xref: /openbmc/linux/net/wireless/util.c (revision 1bffcea4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017	Intel Deutschland GmbH
8  * Copyright (C) 2018-2022 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25 
26 
27 const struct ieee80211_rate *
28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 			    u32 basic_rates, int bitrate)
30 {
31 	struct ieee80211_rate *result = &sband->bitrates[0];
32 	int i;
33 
34 	for (i = 0; i < sband->n_bitrates; i++) {
35 		if (!(basic_rates & BIT(i)))
36 			continue;
37 		if (sband->bitrates[i].bitrate > bitrate)
38 			continue;
39 		result = &sband->bitrates[i];
40 	}
41 
42 	return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45 
46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47 			      enum nl80211_bss_scan_width scan_width)
48 {
49 	struct ieee80211_rate *bitrates;
50 	u32 mandatory_rates = 0;
51 	enum ieee80211_rate_flags mandatory_flag;
52 	int i;
53 
54 	if (WARN_ON(!sband))
55 		return 1;
56 
57 	if (sband->band == NL80211_BAND_2GHZ) {
58 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
60 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61 		else
62 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63 	} else {
64 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65 	}
66 
67 	bitrates = sband->bitrates;
68 	for (i = 0; i < sband->n_bitrates; i++)
69 		if (bitrates[i].flags & mandatory_flag)
70 			mandatory_rates |= BIT(i);
71 	return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74 
75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77 	/* see 802.11 17.3.8.3.2 and Annex J
78 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79 	if (chan <= 0)
80 		return 0; /* not supported */
81 	switch (band) {
82 	case NL80211_BAND_2GHZ:
83 	case NL80211_BAND_LC:
84 		if (chan == 14)
85 			return MHZ_TO_KHZ(2484);
86 		else if (chan < 14)
87 			return MHZ_TO_KHZ(2407 + chan * 5);
88 		break;
89 	case NL80211_BAND_5GHZ:
90 		if (chan >= 182 && chan <= 196)
91 			return MHZ_TO_KHZ(4000 + chan * 5);
92 		else
93 			return MHZ_TO_KHZ(5000 + chan * 5);
94 		break;
95 	case NL80211_BAND_6GHZ:
96 		/* see 802.11ax D6.1 27.3.23.2 */
97 		if (chan == 2)
98 			return MHZ_TO_KHZ(5935);
99 		if (chan <= 233)
100 			return MHZ_TO_KHZ(5950 + chan * 5);
101 		break;
102 	case NL80211_BAND_60GHZ:
103 		if (chan < 7)
104 			return MHZ_TO_KHZ(56160 + chan * 2160);
105 		break;
106 	case NL80211_BAND_S1GHZ:
107 		return 902000 + chan * 500;
108 	default:
109 		;
110 	}
111 	return 0; /* not supported */
112 }
113 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
114 
115 enum nl80211_chan_width
116 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
117 {
118 	if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
119 		return NL80211_CHAN_WIDTH_20_NOHT;
120 
121 	/*S1G defines a single allowed channel width per channel.
122 	 * Extract that width here.
123 	 */
124 	if (chan->flags & IEEE80211_CHAN_1MHZ)
125 		return NL80211_CHAN_WIDTH_1;
126 	else if (chan->flags & IEEE80211_CHAN_2MHZ)
127 		return NL80211_CHAN_WIDTH_2;
128 	else if (chan->flags & IEEE80211_CHAN_4MHZ)
129 		return NL80211_CHAN_WIDTH_4;
130 	else if (chan->flags & IEEE80211_CHAN_8MHZ)
131 		return NL80211_CHAN_WIDTH_8;
132 	else if (chan->flags & IEEE80211_CHAN_16MHZ)
133 		return NL80211_CHAN_WIDTH_16;
134 
135 	pr_err("unknown channel width for channel at %dKHz?\n",
136 	       ieee80211_channel_to_khz(chan));
137 
138 	return NL80211_CHAN_WIDTH_1;
139 }
140 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
141 
142 int ieee80211_freq_khz_to_channel(u32 freq)
143 {
144 	/* TODO: just handle MHz for now */
145 	freq = KHZ_TO_MHZ(freq);
146 
147 	/* see 802.11 17.3.8.3.2 and Annex J */
148 	if (freq == 2484)
149 		return 14;
150 	else if (freq < 2484)
151 		return (freq - 2407) / 5;
152 	else if (freq >= 4910 && freq <= 4980)
153 		return (freq - 4000) / 5;
154 	else if (freq < 5925)
155 		return (freq - 5000) / 5;
156 	else if (freq == 5935)
157 		return 2;
158 	else if (freq <= 45000) /* DMG band lower limit */
159 		/* see 802.11ax D6.1 27.3.22.2 */
160 		return (freq - 5950) / 5;
161 	else if (freq >= 58320 && freq <= 70200)
162 		return (freq - 56160) / 2160;
163 	else
164 		return 0;
165 }
166 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
167 
168 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
169 						    u32 freq)
170 {
171 	enum nl80211_band band;
172 	struct ieee80211_supported_band *sband;
173 	int i;
174 
175 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
176 		sband = wiphy->bands[band];
177 
178 		if (!sband)
179 			continue;
180 
181 		for (i = 0; i < sband->n_channels; i++) {
182 			struct ieee80211_channel *chan = &sband->channels[i];
183 
184 			if (ieee80211_channel_to_khz(chan) == freq)
185 				return chan;
186 		}
187 	}
188 
189 	return NULL;
190 }
191 EXPORT_SYMBOL(ieee80211_get_channel_khz);
192 
193 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
194 {
195 	int i, want;
196 
197 	switch (sband->band) {
198 	case NL80211_BAND_5GHZ:
199 	case NL80211_BAND_6GHZ:
200 		want = 3;
201 		for (i = 0; i < sband->n_bitrates; i++) {
202 			if (sband->bitrates[i].bitrate == 60 ||
203 			    sband->bitrates[i].bitrate == 120 ||
204 			    sband->bitrates[i].bitrate == 240) {
205 				sband->bitrates[i].flags |=
206 					IEEE80211_RATE_MANDATORY_A;
207 				want--;
208 			}
209 		}
210 		WARN_ON(want);
211 		break;
212 	case NL80211_BAND_2GHZ:
213 	case NL80211_BAND_LC:
214 		want = 7;
215 		for (i = 0; i < sband->n_bitrates; i++) {
216 			switch (sband->bitrates[i].bitrate) {
217 			case 10:
218 			case 20:
219 			case 55:
220 			case 110:
221 				sband->bitrates[i].flags |=
222 					IEEE80211_RATE_MANDATORY_B |
223 					IEEE80211_RATE_MANDATORY_G;
224 				want--;
225 				break;
226 			case 60:
227 			case 120:
228 			case 240:
229 				sband->bitrates[i].flags |=
230 					IEEE80211_RATE_MANDATORY_G;
231 				want--;
232 				fallthrough;
233 			default:
234 				sband->bitrates[i].flags |=
235 					IEEE80211_RATE_ERP_G;
236 				break;
237 			}
238 		}
239 		WARN_ON(want != 0 && want != 3);
240 		break;
241 	case NL80211_BAND_60GHZ:
242 		/* check for mandatory HT MCS 1..4 */
243 		WARN_ON(!sband->ht_cap.ht_supported);
244 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
245 		break;
246 	case NL80211_BAND_S1GHZ:
247 		/* Figure 9-589bd: 3 means unsupported, so != 3 means at least
248 		 * mandatory is ok.
249 		 */
250 		WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
251 		break;
252 	case NUM_NL80211_BANDS:
253 	default:
254 		WARN_ON(1);
255 		break;
256 	}
257 }
258 
259 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
260 {
261 	enum nl80211_band band;
262 
263 	for (band = 0; band < NUM_NL80211_BANDS; band++)
264 		if (wiphy->bands[band])
265 			set_mandatory_flags_band(wiphy->bands[band]);
266 }
267 
268 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
269 {
270 	int i;
271 	for (i = 0; i < wiphy->n_cipher_suites; i++)
272 		if (cipher == wiphy->cipher_suites[i])
273 			return true;
274 	return false;
275 }
276 
277 static bool
278 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
279 {
280 	struct wiphy *wiphy = &rdev->wiphy;
281 	int i;
282 
283 	for (i = 0; i < wiphy->n_cipher_suites; i++) {
284 		switch (wiphy->cipher_suites[i]) {
285 		case WLAN_CIPHER_SUITE_AES_CMAC:
286 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
287 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
288 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
289 			return true;
290 		}
291 	}
292 
293 	return false;
294 }
295 
296 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
297 			    int key_idx, bool pairwise)
298 {
299 	int max_key_idx;
300 
301 	if (pairwise)
302 		max_key_idx = 3;
303 	else if (wiphy_ext_feature_isset(&rdev->wiphy,
304 					 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
305 		 wiphy_ext_feature_isset(&rdev->wiphy,
306 					 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
307 		max_key_idx = 7;
308 	else if (cfg80211_igtk_cipher_supported(rdev))
309 		max_key_idx = 5;
310 	else
311 		max_key_idx = 3;
312 
313 	if (key_idx < 0 || key_idx > max_key_idx)
314 		return false;
315 
316 	return true;
317 }
318 
319 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
320 				   struct key_params *params, int key_idx,
321 				   bool pairwise, const u8 *mac_addr)
322 {
323 	if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
324 		return -EINVAL;
325 
326 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
327 		return -EINVAL;
328 
329 	if (pairwise && !mac_addr)
330 		return -EINVAL;
331 
332 	switch (params->cipher) {
333 	case WLAN_CIPHER_SUITE_TKIP:
334 		/* Extended Key ID can only be used with CCMP/GCMP ciphers */
335 		if ((pairwise && key_idx) ||
336 		    params->mode != NL80211_KEY_RX_TX)
337 			return -EINVAL;
338 		break;
339 	case WLAN_CIPHER_SUITE_CCMP:
340 	case WLAN_CIPHER_SUITE_CCMP_256:
341 	case WLAN_CIPHER_SUITE_GCMP:
342 	case WLAN_CIPHER_SUITE_GCMP_256:
343 		/* IEEE802.11-2016 allows only 0 and - when supporting
344 		 * Extended Key ID - 1 as index for pairwise keys.
345 		 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
346 		 * the driver supports Extended Key ID.
347 		 * @NL80211_KEY_SET_TX can't be set when installing and
348 		 * validating a key.
349 		 */
350 		if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
351 		    params->mode == NL80211_KEY_SET_TX)
352 			return -EINVAL;
353 		if (wiphy_ext_feature_isset(&rdev->wiphy,
354 					    NL80211_EXT_FEATURE_EXT_KEY_ID)) {
355 			if (pairwise && (key_idx < 0 || key_idx > 1))
356 				return -EINVAL;
357 		} else if (pairwise && key_idx) {
358 			return -EINVAL;
359 		}
360 		break;
361 	case WLAN_CIPHER_SUITE_AES_CMAC:
362 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
363 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
364 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
365 		/* Disallow BIP (group-only) cipher as pairwise cipher */
366 		if (pairwise)
367 			return -EINVAL;
368 		if (key_idx < 4)
369 			return -EINVAL;
370 		break;
371 	case WLAN_CIPHER_SUITE_WEP40:
372 	case WLAN_CIPHER_SUITE_WEP104:
373 		if (key_idx > 3)
374 			return -EINVAL;
375 		break;
376 	default:
377 		break;
378 	}
379 
380 	switch (params->cipher) {
381 	case WLAN_CIPHER_SUITE_WEP40:
382 		if (params->key_len != WLAN_KEY_LEN_WEP40)
383 			return -EINVAL;
384 		break;
385 	case WLAN_CIPHER_SUITE_TKIP:
386 		if (params->key_len != WLAN_KEY_LEN_TKIP)
387 			return -EINVAL;
388 		break;
389 	case WLAN_CIPHER_SUITE_CCMP:
390 		if (params->key_len != WLAN_KEY_LEN_CCMP)
391 			return -EINVAL;
392 		break;
393 	case WLAN_CIPHER_SUITE_CCMP_256:
394 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
395 			return -EINVAL;
396 		break;
397 	case WLAN_CIPHER_SUITE_GCMP:
398 		if (params->key_len != WLAN_KEY_LEN_GCMP)
399 			return -EINVAL;
400 		break;
401 	case WLAN_CIPHER_SUITE_GCMP_256:
402 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
403 			return -EINVAL;
404 		break;
405 	case WLAN_CIPHER_SUITE_WEP104:
406 		if (params->key_len != WLAN_KEY_LEN_WEP104)
407 			return -EINVAL;
408 		break;
409 	case WLAN_CIPHER_SUITE_AES_CMAC:
410 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
411 			return -EINVAL;
412 		break;
413 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
414 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
415 			return -EINVAL;
416 		break;
417 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
418 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
419 			return -EINVAL;
420 		break;
421 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
422 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
423 			return -EINVAL;
424 		break;
425 	default:
426 		/*
427 		 * We don't know anything about this algorithm,
428 		 * allow using it -- but the driver must check
429 		 * all parameters! We still check below whether
430 		 * or not the driver supports this algorithm,
431 		 * of course.
432 		 */
433 		break;
434 	}
435 
436 	if (params->seq) {
437 		switch (params->cipher) {
438 		case WLAN_CIPHER_SUITE_WEP40:
439 		case WLAN_CIPHER_SUITE_WEP104:
440 			/* These ciphers do not use key sequence */
441 			return -EINVAL;
442 		case WLAN_CIPHER_SUITE_TKIP:
443 		case WLAN_CIPHER_SUITE_CCMP:
444 		case WLAN_CIPHER_SUITE_CCMP_256:
445 		case WLAN_CIPHER_SUITE_GCMP:
446 		case WLAN_CIPHER_SUITE_GCMP_256:
447 		case WLAN_CIPHER_SUITE_AES_CMAC:
448 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
449 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
450 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
451 			if (params->seq_len != 6)
452 				return -EINVAL;
453 			break;
454 		}
455 	}
456 
457 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
458 		return -EINVAL;
459 
460 	return 0;
461 }
462 
463 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
464 {
465 	unsigned int hdrlen = 24;
466 
467 	if (ieee80211_is_ext(fc)) {
468 		hdrlen = 4;
469 		goto out;
470 	}
471 
472 	if (ieee80211_is_data(fc)) {
473 		if (ieee80211_has_a4(fc))
474 			hdrlen = 30;
475 		if (ieee80211_is_data_qos(fc)) {
476 			hdrlen += IEEE80211_QOS_CTL_LEN;
477 			if (ieee80211_has_order(fc))
478 				hdrlen += IEEE80211_HT_CTL_LEN;
479 		}
480 		goto out;
481 	}
482 
483 	if (ieee80211_is_mgmt(fc)) {
484 		if (ieee80211_has_order(fc))
485 			hdrlen += IEEE80211_HT_CTL_LEN;
486 		goto out;
487 	}
488 
489 	if (ieee80211_is_ctl(fc)) {
490 		/*
491 		 * ACK and CTS are 10 bytes, all others 16. To see how
492 		 * to get this condition consider
493 		 *   subtype mask:   0b0000000011110000 (0x00F0)
494 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
495 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
496 		 *   bits that matter:         ^^^      (0x00E0)
497 		 *   value of those: 0b0000000011000000 (0x00C0)
498 		 */
499 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
500 			hdrlen = 10;
501 		else
502 			hdrlen = 16;
503 	}
504 out:
505 	return hdrlen;
506 }
507 EXPORT_SYMBOL(ieee80211_hdrlen);
508 
509 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
510 {
511 	const struct ieee80211_hdr *hdr =
512 			(const struct ieee80211_hdr *)skb->data;
513 	unsigned int hdrlen;
514 
515 	if (unlikely(skb->len < 10))
516 		return 0;
517 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
518 	if (unlikely(hdrlen > skb->len))
519 		return 0;
520 	return hdrlen;
521 }
522 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
523 
524 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
525 {
526 	int ae = flags & MESH_FLAGS_AE;
527 	/* 802.11-2012, 8.2.4.7.3 */
528 	switch (ae) {
529 	default:
530 	case 0:
531 		return 6;
532 	case MESH_FLAGS_AE_A4:
533 		return 12;
534 	case MESH_FLAGS_AE_A5_A6:
535 		return 18;
536 	}
537 }
538 
539 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
540 {
541 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
542 }
543 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
544 
545 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto)
546 {
547 	const __be16 *hdr_proto = hdr + ETH_ALEN;
548 
549 	if (!(ether_addr_equal(hdr, rfc1042_header) &&
550 	      *hdr_proto != htons(ETH_P_AARP) &&
551 	      *hdr_proto != htons(ETH_P_IPX)) &&
552 	    !ether_addr_equal(hdr, bridge_tunnel_header))
553 		return false;
554 
555 	*proto = *hdr_proto;
556 
557 	return true;
558 }
559 EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto);
560 
561 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb)
562 {
563 	const void *mesh_addr;
564 	struct {
565 		struct ethhdr eth;
566 		u8 flags;
567 	} payload;
568 	int hdrlen;
569 	int ret;
570 
571 	ret = skb_copy_bits(skb, 0, &payload, sizeof(payload));
572 	if (ret)
573 		return ret;
574 
575 	hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags);
576 
577 	if (likely(pskb_may_pull(skb, hdrlen + 8) &&
578 		   ieee80211_get_8023_tunnel_proto(skb->data + hdrlen,
579 						   &payload.eth.h_proto)))
580 		hdrlen += ETH_ALEN + 2;
581 	else if (!pskb_may_pull(skb, hdrlen))
582 		return -EINVAL;
583 
584 	mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN;
585 	switch (payload.flags & MESH_FLAGS_AE) {
586 	case MESH_FLAGS_AE_A4:
587 		memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN);
588 		break;
589 	case MESH_FLAGS_AE_A5_A6:
590 		memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN);
591 		break;
592 	default:
593 		break;
594 	}
595 
596 	pskb_pull(skb, hdrlen - sizeof(payload.eth));
597 	memcpy(skb->data, &payload.eth, sizeof(payload.eth));
598 
599 	return 0;
600 }
601 EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr);
602 
603 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
604 				  const u8 *addr, enum nl80211_iftype iftype,
605 				  u8 data_offset, bool is_amsdu)
606 {
607 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
608 	struct {
609 		u8 hdr[ETH_ALEN] __aligned(2);
610 		__be16 proto;
611 	} payload;
612 	struct ethhdr tmp;
613 	u16 hdrlen;
614 
615 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
616 		return -1;
617 
618 	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
619 	if (skb->len < hdrlen)
620 		return -1;
621 
622 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
623 	 * header
624 	 * IEEE 802.11 address fields:
625 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
626 	 *   0     0   DA    SA    BSSID n/a
627 	 *   0     1   DA    BSSID SA    n/a
628 	 *   1     0   BSSID SA    DA    n/a
629 	 *   1     1   RA    TA    DA    SA
630 	 */
631 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
632 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
633 
634 	switch (hdr->frame_control &
635 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
636 	case cpu_to_le16(IEEE80211_FCTL_TODS):
637 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
638 			     iftype != NL80211_IFTYPE_AP_VLAN &&
639 			     iftype != NL80211_IFTYPE_P2P_GO))
640 			return -1;
641 		break;
642 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
643 		if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
644 			     iftype != NL80211_IFTYPE_AP_VLAN &&
645 			     iftype != NL80211_IFTYPE_STATION))
646 			return -1;
647 		break;
648 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
649 		if ((iftype != NL80211_IFTYPE_STATION &&
650 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
651 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
652 		    (is_multicast_ether_addr(tmp.h_dest) &&
653 		     ether_addr_equal(tmp.h_source, addr)))
654 			return -1;
655 		break;
656 	case cpu_to_le16(0):
657 		if (iftype != NL80211_IFTYPE_ADHOC &&
658 		    iftype != NL80211_IFTYPE_STATION &&
659 		    iftype != NL80211_IFTYPE_OCB)
660 				return -1;
661 		break;
662 	}
663 
664 	if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT &&
665 		   skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 &&
666 		   ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) {
667 		/* remove RFC1042 or Bridge-Tunnel encapsulation */
668 		hdrlen += ETH_ALEN + 2;
669 		skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
670 	} else {
671 		tmp.h_proto = htons(skb->len - hdrlen);
672 	}
673 
674 	pskb_pull(skb, hdrlen);
675 
676 	if (!ehdr)
677 		ehdr = skb_push(skb, sizeof(struct ethhdr));
678 	memcpy(ehdr, &tmp, sizeof(tmp));
679 
680 	return 0;
681 }
682 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
683 
684 static void
685 __frame_add_frag(struct sk_buff *skb, struct page *page,
686 		 void *ptr, int len, int size)
687 {
688 	struct skb_shared_info *sh = skb_shinfo(skb);
689 	int page_offset;
690 
691 	get_page(page);
692 	page_offset = ptr - page_address(page);
693 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
694 }
695 
696 static void
697 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
698 			    int offset, int len)
699 {
700 	struct skb_shared_info *sh = skb_shinfo(skb);
701 	const skb_frag_t *frag = &sh->frags[0];
702 	struct page *frag_page;
703 	void *frag_ptr;
704 	int frag_len, frag_size;
705 	int head_size = skb->len - skb->data_len;
706 	int cur_len;
707 
708 	frag_page = virt_to_head_page(skb->head);
709 	frag_ptr = skb->data;
710 	frag_size = head_size;
711 
712 	while (offset >= frag_size) {
713 		offset -= frag_size;
714 		frag_page = skb_frag_page(frag);
715 		frag_ptr = skb_frag_address(frag);
716 		frag_size = skb_frag_size(frag);
717 		frag++;
718 	}
719 
720 	frag_ptr += offset;
721 	frag_len = frag_size - offset;
722 
723 	cur_len = min(len, frag_len);
724 
725 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
726 	len -= cur_len;
727 
728 	while (len > 0) {
729 		frag_len = skb_frag_size(frag);
730 		cur_len = min(len, frag_len);
731 		__frame_add_frag(frame, skb_frag_page(frag),
732 				 skb_frag_address(frag), cur_len, frag_len);
733 		len -= cur_len;
734 		frag++;
735 	}
736 }
737 
738 static struct sk_buff *
739 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
740 		       int offset, int len, bool reuse_frag,
741 		       int min_len)
742 {
743 	struct sk_buff *frame;
744 	int cur_len = len;
745 
746 	if (skb->len - offset < len)
747 		return NULL;
748 
749 	/*
750 	 * When reusing framents, copy some data to the head to simplify
751 	 * ethernet header handling and speed up protocol header processing
752 	 * in the stack later.
753 	 */
754 	if (reuse_frag)
755 		cur_len = min_t(int, len, min_len);
756 
757 	/*
758 	 * Allocate and reserve two bytes more for payload
759 	 * alignment since sizeof(struct ethhdr) is 14.
760 	 */
761 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
762 	if (!frame)
763 		return NULL;
764 
765 	frame->priority = skb->priority;
766 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
767 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
768 
769 	len -= cur_len;
770 	if (!len)
771 		return frame;
772 
773 	offset += cur_len;
774 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
775 
776 	return frame;
777 }
778 
779 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, bool mesh_hdr)
780 {
781 	int offset = 0, remaining, subframe_len, padding;
782 
783 	for (offset = 0; offset < skb->len; offset += subframe_len + padding) {
784 		struct {
785 		    __be16 len;
786 		    u8 mesh_flags;
787 		} hdr;
788 		u16 len;
789 
790 		if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0)
791 			return false;
792 
793 		if (mesh_hdr)
794 			len = le16_to_cpu(*(__le16 *)&hdr.len) +
795 			      __ieee80211_get_mesh_hdrlen(hdr.mesh_flags);
796 		else
797 			len = ntohs(hdr.len);
798 
799 		subframe_len = sizeof(struct ethhdr) + len;
800 		padding = (4 - subframe_len) & 0x3;
801 		remaining = skb->len - offset;
802 
803 		if (subframe_len > remaining)
804 			return false;
805 	}
806 
807 	return true;
808 }
809 EXPORT_SYMBOL(ieee80211_is_valid_amsdu);
810 
811 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
812 			      const u8 *addr, enum nl80211_iftype iftype,
813 			      const unsigned int extra_headroom,
814 			      const u8 *check_da, const u8 *check_sa,
815 			      bool mesh_control)
816 {
817 	unsigned int hlen = ALIGN(extra_headroom, 4);
818 	struct sk_buff *frame = NULL;
819 	int offset = 0, remaining;
820 	struct {
821 		struct ethhdr eth;
822 		uint8_t flags;
823 	} hdr;
824 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
825 	bool reuse_skb = false;
826 	bool last = false;
827 	int copy_len = sizeof(hdr.eth);
828 
829 	if (iftype == NL80211_IFTYPE_MESH_POINT)
830 		copy_len = sizeof(hdr);
831 
832 	while (!last) {
833 		unsigned int subframe_len;
834 		int len, mesh_len = 0;
835 		u8 padding;
836 
837 		skb_copy_bits(skb, offset, &hdr, copy_len);
838 		if (iftype == NL80211_IFTYPE_MESH_POINT)
839 			mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags);
840 		if (mesh_control)
841 			len = le16_to_cpu(*(__le16 *)&hdr.eth.h_proto) + mesh_len;
842 		else
843 			len = ntohs(hdr.eth.h_proto);
844 
845 		subframe_len = sizeof(struct ethhdr) + len;
846 		padding = (4 - subframe_len) & 0x3;
847 
848 		/* the last MSDU has no padding */
849 		remaining = skb->len - offset;
850 		if (subframe_len > remaining)
851 			goto purge;
852 		/* mitigate A-MSDU aggregation injection attacks */
853 		if (ether_addr_equal(hdr.eth.h_dest, rfc1042_header))
854 			goto purge;
855 
856 		offset += sizeof(struct ethhdr);
857 		last = remaining <= subframe_len + padding;
858 
859 		/* FIXME: should we really accept multicast DA? */
860 		if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) &&
861 		     !ether_addr_equal(check_da, hdr.eth.h_dest)) ||
862 		    (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) {
863 			offset += len + padding;
864 			continue;
865 		}
866 
867 		/* reuse skb for the last subframe */
868 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
869 			skb_pull(skb, offset);
870 			frame = skb;
871 			reuse_skb = true;
872 		} else {
873 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
874 						       reuse_frag, 32 + mesh_len);
875 			if (!frame)
876 				goto purge;
877 
878 			offset += len + padding;
879 		}
880 
881 		skb_reset_network_header(frame);
882 		frame->dev = skb->dev;
883 		frame->priority = skb->priority;
884 
885 		if (likely(iftype != NL80211_IFTYPE_MESH_POINT &&
886 			   ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto)))
887 			skb_pull(frame, ETH_ALEN + 2);
888 
889 		memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth));
890 		__skb_queue_tail(list, frame);
891 	}
892 
893 	if (!reuse_skb)
894 		dev_kfree_skb(skb);
895 
896 	return;
897 
898  purge:
899 	__skb_queue_purge(list);
900 	dev_kfree_skb(skb);
901 }
902 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
903 
904 /* Given a data frame determine the 802.1p/1d tag to use. */
905 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
906 				    struct cfg80211_qos_map *qos_map)
907 {
908 	unsigned int dscp;
909 	unsigned char vlan_priority;
910 	unsigned int ret;
911 
912 	/* skb->priority values from 256->263 are magic values to
913 	 * directly indicate a specific 802.1d priority.  This is used
914 	 * to allow 802.1d priority to be passed directly in from VLAN
915 	 * tags, etc.
916 	 */
917 	if (skb->priority >= 256 && skb->priority <= 263) {
918 		ret = skb->priority - 256;
919 		goto out;
920 	}
921 
922 	if (skb_vlan_tag_present(skb)) {
923 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
924 			>> VLAN_PRIO_SHIFT;
925 		if (vlan_priority > 0) {
926 			ret = vlan_priority;
927 			goto out;
928 		}
929 	}
930 
931 	switch (skb->protocol) {
932 	case htons(ETH_P_IP):
933 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
934 		break;
935 	case htons(ETH_P_IPV6):
936 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
937 		break;
938 	case htons(ETH_P_MPLS_UC):
939 	case htons(ETH_P_MPLS_MC): {
940 		struct mpls_label mpls_tmp, *mpls;
941 
942 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
943 					  sizeof(*mpls), &mpls_tmp);
944 		if (!mpls)
945 			return 0;
946 
947 		ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
948 			>> MPLS_LS_TC_SHIFT;
949 		goto out;
950 	}
951 	case htons(ETH_P_80221):
952 		/* 802.21 is always network control traffic */
953 		return 7;
954 	default:
955 		return 0;
956 	}
957 
958 	if (qos_map) {
959 		unsigned int i, tmp_dscp = dscp >> 2;
960 
961 		for (i = 0; i < qos_map->num_des; i++) {
962 			if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
963 				ret = qos_map->dscp_exception[i].up;
964 				goto out;
965 			}
966 		}
967 
968 		for (i = 0; i < 8; i++) {
969 			if (tmp_dscp >= qos_map->up[i].low &&
970 			    tmp_dscp <= qos_map->up[i].high) {
971 				ret = i;
972 				goto out;
973 			}
974 		}
975 	}
976 
977 	ret = dscp >> 5;
978 out:
979 	return array_index_nospec(ret, IEEE80211_NUM_TIDS);
980 }
981 EXPORT_SYMBOL(cfg80211_classify8021d);
982 
983 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
984 {
985 	const struct cfg80211_bss_ies *ies;
986 
987 	ies = rcu_dereference(bss->ies);
988 	if (!ies)
989 		return NULL;
990 
991 	return cfg80211_find_elem(id, ies->data, ies->len);
992 }
993 EXPORT_SYMBOL(ieee80211_bss_get_elem);
994 
995 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
996 {
997 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
998 	struct net_device *dev = wdev->netdev;
999 	int i;
1000 
1001 	if (!wdev->connect_keys)
1002 		return;
1003 
1004 	for (i = 0; i < 4; i++) {
1005 		if (!wdev->connect_keys->params[i].cipher)
1006 			continue;
1007 		if (rdev_add_key(rdev, dev, -1, i, false, NULL,
1008 				 &wdev->connect_keys->params[i])) {
1009 			netdev_err(dev, "failed to set key %d\n", i);
1010 			continue;
1011 		}
1012 		if (wdev->connect_keys->def == i &&
1013 		    rdev_set_default_key(rdev, dev, -1, i, true, true)) {
1014 			netdev_err(dev, "failed to set defkey %d\n", i);
1015 			continue;
1016 		}
1017 	}
1018 
1019 	kfree_sensitive(wdev->connect_keys);
1020 	wdev->connect_keys = NULL;
1021 }
1022 
1023 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
1024 {
1025 	struct cfg80211_event *ev;
1026 	unsigned long flags;
1027 
1028 	spin_lock_irqsave(&wdev->event_lock, flags);
1029 	while (!list_empty(&wdev->event_list)) {
1030 		ev = list_first_entry(&wdev->event_list,
1031 				      struct cfg80211_event, list);
1032 		list_del(&ev->list);
1033 		spin_unlock_irqrestore(&wdev->event_lock, flags);
1034 
1035 		wdev_lock(wdev);
1036 		switch (ev->type) {
1037 		case EVENT_CONNECT_RESULT:
1038 			__cfg80211_connect_result(
1039 				wdev->netdev,
1040 				&ev->cr,
1041 				ev->cr.status == WLAN_STATUS_SUCCESS);
1042 			break;
1043 		case EVENT_ROAMED:
1044 			__cfg80211_roamed(wdev, &ev->rm);
1045 			break;
1046 		case EVENT_DISCONNECTED:
1047 			__cfg80211_disconnected(wdev->netdev,
1048 						ev->dc.ie, ev->dc.ie_len,
1049 						ev->dc.reason,
1050 						!ev->dc.locally_generated);
1051 			break;
1052 		case EVENT_IBSS_JOINED:
1053 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
1054 					       ev->ij.channel);
1055 			break;
1056 		case EVENT_STOPPED:
1057 			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
1058 			break;
1059 		case EVENT_PORT_AUTHORIZED:
1060 			__cfg80211_port_authorized(wdev, ev->pa.bssid,
1061 						   ev->pa.td_bitmap,
1062 						   ev->pa.td_bitmap_len);
1063 			break;
1064 		}
1065 		wdev_unlock(wdev);
1066 
1067 		kfree(ev);
1068 
1069 		spin_lock_irqsave(&wdev->event_lock, flags);
1070 	}
1071 	spin_unlock_irqrestore(&wdev->event_lock, flags);
1072 }
1073 
1074 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1075 {
1076 	struct wireless_dev *wdev;
1077 
1078 	lockdep_assert_held(&rdev->wiphy.mtx);
1079 
1080 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1081 		cfg80211_process_wdev_events(wdev);
1082 }
1083 
1084 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1085 			  struct net_device *dev, enum nl80211_iftype ntype,
1086 			  struct vif_params *params)
1087 {
1088 	int err;
1089 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1090 
1091 	lockdep_assert_held(&rdev->wiphy.mtx);
1092 
1093 	/* don't support changing VLANs, you just re-create them */
1094 	if (otype == NL80211_IFTYPE_AP_VLAN)
1095 		return -EOPNOTSUPP;
1096 
1097 	/* cannot change into P2P device or NAN */
1098 	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1099 	    ntype == NL80211_IFTYPE_NAN)
1100 		return -EOPNOTSUPP;
1101 
1102 	if (!rdev->ops->change_virtual_intf ||
1103 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1104 		return -EOPNOTSUPP;
1105 
1106 	if (ntype != otype) {
1107 		/* if it's part of a bridge, reject changing type to station/ibss */
1108 		if (netif_is_bridge_port(dev) &&
1109 		    (ntype == NL80211_IFTYPE_ADHOC ||
1110 		     ntype == NL80211_IFTYPE_STATION ||
1111 		     ntype == NL80211_IFTYPE_P2P_CLIENT))
1112 			return -EBUSY;
1113 
1114 		dev->ieee80211_ptr->use_4addr = false;
1115 		wdev_lock(dev->ieee80211_ptr);
1116 		rdev_set_qos_map(rdev, dev, NULL);
1117 		wdev_unlock(dev->ieee80211_ptr);
1118 
1119 		switch (otype) {
1120 		case NL80211_IFTYPE_AP:
1121 		case NL80211_IFTYPE_P2P_GO:
1122 			cfg80211_stop_ap(rdev, dev, -1, true);
1123 			break;
1124 		case NL80211_IFTYPE_ADHOC:
1125 			cfg80211_leave_ibss(rdev, dev, false);
1126 			break;
1127 		case NL80211_IFTYPE_STATION:
1128 		case NL80211_IFTYPE_P2P_CLIENT:
1129 			wdev_lock(dev->ieee80211_ptr);
1130 			cfg80211_disconnect(rdev, dev,
1131 					    WLAN_REASON_DEAUTH_LEAVING, true);
1132 			wdev_unlock(dev->ieee80211_ptr);
1133 			break;
1134 		case NL80211_IFTYPE_MESH_POINT:
1135 			/* mesh should be handled? */
1136 			break;
1137 		case NL80211_IFTYPE_OCB:
1138 			cfg80211_leave_ocb(rdev, dev);
1139 			break;
1140 		default:
1141 			break;
1142 		}
1143 
1144 		cfg80211_process_rdev_events(rdev);
1145 		cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1146 
1147 		memset(&dev->ieee80211_ptr->u, 0,
1148 		       sizeof(dev->ieee80211_ptr->u));
1149 		memset(&dev->ieee80211_ptr->links, 0,
1150 		       sizeof(dev->ieee80211_ptr->links));
1151 	}
1152 
1153 	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1154 
1155 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1156 
1157 	if (!err && params && params->use_4addr != -1)
1158 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1159 
1160 	if (!err) {
1161 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1162 		switch (ntype) {
1163 		case NL80211_IFTYPE_STATION:
1164 			if (dev->ieee80211_ptr->use_4addr)
1165 				break;
1166 			fallthrough;
1167 		case NL80211_IFTYPE_OCB:
1168 		case NL80211_IFTYPE_P2P_CLIENT:
1169 		case NL80211_IFTYPE_ADHOC:
1170 			dev->priv_flags |= IFF_DONT_BRIDGE;
1171 			break;
1172 		case NL80211_IFTYPE_P2P_GO:
1173 		case NL80211_IFTYPE_AP:
1174 		case NL80211_IFTYPE_AP_VLAN:
1175 		case NL80211_IFTYPE_MESH_POINT:
1176 			/* bridging OK */
1177 			break;
1178 		case NL80211_IFTYPE_MONITOR:
1179 			/* monitor can't bridge anyway */
1180 			break;
1181 		case NL80211_IFTYPE_UNSPECIFIED:
1182 		case NUM_NL80211_IFTYPES:
1183 			/* not happening */
1184 			break;
1185 		case NL80211_IFTYPE_P2P_DEVICE:
1186 		case NL80211_IFTYPE_WDS:
1187 		case NL80211_IFTYPE_NAN:
1188 			WARN_ON(1);
1189 			break;
1190 		}
1191 	}
1192 
1193 	if (!err && ntype != otype && netif_running(dev)) {
1194 		cfg80211_update_iface_num(rdev, ntype, 1);
1195 		cfg80211_update_iface_num(rdev, otype, -1);
1196 	}
1197 
1198 	return err;
1199 }
1200 
1201 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1202 {
1203 	int modulation, streams, bitrate;
1204 
1205 	/* the formula below does only work for MCS values smaller than 32 */
1206 	if (WARN_ON_ONCE(rate->mcs >= 32))
1207 		return 0;
1208 
1209 	modulation = rate->mcs & 7;
1210 	streams = (rate->mcs >> 3) + 1;
1211 
1212 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1213 
1214 	if (modulation < 4)
1215 		bitrate *= (modulation + 1);
1216 	else if (modulation == 4)
1217 		bitrate *= (modulation + 2);
1218 	else
1219 		bitrate *= (modulation + 3);
1220 
1221 	bitrate *= streams;
1222 
1223 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1224 		bitrate = (bitrate / 9) * 10;
1225 
1226 	/* do NOT round down here */
1227 	return (bitrate + 50000) / 100000;
1228 }
1229 
1230 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1231 {
1232 	static const u32 __mcs2bitrate[] = {
1233 		/* control PHY */
1234 		[0] =   275,
1235 		/* SC PHY */
1236 		[1] =  3850,
1237 		[2] =  7700,
1238 		[3] =  9625,
1239 		[4] = 11550,
1240 		[5] = 12512, /* 1251.25 mbps */
1241 		[6] = 15400,
1242 		[7] = 19250,
1243 		[8] = 23100,
1244 		[9] = 25025,
1245 		[10] = 30800,
1246 		[11] = 38500,
1247 		[12] = 46200,
1248 		/* OFDM PHY */
1249 		[13] =  6930,
1250 		[14] =  8662, /* 866.25 mbps */
1251 		[15] = 13860,
1252 		[16] = 17325,
1253 		[17] = 20790,
1254 		[18] = 27720,
1255 		[19] = 34650,
1256 		[20] = 41580,
1257 		[21] = 45045,
1258 		[22] = 51975,
1259 		[23] = 62370,
1260 		[24] = 67568, /* 6756.75 mbps */
1261 		/* LP-SC PHY */
1262 		[25] =  6260,
1263 		[26] =  8340,
1264 		[27] = 11120,
1265 		[28] = 12510,
1266 		[29] = 16680,
1267 		[30] = 22240,
1268 		[31] = 25030,
1269 	};
1270 
1271 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1272 		return 0;
1273 
1274 	return __mcs2bitrate[rate->mcs];
1275 }
1276 
1277 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1278 {
1279 	static const u32 __mcs2bitrate[] = {
1280 		[6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1281 		[7 - 6] = 50050, /* MCS 12.1 */
1282 		[8 - 6] = 53900,
1283 		[9 - 6] = 57750,
1284 		[10 - 6] = 63900,
1285 		[11 - 6] = 75075,
1286 		[12 - 6] = 80850,
1287 	};
1288 
1289 	/* Extended SC MCS not defined for base MCS below 6 or above 12 */
1290 	if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1291 		return 0;
1292 
1293 	return __mcs2bitrate[rate->mcs - 6];
1294 }
1295 
1296 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1297 {
1298 	static const u32 __mcs2bitrate[] = {
1299 		/* control PHY */
1300 		[0] =   275,
1301 		/* SC PHY */
1302 		[1] =  3850,
1303 		[2] =  7700,
1304 		[3] =  9625,
1305 		[4] = 11550,
1306 		[5] = 12512, /* 1251.25 mbps */
1307 		[6] = 13475,
1308 		[7] = 15400,
1309 		[8] = 19250,
1310 		[9] = 23100,
1311 		[10] = 25025,
1312 		[11] = 26950,
1313 		[12] = 30800,
1314 		[13] = 38500,
1315 		[14] = 46200,
1316 		[15] = 50050,
1317 		[16] = 53900,
1318 		[17] = 57750,
1319 		[18] = 69300,
1320 		[19] = 75075,
1321 		[20] = 80850,
1322 	};
1323 
1324 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1325 		return 0;
1326 
1327 	return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1328 }
1329 
1330 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1331 {
1332 	static const u32 base[4][12] = {
1333 		{   6500000,
1334 		   13000000,
1335 		   19500000,
1336 		   26000000,
1337 		   39000000,
1338 		   52000000,
1339 		   58500000,
1340 		   65000000,
1341 		   78000000,
1342 		/* not in the spec, but some devices use this: */
1343 		   86700000,
1344 		   97500000,
1345 		  108300000,
1346 		},
1347 		{  13500000,
1348 		   27000000,
1349 		   40500000,
1350 		   54000000,
1351 		   81000000,
1352 		  108000000,
1353 		  121500000,
1354 		  135000000,
1355 		  162000000,
1356 		  180000000,
1357 		  202500000,
1358 		  225000000,
1359 		},
1360 		{  29300000,
1361 		   58500000,
1362 		   87800000,
1363 		  117000000,
1364 		  175500000,
1365 		  234000000,
1366 		  263300000,
1367 		  292500000,
1368 		  351000000,
1369 		  390000000,
1370 		  438800000,
1371 		  487500000,
1372 		},
1373 		{  58500000,
1374 		  117000000,
1375 		  175500000,
1376 		  234000000,
1377 		  351000000,
1378 		  468000000,
1379 		  526500000,
1380 		  585000000,
1381 		  702000000,
1382 		  780000000,
1383 		  877500000,
1384 		  975000000,
1385 		},
1386 	};
1387 	u32 bitrate;
1388 	int idx;
1389 
1390 	if (rate->mcs > 11)
1391 		goto warn;
1392 
1393 	switch (rate->bw) {
1394 	case RATE_INFO_BW_160:
1395 		idx = 3;
1396 		break;
1397 	case RATE_INFO_BW_80:
1398 		idx = 2;
1399 		break;
1400 	case RATE_INFO_BW_40:
1401 		idx = 1;
1402 		break;
1403 	case RATE_INFO_BW_5:
1404 	case RATE_INFO_BW_10:
1405 	default:
1406 		goto warn;
1407 	case RATE_INFO_BW_20:
1408 		idx = 0;
1409 	}
1410 
1411 	bitrate = base[idx][rate->mcs];
1412 	bitrate *= rate->nss;
1413 
1414 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1415 		bitrate = (bitrate / 9) * 10;
1416 
1417 	/* do NOT round down here */
1418 	return (bitrate + 50000) / 100000;
1419  warn:
1420 	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1421 		  rate->bw, rate->mcs, rate->nss);
1422 	return 0;
1423 }
1424 
1425 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1426 {
1427 #define SCALE 6144
1428 	u32 mcs_divisors[14] = {
1429 		102399, /* 16.666666... */
1430 		 51201, /*  8.333333... */
1431 		 34134, /*  5.555555... */
1432 		 25599, /*  4.166666... */
1433 		 17067, /*  2.777777... */
1434 		 12801, /*  2.083333... */
1435 		 11377, /*  1.851725... */
1436 		 10239, /*  1.666666... */
1437 		  8532, /*  1.388888... */
1438 		  7680, /*  1.250000... */
1439 		  6828, /*  1.111111... */
1440 		  6144, /*  1.000000... */
1441 		  5690, /*  0.926106... */
1442 		  5120, /*  0.833333... */
1443 	};
1444 	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1445 	u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1446 	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1447 	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1448 	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1449 	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1450 	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1451 	u64 tmp;
1452 	u32 result;
1453 
1454 	if (WARN_ON_ONCE(rate->mcs > 13))
1455 		return 0;
1456 
1457 	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1458 		return 0;
1459 	if (WARN_ON_ONCE(rate->he_ru_alloc >
1460 			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1461 		return 0;
1462 	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1463 		return 0;
1464 
1465 	if (rate->bw == RATE_INFO_BW_160)
1466 		result = rates_160M[rate->he_gi];
1467 	else if (rate->bw == RATE_INFO_BW_80 ||
1468 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1469 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1470 		result = rates_969[rate->he_gi];
1471 	else if (rate->bw == RATE_INFO_BW_40 ||
1472 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1473 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1474 		result = rates_484[rate->he_gi];
1475 	else if (rate->bw == RATE_INFO_BW_20 ||
1476 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1477 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1478 		result = rates_242[rate->he_gi];
1479 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1480 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1481 		result = rates_106[rate->he_gi];
1482 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1483 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1484 		result = rates_52[rate->he_gi];
1485 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1486 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1487 		result = rates_26[rate->he_gi];
1488 	else {
1489 		WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1490 		     rate->bw, rate->he_ru_alloc);
1491 		return 0;
1492 	}
1493 
1494 	/* now scale to the appropriate MCS */
1495 	tmp = result;
1496 	tmp *= SCALE;
1497 	do_div(tmp, mcs_divisors[rate->mcs]);
1498 	result = tmp;
1499 
1500 	/* and take NSS, DCM into account */
1501 	result = (result * rate->nss) / 8;
1502 	if (rate->he_dcm)
1503 		result /= 2;
1504 
1505 	return result / 10000;
1506 }
1507 
1508 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1509 {
1510 #define SCALE 6144
1511 	static const u32 mcs_divisors[16] = {
1512 		102399, /* 16.666666... */
1513 		 51201, /*  8.333333... */
1514 		 34134, /*  5.555555... */
1515 		 25599, /*  4.166666... */
1516 		 17067, /*  2.777777... */
1517 		 12801, /*  2.083333... */
1518 		 11377, /*  1.851725... */
1519 		 10239, /*  1.666666... */
1520 		  8532, /*  1.388888... */
1521 		  7680, /*  1.250000... */
1522 		  6828, /*  1.111111... */
1523 		  6144, /*  1.000000... */
1524 		  5690, /*  0.926106... */
1525 		  5120, /*  0.833333... */
1526 		409600, /* 66.666666... */
1527 		204800, /* 33.333333... */
1528 	};
1529 	static const u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1530 	static const u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1531 	static const u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1532 	static const u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1533 	static const u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1534 	static const u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1535 	u64 tmp;
1536 	u32 result;
1537 
1538 	if (WARN_ON_ONCE(rate->mcs > 15))
1539 		return 0;
1540 	if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1541 		return 0;
1542 	if (WARN_ON_ONCE(rate->eht_ru_alloc >
1543 			 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1544 		return 0;
1545 	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1546 		return 0;
1547 
1548 	/* Bandwidth checks for MCS 14 */
1549 	if (rate->mcs == 14) {
1550 		if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1551 		     rate->bw != RATE_INFO_BW_80 &&
1552 		     rate->bw != RATE_INFO_BW_160 &&
1553 		     rate->bw != RATE_INFO_BW_320) ||
1554 		    (rate->bw == RATE_INFO_BW_EHT_RU &&
1555 		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1556 		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1557 		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1558 			WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1559 			     rate->bw, rate->eht_ru_alloc);
1560 			return 0;
1561 		}
1562 	}
1563 
1564 	if (rate->bw == RATE_INFO_BW_320 ||
1565 	    (rate->bw == RATE_INFO_BW_EHT_RU &&
1566 	     rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1567 		result = 4 * rates_996[rate->eht_gi];
1568 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1569 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1570 		result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1571 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1572 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1573 		result = 3 * rates_996[rate->eht_gi];
1574 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1575 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1576 		result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1577 	else if (rate->bw == RATE_INFO_BW_160 ||
1578 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1579 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1580 		result = 2 * rates_996[rate->eht_gi];
1581 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1582 		 rate->eht_ru_alloc ==
1583 		 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1584 		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1585 			 + rates_242[rate->eht_gi];
1586 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1587 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1588 		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1589 	else if (rate->bw == RATE_INFO_BW_80 ||
1590 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1591 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1592 		result = rates_996[rate->eht_gi];
1593 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1594 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1595 		result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1596 	else if (rate->bw == RATE_INFO_BW_40 ||
1597 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1598 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1599 		result = rates_484[rate->eht_gi];
1600 	else if (rate->bw == RATE_INFO_BW_20 ||
1601 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1602 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1603 		result = rates_242[rate->eht_gi];
1604 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1605 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1606 		result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1607 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1608 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1609 		result = rates_106[rate->eht_gi];
1610 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1611 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1612 		result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1613 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1614 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1615 		result = rates_52[rate->eht_gi];
1616 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1617 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1618 		result = rates_26[rate->eht_gi];
1619 	else {
1620 		WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1621 		     rate->bw, rate->eht_ru_alloc);
1622 		return 0;
1623 	}
1624 
1625 	/* now scale to the appropriate MCS */
1626 	tmp = result;
1627 	tmp *= SCALE;
1628 	do_div(tmp, mcs_divisors[rate->mcs]);
1629 
1630 	/* and take NSS */
1631 	tmp *= rate->nss;
1632 	do_div(tmp, 8);
1633 
1634 	result = tmp;
1635 
1636 	return result / 10000;
1637 }
1638 
1639 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1640 {
1641 	if (rate->flags & RATE_INFO_FLAGS_MCS)
1642 		return cfg80211_calculate_bitrate_ht(rate);
1643 	if (rate->flags & RATE_INFO_FLAGS_DMG)
1644 		return cfg80211_calculate_bitrate_dmg(rate);
1645 	if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1646 		return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1647 	if (rate->flags & RATE_INFO_FLAGS_EDMG)
1648 		return cfg80211_calculate_bitrate_edmg(rate);
1649 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1650 		return cfg80211_calculate_bitrate_vht(rate);
1651 	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1652 		return cfg80211_calculate_bitrate_he(rate);
1653 	if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1654 		return cfg80211_calculate_bitrate_eht(rate);
1655 
1656 	return rate->legacy;
1657 }
1658 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1659 
1660 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1661 			  enum ieee80211_p2p_attr_id attr,
1662 			  u8 *buf, unsigned int bufsize)
1663 {
1664 	u8 *out = buf;
1665 	u16 attr_remaining = 0;
1666 	bool desired_attr = false;
1667 	u16 desired_len = 0;
1668 
1669 	while (len > 0) {
1670 		unsigned int iedatalen;
1671 		unsigned int copy;
1672 		const u8 *iedata;
1673 
1674 		if (len < 2)
1675 			return -EILSEQ;
1676 		iedatalen = ies[1];
1677 		if (iedatalen + 2 > len)
1678 			return -EILSEQ;
1679 
1680 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1681 			goto cont;
1682 
1683 		if (iedatalen < 4)
1684 			goto cont;
1685 
1686 		iedata = ies + 2;
1687 
1688 		/* check WFA OUI, P2P subtype */
1689 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1690 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1691 			goto cont;
1692 
1693 		iedatalen -= 4;
1694 		iedata += 4;
1695 
1696 		/* check attribute continuation into this IE */
1697 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1698 		if (copy && desired_attr) {
1699 			desired_len += copy;
1700 			if (out) {
1701 				memcpy(out, iedata, min(bufsize, copy));
1702 				out += min(bufsize, copy);
1703 				bufsize -= min(bufsize, copy);
1704 			}
1705 
1706 
1707 			if (copy == attr_remaining)
1708 				return desired_len;
1709 		}
1710 
1711 		attr_remaining -= copy;
1712 		if (attr_remaining)
1713 			goto cont;
1714 
1715 		iedatalen -= copy;
1716 		iedata += copy;
1717 
1718 		while (iedatalen > 0) {
1719 			u16 attr_len;
1720 
1721 			/* P2P attribute ID & size must fit */
1722 			if (iedatalen < 3)
1723 				return -EILSEQ;
1724 			desired_attr = iedata[0] == attr;
1725 			attr_len = get_unaligned_le16(iedata + 1);
1726 			iedatalen -= 3;
1727 			iedata += 3;
1728 
1729 			copy = min_t(unsigned int, attr_len, iedatalen);
1730 
1731 			if (desired_attr) {
1732 				desired_len += copy;
1733 				if (out) {
1734 					memcpy(out, iedata, min(bufsize, copy));
1735 					out += min(bufsize, copy);
1736 					bufsize -= min(bufsize, copy);
1737 				}
1738 
1739 				if (copy == attr_len)
1740 					return desired_len;
1741 			}
1742 
1743 			iedata += copy;
1744 			iedatalen -= copy;
1745 			attr_remaining = attr_len - copy;
1746 		}
1747 
1748  cont:
1749 		len -= ies[1] + 2;
1750 		ies += ies[1] + 2;
1751 	}
1752 
1753 	if (attr_remaining && desired_attr)
1754 		return -EILSEQ;
1755 
1756 	return -ENOENT;
1757 }
1758 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1759 
1760 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1761 {
1762 	int i;
1763 
1764 	/* Make sure array values are legal */
1765 	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1766 		return false;
1767 
1768 	i = 0;
1769 	while (i < n_ids) {
1770 		if (ids[i] == WLAN_EID_EXTENSION) {
1771 			if (id_ext && (ids[i + 1] == id))
1772 				return true;
1773 
1774 			i += 2;
1775 			continue;
1776 		}
1777 
1778 		if (ids[i] == id && !id_ext)
1779 			return true;
1780 
1781 		i++;
1782 	}
1783 	return false;
1784 }
1785 
1786 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1787 {
1788 	/* we assume a validly formed IEs buffer */
1789 	u8 len = ies[pos + 1];
1790 
1791 	pos += 2 + len;
1792 
1793 	/* the IE itself must have 255 bytes for fragments to follow */
1794 	if (len < 255)
1795 		return pos;
1796 
1797 	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1798 		len = ies[pos + 1];
1799 		pos += 2 + len;
1800 	}
1801 
1802 	return pos;
1803 }
1804 
1805 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1806 			      const u8 *ids, int n_ids,
1807 			      const u8 *after_ric, int n_after_ric,
1808 			      size_t offset)
1809 {
1810 	size_t pos = offset;
1811 
1812 	while (pos < ielen) {
1813 		u8 ext = 0;
1814 
1815 		if (ies[pos] == WLAN_EID_EXTENSION)
1816 			ext = 2;
1817 		if ((pos + ext) >= ielen)
1818 			break;
1819 
1820 		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1821 					  ies[pos] == WLAN_EID_EXTENSION))
1822 			break;
1823 
1824 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1825 			pos = skip_ie(ies, ielen, pos);
1826 
1827 			while (pos < ielen) {
1828 				if (ies[pos] == WLAN_EID_EXTENSION)
1829 					ext = 2;
1830 				else
1831 					ext = 0;
1832 
1833 				if ((pos + ext) >= ielen)
1834 					break;
1835 
1836 				if (!ieee80211_id_in_list(after_ric,
1837 							  n_after_ric,
1838 							  ies[pos + ext],
1839 							  ext == 2))
1840 					pos = skip_ie(ies, ielen, pos);
1841 				else
1842 					break;
1843 			}
1844 		} else {
1845 			pos = skip_ie(ies, ielen, pos);
1846 		}
1847 	}
1848 
1849 	return pos;
1850 }
1851 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1852 
1853 bool ieee80211_operating_class_to_band(u8 operating_class,
1854 				       enum nl80211_band *band)
1855 {
1856 	switch (operating_class) {
1857 	case 112:
1858 	case 115 ... 127:
1859 	case 128 ... 130:
1860 		*band = NL80211_BAND_5GHZ;
1861 		return true;
1862 	case 131 ... 135:
1863 		*band = NL80211_BAND_6GHZ;
1864 		return true;
1865 	case 81:
1866 	case 82:
1867 	case 83:
1868 	case 84:
1869 		*band = NL80211_BAND_2GHZ;
1870 		return true;
1871 	case 180:
1872 		*band = NL80211_BAND_60GHZ;
1873 		return true;
1874 	}
1875 
1876 	return false;
1877 }
1878 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1879 
1880 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1881 					  u8 *op_class)
1882 {
1883 	u8 vht_opclass;
1884 	u32 freq = chandef->center_freq1;
1885 
1886 	if (freq >= 2412 && freq <= 2472) {
1887 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1888 			return false;
1889 
1890 		/* 2.407 GHz, channels 1..13 */
1891 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1892 			if (freq > chandef->chan->center_freq)
1893 				*op_class = 83; /* HT40+ */
1894 			else
1895 				*op_class = 84; /* HT40- */
1896 		} else {
1897 			*op_class = 81;
1898 		}
1899 
1900 		return true;
1901 	}
1902 
1903 	if (freq == 2484) {
1904 		/* channel 14 is only for IEEE 802.11b */
1905 		if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1906 			return false;
1907 
1908 		*op_class = 82; /* channel 14 */
1909 		return true;
1910 	}
1911 
1912 	switch (chandef->width) {
1913 	case NL80211_CHAN_WIDTH_80:
1914 		vht_opclass = 128;
1915 		break;
1916 	case NL80211_CHAN_WIDTH_160:
1917 		vht_opclass = 129;
1918 		break;
1919 	case NL80211_CHAN_WIDTH_80P80:
1920 		vht_opclass = 130;
1921 		break;
1922 	case NL80211_CHAN_WIDTH_10:
1923 	case NL80211_CHAN_WIDTH_5:
1924 		return false; /* unsupported for now */
1925 	default:
1926 		vht_opclass = 0;
1927 		break;
1928 	}
1929 
1930 	/* 5 GHz, channels 36..48 */
1931 	if (freq >= 5180 && freq <= 5240) {
1932 		if (vht_opclass) {
1933 			*op_class = vht_opclass;
1934 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1935 			if (freq > chandef->chan->center_freq)
1936 				*op_class = 116;
1937 			else
1938 				*op_class = 117;
1939 		} else {
1940 			*op_class = 115;
1941 		}
1942 
1943 		return true;
1944 	}
1945 
1946 	/* 5 GHz, channels 52..64 */
1947 	if (freq >= 5260 && freq <= 5320) {
1948 		if (vht_opclass) {
1949 			*op_class = vht_opclass;
1950 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1951 			if (freq > chandef->chan->center_freq)
1952 				*op_class = 119;
1953 			else
1954 				*op_class = 120;
1955 		} else {
1956 			*op_class = 118;
1957 		}
1958 
1959 		return true;
1960 	}
1961 
1962 	/* 5 GHz, channels 100..144 */
1963 	if (freq >= 5500 && freq <= 5720) {
1964 		if (vht_opclass) {
1965 			*op_class = vht_opclass;
1966 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1967 			if (freq > chandef->chan->center_freq)
1968 				*op_class = 122;
1969 			else
1970 				*op_class = 123;
1971 		} else {
1972 			*op_class = 121;
1973 		}
1974 
1975 		return true;
1976 	}
1977 
1978 	/* 5 GHz, channels 149..169 */
1979 	if (freq >= 5745 && freq <= 5845) {
1980 		if (vht_opclass) {
1981 			*op_class = vht_opclass;
1982 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1983 			if (freq > chandef->chan->center_freq)
1984 				*op_class = 126;
1985 			else
1986 				*op_class = 127;
1987 		} else if (freq <= 5805) {
1988 			*op_class = 124;
1989 		} else {
1990 			*op_class = 125;
1991 		}
1992 
1993 		return true;
1994 	}
1995 
1996 	/* 56.16 GHz, channel 1..4 */
1997 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1998 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1999 			return false;
2000 
2001 		*op_class = 180;
2002 		return true;
2003 	}
2004 
2005 	/* not supported yet */
2006 	return false;
2007 }
2008 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
2009 
2010 static int cfg80211_wdev_bi(struct wireless_dev *wdev)
2011 {
2012 	switch (wdev->iftype) {
2013 	case NL80211_IFTYPE_AP:
2014 	case NL80211_IFTYPE_P2P_GO:
2015 		WARN_ON(wdev->valid_links);
2016 		return wdev->links[0].ap.beacon_interval;
2017 	case NL80211_IFTYPE_MESH_POINT:
2018 		return wdev->u.mesh.beacon_interval;
2019 	case NL80211_IFTYPE_ADHOC:
2020 		return wdev->u.ibss.beacon_interval;
2021 	default:
2022 		break;
2023 	}
2024 
2025 	return 0;
2026 }
2027 
2028 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
2029 				       u32 *beacon_int_gcd,
2030 				       bool *beacon_int_different)
2031 {
2032 	struct wireless_dev *wdev;
2033 
2034 	*beacon_int_gcd = 0;
2035 	*beacon_int_different = false;
2036 
2037 	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
2038 		int wdev_bi;
2039 
2040 		/* this feature isn't supported with MLO */
2041 		if (wdev->valid_links)
2042 			continue;
2043 
2044 		wdev_bi = cfg80211_wdev_bi(wdev);
2045 
2046 		if (!wdev_bi)
2047 			continue;
2048 
2049 		if (!*beacon_int_gcd) {
2050 			*beacon_int_gcd = wdev_bi;
2051 			continue;
2052 		}
2053 
2054 		if (wdev_bi == *beacon_int_gcd)
2055 			continue;
2056 
2057 		*beacon_int_different = true;
2058 		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
2059 	}
2060 
2061 	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
2062 		if (*beacon_int_gcd)
2063 			*beacon_int_different = true;
2064 		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
2065 	}
2066 }
2067 
2068 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2069 				 enum nl80211_iftype iftype, u32 beacon_int)
2070 {
2071 	/*
2072 	 * This is just a basic pre-condition check; if interface combinations
2073 	 * are possible the driver must already be checking those with a call
2074 	 * to cfg80211_check_combinations(), in which case we'll validate more
2075 	 * through the cfg80211_calculate_bi_data() call and code in
2076 	 * cfg80211_iter_combinations().
2077 	 */
2078 
2079 	if (beacon_int < 10 || beacon_int > 10000)
2080 		return -EINVAL;
2081 
2082 	return 0;
2083 }
2084 
2085 int cfg80211_iter_combinations(struct wiphy *wiphy,
2086 			       struct iface_combination_params *params,
2087 			       void (*iter)(const struct ieee80211_iface_combination *c,
2088 					    void *data),
2089 			       void *data)
2090 {
2091 	const struct ieee80211_regdomain *regdom;
2092 	enum nl80211_dfs_regions region = 0;
2093 	int i, j, iftype;
2094 	int num_interfaces = 0;
2095 	u32 used_iftypes = 0;
2096 	u32 beacon_int_gcd;
2097 	bool beacon_int_different;
2098 
2099 	/*
2100 	 * This is a bit strange, since the iteration used to rely only on
2101 	 * the data given by the driver, but here it now relies on context,
2102 	 * in form of the currently operating interfaces.
2103 	 * This is OK for all current users, and saves us from having to
2104 	 * push the GCD calculations into all the drivers.
2105 	 * In the future, this should probably rely more on data that's in
2106 	 * cfg80211 already - the only thing not would appear to be any new
2107 	 * interfaces (while being brought up) and channel/radar data.
2108 	 */
2109 	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2110 				   &beacon_int_gcd, &beacon_int_different);
2111 
2112 	if (params->radar_detect) {
2113 		rcu_read_lock();
2114 		regdom = rcu_dereference(cfg80211_regdomain);
2115 		if (regdom)
2116 			region = regdom->dfs_region;
2117 		rcu_read_unlock();
2118 	}
2119 
2120 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2121 		num_interfaces += params->iftype_num[iftype];
2122 		if (params->iftype_num[iftype] > 0 &&
2123 		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2124 			used_iftypes |= BIT(iftype);
2125 	}
2126 
2127 	for (i = 0; i < wiphy->n_iface_combinations; i++) {
2128 		const struct ieee80211_iface_combination *c;
2129 		struct ieee80211_iface_limit *limits;
2130 		u32 all_iftypes = 0;
2131 
2132 		c = &wiphy->iface_combinations[i];
2133 
2134 		if (num_interfaces > c->max_interfaces)
2135 			continue;
2136 		if (params->num_different_channels > c->num_different_channels)
2137 			continue;
2138 
2139 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
2140 				 GFP_KERNEL);
2141 		if (!limits)
2142 			return -ENOMEM;
2143 
2144 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2145 			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2146 				continue;
2147 			for (j = 0; j < c->n_limits; j++) {
2148 				all_iftypes |= limits[j].types;
2149 				if (!(limits[j].types & BIT(iftype)))
2150 					continue;
2151 				if (limits[j].max < params->iftype_num[iftype])
2152 					goto cont;
2153 				limits[j].max -= params->iftype_num[iftype];
2154 			}
2155 		}
2156 
2157 		if (params->radar_detect !=
2158 			(c->radar_detect_widths & params->radar_detect))
2159 			goto cont;
2160 
2161 		if (params->radar_detect && c->radar_detect_regions &&
2162 		    !(c->radar_detect_regions & BIT(region)))
2163 			goto cont;
2164 
2165 		/* Finally check that all iftypes that we're currently
2166 		 * using are actually part of this combination. If they
2167 		 * aren't then we can't use this combination and have
2168 		 * to continue to the next.
2169 		 */
2170 		if ((all_iftypes & used_iftypes) != used_iftypes)
2171 			goto cont;
2172 
2173 		if (beacon_int_gcd) {
2174 			if (c->beacon_int_min_gcd &&
2175 			    beacon_int_gcd < c->beacon_int_min_gcd)
2176 				goto cont;
2177 			if (!c->beacon_int_min_gcd && beacon_int_different)
2178 				goto cont;
2179 		}
2180 
2181 		/* This combination covered all interface types and
2182 		 * supported the requested numbers, so we're good.
2183 		 */
2184 
2185 		(*iter)(c, data);
2186  cont:
2187 		kfree(limits);
2188 	}
2189 
2190 	return 0;
2191 }
2192 EXPORT_SYMBOL(cfg80211_iter_combinations);
2193 
2194 static void
2195 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2196 			  void *data)
2197 {
2198 	int *num = data;
2199 	(*num)++;
2200 }
2201 
2202 int cfg80211_check_combinations(struct wiphy *wiphy,
2203 				struct iface_combination_params *params)
2204 {
2205 	int err, num = 0;
2206 
2207 	err = cfg80211_iter_combinations(wiphy, params,
2208 					 cfg80211_iter_sum_ifcombs, &num);
2209 	if (err)
2210 		return err;
2211 	if (num == 0)
2212 		return -EBUSY;
2213 
2214 	return 0;
2215 }
2216 EXPORT_SYMBOL(cfg80211_check_combinations);
2217 
2218 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2219 			   const u8 *rates, unsigned int n_rates,
2220 			   u32 *mask)
2221 {
2222 	int i, j;
2223 
2224 	if (!sband)
2225 		return -EINVAL;
2226 
2227 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2228 		return -EINVAL;
2229 
2230 	*mask = 0;
2231 
2232 	for (i = 0; i < n_rates; i++) {
2233 		int rate = (rates[i] & 0x7f) * 5;
2234 		bool found = false;
2235 
2236 		for (j = 0; j < sband->n_bitrates; j++) {
2237 			if (sband->bitrates[j].bitrate == rate) {
2238 				found = true;
2239 				*mask |= BIT(j);
2240 				break;
2241 			}
2242 		}
2243 		if (!found)
2244 			return -EINVAL;
2245 	}
2246 
2247 	/*
2248 	 * mask must have at least one bit set here since we
2249 	 * didn't accept a 0-length rates array nor allowed
2250 	 * entries in the array that didn't exist
2251 	 */
2252 
2253 	return 0;
2254 }
2255 
2256 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2257 {
2258 	enum nl80211_band band;
2259 	unsigned int n_channels = 0;
2260 
2261 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2262 		if (wiphy->bands[band])
2263 			n_channels += wiphy->bands[band]->n_channels;
2264 
2265 	return n_channels;
2266 }
2267 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2268 
2269 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2270 			 struct station_info *sinfo)
2271 {
2272 	struct cfg80211_registered_device *rdev;
2273 	struct wireless_dev *wdev;
2274 
2275 	wdev = dev->ieee80211_ptr;
2276 	if (!wdev)
2277 		return -EOPNOTSUPP;
2278 
2279 	rdev = wiphy_to_rdev(wdev->wiphy);
2280 	if (!rdev->ops->get_station)
2281 		return -EOPNOTSUPP;
2282 
2283 	memset(sinfo, 0, sizeof(*sinfo));
2284 
2285 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
2286 }
2287 EXPORT_SYMBOL(cfg80211_get_station);
2288 
2289 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2290 {
2291 	int i;
2292 
2293 	if (!f)
2294 		return;
2295 
2296 	kfree(f->serv_spec_info);
2297 	kfree(f->srf_bf);
2298 	kfree(f->srf_macs);
2299 	for (i = 0; i < f->num_rx_filters; i++)
2300 		kfree(f->rx_filters[i].filter);
2301 
2302 	for (i = 0; i < f->num_tx_filters; i++)
2303 		kfree(f->tx_filters[i].filter);
2304 
2305 	kfree(f->rx_filters);
2306 	kfree(f->tx_filters);
2307 	kfree(f);
2308 }
2309 EXPORT_SYMBOL(cfg80211_free_nan_func);
2310 
2311 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2312 				u32 center_freq_khz, u32 bw_khz)
2313 {
2314 	u32 start_freq_khz, end_freq_khz;
2315 
2316 	start_freq_khz = center_freq_khz - (bw_khz / 2);
2317 	end_freq_khz = center_freq_khz + (bw_khz / 2);
2318 
2319 	if (start_freq_khz >= freq_range->start_freq_khz &&
2320 	    end_freq_khz <= freq_range->end_freq_khz)
2321 		return true;
2322 
2323 	return false;
2324 }
2325 
2326 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2327 {
2328 	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2329 				sizeof(*(sinfo->pertid)),
2330 				gfp);
2331 	if (!sinfo->pertid)
2332 		return -ENOMEM;
2333 
2334 	return 0;
2335 }
2336 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2337 
2338 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2339 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2340 const unsigned char rfc1042_header[] __aligned(2) =
2341 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2342 EXPORT_SYMBOL(rfc1042_header);
2343 
2344 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2345 const unsigned char bridge_tunnel_header[] __aligned(2) =
2346 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2347 EXPORT_SYMBOL(bridge_tunnel_header);
2348 
2349 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2350 struct iapp_layer2_update {
2351 	u8 da[ETH_ALEN];	/* broadcast */
2352 	u8 sa[ETH_ALEN];	/* STA addr */
2353 	__be16 len;		/* 6 */
2354 	u8 dsap;		/* 0 */
2355 	u8 ssap;		/* 0 */
2356 	u8 control;
2357 	u8 xid_info[3];
2358 } __packed;
2359 
2360 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2361 {
2362 	struct iapp_layer2_update *msg;
2363 	struct sk_buff *skb;
2364 
2365 	/* Send Level 2 Update Frame to update forwarding tables in layer 2
2366 	 * bridge devices */
2367 
2368 	skb = dev_alloc_skb(sizeof(*msg));
2369 	if (!skb)
2370 		return;
2371 	msg = skb_put(skb, sizeof(*msg));
2372 
2373 	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2374 	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2375 
2376 	eth_broadcast_addr(msg->da);
2377 	ether_addr_copy(msg->sa, addr);
2378 	msg->len = htons(6);
2379 	msg->dsap = 0;
2380 	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
2381 	msg->control = 0xaf;	/* XID response lsb.1111F101.
2382 				 * F=0 (no poll command; unsolicited frame) */
2383 	msg->xid_info[0] = 0x81;	/* XID format identifier */
2384 	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
2385 	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
2386 
2387 	skb->dev = dev;
2388 	skb->protocol = eth_type_trans(skb, dev);
2389 	memset(skb->cb, 0, sizeof(skb->cb));
2390 	netif_rx(skb);
2391 }
2392 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2393 
2394 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2395 			      enum ieee80211_vht_chanwidth bw,
2396 			      int mcs, bool ext_nss_bw_capable,
2397 			      unsigned int max_vht_nss)
2398 {
2399 	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2400 	int ext_nss_bw;
2401 	int supp_width;
2402 	int i, mcs_encoding;
2403 
2404 	if (map == 0xffff)
2405 		return 0;
2406 
2407 	if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2408 		return 0;
2409 	if (mcs <= 7)
2410 		mcs_encoding = 0;
2411 	else if (mcs == 8)
2412 		mcs_encoding = 1;
2413 	else
2414 		mcs_encoding = 2;
2415 
2416 	if (!max_vht_nss) {
2417 		/* find max_vht_nss for the given MCS */
2418 		for (i = 7; i >= 0; i--) {
2419 			int supp = (map >> (2 * i)) & 3;
2420 
2421 			if (supp == 3)
2422 				continue;
2423 
2424 			if (supp >= mcs_encoding) {
2425 				max_vht_nss = i + 1;
2426 				break;
2427 			}
2428 		}
2429 	}
2430 
2431 	if (!(cap->supp_mcs.tx_mcs_map &
2432 			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2433 		return max_vht_nss;
2434 
2435 	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2436 				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2437 	supp_width = le32_get_bits(cap->vht_cap_info,
2438 				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2439 
2440 	/* if not capable, treat ext_nss_bw as 0 */
2441 	if (!ext_nss_bw_capable)
2442 		ext_nss_bw = 0;
2443 
2444 	/* This is invalid */
2445 	if (supp_width == 3)
2446 		return 0;
2447 
2448 	/* This is an invalid combination so pretend nothing is supported */
2449 	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2450 		return 0;
2451 
2452 	/*
2453 	 * Cover all the special cases according to IEEE 802.11-2016
2454 	 * Table 9-250. All other cases are either factor of 1 or not
2455 	 * valid/supported.
2456 	 */
2457 	switch (bw) {
2458 	case IEEE80211_VHT_CHANWIDTH_USE_HT:
2459 	case IEEE80211_VHT_CHANWIDTH_80MHZ:
2460 		if ((supp_width == 1 || supp_width == 2) &&
2461 		    ext_nss_bw == 3)
2462 			return 2 * max_vht_nss;
2463 		break;
2464 	case IEEE80211_VHT_CHANWIDTH_160MHZ:
2465 		if (supp_width == 0 &&
2466 		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2467 			return max_vht_nss / 2;
2468 		if (supp_width == 0 &&
2469 		    ext_nss_bw == 3)
2470 			return (3 * max_vht_nss) / 4;
2471 		if (supp_width == 1 &&
2472 		    ext_nss_bw == 3)
2473 			return 2 * max_vht_nss;
2474 		break;
2475 	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2476 		if (supp_width == 0 && ext_nss_bw == 1)
2477 			return 0; /* not possible */
2478 		if (supp_width == 0 &&
2479 		    ext_nss_bw == 2)
2480 			return max_vht_nss / 2;
2481 		if (supp_width == 0 &&
2482 		    ext_nss_bw == 3)
2483 			return (3 * max_vht_nss) / 4;
2484 		if (supp_width == 1 &&
2485 		    ext_nss_bw == 0)
2486 			return 0; /* not possible */
2487 		if (supp_width == 1 &&
2488 		    ext_nss_bw == 1)
2489 			return max_vht_nss / 2;
2490 		if (supp_width == 1 &&
2491 		    ext_nss_bw == 2)
2492 			return (3 * max_vht_nss) / 4;
2493 		break;
2494 	}
2495 
2496 	/* not covered or invalid combination received */
2497 	return max_vht_nss;
2498 }
2499 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2500 
2501 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2502 			     bool is_4addr, u8 check_swif)
2503 
2504 {
2505 	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2506 
2507 	switch (check_swif) {
2508 	case 0:
2509 		if (is_vlan && is_4addr)
2510 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2511 		return wiphy->interface_modes & BIT(iftype);
2512 	case 1:
2513 		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2514 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2515 		return wiphy->software_iftypes & BIT(iftype);
2516 	default:
2517 		break;
2518 	}
2519 
2520 	return false;
2521 }
2522 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2523 
2524 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2525 {
2526 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2527 
2528 	ASSERT_WDEV_LOCK(wdev);
2529 
2530 	switch (wdev->iftype) {
2531 	case NL80211_IFTYPE_AP:
2532 	case NL80211_IFTYPE_P2P_GO:
2533 		__cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2534 		break;
2535 	default:
2536 		/* per-link not relevant */
2537 		break;
2538 	}
2539 
2540 	wdev->valid_links &= ~BIT(link_id);
2541 
2542 	rdev_del_intf_link(rdev, wdev, link_id);
2543 
2544 	eth_zero_addr(wdev->links[link_id].addr);
2545 }
2546 
2547 void cfg80211_remove_links(struct wireless_dev *wdev)
2548 {
2549 	unsigned int link_id;
2550 
2551 	wdev_lock(wdev);
2552 	if (wdev->valid_links) {
2553 		for_each_valid_link(wdev, link_id)
2554 			cfg80211_remove_link(wdev, link_id);
2555 	}
2556 	wdev_unlock(wdev);
2557 }
2558 
2559 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2560 				 struct wireless_dev *wdev)
2561 {
2562 	cfg80211_remove_links(wdev);
2563 
2564 	return rdev_del_virtual_intf(rdev, wdev);
2565 }
2566 
2567 const struct wiphy_iftype_ext_capab *
2568 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2569 {
2570 	int i;
2571 
2572 	for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2573 		if (wiphy->iftype_ext_capab[i].iftype == type)
2574 			return &wiphy->iftype_ext_capab[i];
2575 	}
2576 
2577 	return NULL;
2578 }
2579 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);
2580