1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Wireless utility functions 4 * 5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018-2023 Intel Corporation 9 */ 10 #include <linux/export.h> 11 #include <linux/bitops.h> 12 #include <linux/etherdevice.h> 13 #include <linux/slab.h> 14 #include <linux/ieee80211.h> 15 #include <net/cfg80211.h> 16 #include <net/ip.h> 17 #include <net/dsfield.h> 18 #include <linux/if_vlan.h> 19 #include <linux/mpls.h> 20 #include <linux/gcd.h> 21 #include <linux/bitfield.h> 22 #include <linux/nospec.h> 23 #include "core.h" 24 #include "rdev-ops.h" 25 26 27 const struct ieee80211_rate * 28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 29 u32 basic_rates, int bitrate) 30 { 31 struct ieee80211_rate *result = &sband->bitrates[0]; 32 int i; 33 34 for (i = 0; i < sband->n_bitrates; i++) { 35 if (!(basic_rates & BIT(i))) 36 continue; 37 if (sband->bitrates[i].bitrate > bitrate) 38 continue; 39 result = &sband->bitrates[i]; 40 } 41 42 return result; 43 } 44 EXPORT_SYMBOL(ieee80211_get_response_rate); 45 46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 47 enum nl80211_bss_scan_width scan_width) 48 { 49 struct ieee80211_rate *bitrates; 50 u32 mandatory_rates = 0; 51 enum ieee80211_rate_flags mandatory_flag; 52 int i; 53 54 if (WARN_ON(!sband)) 55 return 1; 56 57 if (sband->band == NL80211_BAND_2GHZ) { 58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 59 scan_width == NL80211_BSS_CHAN_WIDTH_10) 60 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 61 else 62 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 63 } else { 64 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 65 } 66 67 bitrates = sband->bitrates; 68 for (i = 0; i < sband->n_bitrates; i++) 69 if (bitrates[i].flags & mandatory_flag) 70 mandatory_rates |= BIT(i); 71 return mandatory_rates; 72 } 73 EXPORT_SYMBOL(ieee80211_mandatory_rates); 74 75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band) 76 { 77 /* see 802.11 17.3.8.3.2 and Annex J 78 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 79 if (chan <= 0) 80 return 0; /* not supported */ 81 switch (band) { 82 case NL80211_BAND_2GHZ: 83 case NL80211_BAND_LC: 84 if (chan == 14) 85 return MHZ_TO_KHZ(2484); 86 else if (chan < 14) 87 return MHZ_TO_KHZ(2407 + chan * 5); 88 break; 89 case NL80211_BAND_5GHZ: 90 if (chan >= 182 && chan <= 196) 91 return MHZ_TO_KHZ(4000 + chan * 5); 92 else 93 return MHZ_TO_KHZ(5000 + chan * 5); 94 break; 95 case NL80211_BAND_6GHZ: 96 /* see 802.11ax D6.1 27.3.23.2 */ 97 if (chan == 2) 98 return MHZ_TO_KHZ(5935); 99 if (chan <= 233) 100 return MHZ_TO_KHZ(5950 + chan * 5); 101 break; 102 case NL80211_BAND_60GHZ: 103 if (chan < 7) 104 return MHZ_TO_KHZ(56160 + chan * 2160); 105 break; 106 case NL80211_BAND_S1GHZ: 107 return 902000 + chan * 500; 108 default: 109 ; 110 } 111 return 0; /* not supported */ 112 } 113 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz); 114 115 enum nl80211_chan_width 116 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan) 117 { 118 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ)) 119 return NL80211_CHAN_WIDTH_20_NOHT; 120 121 /*S1G defines a single allowed channel width per channel. 122 * Extract that width here. 123 */ 124 if (chan->flags & IEEE80211_CHAN_1MHZ) 125 return NL80211_CHAN_WIDTH_1; 126 else if (chan->flags & IEEE80211_CHAN_2MHZ) 127 return NL80211_CHAN_WIDTH_2; 128 else if (chan->flags & IEEE80211_CHAN_4MHZ) 129 return NL80211_CHAN_WIDTH_4; 130 else if (chan->flags & IEEE80211_CHAN_8MHZ) 131 return NL80211_CHAN_WIDTH_8; 132 else if (chan->flags & IEEE80211_CHAN_16MHZ) 133 return NL80211_CHAN_WIDTH_16; 134 135 pr_err("unknown channel width for channel at %dKHz?\n", 136 ieee80211_channel_to_khz(chan)); 137 138 return NL80211_CHAN_WIDTH_1; 139 } 140 EXPORT_SYMBOL(ieee80211_s1g_channel_width); 141 142 int ieee80211_freq_khz_to_channel(u32 freq) 143 { 144 /* TODO: just handle MHz for now */ 145 freq = KHZ_TO_MHZ(freq); 146 147 /* see 802.11 17.3.8.3.2 and Annex J */ 148 if (freq == 2484) 149 return 14; 150 else if (freq < 2484) 151 return (freq - 2407) / 5; 152 else if (freq >= 4910 && freq <= 4980) 153 return (freq - 4000) / 5; 154 else if (freq < 5925) 155 return (freq - 5000) / 5; 156 else if (freq == 5935) 157 return 2; 158 else if (freq <= 45000) /* DMG band lower limit */ 159 /* see 802.11ax D6.1 27.3.22.2 */ 160 return (freq - 5950) / 5; 161 else if (freq >= 58320 && freq <= 70200) 162 return (freq - 56160) / 2160; 163 else 164 return 0; 165 } 166 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel); 167 168 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy, 169 u32 freq) 170 { 171 enum nl80211_band band; 172 struct ieee80211_supported_band *sband; 173 int i; 174 175 for (band = 0; band < NUM_NL80211_BANDS; band++) { 176 sband = wiphy->bands[band]; 177 178 if (!sband) 179 continue; 180 181 for (i = 0; i < sband->n_channels; i++) { 182 struct ieee80211_channel *chan = &sband->channels[i]; 183 184 if (ieee80211_channel_to_khz(chan) == freq) 185 return chan; 186 } 187 } 188 189 return NULL; 190 } 191 EXPORT_SYMBOL(ieee80211_get_channel_khz); 192 193 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) 194 { 195 int i, want; 196 197 switch (sband->band) { 198 case NL80211_BAND_5GHZ: 199 case NL80211_BAND_6GHZ: 200 want = 3; 201 for (i = 0; i < sband->n_bitrates; i++) { 202 if (sband->bitrates[i].bitrate == 60 || 203 sband->bitrates[i].bitrate == 120 || 204 sband->bitrates[i].bitrate == 240) { 205 sband->bitrates[i].flags |= 206 IEEE80211_RATE_MANDATORY_A; 207 want--; 208 } 209 } 210 WARN_ON(want); 211 break; 212 case NL80211_BAND_2GHZ: 213 case NL80211_BAND_LC: 214 want = 7; 215 for (i = 0; i < sband->n_bitrates; i++) { 216 switch (sband->bitrates[i].bitrate) { 217 case 10: 218 case 20: 219 case 55: 220 case 110: 221 sband->bitrates[i].flags |= 222 IEEE80211_RATE_MANDATORY_B | 223 IEEE80211_RATE_MANDATORY_G; 224 want--; 225 break; 226 case 60: 227 case 120: 228 case 240: 229 sband->bitrates[i].flags |= 230 IEEE80211_RATE_MANDATORY_G; 231 want--; 232 fallthrough; 233 default: 234 sband->bitrates[i].flags |= 235 IEEE80211_RATE_ERP_G; 236 break; 237 } 238 } 239 WARN_ON(want != 0 && want != 3); 240 break; 241 case NL80211_BAND_60GHZ: 242 /* check for mandatory HT MCS 1..4 */ 243 WARN_ON(!sband->ht_cap.ht_supported); 244 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 245 break; 246 case NL80211_BAND_S1GHZ: 247 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least 248 * mandatory is ok. 249 */ 250 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3); 251 break; 252 case NUM_NL80211_BANDS: 253 default: 254 WARN_ON(1); 255 break; 256 } 257 } 258 259 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 260 { 261 enum nl80211_band band; 262 263 for (band = 0; band < NUM_NL80211_BANDS; band++) 264 if (wiphy->bands[band]) 265 set_mandatory_flags_band(wiphy->bands[band]); 266 } 267 268 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 269 { 270 int i; 271 for (i = 0; i < wiphy->n_cipher_suites; i++) 272 if (cipher == wiphy->cipher_suites[i]) 273 return true; 274 return false; 275 } 276 277 static bool 278 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev) 279 { 280 struct wiphy *wiphy = &rdev->wiphy; 281 int i; 282 283 for (i = 0; i < wiphy->n_cipher_suites; i++) { 284 switch (wiphy->cipher_suites[i]) { 285 case WLAN_CIPHER_SUITE_AES_CMAC: 286 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 287 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 288 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 289 return true; 290 } 291 } 292 293 return false; 294 } 295 296 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev, 297 int key_idx, bool pairwise) 298 { 299 int max_key_idx; 300 301 if (pairwise) 302 max_key_idx = 3; 303 else if (wiphy_ext_feature_isset(&rdev->wiphy, 304 NL80211_EXT_FEATURE_BEACON_PROTECTION) || 305 wiphy_ext_feature_isset(&rdev->wiphy, 306 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT)) 307 max_key_idx = 7; 308 else if (cfg80211_igtk_cipher_supported(rdev)) 309 max_key_idx = 5; 310 else 311 max_key_idx = 3; 312 313 if (key_idx < 0 || key_idx > max_key_idx) 314 return false; 315 316 return true; 317 } 318 319 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 320 struct key_params *params, int key_idx, 321 bool pairwise, const u8 *mac_addr) 322 { 323 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise)) 324 return -EINVAL; 325 326 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 327 return -EINVAL; 328 329 if (pairwise && !mac_addr) 330 return -EINVAL; 331 332 switch (params->cipher) { 333 case WLAN_CIPHER_SUITE_TKIP: 334 /* Extended Key ID can only be used with CCMP/GCMP ciphers */ 335 if ((pairwise && key_idx) || 336 params->mode != NL80211_KEY_RX_TX) 337 return -EINVAL; 338 break; 339 case WLAN_CIPHER_SUITE_CCMP: 340 case WLAN_CIPHER_SUITE_CCMP_256: 341 case WLAN_CIPHER_SUITE_GCMP: 342 case WLAN_CIPHER_SUITE_GCMP_256: 343 /* IEEE802.11-2016 allows only 0 and - when supporting 344 * Extended Key ID - 1 as index for pairwise keys. 345 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when 346 * the driver supports Extended Key ID. 347 * @NL80211_KEY_SET_TX can't be set when installing and 348 * validating a key. 349 */ 350 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) || 351 params->mode == NL80211_KEY_SET_TX) 352 return -EINVAL; 353 if (wiphy_ext_feature_isset(&rdev->wiphy, 354 NL80211_EXT_FEATURE_EXT_KEY_ID)) { 355 if (pairwise && (key_idx < 0 || key_idx > 1)) 356 return -EINVAL; 357 } else if (pairwise && key_idx) { 358 return -EINVAL; 359 } 360 break; 361 case WLAN_CIPHER_SUITE_AES_CMAC: 362 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 363 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 364 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 365 /* Disallow BIP (group-only) cipher as pairwise cipher */ 366 if (pairwise) 367 return -EINVAL; 368 if (key_idx < 4) 369 return -EINVAL; 370 break; 371 case WLAN_CIPHER_SUITE_WEP40: 372 case WLAN_CIPHER_SUITE_WEP104: 373 if (key_idx > 3) 374 return -EINVAL; 375 break; 376 default: 377 break; 378 } 379 380 switch (params->cipher) { 381 case WLAN_CIPHER_SUITE_WEP40: 382 if (params->key_len != WLAN_KEY_LEN_WEP40) 383 return -EINVAL; 384 break; 385 case WLAN_CIPHER_SUITE_TKIP: 386 if (params->key_len != WLAN_KEY_LEN_TKIP) 387 return -EINVAL; 388 break; 389 case WLAN_CIPHER_SUITE_CCMP: 390 if (params->key_len != WLAN_KEY_LEN_CCMP) 391 return -EINVAL; 392 break; 393 case WLAN_CIPHER_SUITE_CCMP_256: 394 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 395 return -EINVAL; 396 break; 397 case WLAN_CIPHER_SUITE_GCMP: 398 if (params->key_len != WLAN_KEY_LEN_GCMP) 399 return -EINVAL; 400 break; 401 case WLAN_CIPHER_SUITE_GCMP_256: 402 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 403 return -EINVAL; 404 break; 405 case WLAN_CIPHER_SUITE_WEP104: 406 if (params->key_len != WLAN_KEY_LEN_WEP104) 407 return -EINVAL; 408 break; 409 case WLAN_CIPHER_SUITE_AES_CMAC: 410 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 411 return -EINVAL; 412 break; 413 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 414 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 415 return -EINVAL; 416 break; 417 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 418 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 419 return -EINVAL; 420 break; 421 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 422 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 423 return -EINVAL; 424 break; 425 default: 426 /* 427 * We don't know anything about this algorithm, 428 * allow using it -- but the driver must check 429 * all parameters! We still check below whether 430 * or not the driver supports this algorithm, 431 * of course. 432 */ 433 break; 434 } 435 436 if (params->seq) { 437 switch (params->cipher) { 438 case WLAN_CIPHER_SUITE_WEP40: 439 case WLAN_CIPHER_SUITE_WEP104: 440 /* These ciphers do not use key sequence */ 441 return -EINVAL; 442 case WLAN_CIPHER_SUITE_TKIP: 443 case WLAN_CIPHER_SUITE_CCMP: 444 case WLAN_CIPHER_SUITE_CCMP_256: 445 case WLAN_CIPHER_SUITE_GCMP: 446 case WLAN_CIPHER_SUITE_GCMP_256: 447 case WLAN_CIPHER_SUITE_AES_CMAC: 448 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 449 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 450 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 451 if (params->seq_len != 6) 452 return -EINVAL; 453 break; 454 } 455 } 456 457 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 458 return -EINVAL; 459 460 return 0; 461 } 462 463 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 464 { 465 unsigned int hdrlen = 24; 466 467 if (ieee80211_is_ext(fc)) { 468 hdrlen = 4; 469 goto out; 470 } 471 472 if (ieee80211_is_data(fc)) { 473 if (ieee80211_has_a4(fc)) 474 hdrlen = 30; 475 if (ieee80211_is_data_qos(fc)) { 476 hdrlen += IEEE80211_QOS_CTL_LEN; 477 if (ieee80211_has_order(fc)) 478 hdrlen += IEEE80211_HT_CTL_LEN; 479 } 480 goto out; 481 } 482 483 if (ieee80211_is_mgmt(fc)) { 484 if (ieee80211_has_order(fc)) 485 hdrlen += IEEE80211_HT_CTL_LEN; 486 goto out; 487 } 488 489 if (ieee80211_is_ctl(fc)) { 490 /* 491 * ACK and CTS are 10 bytes, all others 16. To see how 492 * to get this condition consider 493 * subtype mask: 0b0000000011110000 (0x00F0) 494 * ACK subtype: 0b0000000011010000 (0x00D0) 495 * CTS subtype: 0b0000000011000000 (0x00C0) 496 * bits that matter: ^^^ (0x00E0) 497 * value of those: 0b0000000011000000 (0x00C0) 498 */ 499 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 500 hdrlen = 10; 501 else 502 hdrlen = 16; 503 } 504 out: 505 return hdrlen; 506 } 507 EXPORT_SYMBOL(ieee80211_hdrlen); 508 509 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 510 { 511 const struct ieee80211_hdr *hdr = 512 (const struct ieee80211_hdr *)skb->data; 513 unsigned int hdrlen; 514 515 if (unlikely(skb->len < 10)) 516 return 0; 517 hdrlen = ieee80211_hdrlen(hdr->frame_control); 518 if (unlikely(hdrlen > skb->len)) 519 return 0; 520 return hdrlen; 521 } 522 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 523 524 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 525 { 526 int ae = flags & MESH_FLAGS_AE; 527 /* 802.11-2012, 8.2.4.7.3 */ 528 switch (ae) { 529 default: 530 case 0: 531 return 6; 532 case MESH_FLAGS_AE_A4: 533 return 12; 534 case MESH_FLAGS_AE_A5_A6: 535 return 18; 536 } 537 } 538 539 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 540 { 541 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 542 } 543 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 544 545 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto) 546 { 547 const __be16 *hdr_proto = hdr + ETH_ALEN; 548 549 if (!(ether_addr_equal(hdr, rfc1042_header) && 550 *hdr_proto != htons(ETH_P_AARP) && 551 *hdr_proto != htons(ETH_P_IPX)) && 552 !ether_addr_equal(hdr, bridge_tunnel_header)) 553 return false; 554 555 *proto = *hdr_proto; 556 557 return true; 558 } 559 EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto); 560 561 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb) 562 { 563 const void *mesh_addr; 564 struct { 565 struct ethhdr eth; 566 u8 flags; 567 } payload; 568 int hdrlen; 569 int ret; 570 571 ret = skb_copy_bits(skb, 0, &payload, sizeof(payload)); 572 if (ret) 573 return ret; 574 575 hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags); 576 577 if (likely(pskb_may_pull(skb, hdrlen + 8) && 578 ieee80211_get_8023_tunnel_proto(skb->data + hdrlen, 579 &payload.eth.h_proto))) 580 hdrlen += ETH_ALEN + 2; 581 else if (!pskb_may_pull(skb, hdrlen)) 582 return -EINVAL; 583 else 584 payload.eth.h_proto = htons(skb->len - hdrlen); 585 586 mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN; 587 switch (payload.flags & MESH_FLAGS_AE) { 588 case MESH_FLAGS_AE_A4: 589 memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN); 590 break; 591 case MESH_FLAGS_AE_A5_A6: 592 memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN); 593 break; 594 default: 595 break; 596 } 597 598 pskb_pull(skb, hdrlen - sizeof(payload.eth)); 599 memcpy(skb->data, &payload.eth, sizeof(payload.eth)); 600 601 return 0; 602 } 603 EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr); 604 605 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 606 const u8 *addr, enum nl80211_iftype iftype, 607 u8 data_offset, bool is_amsdu) 608 { 609 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 610 struct { 611 u8 hdr[ETH_ALEN] __aligned(2); 612 __be16 proto; 613 } payload; 614 struct ethhdr tmp; 615 u16 hdrlen; 616 617 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 618 return -1; 619 620 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; 621 if (skb->len < hdrlen) 622 return -1; 623 624 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 625 * header 626 * IEEE 802.11 address fields: 627 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 628 * 0 0 DA SA BSSID n/a 629 * 0 1 DA BSSID SA n/a 630 * 1 0 BSSID SA DA n/a 631 * 1 1 RA TA DA SA 632 */ 633 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 634 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 635 636 switch (hdr->frame_control & 637 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 638 case cpu_to_le16(IEEE80211_FCTL_TODS): 639 if (unlikely(iftype != NL80211_IFTYPE_AP && 640 iftype != NL80211_IFTYPE_AP_VLAN && 641 iftype != NL80211_IFTYPE_P2P_GO)) 642 return -1; 643 break; 644 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 645 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT && 646 iftype != NL80211_IFTYPE_AP_VLAN && 647 iftype != NL80211_IFTYPE_STATION)) 648 return -1; 649 break; 650 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 651 if ((iftype != NL80211_IFTYPE_STATION && 652 iftype != NL80211_IFTYPE_P2P_CLIENT && 653 iftype != NL80211_IFTYPE_MESH_POINT) || 654 (is_multicast_ether_addr(tmp.h_dest) && 655 ether_addr_equal(tmp.h_source, addr))) 656 return -1; 657 break; 658 case cpu_to_le16(0): 659 if (iftype != NL80211_IFTYPE_ADHOC && 660 iftype != NL80211_IFTYPE_STATION && 661 iftype != NL80211_IFTYPE_OCB) 662 return -1; 663 break; 664 } 665 666 if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT && 667 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 && 668 ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) { 669 /* remove RFC1042 or Bridge-Tunnel encapsulation */ 670 hdrlen += ETH_ALEN + 2; 671 skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2); 672 } else { 673 tmp.h_proto = htons(skb->len - hdrlen); 674 } 675 676 pskb_pull(skb, hdrlen); 677 678 if (!ehdr) 679 ehdr = skb_push(skb, sizeof(struct ethhdr)); 680 memcpy(ehdr, &tmp, sizeof(tmp)); 681 682 return 0; 683 } 684 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 685 686 static void 687 __frame_add_frag(struct sk_buff *skb, struct page *page, 688 void *ptr, int len, int size) 689 { 690 struct skb_shared_info *sh = skb_shinfo(skb); 691 int page_offset; 692 693 get_page(page); 694 page_offset = ptr - page_address(page); 695 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 696 } 697 698 static void 699 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 700 int offset, int len) 701 { 702 struct skb_shared_info *sh = skb_shinfo(skb); 703 const skb_frag_t *frag = &sh->frags[0]; 704 struct page *frag_page; 705 void *frag_ptr; 706 int frag_len, frag_size; 707 int head_size = skb->len - skb->data_len; 708 int cur_len; 709 710 frag_page = virt_to_head_page(skb->head); 711 frag_ptr = skb->data; 712 frag_size = head_size; 713 714 while (offset >= frag_size) { 715 offset -= frag_size; 716 frag_page = skb_frag_page(frag); 717 frag_ptr = skb_frag_address(frag); 718 frag_size = skb_frag_size(frag); 719 frag++; 720 } 721 722 frag_ptr += offset; 723 frag_len = frag_size - offset; 724 725 cur_len = min(len, frag_len); 726 727 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 728 len -= cur_len; 729 730 while (len > 0) { 731 frag_len = skb_frag_size(frag); 732 cur_len = min(len, frag_len); 733 __frame_add_frag(frame, skb_frag_page(frag), 734 skb_frag_address(frag), cur_len, frag_len); 735 len -= cur_len; 736 frag++; 737 } 738 } 739 740 static struct sk_buff * 741 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 742 int offset, int len, bool reuse_frag, 743 int min_len) 744 { 745 struct sk_buff *frame; 746 int cur_len = len; 747 748 if (skb->len - offset < len) 749 return NULL; 750 751 /* 752 * When reusing framents, copy some data to the head to simplify 753 * ethernet header handling and speed up protocol header processing 754 * in the stack later. 755 */ 756 if (reuse_frag) 757 cur_len = min_t(int, len, min_len); 758 759 /* 760 * Allocate and reserve two bytes more for payload 761 * alignment since sizeof(struct ethhdr) is 14. 762 */ 763 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 764 if (!frame) 765 return NULL; 766 767 frame->priority = skb->priority; 768 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 769 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 770 771 len -= cur_len; 772 if (!len) 773 return frame; 774 775 offset += cur_len; 776 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 777 778 return frame; 779 } 780 781 static u16 782 ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type) 783 { 784 __le16 *field_le = field; 785 __be16 *field_be = field; 786 u16 len; 787 788 if (hdr_type >= 2) 789 len = le16_to_cpu(*field_le); 790 else 791 len = be16_to_cpu(*field_be); 792 if (hdr_type) 793 len += __ieee80211_get_mesh_hdrlen(mesh_flags); 794 795 return len; 796 } 797 798 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr) 799 { 800 int offset = 0, subframe_len, padding; 801 802 for (offset = 0; offset < skb->len; offset += subframe_len + padding) { 803 int remaining = skb->len - offset; 804 struct { 805 __be16 len; 806 u8 mesh_flags; 807 } hdr; 808 u16 len; 809 810 if (sizeof(hdr) > remaining) 811 return false; 812 813 if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0) 814 return false; 815 816 len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags, 817 mesh_hdr); 818 subframe_len = sizeof(struct ethhdr) + len; 819 padding = (4 - subframe_len) & 0x3; 820 821 if (subframe_len > remaining) 822 return false; 823 } 824 825 return true; 826 } 827 EXPORT_SYMBOL(ieee80211_is_valid_amsdu); 828 829 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 830 const u8 *addr, enum nl80211_iftype iftype, 831 const unsigned int extra_headroom, 832 const u8 *check_da, const u8 *check_sa, 833 u8 mesh_control) 834 { 835 unsigned int hlen = ALIGN(extra_headroom, 4); 836 struct sk_buff *frame = NULL; 837 int offset = 0; 838 struct { 839 struct ethhdr eth; 840 uint8_t flags; 841 } hdr; 842 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 843 bool reuse_skb = false; 844 bool last = false; 845 int copy_len = sizeof(hdr.eth); 846 847 if (iftype == NL80211_IFTYPE_MESH_POINT) 848 copy_len = sizeof(hdr); 849 850 while (!last) { 851 int remaining = skb->len - offset; 852 unsigned int subframe_len; 853 int len, mesh_len = 0; 854 u8 padding; 855 856 if (copy_len > remaining) 857 goto purge; 858 859 skb_copy_bits(skb, offset, &hdr, copy_len); 860 if (iftype == NL80211_IFTYPE_MESH_POINT) 861 mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags); 862 len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags, 863 mesh_control); 864 subframe_len = sizeof(struct ethhdr) + len; 865 padding = (4 - subframe_len) & 0x3; 866 867 /* the last MSDU has no padding */ 868 if (subframe_len > remaining) 869 goto purge; 870 /* mitigate A-MSDU aggregation injection attacks */ 871 if (ether_addr_equal(hdr.eth.h_dest, rfc1042_header)) 872 goto purge; 873 874 offset += sizeof(struct ethhdr); 875 last = remaining <= subframe_len + padding; 876 877 /* FIXME: should we really accept multicast DA? */ 878 if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) && 879 !ether_addr_equal(check_da, hdr.eth.h_dest)) || 880 (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) { 881 offset += len + padding; 882 continue; 883 } 884 885 /* reuse skb for the last subframe */ 886 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 887 skb_pull(skb, offset); 888 frame = skb; 889 reuse_skb = true; 890 } else { 891 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 892 reuse_frag, 32 + mesh_len); 893 if (!frame) 894 goto purge; 895 896 offset += len + padding; 897 } 898 899 skb_reset_network_header(frame); 900 frame->dev = skb->dev; 901 frame->priority = skb->priority; 902 903 if (likely(iftype != NL80211_IFTYPE_MESH_POINT && 904 ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto))) 905 skb_pull(frame, ETH_ALEN + 2); 906 907 memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth)); 908 __skb_queue_tail(list, frame); 909 } 910 911 if (!reuse_skb) 912 dev_kfree_skb(skb); 913 914 return; 915 916 purge: 917 __skb_queue_purge(list); 918 dev_kfree_skb(skb); 919 } 920 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 921 922 /* Given a data frame determine the 802.1p/1d tag to use. */ 923 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 924 struct cfg80211_qos_map *qos_map) 925 { 926 unsigned int dscp; 927 unsigned char vlan_priority; 928 unsigned int ret; 929 930 /* skb->priority values from 256->263 are magic values to 931 * directly indicate a specific 802.1d priority. This is used 932 * to allow 802.1d priority to be passed directly in from VLAN 933 * tags, etc. 934 */ 935 if (skb->priority >= 256 && skb->priority <= 263) { 936 ret = skb->priority - 256; 937 goto out; 938 } 939 940 if (skb_vlan_tag_present(skb)) { 941 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 942 >> VLAN_PRIO_SHIFT; 943 if (vlan_priority > 0) { 944 ret = vlan_priority; 945 goto out; 946 } 947 } 948 949 switch (skb->protocol) { 950 case htons(ETH_P_IP): 951 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 952 break; 953 case htons(ETH_P_IPV6): 954 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 955 break; 956 case htons(ETH_P_MPLS_UC): 957 case htons(ETH_P_MPLS_MC): { 958 struct mpls_label mpls_tmp, *mpls; 959 960 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 961 sizeof(*mpls), &mpls_tmp); 962 if (!mpls) 963 return 0; 964 965 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 966 >> MPLS_LS_TC_SHIFT; 967 goto out; 968 } 969 case htons(ETH_P_80221): 970 /* 802.21 is always network control traffic */ 971 return 7; 972 default: 973 return 0; 974 } 975 976 if (qos_map) { 977 unsigned int i, tmp_dscp = dscp >> 2; 978 979 for (i = 0; i < qos_map->num_des; i++) { 980 if (tmp_dscp == qos_map->dscp_exception[i].dscp) { 981 ret = qos_map->dscp_exception[i].up; 982 goto out; 983 } 984 } 985 986 for (i = 0; i < 8; i++) { 987 if (tmp_dscp >= qos_map->up[i].low && 988 tmp_dscp <= qos_map->up[i].high) { 989 ret = i; 990 goto out; 991 } 992 } 993 } 994 995 ret = dscp >> 5; 996 out: 997 return array_index_nospec(ret, IEEE80211_NUM_TIDS); 998 } 999 EXPORT_SYMBOL(cfg80211_classify8021d); 1000 1001 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id) 1002 { 1003 const struct cfg80211_bss_ies *ies; 1004 1005 ies = rcu_dereference(bss->ies); 1006 if (!ies) 1007 return NULL; 1008 1009 return cfg80211_find_elem(id, ies->data, ies->len); 1010 } 1011 EXPORT_SYMBOL(ieee80211_bss_get_elem); 1012 1013 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 1014 { 1015 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 1016 struct net_device *dev = wdev->netdev; 1017 int i; 1018 1019 if (!wdev->connect_keys) 1020 return; 1021 1022 for (i = 0; i < 4; i++) { 1023 if (!wdev->connect_keys->params[i].cipher) 1024 continue; 1025 if (rdev_add_key(rdev, dev, -1, i, false, NULL, 1026 &wdev->connect_keys->params[i])) { 1027 netdev_err(dev, "failed to set key %d\n", i); 1028 continue; 1029 } 1030 if (wdev->connect_keys->def == i && 1031 rdev_set_default_key(rdev, dev, -1, i, true, true)) { 1032 netdev_err(dev, "failed to set defkey %d\n", i); 1033 continue; 1034 } 1035 } 1036 1037 kfree_sensitive(wdev->connect_keys); 1038 wdev->connect_keys = NULL; 1039 } 1040 1041 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 1042 { 1043 struct cfg80211_event *ev; 1044 unsigned long flags; 1045 1046 spin_lock_irqsave(&wdev->event_lock, flags); 1047 while (!list_empty(&wdev->event_list)) { 1048 ev = list_first_entry(&wdev->event_list, 1049 struct cfg80211_event, list); 1050 list_del(&ev->list); 1051 spin_unlock_irqrestore(&wdev->event_lock, flags); 1052 1053 wdev_lock(wdev); 1054 switch (ev->type) { 1055 case EVENT_CONNECT_RESULT: 1056 __cfg80211_connect_result( 1057 wdev->netdev, 1058 &ev->cr, 1059 ev->cr.status == WLAN_STATUS_SUCCESS); 1060 break; 1061 case EVENT_ROAMED: 1062 __cfg80211_roamed(wdev, &ev->rm); 1063 break; 1064 case EVENT_DISCONNECTED: 1065 __cfg80211_disconnected(wdev->netdev, 1066 ev->dc.ie, ev->dc.ie_len, 1067 ev->dc.reason, 1068 !ev->dc.locally_generated); 1069 break; 1070 case EVENT_IBSS_JOINED: 1071 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 1072 ev->ij.channel); 1073 break; 1074 case EVENT_STOPPED: 1075 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 1076 break; 1077 case EVENT_PORT_AUTHORIZED: 1078 __cfg80211_port_authorized(wdev, ev->pa.bssid, 1079 ev->pa.td_bitmap, 1080 ev->pa.td_bitmap_len); 1081 break; 1082 } 1083 wdev_unlock(wdev); 1084 1085 kfree(ev); 1086 1087 spin_lock_irqsave(&wdev->event_lock, flags); 1088 } 1089 spin_unlock_irqrestore(&wdev->event_lock, flags); 1090 } 1091 1092 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 1093 { 1094 struct wireless_dev *wdev; 1095 1096 lockdep_assert_held(&rdev->wiphy.mtx); 1097 1098 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 1099 cfg80211_process_wdev_events(wdev); 1100 } 1101 1102 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 1103 struct net_device *dev, enum nl80211_iftype ntype, 1104 struct vif_params *params) 1105 { 1106 int err; 1107 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 1108 1109 lockdep_assert_held(&rdev->wiphy.mtx); 1110 1111 /* don't support changing VLANs, you just re-create them */ 1112 if (otype == NL80211_IFTYPE_AP_VLAN) 1113 return -EOPNOTSUPP; 1114 1115 /* cannot change into P2P device or NAN */ 1116 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 1117 ntype == NL80211_IFTYPE_NAN) 1118 return -EOPNOTSUPP; 1119 1120 if (!rdev->ops->change_virtual_intf || 1121 !(rdev->wiphy.interface_modes & (1 << ntype))) 1122 return -EOPNOTSUPP; 1123 1124 if (ntype != otype) { 1125 /* if it's part of a bridge, reject changing type to station/ibss */ 1126 if (netif_is_bridge_port(dev) && 1127 (ntype == NL80211_IFTYPE_ADHOC || 1128 ntype == NL80211_IFTYPE_STATION || 1129 ntype == NL80211_IFTYPE_P2P_CLIENT)) 1130 return -EBUSY; 1131 1132 dev->ieee80211_ptr->use_4addr = false; 1133 wdev_lock(dev->ieee80211_ptr); 1134 rdev_set_qos_map(rdev, dev, NULL); 1135 wdev_unlock(dev->ieee80211_ptr); 1136 1137 switch (otype) { 1138 case NL80211_IFTYPE_AP: 1139 case NL80211_IFTYPE_P2P_GO: 1140 cfg80211_stop_ap(rdev, dev, -1, true); 1141 break; 1142 case NL80211_IFTYPE_ADHOC: 1143 cfg80211_leave_ibss(rdev, dev, false); 1144 break; 1145 case NL80211_IFTYPE_STATION: 1146 case NL80211_IFTYPE_P2P_CLIENT: 1147 wdev_lock(dev->ieee80211_ptr); 1148 cfg80211_disconnect(rdev, dev, 1149 WLAN_REASON_DEAUTH_LEAVING, true); 1150 wdev_unlock(dev->ieee80211_ptr); 1151 break; 1152 case NL80211_IFTYPE_MESH_POINT: 1153 /* mesh should be handled? */ 1154 break; 1155 case NL80211_IFTYPE_OCB: 1156 cfg80211_leave_ocb(rdev, dev); 1157 break; 1158 default: 1159 break; 1160 } 1161 1162 cfg80211_process_rdev_events(rdev); 1163 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr); 1164 1165 memset(&dev->ieee80211_ptr->u, 0, 1166 sizeof(dev->ieee80211_ptr->u)); 1167 memset(&dev->ieee80211_ptr->links, 0, 1168 sizeof(dev->ieee80211_ptr->links)); 1169 } 1170 1171 err = rdev_change_virtual_intf(rdev, dev, ntype, params); 1172 1173 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 1174 1175 if (!err && params && params->use_4addr != -1) 1176 dev->ieee80211_ptr->use_4addr = params->use_4addr; 1177 1178 if (!err) { 1179 dev->priv_flags &= ~IFF_DONT_BRIDGE; 1180 switch (ntype) { 1181 case NL80211_IFTYPE_STATION: 1182 if (dev->ieee80211_ptr->use_4addr) 1183 break; 1184 fallthrough; 1185 case NL80211_IFTYPE_OCB: 1186 case NL80211_IFTYPE_P2P_CLIENT: 1187 case NL80211_IFTYPE_ADHOC: 1188 dev->priv_flags |= IFF_DONT_BRIDGE; 1189 break; 1190 case NL80211_IFTYPE_P2P_GO: 1191 case NL80211_IFTYPE_AP: 1192 case NL80211_IFTYPE_AP_VLAN: 1193 case NL80211_IFTYPE_MESH_POINT: 1194 /* bridging OK */ 1195 break; 1196 case NL80211_IFTYPE_MONITOR: 1197 /* monitor can't bridge anyway */ 1198 break; 1199 case NL80211_IFTYPE_UNSPECIFIED: 1200 case NUM_NL80211_IFTYPES: 1201 /* not happening */ 1202 break; 1203 case NL80211_IFTYPE_P2P_DEVICE: 1204 case NL80211_IFTYPE_WDS: 1205 case NL80211_IFTYPE_NAN: 1206 WARN_ON(1); 1207 break; 1208 } 1209 } 1210 1211 if (!err && ntype != otype && netif_running(dev)) { 1212 cfg80211_update_iface_num(rdev, ntype, 1); 1213 cfg80211_update_iface_num(rdev, otype, -1); 1214 } 1215 1216 return err; 1217 } 1218 1219 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) 1220 { 1221 int modulation, streams, bitrate; 1222 1223 /* the formula below does only work for MCS values smaller than 32 */ 1224 if (WARN_ON_ONCE(rate->mcs >= 32)) 1225 return 0; 1226 1227 modulation = rate->mcs & 7; 1228 streams = (rate->mcs >> 3) + 1; 1229 1230 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1231 1232 if (modulation < 4) 1233 bitrate *= (modulation + 1); 1234 else if (modulation == 4) 1235 bitrate *= (modulation + 2); 1236 else 1237 bitrate *= (modulation + 3); 1238 1239 bitrate *= streams; 1240 1241 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1242 bitrate = (bitrate / 9) * 10; 1243 1244 /* do NOT round down here */ 1245 return (bitrate + 50000) / 100000; 1246 } 1247 1248 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate) 1249 { 1250 static const u32 __mcs2bitrate[] = { 1251 /* control PHY */ 1252 [0] = 275, 1253 /* SC PHY */ 1254 [1] = 3850, 1255 [2] = 7700, 1256 [3] = 9625, 1257 [4] = 11550, 1258 [5] = 12512, /* 1251.25 mbps */ 1259 [6] = 15400, 1260 [7] = 19250, 1261 [8] = 23100, 1262 [9] = 25025, 1263 [10] = 30800, 1264 [11] = 38500, 1265 [12] = 46200, 1266 /* OFDM PHY */ 1267 [13] = 6930, 1268 [14] = 8662, /* 866.25 mbps */ 1269 [15] = 13860, 1270 [16] = 17325, 1271 [17] = 20790, 1272 [18] = 27720, 1273 [19] = 34650, 1274 [20] = 41580, 1275 [21] = 45045, 1276 [22] = 51975, 1277 [23] = 62370, 1278 [24] = 67568, /* 6756.75 mbps */ 1279 /* LP-SC PHY */ 1280 [25] = 6260, 1281 [26] = 8340, 1282 [27] = 11120, 1283 [28] = 12510, 1284 [29] = 16680, 1285 [30] = 22240, 1286 [31] = 25030, 1287 }; 1288 1289 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1290 return 0; 1291 1292 return __mcs2bitrate[rate->mcs]; 1293 } 1294 1295 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate) 1296 { 1297 static const u32 __mcs2bitrate[] = { 1298 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */ 1299 [7 - 6] = 50050, /* MCS 12.1 */ 1300 [8 - 6] = 53900, 1301 [9 - 6] = 57750, 1302 [10 - 6] = 63900, 1303 [11 - 6] = 75075, 1304 [12 - 6] = 80850, 1305 }; 1306 1307 /* Extended SC MCS not defined for base MCS below 6 or above 12 */ 1308 if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12)) 1309 return 0; 1310 1311 return __mcs2bitrate[rate->mcs - 6]; 1312 } 1313 1314 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate) 1315 { 1316 static const u32 __mcs2bitrate[] = { 1317 /* control PHY */ 1318 [0] = 275, 1319 /* SC PHY */ 1320 [1] = 3850, 1321 [2] = 7700, 1322 [3] = 9625, 1323 [4] = 11550, 1324 [5] = 12512, /* 1251.25 mbps */ 1325 [6] = 13475, 1326 [7] = 15400, 1327 [8] = 19250, 1328 [9] = 23100, 1329 [10] = 25025, 1330 [11] = 26950, 1331 [12] = 30800, 1332 [13] = 38500, 1333 [14] = 46200, 1334 [15] = 50050, 1335 [16] = 53900, 1336 [17] = 57750, 1337 [18] = 69300, 1338 [19] = 75075, 1339 [20] = 80850, 1340 }; 1341 1342 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1343 return 0; 1344 1345 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch; 1346 } 1347 1348 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1349 { 1350 static const u32 base[4][12] = { 1351 { 6500000, 1352 13000000, 1353 19500000, 1354 26000000, 1355 39000000, 1356 52000000, 1357 58500000, 1358 65000000, 1359 78000000, 1360 /* not in the spec, but some devices use this: */ 1361 86700000, 1362 97500000, 1363 108300000, 1364 }, 1365 { 13500000, 1366 27000000, 1367 40500000, 1368 54000000, 1369 81000000, 1370 108000000, 1371 121500000, 1372 135000000, 1373 162000000, 1374 180000000, 1375 202500000, 1376 225000000, 1377 }, 1378 { 29300000, 1379 58500000, 1380 87800000, 1381 117000000, 1382 175500000, 1383 234000000, 1384 263300000, 1385 292500000, 1386 351000000, 1387 390000000, 1388 438800000, 1389 487500000, 1390 }, 1391 { 58500000, 1392 117000000, 1393 175500000, 1394 234000000, 1395 351000000, 1396 468000000, 1397 526500000, 1398 585000000, 1399 702000000, 1400 780000000, 1401 877500000, 1402 975000000, 1403 }, 1404 }; 1405 u32 bitrate; 1406 int idx; 1407 1408 if (rate->mcs > 11) 1409 goto warn; 1410 1411 switch (rate->bw) { 1412 case RATE_INFO_BW_160: 1413 idx = 3; 1414 break; 1415 case RATE_INFO_BW_80: 1416 idx = 2; 1417 break; 1418 case RATE_INFO_BW_40: 1419 idx = 1; 1420 break; 1421 case RATE_INFO_BW_5: 1422 case RATE_INFO_BW_10: 1423 default: 1424 goto warn; 1425 case RATE_INFO_BW_20: 1426 idx = 0; 1427 } 1428 1429 bitrate = base[idx][rate->mcs]; 1430 bitrate *= rate->nss; 1431 1432 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1433 bitrate = (bitrate / 9) * 10; 1434 1435 /* do NOT round down here */ 1436 return (bitrate + 50000) / 100000; 1437 warn: 1438 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1439 rate->bw, rate->mcs, rate->nss); 1440 return 0; 1441 } 1442 1443 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) 1444 { 1445 #define SCALE 6144 1446 u32 mcs_divisors[14] = { 1447 102399, /* 16.666666... */ 1448 51201, /* 8.333333... */ 1449 34134, /* 5.555555... */ 1450 25599, /* 4.166666... */ 1451 17067, /* 2.777777... */ 1452 12801, /* 2.083333... */ 1453 11377, /* 1.851725... */ 1454 10239, /* 1.666666... */ 1455 8532, /* 1.388888... */ 1456 7680, /* 1.250000... */ 1457 6828, /* 1.111111... */ 1458 6144, /* 1.000000... */ 1459 5690, /* 0.926106... */ 1460 5120, /* 0.833333... */ 1461 }; 1462 u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; 1463 u32 rates_969[3] = { 480388888, 453700000, 408333333 }; 1464 u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1465 u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1466 u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1467 u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1468 u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1469 u64 tmp; 1470 u32 result; 1471 1472 if (WARN_ON_ONCE(rate->mcs > 13)) 1473 return 0; 1474 1475 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) 1476 return 0; 1477 if (WARN_ON_ONCE(rate->he_ru_alloc > 1478 NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1479 return 0; 1480 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1481 return 0; 1482 1483 if (rate->bw == RATE_INFO_BW_160) 1484 result = rates_160M[rate->he_gi]; 1485 else if (rate->bw == RATE_INFO_BW_80 || 1486 (rate->bw == RATE_INFO_BW_HE_RU && 1487 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) 1488 result = rates_969[rate->he_gi]; 1489 else if (rate->bw == RATE_INFO_BW_40 || 1490 (rate->bw == RATE_INFO_BW_HE_RU && 1491 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) 1492 result = rates_484[rate->he_gi]; 1493 else if (rate->bw == RATE_INFO_BW_20 || 1494 (rate->bw == RATE_INFO_BW_HE_RU && 1495 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) 1496 result = rates_242[rate->he_gi]; 1497 else if (rate->bw == RATE_INFO_BW_HE_RU && 1498 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) 1499 result = rates_106[rate->he_gi]; 1500 else if (rate->bw == RATE_INFO_BW_HE_RU && 1501 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) 1502 result = rates_52[rate->he_gi]; 1503 else if (rate->bw == RATE_INFO_BW_HE_RU && 1504 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) 1505 result = rates_26[rate->he_gi]; 1506 else { 1507 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", 1508 rate->bw, rate->he_ru_alloc); 1509 return 0; 1510 } 1511 1512 /* now scale to the appropriate MCS */ 1513 tmp = result; 1514 tmp *= SCALE; 1515 do_div(tmp, mcs_divisors[rate->mcs]); 1516 result = tmp; 1517 1518 /* and take NSS, DCM into account */ 1519 result = (result * rate->nss) / 8; 1520 if (rate->he_dcm) 1521 result /= 2; 1522 1523 return result / 10000; 1524 } 1525 1526 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate) 1527 { 1528 #define SCALE 6144 1529 static const u32 mcs_divisors[16] = { 1530 102399, /* 16.666666... */ 1531 51201, /* 8.333333... */ 1532 34134, /* 5.555555... */ 1533 25599, /* 4.166666... */ 1534 17067, /* 2.777777... */ 1535 12801, /* 2.083333... */ 1536 11377, /* 1.851725... */ 1537 10239, /* 1.666666... */ 1538 8532, /* 1.388888... */ 1539 7680, /* 1.250000... */ 1540 6828, /* 1.111111... */ 1541 6144, /* 1.000000... */ 1542 5690, /* 0.926106... */ 1543 5120, /* 0.833333... */ 1544 409600, /* 66.666666... */ 1545 204800, /* 33.333333... */ 1546 }; 1547 static const u32 rates_996[3] = { 480388888, 453700000, 408333333 }; 1548 static const u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1549 static const u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1550 static const u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1551 static const u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1552 static const u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1553 u64 tmp; 1554 u32 result; 1555 1556 if (WARN_ON_ONCE(rate->mcs > 15)) 1557 return 0; 1558 if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2)) 1559 return 0; 1560 if (WARN_ON_ONCE(rate->eht_ru_alloc > 1561 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) 1562 return 0; 1563 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1564 return 0; 1565 1566 /* Bandwidth checks for MCS 14 */ 1567 if (rate->mcs == 14) { 1568 if ((rate->bw != RATE_INFO_BW_EHT_RU && 1569 rate->bw != RATE_INFO_BW_80 && 1570 rate->bw != RATE_INFO_BW_160 && 1571 rate->bw != RATE_INFO_BW_320) || 1572 (rate->bw == RATE_INFO_BW_EHT_RU && 1573 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 && 1574 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 && 1575 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) { 1576 WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n", 1577 rate->bw, rate->eht_ru_alloc); 1578 return 0; 1579 } 1580 } 1581 1582 if (rate->bw == RATE_INFO_BW_320 || 1583 (rate->bw == RATE_INFO_BW_EHT_RU && 1584 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) 1585 result = 4 * rates_996[rate->eht_gi]; 1586 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1587 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484) 1588 result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1589 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1590 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996) 1591 result = 3 * rates_996[rate->eht_gi]; 1592 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1593 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484) 1594 result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1595 else if (rate->bw == RATE_INFO_BW_160 || 1596 (rate->bw == RATE_INFO_BW_EHT_RU && 1597 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996)) 1598 result = 2 * rates_996[rate->eht_gi]; 1599 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1600 rate->eht_ru_alloc == 1601 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242) 1602 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi] 1603 + rates_242[rate->eht_gi]; 1604 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1605 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484) 1606 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1607 else if (rate->bw == RATE_INFO_BW_80 || 1608 (rate->bw == RATE_INFO_BW_EHT_RU && 1609 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996)) 1610 result = rates_996[rate->eht_gi]; 1611 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1612 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242) 1613 result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi]; 1614 else if (rate->bw == RATE_INFO_BW_40 || 1615 (rate->bw == RATE_INFO_BW_EHT_RU && 1616 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484)) 1617 result = rates_484[rate->eht_gi]; 1618 else if (rate->bw == RATE_INFO_BW_20 || 1619 (rate->bw == RATE_INFO_BW_EHT_RU && 1620 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242)) 1621 result = rates_242[rate->eht_gi]; 1622 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1623 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26) 1624 result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi]; 1625 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1626 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106) 1627 result = rates_106[rate->eht_gi]; 1628 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1629 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26) 1630 result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi]; 1631 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1632 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52) 1633 result = rates_52[rate->eht_gi]; 1634 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1635 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26) 1636 result = rates_26[rate->eht_gi]; 1637 else { 1638 WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n", 1639 rate->bw, rate->eht_ru_alloc); 1640 return 0; 1641 } 1642 1643 /* now scale to the appropriate MCS */ 1644 tmp = result; 1645 tmp *= SCALE; 1646 do_div(tmp, mcs_divisors[rate->mcs]); 1647 1648 /* and take NSS */ 1649 tmp *= rate->nss; 1650 do_div(tmp, 8); 1651 1652 result = tmp; 1653 1654 return result / 10000; 1655 } 1656 1657 static u32 cfg80211_calculate_bitrate_s1g(struct rate_info *rate) 1658 { 1659 /* For 1, 2, 4, 8 and 16 MHz channels */ 1660 static const u32 base[5][11] = { 1661 { 300000, 1662 600000, 1663 900000, 1664 1200000, 1665 1800000, 1666 2400000, 1667 2700000, 1668 3000000, 1669 3600000, 1670 4000000, 1671 /* MCS 10 supported in 1 MHz only */ 1672 150000, 1673 }, 1674 { 650000, 1675 1300000, 1676 1950000, 1677 2600000, 1678 3900000, 1679 5200000, 1680 5850000, 1681 6500000, 1682 7800000, 1683 /* MCS 9 not valid */ 1684 }, 1685 { 1350000, 1686 2700000, 1687 4050000, 1688 5400000, 1689 8100000, 1690 10800000, 1691 12150000, 1692 13500000, 1693 16200000, 1694 18000000, 1695 }, 1696 { 2925000, 1697 5850000, 1698 8775000, 1699 11700000, 1700 17550000, 1701 23400000, 1702 26325000, 1703 29250000, 1704 35100000, 1705 39000000, 1706 }, 1707 { 8580000, 1708 11700000, 1709 17550000, 1710 23400000, 1711 35100000, 1712 46800000, 1713 52650000, 1714 58500000, 1715 70200000, 1716 78000000, 1717 }, 1718 }; 1719 u32 bitrate; 1720 /* default is 1 MHz index */ 1721 int idx = 0; 1722 1723 if (rate->mcs >= 11) 1724 goto warn; 1725 1726 switch (rate->bw) { 1727 case RATE_INFO_BW_16: 1728 idx = 4; 1729 break; 1730 case RATE_INFO_BW_8: 1731 idx = 3; 1732 break; 1733 case RATE_INFO_BW_4: 1734 idx = 2; 1735 break; 1736 case RATE_INFO_BW_2: 1737 idx = 1; 1738 break; 1739 case RATE_INFO_BW_1: 1740 idx = 0; 1741 break; 1742 case RATE_INFO_BW_5: 1743 case RATE_INFO_BW_10: 1744 case RATE_INFO_BW_20: 1745 case RATE_INFO_BW_40: 1746 case RATE_INFO_BW_80: 1747 case RATE_INFO_BW_160: 1748 default: 1749 goto warn; 1750 } 1751 1752 bitrate = base[idx][rate->mcs]; 1753 bitrate *= rate->nss; 1754 1755 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1756 bitrate = (bitrate / 9) * 10; 1757 /* do NOT round down here */ 1758 return (bitrate + 50000) / 100000; 1759 warn: 1760 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1761 rate->bw, rate->mcs, rate->nss); 1762 return 0; 1763 } 1764 1765 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1766 { 1767 if (rate->flags & RATE_INFO_FLAGS_MCS) 1768 return cfg80211_calculate_bitrate_ht(rate); 1769 if (rate->flags & RATE_INFO_FLAGS_DMG) 1770 return cfg80211_calculate_bitrate_dmg(rate); 1771 if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG) 1772 return cfg80211_calculate_bitrate_extended_sc_dmg(rate); 1773 if (rate->flags & RATE_INFO_FLAGS_EDMG) 1774 return cfg80211_calculate_bitrate_edmg(rate); 1775 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1776 return cfg80211_calculate_bitrate_vht(rate); 1777 if (rate->flags & RATE_INFO_FLAGS_HE_MCS) 1778 return cfg80211_calculate_bitrate_he(rate); 1779 if (rate->flags & RATE_INFO_FLAGS_EHT_MCS) 1780 return cfg80211_calculate_bitrate_eht(rate); 1781 if (rate->flags & RATE_INFO_FLAGS_S1G_MCS) 1782 return cfg80211_calculate_bitrate_s1g(rate); 1783 1784 return rate->legacy; 1785 } 1786 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1787 1788 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1789 enum ieee80211_p2p_attr_id attr, 1790 u8 *buf, unsigned int bufsize) 1791 { 1792 u8 *out = buf; 1793 u16 attr_remaining = 0; 1794 bool desired_attr = false; 1795 u16 desired_len = 0; 1796 1797 while (len > 0) { 1798 unsigned int iedatalen; 1799 unsigned int copy; 1800 const u8 *iedata; 1801 1802 if (len < 2) 1803 return -EILSEQ; 1804 iedatalen = ies[1]; 1805 if (iedatalen + 2 > len) 1806 return -EILSEQ; 1807 1808 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1809 goto cont; 1810 1811 if (iedatalen < 4) 1812 goto cont; 1813 1814 iedata = ies + 2; 1815 1816 /* check WFA OUI, P2P subtype */ 1817 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1818 iedata[2] != 0x9a || iedata[3] != 0x09) 1819 goto cont; 1820 1821 iedatalen -= 4; 1822 iedata += 4; 1823 1824 /* check attribute continuation into this IE */ 1825 copy = min_t(unsigned int, attr_remaining, iedatalen); 1826 if (copy && desired_attr) { 1827 desired_len += copy; 1828 if (out) { 1829 memcpy(out, iedata, min(bufsize, copy)); 1830 out += min(bufsize, copy); 1831 bufsize -= min(bufsize, copy); 1832 } 1833 1834 1835 if (copy == attr_remaining) 1836 return desired_len; 1837 } 1838 1839 attr_remaining -= copy; 1840 if (attr_remaining) 1841 goto cont; 1842 1843 iedatalen -= copy; 1844 iedata += copy; 1845 1846 while (iedatalen > 0) { 1847 u16 attr_len; 1848 1849 /* P2P attribute ID & size must fit */ 1850 if (iedatalen < 3) 1851 return -EILSEQ; 1852 desired_attr = iedata[0] == attr; 1853 attr_len = get_unaligned_le16(iedata + 1); 1854 iedatalen -= 3; 1855 iedata += 3; 1856 1857 copy = min_t(unsigned int, attr_len, iedatalen); 1858 1859 if (desired_attr) { 1860 desired_len += copy; 1861 if (out) { 1862 memcpy(out, iedata, min(bufsize, copy)); 1863 out += min(bufsize, copy); 1864 bufsize -= min(bufsize, copy); 1865 } 1866 1867 if (copy == attr_len) 1868 return desired_len; 1869 } 1870 1871 iedata += copy; 1872 iedatalen -= copy; 1873 attr_remaining = attr_len - copy; 1874 } 1875 1876 cont: 1877 len -= ies[1] + 2; 1878 ies += ies[1] + 2; 1879 } 1880 1881 if (attr_remaining && desired_attr) 1882 return -EILSEQ; 1883 1884 return -ENOENT; 1885 } 1886 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1887 1888 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) 1889 { 1890 int i; 1891 1892 /* Make sure array values are legal */ 1893 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) 1894 return false; 1895 1896 i = 0; 1897 while (i < n_ids) { 1898 if (ids[i] == WLAN_EID_EXTENSION) { 1899 if (id_ext && (ids[i + 1] == id)) 1900 return true; 1901 1902 i += 2; 1903 continue; 1904 } 1905 1906 if (ids[i] == id && !id_ext) 1907 return true; 1908 1909 i++; 1910 } 1911 return false; 1912 } 1913 1914 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) 1915 { 1916 /* we assume a validly formed IEs buffer */ 1917 u8 len = ies[pos + 1]; 1918 1919 pos += 2 + len; 1920 1921 /* the IE itself must have 255 bytes for fragments to follow */ 1922 if (len < 255) 1923 return pos; 1924 1925 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { 1926 len = ies[pos + 1]; 1927 pos += 2 + len; 1928 } 1929 1930 return pos; 1931 } 1932 1933 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1934 const u8 *ids, int n_ids, 1935 const u8 *after_ric, int n_after_ric, 1936 size_t offset) 1937 { 1938 size_t pos = offset; 1939 1940 while (pos < ielen) { 1941 u8 ext = 0; 1942 1943 if (ies[pos] == WLAN_EID_EXTENSION) 1944 ext = 2; 1945 if ((pos + ext) >= ielen) 1946 break; 1947 1948 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], 1949 ies[pos] == WLAN_EID_EXTENSION)) 1950 break; 1951 1952 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1953 pos = skip_ie(ies, ielen, pos); 1954 1955 while (pos < ielen) { 1956 if (ies[pos] == WLAN_EID_EXTENSION) 1957 ext = 2; 1958 else 1959 ext = 0; 1960 1961 if ((pos + ext) >= ielen) 1962 break; 1963 1964 if (!ieee80211_id_in_list(after_ric, 1965 n_after_ric, 1966 ies[pos + ext], 1967 ext == 2)) 1968 pos = skip_ie(ies, ielen, pos); 1969 else 1970 break; 1971 } 1972 } else { 1973 pos = skip_ie(ies, ielen, pos); 1974 } 1975 } 1976 1977 return pos; 1978 } 1979 EXPORT_SYMBOL(ieee80211_ie_split_ric); 1980 1981 bool ieee80211_operating_class_to_band(u8 operating_class, 1982 enum nl80211_band *band) 1983 { 1984 switch (operating_class) { 1985 case 112: 1986 case 115 ... 127: 1987 case 128 ... 130: 1988 *band = NL80211_BAND_5GHZ; 1989 return true; 1990 case 131 ... 135: 1991 *band = NL80211_BAND_6GHZ; 1992 return true; 1993 case 81: 1994 case 82: 1995 case 83: 1996 case 84: 1997 *band = NL80211_BAND_2GHZ; 1998 return true; 1999 case 180: 2000 *band = NL80211_BAND_60GHZ; 2001 return true; 2002 } 2003 2004 return false; 2005 } 2006 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 2007 2008 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 2009 u8 *op_class) 2010 { 2011 u8 vht_opclass; 2012 u32 freq = chandef->center_freq1; 2013 2014 if (freq >= 2412 && freq <= 2472) { 2015 if (chandef->width > NL80211_CHAN_WIDTH_40) 2016 return false; 2017 2018 /* 2.407 GHz, channels 1..13 */ 2019 if (chandef->width == NL80211_CHAN_WIDTH_40) { 2020 if (freq > chandef->chan->center_freq) 2021 *op_class = 83; /* HT40+ */ 2022 else 2023 *op_class = 84; /* HT40- */ 2024 } else { 2025 *op_class = 81; 2026 } 2027 2028 return true; 2029 } 2030 2031 if (freq == 2484) { 2032 /* channel 14 is only for IEEE 802.11b */ 2033 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT) 2034 return false; 2035 2036 *op_class = 82; /* channel 14 */ 2037 return true; 2038 } 2039 2040 switch (chandef->width) { 2041 case NL80211_CHAN_WIDTH_80: 2042 vht_opclass = 128; 2043 break; 2044 case NL80211_CHAN_WIDTH_160: 2045 vht_opclass = 129; 2046 break; 2047 case NL80211_CHAN_WIDTH_80P80: 2048 vht_opclass = 130; 2049 break; 2050 case NL80211_CHAN_WIDTH_10: 2051 case NL80211_CHAN_WIDTH_5: 2052 return false; /* unsupported for now */ 2053 default: 2054 vht_opclass = 0; 2055 break; 2056 } 2057 2058 /* 5 GHz, channels 36..48 */ 2059 if (freq >= 5180 && freq <= 5240) { 2060 if (vht_opclass) { 2061 *op_class = vht_opclass; 2062 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 2063 if (freq > chandef->chan->center_freq) 2064 *op_class = 116; 2065 else 2066 *op_class = 117; 2067 } else { 2068 *op_class = 115; 2069 } 2070 2071 return true; 2072 } 2073 2074 /* 5 GHz, channels 52..64 */ 2075 if (freq >= 5260 && freq <= 5320) { 2076 if (vht_opclass) { 2077 *op_class = vht_opclass; 2078 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 2079 if (freq > chandef->chan->center_freq) 2080 *op_class = 119; 2081 else 2082 *op_class = 120; 2083 } else { 2084 *op_class = 118; 2085 } 2086 2087 return true; 2088 } 2089 2090 /* 5 GHz, channels 100..144 */ 2091 if (freq >= 5500 && freq <= 5720) { 2092 if (vht_opclass) { 2093 *op_class = vht_opclass; 2094 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 2095 if (freq > chandef->chan->center_freq) 2096 *op_class = 122; 2097 else 2098 *op_class = 123; 2099 } else { 2100 *op_class = 121; 2101 } 2102 2103 return true; 2104 } 2105 2106 /* 5 GHz, channels 149..169 */ 2107 if (freq >= 5745 && freq <= 5845) { 2108 if (vht_opclass) { 2109 *op_class = vht_opclass; 2110 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 2111 if (freq > chandef->chan->center_freq) 2112 *op_class = 126; 2113 else 2114 *op_class = 127; 2115 } else if (freq <= 5805) { 2116 *op_class = 124; 2117 } else { 2118 *op_class = 125; 2119 } 2120 2121 return true; 2122 } 2123 2124 /* 56.16 GHz, channel 1..4 */ 2125 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { 2126 if (chandef->width >= NL80211_CHAN_WIDTH_40) 2127 return false; 2128 2129 *op_class = 180; 2130 return true; 2131 } 2132 2133 /* not supported yet */ 2134 return false; 2135 } 2136 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 2137 2138 static int cfg80211_wdev_bi(struct wireless_dev *wdev) 2139 { 2140 switch (wdev->iftype) { 2141 case NL80211_IFTYPE_AP: 2142 case NL80211_IFTYPE_P2P_GO: 2143 WARN_ON(wdev->valid_links); 2144 return wdev->links[0].ap.beacon_interval; 2145 case NL80211_IFTYPE_MESH_POINT: 2146 return wdev->u.mesh.beacon_interval; 2147 case NL80211_IFTYPE_ADHOC: 2148 return wdev->u.ibss.beacon_interval; 2149 default: 2150 break; 2151 } 2152 2153 return 0; 2154 } 2155 2156 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, 2157 u32 *beacon_int_gcd, 2158 bool *beacon_int_different) 2159 { 2160 struct wireless_dev *wdev; 2161 2162 *beacon_int_gcd = 0; 2163 *beacon_int_different = false; 2164 2165 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 2166 int wdev_bi; 2167 2168 /* this feature isn't supported with MLO */ 2169 if (wdev->valid_links) 2170 continue; 2171 2172 wdev_bi = cfg80211_wdev_bi(wdev); 2173 2174 if (!wdev_bi) 2175 continue; 2176 2177 if (!*beacon_int_gcd) { 2178 *beacon_int_gcd = wdev_bi; 2179 continue; 2180 } 2181 2182 if (wdev_bi == *beacon_int_gcd) 2183 continue; 2184 2185 *beacon_int_different = true; 2186 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi); 2187 } 2188 2189 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { 2190 if (*beacon_int_gcd) 2191 *beacon_int_different = true; 2192 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); 2193 } 2194 } 2195 2196 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 2197 enum nl80211_iftype iftype, u32 beacon_int) 2198 { 2199 /* 2200 * This is just a basic pre-condition check; if interface combinations 2201 * are possible the driver must already be checking those with a call 2202 * to cfg80211_check_combinations(), in which case we'll validate more 2203 * through the cfg80211_calculate_bi_data() call and code in 2204 * cfg80211_iter_combinations(). 2205 */ 2206 2207 if (beacon_int < 10 || beacon_int > 10000) 2208 return -EINVAL; 2209 2210 return 0; 2211 } 2212 2213 int cfg80211_iter_combinations(struct wiphy *wiphy, 2214 struct iface_combination_params *params, 2215 void (*iter)(const struct ieee80211_iface_combination *c, 2216 void *data), 2217 void *data) 2218 { 2219 const struct ieee80211_regdomain *regdom; 2220 enum nl80211_dfs_regions region = 0; 2221 int i, j, iftype; 2222 int num_interfaces = 0; 2223 u32 used_iftypes = 0; 2224 u32 beacon_int_gcd; 2225 bool beacon_int_different; 2226 2227 /* 2228 * This is a bit strange, since the iteration used to rely only on 2229 * the data given by the driver, but here it now relies on context, 2230 * in form of the currently operating interfaces. 2231 * This is OK for all current users, and saves us from having to 2232 * push the GCD calculations into all the drivers. 2233 * In the future, this should probably rely more on data that's in 2234 * cfg80211 already - the only thing not would appear to be any new 2235 * interfaces (while being brought up) and channel/radar data. 2236 */ 2237 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, 2238 &beacon_int_gcd, &beacon_int_different); 2239 2240 if (params->radar_detect) { 2241 rcu_read_lock(); 2242 regdom = rcu_dereference(cfg80211_regdomain); 2243 if (regdom) 2244 region = regdom->dfs_region; 2245 rcu_read_unlock(); 2246 } 2247 2248 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 2249 num_interfaces += params->iftype_num[iftype]; 2250 if (params->iftype_num[iftype] > 0 && 2251 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 2252 used_iftypes |= BIT(iftype); 2253 } 2254 2255 for (i = 0; i < wiphy->n_iface_combinations; i++) { 2256 const struct ieee80211_iface_combination *c; 2257 struct ieee80211_iface_limit *limits; 2258 u32 all_iftypes = 0; 2259 2260 c = &wiphy->iface_combinations[i]; 2261 2262 if (num_interfaces > c->max_interfaces) 2263 continue; 2264 if (params->num_different_channels > c->num_different_channels) 2265 continue; 2266 2267 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 2268 GFP_KERNEL); 2269 if (!limits) 2270 return -ENOMEM; 2271 2272 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 2273 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 2274 continue; 2275 for (j = 0; j < c->n_limits; j++) { 2276 all_iftypes |= limits[j].types; 2277 if (!(limits[j].types & BIT(iftype))) 2278 continue; 2279 if (limits[j].max < params->iftype_num[iftype]) 2280 goto cont; 2281 limits[j].max -= params->iftype_num[iftype]; 2282 } 2283 } 2284 2285 if (params->radar_detect != 2286 (c->radar_detect_widths & params->radar_detect)) 2287 goto cont; 2288 2289 if (params->radar_detect && c->radar_detect_regions && 2290 !(c->radar_detect_regions & BIT(region))) 2291 goto cont; 2292 2293 /* Finally check that all iftypes that we're currently 2294 * using are actually part of this combination. If they 2295 * aren't then we can't use this combination and have 2296 * to continue to the next. 2297 */ 2298 if ((all_iftypes & used_iftypes) != used_iftypes) 2299 goto cont; 2300 2301 if (beacon_int_gcd) { 2302 if (c->beacon_int_min_gcd && 2303 beacon_int_gcd < c->beacon_int_min_gcd) 2304 goto cont; 2305 if (!c->beacon_int_min_gcd && beacon_int_different) 2306 goto cont; 2307 } 2308 2309 /* This combination covered all interface types and 2310 * supported the requested numbers, so we're good. 2311 */ 2312 2313 (*iter)(c, data); 2314 cont: 2315 kfree(limits); 2316 } 2317 2318 return 0; 2319 } 2320 EXPORT_SYMBOL(cfg80211_iter_combinations); 2321 2322 static void 2323 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 2324 void *data) 2325 { 2326 int *num = data; 2327 (*num)++; 2328 } 2329 2330 int cfg80211_check_combinations(struct wiphy *wiphy, 2331 struct iface_combination_params *params) 2332 { 2333 int err, num = 0; 2334 2335 err = cfg80211_iter_combinations(wiphy, params, 2336 cfg80211_iter_sum_ifcombs, &num); 2337 if (err) 2338 return err; 2339 if (num == 0) 2340 return -EBUSY; 2341 2342 return 0; 2343 } 2344 EXPORT_SYMBOL(cfg80211_check_combinations); 2345 2346 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 2347 const u8 *rates, unsigned int n_rates, 2348 u32 *mask) 2349 { 2350 int i, j; 2351 2352 if (!sband) 2353 return -EINVAL; 2354 2355 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 2356 return -EINVAL; 2357 2358 *mask = 0; 2359 2360 for (i = 0; i < n_rates; i++) { 2361 int rate = (rates[i] & 0x7f) * 5; 2362 bool found = false; 2363 2364 for (j = 0; j < sband->n_bitrates; j++) { 2365 if (sband->bitrates[j].bitrate == rate) { 2366 found = true; 2367 *mask |= BIT(j); 2368 break; 2369 } 2370 } 2371 if (!found) 2372 return -EINVAL; 2373 } 2374 2375 /* 2376 * mask must have at least one bit set here since we 2377 * didn't accept a 0-length rates array nor allowed 2378 * entries in the array that didn't exist 2379 */ 2380 2381 return 0; 2382 } 2383 2384 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 2385 { 2386 enum nl80211_band band; 2387 unsigned int n_channels = 0; 2388 2389 for (band = 0; band < NUM_NL80211_BANDS; band++) 2390 if (wiphy->bands[band]) 2391 n_channels += wiphy->bands[band]->n_channels; 2392 2393 return n_channels; 2394 } 2395 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 2396 2397 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 2398 struct station_info *sinfo) 2399 { 2400 struct cfg80211_registered_device *rdev; 2401 struct wireless_dev *wdev; 2402 2403 wdev = dev->ieee80211_ptr; 2404 if (!wdev) 2405 return -EOPNOTSUPP; 2406 2407 rdev = wiphy_to_rdev(wdev->wiphy); 2408 if (!rdev->ops->get_station) 2409 return -EOPNOTSUPP; 2410 2411 memset(sinfo, 0, sizeof(*sinfo)); 2412 2413 return rdev_get_station(rdev, dev, mac_addr, sinfo); 2414 } 2415 EXPORT_SYMBOL(cfg80211_get_station); 2416 2417 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 2418 { 2419 int i; 2420 2421 if (!f) 2422 return; 2423 2424 kfree(f->serv_spec_info); 2425 kfree(f->srf_bf); 2426 kfree(f->srf_macs); 2427 for (i = 0; i < f->num_rx_filters; i++) 2428 kfree(f->rx_filters[i].filter); 2429 2430 for (i = 0; i < f->num_tx_filters; i++) 2431 kfree(f->tx_filters[i].filter); 2432 2433 kfree(f->rx_filters); 2434 kfree(f->tx_filters); 2435 kfree(f); 2436 } 2437 EXPORT_SYMBOL(cfg80211_free_nan_func); 2438 2439 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, 2440 u32 center_freq_khz, u32 bw_khz) 2441 { 2442 u32 start_freq_khz, end_freq_khz; 2443 2444 start_freq_khz = center_freq_khz - (bw_khz / 2); 2445 end_freq_khz = center_freq_khz + (bw_khz / 2); 2446 2447 if (start_freq_khz >= freq_range->start_freq_khz && 2448 end_freq_khz <= freq_range->end_freq_khz) 2449 return true; 2450 2451 return false; 2452 } 2453 2454 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) 2455 { 2456 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, 2457 sizeof(*(sinfo->pertid)), 2458 gfp); 2459 if (!sinfo->pertid) 2460 return -ENOMEM; 2461 2462 return 0; 2463 } 2464 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); 2465 2466 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 2467 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 2468 const unsigned char rfc1042_header[] __aligned(2) = 2469 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 2470 EXPORT_SYMBOL(rfc1042_header); 2471 2472 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 2473 const unsigned char bridge_tunnel_header[] __aligned(2) = 2474 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 2475 EXPORT_SYMBOL(bridge_tunnel_header); 2476 2477 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ 2478 struct iapp_layer2_update { 2479 u8 da[ETH_ALEN]; /* broadcast */ 2480 u8 sa[ETH_ALEN]; /* STA addr */ 2481 __be16 len; /* 6 */ 2482 u8 dsap; /* 0 */ 2483 u8 ssap; /* 0 */ 2484 u8 control; 2485 u8 xid_info[3]; 2486 } __packed; 2487 2488 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr) 2489 { 2490 struct iapp_layer2_update *msg; 2491 struct sk_buff *skb; 2492 2493 /* Send Level 2 Update Frame to update forwarding tables in layer 2 2494 * bridge devices */ 2495 2496 skb = dev_alloc_skb(sizeof(*msg)); 2497 if (!skb) 2498 return; 2499 msg = skb_put(skb, sizeof(*msg)); 2500 2501 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) 2502 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ 2503 2504 eth_broadcast_addr(msg->da); 2505 ether_addr_copy(msg->sa, addr); 2506 msg->len = htons(6); 2507 msg->dsap = 0; 2508 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ 2509 msg->control = 0xaf; /* XID response lsb.1111F101. 2510 * F=0 (no poll command; unsolicited frame) */ 2511 msg->xid_info[0] = 0x81; /* XID format identifier */ 2512 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ 2513 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ 2514 2515 skb->dev = dev; 2516 skb->protocol = eth_type_trans(skb, dev); 2517 memset(skb->cb, 0, sizeof(skb->cb)); 2518 netif_rx(skb); 2519 } 2520 EXPORT_SYMBOL(cfg80211_send_layer2_update); 2521 2522 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, 2523 enum ieee80211_vht_chanwidth bw, 2524 int mcs, bool ext_nss_bw_capable, 2525 unsigned int max_vht_nss) 2526 { 2527 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map); 2528 int ext_nss_bw; 2529 int supp_width; 2530 int i, mcs_encoding; 2531 2532 if (map == 0xffff) 2533 return 0; 2534 2535 if (WARN_ON(mcs > 9 || max_vht_nss > 8)) 2536 return 0; 2537 if (mcs <= 7) 2538 mcs_encoding = 0; 2539 else if (mcs == 8) 2540 mcs_encoding = 1; 2541 else 2542 mcs_encoding = 2; 2543 2544 if (!max_vht_nss) { 2545 /* find max_vht_nss for the given MCS */ 2546 for (i = 7; i >= 0; i--) { 2547 int supp = (map >> (2 * i)) & 3; 2548 2549 if (supp == 3) 2550 continue; 2551 2552 if (supp >= mcs_encoding) { 2553 max_vht_nss = i + 1; 2554 break; 2555 } 2556 } 2557 } 2558 2559 if (!(cap->supp_mcs.tx_mcs_map & 2560 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) 2561 return max_vht_nss; 2562 2563 ext_nss_bw = le32_get_bits(cap->vht_cap_info, 2564 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2565 supp_width = le32_get_bits(cap->vht_cap_info, 2566 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2567 2568 /* if not capable, treat ext_nss_bw as 0 */ 2569 if (!ext_nss_bw_capable) 2570 ext_nss_bw = 0; 2571 2572 /* This is invalid */ 2573 if (supp_width == 3) 2574 return 0; 2575 2576 /* This is an invalid combination so pretend nothing is supported */ 2577 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2)) 2578 return 0; 2579 2580 /* 2581 * Cover all the special cases according to IEEE 802.11-2016 2582 * Table 9-250. All other cases are either factor of 1 or not 2583 * valid/supported. 2584 */ 2585 switch (bw) { 2586 case IEEE80211_VHT_CHANWIDTH_USE_HT: 2587 case IEEE80211_VHT_CHANWIDTH_80MHZ: 2588 if ((supp_width == 1 || supp_width == 2) && 2589 ext_nss_bw == 3) 2590 return 2 * max_vht_nss; 2591 break; 2592 case IEEE80211_VHT_CHANWIDTH_160MHZ: 2593 if (supp_width == 0 && 2594 (ext_nss_bw == 1 || ext_nss_bw == 2)) 2595 return max_vht_nss / 2; 2596 if (supp_width == 0 && 2597 ext_nss_bw == 3) 2598 return (3 * max_vht_nss) / 4; 2599 if (supp_width == 1 && 2600 ext_nss_bw == 3) 2601 return 2 * max_vht_nss; 2602 break; 2603 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 2604 if (supp_width == 0 && ext_nss_bw == 1) 2605 return 0; /* not possible */ 2606 if (supp_width == 0 && 2607 ext_nss_bw == 2) 2608 return max_vht_nss / 2; 2609 if (supp_width == 0 && 2610 ext_nss_bw == 3) 2611 return (3 * max_vht_nss) / 4; 2612 if (supp_width == 1 && 2613 ext_nss_bw == 0) 2614 return 0; /* not possible */ 2615 if (supp_width == 1 && 2616 ext_nss_bw == 1) 2617 return max_vht_nss / 2; 2618 if (supp_width == 1 && 2619 ext_nss_bw == 2) 2620 return (3 * max_vht_nss) / 4; 2621 break; 2622 } 2623 2624 /* not covered or invalid combination received */ 2625 return max_vht_nss; 2626 } 2627 EXPORT_SYMBOL(ieee80211_get_vht_max_nss); 2628 2629 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype, 2630 bool is_4addr, u8 check_swif) 2631 2632 { 2633 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN; 2634 2635 switch (check_swif) { 2636 case 0: 2637 if (is_vlan && is_4addr) 2638 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2639 return wiphy->interface_modes & BIT(iftype); 2640 case 1: 2641 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan) 2642 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2643 return wiphy->software_iftypes & BIT(iftype); 2644 default: 2645 break; 2646 } 2647 2648 return false; 2649 } 2650 EXPORT_SYMBOL(cfg80211_iftype_allowed); 2651 2652 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id) 2653 { 2654 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 2655 2656 ASSERT_WDEV_LOCK(wdev); 2657 2658 switch (wdev->iftype) { 2659 case NL80211_IFTYPE_AP: 2660 case NL80211_IFTYPE_P2P_GO: 2661 __cfg80211_stop_ap(rdev, wdev->netdev, link_id, true); 2662 break; 2663 default: 2664 /* per-link not relevant */ 2665 break; 2666 } 2667 2668 wdev->valid_links &= ~BIT(link_id); 2669 2670 rdev_del_intf_link(rdev, wdev, link_id); 2671 2672 eth_zero_addr(wdev->links[link_id].addr); 2673 } 2674 2675 void cfg80211_remove_links(struct wireless_dev *wdev) 2676 { 2677 unsigned int link_id; 2678 2679 /* 2680 * links are controlled by upper layers (userspace/cfg) 2681 * only for AP mode, so only remove them here for AP 2682 */ 2683 if (wdev->iftype != NL80211_IFTYPE_AP) 2684 return; 2685 2686 wdev_lock(wdev); 2687 if (wdev->valid_links) { 2688 for_each_valid_link(wdev, link_id) 2689 cfg80211_remove_link(wdev, link_id); 2690 } 2691 wdev_unlock(wdev); 2692 } 2693 2694 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev, 2695 struct wireless_dev *wdev) 2696 { 2697 cfg80211_remove_links(wdev); 2698 2699 return rdev_del_virtual_intf(rdev, wdev); 2700 } 2701 2702 const struct wiphy_iftype_ext_capab * 2703 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type) 2704 { 2705 int i; 2706 2707 for (i = 0; i < wiphy->num_iftype_ext_capab; i++) { 2708 if (wiphy->iftype_ext_capab[i].iftype == type) 2709 return &wiphy->iftype_ext_capab[i]; 2710 } 2711 2712 return NULL; 2713 } 2714 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa); 2715