATE_MANDATORY_G;
176 				want--;
177 				/* fall through */
178 			default:
179 				sband->bitrates[i].flags |=
180 					IEEE80211_RATE_ERP_G;
181 				break;
182 			}
183 		}
184 		WARN_ON(want != 0 && want != 3);
185 		break;
186 	case NL80211_BAND_60GHZ:
187 		/* check for mandatory HT MCS 1..4 */
188 		WARN_ON(!sband->ht_cap.ht_supported);
189 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
190 		break;
191 	case NUM_NL80211_BANDS:
192 	default:
193 		WARN_ON(1);
194 		break;
195 	}
196 }
197 
198 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
199 {
200 	enum nl80211_band band;
201 
202 	for (band = 0; band < NUM_NL80211_BANDS; band++)
203 		if (wiphy->bands[band])
204 			set_mandatory_flags_band(wiphy->bands[band]);
205 }
206 
207 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
208 {
209 	int i;
210 	for (i = 0; i < wiphy->n_cipher_suites; i++)
211 		if (cipher == wiphy->cipher_suites[i])
212 			return true;
213 	return false;
214 }
215 
216 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
217 				   struct key_params *params, int key_idx,
218 				   bool pairwise, const u8 *mac_addr)
219 {
220 	if (key_idx < 0 || key_idx > 5)
221 		return -EINVAL;
222 
223 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
224 		return -EINVAL;
225 
226 	if (pairwise && !mac_addr)
227 		return -EINVAL;
228 
229 	switch (params->cipher) {
230 	case WLAN_CIPHER_SUITE_TKIP:
231 	case WLAN_CIPHER_SUITE_CCMP:
232 	case WLAN_CIPHER_SUITE_CCMP_256:
233 	case WLAN_CIPHER_SUITE_GCMP:
234 	case WLAN_CIPHER_SUITE_GCMP_256:
235 		/* Disallow pairwise keys with non-zero index unless it's WEP
236 		 * or a vendor specific cipher (because current deployments use
237 		 * pairwise WEP keys with non-zero indices and for vendor
238 		 * specific ciphers this should be validated in the driver or
239 		 * hardware level - but 802.11i clearly specifies to use zero)
240 		 */
241 		if (pairwise && key_idx)
242 			return -EINVAL;
243 		break;
244 	case WLAN_CIPHER_SUITE_AES_CMAC:
245 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
246 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
247 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
248 		/* Disallow BIP (group-only) cipher as pairwise cipher */
249 		if (pairwise)
250 			return -EINVAL;
251 		if (key_idx < 4)
252 			return -EINVAL;
253 		break;
254 	case WLAN_CIPHER_SUITE_WEP40:
255 	case WLAN_CIPHER_SUITE_WEP104:
256 		if (key_idx > 3)
257 			return -EINVAL;
258 	default:
259 		break;
260 	}
261 
262 	switch (params->cipher) {
263 	case WLAN_CIPHER_SUITE_WEP40:
264 		if (params->key_len != WLAN_KEY_LEN_WEP40)
265 			return -EINVAL;
266 		break;
267 	case WLAN_CIPHER_SUITE_TKIP:
268 		if (params->key_len != WLAN_KEY_LEN_TKIP)
269 			return -EINVAL;
270 		break;
271 	case WLAN_CIPHER_SUITE_CCMP:
272 		if (params->key_len != WLAN_KEY_LEN_CCMP)
273 			return -EINVAL;
274 		break;
275 	case WLAN_CIPHER_SUITE_CCMP_256:
276 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
277 			return -EINVAL;
278 		break;
279 	case WLAN_CIPHER_SUITE_GCMP:
280 		if (params->key_len != WLAN_KEY_LEN_GCMP)
281 			return -EINVAL;
282 		break;
283 	case WLAN_CIPHER_SUITE_GCMP_256:
284 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
285 			return -EINVAL;
286 		break;
287 	case WLAN_CIPHER_SUITE_WEP104:
288 		if (params->key_len != WLAN_KEY_LEN_WEP104)
289 			return -EINVAL;
290 		break;
291 	case WLAN_CIPHER_SUITE_AES_CMAC:
292 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
293 			return -EINVAL;
294 		break;
295 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
296 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
297 			return -EINVAL;
298 		break;
299 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
300 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
301 			return -EINVAL;
302 		break;
303 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
304 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
305 			return -EINVAL;
306 		break;
307 	default:
308 		/*
309 		 * We don't know anything about this algorithm,
310 		 * allow using it -- but the driver must check
311 		 * all parameters! We still check below whether
312 		 * or not the driver supports this algorithm,
313 		 * of course.
314 		 */
315 		break;
316 	}
317 
318 	if (params->seq) {
319 		switch (params->cipher) {
320 		case WLAN_CIPHER_SUITE_WEP40:
321 		case WLAN_CIPHER_SUITE_WEP104:
322 			/* These ciphers do not use key sequence */
323 			return -EINVAL;
324 		case WLAN_CIPHER_SUITE_TKIP:
325 		case WLAN_CIPHER_SUITE_CCMP:
326 		case WLAN_CIPHER_SUITE_CCMP_256:
327 		case WLAN_CIPHER_SUITE_GCMP:
328 		case WLAN_CIPHER_SUITE_GCMP_256:
329 		case WLAN_CIPHER_SUITE_AES_CMAC:
330 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
331 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
332 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
333 			if (params->seq_len != 6)
334 				return -EINVAL;
335 			break;
336 		}
337 	}
338 
339 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
340 		return -EINVAL;
341 
342 	return 0;
343 }
344 
345 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
346 {
347 	unsigned int hdrlen = 24;
348 
349 	if (ieee80211_is_data(fc)) {
350 		if (ieee80211_has_a4(fc))
351 			hdrlen = 30;
352 		if (ieee80211_is_data_qos(fc)) {
353 			hdrlen += IEEE80211_QOS_CTL_LEN;
354 			if (ieee80211_has_order(fc))
355 				hdrlen += IEEE80211_HT_CTL_LEN;
356 		}
357 		goto out;
358 	}
359 
360 	if (ieee80211_is_mgmt(fc)) {
361 		if (ieee80211_has_order(fc))
362 			hdrlen += IEEE80211_HT_CTL_LEN;
363 		goto out;
364 	}
365 
366 	if (ieee80211_is_ctl(fc)) {
367 		/*
368 		 * ACK and CTS are 10 bytes, all others 16. To see how
369 		 * to get this condition consider
370 		 *   subtype mask:   0b0000000011110000 (0x00F0)
371 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
372 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
373 		 *   bits that matter:         ^^^      (0x00E0)
374 		 *   value of those: 0b0000000011000000 (0x00C0)
375 		 */
376 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
377 			hdrlen = 10;
378 		else
379 			hdrlen = 16;
380 	}
381 out:
382 	return hdrlen;
383 }
384 EXPORT_SYMBOL(ieee80211_hdrlen);
385 
386 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
387 {
388 	const struct ieee80211_hdr *hdr =
389 			(const struct ieee80211_hdr *)skb->data;
390 	unsigned int hdrlen;
391 
392 	if (unlikely(skb->len < 10))
393 		return 0;
394 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
395 	if (unlikely(hdrlen > skb->len))
396 		return 0;
397 	return hdrlen;
398 }
399 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
400 
401 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
402 {
403 	int ae = flags & MESH_FLAGS_AE;
404 	/* 802.11-2012, 8.2.4.7.3 */
405 	switch (ae) {
406 	default:
407 	case 0:
408 		return 6;
409 	case MESH_FLAGS_AE_A4:
410 		return 12;
411 	case MESH_FLAGS_AE_A5_A6:
412 		return 18;
413 	}
414 }
415 
416 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
417 {
418 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
419 }
420 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
421 
422 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
423 				  const u8 *addr, enum nl80211_iftype iftype,
424 				  u8 data_offset)
425 {
426 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
427 	struct {
428 		u8 hdr[ETH_ALEN] __aligned(2);
429 		__be16 proto;
430 	} payload;
431 	struct ethhdr tmp;
432 	u16 hdrlen;
433 	u8 mesh_flags = 0;
434 
435 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
436 		return -1;
437 
438 	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
439 	if (skb->len < hdrlen + 8)
440 		return -1;
441 
442 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
443 	 * header
444 	 * IEEE 802.11 address fields:
445 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
446 	 *   0     0   DA    SA    BSSID n/a
447 	 *   0     1   DA    BSSID SA    n/a
448 	 *   1     0   BSSID SA    DA    n/a
449 	 *   1     1   RA    TA    DA    SA
450 	 */
451 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
452 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
453 
454 	if (iftype == NL80211_IFTYPE_MESH_POINT)
455 		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
456 
457 	mesh_flags &= MESH_FLAGS_AE;
458 
459 	switch (hdr->frame_control &
460 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
461 	case cpu_to_le16(IEEE80211_FCTL_TODS):
462 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
463 			     iftype != NL80211_IFTYPE_AP_VLAN &&
464 			     iftype != NL80211_IFTYPE_P2P_GO))
465 			return -1;
466 		break;
467 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
468 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
469 			     iftype != NL80211_IFTYPE_MESH_POINT &&
470 			     iftype != NL80211_IFTYPE_AP_VLAN &&
471 			     iftype != NL80211_IFTYPE_STATION))
472 			return -1;
473 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
474 			if (mesh_flags == MESH_FLAGS_AE_A4)
475 				return -1;
476 			if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
477 				skb_copy_bits(skb, hdrlen +
478 					offsetof(struct ieee80211s_hdr, eaddr1),
479 					tmp.h_dest, 2 * ETH_ALEN);
480 			}
481 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
482 		}
483 		break;
484 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
485 		if ((iftype != NL80211_IFTYPE_STATION &&
486 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
487 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
488 		    (is_multicast_ether_addr(tmp.h_dest) &&
489 		     ether_addr_equal(tmp.h_source, addr)))
490 			return -1;
491 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
492 			if (mesh_flags == MESH_FLAGS_AE_A5_A6)
493 				return -1;
494 			if (mesh_flags == MESH_FLAGS_AE_A4)
495 				skb_copy_bits(skb, hdrlen +
496 					offsetof(struct ieee80211s_hdr, eaddr1),
497 					tmp.h_source, ETH_ALEN);
498 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
499 		}
500 		break;
501 	case cpu_to_le16(0):
502 		if (iftype != NL80211_IFTYPE_ADHOC &&
503 		    iftype != NL80211_IFTYPE_STATION &&
504 		    iftype != NL80211_IFTYPE_OCB)
505 				return -1;
506 		break;
507 	}
508 
509 	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
510 	tmp.h_proto = payload.proto;
511 
512 	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
513 		    tmp.h_proto != htons(ETH_P_AARP) &&
514 		    tmp.h_proto != htons(ETH_P_IPX)) ||
515 		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
516 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
517 		 * replace EtherType */
518 		hdrlen += ETH_ALEN + 2;
519 	else
520 		tmp.h_proto = htons(skb->len - hdrlen);
521 
522 	pskb_pull(skb, hdrlen);
523 
524 	if (!ehdr)
525 		ehdr = skb_push(skb, sizeof(struct ethhdr));
526 	memcpy(ehdr, &tmp, sizeof(tmp));
527 
528 	return 0;
529 }
530 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
531 
532 static void
533 __frame_add_frag(struct sk_buff *skb, struct page *page,
534 		 void *ptr, int len, int size)
535 {
536 	struct skb_shared_info *sh = skb_shinfo(skb);
537 	int page_offset;
538 
539 	page_ref_inc(page);
540 	page_offset = ptr - page_address(page);
541 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
542 }
543 
544 static void
545 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
546 			    int offset, int len)
547 {
548 	struct skb_shared_info *sh = skb_shinfo(skb);
549 	const skb_frag_t *frag = &sh->frags[0];
550 	struct page *frag_page;
551 	void *frag_ptr;
552 	int frag_len, frag_size;
553 	int head_size = skb->len - skb->data_len;
554 	int cur_len;
555 
556 	frag_page = virt_to_head_page(skb->head);
557 	frag_ptr = skb->data;
558 	frag_size = head_size;
559 
560 	while (offset >= frag_size) {
561 		offset -= frag_size;
562 		frag_page = skb_frag_page(frag);
563 		frag_ptr = skb_frag_address(frag);
564 		frag_size = skb_frag_size(frag);
565 		frag++;
566 	}
567 
568 	frag_ptr += offset;
569 	frag_len = frag_size - offset;
570 
571 	cur_len = min(len, frag_len);
572 
573 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
574 	len -= cur_len;
575 
576 	while (len > 0) {
577 		frag_len = skb_frag_size(frag);
578 		cur_len = min(len, frag_len);
579 		__frame_add_frag(frame, skb_frag_page(frag),
580 				 skb_frag_address(frag), cur_len, frag_len);
581 		len -= cur_len;
582 		frag++;
583 	}
584 }
585 
586 static struct sk_buff *
587 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
588 		       int offset, int len, bool reuse_frag)
589 {
590 	struct sk_buff *frame;
591 	int cur_len = len;
592 
593 	if (skb->len - offset < len)
594 		return NULL;
595 
596 	/*
597 	 * When reusing framents, copy some data to the head to simplify
598 	 * ethernet header handling and speed up protocol header processing
599 	 * in the stack later.
600 	 */
601 	if (reuse_frag)
602 		cur_len = min_t(int, len, 32);
603 
604 	/*
605 	 * Allocate and reserve two bytes more for payload
606 	 * alignment since sizeof(struct ethhdr) is 14.
607 	 */
608 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
609 	if (!frame)
610 		return NULL;
611 
612 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
613 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
614 
615 	len -= cur_len;
616 	if (!len)
617 		return frame;
618 
619 	offset += cur_len;
620 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
621 
622 	return frame;
623 }
624 
625 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
626 			      const u8 *addr, enum nl80211_iftype iftype,
627 			      const unsigned int extra_headroom,
628 			      const u8 *check_da, const u8 *check_sa)
629 {
630 	unsigned int hlen = ALIGN(extra_headroom, 4);
631 	struct sk_buff *frame = NULL;
632 	u16 ethertype;
633 	u8 *payload;
634 	int offset = 0, remaining;
635 	struct ethhdr eth;
636 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
637 	bool reuse_skb = false;
638 	bool last = false;
639 
640 	while (!last) {
641 		unsigned int subframe_len;
642 		int len;
643 		u8 padding;
644 
645 		skb_copy_bits(skb, offset, &eth, sizeof(eth));
646 		len = ntohs(eth.h_proto);
647 		subframe_len = sizeof(struct ethhdr) + len;
648 		padding = (4 - subframe_len) & 0x3;
649 
650 		/* the last MSDU has no padding */
651 		remaining = skb->len - offset;
652 		if (subframe_len > remaining)
653 			goto purge;
654 
655 		offset += sizeof(struct ethhdr);
656 		last = remaining <= subframe_len + padding;
657 
658 		/* FIXME: should we really accept multicast DA? */
659 		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
660 		     !ether_addr_equal(check_da, eth.h_dest)) ||
661 		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
662 			offset += len + padding;
663 			continue;
664 		}
665 
666 		/* reuse skb for the last subframe */
667 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
668 			skb_pull(skb, offset);
669 			frame = skb;
670 			reuse_skb = true;
671 		} else {
672 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
673 						       reuse_frag);
674 			if (!frame)
675 				goto purge;
676 
677 			offset += len + padding;
678 		}
679 
680 		skb_reset_network_header(frame);
681 		frame->dev = skb->dev;
682 		frame->priority = skb->priority;
683 
684 		payload = frame->data;
685 		ethertype = (payload[6] << 8) | payload[7];
686 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
687 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
688 			   ether_addr_equal(payload, bridge_tunnel_header))) {
689 			eth.h_proto = htons(ethertype);
690 			skb_pull(frame, ETH_ALEN + 2);
691 		}
692 
693 		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
694 		__skb_queue_tail(list, frame);
695 	}
696 
697 	if (!reuse_skb)
698 		dev_kfree_skb(skb);
699 
700 	return;
701 
702  purge:
703 	__skb_queue_purge(list);
704 	dev_kfree_skb(skb);
705 }
706 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
707 
708 /* Given a data frame determine the 802.1p/1d tag to use. */
709 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
710 				    struct cfg80211_qos_map *qos_map)
711 {
712 	unsigned int dscp;
713 	unsigned char vlan_priority;
714 
715 	/* skb->priority values from 256->263 are magic values to
716 	 * directly indicate a specific 802.1d priority.  This is used
717 	 * to allow 802.1d priority to be passed directly in from VLAN
718 	 * tags, etc.
719 	 */
720 	if (skb->priority >= 256 && skb->priority <= 263)
721 		return skb->priority - 256;
722 
723 	if (skb_vlan_tag_present(skb)) {
724 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
725 			>> VLAN_PRIO_SHIFT;
726 		if (vlan_priority > 0)
727 			return vlan_priority;
728 	}
729 
730 	switch (skb->protocol) {
731 	case htons(ETH_P_IP):
732 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
733 		break;
734 	case htons(ETH_P_IPV6):
735 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
736 		break;
737 	case htons(ETH_P_MPLS_UC):
738 	case htons(ETH_P_MPLS_MC): {
739 		struct mpls_label mpls_tmp, *mpls;
740 
741 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
742 					  sizeof(*mpls), &mpls_tmp);
743 		if (!mpls)
744 			return 0;
745 
746 		return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
747 			>> MPLS_LS_TC_SHIFT;
748 	}
749 	case htons(ETH_P_80221):
750 		/* 802.21 is always network control traffic */
751 		return 7;
752 	default:
753 		return 0;
754 	}
755 
756 	if (qos_map) {
757 		unsigned int i, tmp_dscp = dscp >> 2;
758 
759 		for (i = 0; i < qos_map->num_des; i++) {
760 			if (tmp_dscp == qos_map->dscp_exception[i].dscp)
761 				return qos_map->dscp_exception[i].up;
762 		}
763 
764 		for (i = 0; i < 8; i++) {
765 			if (tmp_dscp >= qos_map->up[i].low &&
766 			    tmp_dscp <= qos_map->up[i].high)
767 				return i;
768 		}
769 	}
770 
771 	return dscp >> 5;
772 }
773 EXPORT_SYMBOL(cfg80211_classify8021d);
774 
775 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
776 {
777 	const struct cfg80211_bss_ies *ies;
778 
779 	ies = rcu_dereference(bss->ies);
780 	if (!ies)
781 		return NULL;
782 
783 	return cfg80211_find_ie(ie, ies->data, ies->len);
784 }
785 EXPORT_SYMBOL(ieee80211_bss_get_ie);
786 
787 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
788 {
789 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
790 	struct net_device *dev = wdev->netdev;
791 	int i;
792 
793 	if (!wdev->connect_keys)
794 		return;
795 
796 	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
797 		if (!wdev->connect_keys->params[i].cipher)
798 			continue;
799 		if (rdev_add_key(rdev, dev, i, false, NULL,
800 				 &wdev->connect_keys->params[i])) {
801 			netdev_err(dev, "failed to set key %d\n", i);
802 			continue;
803 		}
804 		if (wdev->connect_keys->def == i &&
805 		    rdev_set_default_key(rdev, dev, i, true, true)) {
806 			netdev_err(dev, "failed to set defkey %d\n", i);
807 			continue;
808 		}
809 	}
810 
811 	kzfree(wdev->connect_keys);
812 	wdev->connect_keys = NULL;
813 }
814 
815 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
816 {
817 	struct cfg80211_event *ev;
818 	unsigned long flags;
819 
820 	spin_lock_irqsave(&wdev->event_lock, flags);
821 	while (!list_empty(&wdev->event_list)) {
822 		ev = list_first_entry(&wdev->event_list,
823 				      struct cfg80211_event, list);
824 		list_del(&ev->list);
825 		spin_unlock_irqrestore(&wdev->event_lock, flags);
826 
827 		wdev_lock(wdev);
828 		switch (ev->type) {
829 		case EVENT_CONNECT_RESULT:
830 			__cfg80211_connect_result(
831 				wdev->netdev,
832 				&ev->cr,
833 				ev->cr.status == WLAN_STATUS_SUCCESS);
834 			break;
835 		case EVENT_ROAMED:
836 			__cfg80211_roamed(wdev, &ev->rm);
837 			break;
838 		case EVENT_DISCONNECTED:
839 			__cfg80211_disconnected(wdev->netdev,
840 						ev->dc.ie, ev->dc.ie_len,
841 						ev->dc.reason,
842 						!ev->dc.locally_generated);
843 			break;
844 		case EVENT_IBSS_JOINED:
845 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
846 					       ev->ij.channel);
847 			break;
848 		case EVENT_STOPPED:
849 			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
850 			break;
851 		case EVENT_PORT_AUTHORIZED:
852 			__cfg80211_port_authorized(wdev, ev->pa.bssid);
853 			break;
854 		}
855 		wdev_unlock(wdev);
856 
857 		kfree(ev);
858 
859 		spin_lock_irqsave(&wdev->event_lock, flags);
860 	}
861 	spin_unlock_irqrestore(&wdev->event_lock, flags);
862 }
863 
864 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
865 {
866 	struct wireless_dev *wdev;
867 
868 	ASSERT_RTNL();
869 
870 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
871 		cfg80211_process_wdev_events(wdev);
872 }
873 
874 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
875 			  struct net_device *dev, enum nl80211_iftype ntype,
876 			  struct vif_params *params)
877 {
878 	int err;
879 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
880 
881 	ASSERT_RTNL();
882 
883 	/* don't support changing VLANs, you just re-create them */
884 	if (otype == NL80211_IFTYPE_AP_VLAN)
885 		return -EOPNOTSUPP;
886 
887 	/* cannot change into P2P device or NAN */
888 	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
889 	    ntype == NL80211_IFTYPE_NAN)
890 		return -EOPNOTSUPP;
891 
892 	if (!rdev->ops->change_virtual_intf ||
893 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
894 		return -EOPNOTSUPP;
895 
896 	/* if it's part of a bridge, reject changing type to station/ibss */
897 	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
898 	    (ntype == NL80211_IFTYPE_ADHOC ||
899 	     ntype == NL80211_IFTYPE_STATION ||
900 	     ntype == NL80211_IFTYPE_P2P_CLIENT))
901 		return -EBUSY;
902 
903 	if (ntype != otype) {
904 		dev->ieee80211_ptr->use_4addr = false;
905 		dev->ieee80211_ptr->mesh_id_up_len = 0;
906 		wdev_lock(dev->ieee80211_ptr);
907 		rdev_set_qos_map(rdev, dev, NULL);
908 		wdev_unlock(dev->ieee80211_ptr);
909 
910 		switch (otype) {
911 		case NL80211_IFTYPE_AP:
912 			cfg80211_stop_ap(rdev, dev, true);
913 			break;
914 		case NL80211_IFTYPE_ADHOC:
915 			cfg80211_leave_ibss(rdev, dev, false);
916 			break;
917 		case NL80211_IFTYPE_STATION:
918 		case NL80211_IFTYPE_P2P_CLIENT:
919 			wdev_lock(dev->ieee80211_ptr);
920 			cfg80211_disconnect(rdev, dev,
921 					    WLAN_REASON_DEAUTH_LEAVING, true);
922 			wdev_unlock(dev->ieee80211_ptr);
923 			break;
924 		case NL80211_IFTYPE_MESH_POINT:
925 			/* mesh should be handled? */
926 			break;
927 		default:
928 			break;
929 		}
930 
931 		cfg80211_process_rdev_events(rdev);
932 	}
933 
934 	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
935 
936 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
937 
938 	if (!err && params && params->use_4addr != -1)
939 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
940 
941 	if (!err) {
942 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
943 		switch (ntype) {
944 		case NL80211_IFTYPE_STATION:
945 			if (dev->ieee80211_ptr->use_4addr)
946 				break;
947 			/* fall through */
948 		case NL80211_IFTYPE_OCB:
949 		case NL80211_IFTYPE_P2P_CLIENT:
950 		case NL80211_IFTYPE_ADHOC:
951 			dev->priv_flags |= IFF_DONT_BRIDGE;
952 			break;
953 		case NL80211_IFTYPE_P2P_GO:
954 		case NL80211_IFTYPE_AP:
955 		case NL80211_IFTYPE_AP_VLAN:
956 		case NL80211_IFTYPE_WDS:
957 		case NL80211_IFTYPE_MESH_POINT:
958 			/* bridging OK */
959 			break;
960 		case NL80211_IFTYPE_MONITOR:
961 			/* monitor can't bridge anyway */
962 			break;
963 		case NL80211_IFTYPE_UNSPECIFIED:
964 		case NUM_NL80211_IFTYPES:
965 			/* not happening */
966 			break;
967 		case NL80211_IFTYPE_P2P_DEVICE:
968 		case NL80211_IFTYPE_NAN:
969 			WARN_ON(1);
970 			break;
971 		}
972 	}
973 
974 	if (!err && ntype != otype && netif_running(dev)) {
975 		cfg80211_update_iface_num(rdev, ntype, 1);
976 		cfg80211_update_iface_num(rdev, otype, -1);
977 	}
978 
979 	return err;
980 }
981 
982 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
983 {
984 	int modulation, streams, bitrate;
985 
986 	/* the formula below does only work for MCS values smaller than 32 */
987 	if (WARN_ON_ONCE(rate->mcs >= 32))
988 		return 0;
989 
990 	modulation = rate->mcs & 7;
991 	streams = (rate->mcs >> 3) + 1;
992 
993 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
994 
995 	if (modulation < 4)
996 		bitrate *= (modulation + 1);
997 	else if (modulation == 4)
998 		bitrate *= (modulation + 2);
999 	else
1000 		bitrate *= (modulation + 3);
1001 
1002 	bitrate *= streams;
1003 
1004 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1005 		bitrate = (bitrate / 9) * 10;
1006 
1007 	/* do NOT round down here */
1008 	return (bitrate + 50000) / 100000;
1009 }
1010 
1011 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1012 {
1013 	static const u32 __mcs2bitrate[] = {
1014 		/* control PHY */
1015 		[0] =   275,
1016 		/* SC PHY */
1017 		[1] =  3850,
1018 		[2] =  7700,
1019 		[3] =  9625,
1020 		[4] = 11550,
1021 		[5] = 12512, /* 1251.25 mbps */
1022 		[6] = 15400,
1023 		[7] = 19250,
1024 		[8] = 23100,
1025 		[9] = 25025,
1026 		[10] = 30800,
1027 		[11] = 38500,
1028 		[12] = 46200,
1029 		/* OFDM PHY */
1030 		[13] =  6930,
1031 		[14] =  8662, /* 866.25 mbps */
1032 		[15] = 13860,
1033 		[16] = 17325,
1034 		[17] = 20790,
1035 		[18] = 27720,
1036 		[19] = 34650,
1037 		[20] = 41580,
1038 		[21] = 45045,
1039 		[22] = 51975,
1040 		[23] = 62370,
1041 		[24] = 67568, /* 6756.75 mbps */
1042 		/* LP-SC PHY */
1043 		[25] =  6260,
1044 		[26] =  8340,
1045 		[27] = 11120,
1046 		[28] = 12510,
1047 		[29] = 16680,
1048 		[30] = 22240,
1049 		[31] = 25030,
1050 	};
1051 
1052 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1053 		return 0;
1054 
1055 	return __mcs2bitrate[rate->mcs];
1056 }
1057 
1058 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1059 {
1060 	static const u32 base[4][10] = {
1061 		{   6500000,
1062 		   13000000,
1063 		   19500000,
1064 		   26000000,
1065 		   39000000,
1066 		   52000000,
1067 		   58500000,
1068 		   65000000,
1069 		   78000000,
1070 		/* not in the spec, but some devices use this: */
1071 		   86500000,
1072 		},
1073 		{  13500000,
1074 		   27000000,
1075 		   40500000,
1076 		   54000000,
1077 		   81000000,
1078 		  108000000,
1079 		  121500000,
1080 		  135000000,
1081 		  162000000,
1082 		  180000000,
1083 		},
1084 		{  29300000,
1085 		   58500000,
1086 		   87800000,
1087 		  117000000,
1088 		  175500000,
1089 		  234000000,
1090 		  263300000,
1091 		  292500000,
1092 		  351000000,
1093 		  390000000,
1094 		},
1095 		{  58500000,
1096 		  117000000,
1097 		  175500000,
1098 		  234000000,
1099 		  351000000,
1100 		  468000000,
1101 		  526500000,
1102 		  585000000,
1103 		  702000000,
1104 		  780000000,
1105 		},
1106 	};
1107 	u32 bitrate;
1108 	int idx;
1109 
1110 	if (rate->mcs > 9)
1111 		goto warn;
1112 
1113 	switch (rate->bw) {
1114 	case RATE_INFO_BW_160:
1115 		idx = 3;
1116 		break;
1117 	case RATE_INFO_BW_80:
1118 		idx = 2;
1119 		break;
1120 	case RATE_INFO_BW_40:
1121 		idx = 1;
1122 		break;
1123 	case RATE_INFO_BW_5:
1124 	case RATE_INFO_BW_10:
1125 	default:
1126 		goto warn;
1127 	case RATE_INFO_BW_20:
1128 		idx = 0;
1129 	}
1130 
1131 	bitrate = base[idx][rate->mcs];
1132 	bitrate *= rate->nss;
1133 
1134 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1135 		bitrate = (bitrate / 9) * 10;
1136 
1137 	/* do NOT round down here */
1138 	return (bitrate + 50000) / 100000;
1139  warn:
1140 	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1141 		  rate->bw, rate->mcs, rate->nss);
1142 	return 0;
1143 }
1144 
1145 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1146 {
1147 	if (rate->flags & RATE_INFO_FLAGS_MCS)
1148 		return cfg80211_calculate_bitrate_ht(rate);
1149 	if (rate->flags & RATE_INFO_FLAGS_60G)
1150 		return cfg80211_calculate_bitrate_60g(rate);
1151 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1152 		return cfg80211_calculate_bitrate_vht(rate);
1153 
1154 	return rate->legacy;
1155 }
1156 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1157 
1158 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1159 			  enum ieee80211_p2p_attr_id attr,
1160 			  u8 *buf, unsigned int bufsize)
1161 {
1162 	u8 *out = buf;
1163 	u16 attr_remaining = 0;
1164 	bool desired_attr = false;
1165 	u16 desired_len = 0;
1166 
1167 	while (len > 0) {
1168 		unsigned int iedatalen;
1169 		unsigned int copy;
1170 		const u8 *iedata;
1171 
1172 		if (len < 2)
1173 			return -EILSEQ;
1174 		iedatalen = ies[1];
1175 		if (iedatalen + 2 > len)
1176 			return -EILSEQ;
1177 
1178 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1179 			goto cont;
1180 
1181 		if (iedatalen < 4)
1182 			goto cont;
1183 
1184 		iedata = ies + 2;
1185 
1186 		/* check WFA OUI, P2P subtype */
1187 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1188 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1189 			goto cont;
1190 
1191 		iedatalen -= 4;
1192 		iedata += 4;
1193 
1194 		/* check attribute continuation into this IE */
1195 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1196 		if (copy && desired_attr) {
1197 			desired_len += copy;
1198 			if (out) {
1199 				memcpy(out, iedata, min(bufsize, copy));
1200 				out += min(bufsize, copy);
1201 				bufsize -= min(bufsize, copy);
1202 			}
1203 
1204 
1205 			if (copy == attr_remaining)
1206 				return desired_len;
1207 		}
1208 
1209 		attr_remaining -= copy;
1210 		if (attr_remaining)
1211 			goto cont;
1212 
1213 		iedatalen -= copy;
1214 		iedata += copy;
1215 
1216 		while (iedatalen > 0) {
1217 			u16 attr_len;
1218 
1219 			/* P2P attribute ID & size must fit */
1220 			if (iedatalen < 3)
1221 				return -EILSEQ;
1222 			desired_attr = iedata[0] == attr;
1223 			attr_len = get_unaligned_le16(iedata + 1);
1224 			iedatalen -= 3;
1225 			iedata += 3;
1226 
1227 			copy = min_t(unsigned int, attr_len, iedatalen);
1228 
1229 			if (desired_attr) {
1230 				desired_len += copy;
1231 				if (out) {
1232 					memcpy(out, iedata, min(bufsize, copy));
1233 					out += min(bufsize, copy);
1234 					bufsize -= min(bufsize, copy);
1235 				}
1236 
1237 				if (copy == attr_len)
1238 					return desired_len;
1239 			}
1240 
1241 			iedata += copy;
1242 			iedatalen -= copy;
1243 			attr_remaining = attr_len - copy;
1244 		}
1245 
1246  cont:
1247 		len -= ies[1] + 2;
1248 		ies += ies[1] + 2;
1249 	}
1250 
1251 	if (attr_remaining && desired_attr)
1252 		return -EILSEQ;
1253 
1254 	return -ENOENT;
1255 }
1256 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1257 
1258 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1259 {
1260 	int i;
1261 
1262 	/* Make sure array values are legal */
1263 	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1264 		return false;
1265 
1266 	i = 0;
1267 	while (i < n_ids) {
1268 		if (ids[i] == WLAN_EID_EXTENSION) {
1269 			if (id_ext && (ids[i + 1] == id))
1270 				return true;
1271 
1272 			i += 2;
1273 			continue;
1274 		}
1275 
1276 		if (ids[i] == id && !id_ext)
1277 			return true;
1278 
1279 		i++;
1280 	}
1281 	return false;
1282 }
1283 
1284 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1285 {
1286 	/* we assume a validly formed IEs buffer */
1287 	u8 len = ies[pos + 1];
1288 
1289 	pos += 2 + len;
1290 
1291 	/* the IE itself must have 255 bytes for fragments to follow */
1292 	if (len < 255)
1293 		return pos;
1294 
1295 	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1296 		len = ies[pos + 1];
1297 		pos += 2 + len;
1298 	}
1299 
1300 	return pos;
1301 }
1302 
1303 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1304 			      const u8 *ids, int n_ids,
1305 			      const u8 *after_ric, int n_after_ric,
1306 			      size_t offset)
1307 {
1308 	size_t pos = offset;
1309 
1310 	while (pos < ielen) {
1311 		u8 ext = 0;
1312 
1313 		if (ies[pos] == WLAN_EID_EXTENSION)
1314 			ext = 2;
1315 		if ((pos + ext) >= ielen)
1316 			break;
1317 
1318 		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1319 					  ies[pos] == WLAN_EID_EXTENSION))
1320 			break;
1321 
1322 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1323 			pos = skip_ie(ies, ielen, pos);
1324 
1325 			while (pos < ielen) {
1326 				if (ies[pos] == WLAN_EID_EXTENSION)
1327 					ext = 2;
1328 				else
1329 					ext = 0;
1330 
1331 				if ((pos + ext) >= ielen)
1332 					break;
1333 
1334 				if (!ieee80211_id_in_list(after_ric,
1335 							  n_after_ric,
1336 							  ies[pos + ext],
1337 							  ext == 2))
1338 					pos = skip_ie(ies, ielen, pos);
1339 			}
1340 		} else {
1341 			pos = skip_ie(ies, ielen, pos);
1342 		}
1343 	}
1344 
1345 	return pos;
1346 }
1347 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1348 
1349 bool ieee80211_operating_class_to_band(u8 operating_class,
1350 				       enum nl80211_band *band)
1351 {
1352 	switch (operating_class) {
1353 	case 112:
1354 	case 115 ... 127:
1355 	case 128 ... 130:
1356 		*band = NL80211_BAND_5GHZ;
1357 		return true;
1358 	case 81:
1359 	case 82:
1360 	case 83:
1361 	case 84:
1362 		*band = NL80211_BAND_2GHZ;
1363 		return true;
1364 	case 180:
1365 		*band = NL80211_BAND_60GHZ;
1366 		return true;
1367 	}
1368 
1369 	return false;
1370 }
1371 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1372 
1373 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1374 					  u8 *op_class)
1375 {
1376 	u8 vht_opclass;
1377 	u16 freq = chandef->center_freq1;
1378 
1379 	if (freq >= 2412 && freq <= 2472) {
1380 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1381 			return false;
1382 
1383 		/* 2.407 GHz, channels 1..13 */
1384 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1385 			if (freq > chandef->chan->center_freq)
1386 				*op_class = 83; /* HT40+ */
1387 			else
1388 				*op_class = 84; /* HT40- */
1389 		} else {
1390 			*op_class = 81;
1391 		}
1392 
1393 		return true;
1394 	}
1395 
1396 	if (freq == 2484) {
1397 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1398 			return false;
1399 
1400 		*op_class = 82; /* channel 14 */
1401 		return true;
1402 	}
1403 
1404 	switch (chandef->width) {
1405 	case NL80211_CHAN_WIDTH_80:
1406 		vht_opclass = 128;
1407 		break;
1408 	case NL80211_CHAN_WIDTH_160:
1409 		vht_opclass = 129;
1410 		break;
1411 	case NL80211_CHAN_WIDTH_80P80:
1412 		vht_opclass = 130;
1413 		break;
1414 	case NL80211_CHAN_WIDTH_10:
1415 	case NL80211_CHAN_WIDTH_5:
1416 		return false; /* unsupported for now */
1417 	default:
1418 		vht_opclass = 0;
1419 		break;
1420 	}
1421 
1422 	/* 5 GHz, channels 36..48 */
1423 	if (freq >= 5180 && freq <= 5240) {
1424 		if (vht_opclass) {
1425 			*op_class = vht_opclass;
1426 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1427 			if (freq > chandef->chan->center_freq)
1428 				*op_class = 116;
1429 			else
1430 				*op_class = 117;
1431 		} else {
1432 			*op_class = 115;
1433 		}
1434 
1435 		return true;
1436 	}
1437 
1438 	/* 5 GHz, channels 52..64 */
1439 	if (freq >= 5260 && freq <= 5320) {
1440 		if (vht_opclass) {
1441 			*op_class = vht_opclass;
1442 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1443 			if (freq > chandef->chan->center_freq)
1444 				*op_class = 119;
1445 			else
1446 				*op_class = 120;
1447 		} else {
1448 			*op_class = 118;
1449 		}
1450 
1451 		return true;
1452 	}
1453 
1454 	/* 5 GHz, channels 100..144 */
1455 	if (freq >= 5500 && freq <= 5720) {
1456 		if (vht_opclass) {
1457 			*op_class = vht_opclass;
1458 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1459 			if (freq > chandef->chan->center_freq)
1460 				*op_class = 122;
1461 			else
1462 				*op_class = 123;
1463 		} else {
1464 			*op_class = 121;
1465 		}
1466 
1467 		return true;
1468 	}
1469 
1470 	/* 5 GHz, channels 149..169 */
1471 	if (freq >= 5745 && freq <= 5845) {
1472 		if (vht_opclass) {
1473 			*op_class = vht_opclass;
1474 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1475 			if (freq > chandef->chan->center_freq)
1476 				*op_class = 126;
1477 			else
1478 				*op_class = 127;
1479 		} else if (freq <= 5805) {
1480 			*op_class = 124;
1481 		} else {
1482 			*op_class = 125;
1483 		}
1484 
1485 		return true;
1486 	}
1487 
1488 	/* 56.16 GHz, channel 1..4 */
1489 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1490 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1491 			return false;
1492 
1493 		*op_class = 180;
1494 		return true;
1495 	}
1496 
1497 	/* not supported yet */
1498 	return false;
1499 }
1500 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1501 
1502 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1503 				       u32 *beacon_int_gcd,
1504 				       bool *beacon_int_different)
1505 {
1506 	struct wireless_dev *wdev;
1507 
1508 	*beacon_int_gcd = 0;
1509 	*beacon_int_different = false;
1510 
1511 	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1512 		if (!wdev->beacon_interval)
1513 			continue;
1514 
1515 		if (!*beacon_int_gcd) {
1516 			*beacon_int_gcd = wdev->beacon_interval;
1517 			continue;
1518 		}
1519 
1520 		if (wdev->beacon_interval == *beacon_int_gcd)
1521 			continue;
1522 
1523 		*beacon_int_different = true;
1524 		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1525 	}
1526 
1527 	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1528 		if (*beacon_int_gcd)
1529 			*beacon_int_different = true;
1530 		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1531 	}
1532 }
1533 
1534 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1535 				 enum nl80211_iftype iftype, u32 beacon_int)
1536 {
1537 	/*
1538 	 * This is just a basic pre-condition check; if interface combinations
1539 	 * are possible the driver must already be checking those with a call
1540 	 * to cfg80211_check_combinations(), in which case we'll validate more
1541 	 * through the cfg80211_calculate_bi_data() call and code in
1542 	 * cfg80211_iter_combinations().
1543 	 */
1544 
1545 	if (beacon_int < 10 || beacon_int > 10000)
1546 		return -EINVAL;
1547 
1548 	return 0;
1549 }
1550 
1551 int cfg80211_iter_combinations(struct wiphy *wiphy,
1552 			       struct iface_combination_params *params,
1553 			       void (*iter)(const struct ieee80211_iface_combination *c,
1554 					    void *data),
1555 			       void *data)
1556 {
1557 	const struct ieee80211_regdomain *regdom;
1558 	enum nl80211_dfs_regions region = 0;
1559 	int i, j, iftype;
1560 	int num_interfaces = 0;
1561 	u32 used_iftypes = 0;
1562 	u32 beacon_int_gcd;
1563 	bool beacon_int_different;
1564 
1565 	/*
1566 	 * This is a bit strange, since the iteration used to rely only on
1567 	 * the data given by the driver, but here it now relies on context,
1568 	 * in form of the currently operating interfaces.
1569 	 * This is OK for all current users, and saves us from having to
1570 	 * push the GCD calculations into all the drivers.
1571 	 * In the future, this should probably rely more on data that's in
1572 	 * cfg80211 already - the only thing not would appear to be any new
1573 	 * interfaces (while being brought up) and channel/radar data.
1574 	 */
1575 	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1576 				   &beacon_int_gcd, &beacon_int_different);
1577 
1578 	if (params->radar_detect) {
1579 		rcu_read_lock();
1580 		regdom = rcu_dereference(cfg80211_regdomain);
1581 		if (regdom)
1582 			region = regdom->dfs_region;
1583 		rcu_read_unlock();
1584 	}
1585 
1586 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1587 		num_interfaces += params->iftype_num[iftype];
1588 		if (params->iftype_num[iftype] > 0 &&
1589 		    !(wiphy->software_iftypes & BIT(iftype)))
1590 			used_iftypes |= BIT(iftype);
1591 	}
1592 
1593 	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1594 		const struct ieee80211_iface_combination *c;
1595 		struct ieee80211_iface_limit *limits;
1596 		u32 all_iftypes = 0;
1597 
1598 		c = &wiphy->iface_combinations[i];
1599 
1600 		if (num_interfaces > c->max_interfaces)
1601 			continue;
1602 		if (params->num_different_channels > c->num_different_channels)
1603 			continue;
1604 
1605 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1606 				 GFP_KERNEL);
1607 		if (!limits)
1608 			return -ENOMEM;
1609 
1610 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1611 			if (wiphy->software_iftypes & BIT(iftype))
1612 				continue;
1613 			for (j = 0; j < c->n_limits; j++) {
1614 				all_iftypes |= limits[j].types;
1615 				if (!(limits[j].types & BIT(iftype)))
1616 					continue;
1617 				if (limits[j].max < params->iftype_num[iftype])
1618 					goto cont;
1619 				limits[j].max -= params->iftype_num[iftype];
1620 			}
1621 		}
1622 
1623 		if (params->radar_detect !=
1624 			(c->radar_detect_widths & params->radar_detect))
1625 			goto cont;
1626 
1627 		if (params->radar_detect && c->radar_detect_regions &&
1628 		    !(c->radar_detect_regions & BIT(region)))
1629 			goto cont;
1630 
1631 		/* Finally check that all iftypes that we're currently
1632 		 * using are actually part of this combination. If they
1633 		 * aren't then we can't use this combination and have
1634 		 * to continue to the next.
1635 		 */
1636 		if ((all_iftypes & used_iftypes) != used_iftypes)
1637 			goto cont;
1638 
1639 		if (beacon_int_gcd) {
1640 			if (c->beacon_int_min_gcd &&
1641 			    beacon_int_gcd < c->beacon_int_min_gcd)
1642 				goto cont;
1643 			if (!c->beacon_int_min_gcd && beacon_int_different)
1644 				goto cont;
1645 		}
1646 
1647 		/* This combination covered all interface types and
1648 		 * supported the requested numbers, so we're good.
1649 		 */
1650 
1651 		(*iter)(c, data);
1652  cont:
1653 		kfree(limits);
1654 	}
1655 
1656 	return 0;
1657 }
1658 EXPORT_SYMBOL(cfg80211_iter_combinations);
1659 
1660 static void
1661 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1662 			  void *data)
1663 {
1664 	int *num = data;
1665 	(*num)++;
1666 }
1667 
1668 int cfg80211_check_combinations(struct wiphy *wiphy,
1669 				struct iface_combination_params *params)
1670 {
1671 	int err, num = 0;
1672 
1673 	err = cfg80211_iter_combinations(wiphy, params,
1674 					 cfg80211_iter_sum_ifcombs, &num);
1675 	if (err)
1676 		return err;
1677 	if (num == 0)
1678 		return -EBUSY;
1679 
1680 	return 0;
1681 }
1682 EXPORT_SYMBOL(cfg80211_check_combinations);
1683 
1684 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1685 			   const u8 *rates, unsigned int n_rates,
1686 			   u32 *mask)
1687 {
1688 	int i, j;
1689 
1690 	if (!sband)
1691 		return -EINVAL;
1692 
1693 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1694 		return -EINVAL;
1695 
1696 	*mask = 0;
1697 
1698 	for (i = 0; i < n_rates; i++) {
1699 		int rate = (rates[i] & 0x7f) * 5;
1700 		bool found = false;
1701 
1702 		for (j = 0; j < sband->n_bitrates; j++) {
1703 			if (sband->bitrates[j].bitrate == rate) {
1704 				found = true;
1705 				*mask |= BIT(j);
1706 				break;
1707 			}
1708 		}
1709 		if (!found)
1710 			return -EINVAL;
1711 	}
1712 
1713 	/*
1714 	 * mask must have at least one bit set here since we
1715 	 * didn't accept a 0-length rates array nor allowed
1716 	 * entries in the array that didn't exist
1717 	 */
1718 
1719 	return 0;
1720 }
1721 
1722 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1723 {
1724 	enum nl80211_band band;
1725 	unsigned int n_channels = 0;
1726 
1727 	for (band = 0; band < NUM_NL80211_BANDS; band++)
1728 		if (wiphy->bands[band])
1729 			n_channels += wiphy->bands[band]->n_channels;
1730 
1731 	return n_channels;
1732 }
1733 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1734 
1735 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1736 			 struct station_info *sinfo)
1737 {
1738 	struct cfg80211_registered_device *rdev;
1739 	struct wireless_dev *wdev;
1740 
1741 	wdev = dev->ieee80211_ptr;
1742 	if (!wdev)
1743 		return -EOPNOTSUPP;
1744 
1745 	rdev = wiphy_to_rdev(wdev->wiphy);
1746 	if (!rdev->ops->get_station)
1747 		return -EOPNOTSUPP;
1748 
1749 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1750 }
1751 EXPORT_SYMBOL(cfg80211_get_station);
1752 
1753 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1754 {
1755 	int i;
1756 
1757 	if (!f)
1758 		return;
1759 
1760 	kfree(f->serv_spec_info);
1761 	kfree(f->srf_bf);
1762 	kfree(f->srf_macs);
1763 	for (i = 0; i < f->num_rx_filters; i++)
1764 		kfree(f->rx_filters[i].filter);
1765 
1766 	for (i = 0; i < f->num_tx_filters; i++)
1767 		kfree(f->tx_filters[i].filter);
1768 
1769 	kfree(f->rx_filters);
1770 	kfree(f->tx_filters);
1771 	kfree(f);
1772 }
1773 EXPORT_SYMBOL(cfg80211_free_nan_func);
1774 
1775 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1776 				u32 center_freq_khz, u32 bw_khz)
1777 {
1778 	u32 start_freq_khz, end_freq_khz;
1779 
1780 	start_freq_khz = center_freq_khz - (bw_khz / 2);
1781 	end_freq_khz = center_freq_khz + (bw_khz / 2);
1782 
1783 	if (start_freq_khz >= freq_range->start_freq_khz &&
1784 	    end_freq_khz <= freq_range->end_freq_khz)
1785 		return true;
1786 
1787 	return false;
1788 }
1789 
1790 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1791 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1792 const unsigned char rfc1042_header[] __aligned(2) =
1793 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1794 EXPORT_SYMBOL(rfc1042_header);
1795 
1796 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1797 const unsigned char bridge_tunnel_header[] __aligned(2) =
1798 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1799 EXPORT_SYMBOL(bridge_tunnel_header);
1800