1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Wireless utility functions 4 * 5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018-2022 Intel Corporation 9 */ 10 #include <linux/export.h> 11 #include <linux/bitops.h> 12 #include <linux/etherdevice.h> 13 #include <linux/slab.h> 14 #include <linux/ieee80211.h> 15 #include <net/cfg80211.h> 16 #include <net/ip.h> 17 #include <net/dsfield.h> 18 #include <linux/if_vlan.h> 19 #include <linux/mpls.h> 20 #include <linux/gcd.h> 21 #include <linux/bitfield.h> 22 #include <linux/nospec.h> 23 #include "core.h" 24 #include "rdev-ops.h" 25 26 27 const struct ieee80211_rate * 28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 29 u32 basic_rates, int bitrate) 30 { 31 struct ieee80211_rate *result = &sband->bitrates[0]; 32 int i; 33 34 for (i = 0; i < sband->n_bitrates; i++) { 35 if (!(basic_rates & BIT(i))) 36 continue; 37 if (sband->bitrates[i].bitrate > bitrate) 38 continue; 39 result = &sband->bitrates[i]; 40 } 41 42 return result; 43 } 44 EXPORT_SYMBOL(ieee80211_get_response_rate); 45 46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, 47 enum nl80211_bss_scan_width scan_width) 48 { 49 struct ieee80211_rate *bitrates; 50 u32 mandatory_rates = 0; 51 enum ieee80211_rate_flags mandatory_flag; 52 int i; 53 54 if (WARN_ON(!sband)) 55 return 1; 56 57 if (sband->band == NL80211_BAND_2GHZ) { 58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || 59 scan_width == NL80211_BSS_CHAN_WIDTH_10) 60 mandatory_flag = IEEE80211_RATE_MANDATORY_G; 61 else 62 mandatory_flag = IEEE80211_RATE_MANDATORY_B; 63 } else { 64 mandatory_flag = IEEE80211_RATE_MANDATORY_A; 65 } 66 67 bitrates = sband->bitrates; 68 for (i = 0; i < sband->n_bitrates; i++) 69 if (bitrates[i].flags & mandatory_flag) 70 mandatory_rates |= BIT(i); 71 return mandatory_rates; 72 } 73 EXPORT_SYMBOL(ieee80211_mandatory_rates); 74 75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band) 76 { 77 /* see 802.11 17.3.8.3.2 and Annex J 78 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 79 if (chan <= 0) 80 return 0; /* not supported */ 81 switch (band) { 82 case NL80211_BAND_2GHZ: 83 case NL80211_BAND_LC: 84 if (chan == 14) 85 return MHZ_TO_KHZ(2484); 86 else if (chan < 14) 87 return MHZ_TO_KHZ(2407 + chan * 5); 88 break; 89 case NL80211_BAND_5GHZ: 90 if (chan >= 182 && chan <= 196) 91 return MHZ_TO_KHZ(4000 + chan * 5); 92 else 93 return MHZ_TO_KHZ(5000 + chan * 5); 94 break; 95 case NL80211_BAND_6GHZ: 96 /* see 802.11ax D6.1 27.3.23.2 */ 97 if (chan == 2) 98 return MHZ_TO_KHZ(5935); 99 if (chan <= 233) 100 return MHZ_TO_KHZ(5950 + chan * 5); 101 break; 102 case NL80211_BAND_60GHZ: 103 if (chan < 7) 104 return MHZ_TO_KHZ(56160 + chan * 2160); 105 break; 106 case NL80211_BAND_S1GHZ: 107 return 902000 + chan * 500; 108 default: 109 ; 110 } 111 return 0; /* not supported */ 112 } 113 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz); 114 115 enum nl80211_chan_width 116 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan) 117 { 118 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ)) 119 return NL80211_CHAN_WIDTH_20_NOHT; 120 121 /*S1G defines a single allowed channel width per channel. 122 * Extract that width here. 123 */ 124 if (chan->flags & IEEE80211_CHAN_1MHZ) 125 return NL80211_CHAN_WIDTH_1; 126 else if (chan->flags & IEEE80211_CHAN_2MHZ) 127 return NL80211_CHAN_WIDTH_2; 128 else if (chan->flags & IEEE80211_CHAN_4MHZ) 129 return NL80211_CHAN_WIDTH_4; 130 else if (chan->flags & IEEE80211_CHAN_8MHZ) 131 return NL80211_CHAN_WIDTH_8; 132 else if (chan->flags & IEEE80211_CHAN_16MHZ) 133 return NL80211_CHAN_WIDTH_16; 134 135 pr_err("unknown channel width for channel at %dKHz?\n", 136 ieee80211_channel_to_khz(chan)); 137 138 return NL80211_CHAN_WIDTH_1; 139 } 140 EXPORT_SYMBOL(ieee80211_s1g_channel_width); 141 142 int ieee80211_freq_khz_to_channel(u32 freq) 143 { 144 /* TODO: just handle MHz for now */ 145 freq = KHZ_TO_MHZ(freq); 146 147 /* see 802.11 17.3.8.3.2 and Annex J */ 148 if (freq == 2484) 149 return 14; 150 else if (freq < 2484) 151 return (freq - 2407) / 5; 152 else if (freq >= 4910 && freq <= 4980) 153 return (freq - 4000) / 5; 154 else if (freq < 5925) 155 return (freq - 5000) / 5; 156 else if (freq == 5935) 157 return 2; 158 else if (freq <= 45000) /* DMG band lower limit */ 159 /* see 802.11ax D6.1 27.3.22.2 */ 160 return (freq - 5950) / 5; 161 else if (freq >= 58320 && freq <= 70200) 162 return (freq - 56160) / 2160; 163 else 164 return 0; 165 } 166 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel); 167 168 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy, 169 u32 freq) 170 { 171 enum nl80211_band band; 172 struct ieee80211_supported_band *sband; 173 int i; 174 175 for (band = 0; band < NUM_NL80211_BANDS; band++) { 176 sband = wiphy->bands[band]; 177 178 if (!sband) 179 continue; 180 181 for (i = 0; i < sband->n_channels; i++) { 182 struct ieee80211_channel *chan = &sband->channels[i]; 183 184 if (ieee80211_channel_to_khz(chan) == freq) 185 return chan; 186 } 187 } 188 189 return NULL; 190 } 191 EXPORT_SYMBOL(ieee80211_get_channel_khz); 192 193 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) 194 { 195 int i, want; 196 197 switch (sband->band) { 198 case NL80211_BAND_5GHZ: 199 case NL80211_BAND_6GHZ: 200 want = 3; 201 for (i = 0; i < sband->n_bitrates; i++) { 202 if (sband->bitrates[i].bitrate == 60 || 203 sband->bitrates[i].bitrate == 120 || 204 sband->bitrates[i].bitrate == 240) { 205 sband->bitrates[i].flags |= 206 IEEE80211_RATE_MANDATORY_A; 207 want--; 208 } 209 } 210 WARN_ON(want); 211 break; 212 case NL80211_BAND_2GHZ: 213 case NL80211_BAND_LC: 214 want = 7; 215 for (i = 0; i < sband->n_bitrates; i++) { 216 switch (sband->bitrates[i].bitrate) { 217 case 10: 218 case 20: 219 case 55: 220 case 110: 221 sband->bitrates[i].flags |= 222 IEEE80211_RATE_MANDATORY_B | 223 IEEE80211_RATE_MANDATORY_G; 224 want--; 225 break; 226 case 60: 227 case 120: 228 case 240: 229 sband->bitrates[i].flags |= 230 IEEE80211_RATE_MANDATORY_G; 231 want--; 232 fallthrough; 233 default: 234 sband->bitrates[i].flags |= 235 IEEE80211_RATE_ERP_G; 236 break; 237 } 238 } 239 WARN_ON(want != 0 && want != 3); 240 break; 241 case NL80211_BAND_60GHZ: 242 /* check for mandatory HT MCS 1..4 */ 243 WARN_ON(!sband->ht_cap.ht_supported); 244 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 245 break; 246 case NL80211_BAND_S1GHZ: 247 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least 248 * mandatory is ok. 249 */ 250 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3); 251 break; 252 case NUM_NL80211_BANDS: 253 default: 254 WARN_ON(1); 255 break; 256 } 257 } 258 259 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 260 { 261 enum nl80211_band band; 262 263 for (band = 0; band < NUM_NL80211_BANDS; band++) 264 if (wiphy->bands[band]) 265 set_mandatory_flags_band(wiphy->bands[band]); 266 } 267 268 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 269 { 270 int i; 271 for (i = 0; i < wiphy->n_cipher_suites; i++) 272 if (cipher == wiphy->cipher_suites[i]) 273 return true; 274 return false; 275 } 276 277 static bool 278 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev) 279 { 280 struct wiphy *wiphy = &rdev->wiphy; 281 int i; 282 283 for (i = 0; i < wiphy->n_cipher_suites; i++) { 284 switch (wiphy->cipher_suites[i]) { 285 case WLAN_CIPHER_SUITE_AES_CMAC: 286 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 287 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 288 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 289 return true; 290 } 291 } 292 293 return false; 294 } 295 296 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev, 297 int key_idx, bool pairwise) 298 { 299 int max_key_idx; 300 301 if (pairwise) 302 max_key_idx = 3; 303 else if (wiphy_ext_feature_isset(&rdev->wiphy, 304 NL80211_EXT_FEATURE_BEACON_PROTECTION) || 305 wiphy_ext_feature_isset(&rdev->wiphy, 306 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT)) 307 max_key_idx = 7; 308 else if (cfg80211_igtk_cipher_supported(rdev)) 309 max_key_idx = 5; 310 else 311 max_key_idx = 3; 312 313 if (key_idx < 0 || key_idx > max_key_idx) 314 return false; 315 316 return true; 317 } 318 319 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 320 struct key_params *params, int key_idx, 321 bool pairwise, const u8 *mac_addr) 322 { 323 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise)) 324 return -EINVAL; 325 326 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 327 return -EINVAL; 328 329 if (pairwise && !mac_addr) 330 return -EINVAL; 331 332 switch (params->cipher) { 333 case WLAN_CIPHER_SUITE_TKIP: 334 /* Extended Key ID can only be used with CCMP/GCMP ciphers */ 335 if ((pairwise && key_idx) || 336 params->mode != NL80211_KEY_RX_TX) 337 return -EINVAL; 338 break; 339 case WLAN_CIPHER_SUITE_CCMP: 340 case WLAN_CIPHER_SUITE_CCMP_256: 341 case WLAN_CIPHER_SUITE_GCMP: 342 case WLAN_CIPHER_SUITE_GCMP_256: 343 /* IEEE802.11-2016 allows only 0 and - when supporting 344 * Extended Key ID - 1 as index for pairwise keys. 345 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when 346 * the driver supports Extended Key ID. 347 * @NL80211_KEY_SET_TX can't be set when installing and 348 * validating a key. 349 */ 350 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) || 351 params->mode == NL80211_KEY_SET_TX) 352 return -EINVAL; 353 if (wiphy_ext_feature_isset(&rdev->wiphy, 354 NL80211_EXT_FEATURE_EXT_KEY_ID)) { 355 if (pairwise && (key_idx < 0 || key_idx > 1)) 356 return -EINVAL; 357 } else if (pairwise && key_idx) { 358 return -EINVAL; 359 } 360 break; 361 case WLAN_CIPHER_SUITE_AES_CMAC: 362 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 363 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 364 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 365 /* Disallow BIP (group-only) cipher as pairwise cipher */ 366 if (pairwise) 367 return -EINVAL; 368 if (key_idx < 4) 369 return -EINVAL; 370 break; 371 case WLAN_CIPHER_SUITE_WEP40: 372 case WLAN_CIPHER_SUITE_WEP104: 373 if (key_idx > 3) 374 return -EINVAL; 375 break; 376 default: 377 break; 378 } 379 380 switch (params->cipher) { 381 case WLAN_CIPHER_SUITE_WEP40: 382 if (params->key_len != WLAN_KEY_LEN_WEP40) 383 return -EINVAL; 384 break; 385 case WLAN_CIPHER_SUITE_TKIP: 386 if (params->key_len != WLAN_KEY_LEN_TKIP) 387 return -EINVAL; 388 break; 389 case WLAN_CIPHER_SUITE_CCMP: 390 if (params->key_len != WLAN_KEY_LEN_CCMP) 391 return -EINVAL; 392 break; 393 case WLAN_CIPHER_SUITE_CCMP_256: 394 if (params->key_len != WLAN_KEY_LEN_CCMP_256) 395 return -EINVAL; 396 break; 397 case WLAN_CIPHER_SUITE_GCMP: 398 if (params->key_len != WLAN_KEY_LEN_GCMP) 399 return -EINVAL; 400 break; 401 case WLAN_CIPHER_SUITE_GCMP_256: 402 if (params->key_len != WLAN_KEY_LEN_GCMP_256) 403 return -EINVAL; 404 break; 405 case WLAN_CIPHER_SUITE_WEP104: 406 if (params->key_len != WLAN_KEY_LEN_WEP104) 407 return -EINVAL; 408 break; 409 case WLAN_CIPHER_SUITE_AES_CMAC: 410 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 411 return -EINVAL; 412 break; 413 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 414 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) 415 return -EINVAL; 416 break; 417 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 418 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) 419 return -EINVAL; 420 break; 421 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 422 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) 423 return -EINVAL; 424 break; 425 default: 426 /* 427 * We don't know anything about this algorithm, 428 * allow using it -- but the driver must check 429 * all parameters! We still check below whether 430 * or not the driver supports this algorithm, 431 * of course. 432 */ 433 break; 434 } 435 436 if (params->seq) { 437 switch (params->cipher) { 438 case WLAN_CIPHER_SUITE_WEP40: 439 case WLAN_CIPHER_SUITE_WEP104: 440 /* These ciphers do not use key sequence */ 441 return -EINVAL; 442 case WLAN_CIPHER_SUITE_TKIP: 443 case WLAN_CIPHER_SUITE_CCMP: 444 case WLAN_CIPHER_SUITE_CCMP_256: 445 case WLAN_CIPHER_SUITE_GCMP: 446 case WLAN_CIPHER_SUITE_GCMP_256: 447 case WLAN_CIPHER_SUITE_AES_CMAC: 448 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 449 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 450 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 451 if (params->seq_len != 6) 452 return -EINVAL; 453 break; 454 } 455 } 456 457 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 458 return -EINVAL; 459 460 return 0; 461 } 462 463 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 464 { 465 unsigned int hdrlen = 24; 466 467 if (ieee80211_is_ext(fc)) { 468 hdrlen = 4; 469 goto out; 470 } 471 472 if (ieee80211_is_data(fc)) { 473 if (ieee80211_has_a4(fc)) 474 hdrlen = 30; 475 if (ieee80211_is_data_qos(fc)) { 476 hdrlen += IEEE80211_QOS_CTL_LEN; 477 if (ieee80211_has_order(fc)) 478 hdrlen += IEEE80211_HT_CTL_LEN; 479 } 480 goto out; 481 } 482 483 if (ieee80211_is_mgmt(fc)) { 484 if (ieee80211_has_order(fc)) 485 hdrlen += IEEE80211_HT_CTL_LEN; 486 goto out; 487 } 488 489 if (ieee80211_is_ctl(fc)) { 490 /* 491 * ACK and CTS are 10 bytes, all others 16. To see how 492 * to get this condition consider 493 * subtype mask: 0b0000000011110000 (0x00F0) 494 * ACK subtype: 0b0000000011010000 (0x00D0) 495 * CTS subtype: 0b0000000011000000 (0x00C0) 496 * bits that matter: ^^^ (0x00E0) 497 * value of those: 0b0000000011000000 (0x00C0) 498 */ 499 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 500 hdrlen = 10; 501 else 502 hdrlen = 16; 503 } 504 out: 505 return hdrlen; 506 } 507 EXPORT_SYMBOL(ieee80211_hdrlen); 508 509 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 510 { 511 const struct ieee80211_hdr *hdr = 512 (const struct ieee80211_hdr *)skb->data; 513 unsigned int hdrlen; 514 515 if (unlikely(skb->len < 10)) 516 return 0; 517 hdrlen = ieee80211_hdrlen(hdr->frame_control); 518 if (unlikely(hdrlen > skb->len)) 519 return 0; 520 return hdrlen; 521 } 522 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 523 524 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) 525 { 526 int ae = flags & MESH_FLAGS_AE; 527 /* 802.11-2012, 8.2.4.7.3 */ 528 switch (ae) { 529 default: 530 case 0: 531 return 6; 532 case MESH_FLAGS_AE_A4: 533 return 12; 534 case MESH_FLAGS_AE_A5_A6: 535 return 18; 536 } 537 } 538 539 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 540 { 541 return __ieee80211_get_mesh_hdrlen(meshhdr->flags); 542 } 543 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 544 545 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, 546 const u8 *addr, enum nl80211_iftype iftype, 547 u8 data_offset, bool is_amsdu) 548 { 549 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 550 struct { 551 u8 hdr[ETH_ALEN] __aligned(2); 552 __be16 proto; 553 } payload; 554 struct ethhdr tmp; 555 u16 hdrlen; 556 u8 mesh_flags = 0; 557 558 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 559 return -1; 560 561 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; 562 if (skb->len < hdrlen + 8) 563 return -1; 564 565 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 566 * header 567 * IEEE 802.11 address fields: 568 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 569 * 0 0 DA SA BSSID n/a 570 * 0 1 DA BSSID SA n/a 571 * 1 0 BSSID SA DA n/a 572 * 1 1 RA TA DA SA 573 */ 574 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); 575 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); 576 577 if (iftype == NL80211_IFTYPE_MESH_POINT) 578 skb_copy_bits(skb, hdrlen, &mesh_flags, 1); 579 580 mesh_flags &= MESH_FLAGS_AE; 581 582 switch (hdr->frame_control & 583 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 584 case cpu_to_le16(IEEE80211_FCTL_TODS): 585 if (unlikely(iftype != NL80211_IFTYPE_AP && 586 iftype != NL80211_IFTYPE_AP_VLAN && 587 iftype != NL80211_IFTYPE_P2P_GO)) 588 return -1; 589 break; 590 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 591 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT && 592 iftype != NL80211_IFTYPE_AP_VLAN && 593 iftype != NL80211_IFTYPE_STATION)) 594 return -1; 595 if (iftype == NL80211_IFTYPE_MESH_POINT) { 596 if (mesh_flags == MESH_FLAGS_AE_A4) 597 return -1; 598 if (mesh_flags == MESH_FLAGS_AE_A5_A6) { 599 skb_copy_bits(skb, hdrlen + 600 offsetof(struct ieee80211s_hdr, eaddr1), 601 tmp.h_dest, 2 * ETH_ALEN); 602 } 603 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 604 } 605 break; 606 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 607 if ((iftype != NL80211_IFTYPE_STATION && 608 iftype != NL80211_IFTYPE_P2P_CLIENT && 609 iftype != NL80211_IFTYPE_MESH_POINT) || 610 (is_multicast_ether_addr(tmp.h_dest) && 611 ether_addr_equal(tmp.h_source, addr))) 612 return -1; 613 if (iftype == NL80211_IFTYPE_MESH_POINT) { 614 if (mesh_flags == MESH_FLAGS_AE_A5_A6) 615 return -1; 616 if (mesh_flags == MESH_FLAGS_AE_A4) 617 skb_copy_bits(skb, hdrlen + 618 offsetof(struct ieee80211s_hdr, eaddr1), 619 tmp.h_source, ETH_ALEN); 620 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); 621 } 622 break; 623 case cpu_to_le16(0): 624 if (iftype != NL80211_IFTYPE_ADHOC && 625 iftype != NL80211_IFTYPE_STATION && 626 iftype != NL80211_IFTYPE_OCB) 627 return -1; 628 break; 629 } 630 631 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)); 632 tmp.h_proto = payload.proto; 633 634 if (likely((!is_amsdu && ether_addr_equal(payload.hdr, rfc1042_header) && 635 tmp.h_proto != htons(ETH_P_AARP) && 636 tmp.h_proto != htons(ETH_P_IPX)) || 637 ether_addr_equal(payload.hdr, bridge_tunnel_header))) { 638 /* remove RFC1042 or Bridge-Tunnel encapsulation and 639 * replace EtherType */ 640 hdrlen += ETH_ALEN + 2; 641 skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2); 642 } else { 643 tmp.h_proto = htons(skb->len - hdrlen); 644 } 645 646 pskb_pull(skb, hdrlen); 647 648 if (!ehdr) 649 ehdr = skb_push(skb, sizeof(struct ethhdr)); 650 memcpy(ehdr, &tmp, sizeof(tmp)); 651 652 return 0; 653 } 654 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); 655 656 static void 657 __frame_add_frag(struct sk_buff *skb, struct page *page, 658 void *ptr, int len, int size) 659 { 660 struct skb_shared_info *sh = skb_shinfo(skb); 661 int page_offset; 662 663 get_page(page); 664 page_offset = ptr - page_address(page); 665 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); 666 } 667 668 static void 669 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, 670 int offset, int len) 671 { 672 struct skb_shared_info *sh = skb_shinfo(skb); 673 const skb_frag_t *frag = &sh->frags[0]; 674 struct page *frag_page; 675 void *frag_ptr; 676 int frag_len, frag_size; 677 int head_size = skb->len - skb->data_len; 678 int cur_len; 679 680 frag_page = virt_to_head_page(skb->head); 681 frag_ptr = skb->data; 682 frag_size = head_size; 683 684 while (offset >= frag_size) { 685 offset -= frag_size; 686 frag_page = skb_frag_page(frag); 687 frag_ptr = skb_frag_address(frag); 688 frag_size = skb_frag_size(frag); 689 frag++; 690 } 691 692 frag_ptr += offset; 693 frag_len = frag_size - offset; 694 695 cur_len = min(len, frag_len); 696 697 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); 698 len -= cur_len; 699 700 while (len > 0) { 701 frag_len = skb_frag_size(frag); 702 cur_len = min(len, frag_len); 703 __frame_add_frag(frame, skb_frag_page(frag), 704 skb_frag_address(frag), cur_len, frag_len); 705 len -= cur_len; 706 frag++; 707 } 708 } 709 710 static struct sk_buff * 711 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, 712 int offset, int len, bool reuse_frag) 713 { 714 struct sk_buff *frame; 715 int cur_len = len; 716 717 if (skb->len - offset < len) 718 return NULL; 719 720 /* 721 * When reusing framents, copy some data to the head to simplify 722 * ethernet header handling and speed up protocol header processing 723 * in the stack later. 724 */ 725 if (reuse_frag) 726 cur_len = min_t(int, len, 32); 727 728 /* 729 * Allocate and reserve two bytes more for payload 730 * alignment since sizeof(struct ethhdr) is 14. 731 */ 732 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); 733 if (!frame) 734 return NULL; 735 736 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 737 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); 738 739 len -= cur_len; 740 if (!len) 741 return frame; 742 743 offset += cur_len; 744 __ieee80211_amsdu_copy_frag(skb, frame, offset, len); 745 746 return frame; 747 } 748 749 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 750 const u8 *addr, enum nl80211_iftype iftype, 751 const unsigned int extra_headroom, 752 const u8 *check_da, const u8 *check_sa) 753 { 754 unsigned int hlen = ALIGN(extra_headroom, 4); 755 struct sk_buff *frame = NULL; 756 u16 ethertype; 757 u8 *payload; 758 int offset = 0, remaining; 759 struct ethhdr eth; 760 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); 761 bool reuse_skb = false; 762 bool last = false; 763 764 while (!last) { 765 unsigned int subframe_len; 766 int len; 767 u8 padding; 768 769 skb_copy_bits(skb, offset, ð, sizeof(eth)); 770 len = ntohs(eth.h_proto); 771 subframe_len = sizeof(struct ethhdr) + len; 772 padding = (4 - subframe_len) & 0x3; 773 774 /* the last MSDU has no padding */ 775 remaining = skb->len - offset; 776 if (subframe_len > remaining) 777 goto purge; 778 /* mitigate A-MSDU aggregation injection attacks */ 779 if (ether_addr_equal(eth.h_dest, rfc1042_header)) 780 goto purge; 781 782 offset += sizeof(struct ethhdr); 783 last = remaining <= subframe_len + padding; 784 785 /* FIXME: should we really accept multicast DA? */ 786 if ((check_da && !is_multicast_ether_addr(eth.h_dest) && 787 !ether_addr_equal(check_da, eth.h_dest)) || 788 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) { 789 offset += len + padding; 790 continue; 791 } 792 793 /* reuse skb for the last subframe */ 794 if (!skb_is_nonlinear(skb) && !reuse_frag && last) { 795 skb_pull(skb, offset); 796 frame = skb; 797 reuse_skb = true; 798 } else { 799 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, 800 reuse_frag); 801 if (!frame) 802 goto purge; 803 804 offset += len + padding; 805 } 806 807 skb_reset_network_header(frame); 808 frame->dev = skb->dev; 809 frame->priority = skb->priority; 810 811 payload = frame->data; 812 ethertype = (payload[6] << 8) | payload[7]; 813 if (likely((ether_addr_equal(payload, rfc1042_header) && 814 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 815 ether_addr_equal(payload, bridge_tunnel_header))) { 816 eth.h_proto = htons(ethertype); 817 skb_pull(frame, ETH_ALEN + 2); 818 } 819 820 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth)); 821 __skb_queue_tail(list, frame); 822 } 823 824 if (!reuse_skb) 825 dev_kfree_skb(skb); 826 827 return; 828 829 purge: 830 __skb_queue_purge(list); 831 dev_kfree_skb(skb); 832 } 833 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 834 835 /* Given a data frame determine the 802.1p/1d tag to use. */ 836 unsigned int cfg80211_classify8021d(struct sk_buff *skb, 837 struct cfg80211_qos_map *qos_map) 838 { 839 unsigned int dscp; 840 unsigned char vlan_priority; 841 unsigned int ret; 842 843 /* skb->priority values from 256->263 are magic values to 844 * directly indicate a specific 802.1d priority. This is used 845 * to allow 802.1d priority to be passed directly in from VLAN 846 * tags, etc. 847 */ 848 if (skb->priority >= 256 && skb->priority <= 263) { 849 ret = skb->priority - 256; 850 goto out; 851 } 852 853 if (skb_vlan_tag_present(skb)) { 854 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) 855 >> VLAN_PRIO_SHIFT; 856 if (vlan_priority > 0) { 857 ret = vlan_priority; 858 goto out; 859 } 860 } 861 862 switch (skb->protocol) { 863 case htons(ETH_P_IP): 864 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 865 break; 866 case htons(ETH_P_IPV6): 867 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 868 break; 869 case htons(ETH_P_MPLS_UC): 870 case htons(ETH_P_MPLS_MC): { 871 struct mpls_label mpls_tmp, *mpls; 872 873 mpls = skb_header_pointer(skb, sizeof(struct ethhdr), 874 sizeof(*mpls), &mpls_tmp); 875 if (!mpls) 876 return 0; 877 878 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK) 879 >> MPLS_LS_TC_SHIFT; 880 goto out; 881 } 882 case htons(ETH_P_80221): 883 /* 802.21 is always network control traffic */ 884 return 7; 885 default: 886 return 0; 887 } 888 889 if (qos_map) { 890 unsigned int i, tmp_dscp = dscp >> 2; 891 892 for (i = 0; i < qos_map->num_des; i++) { 893 if (tmp_dscp == qos_map->dscp_exception[i].dscp) { 894 ret = qos_map->dscp_exception[i].up; 895 goto out; 896 } 897 } 898 899 for (i = 0; i < 8; i++) { 900 if (tmp_dscp >= qos_map->up[i].low && 901 tmp_dscp <= qos_map->up[i].high) { 902 ret = i; 903 goto out; 904 } 905 } 906 } 907 908 ret = dscp >> 5; 909 out: 910 return array_index_nospec(ret, IEEE80211_NUM_TIDS); 911 } 912 EXPORT_SYMBOL(cfg80211_classify8021d); 913 914 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id) 915 { 916 const struct cfg80211_bss_ies *ies; 917 918 ies = rcu_dereference(bss->ies); 919 if (!ies) 920 return NULL; 921 922 return cfg80211_find_elem(id, ies->data, ies->len); 923 } 924 EXPORT_SYMBOL(ieee80211_bss_get_elem); 925 926 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 927 { 928 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 929 struct net_device *dev = wdev->netdev; 930 int i; 931 932 if (!wdev->connect_keys) 933 return; 934 935 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) { 936 if (!wdev->connect_keys->params[i].cipher) 937 continue; 938 if (rdev_add_key(rdev, dev, i, false, NULL, 939 &wdev->connect_keys->params[i])) { 940 netdev_err(dev, "failed to set key %d\n", i); 941 continue; 942 } 943 if (wdev->connect_keys->def == i && 944 rdev_set_default_key(rdev, dev, i, true, true)) { 945 netdev_err(dev, "failed to set defkey %d\n", i); 946 continue; 947 } 948 } 949 950 kfree_sensitive(wdev->connect_keys); 951 wdev->connect_keys = NULL; 952 } 953 954 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 955 { 956 struct cfg80211_event *ev; 957 unsigned long flags; 958 959 spin_lock_irqsave(&wdev->event_lock, flags); 960 while (!list_empty(&wdev->event_list)) { 961 ev = list_first_entry(&wdev->event_list, 962 struct cfg80211_event, list); 963 list_del(&ev->list); 964 spin_unlock_irqrestore(&wdev->event_lock, flags); 965 966 wdev_lock(wdev); 967 switch (ev->type) { 968 case EVENT_CONNECT_RESULT: 969 __cfg80211_connect_result( 970 wdev->netdev, 971 &ev->cr, 972 ev->cr.status == WLAN_STATUS_SUCCESS); 973 break; 974 case EVENT_ROAMED: 975 __cfg80211_roamed(wdev, &ev->rm); 976 break; 977 case EVENT_DISCONNECTED: 978 __cfg80211_disconnected(wdev->netdev, 979 ev->dc.ie, ev->dc.ie_len, 980 ev->dc.reason, 981 !ev->dc.locally_generated); 982 break; 983 case EVENT_IBSS_JOINED: 984 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, 985 ev->ij.channel); 986 break; 987 case EVENT_STOPPED: 988 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); 989 break; 990 case EVENT_PORT_AUTHORIZED: 991 __cfg80211_port_authorized(wdev, ev->pa.bssid); 992 break; 993 } 994 wdev_unlock(wdev); 995 996 kfree(ev); 997 998 spin_lock_irqsave(&wdev->event_lock, flags); 999 } 1000 spin_unlock_irqrestore(&wdev->event_lock, flags); 1001 } 1002 1003 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 1004 { 1005 struct wireless_dev *wdev; 1006 1007 lockdep_assert_held(&rdev->wiphy.mtx); 1008 1009 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) 1010 cfg80211_process_wdev_events(wdev); 1011 } 1012 1013 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 1014 struct net_device *dev, enum nl80211_iftype ntype, 1015 struct vif_params *params) 1016 { 1017 int err; 1018 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 1019 1020 lockdep_assert_held(&rdev->wiphy.mtx); 1021 1022 /* don't support changing VLANs, you just re-create them */ 1023 if (otype == NL80211_IFTYPE_AP_VLAN) 1024 return -EOPNOTSUPP; 1025 1026 /* cannot change into P2P device or NAN */ 1027 if (ntype == NL80211_IFTYPE_P2P_DEVICE || 1028 ntype == NL80211_IFTYPE_NAN) 1029 return -EOPNOTSUPP; 1030 1031 if (!rdev->ops->change_virtual_intf || 1032 !(rdev->wiphy.interface_modes & (1 << ntype))) 1033 return -EOPNOTSUPP; 1034 1035 if (ntype != otype) { 1036 /* if it's part of a bridge, reject changing type to station/ibss */ 1037 if (netif_is_bridge_port(dev) && 1038 (ntype == NL80211_IFTYPE_ADHOC || 1039 ntype == NL80211_IFTYPE_STATION || 1040 ntype == NL80211_IFTYPE_P2P_CLIENT)) 1041 return -EBUSY; 1042 1043 dev->ieee80211_ptr->use_4addr = false; 1044 wdev_lock(dev->ieee80211_ptr); 1045 rdev_set_qos_map(rdev, dev, NULL); 1046 wdev_unlock(dev->ieee80211_ptr); 1047 1048 switch (otype) { 1049 case NL80211_IFTYPE_AP: 1050 case NL80211_IFTYPE_P2P_GO: 1051 cfg80211_stop_ap(rdev, dev, -1, true); 1052 break; 1053 case NL80211_IFTYPE_ADHOC: 1054 cfg80211_leave_ibss(rdev, dev, false); 1055 break; 1056 case NL80211_IFTYPE_STATION: 1057 case NL80211_IFTYPE_P2P_CLIENT: 1058 wdev_lock(dev->ieee80211_ptr); 1059 cfg80211_disconnect(rdev, dev, 1060 WLAN_REASON_DEAUTH_LEAVING, true); 1061 wdev_unlock(dev->ieee80211_ptr); 1062 break; 1063 case NL80211_IFTYPE_MESH_POINT: 1064 /* mesh should be handled? */ 1065 break; 1066 case NL80211_IFTYPE_OCB: 1067 cfg80211_leave_ocb(rdev, dev); 1068 break; 1069 default: 1070 break; 1071 } 1072 1073 cfg80211_process_rdev_events(rdev); 1074 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr); 1075 1076 memset(&dev->ieee80211_ptr->u, 0, 1077 sizeof(dev->ieee80211_ptr->u)); 1078 memset(&dev->ieee80211_ptr->links, 0, 1079 sizeof(dev->ieee80211_ptr->links)); 1080 } 1081 1082 err = rdev_change_virtual_intf(rdev, dev, ntype, params); 1083 1084 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 1085 1086 if (!err && params && params->use_4addr != -1) 1087 dev->ieee80211_ptr->use_4addr = params->use_4addr; 1088 1089 if (!err) { 1090 dev->priv_flags &= ~IFF_DONT_BRIDGE; 1091 switch (ntype) { 1092 case NL80211_IFTYPE_STATION: 1093 if (dev->ieee80211_ptr->use_4addr) 1094 break; 1095 fallthrough; 1096 case NL80211_IFTYPE_OCB: 1097 case NL80211_IFTYPE_P2P_CLIENT: 1098 case NL80211_IFTYPE_ADHOC: 1099 dev->priv_flags |= IFF_DONT_BRIDGE; 1100 break; 1101 case NL80211_IFTYPE_P2P_GO: 1102 case NL80211_IFTYPE_AP: 1103 case NL80211_IFTYPE_AP_VLAN: 1104 case NL80211_IFTYPE_MESH_POINT: 1105 /* bridging OK */ 1106 break; 1107 case NL80211_IFTYPE_MONITOR: 1108 /* monitor can't bridge anyway */ 1109 break; 1110 case NL80211_IFTYPE_UNSPECIFIED: 1111 case NUM_NL80211_IFTYPES: 1112 /* not happening */ 1113 break; 1114 case NL80211_IFTYPE_P2P_DEVICE: 1115 case NL80211_IFTYPE_WDS: 1116 case NL80211_IFTYPE_NAN: 1117 WARN_ON(1); 1118 break; 1119 } 1120 } 1121 1122 if (!err && ntype != otype && netif_running(dev)) { 1123 cfg80211_update_iface_num(rdev, ntype, 1); 1124 cfg80211_update_iface_num(rdev, otype, -1); 1125 } 1126 1127 return err; 1128 } 1129 1130 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) 1131 { 1132 int modulation, streams, bitrate; 1133 1134 /* the formula below does only work for MCS values smaller than 32 */ 1135 if (WARN_ON_ONCE(rate->mcs >= 32)) 1136 return 0; 1137 1138 modulation = rate->mcs & 7; 1139 streams = (rate->mcs >> 3) + 1; 1140 1141 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; 1142 1143 if (modulation < 4) 1144 bitrate *= (modulation + 1); 1145 else if (modulation == 4) 1146 bitrate *= (modulation + 2); 1147 else 1148 bitrate *= (modulation + 3); 1149 1150 bitrate *= streams; 1151 1152 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1153 bitrate = (bitrate / 9) * 10; 1154 1155 /* do NOT round down here */ 1156 return (bitrate + 50000) / 100000; 1157 } 1158 1159 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate) 1160 { 1161 static const u32 __mcs2bitrate[] = { 1162 /* control PHY */ 1163 [0] = 275, 1164 /* SC PHY */ 1165 [1] = 3850, 1166 [2] = 7700, 1167 [3] = 9625, 1168 [4] = 11550, 1169 [5] = 12512, /* 1251.25 mbps */ 1170 [6] = 15400, 1171 [7] = 19250, 1172 [8] = 23100, 1173 [9] = 25025, 1174 [10] = 30800, 1175 [11] = 38500, 1176 [12] = 46200, 1177 /* OFDM PHY */ 1178 [13] = 6930, 1179 [14] = 8662, /* 866.25 mbps */ 1180 [15] = 13860, 1181 [16] = 17325, 1182 [17] = 20790, 1183 [18] = 27720, 1184 [19] = 34650, 1185 [20] = 41580, 1186 [21] = 45045, 1187 [22] = 51975, 1188 [23] = 62370, 1189 [24] = 67568, /* 6756.75 mbps */ 1190 /* LP-SC PHY */ 1191 [25] = 6260, 1192 [26] = 8340, 1193 [27] = 11120, 1194 [28] = 12510, 1195 [29] = 16680, 1196 [30] = 22240, 1197 [31] = 25030, 1198 }; 1199 1200 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1201 return 0; 1202 1203 return __mcs2bitrate[rate->mcs]; 1204 } 1205 1206 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate) 1207 { 1208 static const u32 __mcs2bitrate[] = { 1209 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */ 1210 [7 - 6] = 50050, /* MCS 12.1 */ 1211 [8 - 6] = 53900, 1212 [9 - 6] = 57750, 1213 [10 - 6] = 63900, 1214 [11 - 6] = 75075, 1215 [12 - 6] = 80850, 1216 }; 1217 1218 /* Extended SC MCS not defined for base MCS below 6 or above 12 */ 1219 if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12)) 1220 return 0; 1221 1222 return __mcs2bitrate[rate->mcs - 6]; 1223 } 1224 1225 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate) 1226 { 1227 static const u32 __mcs2bitrate[] = { 1228 /* control PHY */ 1229 [0] = 275, 1230 /* SC PHY */ 1231 [1] = 3850, 1232 [2] = 7700, 1233 [3] = 9625, 1234 [4] = 11550, 1235 [5] = 12512, /* 1251.25 mbps */ 1236 [6] = 13475, 1237 [7] = 15400, 1238 [8] = 19250, 1239 [9] = 23100, 1240 [10] = 25025, 1241 [11] = 26950, 1242 [12] = 30800, 1243 [13] = 38500, 1244 [14] = 46200, 1245 [15] = 50050, 1246 [16] = 53900, 1247 [17] = 57750, 1248 [18] = 69300, 1249 [19] = 75075, 1250 [20] = 80850, 1251 }; 1252 1253 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 1254 return 0; 1255 1256 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch; 1257 } 1258 1259 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) 1260 { 1261 static const u32 base[4][12] = { 1262 { 6500000, 1263 13000000, 1264 19500000, 1265 26000000, 1266 39000000, 1267 52000000, 1268 58500000, 1269 65000000, 1270 78000000, 1271 /* not in the spec, but some devices use this: */ 1272 86700000, 1273 97500000, 1274 108300000, 1275 }, 1276 { 13500000, 1277 27000000, 1278 40500000, 1279 54000000, 1280 81000000, 1281 108000000, 1282 121500000, 1283 135000000, 1284 162000000, 1285 180000000, 1286 202500000, 1287 225000000, 1288 }, 1289 { 29300000, 1290 58500000, 1291 87800000, 1292 117000000, 1293 175500000, 1294 234000000, 1295 263300000, 1296 292500000, 1297 351000000, 1298 390000000, 1299 438800000, 1300 487500000, 1301 }, 1302 { 58500000, 1303 117000000, 1304 175500000, 1305 234000000, 1306 351000000, 1307 468000000, 1308 526500000, 1309 585000000, 1310 702000000, 1311 780000000, 1312 877500000, 1313 975000000, 1314 }, 1315 }; 1316 u32 bitrate; 1317 int idx; 1318 1319 if (rate->mcs > 11) 1320 goto warn; 1321 1322 switch (rate->bw) { 1323 case RATE_INFO_BW_160: 1324 idx = 3; 1325 break; 1326 case RATE_INFO_BW_80: 1327 idx = 2; 1328 break; 1329 case RATE_INFO_BW_40: 1330 idx = 1; 1331 break; 1332 case RATE_INFO_BW_5: 1333 case RATE_INFO_BW_10: 1334 default: 1335 goto warn; 1336 case RATE_INFO_BW_20: 1337 idx = 0; 1338 } 1339 1340 bitrate = base[idx][rate->mcs]; 1341 bitrate *= rate->nss; 1342 1343 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 1344 bitrate = (bitrate / 9) * 10; 1345 1346 /* do NOT round down here */ 1347 return (bitrate + 50000) / 100000; 1348 warn: 1349 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", 1350 rate->bw, rate->mcs, rate->nss); 1351 return 0; 1352 } 1353 1354 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) 1355 { 1356 #define SCALE 6144 1357 u32 mcs_divisors[14] = { 1358 102399, /* 16.666666... */ 1359 51201, /* 8.333333... */ 1360 34134, /* 5.555555... */ 1361 25599, /* 4.166666... */ 1362 17067, /* 2.777777... */ 1363 12801, /* 2.083333... */ 1364 11377, /* 1.851725... */ 1365 10239, /* 1.666666... */ 1366 8532, /* 1.388888... */ 1367 7680, /* 1.250000... */ 1368 6828, /* 1.111111... */ 1369 6144, /* 1.000000... */ 1370 5690, /* 0.926106... */ 1371 5120, /* 0.833333... */ 1372 }; 1373 u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; 1374 u32 rates_969[3] = { 480388888, 453700000, 408333333 }; 1375 u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1376 u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1377 u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1378 u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1379 u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1380 u64 tmp; 1381 u32 result; 1382 1383 if (WARN_ON_ONCE(rate->mcs > 13)) 1384 return 0; 1385 1386 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) 1387 return 0; 1388 if (WARN_ON_ONCE(rate->he_ru_alloc > 1389 NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) 1390 return 0; 1391 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1392 return 0; 1393 1394 if (rate->bw == RATE_INFO_BW_160) 1395 result = rates_160M[rate->he_gi]; 1396 else if (rate->bw == RATE_INFO_BW_80 || 1397 (rate->bw == RATE_INFO_BW_HE_RU && 1398 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) 1399 result = rates_969[rate->he_gi]; 1400 else if (rate->bw == RATE_INFO_BW_40 || 1401 (rate->bw == RATE_INFO_BW_HE_RU && 1402 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) 1403 result = rates_484[rate->he_gi]; 1404 else if (rate->bw == RATE_INFO_BW_20 || 1405 (rate->bw == RATE_INFO_BW_HE_RU && 1406 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) 1407 result = rates_242[rate->he_gi]; 1408 else if (rate->bw == RATE_INFO_BW_HE_RU && 1409 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) 1410 result = rates_106[rate->he_gi]; 1411 else if (rate->bw == RATE_INFO_BW_HE_RU && 1412 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) 1413 result = rates_52[rate->he_gi]; 1414 else if (rate->bw == RATE_INFO_BW_HE_RU && 1415 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) 1416 result = rates_26[rate->he_gi]; 1417 else { 1418 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", 1419 rate->bw, rate->he_ru_alloc); 1420 return 0; 1421 } 1422 1423 /* now scale to the appropriate MCS */ 1424 tmp = result; 1425 tmp *= SCALE; 1426 do_div(tmp, mcs_divisors[rate->mcs]); 1427 result = tmp; 1428 1429 /* and take NSS, DCM into account */ 1430 result = (result * rate->nss) / 8; 1431 if (rate->he_dcm) 1432 result /= 2; 1433 1434 return result / 10000; 1435 } 1436 1437 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate) 1438 { 1439 #define SCALE 6144 1440 static const u32 mcs_divisors[16] = { 1441 102399, /* 16.666666... */ 1442 51201, /* 8.333333... */ 1443 34134, /* 5.555555... */ 1444 25599, /* 4.166666... */ 1445 17067, /* 2.777777... */ 1446 12801, /* 2.083333... */ 1447 11377, /* 1.851725... */ 1448 10239, /* 1.666666... */ 1449 8532, /* 1.388888... */ 1450 7680, /* 1.250000... */ 1451 6828, /* 1.111111... */ 1452 6144, /* 1.000000... */ 1453 5690, /* 0.926106... */ 1454 5120, /* 0.833333... */ 1455 409600, /* 66.666666... */ 1456 204800, /* 33.333333... */ 1457 }; 1458 static const u32 rates_996[3] = { 480388888, 453700000, 408333333 }; 1459 static const u32 rates_484[3] = { 229411111, 216666666, 195000000 }; 1460 static const u32 rates_242[3] = { 114711111, 108333333, 97500000 }; 1461 static const u32 rates_106[3] = { 40000000, 37777777, 34000000 }; 1462 static const u32 rates_52[3] = { 18820000, 17777777, 16000000 }; 1463 static const u32 rates_26[3] = { 9411111, 8888888, 8000000 }; 1464 u64 tmp; 1465 u32 result; 1466 1467 if (WARN_ON_ONCE(rate->mcs > 15)) 1468 return 0; 1469 if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2)) 1470 return 0; 1471 if (WARN_ON_ONCE(rate->eht_ru_alloc > 1472 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) 1473 return 0; 1474 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) 1475 return 0; 1476 1477 /* Bandwidth checks for MCS 14 */ 1478 if (rate->mcs == 14) { 1479 if ((rate->bw != RATE_INFO_BW_EHT_RU && 1480 rate->bw != RATE_INFO_BW_80 && 1481 rate->bw != RATE_INFO_BW_160 && 1482 rate->bw != RATE_INFO_BW_320) || 1483 (rate->bw == RATE_INFO_BW_EHT_RU && 1484 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 && 1485 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 && 1486 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) { 1487 WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n", 1488 rate->bw, rate->eht_ru_alloc); 1489 return 0; 1490 } 1491 } 1492 1493 if (rate->bw == RATE_INFO_BW_320 || 1494 (rate->bw == RATE_INFO_BW_EHT_RU && 1495 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) 1496 result = 4 * rates_996[rate->eht_gi]; 1497 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1498 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484) 1499 result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1500 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1501 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996) 1502 result = 3 * rates_996[rate->eht_gi]; 1503 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1504 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484) 1505 result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1506 else if (rate->bw == RATE_INFO_BW_160 || 1507 (rate->bw == RATE_INFO_BW_EHT_RU && 1508 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996)) 1509 result = 2 * rates_996[rate->eht_gi]; 1510 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1511 rate->eht_ru_alloc == 1512 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242) 1513 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi] 1514 + rates_242[rate->eht_gi]; 1515 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1516 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484) 1517 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]; 1518 else if (rate->bw == RATE_INFO_BW_80 || 1519 (rate->bw == RATE_INFO_BW_EHT_RU && 1520 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996)) 1521 result = rates_996[rate->eht_gi]; 1522 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1523 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242) 1524 result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi]; 1525 else if (rate->bw == RATE_INFO_BW_40 || 1526 (rate->bw == RATE_INFO_BW_EHT_RU && 1527 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484)) 1528 result = rates_484[rate->eht_gi]; 1529 else if (rate->bw == RATE_INFO_BW_20 || 1530 (rate->bw == RATE_INFO_BW_EHT_RU && 1531 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242)) 1532 result = rates_242[rate->eht_gi]; 1533 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1534 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26) 1535 result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi]; 1536 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1537 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106) 1538 result = rates_106[rate->eht_gi]; 1539 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1540 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26) 1541 result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi]; 1542 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1543 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52) 1544 result = rates_52[rate->eht_gi]; 1545 else if (rate->bw == RATE_INFO_BW_EHT_RU && 1546 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26) 1547 result = rates_26[rate->eht_gi]; 1548 else { 1549 WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n", 1550 rate->bw, rate->eht_ru_alloc); 1551 return 0; 1552 } 1553 1554 /* now scale to the appropriate MCS */ 1555 tmp = result; 1556 tmp *= SCALE; 1557 do_div(tmp, mcs_divisors[rate->mcs]); 1558 result = tmp; 1559 1560 /* and take NSS */ 1561 result = (result * rate->nss) / 8; 1562 1563 return result / 10000; 1564 } 1565 1566 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 1567 { 1568 if (rate->flags & RATE_INFO_FLAGS_MCS) 1569 return cfg80211_calculate_bitrate_ht(rate); 1570 if (rate->flags & RATE_INFO_FLAGS_DMG) 1571 return cfg80211_calculate_bitrate_dmg(rate); 1572 if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG) 1573 return cfg80211_calculate_bitrate_extended_sc_dmg(rate); 1574 if (rate->flags & RATE_INFO_FLAGS_EDMG) 1575 return cfg80211_calculate_bitrate_edmg(rate); 1576 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) 1577 return cfg80211_calculate_bitrate_vht(rate); 1578 if (rate->flags & RATE_INFO_FLAGS_HE_MCS) 1579 return cfg80211_calculate_bitrate_he(rate); 1580 if (rate->flags & RATE_INFO_FLAGS_EHT_MCS) 1581 return cfg80211_calculate_bitrate_eht(rate); 1582 1583 return rate->legacy; 1584 } 1585 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 1586 1587 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, 1588 enum ieee80211_p2p_attr_id attr, 1589 u8 *buf, unsigned int bufsize) 1590 { 1591 u8 *out = buf; 1592 u16 attr_remaining = 0; 1593 bool desired_attr = false; 1594 u16 desired_len = 0; 1595 1596 while (len > 0) { 1597 unsigned int iedatalen; 1598 unsigned int copy; 1599 const u8 *iedata; 1600 1601 if (len < 2) 1602 return -EILSEQ; 1603 iedatalen = ies[1]; 1604 if (iedatalen + 2 > len) 1605 return -EILSEQ; 1606 1607 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) 1608 goto cont; 1609 1610 if (iedatalen < 4) 1611 goto cont; 1612 1613 iedata = ies + 2; 1614 1615 /* check WFA OUI, P2P subtype */ 1616 if (iedata[0] != 0x50 || iedata[1] != 0x6f || 1617 iedata[2] != 0x9a || iedata[3] != 0x09) 1618 goto cont; 1619 1620 iedatalen -= 4; 1621 iedata += 4; 1622 1623 /* check attribute continuation into this IE */ 1624 copy = min_t(unsigned int, attr_remaining, iedatalen); 1625 if (copy && desired_attr) { 1626 desired_len += copy; 1627 if (out) { 1628 memcpy(out, iedata, min(bufsize, copy)); 1629 out += min(bufsize, copy); 1630 bufsize -= min(bufsize, copy); 1631 } 1632 1633 1634 if (copy == attr_remaining) 1635 return desired_len; 1636 } 1637 1638 attr_remaining -= copy; 1639 if (attr_remaining) 1640 goto cont; 1641 1642 iedatalen -= copy; 1643 iedata += copy; 1644 1645 while (iedatalen > 0) { 1646 u16 attr_len; 1647 1648 /* P2P attribute ID & size must fit */ 1649 if (iedatalen < 3) 1650 return -EILSEQ; 1651 desired_attr = iedata[0] == attr; 1652 attr_len = get_unaligned_le16(iedata + 1); 1653 iedatalen -= 3; 1654 iedata += 3; 1655 1656 copy = min_t(unsigned int, attr_len, iedatalen); 1657 1658 if (desired_attr) { 1659 desired_len += copy; 1660 if (out) { 1661 memcpy(out, iedata, min(bufsize, copy)); 1662 out += min(bufsize, copy); 1663 bufsize -= min(bufsize, copy); 1664 } 1665 1666 if (copy == attr_len) 1667 return desired_len; 1668 } 1669 1670 iedata += copy; 1671 iedatalen -= copy; 1672 attr_remaining = attr_len - copy; 1673 } 1674 1675 cont: 1676 len -= ies[1] + 2; 1677 ies += ies[1] + 2; 1678 } 1679 1680 if (attr_remaining && desired_attr) 1681 return -EILSEQ; 1682 1683 return -ENOENT; 1684 } 1685 EXPORT_SYMBOL(cfg80211_get_p2p_attr); 1686 1687 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) 1688 { 1689 int i; 1690 1691 /* Make sure array values are legal */ 1692 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) 1693 return false; 1694 1695 i = 0; 1696 while (i < n_ids) { 1697 if (ids[i] == WLAN_EID_EXTENSION) { 1698 if (id_ext && (ids[i + 1] == id)) 1699 return true; 1700 1701 i += 2; 1702 continue; 1703 } 1704 1705 if (ids[i] == id && !id_ext) 1706 return true; 1707 1708 i++; 1709 } 1710 return false; 1711 } 1712 1713 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) 1714 { 1715 /* we assume a validly formed IEs buffer */ 1716 u8 len = ies[pos + 1]; 1717 1718 pos += 2 + len; 1719 1720 /* the IE itself must have 255 bytes for fragments to follow */ 1721 if (len < 255) 1722 return pos; 1723 1724 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { 1725 len = ies[pos + 1]; 1726 pos += 2 + len; 1727 } 1728 1729 return pos; 1730 } 1731 1732 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, 1733 const u8 *ids, int n_ids, 1734 const u8 *after_ric, int n_after_ric, 1735 size_t offset) 1736 { 1737 size_t pos = offset; 1738 1739 while (pos < ielen) { 1740 u8 ext = 0; 1741 1742 if (ies[pos] == WLAN_EID_EXTENSION) 1743 ext = 2; 1744 if ((pos + ext) >= ielen) 1745 break; 1746 1747 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], 1748 ies[pos] == WLAN_EID_EXTENSION)) 1749 break; 1750 1751 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { 1752 pos = skip_ie(ies, ielen, pos); 1753 1754 while (pos < ielen) { 1755 if (ies[pos] == WLAN_EID_EXTENSION) 1756 ext = 2; 1757 else 1758 ext = 0; 1759 1760 if ((pos + ext) >= ielen) 1761 break; 1762 1763 if (!ieee80211_id_in_list(after_ric, 1764 n_after_ric, 1765 ies[pos + ext], 1766 ext == 2)) 1767 pos = skip_ie(ies, ielen, pos); 1768 else 1769 break; 1770 } 1771 } else { 1772 pos = skip_ie(ies, ielen, pos); 1773 } 1774 } 1775 1776 return pos; 1777 } 1778 EXPORT_SYMBOL(ieee80211_ie_split_ric); 1779 1780 bool ieee80211_operating_class_to_band(u8 operating_class, 1781 enum nl80211_band *band) 1782 { 1783 switch (operating_class) { 1784 case 112: 1785 case 115 ... 127: 1786 case 128 ... 130: 1787 *band = NL80211_BAND_5GHZ; 1788 return true; 1789 case 131 ... 135: 1790 *band = NL80211_BAND_6GHZ; 1791 return true; 1792 case 81: 1793 case 82: 1794 case 83: 1795 case 84: 1796 *band = NL80211_BAND_2GHZ; 1797 return true; 1798 case 180: 1799 *band = NL80211_BAND_60GHZ; 1800 return true; 1801 } 1802 1803 return false; 1804 } 1805 EXPORT_SYMBOL(ieee80211_operating_class_to_band); 1806 1807 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, 1808 u8 *op_class) 1809 { 1810 u8 vht_opclass; 1811 u32 freq = chandef->center_freq1; 1812 1813 if (freq >= 2412 && freq <= 2472) { 1814 if (chandef->width > NL80211_CHAN_WIDTH_40) 1815 return false; 1816 1817 /* 2.407 GHz, channels 1..13 */ 1818 if (chandef->width == NL80211_CHAN_WIDTH_40) { 1819 if (freq > chandef->chan->center_freq) 1820 *op_class = 83; /* HT40+ */ 1821 else 1822 *op_class = 84; /* HT40- */ 1823 } else { 1824 *op_class = 81; 1825 } 1826 1827 return true; 1828 } 1829 1830 if (freq == 2484) { 1831 /* channel 14 is only for IEEE 802.11b */ 1832 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT) 1833 return false; 1834 1835 *op_class = 82; /* channel 14 */ 1836 return true; 1837 } 1838 1839 switch (chandef->width) { 1840 case NL80211_CHAN_WIDTH_80: 1841 vht_opclass = 128; 1842 break; 1843 case NL80211_CHAN_WIDTH_160: 1844 vht_opclass = 129; 1845 break; 1846 case NL80211_CHAN_WIDTH_80P80: 1847 vht_opclass = 130; 1848 break; 1849 case NL80211_CHAN_WIDTH_10: 1850 case NL80211_CHAN_WIDTH_5: 1851 return false; /* unsupported for now */ 1852 default: 1853 vht_opclass = 0; 1854 break; 1855 } 1856 1857 /* 5 GHz, channels 36..48 */ 1858 if (freq >= 5180 && freq <= 5240) { 1859 if (vht_opclass) { 1860 *op_class = vht_opclass; 1861 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1862 if (freq > chandef->chan->center_freq) 1863 *op_class = 116; 1864 else 1865 *op_class = 117; 1866 } else { 1867 *op_class = 115; 1868 } 1869 1870 return true; 1871 } 1872 1873 /* 5 GHz, channels 52..64 */ 1874 if (freq >= 5260 && freq <= 5320) { 1875 if (vht_opclass) { 1876 *op_class = vht_opclass; 1877 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1878 if (freq > chandef->chan->center_freq) 1879 *op_class = 119; 1880 else 1881 *op_class = 120; 1882 } else { 1883 *op_class = 118; 1884 } 1885 1886 return true; 1887 } 1888 1889 /* 5 GHz, channels 100..144 */ 1890 if (freq >= 5500 && freq <= 5720) { 1891 if (vht_opclass) { 1892 *op_class = vht_opclass; 1893 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1894 if (freq > chandef->chan->center_freq) 1895 *op_class = 122; 1896 else 1897 *op_class = 123; 1898 } else { 1899 *op_class = 121; 1900 } 1901 1902 return true; 1903 } 1904 1905 /* 5 GHz, channels 149..169 */ 1906 if (freq >= 5745 && freq <= 5845) { 1907 if (vht_opclass) { 1908 *op_class = vht_opclass; 1909 } else if (chandef->width == NL80211_CHAN_WIDTH_40) { 1910 if (freq > chandef->chan->center_freq) 1911 *op_class = 126; 1912 else 1913 *op_class = 127; 1914 } else if (freq <= 5805) { 1915 *op_class = 124; 1916 } else { 1917 *op_class = 125; 1918 } 1919 1920 return true; 1921 } 1922 1923 /* 56.16 GHz, channel 1..4 */ 1924 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { 1925 if (chandef->width >= NL80211_CHAN_WIDTH_40) 1926 return false; 1927 1928 *op_class = 180; 1929 return true; 1930 } 1931 1932 /* not supported yet */ 1933 return false; 1934 } 1935 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); 1936 1937 static int cfg80211_wdev_bi(struct wireless_dev *wdev) 1938 { 1939 switch (wdev->iftype) { 1940 case NL80211_IFTYPE_AP: 1941 case NL80211_IFTYPE_P2P_GO: 1942 WARN_ON(wdev->valid_links); 1943 return wdev->links[0].ap.beacon_interval; 1944 case NL80211_IFTYPE_MESH_POINT: 1945 return wdev->u.mesh.beacon_interval; 1946 case NL80211_IFTYPE_ADHOC: 1947 return wdev->u.ibss.beacon_interval; 1948 default: 1949 break; 1950 } 1951 1952 return 0; 1953 } 1954 1955 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, 1956 u32 *beacon_int_gcd, 1957 bool *beacon_int_different) 1958 { 1959 struct wireless_dev *wdev; 1960 1961 *beacon_int_gcd = 0; 1962 *beacon_int_different = false; 1963 1964 list_for_each_entry(wdev, &wiphy->wdev_list, list) { 1965 int wdev_bi; 1966 1967 /* this feature isn't supported with MLO */ 1968 if (wdev->valid_links) 1969 continue; 1970 1971 wdev_bi = cfg80211_wdev_bi(wdev); 1972 1973 if (!wdev_bi) 1974 continue; 1975 1976 if (!*beacon_int_gcd) { 1977 *beacon_int_gcd = wdev_bi; 1978 continue; 1979 } 1980 1981 if (wdev_bi == *beacon_int_gcd) 1982 continue; 1983 1984 *beacon_int_different = true; 1985 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi); 1986 } 1987 1988 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { 1989 if (*beacon_int_gcd) 1990 *beacon_int_different = true; 1991 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); 1992 } 1993 } 1994 1995 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 1996 enum nl80211_iftype iftype, u32 beacon_int) 1997 { 1998 /* 1999 * This is just a basic pre-condition check; if interface combinations 2000 * are possible the driver must already be checking those with a call 2001 * to cfg80211_check_combinations(), in which case we'll validate more 2002 * through the cfg80211_calculate_bi_data() call and code in 2003 * cfg80211_iter_combinations(). 2004 */ 2005 2006 if (beacon_int < 10 || beacon_int > 10000) 2007 return -EINVAL; 2008 2009 return 0; 2010 } 2011 2012 int cfg80211_iter_combinations(struct wiphy *wiphy, 2013 struct iface_combination_params *params, 2014 void (*iter)(const struct ieee80211_iface_combination *c, 2015 void *data), 2016 void *data) 2017 { 2018 const struct ieee80211_regdomain *regdom; 2019 enum nl80211_dfs_regions region = 0; 2020 int i, j, iftype; 2021 int num_interfaces = 0; 2022 u32 used_iftypes = 0; 2023 u32 beacon_int_gcd; 2024 bool beacon_int_different; 2025 2026 /* 2027 * This is a bit strange, since the iteration used to rely only on 2028 * the data given by the driver, but here it now relies on context, 2029 * in form of the currently operating interfaces. 2030 * This is OK for all current users, and saves us from having to 2031 * push the GCD calculations into all the drivers. 2032 * In the future, this should probably rely more on data that's in 2033 * cfg80211 already - the only thing not would appear to be any new 2034 * interfaces (while being brought up) and channel/radar data. 2035 */ 2036 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, 2037 &beacon_int_gcd, &beacon_int_different); 2038 2039 if (params->radar_detect) { 2040 rcu_read_lock(); 2041 regdom = rcu_dereference(cfg80211_regdomain); 2042 if (regdom) 2043 region = regdom->dfs_region; 2044 rcu_read_unlock(); 2045 } 2046 2047 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 2048 num_interfaces += params->iftype_num[iftype]; 2049 if (params->iftype_num[iftype] > 0 && 2050 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 2051 used_iftypes |= BIT(iftype); 2052 } 2053 2054 for (i = 0; i < wiphy->n_iface_combinations; i++) { 2055 const struct ieee80211_iface_combination *c; 2056 struct ieee80211_iface_limit *limits; 2057 u32 all_iftypes = 0; 2058 2059 c = &wiphy->iface_combinations[i]; 2060 2061 if (num_interfaces > c->max_interfaces) 2062 continue; 2063 if (params->num_different_channels > c->num_different_channels) 2064 continue; 2065 2066 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 2067 GFP_KERNEL); 2068 if (!limits) 2069 return -ENOMEM; 2070 2071 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 2072 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) 2073 continue; 2074 for (j = 0; j < c->n_limits; j++) { 2075 all_iftypes |= limits[j].types; 2076 if (!(limits[j].types & BIT(iftype))) 2077 continue; 2078 if (limits[j].max < params->iftype_num[iftype]) 2079 goto cont; 2080 limits[j].max -= params->iftype_num[iftype]; 2081 } 2082 } 2083 2084 if (params->radar_detect != 2085 (c->radar_detect_widths & params->radar_detect)) 2086 goto cont; 2087 2088 if (params->radar_detect && c->radar_detect_regions && 2089 !(c->radar_detect_regions & BIT(region))) 2090 goto cont; 2091 2092 /* Finally check that all iftypes that we're currently 2093 * using are actually part of this combination. If they 2094 * aren't then we can't use this combination and have 2095 * to continue to the next. 2096 */ 2097 if ((all_iftypes & used_iftypes) != used_iftypes) 2098 goto cont; 2099 2100 if (beacon_int_gcd) { 2101 if (c->beacon_int_min_gcd && 2102 beacon_int_gcd < c->beacon_int_min_gcd) 2103 goto cont; 2104 if (!c->beacon_int_min_gcd && beacon_int_different) 2105 goto cont; 2106 } 2107 2108 /* This combination covered all interface types and 2109 * supported the requested numbers, so we're good. 2110 */ 2111 2112 (*iter)(c, data); 2113 cont: 2114 kfree(limits); 2115 } 2116 2117 return 0; 2118 } 2119 EXPORT_SYMBOL(cfg80211_iter_combinations); 2120 2121 static void 2122 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, 2123 void *data) 2124 { 2125 int *num = data; 2126 (*num)++; 2127 } 2128 2129 int cfg80211_check_combinations(struct wiphy *wiphy, 2130 struct iface_combination_params *params) 2131 { 2132 int err, num = 0; 2133 2134 err = cfg80211_iter_combinations(wiphy, params, 2135 cfg80211_iter_sum_ifcombs, &num); 2136 if (err) 2137 return err; 2138 if (num == 0) 2139 return -EBUSY; 2140 2141 return 0; 2142 } 2143 EXPORT_SYMBOL(cfg80211_check_combinations); 2144 2145 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 2146 const u8 *rates, unsigned int n_rates, 2147 u32 *mask) 2148 { 2149 int i, j; 2150 2151 if (!sband) 2152 return -EINVAL; 2153 2154 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 2155 return -EINVAL; 2156 2157 *mask = 0; 2158 2159 for (i = 0; i < n_rates; i++) { 2160 int rate = (rates[i] & 0x7f) * 5; 2161 bool found = false; 2162 2163 for (j = 0; j < sband->n_bitrates; j++) { 2164 if (sband->bitrates[j].bitrate == rate) { 2165 found = true; 2166 *mask |= BIT(j); 2167 break; 2168 } 2169 } 2170 if (!found) 2171 return -EINVAL; 2172 } 2173 2174 /* 2175 * mask must have at least one bit set here since we 2176 * didn't accept a 0-length rates array nor allowed 2177 * entries in the array that didn't exist 2178 */ 2179 2180 return 0; 2181 } 2182 2183 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) 2184 { 2185 enum nl80211_band band; 2186 unsigned int n_channels = 0; 2187 2188 for (band = 0; band < NUM_NL80211_BANDS; band++) 2189 if (wiphy->bands[band]) 2190 n_channels += wiphy->bands[band]->n_channels; 2191 2192 return n_channels; 2193 } 2194 EXPORT_SYMBOL(ieee80211_get_num_supported_channels); 2195 2196 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, 2197 struct station_info *sinfo) 2198 { 2199 struct cfg80211_registered_device *rdev; 2200 struct wireless_dev *wdev; 2201 2202 wdev = dev->ieee80211_ptr; 2203 if (!wdev) 2204 return -EOPNOTSUPP; 2205 2206 rdev = wiphy_to_rdev(wdev->wiphy); 2207 if (!rdev->ops->get_station) 2208 return -EOPNOTSUPP; 2209 2210 memset(sinfo, 0, sizeof(*sinfo)); 2211 2212 return rdev_get_station(rdev, dev, mac_addr, sinfo); 2213 } 2214 EXPORT_SYMBOL(cfg80211_get_station); 2215 2216 void cfg80211_free_nan_func(struct cfg80211_nan_func *f) 2217 { 2218 int i; 2219 2220 if (!f) 2221 return; 2222 2223 kfree(f->serv_spec_info); 2224 kfree(f->srf_bf); 2225 kfree(f->srf_macs); 2226 for (i = 0; i < f->num_rx_filters; i++) 2227 kfree(f->rx_filters[i].filter); 2228 2229 for (i = 0; i < f->num_tx_filters; i++) 2230 kfree(f->tx_filters[i].filter); 2231 2232 kfree(f->rx_filters); 2233 kfree(f->tx_filters); 2234 kfree(f); 2235 } 2236 EXPORT_SYMBOL(cfg80211_free_nan_func); 2237 2238 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, 2239 u32 center_freq_khz, u32 bw_khz) 2240 { 2241 u32 start_freq_khz, end_freq_khz; 2242 2243 start_freq_khz = center_freq_khz - (bw_khz / 2); 2244 end_freq_khz = center_freq_khz + (bw_khz / 2); 2245 2246 if (start_freq_khz >= freq_range->start_freq_khz && 2247 end_freq_khz <= freq_range->end_freq_khz) 2248 return true; 2249 2250 return false; 2251 } 2252 2253 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) 2254 { 2255 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, 2256 sizeof(*(sinfo->pertid)), 2257 gfp); 2258 if (!sinfo->pertid) 2259 return -ENOMEM; 2260 2261 return 0; 2262 } 2263 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); 2264 2265 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 2266 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 2267 const unsigned char rfc1042_header[] __aligned(2) = 2268 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 2269 EXPORT_SYMBOL(rfc1042_header); 2270 2271 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 2272 const unsigned char bridge_tunnel_header[] __aligned(2) = 2273 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 2274 EXPORT_SYMBOL(bridge_tunnel_header); 2275 2276 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ 2277 struct iapp_layer2_update { 2278 u8 da[ETH_ALEN]; /* broadcast */ 2279 u8 sa[ETH_ALEN]; /* STA addr */ 2280 __be16 len; /* 6 */ 2281 u8 dsap; /* 0 */ 2282 u8 ssap; /* 0 */ 2283 u8 control; 2284 u8 xid_info[3]; 2285 } __packed; 2286 2287 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr) 2288 { 2289 struct iapp_layer2_update *msg; 2290 struct sk_buff *skb; 2291 2292 /* Send Level 2 Update Frame to update forwarding tables in layer 2 2293 * bridge devices */ 2294 2295 skb = dev_alloc_skb(sizeof(*msg)); 2296 if (!skb) 2297 return; 2298 msg = skb_put(skb, sizeof(*msg)); 2299 2300 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) 2301 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ 2302 2303 eth_broadcast_addr(msg->da); 2304 ether_addr_copy(msg->sa, addr); 2305 msg->len = htons(6); 2306 msg->dsap = 0; 2307 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ 2308 msg->control = 0xaf; /* XID response lsb.1111F101. 2309 * F=0 (no poll command; unsolicited frame) */ 2310 msg->xid_info[0] = 0x81; /* XID format identifier */ 2311 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ 2312 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ 2313 2314 skb->dev = dev; 2315 skb->protocol = eth_type_trans(skb, dev); 2316 memset(skb->cb, 0, sizeof(skb->cb)); 2317 netif_rx(skb); 2318 } 2319 EXPORT_SYMBOL(cfg80211_send_layer2_update); 2320 2321 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, 2322 enum ieee80211_vht_chanwidth bw, 2323 int mcs, bool ext_nss_bw_capable, 2324 unsigned int max_vht_nss) 2325 { 2326 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map); 2327 int ext_nss_bw; 2328 int supp_width; 2329 int i, mcs_encoding; 2330 2331 if (map == 0xffff) 2332 return 0; 2333 2334 if (WARN_ON(mcs > 9 || max_vht_nss > 8)) 2335 return 0; 2336 if (mcs <= 7) 2337 mcs_encoding = 0; 2338 else if (mcs == 8) 2339 mcs_encoding = 1; 2340 else 2341 mcs_encoding = 2; 2342 2343 if (!max_vht_nss) { 2344 /* find max_vht_nss for the given MCS */ 2345 for (i = 7; i >= 0; i--) { 2346 int supp = (map >> (2 * i)) & 3; 2347 2348 if (supp == 3) 2349 continue; 2350 2351 if (supp >= mcs_encoding) { 2352 max_vht_nss = i + 1; 2353 break; 2354 } 2355 } 2356 } 2357 2358 if (!(cap->supp_mcs.tx_mcs_map & 2359 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) 2360 return max_vht_nss; 2361 2362 ext_nss_bw = le32_get_bits(cap->vht_cap_info, 2363 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2364 supp_width = le32_get_bits(cap->vht_cap_info, 2365 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2366 2367 /* if not capable, treat ext_nss_bw as 0 */ 2368 if (!ext_nss_bw_capable) 2369 ext_nss_bw = 0; 2370 2371 /* This is invalid */ 2372 if (supp_width == 3) 2373 return 0; 2374 2375 /* This is an invalid combination so pretend nothing is supported */ 2376 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2)) 2377 return 0; 2378 2379 /* 2380 * Cover all the special cases according to IEEE 802.11-2016 2381 * Table 9-250. All other cases are either factor of 1 or not 2382 * valid/supported. 2383 */ 2384 switch (bw) { 2385 case IEEE80211_VHT_CHANWIDTH_USE_HT: 2386 case IEEE80211_VHT_CHANWIDTH_80MHZ: 2387 if ((supp_width == 1 || supp_width == 2) && 2388 ext_nss_bw == 3) 2389 return 2 * max_vht_nss; 2390 break; 2391 case IEEE80211_VHT_CHANWIDTH_160MHZ: 2392 if (supp_width == 0 && 2393 (ext_nss_bw == 1 || ext_nss_bw == 2)) 2394 return max_vht_nss / 2; 2395 if (supp_width == 0 && 2396 ext_nss_bw == 3) 2397 return (3 * max_vht_nss) / 4; 2398 if (supp_width == 1 && 2399 ext_nss_bw == 3) 2400 return 2 * max_vht_nss; 2401 break; 2402 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 2403 if (supp_width == 0 && ext_nss_bw == 1) 2404 return 0; /* not possible */ 2405 if (supp_width == 0 && 2406 ext_nss_bw == 2) 2407 return max_vht_nss / 2; 2408 if (supp_width == 0 && 2409 ext_nss_bw == 3) 2410 return (3 * max_vht_nss) / 4; 2411 if (supp_width == 1 && 2412 ext_nss_bw == 0) 2413 return 0; /* not possible */ 2414 if (supp_width == 1 && 2415 ext_nss_bw == 1) 2416 return max_vht_nss / 2; 2417 if (supp_width == 1 && 2418 ext_nss_bw == 2) 2419 return (3 * max_vht_nss) / 4; 2420 break; 2421 } 2422 2423 /* not covered or invalid combination received */ 2424 return max_vht_nss; 2425 } 2426 EXPORT_SYMBOL(ieee80211_get_vht_max_nss); 2427 2428 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype, 2429 bool is_4addr, u8 check_swif) 2430 2431 { 2432 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN; 2433 2434 switch (check_swif) { 2435 case 0: 2436 if (is_vlan && is_4addr) 2437 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2438 return wiphy->interface_modes & BIT(iftype); 2439 case 1: 2440 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan) 2441 return wiphy->flags & WIPHY_FLAG_4ADDR_AP; 2442 return wiphy->software_iftypes & BIT(iftype); 2443 default: 2444 break; 2445 } 2446 2447 return false; 2448 } 2449 EXPORT_SYMBOL(cfg80211_iftype_allowed); 2450 2451 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id) 2452 { 2453 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); 2454 2455 ASSERT_WDEV_LOCK(wdev); 2456 2457 switch (wdev->iftype) { 2458 case NL80211_IFTYPE_AP: 2459 case NL80211_IFTYPE_P2P_GO: 2460 __cfg80211_stop_ap(rdev, wdev->netdev, link_id, true); 2461 break; 2462 default: 2463 /* per-link not relevant */ 2464 break; 2465 } 2466 2467 wdev->valid_links &= ~BIT(link_id); 2468 2469 rdev_del_intf_link(rdev, wdev, link_id); 2470 2471 eth_zero_addr(wdev->links[link_id].addr); 2472 } 2473 2474 void cfg80211_remove_links(struct wireless_dev *wdev) 2475 { 2476 unsigned int link_id; 2477 2478 wdev_lock(wdev); 2479 if (wdev->valid_links) { 2480 for_each_valid_link(wdev, link_id) 2481 cfg80211_remove_link(wdev, link_id); 2482 } 2483 wdev_unlock(wdev); 2484 } 2485 2486 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev, 2487 struct wireless_dev *wdev) 2488 { 2489 cfg80211_remove_links(wdev); 2490 2491 return rdev_del_virtual_intf(rdev, wdev); 2492 } 2493 2494 const struct wiphy_iftype_ext_capab * 2495 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type) 2496 { 2497 int i; 2498 2499 for (i = 0; i < wiphy->num_iftype_ext_capab; i++) { 2500 if (wiphy->iftype_ext_capab[i].iftype == type) 2501 return &wiphy->iftype_ext_capab[i]; 2502 } 2503 2504 return NULL; 2505 } 2506 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa); 2507