1 /* 2 * Wireless utility functions 3 * 4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 5 * Copyright 2013-2014 Intel Mobile Communications GmbH 6 */ 7 #include <linux/export.h> 8 #include <linux/bitops.h> 9 #include <linux/etherdevice.h> 10 #include <linux/slab.h> 11 #include <net/cfg80211.h> 12 #include <net/ip.h> 13 #include <net/dsfield.h> 14 #include <linux/if_vlan.h> 15 #include <linux/mpls.h> 16 #include <linux/gcd.h> 17 #include "core.h" 18 #include "rdev-ops.h" 19 20 21 struct ieee80211_rate * 22 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 23 u32 basic_rates, int bitrate) 24 { 25 struct ieee80211_rate *result = &sband->bitrates[0]; 26 int i; 27 28 for (i = 0; i < sband->n_bitrates; i++) { 29 if (!(basic_rates & BIT(i))) 30 continue; 31 if (sband->bitrates[i].bitrate > bitrate) 32 continue; 33 result = &sband->bitrates[i]; 34 } 35 36 return result; 37 } 38 EXPORT_SYMBOL(ieee80211_get_response_rate); 39 40 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 41 enum nl80211_bss_scan_width scan_width) 42 { 43 struct ieee80211_rate *bitrates; 44 u32 mandatory_rates = 0; 45 enum ieee80211_rate_flags mandatory_flag; 46 int i; 47 48 if (WARN_ON(!sband)) 49 return 1; 50 51 if (sband->band == NL80211_BAND_2GHZ) { 52 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 53 scan_width == NL80211_BSS_CHAN_WIDTH_10) 54 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 55 else 56 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 57 } else { 58 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 59 } 60 61 bitrates = sband->bitrates; 62 for (i = 0; i < sband->n_bitrates; i++) 63 if (bitrates[i].flags & mandatory_flag) 64 mandatory_rates |= BIT(i); 65 return mandatory_rates; 66 } 67 EXPORT_SYMBOL(ieee80211_mandatory_rates); 68 69 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band) 70 { 71 /* see 802.11 17.3.8.3.2 and Annex J 72 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 73 if (chan <= 0) 74 return 0; /* not supported */ 75 switch (band) { 76 case NL80211_BAND_2GHZ: 77 if (chan == 14) 78 return 2484; 79 else if (chan < 14) 80 return 2407 + chan * 5; 81 break; 82 case NL80211_BAND_5GHZ: 83 if (chan >= 182 && chan <= 196) 84 return 4000 + chan * 5; 85 else 86 return 5000 + chan * 5; 87 break; 88 case NL80211_BAND_60GHZ: 89 if (chan < 5) 90 return 56160 + chan * 2160; 91 break; 92 default: 93 ; 94 } 95 return 0; /* not supported */ 96 } 97 EXPORT_SYMBOL(ieee80211_channel_to_frequency); 98 99 int ieee80211_frequency_to_channel(int freq) 100 { 101 /* see 802.11 17.3.8.3.2 and Annex J */ 102 if (freq == 2484) 103 return 14; 104 else if (freq < 2484) 105 return (freq - 2407) / 5; 106 else if (freq >= 4910 && freq <= 4980) 107 return (freq - 4000) / 5; 108 else if (freq <= 45000) /* DMG band lower limit */ 109 return (freq - 5000) / 5; 110 else if (freq >= 58320 && freq <= 64800) 111 return (freq - 56160) / 2160; 112 else 113 return 0; 114 } 115 EXPORT_SYMBOL(ieee80211_frequency_to_channel); 116 117 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq) 118 { 119 enum nl80211_band band; 120 struct ieee80211_supported_band *sband; 121 int i; 122 123 for (band = 0; band < NUM_NL80211_BANDS; band++) { 124 sband = wiphy->bands[band]; 125 126 if (!sband) 127 continue; 128 129 for (i = 0; i < sband->n_channels; i++) { 130 if (sband->channels[i].center_freq == freq) 131 return &sband->channels[i]; 132 } 133 } 134 135 return NULL; 136 } 137 EXPORT_SYMBOL(ieee80211_get_channel); 138 139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) 140 { 141 int i, want; 142 143 switch (sband->band) { 144 case NL80211_BAND_5GHZ: 145 want = 3; 146 for (i = 0; i < sband->n_bitrates; i++) { 147 if (sband->bitrates[i].bitrate == 60 || 148 sband->bitrates[i].bitrate == 120 || 149 sband->bitrates[i].bitrate == 240) { 150 sband->bitrates[i].flags |= 151 IEEE80211_RATE_MANDATORY_A; 152 want--; 153 } 154 } 155 WARN_ON(want); 156 break; 157 case NL80211_BAND_2GHZ: 158 want = 7; 159 for (i = 0; i < sband->n_bitrates; i++) { 160 if (sband->bitrates[i].bitrate == 10) { 161 sband->bitrates[i].flags |= 162 IEEE80211_RATE_MANDATORY_B | 163 IEEE80211_RATE_MANDATORY_G; 164 want--; 165 } 166 167 if (sband->bitrates[i].bitrate == 20 || 168 sband->bitrates[i].bitrate == 55 || 169 sband->bitrates[i].bitrate == 110 || 170 sband->bitrates[i].bitrate == 60 || 171 sband->bitrates[i].bitrate == 120 || 172 sband->bitrates[i].bitrate == 240) { 173 sband->bitrates[i].flags |= 174 IEEE80211_RATE_MANDATORY_G; 175 want--; 176 } 177 178 if (sband->bitrates[i].bitrate != 10 && 179 sband->bitrates[i].bitrate != 20 && 180 sband->bitrates[i].bitrate != 55 && 181 sband->bitrates[i].bitrate != 110) 182 sband->bitrates[i].flags |= 183 IEEE80211_RATE_ERP_G; 184 } 185 WARN_ON(want != 0 && want != 3 && want != 6); 186 break; 187 case NL80211_BAND_60GHZ: 188 /* check for mandatory HT MCS 1..4 */ 189 WARN_ON(!sband->ht_cap.ht_supported); 190 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 191 break; 192 case NUM_NL80211_BANDS: 193 default: 194 WARN_ON(1); 195 break; 196 } 197 } 198 199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 200 { 201 enum nl80211_band band; 202 203 for (band = 0; band < NUM_NL80211_BANDS; band++) 204 if (wiphy->bands[band]) 205 set_mandatory_flags_band(wiphy->bands[band]); 206 } 207 208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 209 { 210 int i; 211 for (i = 0; i < wiphy->n_cipher_suites; i++) 212 if (cipher == wiphy->cipher_suites[i]) 213 return true; 214 return false; 215 } 216 217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 218 struct key_params *params, int key_idx, 219 bool pairwise, const u8 *mac_addr) 220 { 221 if (key_idx < 0 || key_idx > 5) 222 return -EINVAL; 223 224 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 225 return -EINVAL; 226 227 if (pairwise && !mac_addr) 228 return -EINVAL; 229 230 switch (params->cipher) { 231 case WLAN_CIPHER_SUITE_TKIP: 232 case WLAN_CIPHER_SUITE_CCMP: 233 case WLAN_CIPHER_SUITE_CCMP_256: 234 case WLAN_CIPHER_SUITE_GCMP: 235 case WLAN_CIPHER_SUITE_GCMP_256: 236 /* Disallow pairwise keys with non-zero index unless it's WEP 237 * or a vendor specific cipher (because current deployments use 238 * pairwise WEP keys with non-zero indices and for vendor 239 * specific ciphers this should be validated in the driver or 240 * hardware level - but 802.11i clearly specifies to use zero) 241 */ 242 if (pairwise && key_idx) 243 return -EINVAL; 244 break; 245 case WLAN_CIPHER_SUITE_AES_CMAC: 246 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 247 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 248 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 249 /* Disallow BIP (group-only) cipher as pairwise cipher */ 250 if (pairwise) 251 return -EINVAL; 252 if (key_idx < 4) 253 return -EINVAL; 254 break; 255 case WLAN_CIPHER_SUITE_WEP40: 256 case WLAN_CIPHER_SUITE_WEP104: 257 if (key_idx > 3) 258 return -EINVAL; 259 default: 260 break; 261 } 262 263 switch (params->cipher) { 264 case WLAN_CIPHER_SUITE_WEP40: 265 if (params->key_len != WLAN_KEY_LEN_WEP40) 266 return -EINVAL; 267 break; 268 case WLAN_CIPHER_SUITE_TKIP: 269 if (params->key_len != WLAN_KEY_LEN_TKIP) 270 return -EINVAL; 271 break; 272 case WLAN_CIPHER_SUITE_CCMP: 273 if (params->key_len != WLAN_KEY_LEN_CCMP) 274 return -EINVAL; 275 break; 276 case WLAN_CIPHER_SUITE_CCMP_256: 277 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 278 return -EINVAL; 279 break; 280 case WLAN_CIPHER_SUITE_GCMP: 281 if (params->key_len != WLAN_KEY_LEN_GCMP) 282 return -EINVAL; 283 break; 284 case WLAN_CIPHER_SUITE_GCMP_256: 285 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 286 return -EINVAL; 287 break; 288 case WLAN_CIPHER_SUITE_WEP104: 289 if (params->key_len != WLAN_KEY_LEN_WEP104) 290 return -EINVAL; 291 break; 292 case WLAN_CIPHER_SUITE_AES_CMAC: 293 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 294 return -EINVAL; 295 break; 296 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 297 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 298 return -EINVAL; 299 break; 300 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 301 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 302 return -EINVAL; 303 break; 304 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 305 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 306 return -EINVAL; 307 break; 308 default: 309 /* 310 * We don't know anything about this algorithm, 311 * allow using it -- but the driver must check 312 * all parameters! We still check below whether 313 * or not the driver supports this algorithm, 314 * of course. 315 */ 316 break; 317 } 318 319 if (params->seq) { 320 switch (params->cipher) { 321 case WLAN_CIPHER_SUITE_WEP40: 322 case WLAN_CIPHER_SUITE_WEP104: 323 /* These ciphers do not use key sequence */ 324 return -EINVAL; 325 case WLAN_CIPHER_SUITE_TKIP: 326 case WLAN_CIPHER_SUITE_CCMP: 327 case WLAN_CIPHER_SUITE_CCMP_256: 328 case WLAN_CIPHER_SUITE_GCMP: 329 case WLAN_CIPHER_SUITE_GCMP_256: 330 case WLAN_CIPHER_SUITE_AES_CMAC: 331 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 332 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 333 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 334 if (params->seq_len != 6) 335 return -EINVAL; 336 break; 337 } 338 } 339 340 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 341 return -EINVAL; 342 343 return 0; 344 } 345 346 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 347 { 348 unsigned int hdrlen = 24; 349 350 if (ieee80211_is_data(fc)) { 351 if (ieee80211_has_a4(fc)) 352 hdrlen = 30; 353 if (ieee80211_is_data_qos(fc)) { 354 hdrlen += IEEE80211_QOS_CTL_LEN; 355 if (ieee80211_has_order(fc)) 356 hdrlen += IEEE80211_HT_CTL_LEN; 357 } 358 goto out; 359 } 360 361 if (ieee80211_is_mgmt(fc)) { 362 if (ieee80211_has_order(fc)) 363 hdrlen += IEEE80211_HT_CTL_LEN; 364 goto out; 365 } 366 367 if (ieee80211_is_ctl(fc)) { 368 /* 369 * ACK and CTS are 10 bytes, all others 16. To see how 370 * to get this condition consider 371 * subtype mask: 0b0000000011110000 (0x00F0) 372 * ACK subtype: 0b0000000011010000 (0x00D0) 373 * CTS subtype: 0b0000000011000000 (0x00C0) 374 * bits that matter: ^^^ (0x00E0) 375 * value of those: 0b0000000011000000 (0x00C0) 376 */ 377 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 378 hdrlen = 10; 379 else 380 hdrlen = 16; 381 } 382 out: 383 return hdrlen; 384 } 385 EXPORT_SYMBOL(ieee80211_hdrlen); 386 387 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 388 { 389 const struct ieee80211_hdr *hdr = 390 (const struct ieee80211_hdr *)skb->data; 391 unsigned int hdrlen; 392 393 if (unlikely(skb->len < 10)) 394 return 0; 395 hdrlen = ieee80211_hdrlen(hdr->frame_control); 396 if (unlikely(hdrlen > skb->len)) 397 return 0; 398 return hdrlen; 399 } 400 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 401 402 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 403 { 404 int ae = flags & MESH_FLAGS_AE; 405 /* 802.11-2012, 8.2.4.7.3 */ 406 switch (ae) { 407 default: 408 case 0: 409 return 6; 410 case MESH_FLAGS_AE_A4: 411 return 12; 412 case MESH_FLAGS_AE_A5_A6: 413 return 18; 414 } 415 } 416 417 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 418 { 419 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 420 } 421 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 422 423 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 424 const u8 *addr, enum nl80211_iftype iftype) 425 { 426 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 427 struct { 428 u8 hdr[ETH_ALEN] __aligned(2); 429 __be16 proto; 430 } payload; 431 struct ethhdr tmp; 432 u16 hdrlen; 433 u8 mesh_flags = 0; 434 435 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 436 return -1; 437 438 hdrlen = ieee80211_hdrlen(hdr->frame_control); 439 if (skb->len < hdrlen + 8) 440 return -1; 441 442 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 443 * header 444 * IEEE 802.11 address fields: 445 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 446 * 0 0 DA SA BSSID n/a 447 * 0 1 DA BSSID SA n/a 448 * 1 0 BSSID SA DA n/a 449 * 1 1 RA TA DA SA 450 */ 451 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 452 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 453 454 if (iftype == NL80211_IFTYPE_MESH_POINT) 455 skb_copy_bits(skb, hdrlen, &mesh_flags, 1); 456 457 mesh_flags &= MESH_FLAGS_AE; 458 459 switch (hdr->frame_control & 460 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 461 case cpu_to_le16(IEEE80211_FCTL_TODS): 462 if (unlikely(iftype != NL80211_IFTYPE_AP && 463 iftype != NL80211_IFTYPE_AP_VLAN && 464 iftype != NL80211_IFTYPE_P2P_GO)) 465 return -1; 466 break; 467 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 468 if (unlikely(iftype != NL80211_IFTYPE_WDS && 469 iftype != NL80211_IFTYPE_MESH_POINT && 470 iftype != NL80211_IFTYPE_AP_VLAN && 471 iftype != NL80211_IFTYPE_STATION)) 472 return -1; 473 if (iftype == NL80211_IFTYPE_MESH_POINT) { 474 if (mesh_flags == MESH_FLAGS_AE_A4) 475 return -1; 476 if (mesh_flags == MESH_FLAGS_AE_A5_A6) { 477 skb_copy_bits(skb, hdrlen + 478 offsetof(struct ieee80211s_hdr, eaddr1), 479 tmp.h_dest, 2 * ETH_ALEN); 480 } 481 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 482 } 483 break; 484 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 485 if ((iftype != NL80211_IFTYPE_STATION && 486 iftype != NL80211_IFTYPE_P2P_CLIENT && 487 iftype != NL80211_IFTYPE_MESH_POINT) || 488 (is_multicast_ether_addr(tmp.h_dest) && 489 ether_addr_equal(tmp.h_source, addr))) 490 return -1; 491 if (iftype == NL80211_IFTYPE_MESH_POINT) { 492 if (mesh_flags == MESH_FLAGS_AE_A5_A6) 493 return -1; 494 if (mesh_flags == MESH_FLAGS_AE_A4) 495 skb_copy_bits(skb, hdrlen + 496 offsetof(struct ieee80211s_hdr, eaddr1), 497 tmp.h_source, ETH_ALEN); 498 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 499 } 500 break; 501 case cpu_to_le16(0): 502 if (iftype != NL80211_IFTYPE_ADHOC && 503 iftype != NL80211_IFTYPE_STATION && 504 iftype != NL80211_IFTYPE_OCB) 505 return -1; 506 break; 507 } 508 509 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)); 510 tmp.h_proto = payload.proto; 511 512 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) && 513 tmp.h_proto != htons(ETH_P_AARP) && 514 tmp.h_proto != htons(ETH_P_IPX)) || 515 ether_addr_equal(payload.hdr, bridge_tunnel_header))) 516 /* remove RFC1042 or Bridge-Tunnel encapsulation and 517 * replace EtherType */ 518 hdrlen += ETH_ALEN + 2; 519 else 520 tmp.h_proto = htons(skb->len - hdrlen); 521 522 pskb_pull(skb, hdrlen); 523 524 if (!ehdr) 525 ehdr = skb_push(skb, sizeof(struct ethhdr)); 526 memcpy(ehdr, &tmp, sizeof(tmp)); 527 528 return 0; 529 } 530 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 531 532 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr, 533 enum nl80211_iftype iftype, 534 const u8 *bssid, bool qos) 535 { 536 struct ieee80211_hdr hdr; 537 u16 hdrlen, ethertype; 538 __le16 fc; 539 const u8 *encaps_data; 540 int encaps_len, skip_header_bytes; 541 int nh_pos, h_pos; 542 int head_need; 543 544 if (unlikely(skb->len < ETH_HLEN)) 545 return -EINVAL; 546 547 nh_pos = skb_network_header(skb) - skb->data; 548 h_pos = skb_transport_header(skb) - skb->data; 549 550 /* convert Ethernet header to proper 802.11 header (based on 551 * operation mode) */ 552 ethertype = (skb->data[12] << 8) | skb->data[13]; 553 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); 554 555 switch (iftype) { 556 case NL80211_IFTYPE_AP: 557 case NL80211_IFTYPE_AP_VLAN: 558 case NL80211_IFTYPE_P2P_GO: 559 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); 560 /* DA BSSID SA */ 561 memcpy(hdr.addr1, skb->data, ETH_ALEN); 562 memcpy(hdr.addr2, addr, ETH_ALEN); 563 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 564 hdrlen = 24; 565 break; 566 case NL80211_IFTYPE_STATION: 567 case NL80211_IFTYPE_P2P_CLIENT: 568 fc |= cpu_to_le16(IEEE80211_FCTL_TODS); 569 /* BSSID SA DA */ 570 memcpy(hdr.addr1, bssid, ETH_ALEN); 571 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 572 memcpy(hdr.addr3, skb->data, ETH_ALEN); 573 hdrlen = 24; 574 break; 575 case NL80211_IFTYPE_OCB: 576 case NL80211_IFTYPE_ADHOC: 577 /* DA SA BSSID */ 578 memcpy(hdr.addr1, skb->data, ETH_ALEN); 579 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 580 memcpy(hdr.addr3, bssid, ETH_ALEN); 581 hdrlen = 24; 582 break; 583 default: 584 return -EOPNOTSUPP; 585 } 586 587 if (qos) { 588 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 589 hdrlen += 2; 590 } 591 592 hdr.frame_control = fc; 593 hdr.duration_id = 0; 594 hdr.seq_ctrl = 0; 595 596 skip_header_bytes = ETH_HLEN; 597 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 598 encaps_data = bridge_tunnel_header; 599 encaps_len = sizeof(bridge_tunnel_header); 600 skip_header_bytes -= 2; 601 } else if (ethertype >= ETH_P_802_3_MIN) { 602 encaps_data = rfc1042_header; 603 encaps_len = sizeof(rfc1042_header); 604 skip_header_bytes -= 2; 605 } else { 606 encaps_data = NULL; 607 encaps_len = 0; 608 } 609 610 skb_pull(skb, skip_header_bytes); 611 nh_pos -= skip_header_bytes; 612 h_pos -= skip_header_bytes; 613 614 head_need = hdrlen + encaps_len - skb_headroom(skb); 615 616 if (head_need > 0 || skb_cloned(skb)) { 617 head_need = max(head_need, 0); 618 if (head_need) 619 skb_orphan(skb); 620 621 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) 622 return -ENOMEM; 623 } 624 625 if (encaps_data) { 626 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 627 nh_pos += encaps_len; 628 h_pos += encaps_len; 629 } 630 631 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 632 633 nh_pos += hdrlen; 634 h_pos += hdrlen; 635 636 /* Update skb pointers to various headers since this modified frame 637 * is going to go through Linux networking code that may potentially 638 * need things like pointer to IP header. */ 639 skb_reset_mac_header(skb); 640 skb_set_network_header(skb, nh_pos); 641 skb_set_transport_header(skb, h_pos); 642 643 return 0; 644 } 645 EXPORT_SYMBOL(ieee80211_data_from_8023); 646 647 static void 648 __frame_add_frag(struct sk_buff *skb, struct page *page, 649 void *ptr, int len, int size) 650 { 651 struct skb_shared_info *sh = skb_shinfo(skb); 652 int page_offset; 653 654 page_ref_inc(page); 655 page_offset = ptr - page_address(page); 656 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 657 } 658 659 static void 660 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 661 int offset, int len) 662 { 663 struct skb_shared_info *sh = skb_shinfo(skb); 664 const skb_frag_t *frag = &sh->frags[0]; 665 struct page *frag_page; 666 void *frag_ptr; 667 int frag_len, frag_size; 668 int head_size = skb->len - skb->data_len; 669 int cur_len; 670 671 frag_page = virt_to_head_page(skb->head); 672 frag_ptr = skb->data; 673 frag_size = head_size; 674 675 while (offset >= frag_size) { 676 offset -= frag_size; 677 frag_page = skb_frag_page(frag); 678 frag_ptr = skb_frag_address(frag); 679 frag_size = skb_frag_size(frag); 680 frag++; 681 } 682 683 frag_ptr += offset; 684 frag_len = frag_size - offset; 685 686 cur_len = min(len, frag_len); 687 688 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 689 len -= cur_len; 690 691 while (len > 0) { 692 frag_len = skb_frag_size(frag); 693 cur_len = min(len, frag_len); 694 __frame_add_frag(frame, skb_frag_page(frag), 695 skb_frag_address(frag), cur_len, frag_len); 696 len -= cur_len; 697 frag++; 698 } 699 } 700 701 static struct sk_buff * 702 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 703 int offset, int len, bool reuse_frag) 704 { 705 struct sk_buff *frame; 706 int cur_len = len; 707 708 if (skb->len - offset < len) 709 return NULL; 710 711 /* 712 * When reusing framents, copy some data to the head to simplify 713 * ethernet header handling and speed up protocol header processing 714 * in the stack later. 715 */ 716 if (reuse_frag) 717 cur_len = min_t(int, len, 32); 718 719 /* 720 * Allocate and reserve two bytes more for payload 721 * alignment since sizeof(struct ethhdr) is 14. 722 */ 723 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 724 if (!frame) 725 return NULL; 726 727 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 728 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 729 730 len -= cur_len; 731 if (!len) 732 return frame; 733 734 offset += cur_len; 735 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 736 737 return frame; 738 } 739 740 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 741 const u8 *addr, enum nl80211_iftype iftype, 742 const unsigned int extra_headroom, 743 const u8 *check_da, const u8 *check_sa) 744 { 745 unsigned int hlen = ALIGN(extra_headroom, 4); 746 struct sk_buff *frame = NULL; 747 u16 ethertype; 748 u8 *payload; 749 int offset = 0, remaining; 750 struct ethhdr eth; 751 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 752 bool reuse_skb = false; 753 bool last = false; 754 755 while (!last) { 756 unsigned int subframe_len; 757 int len; 758 u8 padding; 759 760 skb_copy_bits(skb, offset, ð, sizeof(eth)); 761 len = ntohs(eth.h_proto); 762 subframe_len = sizeof(struct ethhdr) + len; 763 padding = (4 - subframe_len) & 0x3; 764 765 /* the last MSDU has no padding */ 766 remaining = skb->len - offset; 767 if (subframe_len > remaining) 768 goto purge; 769 770 offset += sizeof(struct ethhdr); 771 last = remaining <= subframe_len + padding; 772 773 /* FIXME: should we really accept multicast DA? */ 774 if ((check_da && !is_multicast_ether_addr(eth.h_dest) && 775 !ether_addr_equal(check_da, eth.h_dest)) || 776 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) { 777 offset += len + padding; 778 continue; 779 } 780 781 /* reuse skb for the last subframe */ 782 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 783 skb_pull(skb, offset); 784 frame = skb; 785 reuse_skb = true; 786 } else { 787 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 788 reuse_frag); 789 if (!frame) 790 goto purge; 791 792 offset += len + padding; 793 } 794 795 skb_reset_network_header(frame); 796 frame->dev = skb->dev; 797 frame->priority = skb->priority; 798 799 payload = frame->data; 800 ethertype = (payload[6] << 8) | payload[7]; 801 if (likely((ether_addr_equal(payload, rfc1042_header) && 802 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 803 ether_addr_equal(payload, bridge_tunnel_header))) { 804 eth.h_proto = htons(ethertype); 805 skb_pull(frame, ETH_ALEN + 2); 806 } 807 808 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth)); 809 __skb_queue_tail(list, frame); 810 } 811 812 if (!reuse_skb) 813 dev_kfree_skb(skb); 814 815 return; 816 817 purge: 818 __skb_queue_purge(list); 819 dev_kfree_skb(skb); 820 } 821 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 822 823 /* Given a data frame determine the 802.1p/1d tag to use. */ 824 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 825 struct cfg80211_qos_map *qos_map) 826 { 827 unsigned int dscp; 828 unsigned char vlan_priority; 829 830 /* skb->priority values from 256->263 are magic values to 831 * directly indicate a specific 802.1d priority. This is used 832 * to allow 802.1d priority to be passed directly in from VLAN 833 * tags, etc. 834 */ 835 if (skb->priority >= 256 && skb->priority <= 263) 836 return skb->priority - 256; 837 838 if (skb_vlan_tag_present(skb)) { 839 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 840 >> VLAN_PRIO_SHIFT; 841 if (vlan_priority > 0) 842 return vlan_priority; 843 } 844 845 switch (skb->protocol) { 846 case htons(ETH_P_IP): 847 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 848 break; 849 case htons(ETH_P_IPV6): 850 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 851 break; 852 case htons(ETH_P_MPLS_UC): 853 case htons(ETH_P_MPLS_MC): { 854 struct mpls_label mpls_tmp, *mpls; 855 856 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 857 sizeof(*mpls), &mpls_tmp); 858 if (!mpls) 859 return 0; 860 861 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 862 >> MPLS_LS_TC_SHIFT; 863 } 864 case htons(ETH_P_80221): 865 /* 802.21 is always network control traffic */ 866 return 7; 867 default: 868 return 0; 869 } 870 871 if (qos_map) { 872 unsigned int i, tmp_dscp = dscp >> 2; 873 874 for (i = 0; i < qos_map->num_des; i++) { 875 if (tmp_dscp == qos_map->dscp_exception[i].dscp) 876 return qos_map->dscp_exception[i].up; 877 } 878 879 for (i = 0; i < 8; i++) { 880 if (tmp_dscp >= qos_map->up[i].low && 881 tmp_dscp <= qos_map->up[i].high) 882 return i; 883 } 884 } 885 886 return dscp >> 5; 887 } 888 EXPORT_SYMBOL(cfg80211_classify8021d); 889 890 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie) 891 { 892 const struct cfg80211_bss_ies *ies; 893 894 ies = rcu_dereference(bss->ies); 895 if (!ies) 896 return NULL; 897 898 return cfg80211_find_ie(ie, ies->data, ies->len); 899 } 900 EXPORT_SYMBOL(ieee80211_bss_get_ie); 901 902 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 903 { 904 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 905 struct net_device *dev = wdev->netdev; 906 int i; 907 908 if (!wdev->connect_keys) 909 return; 910 911 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) { 912 if (!wdev->connect_keys->params[i].cipher) 913 continue; 914 if (rdev_add_key(rdev, dev, i, false, NULL, 915 &wdev->connect_keys->params[i])) { 916 netdev_err(dev, "failed to set key %d\n", i); 917 continue; 918 } 919 if (wdev->connect_keys->def == i && 920 rdev_set_default_key(rdev, dev, i, true, true)) { 921 netdev_err(dev, "failed to set defkey %d\n", i); 922 continue; 923 } 924 } 925 926 kzfree(wdev->connect_keys); 927 wdev->connect_keys = NULL; 928 } 929 930 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 931 { 932 struct cfg80211_event *ev; 933 unsigned long flags; 934 935 spin_lock_irqsave(&wdev->event_lock, flags); 936 while (!list_empty(&wdev->event_list)) { 937 ev = list_first_entry(&wdev->event_list, 938 struct cfg80211_event, list); 939 list_del(&ev->list); 940 spin_unlock_irqrestore(&wdev->event_lock, flags); 941 942 wdev_lock(wdev); 943 switch (ev->type) { 944 case EVENT_CONNECT_RESULT: 945 __cfg80211_connect_result( 946 wdev->netdev, 947 &ev->cr, 948 ev->cr.status == WLAN_STATUS_SUCCESS); 949 break; 950 case EVENT_ROAMED: 951 __cfg80211_roamed(wdev, &ev->rm); 952 break; 953 case EVENT_DISCONNECTED: 954 __cfg80211_disconnected(wdev->netdev, 955 ev->dc.ie, ev->dc.ie_len, 956 ev->dc.reason, 957 !ev->dc.locally_generated); 958 break; 959 case EVENT_IBSS_JOINED: 960 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 961 ev->ij.channel); 962 break; 963 case EVENT_STOPPED: 964 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 965 break; 966 } 967 wdev_unlock(wdev); 968 969 kfree(ev); 970 971 spin_lock_irqsave(&wdev->event_lock, flags); 972 } 973 spin_unlock_irqrestore(&wdev->event_lock, flags); 974 } 975 976 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 977 { 978 struct wireless_dev *wdev; 979 980 ASSERT_RTNL(); 981 982 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 983 cfg80211_process_wdev_events(wdev); 984 } 985 986 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 987 struct net_device *dev, enum nl80211_iftype ntype, 988 struct vif_params *params) 989 { 990 int err; 991 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 992 993 ASSERT_RTNL(); 994 995 /* don't support changing VLANs, you just re-create them */ 996 if (otype == NL80211_IFTYPE_AP_VLAN) 997 return -EOPNOTSUPP; 998 999 /* cannot change into P2P device or NAN */ 1000 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 1001 ntype == NL80211_IFTYPE_NAN) 1002 return -EOPNOTSUPP; 1003 1004 if (!rdev->ops->change_virtual_intf || 1005 !(rdev->wiphy.interface_modes & (1 << ntype))) 1006 return -EOPNOTSUPP; 1007 1008 /* if it's part of a bridge, reject changing type to station/ibss */ 1009 if ((dev->priv_flags & IFF_BRIDGE_PORT) && 1010 (ntype == NL80211_IFTYPE_ADHOC || 1011 ntype == NL80211_IFTYPE_STATION || 1012 ntype == NL80211_IFTYPE_P2P_CLIENT)) 1013 return -EBUSY; 1014 1015 if (ntype != otype) { 1016 dev->ieee80211_ptr->use_4addr = false; 1017 dev->ieee80211_ptr->mesh_id_up_len = 0; 1018 wdev_lock(dev->ieee80211_ptr); 1019 rdev_set_qos_map(rdev, dev, NULL); 1020 wdev_unlock(dev->ieee80211_ptr); 1021 1022 switch (otype) { 1023 case NL80211_IFTYPE_AP: 1024 cfg80211_stop_ap(rdev, dev, true); 1025 break; 1026 case NL80211_IFTYPE_ADHOC: 1027 cfg80211_leave_ibss(rdev, dev, false); 1028 break; 1029 case NL80211_IFTYPE_STATION: 1030 case NL80211_IFTYPE_P2P_CLIENT: 1031 wdev_lock(dev->ieee80211_ptr); 1032 cfg80211_disconnect(rdev, dev, 1033 WLAN_REASON_DEAUTH_LEAVING, true); 1034 wdev_unlock(dev->ieee80211_ptr); 1035 break; 1036 case NL80211_IFTYPE_MESH_POINT: 1037 /* mesh should be handled? */ 1038 break; 1039 default: 1040 break; 1041 } 1042 1043 cfg80211_process_rdev_events(rdev); 1044 } 1045 1046 err = rdev_change_virtual_intf(rdev, dev, ntype, params); 1047 1048 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 1049 1050 if (!err && params && params->use_4addr != -1) 1051 dev->ieee80211_ptr->use_4addr = params->use_4addr; 1052 1053 if (!err) { 1054 dev->priv_flags &= ~IFF_DONT_BRIDGE; 1055 switch (ntype) { 1056 case NL80211_IFTYPE_STATION: 1057 if (dev->ieee80211_ptr->use_4addr) 1058 break; 1059 /* fall through */ 1060 case NL80211_IFTYPE_OCB: 1061 case NL80211_IFTYPE_P2P_CLIENT: 1062 case NL80211_IFTYPE_ADHOC: 1063 dev->priv_flags |= IFF_DONT_BRIDGE; 1064 break; 1065 case NL80211_IFTYPE_P2P_GO: 1066 case NL80211_IFTYPE_AP: 1067 case NL80211_IFTYPE_AP_VLAN: 1068 case NL80211_IFTYPE_WDS: 1069 case NL80211_IFTYPE_MESH_POINT: 1070 /* bridging OK */ 1071 break; 1072 case NL80211_IFTYPE_MONITOR: 1073 /* monitor can't bridge anyway */ 1074 break; 1075 case NL80211_IFTYPE_UNSPECIFIED: 1076 case NUM_NL80211_IFTYPES: 1077 /* not happening */ 1078 break; 1079 case NL80211_IFTYPE_P2P_DEVICE: 1080 case NL80211_IFTYPE_NAN: 1081 WARN_ON(1); 1082 break; 1083 } 1084 } 1085 1086 if (!err && ntype != otype && netif_running(dev)) { 1087 cfg80211_update_iface_num(rdev, ntype, 1); 1088 cfg80211_update_iface_num(rdev, otype, -1); 1089 } 1090 1091 return err; 1092 } 1093 1094 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) 1095 { 1096 int modulation, streams, bitrate; 1097 1098 /* the formula below does only work for MCS values smaller than 32 */ 1099 if (WARN_ON_ONCE(rate->mcs >= 32)) 1100 return 0; 1101 1102 modulation = rate->mcs & 7; 1103 streams = (rate->mcs >> 3) + 1; 1104 1105 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1106 1107 if (modulation < 4) 1108 bitrate *= (modulation + 1); 1109 else if (modulation == 4) 1110 bitrate *= (modulation + 2); 1111 else 1112 bitrate *= (modulation + 3); 1113 1114 bitrate *= streams; 1115 1116 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1117 bitrate = (bitrate / 9) * 10; 1118 1119 /* do NOT round down here */ 1120 return (bitrate + 50000) / 100000; 1121 } 1122 1123 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate) 1124 { 1125 static const u32 __mcs2bitrate[] = { 1126 /* control PHY */ 1127 [0] = 275, 1128 /* SC PHY */ 1129 [1] = 3850, 1130 [2] = 7700, 1131 [3] = 9625, 1132 [4] = 11550, 1133 [5] = 12512, /* 1251.25 mbps */ 1134 [6] = 15400, 1135 [7] = 19250, 1136 [8] = 23100, 1137 [9] = 25025, 1138 [10] = 30800, 1139 [11] = 38500, 1140 [12] = 46200, 1141 /* OFDM PHY */ 1142 [13] = 6930, 1143 [14] = 8662, /* 866.25 mbps */ 1144 [15] = 13860, 1145 [16] = 17325, 1146 [17] = 20790, 1147 [18] = 27720, 1148 [19] = 34650, 1149 [20] = 41580, 1150 [21] = 45045, 1151 [22] = 51975, 1152 [23] = 62370, 1153 [24] = 67568, /* 6756.75 mbps */ 1154 /* LP-SC PHY */ 1155 [25] = 6260, 1156 [26] = 8340, 1157 [27] = 11120, 1158 [28] = 12510, 1159 [29] = 16680, 1160 [30] = 22240, 1161 [31] = 25030, 1162 }; 1163 1164 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1165 return 0; 1166 1167 return __mcs2bitrate[rate->mcs]; 1168 } 1169 1170 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1171 { 1172 static const u32 base[4][10] = { 1173 { 6500000, 1174 13000000, 1175 19500000, 1176 26000000, 1177 39000000, 1178 52000000, 1179 58500000, 1180 65000000, 1181 78000000, 1182 /* not in the spec, but some devices use this: */ 1183 86500000, 1184 }, 1185 { 13500000, 1186 27000000, 1187 40500000, 1188 54000000, 1189 81000000, 1190 108000000, 1191 121500000, 1192 135000000, 1193 162000000, 1194 180000000, 1195 }, 1196 { 29300000, 1197 58500000, 1198 87800000, 1199 117000000, 1200 175500000, 1201 234000000, 1202 263300000, 1203 292500000, 1204 351000000, 1205 390000000, 1206 }, 1207 { 58500000, 1208 117000000, 1209 175500000, 1210 234000000, 1211 351000000, 1212 468000000, 1213 526500000, 1214 585000000, 1215 702000000, 1216 780000000, 1217 }, 1218 }; 1219 u32 bitrate; 1220 int idx; 1221 1222 if (rate->mcs > 9) 1223 goto warn; 1224 1225 switch (rate->bw) { 1226 case RATE_INFO_BW_160: 1227 idx = 3; 1228 break; 1229 case RATE_INFO_BW_80: 1230 idx = 2; 1231 break; 1232 case RATE_INFO_BW_40: 1233 idx = 1; 1234 break; 1235 case RATE_INFO_BW_5: 1236 case RATE_INFO_BW_10: 1237 default: 1238 goto warn; 1239 case RATE_INFO_BW_20: 1240 idx = 0; 1241 } 1242 1243 bitrate = base[idx][rate->mcs]; 1244 bitrate *= rate->nss; 1245 1246 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1247 bitrate = (bitrate / 9) * 10; 1248 1249 /* do NOT round down here */ 1250 return (bitrate + 50000) / 100000; 1251 warn: 1252 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1253 rate->bw, rate->mcs, rate->nss); 1254 return 0; 1255 } 1256 1257 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1258 { 1259 if (rate->flags & RATE_INFO_FLAGS_MCS) 1260 return cfg80211_calculate_bitrate_ht(rate); 1261 if (rate->flags & RATE_INFO_FLAGS_60G) 1262 return cfg80211_calculate_bitrate_60g(rate); 1263 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1264 return cfg80211_calculate_bitrate_vht(rate); 1265 1266 return rate->legacy; 1267 } 1268 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1269 1270 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1271 enum ieee80211_p2p_attr_id attr, 1272 u8 *buf, unsigned int bufsize) 1273 { 1274 u8 *out = buf; 1275 u16 attr_remaining = 0; 1276 bool desired_attr = false; 1277 u16 desired_len = 0; 1278 1279 while (len > 0) { 1280 unsigned int iedatalen; 1281 unsigned int copy; 1282 const u8 *iedata; 1283 1284 if (len < 2) 1285 return -EILSEQ; 1286 iedatalen = ies[1]; 1287 if (iedatalen + 2 > len) 1288 return -EILSEQ; 1289 1290 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1291 goto cont; 1292 1293 if (iedatalen < 4) 1294 goto cont; 1295 1296 iedata = ies + 2; 1297 1298 /* check WFA OUI, P2P subtype */ 1299 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1300 iedata[2] != 0x9a || iedata[3] != 0x09) 1301 goto cont; 1302 1303 iedatalen -= 4; 1304 iedata += 4; 1305 1306 /* check attribute continuation into this IE */ 1307 copy = min_t(unsigned int, attr_remaining, iedatalen); 1308 if (copy && desired_attr) { 1309 desired_len += copy; 1310 if (out) { 1311 memcpy(out, iedata, min(bufsize, copy)); 1312 out += min(bufsize, copy); 1313 bufsize -= min(bufsize, copy); 1314 } 1315 1316 1317 if (copy == attr_remaining) 1318 return desired_len; 1319 } 1320 1321 attr_remaining -= copy; 1322 if (attr_remaining) 1323 goto cont; 1324 1325 iedatalen -= copy; 1326 iedata += copy; 1327 1328 while (iedatalen > 0) { 1329 u16 attr_len; 1330 1331 /* P2P attribute ID & size must fit */ 1332 if (iedatalen < 3) 1333 return -EILSEQ; 1334 desired_attr = iedata[0] == attr; 1335 attr_len = get_unaligned_le16(iedata + 1); 1336 iedatalen -= 3; 1337 iedata += 3; 1338 1339 copy = min_t(unsigned int, attr_len, iedatalen); 1340 1341 if (desired_attr) { 1342 desired_len += copy; 1343 if (out) { 1344 memcpy(out, iedata, min(bufsize, copy)); 1345 out += min(bufsize, copy); 1346 bufsize -= min(bufsize, copy); 1347 } 1348 1349 if (copy == attr_len) 1350 return desired_len; 1351 } 1352 1353 iedata += copy; 1354 iedatalen -= copy; 1355 attr_remaining = attr_len - copy; 1356 } 1357 1358 cont: 1359 len -= ies[1] + 2; 1360 ies += ies[1] + 2; 1361 } 1362 1363 if (attr_remaining && desired_attr) 1364 return -EILSEQ; 1365 1366 return -ENOENT; 1367 } 1368 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1369 1370 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id) 1371 { 1372 int i; 1373 1374 for (i = 0; i < n_ids; i++) 1375 if (ids[i] == id) 1376 return true; 1377 return false; 1378 } 1379 1380 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) 1381 { 1382 /* we assume a validly formed IEs buffer */ 1383 u8 len = ies[pos + 1]; 1384 1385 pos += 2 + len; 1386 1387 /* the IE itself must have 255 bytes for fragments to follow */ 1388 if (len < 255) 1389 return pos; 1390 1391 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { 1392 len = ies[pos + 1]; 1393 pos += 2 + len; 1394 } 1395 1396 return pos; 1397 } 1398 1399 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1400 const u8 *ids, int n_ids, 1401 const u8 *after_ric, int n_after_ric, 1402 size_t offset) 1403 { 1404 size_t pos = offset; 1405 1406 while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) { 1407 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1408 pos = skip_ie(ies, ielen, pos); 1409 1410 while (pos < ielen && 1411 !ieee80211_id_in_list(after_ric, n_after_ric, 1412 ies[pos])) 1413 pos = skip_ie(ies, ielen, pos); 1414 } else { 1415 pos = skip_ie(ies, ielen, pos); 1416 } 1417 } 1418 1419 return pos; 1420 } 1421 EXPORT_SYMBOL(ieee80211_ie_split_ric); 1422 1423 bool ieee80211_operating_class_to_band(u8 operating_class, 1424 enum nl80211_band *band) 1425 { 1426 switch (operating_class) { 1427 case 112: 1428 case 115 ... 127: 1429 case 128 ... 130: 1430 *band = NL80211_BAND_5GHZ; 1431 return true; 1432 case 81: 1433 case 82: 1434 case 83: 1435 case 84: 1436 *band = NL80211_BAND_2GHZ; 1437 return true; 1438 case 180: 1439 *band = NL80211_BAND_60GHZ; 1440 return true; 1441 } 1442 1443 return false; 1444 } 1445 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1446 1447 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 1448 u8 *op_class) 1449 { 1450 u8 vht_opclass; 1451 u16 freq = chandef->center_freq1; 1452 1453 if (freq >= 2412 && freq <= 2472) { 1454 if (chandef->width > NL80211_CHAN_WIDTH_40) 1455 return false; 1456 1457 /* 2.407 GHz, channels 1..13 */ 1458 if (chandef->width == NL80211_CHAN_WIDTH_40) { 1459 if (freq > chandef->chan->center_freq) 1460 *op_class = 83; /* HT40+ */ 1461 else 1462 *op_class = 84; /* HT40- */ 1463 } else { 1464 *op_class = 81; 1465 } 1466 1467 return true; 1468 } 1469 1470 if (freq == 2484) { 1471 if (chandef->width > NL80211_CHAN_WIDTH_40) 1472 return false; 1473 1474 *op_class = 82; /* channel 14 */ 1475 return true; 1476 } 1477 1478 switch (chandef->width) { 1479 case NL80211_CHAN_WIDTH_80: 1480 vht_opclass = 128; 1481 break; 1482 case NL80211_CHAN_WIDTH_160: 1483 vht_opclass = 129; 1484 break; 1485 case NL80211_CHAN_WIDTH_80P80: 1486 vht_opclass = 130; 1487 break; 1488 case NL80211_CHAN_WIDTH_10: 1489 case NL80211_CHAN_WIDTH_5: 1490 return false; /* unsupported for now */ 1491 default: 1492 vht_opclass = 0; 1493 break; 1494 } 1495 1496 /* 5 GHz, channels 36..48 */ 1497 if (freq >= 5180 && freq <= 5240) { 1498 if (vht_opclass) { 1499 *op_class = vht_opclass; 1500 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1501 if (freq > chandef->chan->center_freq) 1502 *op_class = 116; 1503 else 1504 *op_class = 117; 1505 } else { 1506 *op_class = 115; 1507 } 1508 1509 return true; 1510 } 1511 1512 /* 5 GHz, channels 52..64 */ 1513 if (freq >= 5260 && freq <= 5320) { 1514 if (vht_opclass) { 1515 *op_class = vht_opclass; 1516 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1517 if (freq > chandef->chan->center_freq) 1518 *op_class = 119; 1519 else 1520 *op_class = 120; 1521 } else { 1522 *op_class = 118; 1523 } 1524 1525 return true; 1526 } 1527 1528 /* 5 GHz, channels 100..144 */ 1529 if (freq >= 5500 && freq <= 5720) { 1530 if (vht_opclass) { 1531 *op_class = vht_opclass; 1532 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1533 if (freq > chandef->chan->center_freq) 1534 *op_class = 122; 1535 else 1536 *op_class = 123; 1537 } else { 1538 *op_class = 121; 1539 } 1540 1541 return true; 1542 } 1543 1544 /* 5 GHz, channels 149..169 */ 1545 if (freq >= 5745 && freq <= 5845) { 1546 if (vht_opclass) { 1547 *op_class = vht_opclass; 1548 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1549 if (freq > chandef->chan->center_freq) 1550 *op_class = 126; 1551 else 1552 *op_class = 127; 1553 } else if (freq <= 5805) { 1554 *op_class = 124; 1555 } else { 1556 *op_class = 125; 1557 } 1558 1559 return true; 1560 } 1561 1562 /* 56.16 GHz, channel 1..4 */ 1563 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) { 1564 if (chandef->width >= NL80211_CHAN_WIDTH_40) 1565 return false; 1566 1567 *op_class = 180; 1568 return true; 1569 } 1570 1571 /* not supported yet */ 1572 return false; 1573 } 1574 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 1575 1576 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, 1577 u32 *beacon_int_gcd, 1578 bool *beacon_int_different) 1579 { 1580 struct wireless_dev *wdev; 1581 1582 *beacon_int_gcd = 0; 1583 *beacon_int_different = false; 1584 1585 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 1586 if (!wdev->beacon_interval) 1587 continue; 1588 1589 if (!*beacon_int_gcd) { 1590 *beacon_int_gcd = wdev->beacon_interval; 1591 continue; 1592 } 1593 1594 if (wdev->beacon_interval == *beacon_int_gcd) 1595 continue; 1596 1597 *beacon_int_different = true; 1598 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval); 1599 } 1600 1601 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { 1602 if (*beacon_int_gcd) 1603 *beacon_int_different = true; 1604 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); 1605 } 1606 } 1607 1608 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 1609 enum nl80211_iftype iftype, u32 beacon_int) 1610 { 1611 /* 1612 * This is just a basic pre-condition check; if interface combinations 1613 * are possible the driver must already be checking those with a call 1614 * to cfg80211_check_combinations(), in which case we'll validate more 1615 * through the cfg80211_calculate_bi_data() call and code in 1616 * cfg80211_iter_combinations(). 1617 */ 1618 1619 if (beacon_int < 10 || beacon_int > 10000) 1620 return -EINVAL; 1621 1622 return 0; 1623 } 1624 1625 int cfg80211_iter_combinations(struct wiphy *wiphy, 1626 struct iface_combination_params *params, 1627 void (*iter)(const struct ieee80211_iface_combination *c, 1628 void *data), 1629 void *data) 1630 { 1631 const struct ieee80211_regdomain *regdom; 1632 enum nl80211_dfs_regions region = 0; 1633 int i, j, iftype; 1634 int num_interfaces = 0; 1635 u32 used_iftypes = 0; 1636 u32 beacon_int_gcd; 1637 bool beacon_int_different; 1638 1639 /* 1640 * This is a bit strange, since the iteration used to rely only on 1641 * the data given by the driver, but here it now relies on context, 1642 * in form of the currently operating interfaces. 1643 * This is OK for all current users, and saves us from having to 1644 * push the GCD calculations into all the drivers. 1645 * In the future, this should probably rely more on data that's in 1646 * cfg80211 already - the only thing not would appear to be any new 1647 * interfaces (while being brought up) and channel/radar data. 1648 */ 1649 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, 1650 &beacon_int_gcd, &beacon_int_different); 1651 1652 if (params->radar_detect) { 1653 rcu_read_lock(); 1654 regdom = rcu_dereference(cfg80211_regdomain); 1655 if (regdom) 1656 region = regdom->dfs_region; 1657 rcu_read_unlock(); 1658 } 1659 1660 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1661 num_interfaces += params->iftype_num[iftype]; 1662 if (params->iftype_num[iftype] > 0 && 1663 !(wiphy->software_iftypes & BIT(iftype))) 1664 used_iftypes |= BIT(iftype); 1665 } 1666 1667 for (i = 0; i < wiphy->n_iface_combinations; i++) { 1668 const struct ieee80211_iface_combination *c; 1669 struct ieee80211_iface_limit *limits; 1670 u32 all_iftypes = 0; 1671 1672 c = &wiphy->iface_combinations[i]; 1673 1674 if (num_interfaces > c->max_interfaces) 1675 continue; 1676 if (params->num_different_channels > c->num_different_channels) 1677 continue; 1678 1679 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 1680 GFP_KERNEL); 1681 if (!limits) 1682 return -ENOMEM; 1683 1684 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1685 if (wiphy->software_iftypes & BIT(iftype)) 1686 continue; 1687 for (j = 0; j < c->n_limits; j++) { 1688 all_iftypes |= limits[j].types; 1689 if (!(limits[j].types & BIT(iftype))) 1690 continue; 1691 if (limits[j].max < params->iftype_num[iftype]) 1692 goto cont; 1693 limits[j].max -= params->iftype_num[iftype]; 1694 } 1695 } 1696 1697 if (params->radar_detect != 1698 (c->radar_detect_widths & params->radar_detect)) 1699 goto cont; 1700 1701 if (params->radar_detect && c->radar_detect_regions && 1702 !(c->radar_detect_regions & BIT(region))) 1703 goto cont; 1704 1705 /* Finally check that all iftypes that we're currently 1706 * using are actually part of this combination. If they 1707 * aren't then we can't use this combination and have 1708 * to continue to the next. 1709 */ 1710 if ((all_iftypes & used_iftypes) != used_iftypes) 1711 goto cont; 1712 1713 if (beacon_int_gcd) { 1714 if (c->beacon_int_min_gcd && 1715 beacon_int_gcd < c->beacon_int_min_gcd) 1716 goto cont; 1717 if (!c->beacon_int_min_gcd && beacon_int_different) 1718 goto cont; 1719 } 1720 1721 /* This combination covered all interface types and 1722 * supported the requested numbers, so we're good. 1723 */ 1724 1725 (*iter)(c, data); 1726 cont: 1727 kfree(limits); 1728 } 1729 1730 return 0; 1731 } 1732 EXPORT_SYMBOL(cfg80211_iter_combinations); 1733 1734 static void 1735 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 1736 void *data) 1737 { 1738 int *num = data; 1739 (*num)++; 1740 } 1741 1742 int cfg80211_check_combinations(struct wiphy *wiphy, 1743 struct iface_combination_params *params) 1744 { 1745 int err, num = 0; 1746 1747 err = cfg80211_iter_combinations(wiphy, params, 1748 cfg80211_iter_sum_ifcombs, &num); 1749 if (err) 1750 return err; 1751 if (num == 0) 1752 return -EBUSY; 1753 1754 return 0; 1755 } 1756 EXPORT_SYMBOL(cfg80211_check_combinations); 1757 1758 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1759 const u8 *rates, unsigned int n_rates, 1760 u32 *mask) 1761 { 1762 int i, j; 1763 1764 if (!sband) 1765 return -EINVAL; 1766 1767 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1768 return -EINVAL; 1769 1770 *mask = 0; 1771 1772 for (i = 0; i < n_rates; i++) { 1773 int rate = (rates[i] & 0x7f) * 5; 1774 bool found = false; 1775 1776 for (j = 0; j < sband->n_bitrates; j++) { 1777 if (sband->bitrates[j].bitrate == rate) { 1778 found = true; 1779 *mask |= BIT(j); 1780 break; 1781 } 1782 } 1783 if (!found) 1784 return -EINVAL; 1785 } 1786 1787 /* 1788 * mask must have at least one bit set here since we 1789 * didn't accept a 0-length rates array nor allowed 1790 * entries in the array that didn't exist 1791 */ 1792 1793 return 0; 1794 } 1795 1796 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 1797 { 1798 enum nl80211_band band; 1799 unsigned int n_channels = 0; 1800 1801 for (band = 0; band < NUM_NL80211_BANDS; band++) 1802 if (wiphy->bands[band]) 1803 n_channels += wiphy->bands[band]->n_channels; 1804 1805 return n_channels; 1806 } 1807 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 1808 1809 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 1810 struct station_info *sinfo) 1811 { 1812 struct cfg80211_registered_device *rdev; 1813 struct wireless_dev *wdev; 1814 1815 wdev = dev->ieee80211_ptr; 1816 if (!wdev) 1817 return -EOPNOTSUPP; 1818 1819 rdev = wiphy_to_rdev(wdev->wiphy); 1820 if (!rdev->ops->get_station) 1821 return -EOPNOTSUPP; 1822 1823 return rdev_get_station(rdev, dev, mac_addr, sinfo); 1824 } 1825 EXPORT_SYMBOL(cfg80211_get_station); 1826 1827 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 1828 { 1829 int i; 1830 1831 if (!f) 1832 return; 1833 1834 kfree(f->serv_spec_info); 1835 kfree(f->srf_bf); 1836 kfree(f->srf_macs); 1837 for (i = 0; i < f->num_rx_filters; i++) 1838 kfree(f->rx_filters[i].filter); 1839 1840 for (i = 0; i < f->num_tx_filters; i++) 1841 kfree(f->tx_filters[i].filter); 1842 1843 kfree(f->rx_filters); 1844 kfree(f->tx_filters); 1845 kfree(f); 1846 } 1847 EXPORT_SYMBOL(cfg80211_free_nan_func); 1848 1849 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, 1850 u32 center_freq_khz, u32 bw_khz) 1851 { 1852 u32 start_freq_khz, end_freq_khz; 1853 1854 start_freq_khz = center_freq_khz - (bw_khz / 2); 1855 end_freq_khz = center_freq_khz + (bw_khz / 2); 1856 1857 if (start_freq_khz >= freq_range->start_freq_khz && 1858 end_freq_khz <= freq_range->end_freq_khz) 1859 return true; 1860 1861 return false; 1862 } 1863 1864 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 1865 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 1866 const unsigned char rfc1042_header[] __aligned(2) = 1867 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 1868 EXPORT_SYMBOL(rfc1042_header); 1869 1870 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 1871 const unsigned char bridge_tunnel_header[] __aligned(2) = 1872 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 1873 EXPORT_SYMBOL(bridge_tunnel_header); 1874