xref: /openbmc/linux/net/wireless/util.c (revision 160b8e75)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  */
8 #include <linux/export.h>
9 #include <linux/bitops.h>
10 #include <linux/etherdevice.h>
11 #include <linux/slab.h>
12 #include <net/cfg80211.h>
13 #include <net/ip.h>
14 #include <net/dsfield.h>
15 #include <linux/if_vlan.h>
16 #include <linux/mpls.h>
17 #include <linux/gcd.h>
18 #include "core.h"
19 #include "rdev-ops.h"
20 
21 
22 struct ieee80211_rate *
23 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
24 			    u32 basic_rates, int bitrate)
25 {
26 	struct ieee80211_rate *result = &sband->bitrates[0];
27 	int i;
28 
29 	for (i = 0; i < sband->n_bitrates; i++) {
30 		if (!(basic_rates & BIT(i)))
31 			continue;
32 		if (sband->bitrates[i].bitrate > bitrate)
33 			continue;
34 		result = &sband->bitrates[i];
35 	}
36 
37 	return result;
38 }
39 EXPORT_SYMBOL(ieee80211_get_response_rate);
40 
41 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
42 			      enum nl80211_bss_scan_width scan_width)
43 {
44 	struct ieee80211_rate *bitrates;
45 	u32 mandatory_rates = 0;
46 	enum ieee80211_rate_flags mandatory_flag;
47 	int i;
48 
49 	if (WARN_ON(!sband))
50 		return 1;
51 
52 	if (sband->band == NL80211_BAND_2GHZ) {
53 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
54 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
55 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
56 		else
57 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
58 	} else {
59 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
60 	}
61 
62 	bitrates = sband->bitrates;
63 	for (i = 0; i < sband->n_bitrates; i++)
64 		if (bitrates[i].flags & mandatory_flag)
65 			mandatory_rates |= BIT(i);
66 	return mandatory_rates;
67 }
68 EXPORT_SYMBOL(ieee80211_mandatory_rates);
69 
70 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
71 {
72 	/* see 802.11 17.3.8.3.2 and Annex J
73 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
74 	if (chan <= 0)
75 		return 0; /* not supported */
76 	switch (band) {
77 	case NL80211_BAND_2GHZ:
78 		if (chan == 14)
79 			return 2484;
80 		else if (chan < 14)
81 			return 2407 + chan * 5;
82 		break;
83 	case NL80211_BAND_5GHZ:
84 		if (chan >= 182 && chan <= 196)
85 			return 4000 + chan * 5;
86 		else
87 			return 5000 + chan * 5;
88 		break;
89 	case NL80211_BAND_60GHZ:
90 		if (chan < 5)
91 			return 56160 + chan * 2160;
92 		break;
93 	default:
94 		;
95 	}
96 	return 0; /* not supported */
97 }
98 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
99 
100 int ieee80211_frequency_to_channel(int freq)
101 {
102 	/* see 802.11 17.3.8.3.2 and Annex J */
103 	if (freq == 2484)
104 		return 14;
105 	else if (freq < 2484)
106 		return (freq - 2407) / 5;
107 	else if (freq >= 4910 && freq <= 4980)
108 		return (freq - 4000) / 5;
109 	else if (freq <= 45000) /* DMG band lower limit */
110 		return (freq - 5000) / 5;
111 	else if (freq >= 58320 && freq <= 64800)
112 		return (freq - 56160) / 2160;
113 	else
114 		return 0;
115 }
116 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
117 
118 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
119 {
120 	enum nl80211_band band;
121 	struct ieee80211_supported_band *sband;
122 	int i;
123 
124 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
125 		sband = wiphy->bands[band];
126 
127 		if (!sband)
128 			continue;
129 
130 		for (i = 0; i < sband->n_channels; i++) {
131 			if (sband->channels[i].center_freq == freq)
132 				return &sband->channels[i];
133 		}
134 	}
135 
136 	return NULL;
137 }
138 EXPORT_SYMBOL(ieee80211_get_channel);
139 
140 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
141 {
142 	int i, want;
143 
144 	switch (sband->band) {
145 	case NL80211_BAND_5GHZ:
146 		want = 3;
147 		for (i = 0; i < sband->n_bitrates; i++) {
148 			if (sband->bitrates[i].bitrate == 60 ||
149 			    sband->bitrates[i].bitrate == 120 ||
150 			    sband->bitrates[i].bitrate == 240) {
151 				sband->bitrates[i].flags |=
152 					IEEE80211_RATE_MANDATORY_A;
153 				want--;
154 			}
155 		}
156 		WARN_ON(want);
157 		break;
158 	case NL80211_BAND_2GHZ:
159 		want = 7;
160 		for (i = 0; i < sband->n_bitrates; i++) {
161 			switch (sband->bitrates[i].bitrate) {
162 			case 10:
163 			case 20:
164 			case 55:
165 			case 110:
166 				sband->bitrates[i].flags |=
167 					IEEE80211_RATE_MANDATORY_B |
168 					IEEE80211_RATE_MANDATORY_G;
169 				want--;
170 				break;
171 			case 60:
172 			case 120:
173 			case 240:
174 				sband->bitrates[i].flags |=
175 					IEEE80211_RATE_MANDATORY_G;
176 				want--;
177 				/* fall through */
178 			default:
179 				sband->bitrates[i].flags |=
180 					IEEE80211_RATE_ERP_G;
181 				break;
182 			}
183 		}
184 		WARN_ON(want != 0 && want != 3);
185 		break;
186 	case NL80211_BAND_60GHZ:
187 		/* check for mandatory HT MCS 1..4 */
188 		WARN_ON(!sband->ht_cap.ht_supported);
189 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
190 		break;
191 	case NUM_NL80211_BANDS:
192 	default:
193 		WARN_ON(1);
194 		break;
195 	}
196 }
197 
198 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
199 {
200 	enum nl80211_band band;
201 
202 	for (band = 0; band < NUM_NL80211_BANDS; band++)
203 		if (wiphy->bands[band])
204 			set_mandatory_flags_band(wiphy->bands[band]);
205 }
206 
207 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
208 {
209 	int i;
210 	for (i = 0; i < wiphy->n_cipher_suites; i++)
211 		if (cipher == wiphy->cipher_suites[i])
212 			return true;
213 	return false;
214 }
215 
216 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
217 				   struct key_params *params, int key_idx,
218 				   bool pairwise, const u8 *mac_addr)
219 {
220 	if (key_idx < 0 || key_idx > 5)
221 		return -EINVAL;
222 
223 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
224 		return -EINVAL;
225 
226 	if (pairwise && !mac_addr)
227 		return -EINVAL;
228 
229 	switch (params->cipher) {
230 	case WLAN_CIPHER_SUITE_TKIP:
231 	case WLAN_CIPHER_SUITE_CCMP:
232 	case WLAN_CIPHER_SUITE_CCMP_256:
233 	case WLAN_CIPHER_SUITE_GCMP:
234 	case WLAN_CIPHER_SUITE_GCMP_256:
235 		/* Disallow pairwise keys with non-zero index unless it's WEP
236 		 * or a vendor specific cipher (because current deployments use
237 		 * pairwise WEP keys with non-zero indices and for vendor
238 		 * specific ciphers this should be validated in the driver or
239 		 * hardware level - but 802.11i clearly specifies to use zero)
240 		 */
241 		if (pairwise && key_idx)
242 			return -EINVAL;
243 		break;
244 	case WLAN_CIPHER_SUITE_AES_CMAC:
245 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
246 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
247 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
248 		/* Disallow BIP (group-only) cipher as pairwise cipher */
249 		if (pairwise)
250 			return -EINVAL;
251 		if (key_idx < 4)
252 			return -EINVAL;
253 		break;
254 	case WLAN_CIPHER_SUITE_WEP40:
255 	case WLAN_CIPHER_SUITE_WEP104:
256 		if (key_idx > 3)
257 			return -EINVAL;
258 	default:
259 		break;
260 	}
261 
262 	switch (params->cipher) {
263 	case WLAN_CIPHER_SUITE_WEP40:
264 		if (params->key_len != WLAN_KEY_LEN_WEP40)
265 			return -EINVAL;
266 		break;
267 	case WLAN_CIPHER_SUITE_TKIP:
268 		if (params->key_len != WLAN_KEY_LEN_TKIP)
269 			return -EINVAL;
270 		break;
271 	case WLAN_CIPHER_SUITE_CCMP:
272 		if (params->key_len != WLAN_KEY_LEN_CCMP)
273 			return -EINVAL;
274 		break;
275 	case WLAN_CIPHER_SUITE_CCMP_256:
276 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
277 			return -EINVAL;
278 		break;
279 	case WLAN_CIPHER_SUITE_GCMP:
280 		if (params->key_len != WLAN_KEY_LEN_GCMP)
281 			return -EINVAL;
282 		break;
283 	case WLAN_CIPHER_SUITE_GCMP_256:
284 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
285 			return -EINVAL;
286 		break;
287 	case WLAN_CIPHER_SUITE_WEP104:
288 		if (params->key_len != WLAN_KEY_LEN_WEP104)
289 			return -EINVAL;
290 		break;
291 	case WLAN_CIPHER_SUITE_AES_CMAC:
292 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
293 			return -EINVAL;
294 		break;
295 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
296 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
297 			return -EINVAL;
298 		break;
299 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
300 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
301 			return -EINVAL;
302 		break;
303 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
304 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
305 			return -EINVAL;
306 		break;
307 	default:
308 		/*
309 		 * We don't know anything about this algorithm,
310 		 * allow using it -- but the driver must check
311 		 * all parameters! We still check below whether
312 		 * or not the driver supports this algorithm,
313 		 * of course.
314 		 */
315 		break;
316 	}
317 
318 	if (params->seq) {
319 		switch (params->cipher) {
320 		case WLAN_CIPHER_SUITE_WEP40:
321 		case WLAN_CIPHER_SUITE_WEP104:
322 			/* These ciphers do not use key sequence */
323 			return -EINVAL;
324 		case WLAN_CIPHER_SUITE_TKIP:
325 		case WLAN_CIPHER_SUITE_CCMP:
326 		case WLAN_CIPHER_SUITE_CCMP_256:
327 		case WLAN_CIPHER_SUITE_GCMP:
328 		case WLAN_CIPHER_SUITE_GCMP_256:
329 		case WLAN_CIPHER_SUITE_AES_CMAC:
330 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
331 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
332 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
333 			if (params->seq_len != 6)
334 				return -EINVAL;
335 			break;
336 		}
337 	}
338 
339 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
340 		return -EINVAL;
341 
342 	return 0;
343 }
344 
345 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
346 {
347 	unsigned int hdrlen = 24;
348 
349 	if (ieee80211_is_data(fc)) {
350 		if (ieee80211_has_a4(fc))
351 			hdrlen = 30;
352 		if (ieee80211_is_data_qos(fc)) {
353 			hdrlen += IEEE80211_QOS_CTL_LEN;
354 			if (ieee80211_has_order(fc))
355 				hdrlen += IEEE80211_HT_CTL_LEN;
356 		}
357 		goto out;
358 	}
359 
360 	if (ieee80211_is_mgmt(fc)) {
361 		if (ieee80211_has_order(fc))
362 			hdrlen += IEEE80211_HT_CTL_LEN;
363 		goto out;
364 	}
365 
366 	if (ieee80211_is_ctl(fc)) {
367 		/*
368 		 * ACK and CTS are 10 bytes, all others 16. To see how
369 		 * to get this condition consider
370 		 *   subtype mask:   0b0000000011110000 (0x00F0)
371 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
372 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
373 		 *   bits that matter:         ^^^      (0x00E0)
374 		 *   value of those: 0b0000000011000000 (0x00C0)
375 		 */
376 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
377 			hdrlen = 10;
378 		else
379 			hdrlen = 16;
380 	}
381 out:
382 	return hdrlen;
383 }
384 EXPORT_SYMBOL(ieee80211_hdrlen);
385 
386 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
387 {
388 	const struct ieee80211_hdr *hdr =
389 			(const struct ieee80211_hdr *)skb->data;
390 	unsigned int hdrlen;
391 
392 	if (unlikely(skb->len < 10))
393 		return 0;
394 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
395 	if (unlikely(hdrlen > skb->len))
396 		return 0;
397 	return hdrlen;
398 }
399 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
400 
401 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
402 {
403 	int ae = flags & MESH_FLAGS_AE;
404 	/* 802.11-2012, 8.2.4.7.3 */
405 	switch (ae) {
406 	default:
407 	case 0:
408 		return 6;
409 	case MESH_FLAGS_AE_A4:
410 		return 12;
411 	case MESH_FLAGS_AE_A5_A6:
412 		return 18;
413 	}
414 }
415 
416 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
417 {
418 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
419 }
420 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
421 
422 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
423 				  const u8 *addr, enum nl80211_iftype iftype)
424 {
425 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
426 	struct {
427 		u8 hdr[ETH_ALEN] __aligned(2);
428 		__be16 proto;
429 	} payload;
430 	struct ethhdr tmp;
431 	u16 hdrlen;
432 	u8 mesh_flags = 0;
433 
434 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
435 		return -1;
436 
437 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
438 	if (skb->len < hdrlen + 8)
439 		return -1;
440 
441 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
442 	 * header
443 	 * IEEE 802.11 address fields:
444 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
445 	 *   0     0   DA    SA    BSSID n/a
446 	 *   0     1   DA    BSSID SA    n/a
447 	 *   1     0   BSSID SA    DA    n/a
448 	 *   1     1   RA    TA    DA    SA
449 	 */
450 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
451 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
452 
453 	if (iftype == NL80211_IFTYPE_MESH_POINT)
454 		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
455 
456 	mesh_flags &= MESH_FLAGS_AE;
457 
458 	switch (hdr->frame_control &
459 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
460 	case cpu_to_le16(IEEE80211_FCTL_TODS):
461 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
462 			     iftype != NL80211_IFTYPE_AP_VLAN &&
463 			     iftype != NL80211_IFTYPE_P2P_GO))
464 			return -1;
465 		break;
466 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
467 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
468 			     iftype != NL80211_IFTYPE_MESH_POINT &&
469 			     iftype != NL80211_IFTYPE_AP_VLAN &&
470 			     iftype != NL80211_IFTYPE_STATION))
471 			return -1;
472 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
473 			if (mesh_flags == MESH_FLAGS_AE_A4)
474 				return -1;
475 			if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
476 				skb_copy_bits(skb, hdrlen +
477 					offsetof(struct ieee80211s_hdr, eaddr1),
478 					tmp.h_dest, 2 * ETH_ALEN);
479 			}
480 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
481 		}
482 		break;
483 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
484 		if ((iftype != NL80211_IFTYPE_STATION &&
485 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
486 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
487 		    (is_multicast_ether_addr(tmp.h_dest) &&
488 		     ether_addr_equal(tmp.h_source, addr)))
489 			return -1;
490 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
491 			if (mesh_flags == MESH_FLAGS_AE_A5_A6)
492 				return -1;
493 			if (mesh_flags == MESH_FLAGS_AE_A4)
494 				skb_copy_bits(skb, hdrlen +
495 					offsetof(struct ieee80211s_hdr, eaddr1),
496 					tmp.h_source, ETH_ALEN);
497 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
498 		}
499 		break;
500 	case cpu_to_le16(0):
501 		if (iftype != NL80211_IFTYPE_ADHOC &&
502 		    iftype != NL80211_IFTYPE_STATION &&
503 		    iftype != NL80211_IFTYPE_OCB)
504 				return -1;
505 		break;
506 	}
507 
508 	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
509 	tmp.h_proto = payload.proto;
510 
511 	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
512 		    tmp.h_proto != htons(ETH_P_AARP) &&
513 		    tmp.h_proto != htons(ETH_P_IPX)) ||
514 		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
515 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
516 		 * replace EtherType */
517 		hdrlen += ETH_ALEN + 2;
518 	else
519 		tmp.h_proto = htons(skb->len - hdrlen);
520 
521 	pskb_pull(skb, hdrlen);
522 
523 	if (!ehdr)
524 		ehdr = skb_push(skb, sizeof(struct ethhdr));
525 	memcpy(ehdr, &tmp, sizeof(tmp));
526 
527 	return 0;
528 }
529 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
530 
531 static void
532 __frame_add_frag(struct sk_buff *skb, struct page *page,
533 		 void *ptr, int len, int size)
534 {
535 	struct skb_shared_info *sh = skb_shinfo(skb);
536 	int page_offset;
537 
538 	page_ref_inc(page);
539 	page_offset = ptr - page_address(page);
540 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
541 }
542 
543 static void
544 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
545 			    int offset, int len)
546 {
547 	struct skb_shared_info *sh = skb_shinfo(skb);
548 	const skb_frag_t *frag = &sh->frags[0];
549 	struct page *frag_page;
550 	void *frag_ptr;
551 	int frag_len, frag_size;
552 	int head_size = skb->len - skb->data_len;
553 	int cur_len;
554 
555 	frag_page = virt_to_head_page(skb->head);
556 	frag_ptr = skb->data;
557 	frag_size = head_size;
558 
559 	while (offset >= frag_size) {
560 		offset -= frag_size;
561 		frag_page = skb_frag_page(frag);
562 		frag_ptr = skb_frag_address(frag);
563 		frag_size = skb_frag_size(frag);
564 		frag++;
565 	}
566 
567 	frag_ptr += offset;
568 	frag_len = frag_size - offset;
569 
570 	cur_len = min(len, frag_len);
571 
572 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
573 	len -= cur_len;
574 
575 	while (len > 0) {
576 		frag_len = skb_frag_size(frag);
577 		cur_len = min(len, frag_len);
578 		__frame_add_frag(frame, skb_frag_page(frag),
579 				 skb_frag_address(frag), cur_len, frag_len);
580 		len -= cur_len;
581 		frag++;
582 	}
583 }
584 
585 static struct sk_buff *
586 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
587 		       int offset, int len, bool reuse_frag)
588 {
589 	struct sk_buff *frame;
590 	int cur_len = len;
591 
592 	if (skb->len - offset < len)
593 		return NULL;
594 
595 	/*
596 	 * When reusing framents, copy some data to the head to simplify
597 	 * ethernet header handling and speed up protocol header processing
598 	 * in the stack later.
599 	 */
600 	if (reuse_frag)
601 		cur_len = min_t(int, len, 32);
602 
603 	/*
604 	 * Allocate and reserve two bytes more for payload
605 	 * alignment since sizeof(struct ethhdr) is 14.
606 	 */
607 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
608 	if (!frame)
609 		return NULL;
610 
611 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
612 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
613 
614 	len -= cur_len;
615 	if (!len)
616 		return frame;
617 
618 	offset += cur_len;
619 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
620 
621 	return frame;
622 }
623 
624 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
625 			      const u8 *addr, enum nl80211_iftype iftype,
626 			      const unsigned int extra_headroom,
627 			      const u8 *check_da, const u8 *check_sa)
628 {
629 	unsigned int hlen = ALIGN(extra_headroom, 4);
630 	struct sk_buff *frame = NULL;
631 	u16 ethertype;
632 	u8 *payload;
633 	int offset = 0, remaining;
634 	struct ethhdr eth;
635 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
636 	bool reuse_skb = false;
637 	bool last = false;
638 
639 	while (!last) {
640 		unsigned int subframe_len;
641 		int len;
642 		u8 padding;
643 
644 		skb_copy_bits(skb, offset, &eth, sizeof(eth));
645 		len = ntohs(eth.h_proto);
646 		subframe_len = sizeof(struct ethhdr) + len;
647 		padding = (4 - subframe_len) & 0x3;
648 
649 		/* the last MSDU has no padding */
650 		remaining = skb->len - offset;
651 		if (subframe_len > remaining)
652 			goto purge;
653 
654 		offset += sizeof(struct ethhdr);
655 		last = remaining <= subframe_len + padding;
656 
657 		/* FIXME: should we really accept multicast DA? */
658 		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
659 		     !ether_addr_equal(check_da, eth.h_dest)) ||
660 		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
661 			offset += len + padding;
662 			continue;
663 		}
664 
665 		/* reuse skb for the last subframe */
666 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
667 			skb_pull(skb, offset);
668 			frame = skb;
669 			reuse_skb = true;
670 		} else {
671 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
672 						       reuse_frag);
673 			if (!frame)
674 				goto purge;
675 
676 			offset += len + padding;
677 		}
678 
679 		skb_reset_network_header(frame);
680 		frame->dev = skb->dev;
681 		frame->priority = skb->priority;
682 
683 		payload = frame->data;
684 		ethertype = (payload[6] << 8) | payload[7];
685 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
686 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
687 			   ether_addr_equal(payload, bridge_tunnel_header))) {
688 			eth.h_proto = htons(ethertype);
689 			skb_pull(frame, ETH_ALEN + 2);
690 		}
691 
692 		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
693 		__skb_queue_tail(list, frame);
694 	}
695 
696 	if (!reuse_skb)
697 		dev_kfree_skb(skb);
698 
699 	return;
700 
701  purge:
702 	__skb_queue_purge(list);
703 	dev_kfree_skb(skb);
704 }
705 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
706 
707 /* Given a data frame determine the 802.1p/1d tag to use. */
708 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
709 				    struct cfg80211_qos_map *qos_map)
710 {
711 	unsigned int dscp;
712 	unsigned char vlan_priority;
713 
714 	/* skb->priority values from 256->263 are magic values to
715 	 * directly indicate a specific 802.1d priority.  This is used
716 	 * to allow 802.1d priority to be passed directly in from VLAN
717 	 * tags, etc.
718 	 */
719 	if (skb->priority >= 256 && skb->priority <= 263)
720 		return skb->priority - 256;
721 
722 	if (skb_vlan_tag_present(skb)) {
723 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
724 			>> VLAN_PRIO_SHIFT;
725 		if (vlan_priority > 0)
726 			return vlan_priority;
727 	}
728 
729 	switch (skb->protocol) {
730 	case htons(ETH_P_IP):
731 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
732 		break;
733 	case htons(ETH_P_IPV6):
734 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
735 		break;
736 	case htons(ETH_P_MPLS_UC):
737 	case htons(ETH_P_MPLS_MC): {
738 		struct mpls_label mpls_tmp, *mpls;
739 
740 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
741 					  sizeof(*mpls), &mpls_tmp);
742 		if (!mpls)
743 			return 0;
744 
745 		return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
746 			>> MPLS_LS_TC_SHIFT;
747 	}
748 	case htons(ETH_P_80221):
749 		/* 802.21 is always network control traffic */
750 		return 7;
751 	default:
752 		return 0;
753 	}
754 
755 	if (qos_map) {
756 		unsigned int i, tmp_dscp = dscp >> 2;
757 
758 		for (i = 0; i < qos_map->num_des; i++) {
759 			if (tmp_dscp == qos_map->dscp_exception[i].dscp)
760 				return qos_map->dscp_exception[i].up;
761 		}
762 
763 		for (i = 0; i < 8; i++) {
764 			if (tmp_dscp >= qos_map->up[i].low &&
765 			    tmp_dscp <= qos_map->up[i].high)
766 				return i;
767 		}
768 	}
769 
770 	return dscp >> 5;
771 }
772 EXPORT_SYMBOL(cfg80211_classify8021d);
773 
774 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
775 {
776 	const struct cfg80211_bss_ies *ies;
777 
778 	ies = rcu_dereference(bss->ies);
779 	if (!ies)
780 		return NULL;
781 
782 	return cfg80211_find_ie(ie, ies->data, ies->len);
783 }
784 EXPORT_SYMBOL(ieee80211_bss_get_ie);
785 
786 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
787 {
788 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
789 	struct net_device *dev = wdev->netdev;
790 	int i;
791 
792 	if (!wdev->connect_keys)
793 		return;
794 
795 	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
796 		if (!wdev->connect_keys->params[i].cipher)
797 			continue;
798 		if (rdev_add_key(rdev, dev, i, false, NULL,
799 				 &wdev->connect_keys->params[i])) {
800 			netdev_err(dev, "failed to set key %d\n", i);
801 			continue;
802 		}
803 		if (wdev->connect_keys->def == i &&
804 		    rdev_set_default_key(rdev, dev, i, true, true)) {
805 			netdev_err(dev, "failed to set defkey %d\n", i);
806 			continue;
807 		}
808 	}
809 
810 	kzfree(wdev->connect_keys);
811 	wdev->connect_keys = NULL;
812 }
813 
814 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
815 {
816 	struct cfg80211_event *ev;
817 	unsigned long flags;
818 
819 	spin_lock_irqsave(&wdev->event_lock, flags);
820 	while (!list_empty(&wdev->event_list)) {
821 		ev = list_first_entry(&wdev->event_list,
822 				      struct cfg80211_event, list);
823 		list_del(&ev->list);
824 		spin_unlock_irqrestore(&wdev->event_lock, flags);
825 
826 		wdev_lock(wdev);
827 		switch (ev->type) {
828 		case EVENT_CONNECT_RESULT:
829 			__cfg80211_connect_result(
830 				wdev->netdev,
831 				&ev->cr,
832 				ev->cr.status == WLAN_STATUS_SUCCESS);
833 			break;
834 		case EVENT_ROAMED:
835 			__cfg80211_roamed(wdev, &ev->rm);
836 			break;
837 		case EVENT_DISCONNECTED:
838 			__cfg80211_disconnected(wdev->netdev,
839 						ev->dc.ie, ev->dc.ie_len,
840 						ev->dc.reason,
841 						!ev->dc.locally_generated);
842 			break;
843 		case EVENT_IBSS_JOINED:
844 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
845 					       ev->ij.channel);
846 			break;
847 		case EVENT_STOPPED:
848 			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
849 			break;
850 		case EVENT_PORT_AUTHORIZED:
851 			__cfg80211_port_authorized(wdev, ev->pa.bssid);
852 			break;
853 		}
854 		wdev_unlock(wdev);
855 
856 		kfree(ev);
857 
858 		spin_lock_irqsave(&wdev->event_lock, flags);
859 	}
860 	spin_unlock_irqrestore(&wdev->event_lock, flags);
861 }
862 
863 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
864 {
865 	struct wireless_dev *wdev;
866 
867 	ASSERT_RTNL();
868 
869 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
870 		cfg80211_process_wdev_events(wdev);
871 }
872 
873 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
874 			  struct net_device *dev, enum nl80211_iftype ntype,
875 			  struct vif_params *params)
876 {
877 	int err;
878 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
879 
880 	ASSERT_RTNL();
881 
882 	/* don't support changing VLANs, you just re-create them */
883 	if (otype == NL80211_IFTYPE_AP_VLAN)
884 		return -EOPNOTSUPP;
885 
886 	/* cannot change into P2P device or NAN */
887 	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
888 	    ntype == NL80211_IFTYPE_NAN)
889 		return -EOPNOTSUPP;
890 
891 	if (!rdev->ops->change_virtual_intf ||
892 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
893 		return -EOPNOTSUPP;
894 
895 	/* if it's part of a bridge, reject changing type to station/ibss */
896 	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
897 	    (ntype == NL80211_IFTYPE_ADHOC ||
898 	     ntype == NL80211_IFTYPE_STATION ||
899 	     ntype == NL80211_IFTYPE_P2P_CLIENT))
900 		return -EBUSY;
901 
902 	if (ntype != otype) {
903 		dev->ieee80211_ptr->use_4addr = false;
904 		dev->ieee80211_ptr->mesh_id_up_len = 0;
905 		wdev_lock(dev->ieee80211_ptr);
906 		rdev_set_qos_map(rdev, dev, NULL);
907 		wdev_unlock(dev->ieee80211_ptr);
908 
909 		switch (otype) {
910 		case NL80211_IFTYPE_AP:
911 			cfg80211_stop_ap(rdev, dev, true);
912 			break;
913 		case NL80211_IFTYPE_ADHOC:
914 			cfg80211_leave_ibss(rdev, dev, false);
915 			break;
916 		case NL80211_IFTYPE_STATION:
917 		case NL80211_IFTYPE_P2P_CLIENT:
918 			wdev_lock(dev->ieee80211_ptr);
919 			cfg80211_disconnect(rdev, dev,
920 					    WLAN_REASON_DEAUTH_LEAVING, true);
921 			wdev_unlock(dev->ieee80211_ptr);
922 			break;
923 		case NL80211_IFTYPE_MESH_POINT:
924 			/* mesh should be handled? */
925 			break;
926 		default:
927 			break;
928 		}
929 
930 		cfg80211_process_rdev_events(rdev);
931 	}
932 
933 	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
934 
935 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
936 
937 	if (!err && params && params->use_4addr != -1)
938 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
939 
940 	if (!err) {
941 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
942 		switch (ntype) {
943 		case NL80211_IFTYPE_STATION:
944 			if (dev->ieee80211_ptr->use_4addr)
945 				break;
946 			/* fall through */
947 		case NL80211_IFTYPE_OCB:
948 		case NL80211_IFTYPE_P2P_CLIENT:
949 		case NL80211_IFTYPE_ADHOC:
950 			dev->priv_flags |= IFF_DONT_BRIDGE;
951 			break;
952 		case NL80211_IFTYPE_P2P_GO:
953 		case NL80211_IFTYPE_AP:
954 		case NL80211_IFTYPE_AP_VLAN:
955 		case NL80211_IFTYPE_WDS:
956 		case NL80211_IFTYPE_MESH_POINT:
957 			/* bridging OK */
958 			break;
959 		case NL80211_IFTYPE_MONITOR:
960 			/* monitor can't bridge anyway */
961 			break;
962 		case NL80211_IFTYPE_UNSPECIFIED:
963 		case NUM_NL80211_IFTYPES:
964 			/* not happening */
965 			break;
966 		case NL80211_IFTYPE_P2P_DEVICE:
967 		case NL80211_IFTYPE_NAN:
968 			WARN_ON(1);
969 			break;
970 		}
971 	}
972 
973 	if (!err && ntype != otype && netif_running(dev)) {
974 		cfg80211_update_iface_num(rdev, ntype, 1);
975 		cfg80211_update_iface_num(rdev, otype, -1);
976 	}
977 
978 	return err;
979 }
980 
981 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
982 {
983 	int modulation, streams, bitrate;
984 
985 	/* the formula below does only work for MCS values smaller than 32 */
986 	if (WARN_ON_ONCE(rate->mcs >= 32))
987 		return 0;
988 
989 	modulation = rate->mcs & 7;
990 	streams = (rate->mcs >> 3) + 1;
991 
992 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
993 
994 	if (modulation < 4)
995 		bitrate *= (modulation + 1);
996 	else if (modulation == 4)
997 		bitrate *= (modulation + 2);
998 	else
999 		bitrate *= (modulation + 3);
1000 
1001 	bitrate *= streams;
1002 
1003 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1004 		bitrate = (bitrate / 9) * 10;
1005 
1006 	/* do NOT round down here */
1007 	return (bitrate + 50000) / 100000;
1008 }
1009 
1010 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1011 {
1012 	static const u32 __mcs2bitrate[] = {
1013 		/* control PHY */
1014 		[0] =   275,
1015 		/* SC PHY */
1016 		[1] =  3850,
1017 		[2] =  7700,
1018 		[3] =  9625,
1019 		[4] = 11550,
1020 		[5] = 12512, /* 1251.25 mbps */
1021 		[6] = 15400,
1022 		[7] = 19250,
1023 		[8] = 23100,
1024 		[9] = 25025,
1025 		[10] = 30800,
1026 		[11] = 38500,
1027 		[12] = 46200,
1028 		/* OFDM PHY */
1029 		[13] =  6930,
1030 		[14] =  8662, /* 866.25 mbps */
1031 		[15] = 13860,
1032 		[16] = 17325,
1033 		[17] = 20790,
1034 		[18] = 27720,
1035 		[19] = 34650,
1036 		[20] = 41580,
1037 		[21] = 45045,
1038 		[22] = 51975,
1039 		[23] = 62370,
1040 		[24] = 67568, /* 6756.75 mbps */
1041 		/* LP-SC PHY */
1042 		[25] =  6260,
1043 		[26] =  8340,
1044 		[27] = 11120,
1045 		[28] = 12510,
1046 		[29] = 16680,
1047 		[30] = 22240,
1048 		[31] = 25030,
1049 	};
1050 
1051 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1052 		return 0;
1053 
1054 	return __mcs2bitrate[rate->mcs];
1055 }
1056 
1057 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1058 {
1059 	static const u32 base[4][10] = {
1060 		{   6500000,
1061 		   13000000,
1062 		   19500000,
1063 		   26000000,
1064 		   39000000,
1065 		   52000000,
1066 		   58500000,
1067 		   65000000,
1068 		   78000000,
1069 		/* not in the spec, but some devices use this: */
1070 		   86500000,
1071 		},
1072 		{  13500000,
1073 		   27000000,
1074 		   40500000,
1075 		   54000000,
1076 		   81000000,
1077 		  108000000,
1078 		  121500000,
1079 		  135000000,
1080 		  162000000,
1081 		  180000000,
1082 		},
1083 		{  29300000,
1084 		   58500000,
1085 		   87800000,
1086 		  117000000,
1087 		  175500000,
1088 		  234000000,
1089 		  263300000,
1090 		  292500000,
1091 		  351000000,
1092 		  390000000,
1093 		},
1094 		{  58500000,
1095 		  117000000,
1096 		  175500000,
1097 		  234000000,
1098 		  351000000,
1099 		  468000000,
1100 		  526500000,
1101 		  585000000,
1102 		  702000000,
1103 		  780000000,
1104 		},
1105 	};
1106 	u32 bitrate;
1107 	int idx;
1108 
1109 	if (rate->mcs > 9)
1110 		goto warn;
1111 
1112 	switch (rate->bw) {
1113 	case RATE_INFO_BW_160:
1114 		idx = 3;
1115 		break;
1116 	case RATE_INFO_BW_80:
1117 		idx = 2;
1118 		break;
1119 	case RATE_INFO_BW_40:
1120 		idx = 1;
1121 		break;
1122 	case RATE_INFO_BW_5:
1123 	case RATE_INFO_BW_10:
1124 	default:
1125 		goto warn;
1126 	case RATE_INFO_BW_20:
1127 		idx = 0;
1128 	}
1129 
1130 	bitrate = base[idx][rate->mcs];
1131 	bitrate *= rate->nss;
1132 
1133 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1134 		bitrate = (bitrate / 9) * 10;
1135 
1136 	/* do NOT round down here */
1137 	return (bitrate + 50000) / 100000;
1138  warn:
1139 	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1140 		  rate->bw, rate->mcs, rate->nss);
1141 	return 0;
1142 }
1143 
1144 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1145 {
1146 	if (rate->flags & RATE_INFO_FLAGS_MCS)
1147 		return cfg80211_calculate_bitrate_ht(rate);
1148 	if (rate->flags & RATE_INFO_FLAGS_60G)
1149 		return cfg80211_calculate_bitrate_60g(rate);
1150 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1151 		return cfg80211_calculate_bitrate_vht(rate);
1152 
1153 	return rate->legacy;
1154 }
1155 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1156 
1157 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1158 			  enum ieee80211_p2p_attr_id attr,
1159 			  u8 *buf, unsigned int bufsize)
1160 {
1161 	u8 *out = buf;
1162 	u16 attr_remaining = 0;
1163 	bool desired_attr = false;
1164 	u16 desired_len = 0;
1165 
1166 	while (len > 0) {
1167 		unsigned int iedatalen;
1168 		unsigned int copy;
1169 		const u8 *iedata;
1170 
1171 		if (len < 2)
1172 			return -EILSEQ;
1173 		iedatalen = ies[1];
1174 		if (iedatalen + 2 > len)
1175 			return -EILSEQ;
1176 
1177 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1178 			goto cont;
1179 
1180 		if (iedatalen < 4)
1181 			goto cont;
1182 
1183 		iedata = ies + 2;
1184 
1185 		/* check WFA OUI, P2P subtype */
1186 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1187 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1188 			goto cont;
1189 
1190 		iedatalen -= 4;
1191 		iedata += 4;
1192 
1193 		/* check attribute continuation into this IE */
1194 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1195 		if (copy && desired_attr) {
1196 			desired_len += copy;
1197 			if (out) {
1198 				memcpy(out, iedata, min(bufsize, copy));
1199 				out += min(bufsize, copy);
1200 				bufsize -= min(bufsize, copy);
1201 			}
1202 
1203 
1204 			if (copy == attr_remaining)
1205 				return desired_len;
1206 		}
1207 
1208 		attr_remaining -= copy;
1209 		if (attr_remaining)
1210 			goto cont;
1211 
1212 		iedatalen -= copy;
1213 		iedata += copy;
1214 
1215 		while (iedatalen > 0) {
1216 			u16 attr_len;
1217 
1218 			/* P2P attribute ID & size must fit */
1219 			if (iedatalen < 3)
1220 				return -EILSEQ;
1221 			desired_attr = iedata[0] == attr;
1222 			attr_len = get_unaligned_le16(iedata + 1);
1223 			iedatalen -= 3;
1224 			iedata += 3;
1225 
1226 			copy = min_t(unsigned int, attr_len, iedatalen);
1227 
1228 			if (desired_attr) {
1229 				desired_len += copy;
1230 				if (out) {
1231 					memcpy(out, iedata, min(bufsize, copy));
1232 					out += min(bufsize, copy);
1233 					bufsize -= min(bufsize, copy);
1234 				}
1235 
1236 				if (copy == attr_len)
1237 					return desired_len;
1238 			}
1239 
1240 			iedata += copy;
1241 			iedatalen -= copy;
1242 			attr_remaining = attr_len - copy;
1243 		}
1244 
1245  cont:
1246 		len -= ies[1] + 2;
1247 		ies += ies[1] + 2;
1248 	}
1249 
1250 	if (attr_remaining && desired_attr)
1251 		return -EILSEQ;
1252 
1253 	return -ENOENT;
1254 }
1255 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1256 
1257 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1258 {
1259 	int i;
1260 
1261 	/* Make sure array values are legal */
1262 	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1263 		return false;
1264 
1265 	i = 0;
1266 	while (i < n_ids) {
1267 		if (ids[i] == WLAN_EID_EXTENSION) {
1268 			if (id_ext && (ids[i + 1] == id))
1269 				return true;
1270 
1271 			i += 2;
1272 			continue;
1273 		}
1274 
1275 		if (ids[i] == id && !id_ext)
1276 			return true;
1277 
1278 		i++;
1279 	}
1280 	return false;
1281 }
1282 
1283 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1284 {
1285 	/* we assume a validly formed IEs buffer */
1286 	u8 len = ies[pos + 1];
1287 
1288 	pos += 2 + len;
1289 
1290 	/* the IE itself must have 255 bytes for fragments to follow */
1291 	if (len < 255)
1292 		return pos;
1293 
1294 	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1295 		len = ies[pos + 1];
1296 		pos += 2 + len;
1297 	}
1298 
1299 	return pos;
1300 }
1301 
1302 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1303 			      const u8 *ids, int n_ids,
1304 			      const u8 *after_ric, int n_after_ric,
1305 			      size_t offset)
1306 {
1307 	size_t pos = offset;
1308 
1309 	while (pos < ielen) {
1310 		u8 ext = 0;
1311 
1312 		if (ies[pos] == WLAN_EID_EXTENSION)
1313 			ext = 2;
1314 		if ((pos + ext) >= ielen)
1315 			break;
1316 
1317 		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1318 					  ies[pos] == WLAN_EID_EXTENSION))
1319 			break;
1320 
1321 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1322 			pos = skip_ie(ies, ielen, pos);
1323 
1324 			while (pos < ielen) {
1325 				if (ies[pos] == WLAN_EID_EXTENSION)
1326 					ext = 2;
1327 				else
1328 					ext = 0;
1329 
1330 				if ((pos + ext) >= ielen)
1331 					break;
1332 
1333 				if (!ieee80211_id_in_list(after_ric,
1334 							  n_after_ric,
1335 							  ies[pos + ext],
1336 							  ext == 2))
1337 					pos = skip_ie(ies, ielen, pos);
1338 			}
1339 		} else {
1340 			pos = skip_ie(ies, ielen, pos);
1341 		}
1342 	}
1343 
1344 	return pos;
1345 }
1346 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1347 
1348 bool ieee80211_operating_class_to_band(u8 operating_class,
1349 				       enum nl80211_band *band)
1350 {
1351 	switch (operating_class) {
1352 	case 112:
1353 	case 115 ... 127:
1354 	case 128 ... 130:
1355 		*band = NL80211_BAND_5GHZ;
1356 		return true;
1357 	case 81:
1358 	case 82:
1359 	case 83:
1360 	case 84:
1361 		*band = NL80211_BAND_2GHZ;
1362 		return true;
1363 	case 180:
1364 		*band = NL80211_BAND_60GHZ;
1365 		return true;
1366 	}
1367 
1368 	return false;
1369 }
1370 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1371 
1372 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1373 					  u8 *op_class)
1374 {
1375 	u8 vht_opclass;
1376 	u16 freq = chandef->center_freq1;
1377 
1378 	if (freq >= 2412 && freq <= 2472) {
1379 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1380 			return false;
1381 
1382 		/* 2.407 GHz, channels 1..13 */
1383 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1384 			if (freq > chandef->chan->center_freq)
1385 				*op_class = 83; /* HT40+ */
1386 			else
1387 				*op_class = 84; /* HT40- */
1388 		} else {
1389 			*op_class = 81;
1390 		}
1391 
1392 		return true;
1393 	}
1394 
1395 	if (freq == 2484) {
1396 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1397 			return false;
1398 
1399 		*op_class = 82; /* channel 14 */
1400 		return true;
1401 	}
1402 
1403 	switch (chandef->width) {
1404 	case NL80211_CHAN_WIDTH_80:
1405 		vht_opclass = 128;
1406 		break;
1407 	case NL80211_CHAN_WIDTH_160:
1408 		vht_opclass = 129;
1409 		break;
1410 	case NL80211_CHAN_WIDTH_80P80:
1411 		vht_opclass = 130;
1412 		break;
1413 	case NL80211_CHAN_WIDTH_10:
1414 	case NL80211_CHAN_WIDTH_5:
1415 		return false; /* unsupported for now */
1416 	default:
1417 		vht_opclass = 0;
1418 		break;
1419 	}
1420 
1421 	/* 5 GHz, channels 36..48 */
1422 	if (freq >= 5180 && freq <= 5240) {
1423 		if (vht_opclass) {
1424 			*op_class = vht_opclass;
1425 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1426 			if (freq > chandef->chan->center_freq)
1427 				*op_class = 116;
1428 			else
1429 				*op_class = 117;
1430 		} else {
1431 			*op_class = 115;
1432 		}
1433 
1434 		return true;
1435 	}
1436 
1437 	/* 5 GHz, channels 52..64 */
1438 	if (freq >= 5260 && freq <= 5320) {
1439 		if (vht_opclass) {
1440 			*op_class = vht_opclass;
1441 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1442 			if (freq > chandef->chan->center_freq)
1443 				*op_class = 119;
1444 			else
1445 				*op_class = 120;
1446 		} else {
1447 			*op_class = 118;
1448 		}
1449 
1450 		return true;
1451 	}
1452 
1453 	/* 5 GHz, channels 100..144 */
1454 	if (freq >= 5500 && freq <= 5720) {
1455 		if (vht_opclass) {
1456 			*op_class = vht_opclass;
1457 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1458 			if (freq > chandef->chan->center_freq)
1459 				*op_class = 122;
1460 			else
1461 				*op_class = 123;
1462 		} else {
1463 			*op_class = 121;
1464 		}
1465 
1466 		return true;
1467 	}
1468 
1469 	/* 5 GHz, channels 149..169 */
1470 	if (freq >= 5745 && freq <= 5845) {
1471 		if (vht_opclass) {
1472 			*op_class = vht_opclass;
1473 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1474 			if (freq > chandef->chan->center_freq)
1475 				*op_class = 126;
1476 			else
1477 				*op_class = 127;
1478 		} else if (freq <= 5805) {
1479 			*op_class = 124;
1480 		} else {
1481 			*op_class = 125;
1482 		}
1483 
1484 		return true;
1485 	}
1486 
1487 	/* 56.16 GHz, channel 1..4 */
1488 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1489 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1490 			return false;
1491 
1492 		*op_class = 180;
1493 		return true;
1494 	}
1495 
1496 	/* not supported yet */
1497 	return false;
1498 }
1499 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1500 
1501 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1502 				       u32 *beacon_int_gcd,
1503 				       bool *beacon_int_different)
1504 {
1505 	struct wireless_dev *wdev;
1506 
1507 	*beacon_int_gcd = 0;
1508 	*beacon_int_different = false;
1509 
1510 	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1511 		if (!wdev->beacon_interval)
1512 			continue;
1513 
1514 		if (!*beacon_int_gcd) {
1515 			*beacon_int_gcd = wdev->beacon_interval;
1516 			continue;
1517 		}
1518 
1519 		if (wdev->beacon_interval == *beacon_int_gcd)
1520 			continue;
1521 
1522 		*beacon_int_different = true;
1523 		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1524 	}
1525 
1526 	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1527 		if (*beacon_int_gcd)
1528 			*beacon_int_different = true;
1529 		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1530 	}
1531 }
1532 
1533 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1534 				 enum nl80211_iftype iftype, u32 beacon_int)
1535 {
1536 	/*
1537 	 * This is just a basic pre-condition check; if interface combinations
1538 	 * are possible the driver must already be checking those with a call
1539 	 * to cfg80211_check_combinations(), in which case we'll validate more
1540 	 * through the cfg80211_calculate_bi_data() call and code in
1541 	 * cfg80211_iter_combinations().
1542 	 */
1543 
1544 	if (beacon_int < 10 || beacon_int > 10000)
1545 		return -EINVAL;
1546 
1547 	return 0;
1548 }
1549 
1550 int cfg80211_iter_combinations(struct wiphy *wiphy,
1551 			       struct iface_combination_params *params,
1552 			       void (*iter)(const struct ieee80211_iface_combination *c,
1553 					    void *data),
1554 			       void *data)
1555 {
1556 	const struct ieee80211_regdomain *regdom;
1557 	enum nl80211_dfs_regions region = 0;
1558 	int i, j, iftype;
1559 	int num_interfaces = 0;
1560 	u32 used_iftypes = 0;
1561 	u32 beacon_int_gcd;
1562 	bool beacon_int_different;
1563 
1564 	/*
1565 	 * This is a bit strange, since the iteration used to rely only on
1566 	 * the data given by the driver, but here it now relies on context,
1567 	 * in form of the currently operating interfaces.
1568 	 * This is OK for all current users, and saves us from having to
1569 	 * push the GCD calculations into all the drivers.
1570 	 * In the future, this should probably rely more on data that's in
1571 	 * cfg80211 already - the only thing not would appear to be any new
1572 	 * interfaces (while being brought up) and channel/radar data.
1573 	 */
1574 	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1575 				   &beacon_int_gcd, &beacon_int_different);
1576 
1577 	if (params->radar_detect) {
1578 		rcu_read_lock();
1579 		regdom = rcu_dereference(cfg80211_regdomain);
1580 		if (regdom)
1581 			region = regdom->dfs_region;
1582 		rcu_read_unlock();
1583 	}
1584 
1585 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1586 		num_interfaces += params->iftype_num[iftype];
1587 		if (params->iftype_num[iftype] > 0 &&
1588 		    !(wiphy->software_iftypes & BIT(iftype)))
1589 			used_iftypes |= BIT(iftype);
1590 	}
1591 
1592 	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1593 		const struct ieee80211_iface_combination *c;
1594 		struct ieee80211_iface_limit *limits;
1595 		u32 all_iftypes = 0;
1596 
1597 		c = &wiphy->iface_combinations[i];
1598 
1599 		if (num_interfaces > c->max_interfaces)
1600 			continue;
1601 		if (params->num_different_channels > c->num_different_channels)
1602 			continue;
1603 
1604 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1605 				 GFP_KERNEL);
1606 		if (!limits)
1607 			return -ENOMEM;
1608 
1609 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1610 			if (wiphy->software_iftypes & BIT(iftype))
1611 				continue;
1612 			for (j = 0; j < c->n_limits; j++) {
1613 				all_iftypes |= limits[j].types;
1614 				if (!(limits[j].types & BIT(iftype)))
1615 					continue;
1616 				if (limits[j].max < params->iftype_num[iftype])
1617 					goto cont;
1618 				limits[j].max -= params->iftype_num[iftype];
1619 			}
1620 		}
1621 
1622 		if (params->radar_detect !=
1623 			(c->radar_detect_widths & params->radar_detect))
1624 			goto cont;
1625 
1626 		if (params->radar_detect && c->radar_detect_regions &&
1627 		    !(c->radar_detect_regions & BIT(region)))
1628 			goto cont;
1629 
1630 		/* Finally check that all iftypes that we're currently
1631 		 * using are actually part of this combination. If they
1632 		 * aren't then we can't use this combination and have
1633 		 * to continue to the next.
1634 		 */
1635 		if ((all_iftypes & used_iftypes) != used_iftypes)
1636 			goto cont;
1637 
1638 		if (beacon_int_gcd) {
1639 			if (c->beacon_int_min_gcd &&
1640 			    beacon_int_gcd < c->beacon_int_min_gcd)
1641 				goto cont;
1642 			if (!c->beacon_int_min_gcd && beacon_int_different)
1643 				goto cont;
1644 		}
1645 
1646 		/* This combination covered all interface types and
1647 		 * supported the requested numbers, so we're good.
1648 		 */
1649 
1650 		(*iter)(c, data);
1651  cont:
1652 		kfree(limits);
1653 	}
1654 
1655 	return 0;
1656 }
1657 EXPORT_SYMBOL(cfg80211_iter_combinations);
1658 
1659 static void
1660 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1661 			  void *data)
1662 {
1663 	int *num = data;
1664 	(*num)++;
1665 }
1666 
1667 int cfg80211_check_combinations(struct wiphy *wiphy,
1668 				struct iface_combination_params *params)
1669 {
1670 	int err, num = 0;
1671 
1672 	err = cfg80211_iter_combinations(wiphy, params,
1673 					 cfg80211_iter_sum_ifcombs, &num);
1674 	if (err)
1675 		return err;
1676 	if (num == 0)
1677 		return -EBUSY;
1678 
1679 	return 0;
1680 }
1681 EXPORT_SYMBOL(cfg80211_check_combinations);
1682 
1683 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1684 			   const u8 *rates, unsigned int n_rates,
1685 			   u32 *mask)
1686 {
1687 	int i, j;
1688 
1689 	if (!sband)
1690 		return -EINVAL;
1691 
1692 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1693 		return -EINVAL;
1694 
1695 	*mask = 0;
1696 
1697 	for (i = 0; i < n_rates; i++) {
1698 		int rate = (rates[i] & 0x7f) * 5;
1699 		bool found = false;
1700 
1701 		for (j = 0; j < sband->n_bitrates; j++) {
1702 			if (sband->bitrates[j].bitrate == rate) {
1703 				found = true;
1704 				*mask |= BIT(j);
1705 				break;
1706 			}
1707 		}
1708 		if (!found)
1709 			return -EINVAL;
1710 	}
1711 
1712 	/*
1713 	 * mask must have at least one bit set here since we
1714 	 * didn't accept a 0-length rates array nor allowed
1715 	 * entries in the array that didn't exist
1716 	 */
1717 
1718 	return 0;
1719 }
1720 
1721 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1722 {
1723 	enum nl80211_band band;
1724 	unsigned int n_channels = 0;
1725 
1726 	for (band = 0; band < NUM_NL80211_BANDS; band++)
1727 		if (wiphy->bands[band])
1728 			n_channels += wiphy->bands[band]->n_channels;
1729 
1730 	return n_channels;
1731 }
1732 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1733 
1734 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1735 			 struct station_info *sinfo)
1736 {
1737 	struct cfg80211_registered_device *rdev;
1738 	struct wireless_dev *wdev;
1739 
1740 	wdev = dev->ieee80211_ptr;
1741 	if (!wdev)
1742 		return -EOPNOTSUPP;
1743 
1744 	rdev = wiphy_to_rdev(wdev->wiphy);
1745 	if (!rdev->ops->get_station)
1746 		return -EOPNOTSUPP;
1747 
1748 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1749 }
1750 EXPORT_SYMBOL(cfg80211_get_station);
1751 
1752 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1753 {
1754 	int i;
1755 
1756 	if (!f)
1757 		return;
1758 
1759 	kfree(f->serv_spec_info);
1760 	kfree(f->srf_bf);
1761 	kfree(f->srf_macs);
1762 	for (i = 0; i < f->num_rx_filters; i++)
1763 		kfree(f->rx_filters[i].filter);
1764 
1765 	for (i = 0; i < f->num_tx_filters; i++)
1766 		kfree(f->tx_filters[i].filter);
1767 
1768 	kfree(f->rx_filters);
1769 	kfree(f->tx_filters);
1770 	kfree(f);
1771 }
1772 EXPORT_SYMBOL(cfg80211_free_nan_func);
1773 
1774 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1775 				u32 center_freq_khz, u32 bw_khz)
1776 {
1777 	u32 start_freq_khz, end_freq_khz;
1778 
1779 	start_freq_khz = center_freq_khz - (bw_khz / 2);
1780 	end_freq_khz = center_freq_khz + (bw_khz / 2);
1781 
1782 	if (start_freq_khz >= freq_range->start_freq_khz &&
1783 	    end_freq_khz <= freq_range->end_freq_khz)
1784 		return true;
1785 
1786 	return false;
1787 }
1788 
1789 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1790 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1791 const unsigned char rfc1042_header[] __aligned(2) =
1792 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1793 EXPORT_SYMBOL(rfc1042_header);
1794 
1795 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1796 const unsigned char bridge_tunnel_header[] __aligned(2) =
1797 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1798 EXPORT_SYMBOL(bridge_tunnel_header);
1799