1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Wireless utility functions 4 * 5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018-2020 Intel Corporation 9 */ 10 #include <linux/export.h> 11 #include <linux/bitops.h> 12 #include <linux/etherdevice.h> 13 #include <linux/slab.h> 14 #include <linux/ieee80211.h> 15 #include <net/cfg80211.h> 16 #include <net/ip.h> 17 #include <net/dsfield.h> 18 #include <linux/if_vlan.h> 19 #include <linux/mpls.h> 20 #include <linux/gcd.h> 21 #include <linux/bitfield.h> 22 #include <linux/nospec.h> 23 #include "core.h" 24 #include "rdev-ops.h" 25 26 27 struct ieee80211_rate * 28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 29 u32 basic_rates, int bitrate) 30 { 31 struct ieee80211_rate *result = &sband->bitrates[0]; 32 int i; 33 34 for (i = 0; i < sband->n_bitrates; i++) { 35 if (!(basic_rates & BIT(i))) 36 continue; 37 if (sband->bitrates[i].bitrate > bitrate) 38 continue; 39 result = &sband->bitrates[i]; 40 } 41 42 return result; 43 } 44 EXPORT_SYMBOL(ieee80211_get_response_rate); 45 46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 47 enum nl80211_bss_scan_width scan_width) 48 { 49 struct ieee80211_rate *bitrates; 50 u32 mandatory_rates = 0; 51 enum ieee80211_rate_flags mandatory_flag; 52 int i; 53 54 if (WARN_ON(!sband)) 55 return 1; 56 57 if (sband->band == NL80211_BAND_2GHZ) { 58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 59 scan_width == NL80211_BSS_CHAN_WIDTH_10) 60 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 61 else 62 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 63 } else { 64 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 65 } 66 67 bitrates = sband->bitrates; 68 for (i = 0; i < sband->n_bitrates; i++) 69 if (bitrates[i].flags & mandatory_flag) 70 mandatory_rates |= BIT(i); 71 return mandatory_rates; 72 } 73 EXPORT_SYMBOL(ieee80211_mandatory_rates); 74 75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band) 76 { 77 /* see 802.11 17.3.8.3.2 and Annex J 78 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 79 if (chan <= 0) 80 return 0; /* not supported */ 81 switch (band) { 82 case NL80211_BAND_2GHZ: 83 if (chan == 14) 84 return MHZ_TO_KHZ(2484); 85 else if (chan < 14) 86 return MHZ_TO_KHZ(2407 + chan * 5); 87 break; 88 case NL80211_BAND_5GHZ: 89 if (chan >= 182 && chan <= 196) 90 return MHZ_TO_KHZ(4000 + chan * 5); 91 else 92 return MHZ_TO_KHZ(5000 + chan * 5); 93 break; 94 case NL80211_BAND_6GHZ: 95 /* see 802.11ax D6.1 27.3.23.2 */ 96 if (chan == 2) 97 return MHZ_TO_KHZ(5935); 98 if (chan <= 253) 99 return MHZ_TO_KHZ(5950 + chan * 5); 100 break; 101 case NL80211_BAND_60GHZ: 102 if (chan < 7) 103 return MHZ_TO_KHZ(56160 + chan * 2160); 104 break; 105 case NL80211_BAND_S1GHZ: 106 return 902000 + chan * 500; 107 default: 108 ; 109 } 110 return 0; /* not supported */ 111 } 112 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz); 113 114 int ieee80211_freq_khz_to_channel(u32 freq) 115 { 116 /* TODO: just handle MHz for now */ 117 freq = KHZ_TO_MHZ(freq); 118 119 /* see 802.11 17.3.8.3.2 and Annex J */ 120 if (freq == 2484) 121 return 14; 122 else if (freq < 2484) 123 return (freq - 2407) / 5; 124 else if (freq >= 4910 && freq <= 4980) 125 return (freq - 4000) / 5; 126 else if (freq < 5945) 127 return (freq - 5000) / 5; 128 else if (freq <= 45000) /* DMG band lower limit */ 129 /* see 802.11ax D4.1 27.3.22.2 */ 130 return (freq - 5940) / 5; 131 else if (freq >= 58320 && freq <= 70200) 132 return (freq - 56160) / 2160; 133 else 134 return 0; 135 } 136 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel); 137 138 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy, 139 u32 freq) 140 { 141 enum nl80211_band band; 142 struct ieee80211_supported_band *sband; 143 int i; 144 145 for (band = 0; band < NUM_NL80211_BANDS; band++) { 146 sband = wiphy->bands[band]; 147 148 if (!sband) 149 continue; 150 151 for (i = 0; i < sband->n_channels; i++) { 152 struct ieee80211_channel *chan = &sband->channels[i]; 153 154 if (ieee80211_channel_to_khz(chan) == freq) 155 return chan; 156 } 157 } 158 159 return NULL; 160 } 161 EXPORT_SYMBOL(ieee80211_get_channel_khz); 162 163 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) 164 { 165 int i, want; 166 167 switch (sband->band) { 168 case NL80211_BAND_5GHZ: 169 case NL80211_BAND_6GHZ: 170 want = 3; 171 for (i = 0; i < sband->n_bitrates; i++) { 172 if (sband->bitrates[i].bitrate == 60 || 173 sband->bitrates[i].bitrate == 120 || 174 sband->bitrates[i].bitrate == 240) { 175 sband->bitrates[i].flags |= 176 IEEE80211_RATE_MANDATORY_A; 177 want--; 178 } 179 } 180 WARN_ON(want); 181 break; 182 case NL80211_BAND_2GHZ: 183 want = 7; 184 for (i = 0; i < sband->n_bitrates; i++) { 185 switch (sband->bitrates[i].bitrate) { 186 case 10: 187 case 20: 188 case 55: 189 case 110: 190 sband->bitrates[i].flags |= 191 IEEE80211_RATE_MANDATORY_B | 192 IEEE80211_RATE_MANDATORY_G; 193 want--; 194 break; 195 case 60: 196 case 120: 197 case 240: 198 sband->bitrates[i].flags |= 199 IEEE80211_RATE_MANDATORY_G; 200 want--; 201 /* fall through */ 202 default: 203 sband->bitrates[i].flags |= 204 IEEE80211_RATE_ERP_G; 205 break; 206 } 207 } 208 WARN_ON(want != 0 && want != 3); 209 break; 210 case NL80211_BAND_60GHZ: 211 /* check for mandatory HT MCS 1..4 */ 212 WARN_ON(!sband->ht_cap.ht_supported); 213 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 214 break; 215 case NL80211_BAND_S1GHZ: 216 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least 217 * mandatory is ok. 218 */ 219 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3); 220 break; 221 case NUM_NL80211_BANDS: 222 default: 223 WARN_ON(1); 224 break; 225 } 226 } 227 228 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 229 { 230 enum nl80211_band band; 231 232 for (band = 0; band < NUM_NL80211_BANDS; band++) 233 if (wiphy->bands[band]) 234 set_mandatory_flags_band(wiphy->bands[band]); 235 } 236 237 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 238 { 239 int i; 240 for (i = 0; i < wiphy->n_cipher_suites; i++) 241 if (cipher == wiphy->cipher_suites[i]) 242 return true; 243 return false; 244 } 245 246 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 247 struct key_params *params, int key_idx, 248 bool pairwise, const u8 *mac_addr) 249 { 250 int max_key_idx = 5; 251 252 if (wiphy_ext_feature_isset(&rdev->wiphy, 253 NL80211_EXT_FEATURE_BEACON_PROTECTION) || 254 wiphy_ext_feature_isset(&rdev->wiphy, 255 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT)) 256 max_key_idx = 7; 257 if (key_idx < 0 || key_idx > max_key_idx) 258 return -EINVAL; 259 260 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 261 return -EINVAL; 262 263 if (pairwise && !mac_addr) 264 return -EINVAL; 265 266 switch (params->cipher) { 267 case WLAN_CIPHER_SUITE_TKIP: 268 /* Extended Key ID can only be used with CCMP/GCMP ciphers */ 269 if ((pairwise && key_idx) || 270 params->mode != NL80211_KEY_RX_TX) 271 return -EINVAL; 272 break; 273 case WLAN_CIPHER_SUITE_CCMP: 274 case WLAN_CIPHER_SUITE_CCMP_256: 275 case WLAN_CIPHER_SUITE_GCMP: 276 case WLAN_CIPHER_SUITE_GCMP_256: 277 /* IEEE802.11-2016 allows only 0 and - when supporting 278 * Extended Key ID - 1 as index for pairwise keys. 279 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when 280 * the driver supports Extended Key ID. 281 * @NL80211_KEY_SET_TX can't be set when installing and 282 * validating a key. 283 */ 284 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) || 285 params->mode == NL80211_KEY_SET_TX) 286 return -EINVAL; 287 if (wiphy_ext_feature_isset(&rdev->wiphy, 288 NL80211_EXT_FEATURE_EXT_KEY_ID)) { 289 if (pairwise && (key_idx < 0 || key_idx > 1)) 290 return -EINVAL; 291 } else if (pairwise && key_idx) { 292 return -EINVAL; 293 } 294 break; 295 case WLAN_CIPHER_SUITE_AES_CMAC: 296 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 297 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 298 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 299 /* Disallow BIP (group-only) cipher as pairwise cipher */ 300 if (pairwise) 301 return -EINVAL; 302 if (key_idx < 4) 303 return -EINVAL; 304 break; 305 case WLAN_CIPHER_SUITE_WEP40: 306 case WLAN_CIPHER_SUITE_WEP104: 307 if (key_idx > 3) 308 return -EINVAL; 309 default: 310 break; 311 } 312 313 switch (params->cipher) { 314 case WLAN_CIPHER_SUITE_WEP40: 315 if (params->key_len != WLAN_KEY_LEN_WEP40) 316 return -EINVAL; 317 break; 318 case WLAN_CIPHER_SUITE_TKIP: 319 if (params->key_len != WLAN_KEY_LEN_TKIP) 320 return -EINVAL; 321 break; 322 case WLAN_CIPHER_SUITE_CCMP: 323 if (params->key_len != WLAN_KEY_LEN_CCMP) 324 return -EINVAL; 325 break; 326 case WLAN_CIPHER_SUITE_CCMP_256: 327 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 328 return -EINVAL; 329 break; 330 case WLAN_CIPHER_SUITE_GCMP: 331 if (params->key_len != WLAN_KEY_LEN_GCMP) 332 return -EINVAL; 333 break; 334 case WLAN_CIPHER_SUITE_GCMP_256: 335 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 336 return -EINVAL; 337 break; 338 case WLAN_CIPHER_SUITE_WEP104: 339 if (params->key_len != WLAN_KEY_LEN_WEP104) 340 return -EINVAL; 341 break; 342 case WLAN_CIPHER_SUITE_AES_CMAC: 343 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 344 return -EINVAL; 345 break; 346 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 347 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 348 return -EINVAL; 349 break; 350 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 351 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 352 return -EINVAL; 353 break; 354 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 355 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 356 return -EINVAL; 357 break; 358 default: 359 /* 360 * We don't know anything about this algorithm, 361 * allow using it -- but the driver must check 362 * all parameters! We still check below whether 363 * or not the driver supports this algorithm, 364 * of course. 365 */ 366 break; 367 } 368 369 if (params->seq) { 370 switch (params->cipher) { 371 case WLAN_CIPHER_SUITE_WEP40: 372 case WLAN_CIPHER_SUITE_WEP104: 373 /* These ciphers do not use key sequence */ 374 return -EINVAL; 375 case WLAN_CIPHER_SUITE_TKIP: 376 case WLAN_CIPHER_SUITE_CCMP: 377 case WLAN_CIPHER_SUITE_CCMP_256: 378 case WLAN_CIPHER_SUITE_GCMP: 379 case WLAN_CIPHER_SUITE_GCMP_256: 380 case WLAN_CIPHER_SUITE_AES_CMAC: 381 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 382 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 383 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 384 if (params->seq_len != 6) 385 return -EINVAL; 386 break; 387 } 388 } 389 390 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 391 return -EINVAL; 392 393 return 0; 394 } 395 396 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 397 { 398 unsigned int hdrlen = 24; 399 400 if (ieee80211_is_data(fc)) { 401 if (ieee80211_has_a4(fc)) 402 hdrlen = 30; 403 if (ieee80211_is_data_qos(fc)) { 404 hdrlen += IEEE80211_QOS_CTL_LEN; 405 if (ieee80211_has_order(fc)) 406 hdrlen += IEEE80211_HT_CTL_LEN; 407 } 408 goto out; 409 } 410 411 if (ieee80211_is_mgmt(fc)) { 412 if (ieee80211_has_order(fc)) 413 hdrlen += IEEE80211_HT_CTL_LEN; 414 goto out; 415 } 416 417 if (ieee80211_is_ctl(fc)) { 418 /* 419 * ACK and CTS are 10 bytes, all others 16. To see how 420 * to get this condition consider 421 * subtype mask: 0b0000000011110000 (0x00F0) 422 * ACK subtype: 0b0000000011010000 (0x00D0) 423 * CTS subtype: 0b0000000011000000 (0x00C0) 424 * bits that matter: ^^^ (0x00E0) 425 * value of those: 0b0000000011000000 (0x00C0) 426 */ 427 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 428 hdrlen = 10; 429 else 430 hdrlen = 16; 431 } 432 out: 433 return hdrlen; 434 } 435 EXPORT_SYMBOL(ieee80211_hdrlen); 436 437 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 438 { 439 const struct ieee80211_hdr *hdr = 440 (const struct ieee80211_hdr *)skb->data; 441 unsigned int hdrlen; 442 443 if (unlikely(skb->len < 10)) 444 return 0; 445 hdrlen = ieee80211_hdrlen(hdr->frame_control); 446 if (unlikely(hdrlen > skb->len)) 447 return 0; 448 return hdrlen; 449 } 450 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 451 452 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 453 { 454 int ae = flags & MESH_FLAGS_AE; 455 /* 802.11-2012, 8.2.4.7.3 */ 456 switch (ae) { 457 default: 458 case 0: 459 return 6; 460 case MESH_FLAGS_AE_A4: 461 return 12; 462 case MESH_FLAGS_AE_A5_A6: 463 return 18; 464 } 465 } 466 467 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 468 { 469 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 470 } 471 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 472 473 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 474 const u8 *addr, enum nl80211_iftype iftype, 475 u8 data_offset) 476 { 477 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 478 struct { 479 u8 hdr[ETH_ALEN] __aligned(2); 480 __be16 proto; 481 } payload; 482 struct ethhdr tmp; 483 u16 hdrlen; 484 u8 mesh_flags = 0; 485 486 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 487 return -1; 488 489 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; 490 if (skb->len < hdrlen + 8) 491 return -1; 492 493 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 494 * header 495 * IEEE 802.11 address fields: 496 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 497 * 0 0 DA SA BSSID n/a 498 * 0 1 DA BSSID SA n/a 499 * 1 0 BSSID SA DA n/a 500 * 1 1 RA TA DA SA 501 */ 502 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 503 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 504 505 if (iftype == NL80211_IFTYPE_MESH_POINT) 506 skb_copy_bits(skb, hdrlen, &mesh_flags, 1); 507 508 mesh_flags &= MESH_FLAGS_AE; 509 510 switch (hdr->frame_control & 511 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 512 case cpu_to_le16(IEEE80211_FCTL_TODS): 513 if (unlikely(iftype != NL80211_IFTYPE_AP && 514 iftype != NL80211_IFTYPE_AP_VLAN && 515 iftype != NL80211_IFTYPE_P2P_GO)) 516 return -1; 517 break; 518 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 519 if (unlikely(iftype != NL80211_IFTYPE_WDS && 520 iftype != NL80211_IFTYPE_MESH_POINT && 521 iftype != NL80211_IFTYPE_AP_VLAN && 522 iftype != NL80211_IFTYPE_STATION)) 523 return -1; 524 if (iftype == NL80211_IFTYPE_MESH_POINT) { 525 if (mesh_flags == MESH_FLAGS_AE_A4) 526 return -1; 527 if (mesh_flags == MESH_FLAGS_AE_A5_A6) { 528 skb_copy_bits(skb, hdrlen + 529 offsetof(struct ieee80211s_hdr, eaddr1), 530 tmp.h_dest, 2 * ETH_ALEN); 531 } 532 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 533 } 534 break; 535 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 536 if ((iftype != NL80211_IFTYPE_STATION && 537 iftype != NL80211_IFTYPE_P2P_CLIENT && 538 iftype != NL80211_IFTYPE_MESH_POINT) || 539 (is_multicast_ether_addr(tmp.h_dest) && 540 ether_addr_equal(tmp.h_source, addr))) 541 return -1; 542 if (iftype == NL80211_IFTYPE_MESH_POINT) { 543 if (mesh_flags == MESH_FLAGS_AE_A5_A6) 544 return -1; 545 if (mesh_flags == MESH_FLAGS_AE_A4) 546 skb_copy_bits(skb, hdrlen + 547 offsetof(struct ieee80211s_hdr, eaddr1), 548 tmp.h_source, ETH_ALEN); 549 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 550 } 551 break; 552 case cpu_to_le16(0): 553 if (iftype != NL80211_IFTYPE_ADHOC && 554 iftype != NL80211_IFTYPE_STATION && 555 iftype != NL80211_IFTYPE_OCB) 556 return -1; 557 break; 558 } 559 560 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)); 561 tmp.h_proto = payload.proto; 562 563 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) && 564 tmp.h_proto != htons(ETH_P_AARP) && 565 tmp.h_proto != htons(ETH_P_IPX)) || 566 ether_addr_equal(payload.hdr, bridge_tunnel_header))) 567 /* remove RFC1042 or Bridge-Tunnel encapsulation and 568 * replace EtherType */ 569 hdrlen += ETH_ALEN + 2; 570 else 571 tmp.h_proto = htons(skb->len - hdrlen); 572 573 pskb_pull(skb, hdrlen); 574 575 if (!ehdr) 576 ehdr = skb_push(skb, sizeof(struct ethhdr)); 577 memcpy(ehdr, &tmp, sizeof(tmp)); 578 579 return 0; 580 } 581 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 582 583 static void 584 __frame_add_frag(struct sk_buff *skb, struct page *page, 585 void *ptr, int len, int size) 586 { 587 struct skb_shared_info *sh = skb_shinfo(skb); 588 int page_offset; 589 590 get_page(page); 591 page_offset = ptr - page_address(page); 592 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 593 } 594 595 static void 596 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 597 int offset, int len) 598 { 599 struct skb_shared_info *sh = skb_shinfo(skb); 600 const skb_frag_t *frag = &sh->frags[0]; 601 struct page *frag_page; 602 void *frag_ptr; 603 int frag_len, frag_size; 604 int head_size = skb->len - skb->data_len; 605 int cur_len; 606 607 frag_page = virt_to_head_page(skb->head); 608 frag_ptr = skb->data; 609 frag_size = head_size; 610 611 while (offset >= frag_size) { 612 offset -= frag_size; 613 frag_page = skb_frag_page(frag); 614 frag_ptr = skb_frag_address(frag); 615 frag_size = skb_frag_size(frag); 616 frag++; 617 } 618 619 frag_ptr += offset; 620 frag_len = frag_size - offset; 621 622 cur_len = min(len, frag_len); 623 624 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 625 len -= cur_len; 626 627 while (len > 0) { 628 frag_len = skb_frag_size(frag); 629 cur_len = min(len, frag_len); 630 __frame_add_frag(frame, skb_frag_page(frag), 631 skb_frag_address(frag), cur_len, frag_len); 632 len -= cur_len; 633 frag++; 634 } 635 } 636 637 static struct sk_buff * 638 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 639 int offset, int len, bool reuse_frag) 640 { 641 struct sk_buff *frame; 642 int cur_len = len; 643 644 if (skb->len - offset < len) 645 return NULL; 646 647 /* 648 * When reusing framents, copy some data to the head to simplify 649 * ethernet header handling and speed up protocol header processing 650 * in the stack later. 651 */ 652 if (reuse_frag) 653 cur_len = min_t(int, len, 32); 654 655 /* 656 * Allocate and reserve two bytes more for payload 657 * alignment since sizeof(struct ethhdr) is 14. 658 */ 659 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 660 if (!frame) 661 return NULL; 662 663 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 664 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 665 666 len -= cur_len; 667 if (!len) 668 return frame; 669 670 offset += cur_len; 671 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 672 673 return frame; 674 } 675 676 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 677 const u8 *addr, enum nl80211_iftype iftype, 678 const unsigned int extra_headroom, 679 const u8 *check_da, const u8 *check_sa) 680 { 681 unsigned int hlen = ALIGN(extra_headroom, 4); 682 struct sk_buff *frame = NULL; 683 u16 ethertype; 684 u8 *payload; 685 int offset = 0, remaining; 686 struct ethhdr eth; 687 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 688 bool reuse_skb = false; 689 bool last = false; 690 691 while (!last) { 692 unsigned int subframe_len; 693 int len; 694 u8 padding; 695 696 skb_copy_bits(skb, offset, ð, sizeof(eth)); 697 len = ntohs(eth.h_proto); 698 subframe_len = sizeof(struct ethhdr) + len; 699 padding = (4 - subframe_len) & 0x3; 700 701 /* the last MSDU has no padding */ 702 remaining = skb->len - offset; 703 if (subframe_len > remaining) 704 goto purge; 705 706 offset += sizeof(struct ethhdr); 707 last = remaining <= subframe_len + padding; 708 709 /* FIXME: should we really accept multicast DA? */ 710 if ((check_da && !is_multicast_ether_addr(eth.h_dest) && 711 !ether_addr_equal(check_da, eth.h_dest)) || 712 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) { 713 offset += len + padding; 714 continue; 715 } 716 717 /* reuse skb for the last subframe */ 718 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 719 skb_pull(skb, offset); 720 frame = skb; 721 reuse_skb = true; 722 } else { 723 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 724 reuse_frag); 725 if (!frame) 726 goto purge; 727 728 offset += len + padding; 729 } 730 731 skb_reset_network_header(frame); 732 frame->dev = skb->dev; 733 frame->priority = skb->priority; 734 735 payload = frame->data; 736 ethertype = (payload[6] << 8) | payload[7]; 737 if (likely((ether_addr_equal(payload, rfc1042_header) && 738 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 739 ether_addr_equal(payload, bridge_tunnel_header))) { 740 eth.h_proto = htons(ethertype); 741 skb_pull(frame, ETH_ALEN + 2); 742 } 743 744 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth)); 745 __skb_queue_tail(list, frame); 746 } 747 748 if (!reuse_skb) 749 dev_kfree_skb(skb); 750 751 return; 752 753 purge: 754 __skb_queue_purge(list); 755 dev_kfree_skb(skb); 756 } 757 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 758 759 /* Given a data frame determine the 802.1p/1d tag to use. */ 760 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 761 struct cfg80211_qos_map *qos_map) 762 { 763 unsigned int dscp; 764 unsigned char vlan_priority; 765 unsigned int ret; 766 767 /* skb->priority values from 256->263 are magic values to 768 * directly indicate a specific 802.1d priority. This is used 769 * to allow 802.1d priority to be passed directly in from VLAN 770 * tags, etc. 771 */ 772 if (skb->priority >= 256 && skb->priority <= 263) { 773 ret = skb->priority - 256; 774 goto out; 775 } 776 777 if (skb_vlan_tag_present(skb)) { 778 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 779 >> VLAN_PRIO_SHIFT; 780 if (vlan_priority > 0) { 781 ret = vlan_priority; 782 goto out; 783 } 784 } 785 786 switch (skb->protocol) { 787 case htons(ETH_P_IP): 788 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 789 break; 790 case htons(ETH_P_IPV6): 791 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 792 break; 793 case htons(ETH_P_MPLS_UC): 794 case htons(ETH_P_MPLS_MC): { 795 struct mpls_label mpls_tmp, *mpls; 796 797 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 798 sizeof(*mpls), &mpls_tmp); 799 if (!mpls) 800 return 0; 801 802 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 803 >> MPLS_LS_TC_SHIFT; 804 goto out; 805 } 806 case htons(ETH_P_80221): 807 /* 802.21 is always network control traffic */ 808 return 7; 809 default: 810 return 0; 811 } 812 813 if (qos_map) { 814 unsigned int i, tmp_dscp = dscp >> 2; 815 816 for (i = 0; i < qos_map->num_des; i++) { 817 if (tmp_dscp == qos_map->dscp_exception[i].dscp) { 818 ret = qos_map->dscp_exception[i].up; 819 goto out; 820 } 821 } 822 823 for (i = 0; i < 8; i++) { 824 if (tmp_dscp >= qos_map->up[i].low && 825 tmp_dscp <= qos_map->up[i].high) { 826 ret = i; 827 goto out; 828 } 829 } 830 } 831 832 ret = dscp >> 5; 833 out: 834 return array_index_nospec(ret, IEEE80211_NUM_TIDS); 835 } 836 EXPORT_SYMBOL(cfg80211_classify8021d); 837 838 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id) 839 { 840 const struct cfg80211_bss_ies *ies; 841 842 ies = rcu_dereference(bss->ies); 843 if (!ies) 844 return NULL; 845 846 return cfg80211_find_elem(id, ies->data, ies->len); 847 } 848 EXPORT_SYMBOL(ieee80211_bss_get_elem); 849 850 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 851 { 852 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 853 struct net_device *dev = wdev->netdev; 854 int i; 855 856 if (!wdev->connect_keys) 857 return; 858 859 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) { 860 if (!wdev->connect_keys->params[i].cipher) 861 continue; 862 if (rdev_add_key(rdev, dev, i, false, NULL, 863 &wdev->connect_keys->params[i])) { 864 netdev_err(dev, "failed to set key %d\n", i); 865 continue; 866 } 867 if (wdev->connect_keys->def == i && 868 rdev_set_default_key(rdev, dev, i, true, true)) { 869 netdev_err(dev, "failed to set defkey %d\n", i); 870 continue; 871 } 872 } 873 874 kfree_sensitive(wdev->connect_keys); 875 wdev->connect_keys = NULL; 876 } 877 878 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 879 { 880 struct cfg80211_event *ev; 881 unsigned long flags; 882 883 spin_lock_irqsave(&wdev->event_lock, flags); 884 while (!list_empty(&wdev->event_list)) { 885 ev = list_first_entry(&wdev->event_list, 886 struct cfg80211_event, list); 887 list_del(&ev->list); 888 spin_unlock_irqrestore(&wdev->event_lock, flags); 889 890 wdev_lock(wdev); 891 switch (ev->type) { 892 case EVENT_CONNECT_RESULT: 893 __cfg80211_connect_result( 894 wdev->netdev, 895 &ev->cr, 896 ev->cr.status == WLAN_STATUS_SUCCESS); 897 break; 898 case EVENT_ROAMED: 899 __cfg80211_roamed(wdev, &ev->rm); 900 break; 901 case EVENT_DISCONNECTED: 902 __cfg80211_disconnected(wdev->netdev, 903 ev->dc.ie, ev->dc.ie_len, 904 ev->dc.reason, 905 !ev->dc.locally_generated); 906 break; 907 case EVENT_IBSS_JOINED: 908 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 909 ev->ij.channel); 910 break; 911 case EVENT_STOPPED: 912 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 913 break; 914 case EVENT_PORT_AUTHORIZED: 915 __cfg80211_port_authorized(wdev, ev->pa.bssid); 916 break; 917 } 918 wdev_unlock(wdev); 919 920 kfree(ev); 921 922 spin_lock_irqsave(&wdev->event_lock, flags); 923 } 924 spin_unlock_irqrestore(&wdev->event_lock, flags); 925 } 926 927 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 928 { 929 struct wireless_dev *wdev; 930 931 ASSERT_RTNL(); 932 933 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 934 cfg80211_process_wdev_events(wdev); 935 } 936 937 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 938 struct net_device *dev, enum nl80211_iftype ntype, 939 struct vif_params *params) 940 { 941 int err; 942 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 943 944 ASSERT_RTNL(); 945 946 /* don't support changing VLANs, you just re-create them */ 947 if (otype == NL80211_IFTYPE_AP_VLAN) 948 return -EOPNOTSUPP; 949 950 /* cannot change into P2P device or NAN */ 951 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 952 ntype == NL80211_IFTYPE_NAN) 953 return -EOPNOTSUPP; 954 955 if (!rdev->ops->change_virtual_intf || 956 !(rdev->wiphy.interface_modes & (1 << ntype))) 957 return -EOPNOTSUPP; 958 959 /* if it's part of a bridge, reject changing type to station/ibss */ 960 if (netif_is_bridge_port(dev) && 961 (ntype == NL80211_IFTYPE_ADHOC || 962 ntype == NL80211_IFTYPE_STATION || 963 ntype == NL80211_IFTYPE_P2P_CLIENT)) 964 return -EBUSY; 965 966 if (ntype != otype) { 967 dev->ieee80211_ptr->use_4addr = false; 968 dev->ieee80211_ptr->mesh_id_up_len = 0; 969 wdev_lock(dev->ieee80211_ptr); 970 rdev_set_qos_map(rdev, dev, NULL); 971 wdev_unlock(dev->ieee80211_ptr); 972 973 switch (otype) { 974 case NL80211_IFTYPE_AP: 975 cfg80211_stop_ap(rdev, dev, true); 976 break; 977 case NL80211_IFTYPE_ADHOC: 978 cfg80211_leave_ibss(rdev, dev, false); 979 break; 980 case NL80211_IFTYPE_STATION: 981 case NL80211_IFTYPE_P2P_CLIENT: 982 wdev_lock(dev->ieee80211_ptr); 983 cfg80211_disconnect(rdev, dev, 984 WLAN_REASON_DEAUTH_LEAVING, true); 985 wdev_unlock(dev->ieee80211_ptr); 986 break; 987 case NL80211_IFTYPE_MESH_POINT: 988 /* mesh should be handled? */ 989 break; 990 default: 991 break; 992 } 993 994 cfg80211_process_rdev_events(rdev); 995 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr); 996 } 997 998 err = rdev_change_virtual_intf(rdev, dev, ntype, params); 999 1000 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 1001 1002 if (!err && params && params->use_4addr != -1) 1003 dev->ieee80211_ptr->use_4addr = params->use_4addr; 1004 1005 if (!err) { 1006 dev->priv_flags &= ~IFF_DONT_BRIDGE; 1007 switch (ntype) { 1008 case NL80211_IFTYPE_STATION: 1009 if (dev->ieee80211_ptr->use_4addr) 1010 break; 1011 /* fall through */ 1012 case NL80211_IFTYPE_OCB: 1013 case NL80211_IFTYPE_P2P_CLIENT: 1014 case NL80211_IFTYPE_ADHOC: 1015 dev->priv_flags |= IFF_DONT_BRIDGE; 1016 break; 1017 case NL80211_IFTYPE_P2P_GO: 1018 case NL80211_IFTYPE_AP: 1019 case NL80211_IFTYPE_AP_VLAN: 1020 case NL80211_IFTYPE_WDS: 1021 case NL80211_IFTYPE_MESH_POINT: 1022 /* bridging OK */ 1023 break; 1024 case NL80211_IFTYPE_MONITOR: 1025 /* monitor can't bridge anyway */ 1026 break; 1027 case NL80211_IFTYPE_UNSPECIFIED: 1028 case NUM_NL80211_IFTYPES: 1029 /* not happening */ 1030 break; 1031 case NL80211_IFTYPE_P2P_DEVICE: 1032 case NL80211_IFTYPE_NAN: 1033 WARN_ON(1); 1034 break; 1035 } 1036 } 1037 1038 if (!err && ntype != otype && netif_running(dev)) { 1039 cfg80211_update_iface_num(rdev, ntype, 1); 1040 cfg80211_update_iface_num(rdev, otype, -1); 1041 } 1042 1043 return err; 1044 } 1045 1046 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) 1047 { 1048 int modulation, streams, bitrate; 1049 1050 /* the formula below does only work for MCS values smaller than 32 */ 1051 if (WARN_ON_ONCE(rate->mcs >= 32)) 1052 return 0; 1053 1054 modulation = rate->mcs & 7; 1055 streams = (rate->mcs >> 3) + 1; 1056 1057 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1058 1059 if (modulation < 4) 1060 bitrate *= (modulation + 1); 1061 else if (modulation == 4) 1062 bitrate *= (modulation + 2); 1063 else 1064 bitrate *= (modulation + 3); 1065 1066 bitrate *= streams; 1067 1068 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1069 bitrate = (bitrate / 9) * 10; 1070 1071 /* do NOT round down here */ 1072 return (bitrate + 50000) / 100000; 1073 } 1074 1075 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate) 1076 { 1077 static const u32 __mcs2bitrate[] = { 1078 /* control PHY */ 1079 [0] = 275, 1080 /* SC PHY */ 1081 [1] = 3850, 1082 [2] = 7700, 1083 [3] = 9625, 1084 [4] = 11550, 1085 [5] = 12512, /* 1251.25 mbps */ 1086 [6] = 15400, 1087 [7] = 19250, 1088 [8] = 23100, 1089 [9] = 25025, 1090 [10] = 30800, 1091 [11] = 38500, 1092 [12] = 46200, 1093 /* OFDM PHY */ 1094 [13] = 6930, 1095 [14] = 8662, /* 866.25 mbps */ 1096 [15] = 13860, 1097 [16] = 17325, 1098 [17] = 20790, 1099 [18] = 27720, 1100 [19] = 34650, 1101 [20] = 41580, 1102 [21] = 45045, 1103 [22] = 51975, 1104 [23] = 62370, 1105 [24] = 67568, /* 6756.75 mbps */ 1106 /* LP-SC PHY */ 1107 [25] = 6260, 1108 [26] = 8340, 1109 [27] = 11120, 1110 [28] = 12510, 1111 [29] = 16680, 1112 [30] = 22240, 1113 [31] = 25030, 1114 }; 1115 1116 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1117 return 0; 1118 1119 return __mcs2bitrate[rate->mcs]; 1120 } 1121 1122 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate) 1123 { 1124 static const u32 __mcs2bitrate[] = { 1125 /* control PHY */ 1126 [0] = 275, 1127 /* SC PHY */ 1128 [1] = 3850, 1129 [2] = 7700, 1130 [3] = 9625, 1131 [4] = 11550, 1132 [5] = 12512, /* 1251.25 mbps */ 1133 [6] = 13475, 1134 [7] = 15400, 1135 [8] = 19250, 1136 [9] = 23100, 1137 [10] = 25025, 1138 [11] = 26950, 1139 [12] = 30800, 1140 [13] = 38500, 1141 [14] = 46200, 1142 [15] = 50050, 1143 [16] = 53900, 1144 [17] = 57750, 1145 [18] = 69300, 1146 [19] = 75075, 1147 [20] = 80850, 1148 }; 1149 1150 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1151 return 0; 1152 1153 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch; 1154 } 1155 1156 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1157 { 1158 static const u32 base[4][10] = { 1159 { 6500000, 1160 13000000, 1161 19500000, 1162 26000000, 1163 39000000, 1164 52000000, 1165 58500000, 1166 65000000, 1167 78000000, 1168 /* not in the spec, but some devices use this: */ 1169 86500000, 1170 }, 1171 { 13500000, 1172 27000000, 1173 40500000, 1174 54000000, 1175 81000000, 1176 108000000, 1177 121500000, 1178 135000000, 1179 162000000, 1180 180000000, 1181 }, 1182 { 29300000, 1183 58500000, 1184 87800000, 1185 117000000, 1186 175500000, 1187 234000000, 1188 263300000, 1189 292500000, 1190 351000000, 1191 390000000, 1192 }, 1193 { 58500000, 1194 117000000, 1195 175500000, 1196 234000000, 1197 351000000, 1198 468000000, 1199 526500000, 1200 585000000, 1201 702000000, 1202 780000000, 1203 }, 1204 }; 1205 u32 bitrate; 1206 int idx; 1207 1208 if (rate->mcs > 9) 1209 goto warn; 1210 1211 switch (rate->bw) { 1212 case RATE_INFO_BW_160: 1213 idx = 3; 1214 break; 1215 case RATE_INFO_BW_80: 1216 idx = 2; 1217 break; 1218 case RATE_INFO_BW_40: 1219 idx = 1; 1220 break; 1221 case RATE_INFO_BW_5: 1222 case RATE_INFO_BW_10: 1223 default: 1224 goto warn; 1225 case RATE_INFO_BW_20: 1226 idx = 0; 1227 } 1228 1229 bitrate = base[idx][rate->mcs]; 1230 bitrate *= rate->nss; 1231 1232 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1233 bitrate = (bitrate / 9) * 10; 1234 1235 /* do NOT round down here */ 1236 return (bitrate + 50000) / 100000; 1237 warn: 1238 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1239 rate->bw, rate->mcs, rate->nss); 1240 return 0; 1241 } 1242 1243 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) 1244 { 1245 #define SCALE 2048 1246 u16 mcs_divisors[12] = { 1247 34133, /* 16.666666... */ 1248 17067, /* 8.333333... */ 1249 11378, /* 5.555555... */ 1250 8533, /* 4.166666... */ 1251 5689, /* 2.777777... */ 1252 4267, /* 2.083333... */ 1253 3923, /* 1.851851... */ 1254 3413, /* 1.666666... */ 1255 2844, /* 1.388888... */ 1256 2560, /* 1.250000... */ 1257 2276, /* 1.111111... */ 1258 2048, /* 1.000000... */ 1259 }; 1260 u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; 1261 u32 rates_969[3] = { 480388888, 453700000, 408333333 }; 1262 u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1263 u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1264 u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1265 u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1266 u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1267 u64 tmp; 1268 u32 result; 1269 1270 if (WARN_ON_ONCE(rate->mcs > 11)) 1271 return 0; 1272 1273 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) 1274 return 0; 1275 if (WARN_ON_ONCE(rate->he_ru_alloc > 1276 NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1277 return 0; 1278 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1279 return 0; 1280 1281 if (rate->bw == RATE_INFO_BW_160) 1282 result = rates_160M[rate->he_gi]; 1283 else if (rate->bw == RATE_INFO_BW_80 || 1284 (rate->bw == RATE_INFO_BW_HE_RU && 1285 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) 1286 result = rates_969[rate->he_gi]; 1287 else if (rate->bw == RATE_INFO_BW_40 || 1288 (rate->bw == RATE_INFO_BW_HE_RU && 1289 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) 1290 result = rates_484[rate->he_gi]; 1291 else if (rate->bw == RATE_INFO_BW_20 || 1292 (rate->bw == RATE_INFO_BW_HE_RU && 1293 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) 1294 result = rates_242[rate->he_gi]; 1295 else if (rate->bw == RATE_INFO_BW_HE_RU && 1296 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) 1297 result = rates_106[rate->he_gi]; 1298 else if (rate->bw == RATE_INFO_BW_HE_RU && 1299 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) 1300 result = rates_52[rate->he_gi]; 1301 else if (rate->bw == RATE_INFO_BW_HE_RU && 1302 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) 1303 result = rates_26[rate->he_gi]; 1304 else { 1305 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", 1306 rate->bw, rate->he_ru_alloc); 1307 return 0; 1308 } 1309 1310 /* now scale to the appropriate MCS */ 1311 tmp = result; 1312 tmp *= SCALE; 1313 do_div(tmp, mcs_divisors[rate->mcs]); 1314 result = tmp; 1315 1316 /* and take NSS, DCM into account */ 1317 result = (result * rate->nss) / 8; 1318 if (rate->he_dcm) 1319 result /= 2; 1320 1321 return result / 10000; 1322 } 1323 1324 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1325 { 1326 if (rate->flags & RATE_INFO_FLAGS_MCS) 1327 return cfg80211_calculate_bitrate_ht(rate); 1328 if (rate->flags & RATE_INFO_FLAGS_DMG) 1329 return cfg80211_calculate_bitrate_dmg(rate); 1330 if (rate->flags & RATE_INFO_FLAGS_EDMG) 1331 return cfg80211_calculate_bitrate_edmg(rate); 1332 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1333 return cfg80211_calculate_bitrate_vht(rate); 1334 if (rate->flags & RATE_INFO_FLAGS_HE_MCS) 1335 return cfg80211_calculate_bitrate_he(rate); 1336 1337 return rate->legacy; 1338 } 1339 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1340 1341 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1342 enum ieee80211_p2p_attr_id attr, 1343 u8 *buf, unsigned int bufsize) 1344 { 1345 u8 *out = buf; 1346 u16 attr_remaining = 0; 1347 bool desired_attr = false; 1348 u16 desired_len = 0; 1349 1350 while (len > 0) { 1351 unsigned int iedatalen; 1352 unsigned int copy; 1353 const u8 *iedata; 1354 1355 if (len < 2) 1356 return -EILSEQ; 1357 iedatalen = ies[1]; 1358 if (iedatalen + 2 > len) 1359 return -EILSEQ; 1360 1361 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1362 goto cont; 1363 1364 if (iedatalen < 4) 1365 goto cont; 1366 1367 iedata = ies + 2; 1368 1369 /* check WFA OUI, P2P subtype */ 1370 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1371 iedata[2] != 0x9a || iedata[3] != 0x09) 1372 goto cont; 1373 1374 iedatalen -= 4; 1375 iedata += 4; 1376 1377 /* check attribute continuation into this IE */ 1378 copy = min_t(unsigned int, attr_remaining, iedatalen); 1379 if (copy && desired_attr) { 1380 desired_len += copy; 1381 if (out) { 1382 memcpy(out, iedata, min(bufsize, copy)); 1383 out += min(bufsize, copy); 1384 bufsize -= min(bufsize, copy); 1385 } 1386 1387 1388 if (copy == attr_remaining) 1389 return desired_len; 1390 } 1391 1392 attr_remaining -= copy; 1393 if (attr_remaining) 1394 goto cont; 1395 1396 iedatalen -= copy; 1397 iedata += copy; 1398 1399 while (iedatalen > 0) { 1400 u16 attr_len; 1401 1402 /* P2P attribute ID & size must fit */ 1403 if (iedatalen < 3) 1404 return -EILSEQ; 1405 desired_attr = iedata[0] == attr; 1406 attr_len = get_unaligned_le16(iedata + 1); 1407 iedatalen -= 3; 1408 iedata += 3; 1409 1410 copy = min_t(unsigned int, attr_len, iedatalen); 1411 1412 if (desired_attr) { 1413 desired_len += copy; 1414 if (out) { 1415 memcpy(out, iedata, min(bufsize, copy)); 1416 out += min(bufsize, copy); 1417 bufsize -= min(bufsize, copy); 1418 } 1419 1420 if (copy == attr_len) 1421 return desired_len; 1422 } 1423 1424 iedata += copy; 1425 iedatalen -= copy; 1426 attr_remaining = attr_len - copy; 1427 } 1428 1429 cont: 1430 len -= ies[1] + 2; 1431 ies += ies[1] + 2; 1432 } 1433 1434 if (attr_remaining && desired_attr) 1435 return -EILSEQ; 1436 1437 return -ENOENT; 1438 } 1439 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1440 1441 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) 1442 { 1443 int i; 1444 1445 /* Make sure array values are legal */ 1446 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) 1447 return false; 1448 1449 i = 0; 1450 while (i < n_ids) { 1451 if (ids[i] == WLAN_EID_EXTENSION) { 1452 if (id_ext && (ids[i + 1] == id)) 1453 return true; 1454 1455 i += 2; 1456 continue; 1457 } 1458 1459 if (ids[i] == id && !id_ext) 1460 return true; 1461 1462 i++; 1463 } 1464 return false; 1465 } 1466 1467 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) 1468 { 1469 /* we assume a validly formed IEs buffer */ 1470 u8 len = ies[pos + 1]; 1471 1472 pos += 2 + len; 1473 1474 /* the IE itself must have 255 bytes for fragments to follow */ 1475 if (len < 255) 1476 return pos; 1477 1478 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { 1479 len = ies[pos + 1]; 1480 pos += 2 + len; 1481 } 1482 1483 return pos; 1484 } 1485 1486 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1487 const u8 *ids, int n_ids, 1488 const u8 *after_ric, int n_after_ric, 1489 size_t offset) 1490 { 1491 size_t pos = offset; 1492 1493 while (pos < ielen) { 1494 u8 ext = 0; 1495 1496 if (ies[pos] == WLAN_EID_EXTENSION) 1497 ext = 2; 1498 if ((pos + ext) >= ielen) 1499 break; 1500 1501 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], 1502 ies[pos] == WLAN_EID_EXTENSION)) 1503 break; 1504 1505 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1506 pos = skip_ie(ies, ielen, pos); 1507 1508 while (pos < ielen) { 1509 if (ies[pos] == WLAN_EID_EXTENSION) 1510 ext = 2; 1511 else 1512 ext = 0; 1513 1514 if ((pos + ext) >= ielen) 1515 break; 1516 1517 if (!ieee80211_id_in_list(after_ric, 1518 n_after_ric, 1519 ies[pos + ext], 1520 ext == 2)) 1521 pos = skip_ie(ies, ielen, pos); 1522 else 1523 break; 1524 } 1525 } else { 1526 pos = skip_ie(ies, ielen, pos); 1527 } 1528 } 1529 1530 return pos; 1531 } 1532 EXPORT_SYMBOL(ieee80211_ie_split_ric); 1533 1534 bool ieee80211_operating_class_to_band(u8 operating_class, 1535 enum nl80211_band *band) 1536 { 1537 switch (operating_class) { 1538 case 112: 1539 case 115 ... 127: 1540 case 128 ... 130: 1541 *band = NL80211_BAND_5GHZ; 1542 return true; 1543 case 131 ... 135: 1544 *band = NL80211_BAND_6GHZ; 1545 return true; 1546 case 81: 1547 case 82: 1548 case 83: 1549 case 84: 1550 *band = NL80211_BAND_2GHZ; 1551 return true; 1552 case 180: 1553 *band = NL80211_BAND_60GHZ; 1554 return true; 1555 } 1556 1557 return false; 1558 } 1559 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1560 1561 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 1562 u8 *op_class) 1563 { 1564 u8 vht_opclass; 1565 u32 freq = chandef->center_freq1; 1566 1567 if (freq >= 2412 && freq <= 2472) { 1568 if (chandef->width > NL80211_CHAN_WIDTH_40) 1569 return false; 1570 1571 /* 2.407 GHz, channels 1..13 */ 1572 if (chandef->width == NL80211_CHAN_WIDTH_40) { 1573 if (freq > chandef->chan->center_freq) 1574 *op_class = 83; /* HT40+ */ 1575 else 1576 *op_class = 84; /* HT40- */ 1577 } else { 1578 *op_class = 81; 1579 } 1580 1581 return true; 1582 } 1583 1584 if (freq == 2484) { 1585 /* channel 14 is only for IEEE 802.11b */ 1586 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT) 1587 return false; 1588 1589 *op_class = 82; /* channel 14 */ 1590 return true; 1591 } 1592 1593 switch (chandef->width) { 1594 case NL80211_CHAN_WIDTH_80: 1595 vht_opclass = 128; 1596 break; 1597 case NL80211_CHAN_WIDTH_160: 1598 vht_opclass = 129; 1599 break; 1600 case NL80211_CHAN_WIDTH_80P80: 1601 vht_opclass = 130; 1602 break; 1603 case NL80211_CHAN_WIDTH_10: 1604 case NL80211_CHAN_WIDTH_5: 1605 return false; /* unsupported for now */ 1606 default: 1607 vht_opclass = 0; 1608 break; 1609 } 1610 1611 /* 5 GHz, channels 36..48 */ 1612 if (freq >= 5180 && freq <= 5240) { 1613 if (vht_opclass) { 1614 *op_class = vht_opclass; 1615 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1616 if (freq > chandef->chan->center_freq) 1617 *op_class = 116; 1618 else 1619 *op_class = 117; 1620 } else { 1621 *op_class = 115; 1622 } 1623 1624 return true; 1625 } 1626 1627 /* 5 GHz, channels 52..64 */ 1628 if (freq >= 5260 && freq <= 5320) { 1629 if (vht_opclass) { 1630 *op_class = vht_opclass; 1631 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1632 if (freq > chandef->chan->center_freq) 1633 *op_class = 119; 1634 else 1635 *op_class = 120; 1636 } else { 1637 *op_class = 118; 1638 } 1639 1640 return true; 1641 } 1642 1643 /* 5 GHz, channels 100..144 */ 1644 if (freq >= 5500 && freq <= 5720) { 1645 if (vht_opclass) { 1646 *op_class = vht_opclass; 1647 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1648 if (freq > chandef->chan->center_freq) 1649 *op_class = 122; 1650 else 1651 *op_class = 123; 1652 } else { 1653 *op_class = 121; 1654 } 1655 1656 return true; 1657 } 1658 1659 /* 5 GHz, channels 149..169 */ 1660 if (freq >= 5745 && freq <= 5845) { 1661 if (vht_opclass) { 1662 *op_class = vht_opclass; 1663 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1664 if (freq > chandef->chan->center_freq) 1665 *op_class = 126; 1666 else 1667 *op_class = 127; 1668 } else if (freq <= 5805) { 1669 *op_class = 124; 1670 } else { 1671 *op_class = 125; 1672 } 1673 1674 return true; 1675 } 1676 1677 /* 56.16 GHz, channel 1..4 */ 1678 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { 1679 if (chandef->width >= NL80211_CHAN_WIDTH_40) 1680 return false; 1681 1682 *op_class = 180; 1683 return true; 1684 } 1685 1686 /* not supported yet */ 1687 return false; 1688 } 1689 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 1690 1691 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, 1692 u32 *beacon_int_gcd, 1693 bool *beacon_int_different) 1694 { 1695 struct wireless_dev *wdev; 1696 1697 *beacon_int_gcd = 0; 1698 *beacon_int_different = false; 1699 1700 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 1701 if (!wdev->beacon_interval) 1702 continue; 1703 1704 if (!*beacon_int_gcd) { 1705 *beacon_int_gcd = wdev->beacon_interval; 1706 continue; 1707 } 1708 1709 if (wdev->beacon_interval == *beacon_int_gcd) 1710 continue; 1711 1712 *beacon_int_different = true; 1713 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval); 1714 } 1715 1716 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { 1717 if (*beacon_int_gcd) 1718 *beacon_int_different = true; 1719 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); 1720 } 1721 } 1722 1723 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 1724 enum nl80211_iftype iftype, u32 beacon_int) 1725 { 1726 /* 1727 * This is just a basic pre-condition check; if interface combinations 1728 * are possible the driver must already be checking those with a call 1729 * to cfg80211_check_combinations(), in which case we'll validate more 1730 * through the cfg80211_calculate_bi_data() call and code in 1731 * cfg80211_iter_combinations(). 1732 */ 1733 1734 if (beacon_int < 10 || beacon_int > 10000) 1735 return -EINVAL; 1736 1737 return 0; 1738 } 1739 1740 int cfg80211_iter_combinations(struct wiphy *wiphy, 1741 struct iface_combination_params *params, 1742 void (*iter)(const struct ieee80211_iface_combination *c, 1743 void *data), 1744 void *data) 1745 { 1746 const struct ieee80211_regdomain *regdom; 1747 enum nl80211_dfs_regions region = 0; 1748 int i, j, iftype; 1749 int num_interfaces = 0; 1750 u32 used_iftypes = 0; 1751 u32 beacon_int_gcd; 1752 bool beacon_int_different; 1753 1754 /* 1755 * This is a bit strange, since the iteration used to rely only on 1756 * the data given by the driver, but here it now relies on context, 1757 * in form of the currently operating interfaces. 1758 * This is OK for all current users, and saves us from having to 1759 * push the GCD calculations into all the drivers. 1760 * In the future, this should probably rely more on data that's in 1761 * cfg80211 already - the only thing not would appear to be any new 1762 * interfaces (while being brought up) and channel/radar data. 1763 */ 1764 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, 1765 &beacon_int_gcd, &beacon_int_different); 1766 1767 if (params->radar_detect) { 1768 rcu_read_lock(); 1769 regdom = rcu_dereference(cfg80211_regdomain); 1770 if (regdom) 1771 region = regdom->dfs_region; 1772 rcu_read_unlock(); 1773 } 1774 1775 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1776 num_interfaces += params->iftype_num[iftype]; 1777 if (params->iftype_num[iftype] > 0 && 1778 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 1779 used_iftypes |= BIT(iftype); 1780 } 1781 1782 for (i = 0; i < wiphy->n_iface_combinations; i++) { 1783 const struct ieee80211_iface_combination *c; 1784 struct ieee80211_iface_limit *limits; 1785 u32 all_iftypes = 0; 1786 1787 c = &wiphy->iface_combinations[i]; 1788 1789 if (num_interfaces > c->max_interfaces) 1790 continue; 1791 if (params->num_different_channels > c->num_different_channels) 1792 continue; 1793 1794 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 1795 GFP_KERNEL); 1796 if (!limits) 1797 return -ENOMEM; 1798 1799 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1800 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 1801 continue; 1802 for (j = 0; j < c->n_limits; j++) { 1803 all_iftypes |= limits[j].types; 1804 if (!(limits[j].types & BIT(iftype))) 1805 continue; 1806 if (limits[j].max < params->iftype_num[iftype]) 1807 goto cont; 1808 limits[j].max -= params->iftype_num[iftype]; 1809 } 1810 } 1811 1812 if (params->radar_detect != 1813 (c->radar_detect_widths & params->radar_detect)) 1814 goto cont; 1815 1816 if (params->radar_detect && c->radar_detect_regions && 1817 !(c->radar_detect_regions & BIT(region))) 1818 goto cont; 1819 1820 /* Finally check that all iftypes that we're currently 1821 * using are actually part of this combination. If they 1822 * aren't then we can't use this combination and have 1823 * to continue to the next. 1824 */ 1825 if ((all_iftypes & used_iftypes) != used_iftypes) 1826 goto cont; 1827 1828 if (beacon_int_gcd) { 1829 if (c->beacon_int_min_gcd && 1830 beacon_int_gcd < c->beacon_int_min_gcd) 1831 goto cont; 1832 if (!c->beacon_int_min_gcd && beacon_int_different) 1833 goto cont; 1834 } 1835 1836 /* This combination covered all interface types and 1837 * supported the requested numbers, so we're good. 1838 */ 1839 1840 (*iter)(c, data); 1841 cont: 1842 kfree(limits); 1843 } 1844 1845 return 0; 1846 } 1847 EXPORT_SYMBOL(cfg80211_iter_combinations); 1848 1849 static void 1850 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 1851 void *data) 1852 { 1853 int *num = data; 1854 (*num)++; 1855 } 1856 1857 int cfg80211_check_combinations(struct wiphy *wiphy, 1858 struct iface_combination_params *params) 1859 { 1860 int err, num = 0; 1861 1862 err = cfg80211_iter_combinations(wiphy, params, 1863 cfg80211_iter_sum_ifcombs, &num); 1864 if (err) 1865 return err; 1866 if (num == 0) 1867 return -EBUSY; 1868 1869 return 0; 1870 } 1871 EXPORT_SYMBOL(cfg80211_check_combinations); 1872 1873 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1874 const u8 *rates, unsigned int n_rates, 1875 u32 *mask) 1876 { 1877 int i, j; 1878 1879 if (!sband) 1880 return -EINVAL; 1881 1882 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1883 return -EINVAL; 1884 1885 *mask = 0; 1886 1887 for (i = 0; i < n_rates; i++) { 1888 int rate = (rates[i] & 0x7f) * 5; 1889 bool found = false; 1890 1891 for (j = 0; j < sband->n_bitrates; j++) { 1892 if (sband->bitrates[j].bitrate == rate) { 1893 found = true; 1894 *mask |= BIT(j); 1895 break; 1896 } 1897 } 1898 if (!found) 1899 return -EINVAL; 1900 } 1901 1902 /* 1903 * mask must have at least one bit set here since we 1904 * didn't accept a 0-length rates array nor allowed 1905 * entries in the array that didn't exist 1906 */ 1907 1908 return 0; 1909 } 1910 1911 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 1912 { 1913 enum nl80211_band band; 1914 unsigned int n_channels = 0; 1915 1916 for (band = 0; band < NUM_NL80211_BANDS; band++) 1917 if (wiphy->bands[band]) 1918 n_channels += wiphy->bands[band]->n_channels; 1919 1920 return n_channels; 1921 } 1922 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 1923 1924 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 1925 struct station_info *sinfo) 1926 { 1927 struct cfg80211_registered_device *rdev; 1928 struct wireless_dev *wdev; 1929 1930 wdev = dev->ieee80211_ptr; 1931 if (!wdev) 1932 return -EOPNOTSUPP; 1933 1934 rdev = wiphy_to_rdev(wdev->wiphy); 1935 if (!rdev->ops->get_station) 1936 return -EOPNOTSUPP; 1937 1938 memset(sinfo, 0, sizeof(*sinfo)); 1939 1940 return rdev_get_station(rdev, dev, mac_addr, sinfo); 1941 } 1942 EXPORT_SYMBOL(cfg80211_get_station); 1943 1944 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 1945 { 1946 int i; 1947 1948 if (!f) 1949 return; 1950 1951 kfree(f->serv_spec_info); 1952 kfree(f->srf_bf); 1953 kfree(f->srf_macs); 1954 for (i = 0; i < f->num_rx_filters; i++) 1955 kfree(f->rx_filters[i].filter); 1956 1957 for (i = 0; i < f->num_tx_filters; i++) 1958 kfree(f->tx_filters[i].filter); 1959 1960 kfree(f->rx_filters); 1961 kfree(f->tx_filters); 1962 kfree(f); 1963 } 1964 EXPORT_SYMBOL(cfg80211_free_nan_func); 1965 1966 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, 1967 u32 center_freq_khz, u32 bw_khz) 1968 { 1969 u32 start_freq_khz, end_freq_khz; 1970 1971 start_freq_khz = center_freq_khz - (bw_khz / 2); 1972 end_freq_khz = center_freq_khz + (bw_khz / 2); 1973 1974 if (start_freq_khz >= freq_range->start_freq_khz && 1975 end_freq_khz <= freq_range->end_freq_khz) 1976 return true; 1977 1978 return false; 1979 } 1980 1981 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) 1982 { 1983 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, 1984 sizeof(*(sinfo->pertid)), 1985 gfp); 1986 if (!sinfo->pertid) 1987 return -ENOMEM; 1988 1989 return 0; 1990 } 1991 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); 1992 1993 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 1994 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 1995 const unsigned char rfc1042_header[] __aligned(2) = 1996 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 1997 EXPORT_SYMBOL(rfc1042_header); 1998 1999 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 2000 const unsigned char bridge_tunnel_header[] __aligned(2) = 2001 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 2002 EXPORT_SYMBOL(bridge_tunnel_header); 2003 2004 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ 2005 struct iapp_layer2_update { 2006 u8 da[ETH_ALEN]; /* broadcast */ 2007 u8 sa[ETH_ALEN]; /* STA addr */ 2008 __be16 len; /* 6 */ 2009 u8 dsap; /* 0 */ 2010 u8 ssap; /* 0 */ 2011 u8 control; 2012 u8 xid_info[3]; 2013 } __packed; 2014 2015 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr) 2016 { 2017 struct iapp_layer2_update *msg; 2018 struct sk_buff *skb; 2019 2020 /* Send Level 2 Update Frame to update forwarding tables in layer 2 2021 * bridge devices */ 2022 2023 skb = dev_alloc_skb(sizeof(*msg)); 2024 if (!skb) 2025 return; 2026 msg = skb_put(skb, sizeof(*msg)); 2027 2028 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) 2029 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ 2030 2031 eth_broadcast_addr(msg->da); 2032 ether_addr_copy(msg->sa, addr); 2033 msg->len = htons(6); 2034 msg->dsap = 0; 2035 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ 2036 msg->control = 0xaf; /* XID response lsb.1111F101. 2037 * F=0 (no poll command; unsolicited frame) */ 2038 msg->xid_info[0] = 0x81; /* XID format identifier */ 2039 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ 2040 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ 2041 2042 skb->dev = dev; 2043 skb->protocol = eth_type_trans(skb, dev); 2044 memset(skb->cb, 0, sizeof(skb->cb)); 2045 netif_rx_ni(skb); 2046 } 2047 EXPORT_SYMBOL(cfg80211_send_layer2_update); 2048 2049 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, 2050 enum ieee80211_vht_chanwidth bw, 2051 int mcs, bool ext_nss_bw_capable, 2052 unsigned int max_vht_nss) 2053 { 2054 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map); 2055 int ext_nss_bw; 2056 int supp_width; 2057 int i, mcs_encoding; 2058 2059 if (map == 0xffff) 2060 return 0; 2061 2062 if (WARN_ON(mcs > 9 || max_vht_nss > 8)) 2063 return 0; 2064 if (mcs <= 7) 2065 mcs_encoding = 0; 2066 else if (mcs == 8) 2067 mcs_encoding = 1; 2068 else 2069 mcs_encoding = 2; 2070 2071 if (!max_vht_nss) { 2072 /* find max_vht_nss for the given MCS */ 2073 for (i = 7; i >= 0; i--) { 2074 int supp = (map >> (2 * i)) & 3; 2075 2076 if (supp == 3) 2077 continue; 2078 2079 if (supp >= mcs_encoding) { 2080 max_vht_nss = i + 1; 2081 break; 2082 } 2083 } 2084 } 2085 2086 if (!(cap->supp_mcs.tx_mcs_map & 2087 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) 2088 return max_vht_nss; 2089 2090 ext_nss_bw = le32_get_bits(cap->vht_cap_info, 2091 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2092 supp_width = le32_get_bits(cap->vht_cap_info, 2093 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2094 2095 /* if not capable, treat ext_nss_bw as 0 */ 2096 if (!ext_nss_bw_capable) 2097 ext_nss_bw = 0; 2098 2099 /* This is invalid */ 2100 if (supp_width == 3) 2101 return 0; 2102 2103 /* This is an invalid combination so pretend nothing is supported */ 2104 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2)) 2105 return 0; 2106 2107 /* 2108 * Cover all the special cases according to IEEE 802.11-2016 2109 * Table 9-250. All other cases are either factor of 1 or not 2110 * valid/supported. 2111 */ 2112 switch (bw) { 2113 case IEEE80211_VHT_CHANWIDTH_USE_HT: 2114 case IEEE80211_VHT_CHANWIDTH_80MHZ: 2115 if ((supp_width == 1 || supp_width == 2) && 2116 ext_nss_bw == 3) 2117 return 2 * max_vht_nss; 2118 break; 2119 case IEEE80211_VHT_CHANWIDTH_160MHZ: 2120 if (supp_width == 0 && 2121 (ext_nss_bw == 1 || ext_nss_bw == 2)) 2122 return max_vht_nss / 2; 2123 if (supp_width == 0 && 2124 ext_nss_bw == 3) 2125 return (3 * max_vht_nss) / 4; 2126 if (supp_width == 1 && 2127 ext_nss_bw == 3) 2128 return 2 * max_vht_nss; 2129 break; 2130 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 2131 if (supp_width == 0 && ext_nss_bw == 1) 2132 return 0; /* not possible */ 2133 if (supp_width == 0 && 2134 ext_nss_bw == 2) 2135 return max_vht_nss / 2; 2136 if (supp_width == 0 && 2137 ext_nss_bw == 3) 2138 return (3 * max_vht_nss) / 4; 2139 if (supp_width == 1 && 2140 ext_nss_bw == 0) 2141 return 0; /* not possible */ 2142 if (supp_width == 1 && 2143 ext_nss_bw == 1) 2144 return max_vht_nss / 2; 2145 if (supp_width == 1 && 2146 ext_nss_bw == 2) 2147 return (3 * max_vht_nss) / 4; 2148 break; 2149 } 2150 2151 /* not covered or invalid combination received */ 2152 return max_vht_nss; 2153 } 2154 EXPORT_SYMBOL(ieee80211_get_vht_max_nss); 2155 2156 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype, 2157 bool is_4addr, u8 check_swif) 2158 2159 { 2160 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN; 2161 2162 switch (check_swif) { 2163 case 0: 2164 if (is_vlan && is_4addr) 2165 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2166 return wiphy->interface_modes & BIT(iftype); 2167 case 1: 2168 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan) 2169 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2170 return wiphy->software_iftypes & BIT(iftype); 2171 default: 2172 break; 2173 } 2174 2175 return false; 2176 } 2177 EXPORT_SYMBOL(cfg80211_iftype_allowed); 2178