xref: /openbmc/linux/net/wireless/util.c (revision 4bb1eb3c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017	Intel Deutschland GmbH
8  * Copyright (C) 2018-2020 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25 
26 
27 struct ieee80211_rate *
28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 			    u32 basic_rates, int bitrate)
30 {
31 	struct ieee80211_rate *result = &sband->bitrates[0];
32 	int i;
33 
34 	for (i = 0; i < sband->n_bitrates; i++) {
35 		if (!(basic_rates & BIT(i)))
36 			continue;
37 		if (sband->bitrates[i].bitrate > bitrate)
38 			continue;
39 		result = &sband->bitrates[i];
40 	}
41 
42 	return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45 
46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47 			      enum nl80211_bss_scan_width scan_width)
48 {
49 	struct ieee80211_rate *bitrates;
50 	u32 mandatory_rates = 0;
51 	enum ieee80211_rate_flags mandatory_flag;
52 	int i;
53 
54 	if (WARN_ON(!sband))
55 		return 1;
56 
57 	if (sband->band == NL80211_BAND_2GHZ) {
58 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
60 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61 		else
62 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63 	} else {
64 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65 	}
66 
67 	bitrates = sband->bitrates;
68 	for (i = 0; i < sband->n_bitrates; i++)
69 		if (bitrates[i].flags & mandatory_flag)
70 			mandatory_rates |= BIT(i);
71 	return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74 
75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77 	/* see 802.11 17.3.8.3.2 and Annex J
78 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79 	if (chan <= 0)
80 		return 0; /* not supported */
81 	switch (band) {
82 	case NL80211_BAND_2GHZ:
83 		if (chan == 14)
84 			return MHZ_TO_KHZ(2484);
85 		else if (chan < 14)
86 			return MHZ_TO_KHZ(2407 + chan * 5);
87 		break;
88 	case NL80211_BAND_5GHZ:
89 		if (chan >= 182 && chan <= 196)
90 			return MHZ_TO_KHZ(4000 + chan * 5);
91 		else
92 			return MHZ_TO_KHZ(5000 + chan * 5);
93 		break;
94 	case NL80211_BAND_6GHZ:
95 		/* see 802.11ax D6.1 27.3.23.2 */
96 		if (chan == 2)
97 			return MHZ_TO_KHZ(5935);
98 		if (chan <= 253)
99 			return MHZ_TO_KHZ(5950 + chan * 5);
100 		break;
101 	case NL80211_BAND_60GHZ:
102 		if (chan < 7)
103 			return MHZ_TO_KHZ(56160 + chan * 2160);
104 		break;
105 	case NL80211_BAND_S1GHZ:
106 		return 902000 + chan * 500;
107 	default:
108 		;
109 	}
110 	return 0; /* not supported */
111 }
112 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
113 
114 int ieee80211_freq_khz_to_channel(u32 freq)
115 {
116 	/* TODO: just handle MHz for now */
117 	freq = KHZ_TO_MHZ(freq);
118 
119 	/* see 802.11 17.3.8.3.2 and Annex J */
120 	if (freq == 2484)
121 		return 14;
122 	else if (freq < 2484)
123 		return (freq - 2407) / 5;
124 	else if (freq >= 4910 && freq <= 4980)
125 		return (freq - 4000) / 5;
126 	else if (freq < 5945)
127 		return (freq - 5000) / 5;
128 	else if (freq <= 45000) /* DMG band lower limit */
129 		/* see 802.11ax D4.1 27.3.22.2 */
130 		return (freq - 5940) / 5;
131 	else if (freq >= 58320 && freq <= 70200)
132 		return (freq - 56160) / 2160;
133 	else
134 		return 0;
135 }
136 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
137 
138 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
139 						    u32 freq)
140 {
141 	enum nl80211_band band;
142 	struct ieee80211_supported_band *sband;
143 	int i;
144 
145 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
146 		sband = wiphy->bands[band];
147 
148 		if (!sband)
149 			continue;
150 
151 		for (i = 0; i < sband->n_channels; i++) {
152 			struct ieee80211_channel *chan = &sband->channels[i];
153 
154 			if (ieee80211_channel_to_khz(chan) == freq)
155 				return chan;
156 		}
157 	}
158 
159 	return NULL;
160 }
161 EXPORT_SYMBOL(ieee80211_get_channel_khz);
162 
163 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
164 {
165 	int i, want;
166 
167 	switch (sband->band) {
168 	case NL80211_BAND_5GHZ:
169 	case NL80211_BAND_6GHZ:
170 		want = 3;
171 		for (i = 0; i < sband->n_bitrates; i++) {
172 			if (sband->bitrates[i].bitrate == 60 ||
173 			    sband->bitrates[i].bitrate == 120 ||
174 			    sband->bitrates[i].bitrate == 240) {
175 				sband->bitrates[i].flags |=
176 					IEEE80211_RATE_MANDATORY_A;
177 				want--;
178 			}
179 		}
180 		WARN_ON(want);
181 		break;
182 	case NL80211_BAND_2GHZ:
183 		want = 7;
184 		for (i = 0; i < sband->n_bitrates; i++) {
185 			switch (sband->bitrates[i].bitrate) {
186 			case 10:
187 			case 20:
188 			case 55:
189 			case 110:
190 				sband->bitrates[i].flags |=
191 					IEEE80211_RATE_MANDATORY_B |
192 					IEEE80211_RATE_MANDATORY_G;
193 				want--;
194 				break;
195 			case 60:
196 			case 120:
197 			case 240:
198 				sband->bitrates[i].flags |=
199 					IEEE80211_RATE_MANDATORY_G;
200 				want--;
201 				/* fall through */
202 			default:
203 				sband->bitrates[i].flags |=
204 					IEEE80211_RATE_ERP_G;
205 				break;
206 			}
207 		}
208 		WARN_ON(want != 0 && want != 3);
209 		break;
210 	case NL80211_BAND_60GHZ:
211 		/* check for mandatory HT MCS 1..4 */
212 		WARN_ON(!sband->ht_cap.ht_supported);
213 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
214 		break;
215 	case NL80211_BAND_S1GHZ:
216 		/* Figure 9-589bd: 3 means unsupported, so != 3 means at least
217 		 * mandatory is ok.
218 		 */
219 		WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
220 		break;
221 	case NUM_NL80211_BANDS:
222 	default:
223 		WARN_ON(1);
224 		break;
225 	}
226 }
227 
228 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
229 {
230 	enum nl80211_band band;
231 
232 	for (band = 0; band < NUM_NL80211_BANDS; band++)
233 		if (wiphy->bands[band])
234 			set_mandatory_flags_band(wiphy->bands[band]);
235 }
236 
237 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
238 {
239 	int i;
240 	for (i = 0; i < wiphy->n_cipher_suites; i++)
241 		if (cipher == wiphy->cipher_suites[i])
242 			return true;
243 	return false;
244 }
245 
246 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
247 				   struct key_params *params, int key_idx,
248 				   bool pairwise, const u8 *mac_addr)
249 {
250 	int max_key_idx = 5;
251 
252 	if (wiphy_ext_feature_isset(&rdev->wiphy,
253 				    NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
254 	    wiphy_ext_feature_isset(&rdev->wiphy,
255 				    NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
256 		max_key_idx = 7;
257 	if (key_idx < 0 || key_idx > max_key_idx)
258 		return -EINVAL;
259 
260 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
261 		return -EINVAL;
262 
263 	if (pairwise && !mac_addr)
264 		return -EINVAL;
265 
266 	switch (params->cipher) {
267 	case WLAN_CIPHER_SUITE_TKIP:
268 		/* Extended Key ID can only be used with CCMP/GCMP ciphers */
269 		if ((pairwise && key_idx) ||
270 		    params->mode != NL80211_KEY_RX_TX)
271 			return -EINVAL;
272 		break;
273 	case WLAN_CIPHER_SUITE_CCMP:
274 	case WLAN_CIPHER_SUITE_CCMP_256:
275 	case WLAN_CIPHER_SUITE_GCMP:
276 	case WLAN_CIPHER_SUITE_GCMP_256:
277 		/* IEEE802.11-2016 allows only 0 and - when supporting
278 		 * Extended Key ID - 1 as index for pairwise keys.
279 		 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
280 		 * the driver supports Extended Key ID.
281 		 * @NL80211_KEY_SET_TX can't be set when installing and
282 		 * validating a key.
283 		 */
284 		if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
285 		    params->mode == NL80211_KEY_SET_TX)
286 			return -EINVAL;
287 		if (wiphy_ext_feature_isset(&rdev->wiphy,
288 					    NL80211_EXT_FEATURE_EXT_KEY_ID)) {
289 			if (pairwise && (key_idx < 0 || key_idx > 1))
290 				return -EINVAL;
291 		} else if (pairwise && key_idx) {
292 			return -EINVAL;
293 		}
294 		break;
295 	case WLAN_CIPHER_SUITE_AES_CMAC:
296 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
297 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
298 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
299 		/* Disallow BIP (group-only) cipher as pairwise cipher */
300 		if (pairwise)
301 			return -EINVAL;
302 		if (key_idx < 4)
303 			return -EINVAL;
304 		break;
305 	case WLAN_CIPHER_SUITE_WEP40:
306 	case WLAN_CIPHER_SUITE_WEP104:
307 		if (key_idx > 3)
308 			return -EINVAL;
309 	default:
310 		break;
311 	}
312 
313 	switch (params->cipher) {
314 	case WLAN_CIPHER_SUITE_WEP40:
315 		if (params->key_len != WLAN_KEY_LEN_WEP40)
316 			return -EINVAL;
317 		break;
318 	case WLAN_CIPHER_SUITE_TKIP:
319 		if (params->key_len != WLAN_KEY_LEN_TKIP)
320 			return -EINVAL;
321 		break;
322 	case WLAN_CIPHER_SUITE_CCMP:
323 		if (params->key_len != WLAN_KEY_LEN_CCMP)
324 			return -EINVAL;
325 		break;
326 	case WLAN_CIPHER_SUITE_CCMP_256:
327 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
328 			return -EINVAL;
329 		break;
330 	case WLAN_CIPHER_SUITE_GCMP:
331 		if (params->key_len != WLAN_KEY_LEN_GCMP)
332 			return -EINVAL;
333 		break;
334 	case WLAN_CIPHER_SUITE_GCMP_256:
335 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
336 			return -EINVAL;
337 		break;
338 	case WLAN_CIPHER_SUITE_WEP104:
339 		if (params->key_len != WLAN_KEY_LEN_WEP104)
340 			return -EINVAL;
341 		break;
342 	case WLAN_CIPHER_SUITE_AES_CMAC:
343 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
344 			return -EINVAL;
345 		break;
346 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
347 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
348 			return -EINVAL;
349 		break;
350 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
351 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
352 			return -EINVAL;
353 		break;
354 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
355 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
356 			return -EINVAL;
357 		break;
358 	default:
359 		/*
360 		 * We don't know anything about this algorithm,
361 		 * allow using it -- but the driver must check
362 		 * all parameters! We still check below whether
363 		 * or not the driver supports this algorithm,
364 		 * of course.
365 		 */
366 		break;
367 	}
368 
369 	if (params->seq) {
370 		switch (params->cipher) {
371 		case WLAN_CIPHER_SUITE_WEP40:
372 		case WLAN_CIPHER_SUITE_WEP104:
373 			/* These ciphers do not use key sequence */
374 			return -EINVAL;
375 		case WLAN_CIPHER_SUITE_TKIP:
376 		case WLAN_CIPHER_SUITE_CCMP:
377 		case WLAN_CIPHER_SUITE_CCMP_256:
378 		case WLAN_CIPHER_SUITE_GCMP:
379 		case WLAN_CIPHER_SUITE_GCMP_256:
380 		case WLAN_CIPHER_SUITE_AES_CMAC:
381 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
382 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
383 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
384 			if (params->seq_len != 6)
385 				return -EINVAL;
386 			break;
387 		}
388 	}
389 
390 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
391 		return -EINVAL;
392 
393 	return 0;
394 }
395 
396 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
397 {
398 	unsigned int hdrlen = 24;
399 
400 	if (ieee80211_is_data(fc)) {
401 		if (ieee80211_has_a4(fc))
402 			hdrlen = 30;
403 		if (ieee80211_is_data_qos(fc)) {
404 			hdrlen += IEEE80211_QOS_CTL_LEN;
405 			if (ieee80211_has_order(fc))
406 				hdrlen += IEEE80211_HT_CTL_LEN;
407 		}
408 		goto out;
409 	}
410 
411 	if (ieee80211_is_mgmt(fc)) {
412 		if (ieee80211_has_order(fc))
413 			hdrlen += IEEE80211_HT_CTL_LEN;
414 		goto out;
415 	}
416 
417 	if (ieee80211_is_ctl(fc)) {
418 		/*
419 		 * ACK and CTS are 10 bytes, all others 16. To see how
420 		 * to get this condition consider
421 		 *   subtype mask:   0b0000000011110000 (0x00F0)
422 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
423 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
424 		 *   bits that matter:         ^^^      (0x00E0)
425 		 *   value of those: 0b0000000011000000 (0x00C0)
426 		 */
427 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
428 			hdrlen = 10;
429 		else
430 			hdrlen = 16;
431 	}
432 out:
433 	return hdrlen;
434 }
435 EXPORT_SYMBOL(ieee80211_hdrlen);
436 
437 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
438 {
439 	const struct ieee80211_hdr *hdr =
440 			(const struct ieee80211_hdr *)skb->data;
441 	unsigned int hdrlen;
442 
443 	if (unlikely(skb->len < 10))
444 		return 0;
445 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
446 	if (unlikely(hdrlen > skb->len))
447 		return 0;
448 	return hdrlen;
449 }
450 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
451 
452 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
453 {
454 	int ae = flags & MESH_FLAGS_AE;
455 	/* 802.11-2012, 8.2.4.7.3 */
456 	switch (ae) {
457 	default:
458 	case 0:
459 		return 6;
460 	case MESH_FLAGS_AE_A4:
461 		return 12;
462 	case MESH_FLAGS_AE_A5_A6:
463 		return 18;
464 	}
465 }
466 
467 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
468 {
469 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
470 }
471 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
472 
473 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
474 				  const u8 *addr, enum nl80211_iftype iftype,
475 				  u8 data_offset)
476 {
477 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
478 	struct {
479 		u8 hdr[ETH_ALEN] __aligned(2);
480 		__be16 proto;
481 	} payload;
482 	struct ethhdr tmp;
483 	u16 hdrlen;
484 	u8 mesh_flags = 0;
485 
486 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
487 		return -1;
488 
489 	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
490 	if (skb->len < hdrlen + 8)
491 		return -1;
492 
493 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
494 	 * header
495 	 * IEEE 802.11 address fields:
496 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
497 	 *   0     0   DA    SA    BSSID n/a
498 	 *   0     1   DA    BSSID SA    n/a
499 	 *   1     0   BSSID SA    DA    n/a
500 	 *   1     1   RA    TA    DA    SA
501 	 */
502 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
503 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
504 
505 	if (iftype == NL80211_IFTYPE_MESH_POINT)
506 		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
507 
508 	mesh_flags &= MESH_FLAGS_AE;
509 
510 	switch (hdr->frame_control &
511 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
512 	case cpu_to_le16(IEEE80211_FCTL_TODS):
513 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
514 			     iftype != NL80211_IFTYPE_AP_VLAN &&
515 			     iftype != NL80211_IFTYPE_P2P_GO))
516 			return -1;
517 		break;
518 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
519 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
520 			     iftype != NL80211_IFTYPE_MESH_POINT &&
521 			     iftype != NL80211_IFTYPE_AP_VLAN &&
522 			     iftype != NL80211_IFTYPE_STATION))
523 			return -1;
524 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
525 			if (mesh_flags == MESH_FLAGS_AE_A4)
526 				return -1;
527 			if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
528 				skb_copy_bits(skb, hdrlen +
529 					offsetof(struct ieee80211s_hdr, eaddr1),
530 					tmp.h_dest, 2 * ETH_ALEN);
531 			}
532 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
533 		}
534 		break;
535 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
536 		if ((iftype != NL80211_IFTYPE_STATION &&
537 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
538 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
539 		    (is_multicast_ether_addr(tmp.h_dest) &&
540 		     ether_addr_equal(tmp.h_source, addr)))
541 			return -1;
542 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
543 			if (mesh_flags == MESH_FLAGS_AE_A5_A6)
544 				return -1;
545 			if (mesh_flags == MESH_FLAGS_AE_A4)
546 				skb_copy_bits(skb, hdrlen +
547 					offsetof(struct ieee80211s_hdr, eaddr1),
548 					tmp.h_source, ETH_ALEN);
549 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
550 		}
551 		break;
552 	case cpu_to_le16(0):
553 		if (iftype != NL80211_IFTYPE_ADHOC &&
554 		    iftype != NL80211_IFTYPE_STATION &&
555 		    iftype != NL80211_IFTYPE_OCB)
556 				return -1;
557 		break;
558 	}
559 
560 	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
561 	tmp.h_proto = payload.proto;
562 
563 	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
564 		    tmp.h_proto != htons(ETH_P_AARP) &&
565 		    tmp.h_proto != htons(ETH_P_IPX)) ||
566 		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
567 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
568 		 * replace EtherType */
569 		hdrlen += ETH_ALEN + 2;
570 	else
571 		tmp.h_proto = htons(skb->len - hdrlen);
572 
573 	pskb_pull(skb, hdrlen);
574 
575 	if (!ehdr)
576 		ehdr = skb_push(skb, sizeof(struct ethhdr));
577 	memcpy(ehdr, &tmp, sizeof(tmp));
578 
579 	return 0;
580 }
581 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
582 
583 static void
584 __frame_add_frag(struct sk_buff *skb, struct page *page,
585 		 void *ptr, int len, int size)
586 {
587 	struct skb_shared_info *sh = skb_shinfo(skb);
588 	int page_offset;
589 
590 	get_page(page);
591 	page_offset = ptr - page_address(page);
592 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
593 }
594 
595 static void
596 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
597 			    int offset, int len)
598 {
599 	struct skb_shared_info *sh = skb_shinfo(skb);
600 	const skb_frag_t *frag = &sh->frags[0];
601 	struct page *frag_page;
602 	void *frag_ptr;
603 	int frag_len, frag_size;
604 	int head_size = skb->len - skb->data_len;
605 	int cur_len;
606 
607 	frag_page = virt_to_head_page(skb->head);
608 	frag_ptr = skb->data;
609 	frag_size = head_size;
610 
611 	while (offset >= frag_size) {
612 		offset -= frag_size;
613 		frag_page = skb_frag_page(frag);
614 		frag_ptr = skb_frag_address(frag);
615 		frag_size = skb_frag_size(frag);
616 		frag++;
617 	}
618 
619 	frag_ptr += offset;
620 	frag_len = frag_size - offset;
621 
622 	cur_len = min(len, frag_len);
623 
624 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
625 	len -= cur_len;
626 
627 	while (len > 0) {
628 		frag_len = skb_frag_size(frag);
629 		cur_len = min(len, frag_len);
630 		__frame_add_frag(frame, skb_frag_page(frag),
631 				 skb_frag_address(frag), cur_len, frag_len);
632 		len -= cur_len;
633 		frag++;
634 	}
635 }
636 
637 static struct sk_buff *
638 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
639 		       int offset, int len, bool reuse_frag)
640 {
641 	struct sk_buff *frame;
642 	int cur_len = len;
643 
644 	if (skb->len - offset < len)
645 		return NULL;
646 
647 	/*
648 	 * When reusing framents, copy some data to the head to simplify
649 	 * ethernet header handling and speed up protocol header processing
650 	 * in the stack later.
651 	 */
652 	if (reuse_frag)
653 		cur_len = min_t(int, len, 32);
654 
655 	/*
656 	 * Allocate and reserve two bytes more for payload
657 	 * alignment since sizeof(struct ethhdr) is 14.
658 	 */
659 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
660 	if (!frame)
661 		return NULL;
662 
663 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
664 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
665 
666 	len -= cur_len;
667 	if (!len)
668 		return frame;
669 
670 	offset += cur_len;
671 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
672 
673 	return frame;
674 }
675 
676 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
677 			      const u8 *addr, enum nl80211_iftype iftype,
678 			      const unsigned int extra_headroom,
679 			      const u8 *check_da, const u8 *check_sa)
680 {
681 	unsigned int hlen = ALIGN(extra_headroom, 4);
682 	struct sk_buff *frame = NULL;
683 	u16 ethertype;
684 	u8 *payload;
685 	int offset = 0, remaining;
686 	struct ethhdr eth;
687 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
688 	bool reuse_skb = false;
689 	bool last = false;
690 
691 	while (!last) {
692 		unsigned int subframe_len;
693 		int len;
694 		u8 padding;
695 
696 		skb_copy_bits(skb, offset, &eth, sizeof(eth));
697 		len = ntohs(eth.h_proto);
698 		subframe_len = sizeof(struct ethhdr) + len;
699 		padding = (4 - subframe_len) & 0x3;
700 
701 		/* the last MSDU has no padding */
702 		remaining = skb->len - offset;
703 		if (subframe_len > remaining)
704 			goto purge;
705 
706 		offset += sizeof(struct ethhdr);
707 		last = remaining <= subframe_len + padding;
708 
709 		/* FIXME: should we really accept multicast DA? */
710 		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
711 		     !ether_addr_equal(check_da, eth.h_dest)) ||
712 		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
713 			offset += len + padding;
714 			continue;
715 		}
716 
717 		/* reuse skb for the last subframe */
718 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
719 			skb_pull(skb, offset);
720 			frame = skb;
721 			reuse_skb = true;
722 		} else {
723 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
724 						       reuse_frag);
725 			if (!frame)
726 				goto purge;
727 
728 			offset += len + padding;
729 		}
730 
731 		skb_reset_network_header(frame);
732 		frame->dev = skb->dev;
733 		frame->priority = skb->priority;
734 
735 		payload = frame->data;
736 		ethertype = (payload[6] << 8) | payload[7];
737 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
738 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
739 			   ether_addr_equal(payload, bridge_tunnel_header))) {
740 			eth.h_proto = htons(ethertype);
741 			skb_pull(frame, ETH_ALEN + 2);
742 		}
743 
744 		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
745 		__skb_queue_tail(list, frame);
746 	}
747 
748 	if (!reuse_skb)
749 		dev_kfree_skb(skb);
750 
751 	return;
752 
753  purge:
754 	__skb_queue_purge(list);
755 	dev_kfree_skb(skb);
756 }
757 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
758 
759 /* Given a data frame determine the 802.1p/1d tag to use. */
760 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
761 				    struct cfg80211_qos_map *qos_map)
762 {
763 	unsigned int dscp;
764 	unsigned char vlan_priority;
765 	unsigned int ret;
766 
767 	/* skb->priority values from 256->263 are magic values to
768 	 * directly indicate a specific 802.1d priority.  This is used
769 	 * to allow 802.1d priority to be passed directly in from VLAN
770 	 * tags, etc.
771 	 */
772 	if (skb->priority >= 256 && skb->priority <= 263) {
773 		ret = skb->priority - 256;
774 		goto out;
775 	}
776 
777 	if (skb_vlan_tag_present(skb)) {
778 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
779 			>> VLAN_PRIO_SHIFT;
780 		if (vlan_priority > 0) {
781 			ret = vlan_priority;
782 			goto out;
783 		}
784 	}
785 
786 	switch (skb->protocol) {
787 	case htons(ETH_P_IP):
788 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
789 		break;
790 	case htons(ETH_P_IPV6):
791 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
792 		break;
793 	case htons(ETH_P_MPLS_UC):
794 	case htons(ETH_P_MPLS_MC): {
795 		struct mpls_label mpls_tmp, *mpls;
796 
797 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
798 					  sizeof(*mpls), &mpls_tmp);
799 		if (!mpls)
800 			return 0;
801 
802 		ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
803 			>> MPLS_LS_TC_SHIFT;
804 		goto out;
805 	}
806 	case htons(ETH_P_80221):
807 		/* 802.21 is always network control traffic */
808 		return 7;
809 	default:
810 		return 0;
811 	}
812 
813 	if (qos_map) {
814 		unsigned int i, tmp_dscp = dscp >> 2;
815 
816 		for (i = 0; i < qos_map->num_des; i++) {
817 			if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
818 				ret = qos_map->dscp_exception[i].up;
819 				goto out;
820 			}
821 		}
822 
823 		for (i = 0; i < 8; i++) {
824 			if (tmp_dscp >= qos_map->up[i].low &&
825 			    tmp_dscp <= qos_map->up[i].high) {
826 				ret = i;
827 				goto out;
828 			}
829 		}
830 	}
831 
832 	ret = dscp >> 5;
833 out:
834 	return array_index_nospec(ret, IEEE80211_NUM_TIDS);
835 }
836 EXPORT_SYMBOL(cfg80211_classify8021d);
837 
838 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
839 {
840 	const struct cfg80211_bss_ies *ies;
841 
842 	ies = rcu_dereference(bss->ies);
843 	if (!ies)
844 		return NULL;
845 
846 	return cfg80211_find_elem(id, ies->data, ies->len);
847 }
848 EXPORT_SYMBOL(ieee80211_bss_get_elem);
849 
850 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
851 {
852 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
853 	struct net_device *dev = wdev->netdev;
854 	int i;
855 
856 	if (!wdev->connect_keys)
857 		return;
858 
859 	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
860 		if (!wdev->connect_keys->params[i].cipher)
861 			continue;
862 		if (rdev_add_key(rdev, dev, i, false, NULL,
863 				 &wdev->connect_keys->params[i])) {
864 			netdev_err(dev, "failed to set key %d\n", i);
865 			continue;
866 		}
867 		if (wdev->connect_keys->def == i &&
868 		    rdev_set_default_key(rdev, dev, i, true, true)) {
869 			netdev_err(dev, "failed to set defkey %d\n", i);
870 			continue;
871 		}
872 	}
873 
874 	kfree_sensitive(wdev->connect_keys);
875 	wdev->connect_keys = NULL;
876 }
877 
878 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
879 {
880 	struct cfg80211_event *ev;
881 	unsigned long flags;
882 
883 	spin_lock_irqsave(&wdev->event_lock, flags);
884 	while (!list_empty(&wdev->event_list)) {
885 		ev = list_first_entry(&wdev->event_list,
886 				      struct cfg80211_event, list);
887 		list_del(&ev->list);
888 		spin_unlock_irqrestore(&wdev->event_lock, flags);
889 
890 		wdev_lock(wdev);
891 		switch (ev->type) {
892 		case EVENT_CONNECT_RESULT:
893 			__cfg80211_connect_result(
894 				wdev->netdev,
895 				&ev->cr,
896 				ev->cr.status == WLAN_STATUS_SUCCESS);
897 			break;
898 		case EVENT_ROAMED:
899 			__cfg80211_roamed(wdev, &ev->rm);
900 			break;
901 		case EVENT_DISCONNECTED:
902 			__cfg80211_disconnected(wdev->netdev,
903 						ev->dc.ie, ev->dc.ie_len,
904 						ev->dc.reason,
905 						!ev->dc.locally_generated);
906 			break;
907 		case EVENT_IBSS_JOINED:
908 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
909 					       ev->ij.channel);
910 			break;
911 		case EVENT_STOPPED:
912 			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
913 			break;
914 		case EVENT_PORT_AUTHORIZED:
915 			__cfg80211_port_authorized(wdev, ev->pa.bssid);
916 			break;
917 		}
918 		wdev_unlock(wdev);
919 
920 		kfree(ev);
921 
922 		spin_lock_irqsave(&wdev->event_lock, flags);
923 	}
924 	spin_unlock_irqrestore(&wdev->event_lock, flags);
925 }
926 
927 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
928 {
929 	struct wireless_dev *wdev;
930 
931 	ASSERT_RTNL();
932 
933 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
934 		cfg80211_process_wdev_events(wdev);
935 }
936 
937 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
938 			  struct net_device *dev, enum nl80211_iftype ntype,
939 			  struct vif_params *params)
940 {
941 	int err;
942 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
943 
944 	ASSERT_RTNL();
945 
946 	/* don't support changing VLANs, you just re-create them */
947 	if (otype == NL80211_IFTYPE_AP_VLAN)
948 		return -EOPNOTSUPP;
949 
950 	/* cannot change into P2P device or NAN */
951 	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
952 	    ntype == NL80211_IFTYPE_NAN)
953 		return -EOPNOTSUPP;
954 
955 	if (!rdev->ops->change_virtual_intf ||
956 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
957 		return -EOPNOTSUPP;
958 
959 	/* if it's part of a bridge, reject changing type to station/ibss */
960 	if (netif_is_bridge_port(dev) &&
961 	    (ntype == NL80211_IFTYPE_ADHOC ||
962 	     ntype == NL80211_IFTYPE_STATION ||
963 	     ntype == NL80211_IFTYPE_P2P_CLIENT))
964 		return -EBUSY;
965 
966 	if (ntype != otype) {
967 		dev->ieee80211_ptr->use_4addr = false;
968 		dev->ieee80211_ptr->mesh_id_up_len = 0;
969 		wdev_lock(dev->ieee80211_ptr);
970 		rdev_set_qos_map(rdev, dev, NULL);
971 		wdev_unlock(dev->ieee80211_ptr);
972 
973 		switch (otype) {
974 		case NL80211_IFTYPE_AP:
975 			cfg80211_stop_ap(rdev, dev, true);
976 			break;
977 		case NL80211_IFTYPE_ADHOC:
978 			cfg80211_leave_ibss(rdev, dev, false);
979 			break;
980 		case NL80211_IFTYPE_STATION:
981 		case NL80211_IFTYPE_P2P_CLIENT:
982 			wdev_lock(dev->ieee80211_ptr);
983 			cfg80211_disconnect(rdev, dev,
984 					    WLAN_REASON_DEAUTH_LEAVING, true);
985 			wdev_unlock(dev->ieee80211_ptr);
986 			break;
987 		case NL80211_IFTYPE_MESH_POINT:
988 			/* mesh should be handled? */
989 			break;
990 		default:
991 			break;
992 		}
993 
994 		cfg80211_process_rdev_events(rdev);
995 		cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
996 	}
997 
998 	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
999 
1000 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1001 
1002 	if (!err && params && params->use_4addr != -1)
1003 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1004 
1005 	if (!err) {
1006 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1007 		switch (ntype) {
1008 		case NL80211_IFTYPE_STATION:
1009 			if (dev->ieee80211_ptr->use_4addr)
1010 				break;
1011 			/* fall through */
1012 		case NL80211_IFTYPE_OCB:
1013 		case NL80211_IFTYPE_P2P_CLIENT:
1014 		case NL80211_IFTYPE_ADHOC:
1015 			dev->priv_flags |= IFF_DONT_BRIDGE;
1016 			break;
1017 		case NL80211_IFTYPE_P2P_GO:
1018 		case NL80211_IFTYPE_AP:
1019 		case NL80211_IFTYPE_AP_VLAN:
1020 		case NL80211_IFTYPE_WDS:
1021 		case NL80211_IFTYPE_MESH_POINT:
1022 			/* bridging OK */
1023 			break;
1024 		case NL80211_IFTYPE_MONITOR:
1025 			/* monitor can't bridge anyway */
1026 			break;
1027 		case NL80211_IFTYPE_UNSPECIFIED:
1028 		case NUM_NL80211_IFTYPES:
1029 			/* not happening */
1030 			break;
1031 		case NL80211_IFTYPE_P2P_DEVICE:
1032 		case NL80211_IFTYPE_NAN:
1033 			WARN_ON(1);
1034 			break;
1035 		}
1036 	}
1037 
1038 	if (!err && ntype != otype && netif_running(dev)) {
1039 		cfg80211_update_iface_num(rdev, ntype, 1);
1040 		cfg80211_update_iface_num(rdev, otype, -1);
1041 	}
1042 
1043 	return err;
1044 }
1045 
1046 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1047 {
1048 	int modulation, streams, bitrate;
1049 
1050 	/* the formula below does only work for MCS values smaller than 32 */
1051 	if (WARN_ON_ONCE(rate->mcs >= 32))
1052 		return 0;
1053 
1054 	modulation = rate->mcs & 7;
1055 	streams = (rate->mcs >> 3) + 1;
1056 
1057 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1058 
1059 	if (modulation < 4)
1060 		bitrate *= (modulation + 1);
1061 	else if (modulation == 4)
1062 		bitrate *= (modulation + 2);
1063 	else
1064 		bitrate *= (modulation + 3);
1065 
1066 	bitrate *= streams;
1067 
1068 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1069 		bitrate = (bitrate / 9) * 10;
1070 
1071 	/* do NOT round down here */
1072 	return (bitrate + 50000) / 100000;
1073 }
1074 
1075 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1076 {
1077 	static const u32 __mcs2bitrate[] = {
1078 		/* control PHY */
1079 		[0] =   275,
1080 		/* SC PHY */
1081 		[1] =  3850,
1082 		[2] =  7700,
1083 		[3] =  9625,
1084 		[4] = 11550,
1085 		[5] = 12512, /* 1251.25 mbps */
1086 		[6] = 15400,
1087 		[7] = 19250,
1088 		[8] = 23100,
1089 		[9] = 25025,
1090 		[10] = 30800,
1091 		[11] = 38500,
1092 		[12] = 46200,
1093 		/* OFDM PHY */
1094 		[13] =  6930,
1095 		[14] =  8662, /* 866.25 mbps */
1096 		[15] = 13860,
1097 		[16] = 17325,
1098 		[17] = 20790,
1099 		[18] = 27720,
1100 		[19] = 34650,
1101 		[20] = 41580,
1102 		[21] = 45045,
1103 		[22] = 51975,
1104 		[23] = 62370,
1105 		[24] = 67568, /* 6756.75 mbps */
1106 		/* LP-SC PHY */
1107 		[25] =  6260,
1108 		[26] =  8340,
1109 		[27] = 11120,
1110 		[28] = 12510,
1111 		[29] = 16680,
1112 		[30] = 22240,
1113 		[31] = 25030,
1114 	};
1115 
1116 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1117 		return 0;
1118 
1119 	return __mcs2bitrate[rate->mcs];
1120 }
1121 
1122 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1123 {
1124 	static const u32 __mcs2bitrate[] = {
1125 		/* control PHY */
1126 		[0] =   275,
1127 		/* SC PHY */
1128 		[1] =  3850,
1129 		[2] =  7700,
1130 		[3] =  9625,
1131 		[4] = 11550,
1132 		[5] = 12512, /* 1251.25 mbps */
1133 		[6] = 13475,
1134 		[7] = 15400,
1135 		[8] = 19250,
1136 		[9] = 23100,
1137 		[10] = 25025,
1138 		[11] = 26950,
1139 		[12] = 30800,
1140 		[13] = 38500,
1141 		[14] = 46200,
1142 		[15] = 50050,
1143 		[16] = 53900,
1144 		[17] = 57750,
1145 		[18] = 69300,
1146 		[19] = 75075,
1147 		[20] = 80850,
1148 	};
1149 
1150 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1151 		return 0;
1152 
1153 	return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1154 }
1155 
1156 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1157 {
1158 	static const u32 base[4][10] = {
1159 		{   6500000,
1160 		   13000000,
1161 		   19500000,
1162 		   26000000,
1163 		   39000000,
1164 		   52000000,
1165 		   58500000,
1166 		   65000000,
1167 		   78000000,
1168 		/* not in the spec, but some devices use this: */
1169 		   86500000,
1170 		},
1171 		{  13500000,
1172 		   27000000,
1173 		   40500000,
1174 		   54000000,
1175 		   81000000,
1176 		  108000000,
1177 		  121500000,
1178 		  135000000,
1179 		  162000000,
1180 		  180000000,
1181 		},
1182 		{  29300000,
1183 		   58500000,
1184 		   87800000,
1185 		  117000000,
1186 		  175500000,
1187 		  234000000,
1188 		  263300000,
1189 		  292500000,
1190 		  351000000,
1191 		  390000000,
1192 		},
1193 		{  58500000,
1194 		  117000000,
1195 		  175500000,
1196 		  234000000,
1197 		  351000000,
1198 		  468000000,
1199 		  526500000,
1200 		  585000000,
1201 		  702000000,
1202 		  780000000,
1203 		},
1204 	};
1205 	u32 bitrate;
1206 	int idx;
1207 
1208 	if (rate->mcs > 9)
1209 		goto warn;
1210 
1211 	switch (rate->bw) {
1212 	case RATE_INFO_BW_160:
1213 		idx = 3;
1214 		break;
1215 	case RATE_INFO_BW_80:
1216 		idx = 2;
1217 		break;
1218 	case RATE_INFO_BW_40:
1219 		idx = 1;
1220 		break;
1221 	case RATE_INFO_BW_5:
1222 	case RATE_INFO_BW_10:
1223 	default:
1224 		goto warn;
1225 	case RATE_INFO_BW_20:
1226 		idx = 0;
1227 	}
1228 
1229 	bitrate = base[idx][rate->mcs];
1230 	bitrate *= rate->nss;
1231 
1232 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1233 		bitrate = (bitrate / 9) * 10;
1234 
1235 	/* do NOT round down here */
1236 	return (bitrate + 50000) / 100000;
1237  warn:
1238 	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1239 		  rate->bw, rate->mcs, rate->nss);
1240 	return 0;
1241 }
1242 
1243 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1244 {
1245 #define SCALE 2048
1246 	u16 mcs_divisors[12] = {
1247 		34133, /* 16.666666... */
1248 		17067, /*  8.333333... */
1249 		11378, /*  5.555555... */
1250 		 8533, /*  4.166666... */
1251 		 5689, /*  2.777777... */
1252 		 4267, /*  2.083333... */
1253 		 3923, /*  1.851851... */
1254 		 3413, /*  1.666666... */
1255 		 2844, /*  1.388888... */
1256 		 2560, /*  1.250000... */
1257 		 2276, /*  1.111111... */
1258 		 2048, /*  1.000000... */
1259 	};
1260 	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1261 	u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1262 	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1263 	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1264 	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1265 	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1266 	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1267 	u64 tmp;
1268 	u32 result;
1269 
1270 	if (WARN_ON_ONCE(rate->mcs > 11))
1271 		return 0;
1272 
1273 	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1274 		return 0;
1275 	if (WARN_ON_ONCE(rate->he_ru_alloc >
1276 			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1277 		return 0;
1278 	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1279 		return 0;
1280 
1281 	if (rate->bw == RATE_INFO_BW_160)
1282 		result = rates_160M[rate->he_gi];
1283 	else if (rate->bw == RATE_INFO_BW_80 ||
1284 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1285 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1286 		result = rates_969[rate->he_gi];
1287 	else if (rate->bw == RATE_INFO_BW_40 ||
1288 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1289 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1290 		result = rates_484[rate->he_gi];
1291 	else if (rate->bw == RATE_INFO_BW_20 ||
1292 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1293 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1294 		result = rates_242[rate->he_gi];
1295 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1296 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1297 		result = rates_106[rate->he_gi];
1298 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1299 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1300 		result = rates_52[rate->he_gi];
1301 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1302 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1303 		result = rates_26[rate->he_gi];
1304 	else {
1305 		WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1306 		     rate->bw, rate->he_ru_alloc);
1307 		return 0;
1308 	}
1309 
1310 	/* now scale to the appropriate MCS */
1311 	tmp = result;
1312 	tmp *= SCALE;
1313 	do_div(tmp, mcs_divisors[rate->mcs]);
1314 	result = tmp;
1315 
1316 	/* and take NSS, DCM into account */
1317 	result = (result * rate->nss) / 8;
1318 	if (rate->he_dcm)
1319 		result /= 2;
1320 
1321 	return result / 10000;
1322 }
1323 
1324 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1325 {
1326 	if (rate->flags & RATE_INFO_FLAGS_MCS)
1327 		return cfg80211_calculate_bitrate_ht(rate);
1328 	if (rate->flags & RATE_INFO_FLAGS_DMG)
1329 		return cfg80211_calculate_bitrate_dmg(rate);
1330 	if (rate->flags & RATE_INFO_FLAGS_EDMG)
1331 		return cfg80211_calculate_bitrate_edmg(rate);
1332 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1333 		return cfg80211_calculate_bitrate_vht(rate);
1334 	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1335 		return cfg80211_calculate_bitrate_he(rate);
1336 
1337 	return rate->legacy;
1338 }
1339 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1340 
1341 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1342 			  enum ieee80211_p2p_attr_id attr,
1343 			  u8 *buf, unsigned int bufsize)
1344 {
1345 	u8 *out = buf;
1346 	u16 attr_remaining = 0;
1347 	bool desired_attr = false;
1348 	u16 desired_len = 0;
1349 
1350 	while (len > 0) {
1351 		unsigned int iedatalen;
1352 		unsigned int copy;
1353 		const u8 *iedata;
1354 
1355 		if (len < 2)
1356 			return -EILSEQ;
1357 		iedatalen = ies[1];
1358 		if (iedatalen + 2 > len)
1359 			return -EILSEQ;
1360 
1361 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1362 			goto cont;
1363 
1364 		if (iedatalen < 4)
1365 			goto cont;
1366 
1367 		iedata = ies + 2;
1368 
1369 		/* check WFA OUI, P2P subtype */
1370 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1371 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1372 			goto cont;
1373 
1374 		iedatalen -= 4;
1375 		iedata += 4;
1376 
1377 		/* check attribute continuation into this IE */
1378 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1379 		if (copy && desired_attr) {
1380 			desired_len += copy;
1381 			if (out) {
1382 				memcpy(out, iedata, min(bufsize, copy));
1383 				out += min(bufsize, copy);
1384 				bufsize -= min(bufsize, copy);
1385 			}
1386 
1387 
1388 			if (copy == attr_remaining)
1389 				return desired_len;
1390 		}
1391 
1392 		attr_remaining -= copy;
1393 		if (attr_remaining)
1394 			goto cont;
1395 
1396 		iedatalen -= copy;
1397 		iedata += copy;
1398 
1399 		while (iedatalen > 0) {
1400 			u16 attr_len;
1401 
1402 			/* P2P attribute ID & size must fit */
1403 			if (iedatalen < 3)
1404 				return -EILSEQ;
1405 			desired_attr = iedata[0] == attr;
1406 			attr_len = get_unaligned_le16(iedata + 1);
1407 			iedatalen -= 3;
1408 			iedata += 3;
1409 
1410 			copy = min_t(unsigned int, attr_len, iedatalen);
1411 
1412 			if (desired_attr) {
1413 				desired_len += copy;
1414 				if (out) {
1415 					memcpy(out, iedata, min(bufsize, copy));
1416 					out += min(bufsize, copy);
1417 					bufsize -= min(bufsize, copy);
1418 				}
1419 
1420 				if (copy == attr_len)
1421 					return desired_len;
1422 			}
1423 
1424 			iedata += copy;
1425 			iedatalen -= copy;
1426 			attr_remaining = attr_len - copy;
1427 		}
1428 
1429  cont:
1430 		len -= ies[1] + 2;
1431 		ies += ies[1] + 2;
1432 	}
1433 
1434 	if (attr_remaining && desired_attr)
1435 		return -EILSEQ;
1436 
1437 	return -ENOENT;
1438 }
1439 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1440 
1441 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1442 {
1443 	int i;
1444 
1445 	/* Make sure array values are legal */
1446 	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1447 		return false;
1448 
1449 	i = 0;
1450 	while (i < n_ids) {
1451 		if (ids[i] == WLAN_EID_EXTENSION) {
1452 			if (id_ext && (ids[i + 1] == id))
1453 				return true;
1454 
1455 			i += 2;
1456 			continue;
1457 		}
1458 
1459 		if (ids[i] == id && !id_ext)
1460 			return true;
1461 
1462 		i++;
1463 	}
1464 	return false;
1465 }
1466 
1467 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1468 {
1469 	/* we assume a validly formed IEs buffer */
1470 	u8 len = ies[pos + 1];
1471 
1472 	pos += 2 + len;
1473 
1474 	/* the IE itself must have 255 bytes for fragments to follow */
1475 	if (len < 255)
1476 		return pos;
1477 
1478 	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1479 		len = ies[pos + 1];
1480 		pos += 2 + len;
1481 	}
1482 
1483 	return pos;
1484 }
1485 
1486 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1487 			      const u8 *ids, int n_ids,
1488 			      const u8 *after_ric, int n_after_ric,
1489 			      size_t offset)
1490 {
1491 	size_t pos = offset;
1492 
1493 	while (pos < ielen) {
1494 		u8 ext = 0;
1495 
1496 		if (ies[pos] == WLAN_EID_EXTENSION)
1497 			ext = 2;
1498 		if ((pos + ext) >= ielen)
1499 			break;
1500 
1501 		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1502 					  ies[pos] == WLAN_EID_EXTENSION))
1503 			break;
1504 
1505 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1506 			pos = skip_ie(ies, ielen, pos);
1507 
1508 			while (pos < ielen) {
1509 				if (ies[pos] == WLAN_EID_EXTENSION)
1510 					ext = 2;
1511 				else
1512 					ext = 0;
1513 
1514 				if ((pos + ext) >= ielen)
1515 					break;
1516 
1517 				if (!ieee80211_id_in_list(after_ric,
1518 							  n_after_ric,
1519 							  ies[pos + ext],
1520 							  ext == 2))
1521 					pos = skip_ie(ies, ielen, pos);
1522 				else
1523 					break;
1524 			}
1525 		} else {
1526 			pos = skip_ie(ies, ielen, pos);
1527 		}
1528 	}
1529 
1530 	return pos;
1531 }
1532 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1533 
1534 bool ieee80211_operating_class_to_band(u8 operating_class,
1535 				       enum nl80211_band *band)
1536 {
1537 	switch (operating_class) {
1538 	case 112:
1539 	case 115 ... 127:
1540 	case 128 ... 130:
1541 		*band = NL80211_BAND_5GHZ;
1542 		return true;
1543 	case 131 ... 135:
1544 		*band = NL80211_BAND_6GHZ;
1545 		return true;
1546 	case 81:
1547 	case 82:
1548 	case 83:
1549 	case 84:
1550 		*band = NL80211_BAND_2GHZ;
1551 		return true;
1552 	case 180:
1553 		*band = NL80211_BAND_60GHZ;
1554 		return true;
1555 	}
1556 
1557 	return false;
1558 }
1559 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1560 
1561 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1562 					  u8 *op_class)
1563 {
1564 	u8 vht_opclass;
1565 	u32 freq = chandef->center_freq1;
1566 
1567 	if (freq >= 2412 && freq <= 2472) {
1568 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1569 			return false;
1570 
1571 		/* 2.407 GHz, channels 1..13 */
1572 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1573 			if (freq > chandef->chan->center_freq)
1574 				*op_class = 83; /* HT40+ */
1575 			else
1576 				*op_class = 84; /* HT40- */
1577 		} else {
1578 			*op_class = 81;
1579 		}
1580 
1581 		return true;
1582 	}
1583 
1584 	if (freq == 2484) {
1585 		/* channel 14 is only for IEEE 802.11b */
1586 		if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1587 			return false;
1588 
1589 		*op_class = 82; /* channel 14 */
1590 		return true;
1591 	}
1592 
1593 	switch (chandef->width) {
1594 	case NL80211_CHAN_WIDTH_80:
1595 		vht_opclass = 128;
1596 		break;
1597 	case NL80211_CHAN_WIDTH_160:
1598 		vht_opclass = 129;
1599 		break;
1600 	case NL80211_CHAN_WIDTH_80P80:
1601 		vht_opclass = 130;
1602 		break;
1603 	case NL80211_CHAN_WIDTH_10:
1604 	case NL80211_CHAN_WIDTH_5:
1605 		return false; /* unsupported for now */
1606 	default:
1607 		vht_opclass = 0;
1608 		break;
1609 	}
1610 
1611 	/* 5 GHz, channels 36..48 */
1612 	if (freq >= 5180 && freq <= 5240) {
1613 		if (vht_opclass) {
1614 			*op_class = vht_opclass;
1615 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1616 			if (freq > chandef->chan->center_freq)
1617 				*op_class = 116;
1618 			else
1619 				*op_class = 117;
1620 		} else {
1621 			*op_class = 115;
1622 		}
1623 
1624 		return true;
1625 	}
1626 
1627 	/* 5 GHz, channels 52..64 */
1628 	if (freq >= 5260 && freq <= 5320) {
1629 		if (vht_opclass) {
1630 			*op_class = vht_opclass;
1631 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1632 			if (freq > chandef->chan->center_freq)
1633 				*op_class = 119;
1634 			else
1635 				*op_class = 120;
1636 		} else {
1637 			*op_class = 118;
1638 		}
1639 
1640 		return true;
1641 	}
1642 
1643 	/* 5 GHz, channels 100..144 */
1644 	if (freq >= 5500 && freq <= 5720) {
1645 		if (vht_opclass) {
1646 			*op_class = vht_opclass;
1647 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1648 			if (freq > chandef->chan->center_freq)
1649 				*op_class = 122;
1650 			else
1651 				*op_class = 123;
1652 		} else {
1653 			*op_class = 121;
1654 		}
1655 
1656 		return true;
1657 	}
1658 
1659 	/* 5 GHz, channels 149..169 */
1660 	if (freq >= 5745 && freq <= 5845) {
1661 		if (vht_opclass) {
1662 			*op_class = vht_opclass;
1663 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1664 			if (freq > chandef->chan->center_freq)
1665 				*op_class = 126;
1666 			else
1667 				*op_class = 127;
1668 		} else if (freq <= 5805) {
1669 			*op_class = 124;
1670 		} else {
1671 			*op_class = 125;
1672 		}
1673 
1674 		return true;
1675 	}
1676 
1677 	/* 56.16 GHz, channel 1..4 */
1678 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1679 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1680 			return false;
1681 
1682 		*op_class = 180;
1683 		return true;
1684 	}
1685 
1686 	/* not supported yet */
1687 	return false;
1688 }
1689 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1690 
1691 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1692 				       u32 *beacon_int_gcd,
1693 				       bool *beacon_int_different)
1694 {
1695 	struct wireless_dev *wdev;
1696 
1697 	*beacon_int_gcd = 0;
1698 	*beacon_int_different = false;
1699 
1700 	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1701 		if (!wdev->beacon_interval)
1702 			continue;
1703 
1704 		if (!*beacon_int_gcd) {
1705 			*beacon_int_gcd = wdev->beacon_interval;
1706 			continue;
1707 		}
1708 
1709 		if (wdev->beacon_interval == *beacon_int_gcd)
1710 			continue;
1711 
1712 		*beacon_int_different = true;
1713 		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1714 	}
1715 
1716 	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1717 		if (*beacon_int_gcd)
1718 			*beacon_int_different = true;
1719 		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1720 	}
1721 }
1722 
1723 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1724 				 enum nl80211_iftype iftype, u32 beacon_int)
1725 {
1726 	/*
1727 	 * This is just a basic pre-condition check; if interface combinations
1728 	 * are possible the driver must already be checking those with a call
1729 	 * to cfg80211_check_combinations(), in which case we'll validate more
1730 	 * through the cfg80211_calculate_bi_data() call and code in
1731 	 * cfg80211_iter_combinations().
1732 	 */
1733 
1734 	if (beacon_int < 10 || beacon_int > 10000)
1735 		return -EINVAL;
1736 
1737 	return 0;
1738 }
1739 
1740 int cfg80211_iter_combinations(struct wiphy *wiphy,
1741 			       struct iface_combination_params *params,
1742 			       void (*iter)(const struct ieee80211_iface_combination *c,
1743 					    void *data),
1744 			       void *data)
1745 {
1746 	const struct ieee80211_regdomain *regdom;
1747 	enum nl80211_dfs_regions region = 0;
1748 	int i, j, iftype;
1749 	int num_interfaces = 0;
1750 	u32 used_iftypes = 0;
1751 	u32 beacon_int_gcd;
1752 	bool beacon_int_different;
1753 
1754 	/*
1755 	 * This is a bit strange, since the iteration used to rely only on
1756 	 * the data given by the driver, but here it now relies on context,
1757 	 * in form of the currently operating interfaces.
1758 	 * This is OK for all current users, and saves us from having to
1759 	 * push the GCD calculations into all the drivers.
1760 	 * In the future, this should probably rely more on data that's in
1761 	 * cfg80211 already - the only thing not would appear to be any new
1762 	 * interfaces (while being brought up) and channel/radar data.
1763 	 */
1764 	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1765 				   &beacon_int_gcd, &beacon_int_different);
1766 
1767 	if (params->radar_detect) {
1768 		rcu_read_lock();
1769 		regdom = rcu_dereference(cfg80211_regdomain);
1770 		if (regdom)
1771 			region = regdom->dfs_region;
1772 		rcu_read_unlock();
1773 	}
1774 
1775 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1776 		num_interfaces += params->iftype_num[iftype];
1777 		if (params->iftype_num[iftype] > 0 &&
1778 		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1779 			used_iftypes |= BIT(iftype);
1780 	}
1781 
1782 	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1783 		const struct ieee80211_iface_combination *c;
1784 		struct ieee80211_iface_limit *limits;
1785 		u32 all_iftypes = 0;
1786 
1787 		c = &wiphy->iface_combinations[i];
1788 
1789 		if (num_interfaces > c->max_interfaces)
1790 			continue;
1791 		if (params->num_different_channels > c->num_different_channels)
1792 			continue;
1793 
1794 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1795 				 GFP_KERNEL);
1796 		if (!limits)
1797 			return -ENOMEM;
1798 
1799 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1800 			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1801 				continue;
1802 			for (j = 0; j < c->n_limits; j++) {
1803 				all_iftypes |= limits[j].types;
1804 				if (!(limits[j].types & BIT(iftype)))
1805 					continue;
1806 				if (limits[j].max < params->iftype_num[iftype])
1807 					goto cont;
1808 				limits[j].max -= params->iftype_num[iftype];
1809 			}
1810 		}
1811 
1812 		if (params->radar_detect !=
1813 			(c->radar_detect_widths & params->radar_detect))
1814 			goto cont;
1815 
1816 		if (params->radar_detect && c->radar_detect_regions &&
1817 		    !(c->radar_detect_regions & BIT(region)))
1818 			goto cont;
1819 
1820 		/* Finally check that all iftypes that we're currently
1821 		 * using are actually part of this combination. If they
1822 		 * aren't then we can't use this combination and have
1823 		 * to continue to the next.
1824 		 */
1825 		if ((all_iftypes & used_iftypes) != used_iftypes)
1826 			goto cont;
1827 
1828 		if (beacon_int_gcd) {
1829 			if (c->beacon_int_min_gcd &&
1830 			    beacon_int_gcd < c->beacon_int_min_gcd)
1831 				goto cont;
1832 			if (!c->beacon_int_min_gcd && beacon_int_different)
1833 				goto cont;
1834 		}
1835 
1836 		/* This combination covered all interface types and
1837 		 * supported the requested numbers, so we're good.
1838 		 */
1839 
1840 		(*iter)(c, data);
1841  cont:
1842 		kfree(limits);
1843 	}
1844 
1845 	return 0;
1846 }
1847 EXPORT_SYMBOL(cfg80211_iter_combinations);
1848 
1849 static void
1850 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1851 			  void *data)
1852 {
1853 	int *num = data;
1854 	(*num)++;
1855 }
1856 
1857 int cfg80211_check_combinations(struct wiphy *wiphy,
1858 				struct iface_combination_params *params)
1859 {
1860 	int err, num = 0;
1861 
1862 	err = cfg80211_iter_combinations(wiphy, params,
1863 					 cfg80211_iter_sum_ifcombs, &num);
1864 	if (err)
1865 		return err;
1866 	if (num == 0)
1867 		return -EBUSY;
1868 
1869 	return 0;
1870 }
1871 EXPORT_SYMBOL(cfg80211_check_combinations);
1872 
1873 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1874 			   const u8 *rates, unsigned int n_rates,
1875 			   u32 *mask)
1876 {
1877 	int i, j;
1878 
1879 	if (!sband)
1880 		return -EINVAL;
1881 
1882 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1883 		return -EINVAL;
1884 
1885 	*mask = 0;
1886 
1887 	for (i = 0; i < n_rates; i++) {
1888 		int rate = (rates[i] & 0x7f) * 5;
1889 		bool found = false;
1890 
1891 		for (j = 0; j < sband->n_bitrates; j++) {
1892 			if (sband->bitrates[j].bitrate == rate) {
1893 				found = true;
1894 				*mask |= BIT(j);
1895 				break;
1896 			}
1897 		}
1898 		if (!found)
1899 			return -EINVAL;
1900 	}
1901 
1902 	/*
1903 	 * mask must have at least one bit set here since we
1904 	 * didn't accept a 0-length rates array nor allowed
1905 	 * entries in the array that didn't exist
1906 	 */
1907 
1908 	return 0;
1909 }
1910 
1911 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1912 {
1913 	enum nl80211_band band;
1914 	unsigned int n_channels = 0;
1915 
1916 	for (band = 0; band < NUM_NL80211_BANDS; band++)
1917 		if (wiphy->bands[band])
1918 			n_channels += wiphy->bands[band]->n_channels;
1919 
1920 	return n_channels;
1921 }
1922 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1923 
1924 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1925 			 struct station_info *sinfo)
1926 {
1927 	struct cfg80211_registered_device *rdev;
1928 	struct wireless_dev *wdev;
1929 
1930 	wdev = dev->ieee80211_ptr;
1931 	if (!wdev)
1932 		return -EOPNOTSUPP;
1933 
1934 	rdev = wiphy_to_rdev(wdev->wiphy);
1935 	if (!rdev->ops->get_station)
1936 		return -EOPNOTSUPP;
1937 
1938 	memset(sinfo, 0, sizeof(*sinfo));
1939 
1940 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1941 }
1942 EXPORT_SYMBOL(cfg80211_get_station);
1943 
1944 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1945 {
1946 	int i;
1947 
1948 	if (!f)
1949 		return;
1950 
1951 	kfree(f->serv_spec_info);
1952 	kfree(f->srf_bf);
1953 	kfree(f->srf_macs);
1954 	for (i = 0; i < f->num_rx_filters; i++)
1955 		kfree(f->rx_filters[i].filter);
1956 
1957 	for (i = 0; i < f->num_tx_filters; i++)
1958 		kfree(f->tx_filters[i].filter);
1959 
1960 	kfree(f->rx_filters);
1961 	kfree(f->tx_filters);
1962 	kfree(f);
1963 }
1964 EXPORT_SYMBOL(cfg80211_free_nan_func);
1965 
1966 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1967 				u32 center_freq_khz, u32 bw_khz)
1968 {
1969 	u32 start_freq_khz, end_freq_khz;
1970 
1971 	start_freq_khz = center_freq_khz - (bw_khz / 2);
1972 	end_freq_khz = center_freq_khz + (bw_khz / 2);
1973 
1974 	if (start_freq_khz >= freq_range->start_freq_khz &&
1975 	    end_freq_khz <= freq_range->end_freq_khz)
1976 		return true;
1977 
1978 	return false;
1979 }
1980 
1981 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1982 {
1983 	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1984 				sizeof(*(sinfo->pertid)),
1985 				gfp);
1986 	if (!sinfo->pertid)
1987 		return -ENOMEM;
1988 
1989 	return 0;
1990 }
1991 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1992 
1993 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1994 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1995 const unsigned char rfc1042_header[] __aligned(2) =
1996 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1997 EXPORT_SYMBOL(rfc1042_header);
1998 
1999 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2000 const unsigned char bridge_tunnel_header[] __aligned(2) =
2001 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2002 EXPORT_SYMBOL(bridge_tunnel_header);
2003 
2004 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2005 struct iapp_layer2_update {
2006 	u8 da[ETH_ALEN];	/* broadcast */
2007 	u8 sa[ETH_ALEN];	/* STA addr */
2008 	__be16 len;		/* 6 */
2009 	u8 dsap;		/* 0 */
2010 	u8 ssap;		/* 0 */
2011 	u8 control;
2012 	u8 xid_info[3];
2013 } __packed;
2014 
2015 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2016 {
2017 	struct iapp_layer2_update *msg;
2018 	struct sk_buff *skb;
2019 
2020 	/* Send Level 2 Update Frame to update forwarding tables in layer 2
2021 	 * bridge devices */
2022 
2023 	skb = dev_alloc_skb(sizeof(*msg));
2024 	if (!skb)
2025 		return;
2026 	msg = skb_put(skb, sizeof(*msg));
2027 
2028 	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2029 	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2030 
2031 	eth_broadcast_addr(msg->da);
2032 	ether_addr_copy(msg->sa, addr);
2033 	msg->len = htons(6);
2034 	msg->dsap = 0;
2035 	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
2036 	msg->control = 0xaf;	/* XID response lsb.1111F101.
2037 				 * F=0 (no poll command; unsolicited frame) */
2038 	msg->xid_info[0] = 0x81;	/* XID format identifier */
2039 	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
2040 	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
2041 
2042 	skb->dev = dev;
2043 	skb->protocol = eth_type_trans(skb, dev);
2044 	memset(skb->cb, 0, sizeof(skb->cb));
2045 	netif_rx_ni(skb);
2046 }
2047 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2048 
2049 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2050 			      enum ieee80211_vht_chanwidth bw,
2051 			      int mcs, bool ext_nss_bw_capable,
2052 			      unsigned int max_vht_nss)
2053 {
2054 	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2055 	int ext_nss_bw;
2056 	int supp_width;
2057 	int i, mcs_encoding;
2058 
2059 	if (map == 0xffff)
2060 		return 0;
2061 
2062 	if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2063 		return 0;
2064 	if (mcs <= 7)
2065 		mcs_encoding = 0;
2066 	else if (mcs == 8)
2067 		mcs_encoding = 1;
2068 	else
2069 		mcs_encoding = 2;
2070 
2071 	if (!max_vht_nss) {
2072 		/* find max_vht_nss for the given MCS */
2073 		for (i = 7; i >= 0; i--) {
2074 			int supp = (map >> (2 * i)) & 3;
2075 
2076 			if (supp == 3)
2077 				continue;
2078 
2079 			if (supp >= mcs_encoding) {
2080 				max_vht_nss = i + 1;
2081 				break;
2082 			}
2083 		}
2084 	}
2085 
2086 	if (!(cap->supp_mcs.tx_mcs_map &
2087 			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2088 		return max_vht_nss;
2089 
2090 	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2091 				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2092 	supp_width = le32_get_bits(cap->vht_cap_info,
2093 				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2094 
2095 	/* if not capable, treat ext_nss_bw as 0 */
2096 	if (!ext_nss_bw_capable)
2097 		ext_nss_bw = 0;
2098 
2099 	/* This is invalid */
2100 	if (supp_width == 3)
2101 		return 0;
2102 
2103 	/* This is an invalid combination so pretend nothing is supported */
2104 	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2105 		return 0;
2106 
2107 	/*
2108 	 * Cover all the special cases according to IEEE 802.11-2016
2109 	 * Table 9-250. All other cases are either factor of 1 or not
2110 	 * valid/supported.
2111 	 */
2112 	switch (bw) {
2113 	case IEEE80211_VHT_CHANWIDTH_USE_HT:
2114 	case IEEE80211_VHT_CHANWIDTH_80MHZ:
2115 		if ((supp_width == 1 || supp_width == 2) &&
2116 		    ext_nss_bw == 3)
2117 			return 2 * max_vht_nss;
2118 		break;
2119 	case IEEE80211_VHT_CHANWIDTH_160MHZ:
2120 		if (supp_width == 0 &&
2121 		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2122 			return max_vht_nss / 2;
2123 		if (supp_width == 0 &&
2124 		    ext_nss_bw == 3)
2125 			return (3 * max_vht_nss) / 4;
2126 		if (supp_width == 1 &&
2127 		    ext_nss_bw == 3)
2128 			return 2 * max_vht_nss;
2129 		break;
2130 	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2131 		if (supp_width == 0 && ext_nss_bw == 1)
2132 			return 0; /* not possible */
2133 		if (supp_width == 0 &&
2134 		    ext_nss_bw == 2)
2135 			return max_vht_nss / 2;
2136 		if (supp_width == 0 &&
2137 		    ext_nss_bw == 3)
2138 			return (3 * max_vht_nss) / 4;
2139 		if (supp_width == 1 &&
2140 		    ext_nss_bw == 0)
2141 			return 0; /* not possible */
2142 		if (supp_width == 1 &&
2143 		    ext_nss_bw == 1)
2144 			return max_vht_nss / 2;
2145 		if (supp_width == 1 &&
2146 		    ext_nss_bw == 2)
2147 			return (3 * max_vht_nss) / 4;
2148 		break;
2149 	}
2150 
2151 	/* not covered or invalid combination received */
2152 	return max_vht_nss;
2153 }
2154 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2155 
2156 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2157 			     bool is_4addr, u8 check_swif)
2158 
2159 {
2160 	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2161 
2162 	switch (check_swif) {
2163 	case 0:
2164 		if (is_vlan && is_4addr)
2165 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2166 		return wiphy->interface_modes & BIT(iftype);
2167 	case 1:
2168 		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2169 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2170 		return wiphy->software_iftypes & BIT(iftype);
2171 	default:
2172 		break;
2173 	}
2174 
2175 	return false;
2176 }
2177 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2178