1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Wireless utility functions 4 * 5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018-2022 Intel Corporation 9 */ 10 #include <linux/export.h> 11 #include <linux/bitops.h> 12 #include <linux/etherdevice.h> 13 #include <linux/slab.h> 14 #include <linux/ieee80211.h> 15 #include <net/cfg80211.h> 16 #include <net/ip.h> 17 #include <net/dsfield.h> 18 #include <linux/if_vlan.h> 19 #include <linux/mpls.h> 20 #include <linux/gcd.h> 21 #include <linux/bitfield.h> 22 #include <linux/nospec.h> 23 #include "core.h" 24 #include "rdev-ops.h" 25 26 27 const struct ieee80211_rate * 28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 29 u32 basic_rates, int bitrate) 30 { 31 struct ieee80211_rate *result = &sband->bitrates[0]; 32 int i; 33 34 for (i = 0; i < sband->n_bitrates; i++) { 35 if (!(basic_rates & BIT(i))) 36 continue; 37 if (sband->bitrates[i].bitrate > bitrate) 38 continue; 39 result = &sband->bitrates[i]; 40 } 41 42 return result; 43 } 44 EXPORT_SYMBOL(ieee80211_get_response_rate); 45 46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 47 enum nl80211_bss_scan_width scan_width) 48 { 49 struct ieee80211_rate *bitrates; 50 u32 mandatory_rates = 0; 51 enum ieee80211_rate_flags mandatory_flag; 52 int i; 53 54 if (WARN_ON(!sband)) 55 return 1; 56 57 if (sband->band == NL80211_BAND_2GHZ) { 58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 59 scan_width == NL80211_BSS_CHAN_WIDTH_10) 60 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 61 else 62 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 63 } else { 64 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 65 } 66 67 bitrates = sband->bitrates; 68 for (i = 0; i < sband->n_bitrates; i++) 69 if (bitrates[i].flags & mandatory_flag) 70 mandatory_rates |= BIT(i); 71 return mandatory_rates; 72 } 73 EXPORT_SYMBOL(ieee80211_mandatory_rates); 74 75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band) 76 { 77 /* see 802.11 17.3.8.3.2 and Annex J 78 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 79 if (chan <= 0) 80 return 0; /* not supported */ 81 switch (band) { 82 case NL80211_BAND_2GHZ: 83 case NL80211_BAND_LC: 84 if (chan == 14) 85 return MHZ_TO_KHZ(2484); 86 else if (chan < 14) 87 return MHZ_TO_KHZ(2407 + chan * 5); 88 break; 89 case NL80211_BAND_5GHZ: 90 if (chan >= 182 && chan <= 196) 91 return MHZ_TO_KHZ(4000 + chan * 5); 92 else 93 return MHZ_TO_KHZ(5000 + chan * 5); 94 break; 95 case NL80211_BAND_6GHZ: 96 /* see 802.11ax D6.1 27.3.23.2 */ 97 if (chan == 2) 98 return MHZ_TO_KHZ(5935); 99 if (chan <= 233) 100 return MHZ_TO_KHZ(5950 + chan * 5); 101 break; 102 case NL80211_BAND_60GHZ: 103 if (chan < 7) 104 return MHZ_TO_KHZ(56160 + chan * 2160); 105 break; 106 case NL80211_BAND_S1GHZ: 107 return 902000 + chan * 500; 108 default: 109 ; 110 } 111 return 0; /* not supported */ 112 } 113 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz); 114 115 enum nl80211_chan_width 116 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan) 117 { 118 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ)) 119 return NL80211_CHAN_WIDTH_20_NOHT; 120 121 /*S1G defines a single allowed channel width per channel. 122 * Extract that width here. 123 */ 124 if (chan->flags & IEEE80211_CHAN_1MHZ) 125 return NL80211_CHAN_WIDTH_1; 126 else if (chan->flags & IEEE80211_CHAN_2MHZ) 127 return NL80211_CHAN_WIDTH_2; 128 else if (chan->flags & IEEE80211_CHAN_4MHZ) 129 return NL80211_CHAN_WIDTH_4; 130 else if (chan->flags & IEEE80211_CHAN_8MHZ) 131 return NL80211_CHAN_WIDTH_8; 132 else if (chan->flags & IEEE80211_CHAN_16MHZ) 133 return NL80211_CHAN_WIDTH_16; 134 135 pr_err("unknown channel width for channel at %dKHz?\n", 136 ieee80211_channel_to_khz(chan)); 137 138 return NL80211_CHAN_WIDTH_1; 139 } 140 EXPORT_SYMBOL(ieee80211_s1g_channel_width); 141 142 int ieee80211_freq_khz_to_channel(u32 freq) 143 { 144 /* TODO: just handle MHz for now */ 145 freq = KHZ_TO_MHZ(freq); 146 147 /* see 802.11 17.3.8.3.2 and Annex J */ 148 if (freq == 2484) 149 return 14; 150 else if (freq < 2484) 151 return (freq - 2407) / 5; 152 else if (freq >= 4910 && freq <= 4980) 153 return (freq - 4000) / 5; 154 else if (freq < 5925) 155 return (freq - 5000) / 5; 156 else if (freq == 5935) 157 return 2; 158 else if (freq <= 45000) /* DMG band lower limit */ 159 /* see 802.11ax D6.1 27.3.22.2 */ 160 return (freq - 5950) / 5; 161 else if (freq >= 58320 && freq <= 70200) 162 return (freq - 56160) / 2160; 163 else 164 return 0; 165 } 166 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel); 167 168 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy, 169 u32 freq) 170 { 171 enum nl80211_band band; 172 struct ieee80211_supported_band *sband; 173 int i; 174 175 for (band = 0; band < NUM_NL80211_BANDS; band++) { 176 sband = wiphy->bands[band]; 177 178 if (!sband) 179 continue; 180 181 for (i = 0; i < sband->n_channels; i++) { 182 struct ieee80211_channel *chan = &sband->channels[i]; 183 184 if (ieee80211_channel_to_khz(chan) == freq) 185 return chan; 186 } 187 } 188 189 return NULL; 190 } 191 EXPORT_SYMBOL(ieee80211_get_channel_khz); 192 193 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) 194 { 195 int i, want; 196 197 switch (sband->band) { 198 case NL80211_BAND_5GHZ: 199 case NL80211_BAND_6GHZ: 200 want = 3; 201 for (i = 0; i < sband->n_bitrates; i++) { 202 if (sband->bitrates[i].bitrate == 60 || 203 sband->bitrates[i].bitrate == 120 || 204 sband->bitrates[i].bitrate == 240) { 205 sband->bitrates[i].flags |= 206 IEEE80211_RATE_MANDATORY_A; 207 want--; 208 } 209 } 210 WARN_ON(want); 211 break; 212 case NL80211_BAND_2GHZ: 213 case NL80211_BAND_LC: 214 want = 7; 215 for (i = 0; i < sband->n_bitrates; i++) { 216 switch (sband->bitrates[i].bitrate) { 217 case 10: 218 case 20: 219 case 55: 220 case 110: 221 sband->bitrates[i].flags |= 222 IEEE80211_RATE_MANDATORY_B | 223 IEEE80211_RATE_MANDATORY_G; 224 want--; 225 break; 226 case 60: 227 case 120: 228 case 240: 229 sband->bitrates[i].flags |= 230 IEEE80211_RATE_MANDATORY_G; 231 want--; 232 fallthrough; 233 default: 234 sband->bitrates[i].flags |= 235 IEEE80211_RATE_ERP_G; 236 break; 237 } 238 } 239 WARN_ON(want != 0 && want != 3); 240 break; 241 case NL80211_BAND_60GHZ: 242 /* check for mandatory HT MCS 1..4 */ 243 WARN_ON(!sband->ht_cap.ht_supported); 244 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 245 break; 246 case NL80211_BAND_S1GHZ: 247 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least 248 * mandatory is ok. 249 */ 250 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3); 251 break; 252 case NUM_NL80211_BANDS: 253 default: 254 WARN_ON(1); 255 break; 256 } 257 } 258 259 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 260 { 261 enum nl80211_band band; 262 263 for (band = 0; band < NUM_NL80211_BANDS; band++) 264 if (wiphy->bands[band]) 265 set_mandatory_flags_band(wiphy->bands[band]); 266 } 267 268 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 269 { 270 int i; 271 for (i = 0; i < wiphy->n_cipher_suites; i++) 272 if (cipher == wiphy->cipher_suites[i]) 273 return true; 274 return false; 275 } 276 277 static bool 278 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev) 279 { 280 struct wiphy *wiphy = &rdev->wiphy; 281 int i; 282 283 for (i = 0; i < wiphy->n_cipher_suites; i++) { 284 switch (wiphy->cipher_suites[i]) { 285 case WLAN_CIPHER_SUITE_AES_CMAC: 286 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 287 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 288 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 289 return true; 290 } 291 } 292 293 return false; 294 } 295 296 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev, 297 int key_idx, bool pairwise) 298 { 299 int max_key_idx; 300 301 if (pairwise) 302 max_key_idx = 3; 303 else if (wiphy_ext_feature_isset(&rdev->wiphy, 304 NL80211_EXT_FEATURE_BEACON_PROTECTION) || 305 wiphy_ext_feature_isset(&rdev->wiphy, 306 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT)) 307 max_key_idx = 7; 308 else if (cfg80211_igtk_cipher_supported(rdev)) 309 max_key_idx = 5; 310 else 311 max_key_idx = 3; 312 313 if (key_idx < 0 || key_idx > max_key_idx) 314 return false; 315 316 return true; 317 } 318 319 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 320 struct key_params *params, int key_idx, 321 bool pairwise, const u8 *mac_addr) 322 { 323 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise)) 324 return -EINVAL; 325 326 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 327 return -EINVAL; 328 329 if (pairwise && !mac_addr) 330 return -EINVAL; 331 332 switch (params->cipher) { 333 case WLAN_CIPHER_SUITE_TKIP: 334 /* Extended Key ID can only be used with CCMP/GCMP ciphers */ 335 if ((pairwise && key_idx) || 336 params->mode != NL80211_KEY_RX_TX) 337 return -EINVAL; 338 break; 339 case WLAN_CIPHER_SUITE_CCMP: 340 case WLAN_CIPHER_SUITE_CCMP_256: 341 case WLAN_CIPHER_SUITE_GCMP: 342 case WLAN_CIPHER_SUITE_GCMP_256: 343 /* IEEE802.11-2016 allows only 0 and - when supporting 344 * Extended Key ID - 1 as index for pairwise keys. 345 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when 346 * the driver supports Extended Key ID. 347 * @NL80211_KEY_SET_TX can't be set when installing and 348 * validating a key. 349 */ 350 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) || 351 params->mode == NL80211_KEY_SET_TX) 352 return -EINVAL; 353 if (wiphy_ext_feature_isset(&rdev->wiphy, 354 NL80211_EXT_FEATURE_EXT_KEY_ID)) { 355 if (pairwise && (key_idx < 0 || key_idx > 1)) 356 return -EINVAL; 357 } else if (pairwise && key_idx) { 358 return -EINVAL; 359 } 360 break; 361 case WLAN_CIPHER_SUITE_AES_CMAC: 362 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 363 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 364 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 365 /* Disallow BIP (group-only) cipher as pairwise cipher */ 366 if (pairwise) 367 return -EINVAL; 368 if (key_idx < 4) 369 return -EINVAL; 370 break; 371 case WLAN_CIPHER_SUITE_WEP40: 372 case WLAN_CIPHER_SUITE_WEP104: 373 if (key_idx > 3) 374 return -EINVAL; 375 break; 376 default: 377 break; 378 } 379 380 switch (params->cipher) { 381 case WLAN_CIPHER_SUITE_WEP40: 382 if (params->key_len != WLAN_KEY_LEN_WEP40) 383 return -EINVAL; 384 break; 385 case WLAN_CIPHER_SUITE_TKIP: 386 if (params->key_len != WLAN_KEY_LEN_TKIP) 387 return -EINVAL; 388 break; 389 case WLAN_CIPHER_SUITE_CCMP: 390 if (params->key_len != WLAN_KEY_LEN_CCMP) 391 return -EINVAL; 392 break; 393 case WLAN_CIPHER_SUITE_CCMP_256: 394 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 395 return -EINVAL; 396 break; 397 case WLAN_CIPHER_SUITE_GCMP: 398 if (params->key_len != WLAN_KEY_LEN_GCMP) 399 return -EINVAL; 400 break; 401 case WLAN_CIPHER_SUITE_GCMP_256: 402 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 403 return -EINVAL; 404 break; 405 case WLAN_CIPHER_SUITE_WEP104: 406 if (params->key_len != WLAN_KEY_LEN_WEP104) 407 return -EINVAL; 408 break; 409 case WLAN_CIPHER_SUITE_AES_CMAC: 410 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 411 return -EINVAL; 412 break; 413 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 414 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 415 return -EINVAL; 416 break; 417 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 418 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 419 return -EINVAL; 420 break; 421 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 422 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 423 return -EINVAL; 424 break; 425 default: 426 /* 427 * We don't know anything about this algorithm, 428 * allow using it -- but the driver must check 429 * all parameters! We still check below whether 430 * or not the driver supports this algorithm, 431 * of course. 432 */ 433 break; 434 } 435 436 if (params->seq) { 437 switch (params->cipher) { 438 case WLAN_CIPHER_SUITE_WEP40: 439 case WLAN_CIPHER_SUITE_WEP104: 440 /* These ciphers do not use key sequence */ 441 return -EINVAL; 442 case WLAN_CIPHER_SUITE_TKIP: 443 case WLAN_CIPHER_SUITE_CCMP: 444 case WLAN_CIPHER_SUITE_CCMP_256: 445 case WLAN_CIPHER_SUITE_GCMP: 446 case WLAN_CIPHER_SUITE_GCMP_256: 447 case WLAN_CIPHER_SUITE_AES_CMAC: 448 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 449 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 450 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 451 if (params->seq_len != 6) 452 return -EINVAL; 453 break; 454 } 455 } 456 457 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 458 return -EINVAL; 459 460 return 0; 461 } 462 463 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 464 { 465 unsigned int hdrlen = 24; 466 467 if (ieee80211_is_ext(fc)) { 468 hdrlen = 4; 469 goto out; 470 } 471 472 if (ieee80211_is_data(fc)) { 473 if (ieee80211_has_a4(fc)) 474 hdrlen = 30; 475 if (ieee80211_is_data_qos(fc)) { 476 hdrlen += IEEE80211_QOS_CTL_LEN; 477 if (ieee80211_has_order(fc)) 478 hdrlen += IEEE80211_HT_CTL_LEN; 479 } 480 goto out; 481 } 482 483 if (ieee80211_is_mgmt(fc)) { 484 if (ieee80211_has_order(fc)) 485 hdrlen += IEEE80211_HT_CTL_LEN; 486 goto out; 487 } 488 489 if (ieee80211_is_ctl(fc)) { 490 /* 491 * ACK and CTS are 10 bytes, all others 16. To see how 492 * to get this condition consider 493 * subtype mask: 0b0000000011110000 (0x00F0) 494 * ACK subtype: 0b0000000011010000 (0x00D0) 495 * CTS subtype: 0b0000000011000000 (0x00C0) 496 * bits that matter: ^^^ (0x00E0) 497 * value of those: 0b0000000011000000 (0x00C0) 498 */ 499 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 500 hdrlen = 10; 501 else 502 hdrlen = 16; 503 } 504 out: 505 return hdrlen; 506 } 507 EXPORT_SYMBOL(ieee80211_hdrlen); 508 509 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 510 { 511 const struct ieee80211_hdr *hdr = 512 (const struct ieee80211_hdr *)skb->data; 513 unsigned int hdrlen; 514 515 if (unlikely(skb->len < 10)) 516 return 0; 517 hdrlen = ieee80211_hdrlen(hdr->frame_control); 518 if (unlikely(hdrlen > skb->len)) 519 return 0; 520 return hdrlen; 521 } 522 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 523 524 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 525 { 526 int ae = flags & MESH_FLAGS_AE; 527 /* 802.11-2012, 8.2.4.7.3 */ 528 switch (ae) { 529 default: 530 case 0: 531 return 6; 532 case MESH_FLAGS_AE_A4: 533 return 12; 534 case MESH_FLAGS_AE_A5_A6: 535 return 18; 536 } 537 } 538 539 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 540 { 541 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 542 } 543 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 544 545 bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto) 546 { 547 const __be16 *hdr_proto = hdr + ETH_ALEN; 548 549 if (!(ether_addr_equal(hdr, rfc1042_header) && 550 *hdr_proto != htons(ETH_P_AARP) && 551 *hdr_proto != htons(ETH_P_IPX)) && 552 !ether_addr_equal(hdr, bridge_tunnel_header)) 553 return false; 554 555 *proto = *hdr_proto; 556 557 return true; 558 } 559 EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto); 560 561 int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb) 562 { 563 const void *mesh_addr; 564 struct { 565 struct ethhdr eth; 566 u8 flags; 567 } payload; 568 int hdrlen; 569 int ret; 570 571 ret = skb_copy_bits(skb, 0, &payload, sizeof(payload)); 572 if (ret) 573 return ret; 574 575 hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags); 576 577 if (likely(pskb_may_pull(skb, hdrlen + 8) && 578 ieee80211_get_8023_tunnel_proto(skb->data + hdrlen, 579 &payload.eth.h_proto))) 580 hdrlen += ETH_ALEN + 2; 581 else if (!pskb_may_pull(skb, hdrlen)) 582 return -EINVAL; 583 584 mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN; 585 switch (payload.flags & MESH_FLAGS_AE) { 586 case MESH_FLAGS_AE_A4: 587 memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN); 588 break; 589 case MESH_FLAGS_AE_A5_A6: 590 memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN); 591 break; 592 default: 593 break; 594 } 595 596 pskb_pull(skb, hdrlen - sizeof(payload.eth)); 597 memcpy(skb->data, &payload.eth, sizeof(payload.eth)); 598 599 return 0; 600 } 601 EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr); 602 603 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 604 const u8 *addr, enum nl80211_iftype iftype, 605 u8 data_offset, bool is_amsdu) 606 { 607 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 608 struct { 609 u8 hdr[ETH_ALEN] __aligned(2); 610 __be16 proto; 611 } payload; 612 struct ethhdr tmp; 613 u16 hdrlen; 614 615 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 616 return -1; 617 618 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; 619 if (skb->len < hdrlen) 620 return -1; 621 622 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 623 * header 624 * IEEE 802.11 address fields: 625 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 626 * 0 0 DA SA BSSID n/a 627 * 0 1 DA BSSID SA n/a 628 * 1 0 BSSID SA DA n/a 629 * 1 1 RA TA DA SA 630 */ 631 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 632 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 633 634 switch (hdr->frame_control & 635 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 636 case cpu_to_le16(IEEE80211_FCTL_TODS): 637 if (unlikely(iftype != NL80211_IFTYPE_AP && 638 iftype != NL80211_IFTYPE_AP_VLAN && 639 iftype != NL80211_IFTYPE_P2P_GO)) 640 return -1; 641 break; 642 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 643 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT && 644 iftype != NL80211_IFTYPE_AP_VLAN && 645 iftype != NL80211_IFTYPE_STATION)) 646 return -1; 647 break; 648 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 649 if ((iftype != NL80211_IFTYPE_STATION && 650 iftype != NL80211_IFTYPE_P2P_CLIENT && 651 iftype != NL80211_IFTYPE_MESH_POINT) || 652 (is_multicast_ether_addr(tmp.h_dest) && 653 ether_addr_equal(tmp.h_source, addr))) 654 return -1; 655 break; 656 case cpu_to_le16(0): 657 if (iftype != NL80211_IFTYPE_ADHOC && 658 iftype != NL80211_IFTYPE_STATION && 659 iftype != NL80211_IFTYPE_OCB) 660 return -1; 661 break; 662 } 663 664 if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT && 665 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 && 666 ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) { 667 /* remove RFC1042 or Bridge-Tunnel encapsulation */ 668 hdrlen += ETH_ALEN + 2; 669 skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2); 670 } else { 671 tmp.h_proto = htons(skb->len - hdrlen); 672 } 673 674 pskb_pull(skb, hdrlen); 675 676 if (!ehdr) 677 ehdr = skb_push(skb, sizeof(struct ethhdr)); 678 memcpy(ehdr, &tmp, sizeof(tmp)); 679 680 return 0; 681 } 682 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 683 684 static void 685 __frame_add_frag(struct sk_buff *skb, struct page *page, 686 void *ptr, int len, int size) 687 { 688 struct skb_shared_info *sh = skb_shinfo(skb); 689 int page_offset; 690 691 get_page(page); 692 page_offset = ptr - page_address(page); 693 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 694 } 695 696 static void 697 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 698 int offset, int len) 699 { 700 struct skb_shared_info *sh = skb_shinfo(skb); 701 const skb_frag_t *frag = &sh->frags[0]; 702 struct page *frag_page; 703 void *frag_ptr; 704 int frag_len, frag_size; 705 int head_size = skb->len - skb->data_len; 706 int cur_len; 707 708 frag_page = virt_to_head_page(skb->head); 709 frag_ptr = skb->data; 710 frag_size = head_size; 711 712 while (offset >= frag_size) { 713 offset -= frag_size; 714 frag_page = skb_frag_page(frag); 715 frag_ptr = skb_frag_address(frag); 716 frag_size = skb_frag_size(frag); 717 frag++; 718 } 719 720 frag_ptr += offset; 721 frag_len = frag_size - offset; 722 723 cur_len = min(len, frag_len); 724 725 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 726 len -= cur_len; 727 728 while (len > 0) { 729 frag_len = skb_frag_size(frag); 730 cur_len = min(len, frag_len); 731 __frame_add_frag(frame, skb_frag_page(frag), 732 skb_frag_address(frag), cur_len, frag_len); 733 len -= cur_len; 734 frag++; 735 } 736 } 737 738 static struct sk_buff * 739 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 740 int offset, int len, bool reuse_frag, 741 int min_len) 742 { 743 struct sk_buff *frame; 744 int cur_len = len; 745 746 if (skb->len - offset < len) 747 return NULL; 748 749 /* 750 * When reusing framents, copy some data to the head to simplify 751 * ethernet header handling and speed up protocol header processing 752 * in the stack later. 753 */ 754 if (reuse_frag) 755 cur_len = min_t(int, len, min_len); 756 757 /* 758 * Allocate and reserve two bytes more for payload 759 * alignment since sizeof(struct ethhdr) is 14. 760 */ 761 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 762 if (!frame) 763 return NULL; 764 765 frame->priority = skb->priority; 766 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 767 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 768 769 len -= cur_len; 770 if (!len) 771 return frame; 772 773 offset += cur_len; 774 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 775 776 return frame; 777 } 778 779 bool ieee80211_is_valid_amsdu(struct sk_buff *skb, bool mesh_hdr) 780 { 781 int offset = 0, remaining, subframe_len, padding; 782 783 for (offset = 0; offset < skb->len; offset += subframe_len + padding) { 784 struct { 785 __be16 len; 786 u8 mesh_flags; 787 } hdr; 788 u16 len; 789 790 if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0) 791 return false; 792 793 if (mesh_hdr) 794 len = le16_to_cpu(*(__le16 *)&hdr.len) + 795 __ieee80211_get_mesh_hdrlen(hdr.mesh_flags); 796 else 797 len = ntohs(hdr.len); 798 799 subframe_len = sizeof(struct ethhdr) + len; 800 padding = (4 - subframe_len) & 0x3; 801 remaining = skb->len - offset; 802 803 if (subframe_len > remaining) 804 return false; 805 } 806 807 return true; 808 } 809 EXPORT_SYMBOL(ieee80211_is_valid_amsdu); 810 811 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 812 const u8 *addr, enum nl80211_iftype iftype, 813 const unsigned int extra_headroom, 814 const u8 *check_da, const u8 *check_sa, 815 bool mesh_control) 816 { 817 unsigned int hlen = ALIGN(extra_headroom, 4); 818 struct sk_buff *frame = NULL; 819 int offset = 0, remaining; 820 struct { 821 struct ethhdr eth; 822 uint8_t flags; 823 } hdr; 824 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 825 bool reuse_skb = false; 826 bool last = false; 827 int copy_len = sizeof(hdr.eth); 828 829 if (iftype == NL80211_IFTYPE_MESH_POINT) 830 copy_len = sizeof(hdr); 831 832 while (!last) { 833 unsigned int subframe_len; 834 int len, mesh_len = 0; 835 u8 padding; 836 837 skb_copy_bits(skb, offset, &hdr, copy_len); 838 if (iftype == NL80211_IFTYPE_MESH_POINT) 839 mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags); 840 if (mesh_control) 841 len = le16_to_cpu(*(__le16 *)&hdr.eth.h_proto) + mesh_len; 842 else 843 len = ntohs(hdr.eth.h_proto); 844 845 subframe_len = sizeof(struct ethhdr) + len; 846 padding = (4 - subframe_len) & 0x3; 847 848 /* the last MSDU has no padding */ 849 remaining = skb->len - offset; 850 if (subframe_len > remaining) 851 goto purge; 852 /* mitigate A-MSDU aggregation injection attacks */ 853 if (ether_addr_equal(hdr.eth.h_dest, rfc1042_header)) 854 goto purge; 855 856 offset += sizeof(struct ethhdr); 857 last = remaining <= subframe_len + padding; 858 859 /* FIXME: should we really accept multicast DA? */ 860 if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) && 861 !ether_addr_equal(check_da, hdr.eth.h_dest)) || 862 (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) { 863 offset += len + padding; 864 continue; 865 } 866 867 /* reuse skb for the last subframe */ 868 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 869 skb_pull(skb, offset); 870 frame = skb; 871 reuse_skb = true; 872 } else { 873 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 874 reuse_frag, 32 + mesh_len); 875 if (!frame) 876 goto purge; 877 878 offset += len + padding; 879 } 880 881 skb_reset_network_header(frame); 882 frame->dev = skb->dev; 883 frame->priority = skb->priority; 884 885 if (likely(iftype != NL80211_IFTYPE_MESH_POINT && 886 ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto))) 887 skb_pull(frame, ETH_ALEN + 2); 888 889 memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth)); 890 __skb_queue_tail(list, frame); 891 } 892 893 if (!reuse_skb) 894 dev_kfree_skb(skb); 895 896 return; 897 898 purge: 899 __skb_queue_purge(list); 900 dev_kfree_skb(skb); 901 } 902 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 903 904 /* Given a data frame determine the 802.1p/1d tag to use. */ 905 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 906 struct cfg80211_qos_map *qos_map) 907 { 908 unsigned int dscp; 909 unsigned char vlan_priority; 910 unsigned int ret; 911 912 /* skb->priority values from 256->263 are magic values to 913 * directly indicate a specific 802.1d priority. This is used 914 * to allow 802.1d priority to be passed directly in from VLAN 915 * tags, etc. 916 */ 917 if (skb->priority >= 256 && skb->priority <= 263) { 918 ret = skb->priority - 256; 919 goto out; 920 } 921 922 if (skb_vlan_tag_present(skb)) { 923 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 924 >> VLAN_PRIO_SHIFT; 925 if (vlan_priority > 0) { 926 ret = vlan_priority; 927 goto out; 928 } 929 } 930 931 switch (skb->protocol) { 932 case htons(ETH_P_IP): 933 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 934 break; 935 case htons(ETH_P_IPV6): 936 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 937 break; 938 case htons(ETH_P_MPLS_UC): 939 case htons(ETH_P_MPLS_MC): { 940 struct mpls_label mpls_tmp, *mpls; 941 942 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 943 sizeof(*mpls), &mpls_tmp); 944 if (!mpls) 945 return 0; 946 947 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 948 >> MPLS_LS_TC_SHIFT; 949 goto out; 950 } 951 case htons(ETH_P_80221): 952 /* 802.21 is always network control traffic */ 953 return 7; 954 default: 955 return 0; 956 } 957 958 if (qos_map) { 959 unsigned int i, tmp_dscp = dscp >> 2; 960 961 for (i = 0; i < qos_map->num_des; i++) { 962 if (tmp_dscp == qos_map->dscp_exception[i].dscp) { 963 ret = qos_map->dscp_exception[i].up; 964 goto out; 965 } 966 } 967 968 for (i = 0; i < 8; i++) { 969 if (tmp_dscp >= qos_map->up[i].low && 970 tmp_dscp <= qos_map->up[i].high) { 971 ret = i; 972 goto out; 973 } 974 } 975 } 976 977 ret = dscp >> 5; 978 out: 979 return array_index_nospec(ret, IEEE80211_NUM_TIDS); 980 } 981 EXPORT_SYMBOL(cfg80211_classify8021d); 982 983 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id) 984 { 985 const struct cfg80211_bss_ies *ies; 986 987 ies = rcu_dereference(bss->ies); 988 if (!ies) 989 return NULL; 990 991 return cfg80211_find_elem(id, ies->data, ies->len); 992 } 993 EXPORT_SYMBOL(ieee80211_bss_get_elem); 994 995 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 996 { 997 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 998 struct net_device *dev = wdev->netdev; 999 int i; 1000 1001 if (!wdev->connect_keys) 1002 return; 1003 1004 for (i = 0; i < 4; i++) { 1005 if (!wdev->connect_keys->params[i].cipher) 1006 continue; 1007 if (rdev_add_key(rdev, dev, -1, i, false, NULL, 1008 &wdev->connect_keys->params[i])) { 1009 netdev_err(dev, "failed to set key %d\n", i); 1010 continue; 1011 } 1012 if (wdev->connect_keys->def == i && 1013 rdev_set_default_key(rdev, dev, -1, i, true, true)) { 1014 netdev_err(dev, "failed to set defkey %d\n", i); 1015 continue; 1016 } 1017 } 1018 1019 kfree_sensitive(wdev->connect_keys); 1020 wdev->connect_keys = NULL; 1021 } 1022 1023 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 1024 { 1025 struct cfg80211_event *ev; 1026 unsigned long flags; 1027 1028 spin_lock_irqsave(&wdev->event_lock, flags); 1029 while (!list_empty(&wdev->event_list)) { 1030 ev = list_first_entry(&wdev->event_list, 1031 struct cfg80211_event, list); 1032 list_del(&ev->list); 1033 spin_unlock_irqrestore(&wdev->event_lock, flags); 1034 1035 wdev_lock(wdev); 1036 switch (ev->type) { 1037 case EVENT_CONNECT_RESULT: 1038 __cfg80211_connect_result( 1039 wdev->netdev, 1040 &ev->cr, 1041 ev->cr.status == WLAN_STATUS_SUCCESS); 1042 break; 1043 case EVENT_ROAMED: 1044 __cfg80211_roamed(wdev, &ev->rm); 1045 break; 1046 case EVENT_DISCONNECTED: 1047 __cfg80211_disconnected(wdev->netdev, 1048 ev->dc.ie, ev->dc.ie_len, 1049 ev->dc.reason, 1050 !ev->dc.locally_generated); 1051 break; 1052 case EVENT_IBSS_JOINED: 1053 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 1054 ev->ij.channel); 1055 break; 1056 case EVENT_STOPPED: 1057 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 1058 break; 1059 case EVENT_PORT_AUTHORIZED: 1060 __cfg80211_port_authorized(wdev, ev->pa.bssid, 1061 ev->pa.td_bitmap, 1062 ev->pa.td_bitmap_len); 1063 break; 1064 } 1065 wdev_unlock(wdev); 1066 1067 kfree(ev); 1068 1069 spin_lock_irqsave(&wdev->event_lock, flags); 1070 } 1071 spin_unlock_irqrestore(&wdev->event_lock, flags); 1072 } 1073 1074 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 1075 { 1076 struct wireless_dev *wdev; 1077 1078 lockdep_assert_held(&rdev->wiphy.mtx); 1079 1080 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 1081 cfg80211_process_wdev_events(wdev); 1082 } 1083 1084 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 1085 struct net_device *dev, enum nl80211_iftype ntype, 1086 struct vif_params *params) 1087 { 1088 int err; 1089 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 1090 1091 lockdep_assert_held(&rdev->wiphy.mtx); 1092 1093 /* don't support changing VLANs, you just re-create them */ 1094 if (otype == NL80211_IFTYPE_AP_VLAN) 1095 return -EOPNOTSUPP; 1096 1097 /* cannot change into P2P device or NAN */ 1098 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 1099 ntype == NL80211_IFTYPE_NAN) 1100 return -EOPNOTSUPP; 1101 1102 if (!rdev->ops->change_virtual_intf || 1103 !(rdev->wiphy.interface_modes & (1 << ntype))) 1104 return -EOPNOTSUPP; 1105 1106 if (ntype != otype) { 1107 /* if it's part of a bridge, reject changing type to station/ibss */ 1108 if (netif_is_bridge_port(dev) && 1109 (ntype == NL80211_IFTYPE_ADHOC || 1110 ntype == NL80211_IFTYPE_STATION || 1111 ntype == NL80211_IFTYPE_P2P_CLIENT)) 1112 return -EBUSY; 1113 1114 dev->ieee80211_ptr->use_4addr = false; 1115 wdev_lock(dev->ieee80211_ptr); 1116 rdev_set_qos_map(rdev, dev, NULL); 1117 wdev_unlock(dev->ieee80211_ptr); 1118 1119 switch (otype) { 1120 case NL80211_IFTYPE_AP: 1121 case NL80211_IFTYPE_P2P_GO: 1122 cfg80211_stop_ap(rdev, dev, -1, true); 1123 break; 1124 case NL80211_IFTYPE_ADHOC: 1125 cfg80211_leave_ibss(rdev, dev, false); 1126 break; 1127 case NL80211_IFTYPE_STATION: 1128 case NL80211_IFTYPE_P2P_CLIENT: 1129 wdev_lock(dev->ieee80211_ptr); 1130 cfg80211_disconnect(rdev, dev, 1131 WLAN_REASON_DEAUTH_LEAVING, true); 1132 wdev_unlock(dev->ieee80211_ptr); 1133 break; 1134 case NL80211_IFTYPE_MESH_POINT: 1135 /* mesh should be handled? */ 1136 break; 1137 case NL80211_IFTYPE_OCB: 1138 cfg80211_leave_ocb(rdev, dev); 1139 break; 1140 default: 1141 break; 1142 } 1143 1144 cfg80211_process_rdev_events(rdev); 1145 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr); 1146 1147 memset(&dev->ieee80211_ptr->u, 0, 1148 sizeof(dev->ieee80211_ptr->u)); 1149 memset(&dev->ieee80211_ptr->links, 0, 1150 sizeof(dev->ieee80211_ptr->links)); 1151 } 1152 1153 err = rdev_change_virtual_intf(rdev, dev, ntype, params); 1154 1155 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 1156 1157 if (!err && params && params->use_4addr != -1) 1158 dev->ieee80211_ptr->use_4addr = params->use_4addr; 1159 1160 if (!err) { 1161 dev->priv_flags &= ~IFF_DONT_BRIDGE; 1162 switch (ntype) { 1163 case NL80211_IFTYPE_STATION: 1164 if (dev->ieee80211_ptr->use_4addr) 1165 break; 1166 fallthrough; 1167 case NL80211_IFTYPE_OCB: 1168 case NL80211_IFTYPE_P2P_CLIENT: 1169 case NL80211_IFTYPE_ADHOC: 1170 dev->priv_flags |= IFF_DONT_BRIDGE; 1171 break; 1172 case NL80211_IFTYPE_P2P_GO: 1173 case NL80211_IFTYPE_AP: 1174 case NL80211_IFTYPE_AP_VLAN: 1175 case NL80211_IFTYPE_MESH_POINT: 1176 /* bridging OK */ 1177 break; 1178 case NL80211_IFTYPE_MONITOR: 1179 /* monitor can't bridge anyway */ 1180 break; 1181 case NL80211_IFTYPE_UNSPECIFIED: 1182 case NUM_NL80211_IFTYPES: 1183 /* not happening */ 1184 break; 1185 case NL80211_IFTYPE_P2P_DEVICE: 1186 case NL80211_IFTYPE_WDS: 1187 case NL80211_IFTYPE_NAN: 1188 WARN_ON(1); 1189 break; 1190 } 1191 } 1192 1193 if (!err && ntype != otype && netif_running(dev)) { 1194 cfg80211_update_iface_num(rdev, ntype, 1); 1195 cfg80211_update_iface_num(rdev, otype, -1); 1196 } 1197 1198 return err; 1199 } 1200 1201 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) 1202 { 1203 int modulation, streams, bitrate; 1204 1205 /* the formula below does only work for MCS values smaller than 32 */ 1206 if (WARN_ON_ONCE(rate->mcs >= 32)) 1207 return 0; 1208 1209 modulation = rate->mcs & 7; 1210 streams = (rate->mcs >> 3) + 1; 1211 1212 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1213 1214 if (modulation < 4) 1215 bitrate *= (modulation + 1); 1216 else if (modulation == 4) 1217 bitrate *= (modulation + 2); 1218 else 1219 bitrate *= (modulation + 3); 1220 1221 bitrate *= streams; 1222 1223 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1224 bitrate = (bitrate / 9) * 10; 1225 1226 /* do NOT round down here */ 1227 return (bitrate + 50000) / 100000; 1228 } 1229 1230 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate) 1231 { 1232 static const u32 __mcs2bitrate[] = { 1233 /* control PHY */ 1234 [0] = 275, 1235 /* SC PHY */ 1236 [1] = 3850, 1237 [2] = 7700, 1238 [3] = 9625, 1239 [4] = 11550, 1240 [5] = 12512, /* 1251.25 mbps */ 1241 [6] = 15400, 1242 [7] = 19250, 1243 [8] = 23100, 1244 [9] = 25025, 1245 [10] = 30800, 1246 [11] = 38500, 1247 [12] = 46200, 1248 /* OFDM PHY */ 1249 [13] = 6930, 1250 [14] = 8662, /* 866.25 mbps */ 1251 [15] = 13860, 1252 [16] = 17325, 1253 [17] = 20790, 1254 [18] = 27720, 1255 [19] = 34650, 1256 [20] = 41580, 1257 [21] = 45045, 1258 [22] = 51975, 1259 [23] = 62370, 1260 [24] = 67568, /* 6756.75 mbps */ 1261 /* LP-SC PHY */ 1262 [25] = 6260, 1263 [26] = 8340, 1264 [27] = 11120, 1265 [28] = 12510, 1266 [29] = 16680, 1267 [30] = 22240, 1268 [31] = 25030, 1269 }; 1270 1271 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1272 return 0; 1273 1274 return __mcs2bitrate[rate->mcs]; 1275 } 1276 1277 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate) 1278 { 1279 static const u32 __mcs2bitrate[] = { 1280 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */ 1281 [7 - 6] = 50050, /* MCS 12.1 */ 1282 [8 - 6] = 53900, 1283 [9 - 6] = 57750, 1284 [10 - 6] = 63900, 1285 [11 - 6] = 75075, 1286 [12 - 6] = 80850, 1287 }; 1288 1289 /* Extended SC MCS not defined for base MCS below 6 or above 12 */ 1290 if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12)) 1291 return 0; 1292 1293 return __mcs2bitrate[rate->mcs - 6]; 1294 } 1295 1296 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate) 1297 { 1298 static const u32 __mcs2bitrate[] = { 1299 /* control PHY */ 1300 [0] = 275, 1301 /* SC PHY */ 1302 [1] = 3850, 1303 [2] = 7700, 1304 [3] = 9625, 1305 [4] = 11550, 1306 [5] = 12512, /* 1251.25 mbps */ 1307 [6] = 13475, 1308 [7] = 15400, 1309 [8] = 19250, 1310 [9] = 23100, 1311 [10] = 25025, 1312 [11] = 26950, 1313 [12] = 30800, 1314 [13] = 38500, 1315 [14] = 46200, 1316 [15] = 50050, 1317 [16] = 53900, 1318 [17] = 57750, 1319 [18] = 69300, 1320 [19] = 75075, 1321 [20] = 80850, 1322 }; 1323 1324 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1325 return 0; 1326 1327 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch; 1328 } 1329 1330 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1331 { 1332 static const u32 base[4][12] = { 1333 { 6500000, 1334 13000000, 1335 19500000, 1336 26000000, 1337 39000000, 1338 52000000, 1339 58500000, 1340 65000000, 1341 78000000, 1342 /* not in the spec, but some devices use this: */ 1343 86700000, 1344 97500000, 1345 108300000, 1346 }, 1347 { 13500000, 1348 27000000, 1349 40500000, 1350 54000000, 1351 81000000, 1352 108000000, 1353 121500000, 1354 135000000, 1355 162000000, 1356 180000000, 1357 202500000, 1358 225000000, 1359 }, 1360 { 29300000, 1361 58500000, 1362 87800000, 1363 117000000, 1364 175500000, 1365 234000000, 1366 263300000, 1367 292500000, 1368 351000000, 1369 390000000, 1370 438800000, 1371 487500000, 1372 }, 1373 { 58500000, 1374 117000000, 1375 175500000, 1376 234000000, 1377 351000000, 1378 468000000, 1379 526500000, 1380 585000000, 1381 702000000, 1382 780000000, 1383 877500000, 1384 975000000, 1385 }, 1386 }; 1387 u32 bitrate; 1388 int idx; 1389 1390 if (rate->mcs > 11) 1391 goto warn; 1392 1393 switch (rate->bw) { 1394 case RATE_INFO_BW_160: 1395 idx = 3; 1396 break; 1397 case RATE_INFO_BW_80: 1398 idx = 2; 1399 break; 1400 case RATE_INFO_BW_40: 1401 idx = 1; 1402 break; 1403 case RATE_INFO_BW_5: 1404 case RATE_INFO_BW_10: 1405 default: 1406 goto warn; 1407 case RATE_INFO_BW_20: 1408 idx = 0; 1409 } 1410 1411 bitrate = base[idx][rate->mcs]; 1412 bitrate *= rate->nss; 1413 1414 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1415 bitrate = (bitrate / 9) * 10; 1416 1417 /* do NOT round down here */ 1418 return (bitrate + 50000) / 100000; 1419 warn: 1420 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1421 rate->bw, rate->mcs, rate->nss); 1422 return 0; 1423 } 1424 1425 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) 1426 { 1427 #define SCALE 6144 1428 u32 mcs_divisors[14] = { 1429 102399, /* 16.666666... */ 1430 51201, /* 8.333333... */ 1431 34134, /* 5.555555... */ 1432 25599, /* 4.166666... */ 1433 17067, /* 2.777777... */ 1434 12801, /* 2.083333... */ 1435 11377, /* 1.851725... */ 1436 10239, /* 1.666666... */ 1437 8532, /* 1.388888... */ 1438 7680, /* 1.250000... */ 1439 6828, /* 1.111111... */ 1440 6144, /* 1.000000... */ 1441 5690, /* 0.926106... */ 1442 5120, /* 0.833333... */ 1443 }; 1444 u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; 1445 u32 rates_969[3] = { 480388888, 453700000, 408333333 }; 1446 u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1447 u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1448 u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1449 u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1450 u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1451 u64 tmp; 1452 u32 result; 1453 1454 if (WARN_ON_ONCE(rate->mcs > 13)) 1455 return 0; 1456 1457 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) 1458 return 0; 1459 if (WARN_ON_ONCE(rate->he_ru_alloc > 1460 NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1461 return 0; 1462 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1463 return 0; 1464 1465 if (rate->bw == RATE_INFO_BW_160) 1466 result = rates_160M[rate->he_gi]; 1467 else if (rate->bw == RATE_INFO_BW_80 || 1468 (rate->bw == RATE_INFO_BW_HE_RU && 1469 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) 1470 result = rates_969[rate->he_gi]; 1471 else if (rate->bw == RATE_INFO_BW_40 || 1472 (rate->bw == RATE_INFO_BW_HE_RU && 1473 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) 1474 result = rates_484[rate->he_gi]; 1475 else if (rate->bw == RATE_INFO_BW_20 || 1476 (rate->bw == RATE_INFO_BW_HE_RU && 1477 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) 1478 result = rates_242[rate->he_gi]; 1479 else if (rate->bw == RATE_INFO_BW_HE_RU && 1480 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) 1481 result = rates_106[rate->he_gi]; 1482 else if (rate->bw == RATE_INFO_BW_HE_RU && 1483 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) 1484 result = rates_52[rate->he_gi]; 1485 else if (rate->bw == RATE_INFO_BW_HE_RU && 1486 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) 1487 result = rates_26[rate->he_gi]; 1488 else { 1489 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", 1490 rate->bw, rate->he_ru_alloc); 1491 return 0; 1492 } 1493 1494 /* now scale to the appropriate MCS */ 1495 tmp = result; 1496 tmp *= SCALE; 1497 do_div(tmp, mcs_divisors[rate->mcs]); 1498 result = tmp; 1499 1500 /* and take NSS, DCM into account */ 1501 result = (result * rate->nss) / 8; 1502 if (rate->he_dcm) 1503 result /= 2; 1504 1505 return result / 10000; 1506 } 1507 1508 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate) 1509 { 1510 #define SCALE 6144 1511 static const u32 mcs_divisors[16] = { 1512 102399, /* 16.666666... */ 1513 51201, /* 8.333333... */ 1514 34134, /* 5.555555... */ 1515 25599, /* 4.166666... */ 1516 17067, /* 2.777777... */ 1517 12801, /* 2.083333... */ 1518 11377, /* 1.851725... */ 1519 10239, /* 1.666666... */ 1520 8532, /* 1.388888... */ 1521 7680, /* 1.250000... */ 1522 6828, /* 1.111111... */ 1523 6144, /* 1.000000... */ 1524 5690, /* 0.926106... */ 1525 5120, /* 0.833333... */ 1526 409600, /* 66.666666... */ 1527 204800, /* 33.333333... */ 1528 }; 1529 static const u32 rates_996[3] = { 480388888, 453700000, 408333333 }; 1530 static const u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1531 static const u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1532 static const u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1533 static const u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1534 static const u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1535 u64 tmp; 1536 u32 result; 1537 1538 if (WARN_ON_ONCE(rate->mcs > 15)) 1539 return 0; 1540 if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2)) 1541 return 0; 1542 if (WARN_ON_ONCE(rate->eht_ru_alloc > 1543 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) 1544 return 0; 1545 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1546 return 0; 1547 1548 /* Bandwidth checks for MCS 14 */ 1549 if (rate->mcs == 14) { 1550 if ((rate->bw != RATE_INFO_BW_EHT_RU && 1551 rate->bw != RATE_INFO_BW_80 && 1552 rate->bw != RATE_INFO_BW_160 && 1553 rate->bw != RATE_INFO_BW_320) || 1554 (rate->bw == RATE_INFO_BW_EHT_RU && 1555 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 && 1556 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 && 1557 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) { 1558 WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n", 1559 rate->bw, rate->eht_ru_alloc); 1560 return 0; 1561 } 1562 } 1563 1564 if (rate->bw == RATE_INFO_BW_320 || 1565 (rate->bw == RATE_INFO_BW_EHT_RU && 1566 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) 1567 result = 4 * rates_996[rate->eht_gi]; 1568 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1569 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484) 1570 result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1571 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1572 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996) 1573 result = 3 * rates_996[rate->eht_gi]; 1574 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1575 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484) 1576 result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1577 else if (rate->bw == RATE_INFO_BW_160 || 1578 (rate->bw == RATE_INFO_BW_EHT_RU && 1579 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996)) 1580 result = 2 * rates_996[rate->eht_gi]; 1581 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1582 rate->eht_ru_alloc == 1583 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242) 1584 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi] 1585 + rates_242[rate->eht_gi]; 1586 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1587 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484) 1588 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1589 else if (rate->bw == RATE_INFO_BW_80 || 1590 (rate->bw == RATE_INFO_BW_EHT_RU && 1591 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996)) 1592 result = rates_996[rate->eht_gi]; 1593 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1594 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242) 1595 result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi]; 1596 else if (rate->bw == RATE_INFO_BW_40 || 1597 (rate->bw == RATE_INFO_BW_EHT_RU && 1598 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484)) 1599 result = rates_484[rate->eht_gi]; 1600 else if (rate->bw == RATE_INFO_BW_20 || 1601 (rate->bw == RATE_INFO_BW_EHT_RU && 1602 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242)) 1603 result = rates_242[rate->eht_gi]; 1604 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1605 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26) 1606 result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi]; 1607 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1608 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106) 1609 result = rates_106[rate->eht_gi]; 1610 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1611 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26) 1612 result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi]; 1613 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1614 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52) 1615 result = rates_52[rate->eht_gi]; 1616 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1617 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26) 1618 result = rates_26[rate->eht_gi]; 1619 else { 1620 WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n", 1621 rate->bw, rate->eht_ru_alloc); 1622 return 0; 1623 } 1624 1625 /* now scale to the appropriate MCS */ 1626 tmp = result; 1627 tmp *= SCALE; 1628 do_div(tmp, mcs_divisors[rate->mcs]); 1629 1630 /* and take NSS */ 1631 tmp *= rate->nss; 1632 do_div(tmp, 8); 1633 1634 result = tmp; 1635 1636 return result / 10000; 1637 } 1638 1639 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1640 { 1641 if (rate->flags & RATE_INFO_FLAGS_MCS) 1642 return cfg80211_calculate_bitrate_ht(rate); 1643 if (rate->flags & RATE_INFO_FLAGS_DMG) 1644 return cfg80211_calculate_bitrate_dmg(rate); 1645 if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG) 1646 return cfg80211_calculate_bitrate_extended_sc_dmg(rate); 1647 if (rate->flags & RATE_INFO_FLAGS_EDMG) 1648 return cfg80211_calculate_bitrate_edmg(rate); 1649 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1650 return cfg80211_calculate_bitrate_vht(rate); 1651 if (rate->flags & RATE_INFO_FLAGS_HE_MCS) 1652 return cfg80211_calculate_bitrate_he(rate); 1653 if (rate->flags & RATE_INFO_FLAGS_EHT_MCS) 1654 return cfg80211_calculate_bitrate_eht(rate); 1655 1656 return rate->legacy; 1657 } 1658 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1659 1660 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1661 enum ieee80211_p2p_attr_id attr, 1662 u8 *buf, unsigned int bufsize) 1663 { 1664 u8 *out = buf; 1665 u16 attr_remaining = 0; 1666 bool desired_attr = false; 1667 u16 desired_len = 0; 1668 1669 while (len > 0) { 1670 unsigned int iedatalen; 1671 unsigned int copy; 1672 const u8 *iedata; 1673 1674 if (len < 2) 1675 return -EILSEQ; 1676 iedatalen = ies[1]; 1677 if (iedatalen + 2 > len) 1678 return -EILSEQ; 1679 1680 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1681 goto cont; 1682 1683 if (iedatalen < 4) 1684 goto cont; 1685 1686 iedata = ies + 2; 1687 1688 /* check WFA OUI, P2P subtype */ 1689 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1690 iedata[2] != 0x9a || iedata[3] != 0x09) 1691 goto cont; 1692 1693 iedatalen -= 4; 1694 iedata += 4; 1695 1696 /* check attribute continuation into this IE */ 1697 copy = min_t(unsigned int, attr_remaining, iedatalen); 1698 if (copy && desired_attr) { 1699 desired_len += copy; 1700 if (out) { 1701 memcpy(out, iedata, min(bufsize, copy)); 1702 out += min(bufsize, copy); 1703 bufsize -= min(bufsize, copy); 1704 } 1705 1706 1707 if (copy == attr_remaining) 1708 return desired_len; 1709 } 1710 1711 attr_remaining -= copy; 1712 if (attr_remaining) 1713 goto cont; 1714 1715 iedatalen -= copy; 1716 iedata += copy; 1717 1718 while (iedatalen > 0) { 1719 u16 attr_len; 1720 1721 /* P2P attribute ID & size must fit */ 1722 if (iedatalen < 3) 1723 return -EILSEQ; 1724 desired_attr = iedata[0] == attr; 1725 attr_len = get_unaligned_le16(iedata + 1); 1726 iedatalen -= 3; 1727 iedata += 3; 1728 1729 copy = min_t(unsigned int, attr_len, iedatalen); 1730 1731 if (desired_attr) { 1732 desired_len += copy; 1733 if (out) { 1734 memcpy(out, iedata, min(bufsize, copy)); 1735 out += min(bufsize, copy); 1736 bufsize -= min(bufsize, copy); 1737 } 1738 1739 if (copy == attr_len) 1740 return desired_len; 1741 } 1742 1743 iedata += copy; 1744 iedatalen -= copy; 1745 attr_remaining = attr_len - copy; 1746 } 1747 1748 cont: 1749 len -= ies[1] + 2; 1750 ies += ies[1] + 2; 1751 } 1752 1753 if (attr_remaining && desired_attr) 1754 return -EILSEQ; 1755 1756 return -ENOENT; 1757 } 1758 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1759 1760 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) 1761 { 1762 int i; 1763 1764 /* Make sure array values are legal */ 1765 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) 1766 return false; 1767 1768 i = 0; 1769 while (i < n_ids) { 1770 if (ids[i] == WLAN_EID_EXTENSION) { 1771 if (id_ext && (ids[i + 1] == id)) 1772 return true; 1773 1774 i += 2; 1775 continue; 1776 } 1777 1778 if (ids[i] == id && !id_ext) 1779 return true; 1780 1781 i++; 1782 } 1783 return false; 1784 } 1785 1786 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) 1787 { 1788 /* we assume a validly formed IEs buffer */ 1789 u8 len = ies[pos + 1]; 1790 1791 pos += 2 + len; 1792 1793 /* the IE itself must have 255 bytes for fragments to follow */ 1794 if (len < 255) 1795 return pos; 1796 1797 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { 1798 len = ies[pos + 1]; 1799 pos += 2 + len; 1800 } 1801 1802 return pos; 1803 } 1804 1805 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1806 const u8 *ids, int n_ids, 1807 const u8 *after_ric, int n_after_ric, 1808 size_t offset) 1809 { 1810 size_t pos = offset; 1811 1812 while (pos < ielen) { 1813 u8 ext = 0; 1814 1815 if (ies[pos] == WLAN_EID_EXTENSION) 1816 ext = 2; 1817 if ((pos + ext) >= ielen) 1818 break; 1819 1820 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], 1821 ies[pos] == WLAN_EID_EXTENSION)) 1822 break; 1823 1824 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1825 pos = skip_ie(ies, ielen, pos); 1826 1827 while (pos < ielen) { 1828 if (ies[pos] == WLAN_EID_EXTENSION) 1829 ext = 2; 1830 else 1831 ext = 0; 1832 1833 if ((pos + ext) >= ielen) 1834 break; 1835 1836 if (!ieee80211_id_in_list(after_ric, 1837 n_after_ric, 1838 ies[pos + ext], 1839 ext == 2)) 1840 pos = skip_ie(ies, ielen, pos); 1841 else 1842 break; 1843 } 1844 } else { 1845 pos = skip_ie(ies, ielen, pos); 1846 } 1847 } 1848 1849 return pos; 1850 } 1851 EXPORT_SYMBOL(ieee80211_ie_split_ric); 1852 1853 bool ieee80211_operating_class_to_band(u8 operating_class, 1854 enum nl80211_band *band) 1855 { 1856 switch (operating_class) { 1857 case 112: 1858 case 115 ... 127: 1859 case 128 ... 130: 1860 *band = NL80211_BAND_5GHZ; 1861 return true; 1862 case 131 ... 135: 1863 *band = NL80211_BAND_6GHZ; 1864 return true; 1865 case 81: 1866 case 82: 1867 case 83: 1868 case 84: 1869 *band = NL80211_BAND_2GHZ; 1870 return true; 1871 case 180: 1872 *band = NL80211_BAND_60GHZ; 1873 return true; 1874 } 1875 1876 return false; 1877 } 1878 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1879 1880 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 1881 u8 *op_class) 1882 { 1883 u8 vht_opclass; 1884 u32 freq = chandef->center_freq1; 1885 1886 if (freq >= 2412 && freq <= 2472) { 1887 if (chandef->width > NL80211_CHAN_WIDTH_40) 1888 return false; 1889 1890 /* 2.407 GHz, channels 1..13 */ 1891 if (chandef->width == NL80211_CHAN_WIDTH_40) { 1892 if (freq > chandef->chan->center_freq) 1893 *op_class = 83; /* HT40+ */ 1894 else 1895 *op_class = 84; /* HT40- */ 1896 } else { 1897 *op_class = 81; 1898 } 1899 1900 return true; 1901 } 1902 1903 if (freq == 2484) { 1904 /* channel 14 is only for IEEE 802.11b */ 1905 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT) 1906 return false; 1907 1908 *op_class = 82; /* channel 14 */ 1909 return true; 1910 } 1911 1912 switch (chandef->width) { 1913 case NL80211_CHAN_WIDTH_80: 1914 vht_opclass = 128; 1915 break; 1916 case NL80211_CHAN_WIDTH_160: 1917 vht_opclass = 129; 1918 break; 1919 case NL80211_CHAN_WIDTH_80P80: 1920 vht_opclass = 130; 1921 break; 1922 case NL80211_CHAN_WIDTH_10: 1923 case NL80211_CHAN_WIDTH_5: 1924 return false; /* unsupported for now */ 1925 default: 1926 vht_opclass = 0; 1927 break; 1928 } 1929 1930 /* 5 GHz, channels 36..48 */ 1931 if (freq >= 5180 && freq <= 5240) { 1932 if (vht_opclass) { 1933 *op_class = vht_opclass; 1934 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1935 if (freq > chandef->chan->center_freq) 1936 *op_class = 116; 1937 else 1938 *op_class = 117; 1939 } else { 1940 *op_class = 115; 1941 } 1942 1943 return true; 1944 } 1945 1946 /* 5 GHz, channels 52..64 */ 1947 if (freq >= 5260 && freq <= 5320) { 1948 if (vht_opclass) { 1949 *op_class = vht_opclass; 1950 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1951 if (freq > chandef->chan->center_freq) 1952 *op_class = 119; 1953 else 1954 *op_class = 120; 1955 } else { 1956 *op_class = 118; 1957 } 1958 1959 return true; 1960 } 1961 1962 /* 5 GHz, channels 100..144 */ 1963 if (freq >= 5500 && freq <= 5720) { 1964 if (vht_opclass) { 1965 *op_class = vht_opclass; 1966 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1967 if (freq > chandef->chan->center_freq) 1968 *op_class = 122; 1969 else 1970 *op_class = 123; 1971 } else { 1972 *op_class = 121; 1973 } 1974 1975 return true; 1976 } 1977 1978 /* 5 GHz, channels 149..169 */ 1979 if (freq >= 5745 && freq <= 5845) { 1980 if (vht_opclass) { 1981 *op_class = vht_opclass; 1982 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1983 if (freq > chandef->chan->center_freq) 1984 *op_class = 126; 1985 else 1986 *op_class = 127; 1987 } else if (freq <= 5805) { 1988 *op_class = 124; 1989 } else { 1990 *op_class = 125; 1991 } 1992 1993 return true; 1994 } 1995 1996 /* 56.16 GHz, channel 1..4 */ 1997 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { 1998 if (chandef->width >= NL80211_CHAN_WIDTH_40) 1999 return false; 2000 2001 *op_class = 180; 2002 return true; 2003 } 2004 2005 /* not supported yet */ 2006 return false; 2007 } 2008 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 2009 2010 static int cfg80211_wdev_bi(struct wireless_dev *wdev) 2011 { 2012 switch (wdev->iftype) { 2013 case NL80211_IFTYPE_AP: 2014 case NL80211_IFTYPE_P2P_GO: 2015 WARN_ON(wdev->valid_links); 2016 return wdev->links[0].ap.beacon_interval; 2017 case NL80211_IFTYPE_MESH_POINT: 2018 return wdev->u.mesh.beacon_interval; 2019 case NL80211_IFTYPE_ADHOC: 2020 return wdev->u.ibss.beacon_interval; 2021 default: 2022 break; 2023 } 2024 2025 return 0; 2026 } 2027 2028 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, 2029 u32 *beacon_int_gcd, 2030 bool *beacon_int_different) 2031 { 2032 struct wireless_dev *wdev; 2033 2034 *beacon_int_gcd = 0; 2035 *beacon_int_different = false; 2036 2037 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 2038 int wdev_bi; 2039 2040 /* this feature isn't supported with MLO */ 2041 if (wdev->valid_links) 2042 continue; 2043 2044 wdev_bi = cfg80211_wdev_bi(wdev); 2045 2046 if (!wdev_bi) 2047 continue; 2048 2049 if (!*beacon_int_gcd) { 2050 *beacon_int_gcd = wdev_bi; 2051 continue; 2052 } 2053 2054 if (wdev_bi == *beacon_int_gcd) 2055 continue; 2056 2057 *beacon_int_different = true; 2058 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi); 2059 } 2060 2061 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { 2062 if (*beacon_int_gcd) 2063 *beacon_int_different = true; 2064 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); 2065 } 2066 } 2067 2068 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 2069 enum nl80211_iftype iftype, u32 beacon_int) 2070 { 2071 /* 2072 * This is just a basic pre-condition check; if interface combinations 2073 * are possible the driver must already be checking those with a call 2074 * to cfg80211_check_combinations(), in which case we'll validate more 2075 * through the cfg80211_calculate_bi_data() call and code in 2076 * cfg80211_iter_combinations(). 2077 */ 2078 2079 if (beacon_int < 10 || beacon_int > 10000) 2080 return -EINVAL; 2081 2082 return 0; 2083 } 2084 2085 int cfg80211_iter_combinations(struct wiphy *wiphy, 2086 struct iface_combination_params *params, 2087 void (*iter)(const struct ieee80211_iface_combination *c, 2088 void *data), 2089 void *data) 2090 { 2091 const struct ieee80211_regdomain *regdom; 2092 enum nl80211_dfs_regions region = 0; 2093 int i, j, iftype; 2094 int num_interfaces = 0; 2095 u32 used_iftypes = 0; 2096 u32 beacon_int_gcd; 2097 bool beacon_int_different; 2098 2099 /* 2100 * This is a bit strange, since the iteration used to rely only on 2101 * the data given by the driver, but here it now relies on context, 2102 * in form of the currently operating interfaces. 2103 * This is OK for all current users, and saves us from having to 2104 * push the GCD calculations into all the drivers. 2105 * In the future, this should probably rely more on data that's in 2106 * cfg80211 already - the only thing not would appear to be any new 2107 * interfaces (while being brought up) and channel/radar data. 2108 */ 2109 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, 2110 &beacon_int_gcd, &beacon_int_different); 2111 2112 if (params->radar_detect) { 2113 rcu_read_lock(); 2114 regdom = rcu_dereference(cfg80211_regdomain); 2115 if (regdom) 2116 region = regdom->dfs_region; 2117 rcu_read_unlock(); 2118 } 2119 2120 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 2121 num_interfaces += params->iftype_num[iftype]; 2122 if (params->iftype_num[iftype] > 0 && 2123 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 2124 used_iftypes |= BIT(iftype); 2125 } 2126 2127 for (i = 0; i < wiphy->n_iface_combinations; i++) { 2128 const struct ieee80211_iface_combination *c; 2129 struct ieee80211_iface_limit *limits; 2130 u32 all_iftypes = 0; 2131 2132 c = &wiphy->iface_combinations[i]; 2133 2134 if (num_interfaces > c->max_interfaces) 2135 continue; 2136 if (params->num_different_channels > c->num_different_channels) 2137 continue; 2138 2139 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 2140 GFP_KERNEL); 2141 if (!limits) 2142 return -ENOMEM; 2143 2144 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 2145 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 2146 continue; 2147 for (j = 0; j < c->n_limits; j++) { 2148 all_iftypes |= limits[j].types; 2149 if (!(limits[j].types & BIT(iftype))) 2150 continue; 2151 if (limits[j].max < params->iftype_num[iftype]) 2152 goto cont; 2153 limits[j].max -= params->iftype_num[iftype]; 2154 } 2155 } 2156 2157 if (params->radar_detect != 2158 (c->radar_detect_widths & params->radar_detect)) 2159 goto cont; 2160 2161 if (params->radar_detect && c->radar_detect_regions && 2162 !(c->radar_detect_regions & BIT(region))) 2163 goto cont; 2164 2165 /* Finally check that all iftypes that we're currently 2166 * using are actually part of this combination. If they 2167 * aren't then we can't use this combination and have 2168 * to continue to the next. 2169 */ 2170 if ((all_iftypes & used_iftypes) != used_iftypes) 2171 goto cont; 2172 2173 if (beacon_int_gcd) { 2174 if (c->beacon_int_min_gcd && 2175 beacon_int_gcd < c->beacon_int_min_gcd) 2176 goto cont; 2177 if (!c->beacon_int_min_gcd && beacon_int_different) 2178 goto cont; 2179 } 2180 2181 /* This combination covered all interface types and 2182 * supported the requested numbers, so we're good. 2183 */ 2184 2185 (*iter)(c, data); 2186 cont: 2187 kfree(limits); 2188 } 2189 2190 return 0; 2191 } 2192 EXPORT_SYMBOL(cfg80211_iter_combinations); 2193 2194 static void 2195 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 2196 void *data) 2197 { 2198 int *num = data; 2199 (*num)++; 2200 } 2201 2202 int cfg80211_check_combinations(struct wiphy *wiphy, 2203 struct iface_combination_params *params) 2204 { 2205 int err, num = 0; 2206 2207 err = cfg80211_iter_combinations(wiphy, params, 2208 cfg80211_iter_sum_ifcombs, &num); 2209 if (err) 2210 return err; 2211 if (num == 0) 2212 return -EBUSY; 2213 2214 return 0; 2215 } 2216 EXPORT_SYMBOL(cfg80211_check_combinations); 2217 2218 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 2219 const u8 *rates, unsigned int n_rates, 2220 u32 *mask) 2221 { 2222 int i, j; 2223 2224 if (!sband) 2225 return -EINVAL; 2226 2227 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 2228 return -EINVAL; 2229 2230 *mask = 0; 2231 2232 for (i = 0; i < n_rates; i++) { 2233 int rate = (rates[i] & 0x7f) * 5; 2234 bool found = false; 2235 2236 for (j = 0; j < sband->n_bitrates; j++) { 2237 if (sband->bitrates[j].bitrate == rate) { 2238 found = true; 2239 *mask |= BIT(j); 2240 break; 2241 } 2242 } 2243 if (!found) 2244 return -EINVAL; 2245 } 2246 2247 /* 2248 * mask must have at least one bit set here since we 2249 * didn't accept a 0-length rates array nor allowed 2250 * entries in the array that didn't exist 2251 */ 2252 2253 return 0; 2254 } 2255 2256 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 2257 { 2258 enum nl80211_band band; 2259 unsigned int n_channels = 0; 2260 2261 for (band = 0; band < NUM_NL80211_BANDS; band++) 2262 if (wiphy->bands[band]) 2263 n_channels += wiphy->bands[band]->n_channels; 2264 2265 return n_channels; 2266 } 2267 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 2268 2269 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 2270 struct station_info *sinfo) 2271 { 2272 struct cfg80211_registered_device *rdev; 2273 struct wireless_dev *wdev; 2274 2275 wdev = dev->ieee80211_ptr; 2276 if (!wdev) 2277 return -EOPNOTSUPP; 2278 2279 rdev = wiphy_to_rdev(wdev->wiphy); 2280 if (!rdev->ops->get_station) 2281 return -EOPNOTSUPP; 2282 2283 memset(sinfo, 0, sizeof(*sinfo)); 2284 2285 return rdev_get_station(rdev, dev, mac_addr, sinfo); 2286 } 2287 EXPORT_SYMBOL(cfg80211_get_station); 2288 2289 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 2290 { 2291 int i; 2292 2293 if (!f) 2294 return; 2295 2296 kfree(f->serv_spec_info); 2297 kfree(f->srf_bf); 2298 kfree(f->srf_macs); 2299 for (i = 0; i < f->num_rx_filters; i++) 2300 kfree(f->rx_filters[i].filter); 2301 2302 for (i = 0; i < f->num_tx_filters; i++) 2303 kfree(f->tx_filters[i].filter); 2304 2305 kfree(f->rx_filters); 2306 kfree(f->tx_filters); 2307 kfree(f); 2308 } 2309 EXPORT_SYMBOL(cfg80211_free_nan_func); 2310 2311 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, 2312 u32 center_freq_khz, u32 bw_khz) 2313 { 2314 u32 start_freq_khz, end_freq_khz; 2315 2316 start_freq_khz = center_freq_khz - (bw_khz / 2); 2317 end_freq_khz = center_freq_khz + (bw_khz / 2); 2318 2319 if (start_freq_khz >= freq_range->start_freq_khz && 2320 end_freq_khz <= freq_range->end_freq_khz) 2321 return true; 2322 2323 return false; 2324 } 2325 2326 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) 2327 { 2328 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, 2329 sizeof(*(sinfo->pertid)), 2330 gfp); 2331 if (!sinfo->pertid) 2332 return -ENOMEM; 2333 2334 return 0; 2335 } 2336 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); 2337 2338 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 2339 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 2340 const unsigned char rfc1042_header[] __aligned(2) = 2341 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 2342 EXPORT_SYMBOL(rfc1042_header); 2343 2344 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 2345 const unsigned char bridge_tunnel_header[] __aligned(2) = 2346 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 2347 EXPORT_SYMBOL(bridge_tunnel_header); 2348 2349 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ 2350 struct iapp_layer2_update { 2351 u8 da[ETH_ALEN]; /* broadcast */ 2352 u8 sa[ETH_ALEN]; /* STA addr */ 2353 __be16 len; /* 6 */ 2354 u8 dsap; /* 0 */ 2355 u8 ssap; /* 0 */ 2356 u8 control; 2357 u8 xid_info[3]; 2358 } __packed; 2359 2360 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr) 2361 { 2362 struct iapp_layer2_update *msg; 2363 struct sk_buff *skb; 2364 2365 /* Send Level 2 Update Frame to update forwarding tables in layer 2 2366 * bridge devices */ 2367 2368 skb = dev_alloc_skb(sizeof(*msg)); 2369 if (!skb) 2370 return; 2371 msg = skb_put(skb, sizeof(*msg)); 2372 2373 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) 2374 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ 2375 2376 eth_broadcast_addr(msg->da); 2377 ether_addr_copy(msg->sa, addr); 2378 msg->len = htons(6); 2379 msg->dsap = 0; 2380 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ 2381 msg->control = 0xaf; /* XID response lsb.1111F101. 2382 * F=0 (no poll command; unsolicited frame) */ 2383 msg->xid_info[0] = 0x81; /* XID format identifier */ 2384 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ 2385 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ 2386 2387 skb->dev = dev; 2388 skb->protocol = eth_type_trans(skb, dev); 2389 memset(skb->cb, 0, sizeof(skb->cb)); 2390 netif_rx(skb); 2391 } 2392 EXPORT_SYMBOL(cfg80211_send_layer2_update); 2393 2394 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, 2395 enum ieee80211_vht_chanwidth bw, 2396 int mcs, bool ext_nss_bw_capable, 2397 unsigned int max_vht_nss) 2398 { 2399 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map); 2400 int ext_nss_bw; 2401 int supp_width; 2402 int i, mcs_encoding; 2403 2404 if (map == 0xffff) 2405 return 0; 2406 2407 if (WARN_ON(mcs > 9 || max_vht_nss > 8)) 2408 return 0; 2409 if (mcs <= 7) 2410 mcs_encoding = 0; 2411 else if (mcs == 8) 2412 mcs_encoding = 1; 2413 else 2414 mcs_encoding = 2; 2415 2416 if (!max_vht_nss) { 2417 /* find max_vht_nss for the given MCS */ 2418 for (i = 7; i >= 0; i--) { 2419 int supp = (map >> (2 * i)) & 3; 2420 2421 if (supp == 3) 2422 continue; 2423 2424 if (supp >= mcs_encoding) { 2425 max_vht_nss = i + 1; 2426 break; 2427 } 2428 } 2429 } 2430 2431 if (!(cap->supp_mcs.tx_mcs_map & 2432 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) 2433 return max_vht_nss; 2434 2435 ext_nss_bw = le32_get_bits(cap->vht_cap_info, 2436 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2437 supp_width = le32_get_bits(cap->vht_cap_info, 2438 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2439 2440 /* if not capable, treat ext_nss_bw as 0 */ 2441 if (!ext_nss_bw_capable) 2442 ext_nss_bw = 0; 2443 2444 /* This is invalid */ 2445 if (supp_width == 3) 2446 return 0; 2447 2448 /* This is an invalid combination so pretend nothing is supported */ 2449 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2)) 2450 return 0; 2451 2452 /* 2453 * Cover all the special cases according to IEEE 802.11-2016 2454 * Table 9-250. All other cases are either factor of 1 or not 2455 * valid/supported. 2456 */ 2457 switch (bw) { 2458 case IEEE80211_VHT_CHANWIDTH_USE_HT: 2459 case IEEE80211_VHT_CHANWIDTH_80MHZ: 2460 if ((supp_width == 1 || supp_width == 2) && 2461 ext_nss_bw == 3) 2462 return 2 * max_vht_nss; 2463 break; 2464 case IEEE80211_VHT_CHANWIDTH_160MHZ: 2465 if (supp_width == 0 && 2466 (ext_nss_bw == 1 || ext_nss_bw == 2)) 2467 return max_vht_nss / 2; 2468 if (supp_width == 0 && 2469 ext_nss_bw == 3) 2470 return (3 * max_vht_nss) / 4; 2471 if (supp_width == 1 && 2472 ext_nss_bw == 3) 2473 return 2 * max_vht_nss; 2474 break; 2475 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 2476 if (supp_width == 0 && ext_nss_bw == 1) 2477 return 0; /* not possible */ 2478 if (supp_width == 0 && 2479 ext_nss_bw == 2) 2480 return max_vht_nss / 2; 2481 if (supp_width == 0 && 2482 ext_nss_bw == 3) 2483 return (3 * max_vht_nss) / 4; 2484 if (supp_width == 1 && 2485 ext_nss_bw == 0) 2486 return 0; /* not possible */ 2487 if (supp_width == 1 && 2488 ext_nss_bw == 1) 2489 return max_vht_nss / 2; 2490 if (supp_width == 1 && 2491 ext_nss_bw == 2) 2492 return (3 * max_vht_nss) / 4; 2493 break; 2494 } 2495 2496 /* not covered or invalid combination received */ 2497 return max_vht_nss; 2498 } 2499 EXPORT_SYMBOL(ieee80211_get_vht_max_nss); 2500 2501 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype, 2502 bool is_4addr, u8 check_swif) 2503 2504 { 2505 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN; 2506 2507 switch (check_swif) { 2508 case 0: 2509 if (is_vlan && is_4addr) 2510 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2511 return wiphy->interface_modes & BIT(iftype); 2512 case 1: 2513 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan) 2514 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2515 return wiphy->software_iftypes & BIT(iftype); 2516 default: 2517 break; 2518 } 2519 2520 return false; 2521 } 2522 EXPORT_SYMBOL(cfg80211_iftype_allowed); 2523 2524 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id) 2525 { 2526 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 2527 2528 ASSERT_WDEV_LOCK(wdev); 2529 2530 switch (wdev->iftype) { 2531 case NL80211_IFTYPE_AP: 2532 case NL80211_IFTYPE_P2P_GO: 2533 __cfg80211_stop_ap(rdev, wdev->netdev, link_id, true); 2534 break; 2535 default: 2536 /* per-link not relevant */ 2537 break; 2538 } 2539 2540 wdev->valid_links &= ~BIT(link_id); 2541 2542 rdev_del_intf_link(rdev, wdev, link_id); 2543 2544 eth_zero_addr(wdev->links[link_id].addr); 2545 } 2546 2547 void cfg80211_remove_links(struct wireless_dev *wdev) 2548 { 2549 unsigned int link_id; 2550 2551 wdev_lock(wdev); 2552 if (wdev->valid_links) { 2553 for_each_valid_link(wdev, link_id) 2554 cfg80211_remove_link(wdev, link_id); 2555 } 2556 wdev_unlock(wdev); 2557 } 2558 2559 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev, 2560 struct wireless_dev *wdev) 2561 { 2562 cfg80211_remove_links(wdev); 2563 2564 return rdev_del_virtual_intf(rdev, wdev); 2565 } 2566 2567 const struct wiphy_iftype_ext_capab * 2568 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type) 2569 { 2570 int i; 2571 2572 for (i = 0; i < wiphy->num_iftype_ext_capab; i++) { 2573 if (wiphy->iftype_ext_capab[i].iftype == type) 2574 return &wiphy->iftype_ext_capab[i]; 2575 } 2576 2577 return NULL; 2578 } 2579 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa); 2580