1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Wireless utility functions 4 * 5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018-2020 Intel Corporation 9 */ 10 #include <linux/export.h> 11 #include <linux/bitops.h> 12 #include <linux/etherdevice.h> 13 #include <linux/slab.h> 14 #include <linux/ieee80211.h> 15 #include <net/cfg80211.h> 16 #include <net/ip.h> 17 #include <net/dsfield.h> 18 #include <linux/if_vlan.h> 19 #include <linux/mpls.h> 20 #include <linux/gcd.h> 21 #include <linux/bitfield.h> 22 #include <linux/nospec.h> 23 #include "core.h" 24 #include "rdev-ops.h" 25 26 27 struct ieee80211_rate * 28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 29 u32 basic_rates, int bitrate) 30 { 31 struct ieee80211_rate *result = &sband->bitrates[0]; 32 int i; 33 34 for (i = 0; i < sband->n_bitrates; i++) { 35 if (!(basic_rates & BIT(i))) 36 continue; 37 if (sband->bitrates[i].bitrate > bitrate) 38 continue; 39 result = &sband->bitrates[i]; 40 } 41 42 return result; 43 } 44 EXPORT_SYMBOL(ieee80211_get_response_rate); 45 46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 47 enum nl80211_bss_scan_width scan_width) 48 { 49 struct ieee80211_rate *bitrates; 50 u32 mandatory_rates = 0; 51 enum ieee80211_rate_flags mandatory_flag; 52 int i; 53 54 if (WARN_ON(!sband)) 55 return 1; 56 57 if (sband->band == NL80211_BAND_2GHZ) { 58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 59 scan_width == NL80211_BSS_CHAN_WIDTH_10) 60 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 61 else 62 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 63 } else { 64 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 65 } 66 67 bitrates = sband->bitrates; 68 for (i = 0; i < sband->n_bitrates; i++) 69 if (bitrates[i].flags & mandatory_flag) 70 mandatory_rates |= BIT(i); 71 return mandatory_rates; 72 } 73 EXPORT_SYMBOL(ieee80211_mandatory_rates); 74 75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band) 76 { 77 /* see 802.11 17.3.8.3.2 and Annex J 78 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 79 if (chan <= 0) 80 return 0; /* not supported */ 81 switch (band) { 82 case NL80211_BAND_2GHZ: 83 if (chan == 14) 84 return MHZ_TO_KHZ(2484); 85 else if (chan < 14) 86 return MHZ_TO_KHZ(2407 + chan * 5); 87 break; 88 case NL80211_BAND_5GHZ: 89 if (chan >= 182 && chan <= 196) 90 return MHZ_TO_KHZ(4000 + chan * 5); 91 else 92 return MHZ_TO_KHZ(5000 + chan * 5); 93 break; 94 case NL80211_BAND_6GHZ: 95 /* see 802.11ax D6.1 27.3.23.2 */ 96 if (chan == 2) 97 return MHZ_TO_KHZ(5935); 98 if (chan <= 253) 99 return MHZ_TO_KHZ(5950 + chan * 5); 100 break; 101 case NL80211_BAND_60GHZ: 102 if (chan < 7) 103 return MHZ_TO_KHZ(56160 + chan * 2160); 104 break; 105 default: 106 ; 107 } 108 return 0; /* not supported */ 109 } 110 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz); 111 112 int ieee80211_freq_khz_to_channel(u32 freq) 113 { 114 /* TODO: just handle MHz for now */ 115 freq = KHZ_TO_MHZ(freq); 116 117 /* see 802.11 17.3.8.3.2 and Annex J */ 118 if (freq == 2484) 119 return 14; 120 else if (freq < 2484) 121 return (freq - 2407) / 5; 122 else if (freq >= 4910 && freq <= 4980) 123 return (freq - 4000) / 5; 124 else if (freq < 5945) 125 return (freq - 5000) / 5; 126 else if (freq <= 45000) /* DMG band lower limit */ 127 /* see 802.11ax D4.1 27.3.22.2 */ 128 return (freq - 5940) / 5; 129 else if (freq >= 58320 && freq <= 70200) 130 return (freq - 56160) / 2160; 131 else 132 return 0; 133 } 134 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel); 135 136 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy, 137 u32 freq) 138 { 139 enum nl80211_band band; 140 struct ieee80211_supported_band *sband; 141 int i; 142 143 for (band = 0; band < NUM_NL80211_BANDS; band++) { 144 sband = wiphy->bands[band]; 145 146 if (!sband) 147 continue; 148 149 for (i = 0; i < sband->n_channels; i++) { 150 struct ieee80211_channel *chan = &sband->channels[i]; 151 152 if (ieee80211_channel_to_khz(chan) == freq) 153 return chan; 154 } 155 } 156 157 return NULL; 158 } 159 EXPORT_SYMBOL(ieee80211_get_channel_khz); 160 161 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) 162 { 163 int i, want; 164 165 switch (sband->band) { 166 case NL80211_BAND_5GHZ: 167 case NL80211_BAND_6GHZ: 168 want = 3; 169 for (i = 0; i < sband->n_bitrates; i++) { 170 if (sband->bitrates[i].bitrate == 60 || 171 sband->bitrates[i].bitrate == 120 || 172 sband->bitrates[i].bitrate == 240) { 173 sband->bitrates[i].flags |= 174 IEEE80211_RATE_MANDATORY_A; 175 want--; 176 } 177 } 178 WARN_ON(want); 179 break; 180 case NL80211_BAND_2GHZ: 181 want = 7; 182 for (i = 0; i < sband->n_bitrates; i++) { 183 switch (sband->bitrates[i].bitrate) { 184 case 10: 185 case 20: 186 case 55: 187 case 110: 188 sband->bitrates[i].flags |= 189 IEEE80211_RATE_MANDATORY_B | 190 IEEE80211_RATE_MANDATORY_G; 191 want--; 192 break; 193 case 60: 194 case 120: 195 case 240: 196 sband->bitrates[i].flags |= 197 IEEE80211_RATE_MANDATORY_G; 198 want--; 199 /* fall through */ 200 default: 201 sband->bitrates[i].flags |= 202 IEEE80211_RATE_ERP_G; 203 break; 204 } 205 } 206 WARN_ON(want != 0 && want != 3); 207 break; 208 case NL80211_BAND_60GHZ: 209 /* check for mandatory HT MCS 1..4 */ 210 WARN_ON(!sband->ht_cap.ht_supported); 211 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 212 break; 213 case NUM_NL80211_BANDS: 214 default: 215 WARN_ON(1); 216 break; 217 } 218 } 219 220 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 221 { 222 enum nl80211_band band; 223 224 for (band = 0; band < NUM_NL80211_BANDS; band++) 225 if (wiphy->bands[band]) 226 set_mandatory_flags_band(wiphy->bands[band]); 227 } 228 229 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 230 { 231 int i; 232 for (i = 0; i < wiphy->n_cipher_suites; i++) 233 if (cipher == wiphy->cipher_suites[i]) 234 return true; 235 return false; 236 } 237 238 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 239 struct key_params *params, int key_idx, 240 bool pairwise, const u8 *mac_addr) 241 { 242 int max_key_idx = 5; 243 244 if (wiphy_ext_feature_isset(&rdev->wiphy, 245 NL80211_EXT_FEATURE_BEACON_PROTECTION) || 246 wiphy_ext_feature_isset(&rdev->wiphy, 247 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT)) 248 max_key_idx = 7; 249 if (key_idx < 0 || key_idx > max_key_idx) 250 return -EINVAL; 251 252 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 253 return -EINVAL; 254 255 if (pairwise && !mac_addr) 256 return -EINVAL; 257 258 switch (params->cipher) { 259 case WLAN_CIPHER_SUITE_TKIP: 260 /* Extended Key ID can only be used with CCMP/GCMP ciphers */ 261 if ((pairwise && key_idx) || 262 params->mode != NL80211_KEY_RX_TX) 263 return -EINVAL; 264 break; 265 case WLAN_CIPHER_SUITE_CCMP: 266 case WLAN_CIPHER_SUITE_CCMP_256: 267 case WLAN_CIPHER_SUITE_GCMP: 268 case WLAN_CIPHER_SUITE_GCMP_256: 269 /* IEEE802.11-2016 allows only 0 and - when supporting 270 * Extended Key ID - 1 as index for pairwise keys. 271 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when 272 * the driver supports Extended Key ID. 273 * @NL80211_KEY_SET_TX can't be set when installing and 274 * validating a key. 275 */ 276 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) || 277 params->mode == NL80211_KEY_SET_TX) 278 return -EINVAL; 279 if (wiphy_ext_feature_isset(&rdev->wiphy, 280 NL80211_EXT_FEATURE_EXT_KEY_ID)) { 281 if (pairwise && (key_idx < 0 || key_idx > 1)) 282 return -EINVAL; 283 } else if (pairwise && key_idx) { 284 return -EINVAL; 285 } 286 break; 287 case WLAN_CIPHER_SUITE_AES_CMAC: 288 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 289 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 290 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 291 /* Disallow BIP (group-only) cipher as pairwise cipher */ 292 if (pairwise) 293 return -EINVAL; 294 if (key_idx < 4) 295 return -EINVAL; 296 break; 297 case WLAN_CIPHER_SUITE_WEP40: 298 case WLAN_CIPHER_SUITE_WEP104: 299 if (key_idx > 3) 300 return -EINVAL; 301 default: 302 break; 303 } 304 305 switch (params->cipher) { 306 case WLAN_CIPHER_SUITE_WEP40: 307 if (params->key_len != WLAN_KEY_LEN_WEP40) 308 return -EINVAL; 309 break; 310 case WLAN_CIPHER_SUITE_TKIP: 311 if (params->key_len != WLAN_KEY_LEN_TKIP) 312 return -EINVAL; 313 break; 314 case WLAN_CIPHER_SUITE_CCMP: 315 if (params->key_len != WLAN_KEY_LEN_CCMP) 316 return -EINVAL; 317 break; 318 case WLAN_CIPHER_SUITE_CCMP_256: 319 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 320 return -EINVAL; 321 break; 322 case WLAN_CIPHER_SUITE_GCMP: 323 if (params->key_len != WLAN_KEY_LEN_GCMP) 324 return -EINVAL; 325 break; 326 case WLAN_CIPHER_SUITE_GCMP_256: 327 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 328 return -EINVAL; 329 break; 330 case WLAN_CIPHER_SUITE_WEP104: 331 if (params->key_len != WLAN_KEY_LEN_WEP104) 332 return -EINVAL; 333 break; 334 case WLAN_CIPHER_SUITE_AES_CMAC: 335 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 336 return -EINVAL; 337 break; 338 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 339 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 340 return -EINVAL; 341 break; 342 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 343 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 344 return -EINVAL; 345 break; 346 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 347 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 348 return -EINVAL; 349 break; 350 default: 351 /* 352 * We don't know anything about this algorithm, 353 * allow using it -- but the driver must check 354 * all parameters! We still check below whether 355 * or not the driver supports this algorithm, 356 * of course. 357 */ 358 break; 359 } 360 361 if (params->seq) { 362 switch (params->cipher) { 363 case WLAN_CIPHER_SUITE_WEP40: 364 case WLAN_CIPHER_SUITE_WEP104: 365 /* These ciphers do not use key sequence */ 366 return -EINVAL; 367 case WLAN_CIPHER_SUITE_TKIP: 368 case WLAN_CIPHER_SUITE_CCMP: 369 case WLAN_CIPHER_SUITE_CCMP_256: 370 case WLAN_CIPHER_SUITE_GCMP: 371 case WLAN_CIPHER_SUITE_GCMP_256: 372 case WLAN_CIPHER_SUITE_AES_CMAC: 373 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 374 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 375 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 376 if (params->seq_len != 6) 377 return -EINVAL; 378 break; 379 } 380 } 381 382 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 383 return -EINVAL; 384 385 return 0; 386 } 387 388 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 389 { 390 unsigned int hdrlen = 24; 391 392 if (ieee80211_is_data(fc)) { 393 if (ieee80211_has_a4(fc)) 394 hdrlen = 30; 395 if (ieee80211_is_data_qos(fc)) { 396 hdrlen += IEEE80211_QOS_CTL_LEN; 397 if (ieee80211_has_order(fc)) 398 hdrlen += IEEE80211_HT_CTL_LEN; 399 } 400 goto out; 401 } 402 403 if (ieee80211_is_mgmt(fc)) { 404 if (ieee80211_has_order(fc)) 405 hdrlen += IEEE80211_HT_CTL_LEN; 406 goto out; 407 } 408 409 if (ieee80211_is_ctl(fc)) { 410 /* 411 * ACK and CTS are 10 bytes, all others 16. To see how 412 * to get this condition consider 413 * subtype mask: 0b0000000011110000 (0x00F0) 414 * ACK subtype: 0b0000000011010000 (0x00D0) 415 * CTS subtype: 0b0000000011000000 (0x00C0) 416 * bits that matter: ^^^ (0x00E0) 417 * value of those: 0b0000000011000000 (0x00C0) 418 */ 419 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 420 hdrlen = 10; 421 else 422 hdrlen = 16; 423 } 424 out: 425 return hdrlen; 426 } 427 EXPORT_SYMBOL(ieee80211_hdrlen); 428 429 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 430 { 431 const struct ieee80211_hdr *hdr = 432 (const struct ieee80211_hdr *)skb->data; 433 unsigned int hdrlen; 434 435 if (unlikely(skb->len < 10)) 436 return 0; 437 hdrlen = ieee80211_hdrlen(hdr->frame_control); 438 if (unlikely(hdrlen > skb->len)) 439 return 0; 440 return hdrlen; 441 } 442 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 443 444 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 445 { 446 int ae = flags & MESH_FLAGS_AE; 447 /* 802.11-2012, 8.2.4.7.3 */ 448 switch (ae) { 449 default: 450 case 0: 451 return 6; 452 case MESH_FLAGS_AE_A4: 453 return 12; 454 case MESH_FLAGS_AE_A5_A6: 455 return 18; 456 } 457 } 458 459 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 460 { 461 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 462 } 463 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 464 465 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 466 const u8 *addr, enum nl80211_iftype iftype, 467 u8 data_offset) 468 { 469 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 470 struct { 471 u8 hdr[ETH_ALEN] __aligned(2); 472 __be16 proto; 473 } payload; 474 struct ethhdr tmp; 475 u16 hdrlen; 476 u8 mesh_flags = 0; 477 478 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 479 return -1; 480 481 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; 482 if (skb->len < hdrlen + 8) 483 return -1; 484 485 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 486 * header 487 * IEEE 802.11 address fields: 488 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 489 * 0 0 DA SA BSSID n/a 490 * 0 1 DA BSSID SA n/a 491 * 1 0 BSSID SA DA n/a 492 * 1 1 RA TA DA SA 493 */ 494 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 495 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 496 497 if (iftype == NL80211_IFTYPE_MESH_POINT) 498 skb_copy_bits(skb, hdrlen, &mesh_flags, 1); 499 500 mesh_flags &= MESH_FLAGS_AE; 501 502 switch (hdr->frame_control & 503 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 504 case cpu_to_le16(IEEE80211_FCTL_TODS): 505 if (unlikely(iftype != NL80211_IFTYPE_AP && 506 iftype != NL80211_IFTYPE_AP_VLAN && 507 iftype != NL80211_IFTYPE_P2P_GO)) 508 return -1; 509 break; 510 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 511 if (unlikely(iftype != NL80211_IFTYPE_WDS && 512 iftype != NL80211_IFTYPE_MESH_POINT && 513 iftype != NL80211_IFTYPE_AP_VLAN && 514 iftype != NL80211_IFTYPE_STATION)) 515 return -1; 516 if (iftype == NL80211_IFTYPE_MESH_POINT) { 517 if (mesh_flags == MESH_FLAGS_AE_A4) 518 return -1; 519 if (mesh_flags == MESH_FLAGS_AE_A5_A6) { 520 skb_copy_bits(skb, hdrlen + 521 offsetof(struct ieee80211s_hdr, eaddr1), 522 tmp.h_dest, 2 * ETH_ALEN); 523 } 524 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 525 } 526 break; 527 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 528 if ((iftype != NL80211_IFTYPE_STATION && 529 iftype != NL80211_IFTYPE_P2P_CLIENT && 530 iftype != NL80211_IFTYPE_MESH_POINT) || 531 (is_multicast_ether_addr(tmp.h_dest) && 532 ether_addr_equal(tmp.h_source, addr))) 533 return -1; 534 if (iftype == NL80211_IFTYPE_MESH_POINT) { 535 if (mesh_flags == MESH_FLAGS_AE_A5_A6) 536 return -1; 537 if (mesh_flags == MESH_FLAGS_AE_A4) 538 skb_copy_bits(skb, hdrlen + 539 offsetof(struct ieee80211s_hdr, eaddr1), 540 tmp.h_source, ETH_ALEN); 541 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 542 } 543 break; 544 case cpu_to_le16(0): 545 if (iftype != NL80211_IFTYPE_ADHOC && 546 iftype != NL80211_IFTYPE_STATION && 547 iftype != NL80211_IFTYPE_OCB) 548 return -1; 549 break; 550 } 551 552 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)); 553 tmp.h_proto = payload.proto; 554 555 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) && 556 tmp.h_proto != htons(ETH_P_AARP) && 557 tmp.h_proto != htons(ETH_P_IPX)) || 558 ether_addr_equal(payload.hdr, bridge_tunnel_header))) 559 /* remove RFC1042 or Bridge-Tunnel encapsulation and 560 * replace EtherType */ 561 hdrlen += ETH_ALEN + 2; 562 else 563 tmp.h_proto = htons(skb->len - hdrlen); 564 565 pskb_pull(skb, hdrlen); 566 567 if (!ehdr) 568 ehdr = skb_push(skb, sizeof(struct ethhdr)); 569 memcpy(ehdr, &tmp, sizeof(tmp)); 570 571 return 0; 572 } 573 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 574 575 static void 576 __frame_add_frag(struct sk_buff *skb, struct page *page, 577 void *ptr, int len, int size) 578 { 579 struct skb_shared_info *sh = skb_shinfo(skb); 580 int page_offset; 581 582 get_page(page); 583 page_offset = ptr - page_address(page); 584 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 585 } 586 587 static void 588 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 589 int offset, int len) 590 { 591 struct skb_shared_info *sh = skb_shinfo(skb); 592 const skb_frag_t *frag = &sh->frags[0]; 593 struct page *frag_page; 594 void *frag_ptr; 595 int frag_len, frag_size; 596 int head_size = skb->len - skb->data_len; 597 int cur_len; 598 599 frag_page = virt_to_head_page(skb->head); 600 frag_ptr = skb->data; 601 frag_size = head_size; 602 603 while (offset >= frag_size) { 604 offset -= frag_size; 605 frag_page = skb_frag_page(frag); 606 frag_ptr = skb_frag_address(frag); 607 frag_size = skb_frag_size(frag); 608 frag++; 609 } 610 611 frag_ptr += offset; 612 frag_len = frag_size - offset; 613 614 cur_len = min(len, frag_len); 615 616 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 617 len -= cur_len; 618 619 while (len > 0) { 620 frag_len = skb_frag_size(frag); 621 cur_len = min(len, frag_len); 622 __frame_add_frag(frame, skb_frag_page(frag), 623 skb_frag_address(frag), cur_len, frag_len); 624 len -= cur_len; 625 frag++; 626 } 627 } 628 629 static struct sk_buff * 630 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 631 int offset, int len, bool reuse_frag) 632 { 633 struct sk_buff *frame; 634 int cur_len = len; 635 636 if (skb->len - offset < len) 637 return NULL; 638 639 /* 640 * When reusing framents, copy some data to the head to simplify 641 * ethernet header handling and speed up protocol header processing 642 * in the stack later. 643 */ 644 if (reuse_frag) 645 cur_len = min_t(int, len, 32); 646 647 /* 648 * Allocate and reserve two bytes more for payload 649 * alignment since sizeof(struct ethhdr) is 14. 650 */ 651 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 652 if (!frame) 653 return NULL; 654 655 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 656 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 657 658 len -= cur_len; 659 if (!len) 660 return frame; 661 662 offset += cur_len; 663 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 664 665 return frame; 666 } 667 668 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 669 const u8 *addr, enum nl80211_iftype iftype, 670 const unsigned int extra_headroom, 671 const u8 *check_da, const u8 *check_sa) 672 { 673 unsigned int hlen = ALIGN(extra_headroom, 4); 674 struct sk_buff *frame = NULL; 675 u16 ethertype; 676 u8 *payload; 677 int offset = 0, remaining; 678 struct ethhdr eth; 679 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 680 bool reuse_skb = false; 681 bool last = false; 682 683 while (!last) { 684 unsigned int subframe_len; 685 int len; 686 u8 padding; 687 688 skb_copy_bits(skb, offset, ð, sizeof(eth)); 689 len = ntohs(eth.h_proto); 690 subframe_len = sizeof(struct ethhdr) + len; 691 padding = (4 - subframe_len) & 0x3; 692 693 /* the last MSDU has no padding */ 694 remaining = skb->len - offset; 695 if (subframe_len > remaining) 696 goto purge; 697 698 offset += sizeof(struct ethhdr); 699 last = remaining <= subframe_len + padding; 700 701 /* FIXME: should we really accept multicast DA? */ 702 if ((check_da && !is_multicast_ether_addr(eth.h_dest) && 703 !ether_addr_equal(check_da, eth.h_dest)) || 704 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) { 705 offset += len + padding; 706 continue; 707 } 708 709 /* reuse skb for the last subframe */ 710 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 711 skb_pull(skb, offset); 712 frame = skb; 713 reuse_skb = true; 714 } else { 715 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 716 reuse_frag); 717 if (!frame) 718 goto purge; 719 720 offset += len + padding; 721 } 722 723 skb_reset_network_header(frame); 724 frame->dev = skb->dev; 725 frame->priority = skb->priority; 726 727 payload = frame->data; 728 ethertype = (payload[6] << 8) | payload[7]; 729 if (likely((ether_addr_equal(payload, rfc1042_header) && 730 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 731 ether_addr_equal(payload, bridge_tunnel_header))) { 732 eth.h_proto = htons(ethertype); 733 skb_pull(frame, ETH_ALEN + 2); 734 } 735 736 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth)); 737 __skb_queue_tail(list, frame); 738 } 739 740 if (!reuse_skb) 741 dev_kfree_skb(skb); 742 743 return; 744 745 purge: 746 __skb_queue_purge(list); 747 dev_kfree_skb(skb); 748 } 749 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 750 751 /* Given a data frame determine the 802.1p/1d tag to use. */ 752 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 753 struct cfg80211_qos_map *qos_map) 754 { 755 unsigned int dscp; 756 unsigned char vlan_priority; 757 unsigned int ret; 758 759 /* skb->priority values from 256->263 are magic values to 760 * directly indicate a specific 802.1d priority. This is used 761 * to allow 802.1d priority to be passed directly in from VLAN 762 * tags, etc. 763 */ 764 if (skb->priority >= 256 && skb->priority <= 263) { 765 ret = skb->priority - 256; 766 goto out; 767 } 768 769 if (skb_vlan_tag_present(skb)) { 770 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 771 >> VLAN_PRIO_SHIFT; 772 if (vlan_priority > 0) { 773 ret = vlan_priority; 774 goto out; 775 } 776 } 777 778 switch (skb->protocol) { 779 case htons(ETH_P_IP): 780 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 781 break; 782 case htons(ETH_P_IPV6): 783 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 784 break; 785 case htons(ETH_P_MPLS_UC): 786 case htons(ETH_P_MPLS_MC): { 787 struct mpls_label mpls_tmp, *mpls; 788 789 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 790 sizeof(*mpls), &mpls_tmp); 791 if (!mpls) 792 return 0; 793 794 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 795 >> MPLS_LS_TC_SHIFT; 796 goto out; 797 } 798 case htons(ETH_P_80221): 799 /* 802.21 is always network control traffic */ 800 return 7; 801 default: 802 return 0; 803 } 804 805 if (qos_map) { 806 unsigned int i, tmp_dscp = dscp >> 2; 807 808 for (i = 0; i < qos_map->num_des; i++) { 809 if (tmp_dscp == qos_map->dscp_exception[i].dscp) { 810 ret = qos_map->dscp_exception[i].up; 811 goto out; 812 } 813 } 814 815 for (i = 0; i < 8; i++) { 816 if (tmp_dscp >= qos_map->up[i].low && 817 tmp_dscp <= qos_map->up[i].high) { 818 ret = i; 819 goto out; 820 } 821 } 822 } 823 824 ret = dscp >> 5; 825 out: 826 return array_index_nospec(ret, IEEE80211_NUM_TIDS); 827 } 828 EXPORT_SYMBOL(cfg80211_classify8021d); 829 830 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id) 831 { 832 const struct cfg80211_bss_ies *ies; 833 834 ies = rcu_dereference(bss->ies); 835 if (!ies) 836 return NULL; 837 838 return cfg80211_find_elem(id, ies->data, ies->len); 839 } 840 EXPORT_SYMBOL(ieee80211_bss_get_elem); 841 842 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 843 { 844 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 845 struct net_device *dev = wdev->netdev; 846 int i; 847 848 if (!wdev->connect_keys) 849 return; 850 851 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) { 852 if (!wdev->connect_keys->params[i].cipher) 853 continue; 854 if (rdev_add_key(rdev, dev, i, false, NULL, 855 &wdev->connect_keys->params[i])) { 856 netdev_err(dev, "failed to set key %d\n", i); 857 continue; 858 } 859 if (wdev->connect_keys->def == i && 860 rdev_set_default_key(rdev, dev, i, true, true)) { 861 netdev_err(dev, "failed to set defkey %d\n", i); 862 continue; 863 } 864 } 865 866 kzfree(wdev->connect_keys); 867 wdev->connect_keys = NULL; 868 } 869 870 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 871 { 872 struct cfg80211_event *ev; 873 unsigned long flags; 874 875 spin_lock_irqsave(&wdev->event_lock, flags); 876 while (!list_empty(&wdev->event_list)) { 877 ev = list_first_entry(&wdev->event_list, 878 struct cfg80211_event, list); 879 list_del(&ev->list); 880 spin_unlock_irqrestore(&wdev->event_lock, flags); 881 882 wdev_lock(wdev); 883 switch (ev->type) { 884 case EVENT_CONNECT_RESULT: 885 __cfg80211_connect_result( 886 wdev->netdev, 887 &ev->cr, 888 ev->cr.status == WLAN_STATUS_SUCCESS); 889 break; 890 case EVENT_ROAMED: 891 __cfg80211_roamed(wdev, &ev->rm); 892 break; 893 case EVENT_DISCONNECTED: 894 __cfg80211_disconnected(wdev->netdev, 895 ev->dc.ie, ev->dc.ie_len, 896 ev->dc.reason, 897 !ev->dc.locally_generated); 898 break; 899 case EVENT_IBSS_JOINED: 900 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 901 ev->ij.channel); 902 break; 903 case EVENT_STOPPED: 904 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 905 break; 906 case EVENT_PORT_AUTHORIZED: 907 __cfg80211_port_authorized(wdev, ev->pa.bssid); 908 break; 909 } 910 wdev_unlock(wdev); 911 912 kfree(ev); 913 914 spin_lock_irqsave(&wdev->event_lock, flags); 915 } 916 spin_unlock_irqrestore(&wdev->event_lock, flags); 917 } 918 919 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 920 { 921 struct wireless_dev *wdev; 922 923 ASSERT_RTNL(); 924 925 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 926 cfg80211_process_wdev_events(wdev); 927 } 928 929 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 930 struct net_device *dev, enum nl80211_iftype ntype, 931 struct vif_params *params) 932 { 933 int err; 934 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 935 936 ASSERT_RTNL(); 937 938 /* don't support changing VLANs, you just re-create them */ 939 if (otype == NL80211_IFTYPE_AP_VLAN) 940 return -EOPNOTSUPP; 941 942 /* cannot change into P2P device or NAN */ 943 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 944 ntype == NL80211_IFTYPE_NAN) 945 return -EOPNOTSUPP; 946 947 if (!rdev->ops->change_virtual_intf || 948 !(rdev->wiphy.interface_modes & (1 << ntype))) 949 return -EOPNOTSUPP; 950 951 /* if it's part of a bridge, reject changing type to station/ibss */ 952 if (netif_is_bridge_port(dev) && 953 (ntype == NL80211_IFTYPE_ADHOC || 954 ntype == NL80211_IFTYPE_STATION || 955 ntype == NL80211_IFTYPE_P2P_CLIENT)) 956 return -EBUSY; 957 958 if (ntype != otype) { 959 dev->ieee80211_ptr->use_4addr = false; 960 dev->ieee80211_ptr->mesh_id_up_len = 0; 961 wdev_lock(dev->ieee80211_ptr); 962 rdev_set_qos_map(rdev, dev, NULL); 963 wdev_unlock(dev->ieee80211_ptr); 964 965 switch (otype) { 966 case NL80211_IFTYPE_AP: 967 cfg80211_stop_ap(rdev, dev, true); 968 break; 969 case NL80211_IFTYPE_ADHOC: 970 cfg80211_leave_ibss(rdev, dev, false); 971 break; 972 case NL80211_IFTYPE_STATION: 973 case NL80211_IFTYPE_P2P_CLIENT: 974 wdev_lock(dev->ieee80211_ptr); 975 cfg80211_disconnect(rdev, dev, 976 WLAN_REASON_DEAUTH_LEAVING, true); 977 wdev_unlock(dev->ieee80211_ptr); 978 break; 979 case NL80211_IFTYPE_MESH_POINT: 980 /* mesh should be handled? */ 981 break; 982 default: 983 break; 984 } 985 986 cfg80211_process_rdev_events(rdev); 987 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr); 988 } 989 990 err = rdev_change_virtual_intf(rdev, dev, ntype, params); 991 992 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 993 994 if (!err && params && params->use_4addr != -1) 995 dev->ieee80211_ptr->use_4addr = params->use_4addr; 996 997 if (!err) { 998 dev->priv_flags &= ~IFF_DONT_BRIDGE; 999 switch (ntype) { 1000 case NL80211_IFTYPE_STATION: 1001 if (dev->ieee80211_ptr->use_4addr) 1002 break; 1003 /* fall through */ 1004 case NL80211_IFTYPE_OCB: 1005 case NL80211_IFTYPE_P2P_CLIENT: 1006 case NL80211_IFTYPE_ADHOC: 1007 dev->priv_flags |= IFF_DONT_BRIDGE; 1008 break; 1009 case NL80211_IFTYPE_P2P_GO: 1010 case NL80211_IFTYPE_AP: 1011 case NL80211_IFTYPE_AP_VLAN: 1012 case NL80211_IFTYPE_WDS: 1013 case NL80211_IFTYPE_MESH_POINT: 1014 /* bridging OK */ 1015 break; 1016 case NL80211_IFTYPE_MONITOR: 1017 /* monitor can't bridge anyway */ 1018 break; 1019 case NL80211_IFTYPE_UNSPECIFIED: 1020 case NUM_NL80211_IFTYPES: 1021 /* not happening */ 1022 break; 1023 case NL80211_IFTYPE_P2P_DEVICE: 1024 case NL80211_IFTYPE_NAN: 1025 WARN_ON(1); 1026 break; 1027 } 1028 } 1029 1030 if (!err && ntype != otype && netif_running(dev)) { 1031 cfg80211_update_iface_num(rdev, ntype, 1); 1032 cfg80211_update_iface_num(rdev, otype, -1); 1033 } 1034 1035 return err; 1036 } 1037 1038 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) 1039 { 1040 int modulation, streams, bitrate; 1041 1042 /* the formula below does only work for MCS values smaller than 32 */ 1043 if (WARN_ON_ONCE(rate->mcs >= 32)) 1044 return 0; 1045 1046 modulation = rate->mcs & 7; 1047 streams = (rate->mcs >> 3) + 1; 1048 1049 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1050 1051 if (modulation < 4) 1052 bitrate *= (modulation + 1); 1053 else if (modulation == 4) 1054 bitrate *= (modulation + 2); 1055 else 1056 bitrate *= (modulation + 3); 1057 1058 bitrate *= streams; 1059 1060 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1061 bitrate = (bitrate / 9) * 10; 1062 1063 /* do NOT round down here */ 1064 return (bitrate + 50000) / 100000; 1065 } 1066 1067 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate) 1068 { 1069 static const u32 __mcs2bitrate[] = { 1070 /* control PHY */ 1071 [0] = 275, 1072 /* SC PHY */ 1073 [1] = 3850, 1074 [2] = 7700, 1075 [3] = 9625, 1076 [4] = 11550, 1077 [5] = 12512, /* 1251.25 mbps */ 1078 [6] = 15400, 1079 [7] = 19250, 1080 [8] = 23100, 1081 [9] = 25025, 1082 [10] = 30800, 1083 [11] = 38500, 1084 [12] = 46200, 1085 /* OFDM PHY */ 1086 [13] = 6930, 1087 [14] = 8662, /* 866.25 mbps */ 1088 [15] = 13860, 1089 [16] = 17325, 1090 [17] = 20790, 1091 [18] = 27720, 1092 [19] = 34650, 1093 [20] = 41580, 1094 [21] = 45045, 1095 [22] = 51975, 1096 [23] = 62370, 1097 [24] = 67568, /* 6756.75 mbps */ 1098 /* LP-SC PHY */ 1099 [25] = 6260, 1100 [26] = 8340, 1101 [27] = 11120, 1102 [28] = 12510, 1103 [29] = 16680, 1104 [30] = 22240, 1105 [31] = 25030, 1106 }; 1107 1108 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1109 return 0; 1110 1111 return __mcs2bitrate[rate->mcs]; 1112 } 1113 1114 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate) 1115 { 1116 static const u32 __mcs2bitrate[] = { 1117 /* control PHY */ 1118 [0] = 275, 1119 /* SC PHY */ 1120 [1] = 3850, 1121 [2] = 7700, 1122 [3] = 9625, 1123 [4] = 11550, 1124 [5] = 12512, /* 1251.25 mbps */ 1125 [6] = 13475, 1126 [7] = 15400, 1127 [8] = 19250, 1128 [9] = 23100, 1129 [10] = 25025, 1130 [11] = 26950, 1131 [12] = 30800, 1132 [13] = 38500, 1133 [14] = 46200, 1134 [15] = 50050, 1135 [16] = 53900, 1136 [17] = 57750, 1137 [18] = 69300, 1138 [19] = 75075, 1139 [20] = 80850, 1140 }; 1141 1142 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1143 return 0; 1144 1145 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch; 1146 } 1147 1148 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1149 { 1150 static const u32 base[4][10] = { 1151 { 6500000, 1152 13000000, 1153 19500000, 1154 26000000, 1155 39000000, 1156 52000000, 1157 58500000, 1158 65000000, 1159 78000000, 1160 /* not in the spec, but some devices use this: */ 1161 86500000, 1162 }, 1163 { 13500000, 1164 27000000, 1165 40500000, 1166 54000000, 1167 81000000, 1168 108000000, 1169 121500000, 1170 135000000, 1171 162000000, 1172 180000000, 1173 }, 1174 { 29300000, 1175 58500000, 1176 87800000, 1177 117000000, 1178 175500000, 1179 234000000, 1180 263300000, 1181 292500000, 1182 351000000, 1183 390000000, 1184 }, 1185 { 58500000, 1186 117000000, 1187 175500000, 1188 234000000, 1189 351000000, 1190 468000000, 1191 526500000, 1192 585000000, 1193 702000000, 1194 780000000, 1195 }, 1196 }; 1197 u32 bitrate; 1198 int idx; 1199 1200 if (rate->mcs > 9) 1201 goto warn; 1202 1203 switch (rate->bw) { 1204 case RATE_INFO_BW_160: 1205 idx = 3; 1206 break; 1207 case RATE_INFO_BW_80: 1208 idx = 2; 1209 break; 1210 case RATE_INFO_BW_40: 1211 idx = 1; 1212 break; 1213 case RATE_INFO_BW_5: 1214 case RATE_INFO_BW_10: 1215 default: 1216 goto warn; 1217 case RATE_INFO_BW_20: 1218 idx = 0; 1219 } 1220 1221 bitrate = base[idx][rate->mcs]; 1222 bitrate *= rate->nss; 1223 1224 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1225 bitrate = (bitrate / 9) * 10; 1226 1227 /* do NOT round down here */ 1228 return (bitrate + 50000) / 100000; 1229 warn: 1230 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1231 rate->bw, rate->mcs, rate->nss); 1232 return 0; 1233 } 1234 1235 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) 1236 { 1237 #define SCALE 2048 1238 u16 mcs_divisors[12] = { 1239 34133, /* 16.666666... */ 1240 17067, /* 8.333333... */ 1241 11378, /* 5.555555... */ 1242 8533, /* 4.166666... */ 1243 5689, /* 2.777777... */ 1244 4267, /* 2.083333... */ 1245 3923, /* 1.851851... */ 1246 3413, /* 1.666666... */ 1247 2844, /* 1.388888... */ 1248 2560, /* 1.250000... */ 1249 2276, /* 1.111111... */ 1250 2048, /* 1.000000... */ 1251 }; 1252 u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; 1253 u32 rates_969[3] = { 480388888, 453700000, 408333333 }; 1254 u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1255 u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1256 u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1257 u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1258 u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1259 u64 tmp; 1260 u32 result; 1261 1262 if (WARN_ON_ONCE(rate->mcs > 11)) 1263 return 0; 1264 1265 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) 1266 return 0; 1267 if (WARN_ON_ONCE(rate->he_ru_alloc > 1268 NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1269 return 0; 1270 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1271 return 0; 1272 1273 if (rate->bw == RATE_INFO_BW_160) 1274 result = rates_160M[rate->he_gi]; 1275 else if (rate->bw == RATE_INFO_BW_80 || 1276 (rate->bw == RATE_INFO_BW_HE_RU && 1277 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) 1278 result = rates_969[rate->he_gi]; 1279 else if (rate->bw == RATE_INFO_BW_40 || 1280 (rate->bw == RATE_INFO_BW_HE_RU && 1281 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) 1282 result = rates_484[rate->he_gi]; 1283 else if (rate->bw == RATE_INFO_BW_20 || 1284 (rate->bw == RATE_INFO_BW_HE_RU && 1285 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) 1286 result = rates_242[rate->he_gi]; 1287 else if (rate->bw == RATE_INFO_BW_HE_RU && 1288 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) 1289 result = rates_106[rate->he_gi]; 1290 else if (rate->bw == RATE_INFO_BW_HE_RU && 1291 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) 1292 result = rates_52[rate->he_gi]; 1293 else if (rate->bw == RATE_INFO_BW_HE_RU && 1294 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) 1295 result = rates_26[rate->he_gi]; 1296 else { 1297 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", 1298 rate->bw, rate->he_ru_alloc); 1299 return 0; 1300 } 1301 1302 /* now scale to the appropriate MCS */ 1303 tmp = result; 1304 tmp *= SCALE; 1305 do_div(tmp, mcs_divisors[rate->mcs]); 1306 result = tmp; 1307 1308 /* and take NSS, DCM into account */ 1309 result = (result * rate->nss) / 8; 1310 if (rate->he_dcm) 1311 result /= 2; 1312 1313 return result / 10000; 1314 } 1315 1316 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1317 { 1318 if (rate->flags & RATE_INFO_FLAGS_MCS) 1319 return cfg80211_calculate_bitrate_ht(rate); 1320 if (rate->flags & RATE_INFO_FLAGS_DMG) 1321 return cfg80211_calculate_bitrate_dmg(rate); 1322 if (rate->flags & RATE_INFO_FLAGS_EDMG) 1323 return cfg80211_calculate_bitrate_edmg(rate); 1324 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1325 return cfg80211_calculate_bitrate_vht(rate); 1326 if (rate->flags & RATE_INFO_FLAGS_HE_MCS) 1327 return cfg80211_calculate_bitrate_he(rate); 1328 1329 return rate->legacy; 1330 } 1331 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1332 1333 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1334 enum ieee80211_p2p_attr_id attr, 1335 u8 *buf, unsigned int bufsize) 1336 { 1337 u8 *out = buf; 1338 u16 attr_remaining = 0; 1339 bool desired_attr = false; 1340 u16 desired_len = 0; 1341 1342 while (len > 0) { 1343 unsigned int iedatalen; 1344 unsigned int copy; 1345 const u8 *iedata; 1346 1347 if (len < 2) 1348 return -EILSEQ; 1349 iedatalen = ies[1]; 1350 if (iedatalen + 2 > len) 1351 return -EILSEQ; 1352 1353 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1354 goto cont; 1355 1356 if (iedatalen < 4) 1357 goto cont; 1358 1359 iedata = ies + 2; 1360 1361 /* check WFA OUI, P2P subtype */ 1362 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1363 iedata[2] != 0x9a || iedata[3] != 0x09) 1364 goto cont; 1365 1366 iedatalen -= 4; 1367 iedata += 4; 1368 1369 /* check attribute continuation into this IE */ 1370 copy = min_t(unsigned int, attr_remaining, iedatalen); 1371 if (copy && desired_attr) { 1372 desired_len += copy; 1373 if (out) { 1374 memcpy(out, iedata, min(bufsize, copy)); 1375 out += min(bufsize, copy); 1376 bufsize -= min(bufsize, copy); 1377 } 1378 1379 1380 if (copy == attr_remaining) 1381 return desired_len; 1382 } 1383 1384 attr_remaining -= copy; 1385 if (attr_remaining) 1386 goto cont; 1387 1388 iedatalen -= copy; 1389 iedata += copy; 1390 1391 while (iedatalen > 0) { 1392 u16 attr_len; 1393 1394 /* P2P attribute ID & size must fit */ 1395 if (iedatalen < 3) 1396 return -EILSEQ; 1397 desired_attr = iedata[0] == attr; 1398 attr_len = get_unaligned_le16(iedata + 1); 1399 iedatalen -= 3; 1400 iedata += 3; 1401 1402 copy = min_t(unsigned int, attr_len, iedatalen); 1403 1404 if (desired_attr) { 1405 desired_len += copy; 1406 if (out) { 1407 memcpy(out, iedata, min(bufsize, copy)); 1408 out += min(bufsize, copy); 1409 bufsize -= min(bufsize, copy); 1410 } 1411 1412 if (copy == attr_len) 1413 return desired_len; 1414 } 1415 1416 iedata += copy; 1417 iedatalen -= copy; 1418 attr_remaining = attr_len - copy; 1419 } 1420 1421 cont: 1422 len -= ies[1] + 2; 1423 ies += ies[1] + 2; 1424 } 1425 1426 if (attr_remaining && desired_attr) 1427 return -EILSEQ; 1428 1429 return -ENOENT; 1430 } 1431 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1432 1433 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) 1434 { 1435 int i; 1436 1437 /* Make sure array values are legal */ 1438 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) 1439 return false; 1440 1441 i = 0; 1442 while (i < n_ids) { 1443 if (ids[i] == WLAN_EID_EXTENSION) { 1444 if (id_ext && (ids[i + 1] == id)) 1445 return true; 1446 1447 i += 2; 1448 continue; 1449 } 1450 1451 if (ids[i] == id && !id_ext) 1452 return true; 1453 1454 i++; 1455 } 1456 return false; 1457 } 1458 1459 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) 1460 { 1461 /* we assume a validly formed IEs buffer */ 1462 u8 len = ies[pos + 1]; 1463 1464 pos += 2 + len; 1465 1466 /* the IE itself must have 255 bytes for fragments to follow */ 1467 if (len < 255) 1468 return pos; 1469 1470 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { 1471 len = ies[pos + 1]; 1472 pos += 2 + len; 1473 } 1474 1475 return pos; 1476 } 1477 1478 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1479 const u8 *ids, int n_ids, 1480 const u8 *after_ric, int n_after_ric, 1481 size_t offset) 1482 { 1483 size_t pos = offset; 1484 1485 while (pos < ielen) { 1486 u8 ext = 0; 1487 1488 if (ies[pos] == WLAN_EID_EXTENSION) 1489 ext = 2; 1490 if ((pos + ext) >= ielen) 1491 break; 1492 1493 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], 1494 ies[pos] == WLAN_EID_EXTENSION)) 1495 break; 1496 1497 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1498 pos = skip_ie(ies, ielen, pos); 1499 1500 while (pos < ielen) { 1501 if (ies[pos] == WLAN_EID_EXTENSION) 1502 ext = 2; 1503 else 1504 ext = 0; 1505 1506 if ((pos + ext) >= ielen) 1507 break; 1508 1509 if (!ieee80211_id_in_list(after_ric, 1510 n_after_ric, 1511 ies[pos + ext], 1512 ext == 2)) 1513 pos = skip_ie(ies, ielen, pos); 1514 else 1515 break; 1516 } 1517 } else { 1518 pos = skip_ie(ies, ielen, pos); 1519 } 1520 } 1521 1522 return pos; 1523 } 1524 EXPORT_SYMBOL(ieee80211_ie_split_ric); 1525 1526 bool ieee80211_operating_class_to_band(u8 operating_class, 1527 enum nl80211_band *band) 1528 { 1529 switch (operating_class) { 1530 case 112: 1531 case 115 ... 127: 1532 case 128 ... 130: 1533 *band = NL80211_BAND_5GHZ; 1534 return true; 1535 case 131 ... 135: 1536 *band = NL80211_BAND_6GHZ; 1537 return true; 1538 case 81: 1539 case 82: 1540 case 83: 1541 case 84: 1542 *band = NL80211_BAND_2GHZ; 1543 return true; 1544 case 180: 1545 *band = NL80211_BAND_60GHZ; 1546 return true; 1547 } 1548 1549 return false; 1550 } 1551 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1552 1553 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 1554 u8 *op_class) 1555 { 1556 u8 vht_opclass; 1557 u32 freq = chandef->center_freq1; 1558 1559 if (freq >= 2412 && freq <= 2472) { 1560 if (chandef->width > NL80211_CHAN_WIDTH_40) 1561 return false; 1562 1563 /* 2.407 GHz, channels 1..13 */ 1564 if (chandef->width == NL80211_CHAN_WIDTH_40) { 1565 if (freq > chandef->chan->center_freq) 1566 *op_class = 83; /* HT40+ */ 1567 else 1568 *op_class = 84; /* HT40- */ 1569 } else { 1570 *op_class = 81; 1571 } 1572 1573 return true; 1574 } 1575 1576 if (freq == 2484) { 1577 /* channel 14 is only for IEEE 802.11b */ 1578 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT) 1579 return false; 1580 1581 *op_class = 82; /* channel 14 */ 1582 return true; 1583 } 1584 1585 switch (chandef->width) { 1586 case NL80211_CHAN_WIDTH_80: 1587 vht_opclass = 128; 1588 break; 1589 case NL80211_CHAN_WIDTH_160: 1590 vht_opclass = 129; 1591 break; 1592 case NL80211_CHAN_WIDTH_80P80: 1593 vht_opclass = 130; 1594 break; 1595 case NL80211_CHAN_WIDTH_10: 1596 case NL80211_CHAN_WIDTH_5: 1597 return false; /* unsupported for now */ 1598 default: 1599 vht_opclass = 0; 1600 break; 1601 } 1602 1603 /* 5 GHz, channels 36..48 */ 1604 if (freq >= 5180 && freq <= 5240) { 1605 if (vht_opclass) { 1606 *op_class = vht_opclass; 1607 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1608 if (freq > chandef->chan->center_freq) 1609 *op_class = 116; 1610 else 1611 *op_class = 117; 1612 } else { 1613 *op_class = 115; 1614 } 1615 1616 return true; 1617 } 1618 1619 /* 5 GHz, channels 52..64 */ 1620 if (freq >= 5260 && freq <= 5320) { 1621 if (vht_opclass) { 1622 *op_class = vht_opclass; 1623 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1624 if (freq > chandef->chan->center_freq) 1625 *op_class = 119; 1626 else 1627 *op_class = 120; 1628 } else { 1629 *op_class = 118; 1630 } 1631 1632 return true; 1633 } 1634 1635 /* 5 GHz, channels 100..144 */ 1636 if (freq >= 5500 && freq <= 5720) { 1637 if (vht_opclass) { 1638 *op_class = vht_opclass; 1639 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1640 if (freq > chandef->chan->center_freq) 1641 *op_class = 122; 1642 else 1643 *op_class = 123; 1644 } else { 1645 *op_class = 121; 1646 } 1647 1648 return true; 1649 } 1650 1651 /* 5 GHz, channels 149..169 */ 1652 if (freq >= 5745 && freq <= 5845) { 1653 if (vht_opclass) { 1654 *op_class = vht_opclass; 1655 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1656 if (freq > chandef->chan->center_freq) 1657 *op_class = 126; 1658 else 1659 *op_class = 127; 1660 } else if (freq <= 5805) { 1661 *op_class = 124; 1662 } else { 1663 *op_class = 125; 1664 } 1665 1666 return true; 1667 } 1668 1669 /* 56.16 GHz, channel 1..4 */ 1670 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { 1671 if (chandef->width >= NL80211_CHAN_WIDTH_40) 1672 return false; 1673 1674 *op_class = 180; 1675 return true; 1676 } 1677 1678 /* not supported yet */ 1679 return false; 1680 } 1681 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 1682 1683 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, 1684 u32 *beacon_int_gcd, 1685 bool *beacon_int_different) 1686 { 1687 struct wireless_dev *wdev; 1688 1689 *beacon_int_gcd = 0; 1690 *beacon_int_different = false; 1691 1692 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 1693 if (!wdev->beacon_interval) 1694 continue; 1695 1696 if (!*beacon_int_gcd) { 1697 *beacon_int_gcd = wdev->beacon_interval; 1698 continue; 1699 } 1700 1701 if (wdev->beacon_interval == *beacon_int_gcd) 1702 continue; 1703 1704 *beacon_int_different = true; 1705 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval); 1706 } 1707 1708 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { 1709 if (*beacon_int_gcd) 1710 *beacon_int_different = true; 1711 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); 1712 } 1713 } 1714 1715 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 1716 enum nl80211_iftype iftype, u32 beacon_int) 1717 { 1718 /* 1719 * This is just a basic pre-condition check; if interface combinations 1720 * are possible the driver must already be checking those with a call 1721 * to cfg80211_check_combinations(), in which case we'll validate more 1722 * through the cfg80211_calculate_bi_data() call and code in 1723 * cfg80211_iter_combinations(). 1724 */ 1725 1726 if (beacon_int < 10 || beacon_int > 10000) 1727 return -EINVAL; 1728 1729 return 0; 1730 } 1731 1732 int cfg80211_iter_combinations(struct wiphy *wiphy, 1733 struct iface_combination_params *params, 1734 void (*iter)(const struct ieee80211_iface_combination *c, 1735 void *data), 1736 void *data) 1737 { 1738 const struct ieee80211_regdomain *regdom; 1739 enum nl80211_dfs_regions region = 0; 1740 int i, j, iftype; 1741 int num_interfaces = 0; 1742 u32 used_iftypes = 0; 1743 u32 beacon_int_gcd; 1744 bool beacon_int_different; 1745 1746 /* 1747 * This is a bit strange, since the iteration used to rely only on 1748 * the data given by the driver, but here it now relies on context, 1749 * in form of the currently operating interfaces. 1750 * This is OK for all current users, and saves us from having to 1751 * push the GCD calculations into all the drivers. 1752 * In the future, this should probably rely more on data that's in 1753 * cfg80211 already - the only thing not would appear to be any new 1754 * interfaces (while being brought up) and channel/radar data. 1755 */ 1756 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, 1757 &beacon_int_gcd, &beacon_int_different); 1758 1759 if (params->radar_detect) { 1760 rcu_read_lock(); 1761 regdom = rcu_dereference(cfg80211_regdomain); 1762 if (regdom) 1763 region = regdom->dfs_region; 1764 rcu_read_unlock(); 1765 } 1766 1767 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1768 num_interfaces += params->iftype_num[iftype]; 1769 if (params->iftype_num[iftype] > 0 && 1770 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 1771 used_iftypes |= BIT(iftype); 1772 } 1773 1774 for (i = 0; i < wiphy->n_iface_combinations; i++) { 1775 const struct ieee80211_iface_combination *c; 1776 struct ieee80211_iface_limit *limits; 1777 u32 all_iftypes = 0; 1778 1779 c = &wiphy->iface_combinations[i]; 1780 1781 if (num_interfaces > c->max_interfaces) 1782 continue; 1783 if (params->num_different_channels > c->num_different_channels) 1784 continue; 1785 1786 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 1787 GFP_KERNEL); 1788 if (!limits) 1789 return -ENOMEM; 1790 1791 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1792 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 1793 continue; 1794 for (j = 0; j < c->n_limits; j++) { 1795 all_iftypes |= limits[j].types; 1796 if (!(limits[j].types & BIT(iftype))) 1797 continue; 1798 if (limits[j].max < params->iftype_num[iftype]) 1799 goto cont; 1800 limits[j].max -= params->iftype_num[iftype]; 1801 } 1802 } 1803 1804 if (params->radar_detect != 1805 (c->radar_detect_widths & params->radar_detect)) 1806 goto cont; 1807 1808 if (params->radar_detect && c->radar_detect_regions && 1809 !(c->radar_detect_regions & BIT(region))) 1810 goto cont; 1811 1812 /* Finally check that all iftypes that we're currently 1813 * using are actually part of this combination. If they 1814 * aren't then we can't use this combination and have 1815 * to continue to the next. 1816 */ 1817 if ((all_iftypes & used_iftypes) != used_iftypes) 1818 goto cont; 1819 1820 if (beacon_int_gcd) { 1821 if (c->beacon_int_min_gcd && 1822 beacon_int_gcd < c->beacon_int_min_gcd) 1823 goto cont; 1824 if (!c->beacon_int_min_gcd && beacon_int_different) 1825 goto cont; 1826 } 1827 1828 /* This combination covered all interface types and 1829 * supported the requested numbers, so we're good. 1830 */ 1831 1832 (*iter)(c, data); 1833 cont: 1834 kfree(limits); 1835 } 1836 1837 return 0; 1838 } 1839 EXPORT_SYMBOL(cfg80211_iter_combinations); 1840 1841 static void 1842 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 1843 void *data) 1844 { 1845 int *num = data; 1846 (*num)++; 1847 } 1848 1849 int cfg80211_check_combinations(struct wiphy *wiphy, 1850 struct iface_combination_params *params) 1851 { 1852 int err, num = 0; 1853 1854 err = cfg80211_iter_combinations(wiphy, params, 1855 cfg80211_iter_sum_ifcombs, &num); 1856 if (err) 1857 return err; 1858 if (num == 0) 1859 return -EBUSY; 1860 1861 return 0; 1862 } 1863 EXPORT_SYMBOL(cfg80211_check_combinations); 1864 1865 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1866 const u8 *rates, unsigned int n_rates, 1867 u32 *mask) 1868 { 1869 int i, j; 1870 1871 if (!sband) 1872 return -EINVAL; 1873 1874 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1875 return -EINVAL; 1876 1877 *mask = 0; 1878 1879 for (i = 0; i < n_rates; i++) { 1880 int rate = (rates[i] & 0x7f) * 5; 1881 bool found = false; 1882 1883 for (j = 0; j < sband->n_bitrates; j++) { 1884 if (sband->bitrates[j].bitrate == rate) { 1885 found = true; 1886 *mask |= BIT(j); 1887 break; 1888 } 1889 } 1890 if (!found) 1891 return -EINVAL; 1892 } 1893 1894 /* 1895 * mask must have at least one bit set here since we 1896 * didn't accept a 0-length rates array nor allowed 1897 * entries in the array that didn't exist 1898 */ 1899 1900 return 0; 1901 } 1902 1903 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 1904 { 1905 enum nl80211_band band; 1906 unsigned int n_channels = 0; 1907 1908 for (band = 0; band < NUM_NL80211_BANDS; band++) 1909 if (wiphy->bands[band]) 1910 n_channels += wiphy->bands[band]->n_channels; 1911 1912 return n_channels; 1913 } 1914 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 1915 1916 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 1917 struct station_info *sinfo) 1918 { 1919 struct cfg80211_registered_device *rdev; 1920 struct wireless_dev *wdev; 1921 1922 wdev = dev->ieee80211_ptr; 1923 if (!wdev) 1924 return -EOPNOTSUPP; 1925 1926 rdev = wiphy_to_rdev(wdev->wiphy); 1927 if (!rdev->ops->get_station) 1928 return -EOPNOTSUPP; 1929 1930 memset(sinfo, 0, sizeof(*sinfo)); 1931 1932 return rdev_get_station(rdev, dev, mac_addr, sinfo); 1933 } 1934 EXPORT_SYMBOL(cfg80211_get_station); 1935 1936 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 1937 { 1938 int i; 1939 1940 if (!f) 1941 return; 1942 1943 kfree(f->serv_spec_info); 1944 kfree(f->srf_bf); 1945 kfree(f->srf_macs); 1946 for (i = 0; i < f->num_rx_filters; i++) 1947 kfree(f->rx_filters[i].filter); 1948 1949 for (i = 0; i < f->num_tx_filters; i++) 1950 kfree(f->tx_filters[i].filter); 1951 1952 kfree(f->rx_filters); 1953 kfree(f->tx_filters); 1954 kfree(f); 1955 } 1956 EXPORT_SYMBOL(cfg80211_free_nan_func); 1957 1958 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, 1959 u32 center_freq_khz, u32 bw_khz) 1960 { 1961 u32 start_freq_khz, end_freq_khz; 1962 1963 start_freq_khz = center_freq_khz - (bw_khz / 2); 1964 end_freq_khz = center_freq_khz + (bw_khz / 2); 1965 1966 if (start_freq_khz >= freq_range->start_freq_khz && 1967 end_freq_khz <= freq_range->end_freq_khz) 1968 return true; 1969 1970 return false; 1971 } 1972 1973 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) 1974 { 1975 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, 1976 sizeof(*(sinfo->pertid)), 1977 gfp); 1978 if (!sinfo->pertid) 1979 return -ENOMEM; 1980 1981 return 0; 1982 } 1983 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); 1984 1985 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 1986 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 1987 const unsigned char rfc1042_header[] __aligned(2) = 1988 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 1989 EXPORT_SYMBOL(rfc1042_header); 1990 1991 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 1992 const unsigned char bridge_tunnel_header[] __aligned(2) = 1993 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 1994 EXPORT_SYMBOL(bridge_tunnel_header); 1995 1996 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ 1997 struct iapp_layer2_update { 1998 u8 da[ETH_ALEN]; /* broadcast */ 1999 u8 sa[ETH_ALEN]; /* STA addr */ 2000 __be16 len; /* 6 */ 2001 u8 dsap; /* 0 */ 2002 u8 ssap; /* 0 */ 2003 u8 control; 2004 u8 xid_info[3]; 2005 } __packed; 2006 2007 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr) 2008 { 2009 struct iapp_layer2_update *msg; 2010 struct sk_buff *skb; 2011 2012 /* Send Level 2 Update Frame to update forwarding tables in layer 2 2013 * bridge devices */ 2014 2015 skb = dev_alloc_skb(sizeof(*msg)); 2016 if (!skb) 2017 return; 2018 msg = skb_put(skb, sizeof(*msg)); 2019 2020 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) 2021 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ 2022 2023 eth_broadcast_addr(msg->da); 2024 ether_addr_copy(msg->sa, addr); 2025 msg->len = htons(6); 2026 msg->dsap = 0; 2027 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ 2028 msg->control = 0xaf; /* XID response lsb.1111F101. 2029 * F=0 (no poll command; unsolicited frame) */ 2030 msg->xid_info[0] = 0x81; /* XID format identifier */ 2031 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ 2032 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ 2033 2034 skb->dev = dev; 2035 skb->protocol = eth_type_trans(skb, dev); 2036 memset(skb->cb, 0, sizeof(skb->cb)); 2037 netif_rx_ni(skb); 2038 } 2039 EXPORT_SYMBOL(cfg80211_send_layer2_update); 2040 2041 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, 2042 enum ieee80211_vht_chanwidth bw, 2043 int mcs, bool ext_nss_bw_capable, 2044 unsigned int max_vht_nss) 2045 { 2046 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map); 2047 int ext_nss_bw; 2048 int supp_width; 2049 int i, mcs_encoding; 2050 2051 if (map == 0xffff) 2052 return 0; 2053 2054 if (WARN_ON(mcs > 9 || max_vht_nss > 8)) 2055 return 0; 2056 if (mcs <= 7) 2057 mcs_encoding = 0; 2058 else if (mcs == 8) 2059 mcs_encoding = 1; 2060 else 2061 mcs_encoding = 2; 2062 2063 if (!max_vht_nss) { 2064 /* find max_vht_nss for the given MCS */ 2065 for (i = 7; i >= 0; i--) { 2066 int supp = (map >> (2 * i)) & 3; 2067 2068 if (supp == 3) 2069 continue; 2070 2071 if (supp >= mcs_encoding) { 2072 max_vht_nss = i + 1; 2073 break; 2074 } 2075 } 2076 } 2077 2078 if (!(cap->supp_mcs.tx_mcs_map & 2079 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) 2080 return max_vht_nss; 2081 2082 ext_nss_bw = le32_get_bits(cap->vht_cap_info, 2083 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2084 supp_width = le32_get_bits(cap->vht_cap_info, 2085 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2086 2087 /* if not capable, treat ext_nss_bw as 0 */ 2088 if (!ext_nss_bw_capable) 2089 ext_nss_bw = 0; 2090 2091 /* This is invalid */ 2092 if (supp_width == 3) 2093 return 0; 2094 2095 /* This is an invalid combination so pretend nothing is supported */ 2096 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2)) 2097 return 0; 2098 2099 /* 2100 * Cover all the special cases according to IEEE 802.11-2016 2101 * Table 9-250. All other cases are either factor of 1 or not 2102 * valid/supported. 2103 */ 2104 switch (bw) { 2105 case IEEE80211_VHT_CHANWIDTH_USE_HT: 2106 case IEEE80211_VHT_CHANWIDTH_80MHZ: 2107 if ((supp_width == 1 || supp_width == 2) && 2108 ext_nss_bw == 3) 2109 return 2 * max_vht_nss; 2110 break; 2111 case IEEE80211_VHT_CHANWIDTH_160MHZ: 2112 if (supp_width == 0 && 2113 (ext_nss_bw == 1 || ext_nss_bw == 2)) 2114 return max_vht_nss / 2; 2115 if (supp_width == 0 && 2116 ext_nss_bw == 3) 2117 return (3 * max_vht_nss) / 4; 2118 if (supp_width == 1 && 2119 ext_nss_bw == 3) 2120 return 2 * max_vht_nss; 2121 break; 2122 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 2123 if (supp_width == 0 && ext_nss_bw == 1) 2124 return 0; /* not possible */ 2125 if (supp_width == 0 && 2126 ext_nss_bw == 2) 2127 return max_vht_nss / 2; 2128 if (supp_width == 0 && 2129 ext_nss_bw == 3) 2130 return (3 * max_vht_nss) / 4; 2131 if (supp_width == 1 && 2132 ext_nss_bw == 0) 2133 return 0; /* not possible */ 2134 if (supp_width == 1 && 2135 ext_nss_bw == 1) 2136 return max_vht_nss / 2; 2137 if (supp_width == 1 && 2138 ext_nss_bw == 2) 2139 return (3 * max_vht_nss) / 4; 2140 break; 2141 } 2142 2143 /* not covered or invalid combination received */ 2144 return max_vht_nss; 2145 } 2146 EXPORT_SYMBOL(ieee80211_get_vht_max_nss); 2147 2148 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype, 2149 bool is_4addr, u8 check_swif) 2150 2151 { 2152 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN; 2153 2154 switch (check_swif) { 2155 case 0: 2156 if (is_vlan && is_4addr) 2157 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2158 return wiphy->interface_modes & BIT(iftype); 2159 case 1: 2160 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan) 2161 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2162 return wiphy->software_iftypes & BIT(iftype); 2163 default: 2164 break; 2165 } 2166 2167 return false; 2168 } 2169 EXPORT_SYMBOL(cfg80211_iftype_allowed); 2170