xref: /openbmc/linux/net/wireless/util.c (revision 09bae3b6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017	Intel Deutschland GmbH
8  */
9 #include <linux/export.h>
10 #include <linux/bitops.h>
11 #include <linux/etherdevice.h>
12 #include <linux/slab.h>
13 #include <net/cfg80211.h>
14 #include <net/ip.h>
15 #include <net/dsfield.h>
16 #include <linux/if_vlan.h>
17 #include <linux/mpls.h>
18 #include <linux/gcd.h>
19 #include "core.h"
20 #include "rdev-ops.h"
21 
22 
23 struct ieee80211_rate *
24 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
25 			    u32 basic_rates, int bitrate)
26 {
27 	struct ieee80211_rate *result = &sband->bitrates[0];
28 	int i;
29 
30 	for (i = 0; i < sband->n_bitrates; i++) {
31 		if (!(basic_rates & BIT(i)))
32 			continue;
33 		if (sband->bitrates[i].bitrate > bitrate)
34 			continue;
35 		result = &sband->bitrates[i];
36 	}
37 
38 	return result;
39 }
40 EXPORT_SYMBOL(ieee80211_get_response_rate);
41 
42 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
43 			      enum nl80211_bss_scan_width scan_width)
44 {
45 	struct ieee80211_rate *bitrates;
46 	u32 mandatory_rates = 0;
47 	enum ieee80211_rate_flags mandatory_flag;
48 	int i;
49 
50 	if (WARN_ON(!sband))
51 		return 1;
52 
53 	if (sband->band == NL80211_BAND_2GHZ) {
54 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
55 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
56 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
57 		else
58 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
59 	} else {
60 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
61 	}
62 
63 	bitrates = sband->bitrates;
64 	for (i = 0; i < sband->n_bitrates; i++)
65 		if (bitrates[i].flags & mandatory_flag)
66 			mandatory_rates |= BIT(i);
67 	return mandatory_rates;
68 }
69 EXPORT_SYMBOL(ieee80211_mandatory_rates);
70 
71 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
72 {
73 	/* see 802.11 17.3.8.3.2 and Annex J
74 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
75 	if (chan <= 0)
76 		return 0; /* not supported */
77 	switch (band) {
78 	case NL80211_BAND_2GHZ:
79 		if (chan == 14)
80 			return 2484;
81 		else if (chan < 14)
82 			return 2407 + chan * 5;
83 		break;
84 	case NL80211_BAND_5GHZ:
85 		if (chan >= 182 && chan <= 196)
86 			return 4000 + chan * 5;
87 		else
88 			return 5000 + chan * 5;
89 		break;
90 	case NL80211_BAND_60GHZ:
91 		if (chan < 5)
92 			return 56160 + chan * 2160;
93 		break;
94 	default:
95 		;
96 	}
97 	return 0; /* not supported */
98 }
99 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
100 
101 int ieee80211_frequency_to_channel(int freq)
102 {
103 	/* see 802.11 17.3.8.3.2 and Annex J */
104 	if (freq == 2484)
105 		return 14;
106 	else if (freq < 2484)
107 		return (freq - 2407) / 5;
108 	else if (freq >= 4910 && freq <= 4980)
109 		return (freq - 4000) / 5;
110 	else if (freq <= 45000) /* DMG band lower limit */
111 		return (freq - 5000) / 5;
112 	else if (freq >= 58320 && freq <= 64800)
113 		return (freq - 56160) / 2160;
114 	else
115 		return 0;
116 }
117 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
118 
119 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
120 {
121 	enum nl80211_band band;
122 	struct ieee80211_supported_band *sband;
123 	int i;
124 
125 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
126 		sband = wiphy->bands[band];
127 
128 		if (!sband)
129 			continue;
130 
131 		for (i = 0; i < sband->n_channels; i++) {
132 			if (sband->channels[i].center_freq == freq)
133 				return &sband->channels[i];
134 		}
135 	}
136 
137 	return NULL;
138 }
139 EXPORT_SYMBOL(ieee80211_get_channel);
140 
141 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
142 {
143 	int i, want;
144 
145 	switch (sband->band) {
146 	case NL80211_BAND_5GHZ:
147 		want = 3;
148 		for (i = 0; i < sband->n_bitrates; i++) {
149 			if (sband->bitrates[i].bitrate == 60 ||
150 			    sband->bitrates[i].bitrate == 120 ||
151 			    sband->bitrates[i].bitrate == 240) {
152 				sband->bitrates[i].flags |=
153 					IEEE80211_RATE_MANDATORY_A;
154 				want--;
155 			}
156 		}
157 		WARN_ON(want);
158 		break;
159 	case NL80211_BAND_2GHZ:
160 		want = 7;
161 		for (i = 0; i < sband->n_bitrates; i++) {
162 			switch (sband->bitrates[i].bitrate) {
163 			case 10:
164 			case 20:
165 			case 55:
166 			case 110:
167 				sband->bitrates[i].flags |=
168 					IEEE80211_RATE_MANDATORY_B |
169 					IEEE80211_RATE_MANDATORY_G;
170 				want--;
171 				break;
172 			case 60:
173 			case 120:
174 			case 240:
175 				sband->bitrates[i].flags |=
176 					IEEE80211_RATE_MANDATORY_G;
177 				want--;
178 				/* fall through */
179 			default:
180 				sband->bitrates[i].flags |=
181 					IEEE80211_RATE_ERP_G;
182 				break;
183 			}
184 		}
185 		WARN_ON(want != 0 && want != 3);
186 		break;
187 	case NL80211_BAND_60GHZ:
188 		/* check for mandatory HT MCS 1..4 */
189 		WARN_ON(!sband->ht_cap.ht_supported);
190 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
191 		break;
192 	case NUM_NL80211_BANDS:
193 	default:
194 		WARN_ON(1);
195 		break;
196 	}
197 }
198 
199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
200 {
201 	enum nl80211_band band;
202 
203 	for (band = 0; band < NUM_NL80211_BANDS; band++)
204 		if (wiphy->bands[band])
205 			set_mandatory_flags_band(wiphy->bands[band]);
206 }
207 
208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
209 {
210 	int i;
211 	for (i = 0; i < wiphy->n_cipher_suites; i++)
212 		if (cipher == wiphy->cipher_suites[i])
213 			return true;
214 	return false;
215 }
216 
217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
218 				   struct key_params *params, int key_idx,
219 				   bool pairwise, const u8 *mac_addr)
220 {
221 	if (key_idx < 0 || key_idx > 5)
222 		return -EINVAL;
223 
224 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
225 		return -EINVAL;
226 
227 	if (pairwise && !mac_addr)
228 		return -EINVAL;
229 
230 	switch (params->cipher) {
231 	case WLAN_CIPHER_SUITE_TKIP:
232 	case WLAN_CIPHER_SUITE_CCMP:
233 	case WLAN_CIPHER_SUITE_CCMP_256:
234 	case WLAN_CIPHER_SUITE_GCMP:
235 	case WLAN_CIPHER_SUITE_GCMP_256:
236 		/* Disallow pairwise keys with non-zero index unless it's WEP
237 		 * or a vendor specific cipher (because current deployments use
238 		 * pairwise WEP keys with non-zero indices and for vendor
239 		 * specific ciphers this should be validated in the driver or
240 		 * hardware level - but 802.11i clearly specifies to use zero)
241 		 */
242 		if (pairwise && key_idx)
243 			return -EINVAL;
244 		break;
245 	case WLAN_CIPHER_SUITE_AES_CMAC:
246 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
247 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
248 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
249 		/* Disallow BIP (group-only) cipher as pairwise cipher */
250 		if (pairwise)
251 			return -EINVAL;
252 		if (key_idx < 4)
253 			return -EINVAL;
254 		break;
255 	case WLAN_CIPHER_SUITE_WEP40:
256 	case WLAN_CIPHER_SUITE_WEP104:
257 		if (key_idx > 3)
258 			return -EINVAL;
259 	default:
260 		break;
261 	}
262 
263 	switch (params->cipher) {
264 	case WLAN_CIPHER_SUITE_WEP40:
265 		if (params->key_len != WLAN_KEY_LEN_WEP40)
266 			return -EINVAL;
267 		break;
268 	case WLAN_CIPHER_SUITE_TKIP:
269 		if (params->key_len != WLAN_KEY_LEN_TKIP)
270 			return -EINVAL;
271 		break;
272 	case WLAN_CIPHER_SUITE_CCMP:
273 		if (params->key_len != WLAN_KEY_LEN_CCMP)
274 			return -EINVAL;
275 		break;
276 	case WLAN_CIPHER_SUITE_CCMP_256:
277 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
278 			return -EINVAL;
279 		break;
280 	case WLAN_CIPHER_SUITE_GCMP:
281 		if (params->key_len != WLAN_KEY_LEN_GCMP)
282 			return -EINVAL;
283 		break;
284 	case WLAN_CIPHER_SUITE_GCMP_256:
285 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
286 			return -EINVAL;
287 		break;
288 	case WLAN_CIPHER_SUITE_WEP104:
289 		if (params->key_len != WLAN_KEY_LEN_WEP104)
290 			return -EINVAL;
291 		break;
292 	case WLAN_CIPHER_SUITE_AES_CMAC:
293 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
294 			return -EINVAL;
295 		break;
296 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
297 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
298 			return -EINVAL;
299 		break;
300 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
301 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
302 			return -EINVAL;
303 		break;
304 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
305 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
306 			return -EINVAL;
307 		break;
308 	default:
309 		/*
310 		 * We don't know anything about this algorithm,
311 		 * allow using it -- but the driver must check
312 		 * all parameters! We still check below whether
313 		 * or not the driver supports this algorithm,
314 		 * of course.
315 		 */
316 		break;
317 	}
318 
319 	if (params->seq) {
320 		switch (params->cipher) {
321 		case WLAN_CIPHER_SUITE_WEP40:
322 		case WLAN_CIPHER_SUITE_WEP104:
323 			/* These ciphers do not use key sequence */
324 			return -EINVAL;
325 		case WLAN_CIPHER_SUITE_TKIP:
326 		case WLAN_CIPHER_SUITE_CCMP:
327 		case WLAN_CIPHER_SUITE_CCMP_256:
328 		case WLAN_CIPHER_SUITE_GCMP:
329 		case WLAN_CIPHER_SUITE_GCMP_256:
330 		case WLAN_CIPHER_SUITE_AES_CMAC:
331 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
332 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
333 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
334 			if (params->seq_len != 6)
335 				return -EINVAL;
336 			break;
337 		}
338 	}
339 
340 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
341 		return -EINVAL;
342 
343 	return 0;
344 }
345 
346 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
347 {
348 	unsigned int hdrlen = 24;
349 
350 	if (ieee80211_is_data(fc)) {
351 		if (ieee80211_has_a4(fc))
352 			hdrlen = 30;
353 		if (ieee80211_is_data_qos(fc)) {
354 			hdrlen += IEEE80211_QOS_CTL_LEN;
355 			if (ieee80211_has_order(fc))
356 				hdrlen += IEEE80211_HT_CTL_LEN;
357 		}
358 		goto out;
359 	}
360 
361 	if (ieee80211_is_mgmt(fc)) {
362 		if (ieee80211_has_order(fc))
363 			hdrlen += IEEE80211_HT_CTL_LEN;
364 		goto out;
365 	}
366 
367 	if (ieee80211_is_ctl(fc)) {
368 		/*
369 		 * ACK and CTS are 10 bytes, all others 16. To see how
370 		 * to get this condition consider
371 		 *   subtype mask:   0b0000000011110000 (0x00F0)
372 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
373 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
374 		 *   bits that matter:         ^^^      (0x00E0)
375 		 *   value of those: 0b0000000011000000 (0x00C0)
376 		 */
377 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
378 			hdrlen = 10;
379 		else
380 			hdrlen = 16;
381 	}
382 out:
383 	return hdrlen;
384 }
385 EXPORT_SYMBOL(ieee80211_hdrlen);
386 
387 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
388 {
389 	const struct ieee80211_hdr *hdr =
390 			(const struct ieee80211_hdr *)skb->data;
391 	unsigned int hdrlen;
392 
393 	if (unlikely(skb->len < 10))
394 		return 0;
395 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
396 	if (unlikely(hdrlen > skb->len))
397 		return 0;
398 	return hdrlen;
399 }
400 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
401 
402 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
403 {
404 	int ae = flags & MESH_FLAGS_AE;
405 	/* 802.11-2012, 8.2.4.7.3 */
406 	switch (ae) {
407 	default:
408 	case 0:
409 		return 6;
410 	case MESH_FLAGS_AE_A4:
411 		return 12;
412 	case MESH_FLAGS_AE_A5_A6:
413 		return 18;
414 	}
415 }
416 
417 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
418 {
419 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
420 }
421 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
422 
423 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
424 				  const u8 *addr, enum nl80211_iftype iftype,
425 				  u8 data_offset)
426 {
427 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
428 	struct {
429 		u8 hdr[ETH_ALEN] __aligned(2);
430 		__be16 proto;
431 	} payload;
432 	struct ethhdr tmp;
433 	u16 hdrlen;
434 	u8 mesh_flags = 0;
435 
436 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
437 		return -1;
438 
439 	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
440 	if (skb->len < hdrlen + 8)
441 		return -1;
442 
443 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
444 	 * header
445 	 * IEEE 802.11 address fields:
446 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
447 	 *   0     0   DA    SA    BSSID n/a
448 	 *   0     1   DA    BSSID SA    n/a
449 	 *   1     0   BSSID SA    DA    n/a
450 	 *   1     1   RA    TA    DA    SA
451 	 */
452 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
453 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
454 
455 	if (iftype == NL80211_IFTYPE_MESH_POINT)
456 		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
457 
458 	mesh_flags &= MESH_FLAGS_AE;
459 
460 	switch (hdr->frame_control &
461 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
462 	case cpu_to_le16(IEEE80211_FCTL_TODS):
463 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
464 			     iftype != NL80211_IFTYPE_AP_VLAN &&
465 			     iftype != NL80211_IFTYPE_P2P_GO))
466 			return -1;
467 		break;
468 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
469 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
470 			     iftype != NL80211_IFTYPE_MESH_POINT &&
471 			     iftype != NL80211_IFTYPE_AP_VLAN &&
472 			     iftype != NL80211_IFTYPE_STATION))
473 			return -1;
474 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
475 			if (mesh_flags == MESH_FLAGS_AE_A4)
476 				return -1;
477 			if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
478 				skb_copy_bits(skb, hdrlen +
479 					offsetof(struct ieee80211s_hdr, eaddr1),
480 					tmp.h_dest, 2 * ETH_ALEN);
481 			}
482 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
483 		}
484 		break;
485 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
486 		if ((iftype != NL80211_IFTYPE_STATION &&
487 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
488 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
489 		    (is_multicast_ether_addr(tmp.h_dest) &&
490 		     ether_addr_equal(tmp.h_source, addr)))
491 			return -1;
492 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
493 			if (mesh_flags == MESH_FLAGS_AE_A5_A6)
494 				return -1;
495 			if (mesh_flags == MESH_FLAGS_AE_A4)
496 				skb_copy_bits(skb, hdrlen +
497 					offsetof(struct ieee80211s_hdr, eaddr1),
498 					tmp.h_source, ETH_ALEN);
499 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
500 		}
501 		break;
502 	case cpu_to_le16(0):
503 		if (iftype != NL80211_IFTYPE_ADHOC &&
504 		    iftype != NL80211_IFTYPE_STATION &&
505 		    iftype != NL80211_IFTYPE_OCB)
506 				return -1;
507 		break;
508 	}
509 
510 	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
511 	tmp.h_proto = payload.proto;
512 
513 	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
514 		    tmp.h_proto != htons(ETH_P_AARP) &&
515 		    tmp.h_proto != htons(ETH_P_IPX)) ||
516 		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
517 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
518 		 * replace EtherType */
519 		hdrlen += ETH_ALEN + 2;
520 	else
521 		tmp.h_proto = htons(skb->len - hdrlen);
522 
523 	pskb_pull(skb, hdrlen);
524 
525 	if (!ehdr)
526 		ehdr = skb_push(skb, sizeof(struct ethhdr));
527 	memcpy(ehdr, &tmp, sizeof(tmp));
528 
529 	return 0;
530 }
531 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
532 
533 static void
534 __frame_add_frag(struct sk_buff *skb, struct page *page,
535 		 void *ptr, int len, int size)
536 {
537 	struct skb_shared_info *sh = skb_shinfo(skb);
538 	int page_offset;
539 
540 	page_ref_inc(page);
541 	page_offset = ptr - page_address(page);
542 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
543 }
544 
545 static void
546 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
547 			    int offset, int len)
548 {
549 	struct skb_shared_info *sh = skb_shinfo(skb);
550 	const skb_frag_t *frag = &sh->frags[0];
551 	struct page *frag_page;
552 	void *frag_ptr;
553 	int frag_len, frag_size;
554 	int head_size = skb->len - skb->data_len;
555 	int cur_len;
556 
557 	frag_page = virt_to_head_page(skb->head);
558 	frag_ptr = skb->data;
559 	frag_size = head_size;
560 
561 	while (offset >= frag_size) {
562 		offset -= frag_size;
563 		frag_page = skb_frag_page(frag);
564 		frag_ptr = skb_frag_address(frag);
565 		frag_size = skb_frag_size(frag);
566 		frag++;
567 	}
568 
569 	frag_ptr += offset;
570 	frag_len = frag_size - offset;
571 
572 	cur_len = min(len, frag_len);
573 
574 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
575 	len -= cur_len;
576 
577 	while (len > 0) {
578 		frag_len = skb_frag_size(frag);
579 		cur_len = min(len, frag_len);
580 		__frame_add_frag(frame, skb_frag_page(frag),
581 				 skb_frag_address(frag), cur_len, frag_len);
582 		len -= cur_len;
583 		frag++;
584 	}
585 }
586 
587 static struct sk_buff *
588 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
589 		       int offset, int len, bool reuse_frag)
590 {
591 	struct sk_buff *frame;
592 	int cur_len = len;
593 
594 	if (skb->len - offset < len)
595 		return NULL;
596 
597 	/*
598 	 * When reusing framents, copy some data to the head to simplify
599 	 * ethernet header handling and speed up protocol header processing
600 	 * in the stack later.
601 	 */
602 	if (reuse_frag)
603 		cur_len = min_t(int, len, 32);
604 
605 	/*
606 	 * Allocate and reserve two bytes more for payload
607 	 * alignment since sizeof(struct ethhdr) is 14.
608 	 */
609 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
610 	if (!frame)
611 		return NULL;
612 
613 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
614 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
615 
616 	len -= cur_len;
617 	if (!len)
618 		return frame;
619 
620 	offset += cur_len;
621 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
622 
623 	return frame;
624 }
625 
626 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
627 			      const u8 *addr, enum nl80211_iftype iftype,
628 			      const unsigned int extra_headroom,
629 			      const u8 *check_da, const u8 *check_sa)
630 {
631 	unsigned int hlen = ALIGN(extra_headroom, 4);
632 	struct sk_buff *frame = NULL;
633 	u16 ethertype;
634 	u8 *payload;
635 	int offset = 0, remaining;
636 	struct ethhdr eth;
637 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
638 	bool reuse_skb = false;
639 	bool last = false;
640 
641 	while (!last) {
642 		unsigned int subframe_len;
643 		int len;
644 		u8 padding;
645 
646 		skb_copy_bits(skb, offset, &eth, sizeof(eth));
647 		len = ntohs(eth.h_proto);
648 		subframe_len = sizeof(struct ethhdr) + len;
649 		padding = (4 - subframe_len) & 0x3;
650 
651 		/* the last MSDU has no padding */
652 		remaining = skb->len - offset;
653 		if (subframe_len > remaining)
654 			goto purge;
655 
656 		offset += sizeof(struct ethhdr);
657 		last = remaining <= subframe_len + padding;
658 
659 		/* FIXME: should we really accept multicast DA? */
660 		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
661 		     !ether_addr_equal(check_da, eth.h_dest)) ||
662 		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
663 			offset += len + padding;
664 			continue;
665 		}
666 
667 		/* reuse skb for the last subframe */
668 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
669 			skb_pull(skb, offset);
670 			frame = skb;
671 			reuse_skb = true;
672 		} else {
673 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
674 						       reuse_frag);
675 			if (!frame)
676 				goto purge;
677 
678 			offset += len + padding;
679 		}
680 
681 		skb_reset_network_header(frame);
682 		frame->dev = skb->dev;
683 		frame->priority = skb->priority;
684 
685 		payload = frame->data;
686 		ethertype = (payload[6] << 8) | payload[7];
687 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
688 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
689 			   ether_addr_equal(payload, bridge_tunnel_header))) {
690 			eth.h_proto = htons(ethertype);
691 			skb_pull(frame, ETH_ALEN + 2);
692 		}
693 
694 		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
695 		__skb_queue_tail(list, frame);
696 	}
697 
698 	if (!reuse_skb)
699 		dev_kfree_skb(skb);
700 
701 	return;
702 
703  purge:
704 	__skb_queue_purge(list);
705 	dev_kfree_skb(skb);
706 }
707 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
708 
709 /* Given a data frame determine the 802.1p/1d tag to use. */
710 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
711 				    struct cfg80211_qos_map *qos_map)
712 {
713 	unsigned int dscp;
714 	unsigned char vlan_priority;
715 
716 	/* skb->priority values from 256->263 are magic values to
717 	 * directly indicate a specific 802.1d priority.  This is used
718 	 * to allow 802.1d priority to be passed directly in from VLAN
719 	 * tags, etc.
720 	 */
721 	if (skb->priority >= 256 && skb->priority <= 263)
722 		return skb->priority - 256;
723 
724 	if (skb_vlan_tag_present(skb)) {
725 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
726 			>> VLAN_PRIO_SHIFT;
727 		if (vlan_priority > 0)
728 			return vlan_priority;
729 	}
730 
731 	switch (skb->protocol) {
732 	case htons(ETH_P_IP):
733 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
734 		break;
735 	case htons(ETH_P_IPV6):
736 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
737 		break;
738 	case htons(ETH_P_MPLS_UC):
739 	case htons(ETH_P_MPLS_MC): {
740 		struct mpls_label mpls_tmp, *mpls;
741 
742 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
743 					  sizeof(*mpls), &mpls_tmp);
744 		if (!mpls)
745 			return 0;
746 
747 		return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
748 			>> MPLS_LS_TC_SHIFT;
749 	}
750 	case htons(ETH_P_80221):
751 		/* 802.21 is always network control traffic */
752 		return 7;
753 	default:
754 		return 0;
755 	}
756 
757 	if (qos_map) {
758 		unsigned int i, tmp_dscp = dscp >> 2;
759 
760 		for (i = 0; i < qos_map->num_des; i++) {
761 			if (tmp_dscp == qos_map->dscp_exception[i].dscp)
762 				return qos_map->dscp_exception[i].up;
763 		}
764 
765 		for (i = 0; i < 8; i++) {
766 			if (tmp_dscp >= qos_map->up[i].low &&
767 			    tmp_dscp <= qos_map->up[i].high)
768 				return i;
769 		}
770 	}
771 
772 	return dscp >> 5;
773 }
774 EXPORT_SYMBOL(cfg80211_classify8021d);
775 
776 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
777 {
778 	const struct cfg80211_bss_ies *ies;
779 
780 	ies = rcu_dereference(bss->ies);
781 	if (!ies)
782 		return NULL;
783 
784 	return cfg80211_find_ie(ie, ies->data, ies->len);
785 }
786 EXPORT_SYMBOL(ieee80211_bss_get_ie);
787 
788 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
789 {
790 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
791 	struct net_device *dev = wdev->netdev;
792 	int i;
793 
794 	if (!wdev->connect_keys)
795 		return;
796 
797 	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
798 		if (!wdev->connect_keys->params[i].cipher)
799 			continue;
800 		if (rdev_add_key(rdev, dev, i, false, NULL,
801 				 &wdev->connect_keys->params[i])) {
802 			netdev_err(dev, "failed to set key %d\n", i);
803 			continue;
804 		}
805 		if (wdev->connect_keys->def == i &&
806 		    rdev_set_default_key(rdev, dev, i, true, true)) {
807 			netdev_err(dev, "failed to set defkey %d\n", i);
808 			continue;
809 		}
810 	}
811 
812 	kzfree(wdev->connect_keys);
813 	wdev->connect_keys = NULL;
814 }
815 
816 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
817 {
818 	struct cfg80211_event *ev;
819 	unsigned long flags;
820 
821 	spin_lock_irqsave(&wdev->event_lock, flags);
822 	while (!list_empty(&wdev->event_list)) {
823 		ev = list_first_entry(&wdev->event_list,
824 				      struct cfg80211_event, list);
825 		list_del(&ev->list);
826 		spin_unlock_irqrestore(&wdev->event_lock, flags);
827 
828 		wdev_lock(wdev);
829 		switch (ev->type) {
830 		case EVENT_CONNECT_RESULT:
831 			__cfg80211_connect_result(
832 				wdev->netdev,
833 				&ev->cr,
834 				ev->cr.status == WLAN_STATUS_SUCCESS);
835 			break;
836 		case EVENT_ROAMED:
837 			__cfg80211_roamed(wdev, &ev->rm);
838 			break;
839 		case EVENT_DISCONNECTED:
840 			__cfg80211_disconnected(wdev->netdev,
841 						ev->dc.ie, ev->dc.ie_len,
842 						ev->dc.reason,
843 						!ev->dc.locally_generated);
844 			break;
845 		case EVENT_IBSS_JOINED:
846 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
847 					       ev->ij.channel);
848 			break;
849 		case EVENT_STOPPED:
850 			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
851 			break;
852 		case EVENT_PORT_AUTHORIZED:
853 			__cfg80211_port_authorized(wdev, ev->pa.bssid);
854 			break;
855 		}
856 		wdev_unlock(wdev);
857 
858 		kfree(ev);
859 
860 		spin_lock_irqsave(&wdev->event_lock, flags);
861 	}
862 	spin_unlock_irqrestore(&wdev->event_lock, flags);
863 }
864 
865 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
866 {
867 	struct wireless_dev *wdev;
868 
869 	ASSERT_RTNL();
870 
871 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
872 		cfg80211_process_wdev_events(wdev);
873 }
874 
875 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
876 			  struct net_device *dev, enum nl80211_iftype ntype,
877 			  struct vif_params *params)
878 {
879 	int err;
880 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
881 
882 	ASSERT_RTNL();
883 
884 	/* don't support changing VLANs, you just re-create them */
885 	if (otype == NL80211_IFTYPE_AP_VLAN)
886 		return -EOPNOTSUPP;
887 
888 	/* cannot change into P2P device or NAN */
889 	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
890 	    ntype == NL80211_IFTYPE_NAN)
891 		return -EOPNOTSUPP;
892 
893 	if (!rdev->ops->change_virtual_intf ||
894 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
895 		return -EOPNOTSUPP;
896 
897 	/* if it's part of a bridge, reject changing type to station/ibss */
898 	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
899 	    (ntype == NL80211_IFTYPE_ADHOC ||
900 	     ntype == NL80211_IFTYPE_STATION ||
901 	     ntype == NL80211_IFTYPE_P2P_CLIENT))
902 		return -EBUSY;
903 
904 	if (ntype != otype) {
905 		dev->ieee80211_ptr->use_4addr = false;
906 		dev->ieee80211_ptr->mesh_id_up_len = 0;
907 		wdev_lock(dev->ieee80211_ptr);
908 		rdev_set_qos_map(rdev, dev, NULL);
909 		wdev_unlock(dev->ieee80211_ptr);
910 
911 		switch (otype) {
912 		case NL80211_IFTYPE_AP:
913 			cfg80211_stop_ap(rdev, dev, true);
914 			break;
915 		case NL80211_IFTYPE_ADHOC:
916 			cfg80211_leave_ibss(rdev, dev, false);
917 			break;
918 		case NL80211_IFTYPE_STATION:
919 		case NL80211_IFTYPE_P2P_CLIENT:
920 			wdev_lock(dev->ieee80211_ptr);
921 			cfg80211_disconnect(rdev, dev,
922 					    WLAN_REASON_DEAUTH_LEAVING, true);
923 			wdev_unlock(dev->ieee80211_ptr);
924 			break;
925 		case NL80211_IFTYPE_MESH_POINT:
926 			/* mesh should be handled? */
927 			break;
928 		default:
929 			break;
930 		}
931 
932 		cfg80211_process_rdev_events(rdev);
933 	}
934 
935 	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
936 
937 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
938 
939 	if (!err && params && params->use_4addr != -1)
940 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
941 
942 	if (!err) {
943 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
944 		switch (ntype) {
945 		case NL80211_IFTYPE_STATION:
946 			if (dev->ieee80211_ptr->use_4addr)
947 				break;
948 			/* fall through */
949 		case NL80211_IFTYPE_OCB:
950 		case NL80211_IFTYPE_P2P_CLIENT:
951 		case NL80211_IFTYPE_ADHOC:
952 			dev->priv_flags |= IFF_DONT_BRIDGE;
953 			break;
954 		case NL80211_IFTYPE_P2P_GO:
955 		case NL80211_IFTYPE_AP:
956 		case NL80211_IFTYPE_AP_VLAN:
957 		case NL80211_IFTYPE_WDS:
958 		case NL80211_IFTYPE_MESH_POINT:
959 			/* bridging OK */
960 			break;
961 		case NL80211_IFTYPE_MONITOR:
962 			/* monitor can't bridge anyway */
963 			break;
964 		case NL80211_IFTYPE_UNSPECIFIED:
965 		case NUM_NL80211_IFTYPES:
966 			/* not happening */
967 			break;
968 		case NL80211_IFTYPE_P2P_DEVICE:
969 		case NL80211_IFTYPE_NAN:
970 			WARN_ON(1);
971 			break;
972 		}
973 	}
974 
975 	if (!err && ntype != otype && netif_running(dev)) {
976 		cfg80211_update_iface_num(rdev, ntype, 1);
977 		cfg80211_update_iface_num(rdev, otype, -1);
978 	}
979 
980 	return err;
981 }
982 
983 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
984 {
985 	int modulation, streams, bitrate;
986 
987 	/* the formula below does only work for MCS values smaller than 32 */
988 	if (WARN_ON_ONCE(rate->mcs >= 32))
989 		return 0;
990 
991 	modulation = rate->mcs & 7;
992 	streams = (rate->mcs >> 3) + 1;
993 
994 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
995 
996 	if (modulation < 4)
997 		bitrate *= (modulation + 1);
998 	else if (modulation == 4)
999 		bitrate *= (modulation + 2);
1000 	else
1001 		bitrate *= (modulation + 3);
1002 
1003 	bitrate *= streams;
1004 
1005 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1006 		bitrate = (bitrate / 9) * 10;
1007 
1008 	/* do NOT round down here */
1009 	return (bitrate + 50000) / 100000;
1010 }
1011 
1012 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1013 {
1014 	static const u32 __mcs2bitrate[] = {
1015 		/* control PHY */
1016 		[0] =   275,
1017 		/* SC PHY */
1018 		[1] =  3850,
1019 		[2] =  7700,
1020 		[3] =  9625,
1021 		[4] = 11550,
1022 		[5] = 12512, /* 1251.25 mbps */
1023 		[6] = 15400,
1024 		[7] = 19250,
1025 		[8] = 23100,
1026 		[9] = 25025,
1027 		[10] = 30800,
1028 		[11] = 38500,
1029 		[12] = 46200,
1030 		/* OFDM PHY */
1031 		[13] =  6930,
1032 		[14] =  8662, /* 866.25 mbps */
1033 		[15] = 13860,
1034 		[16] = 17325,
1035 		[17] = 20790,
1036 		[18] = 27720,
1037 		[19] = 34650,
1038 		[20] = 41580,
1039 		[21] = 45045,
1040 		[22] = 51975,
1041 		[23] = 62370,
1042 		[24] = 67568, /* 6756.75 mbps */
1043 		/* LP-SC PHY */
1044 		[25] =  6260,
1045 		[26] =  8340,
1046 		[27] = 11120,
1047 		[28] = 12510,
1048 		[29] = 16680,
1049 		[30] = 22240,
1050 		[31] = 25030,
1051 	};
1052 
1053 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1054 		return 0;
1055 
1056 	return __mcs2bitrate[rate->mcs];
1057 }
1058 
1059 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1060 {
1061 	static const u32 base[4][10] = {
1062 		{   6500000,
1063 		   13000000,
1064 		   19500000,
1065 		   26000000,
1066 		   39000000,
1067 		   52000000,
1068 		   58500000,
1069 		   65000000,
1070 		   78000000,
1071 		/* not in the spec, but some devices use this: */
1072 		   86500000,
1073 		},
1074 		{  13500000,
1075 		   27000000,
1076 		   40500000,
1077 		   54000000,
1078 		   81000000,
1079 		  108000000,
1080 		  121500000,
1081 		  135000000,
1082 		  162000000,
1083 		  180000000,
1084 		},
1085 		{  29300000,
1086 		   58500000,
1087 		   87800000,
1088 		  117000000,
1089 		  175500000,
1090 		  234000000,
1091 		  263300000,
1092 		  292500000,
1093 		  351000000,
1094 		  390000000,
1095 		},
1096 		{  58500000,
1097 		  117000000,
1098 		  175500000,
1099 		  234000000,
1100 		  351000000,
1101 		  468000000,
1102 		  526500000,
1103 		  585000000,
1104 		  702000000,
1105 		  780000000,
1106 		},
1107 	};
1108 	u32 bitrate;
1109 	int idx;
1110 
1111 	if (rate->mcs > 9)
1112 		goto warn;
1113 
1114 	switch (rate->bw) {
1115 	case RATE_INFO_BW_160:
1116 		idx = 3;
1117 		break;
1118 	case RATE_INFO_BW_80:
1119 		idx = 2;
1120 		break;
1121 	case RATE_INFO_BW_40:
1122 		idx = 1;
1123 		break;
1124 	case RATE_INFO_BW_5:
1125 	case RATE_INFO_BW_10:
1126 	default:
1127 		goto warn;
1128 	case RATE_INFO_BW_20:
1129 		idx = 0;
1130 	}
1131 
1132 	bitrate = base[idx][rate->mcs];
1133 	bitrate *= rate->nss;
1134 
1135 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1136 		bitrate = (bitrate / 9) * 10;
1137 
1138 	/* do NOT round down here */
1139 	return (bitrate + 50000) / 100000;
1140  warn:
1141 	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1142 		  rate->bw, rate->mcs, rate->nss);
1143 	return 0;
1144 }
1145 
1146 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1147 {
1148 #define SCALE 2048
1149 	u16 mcs_divisors[12] = {
1150 		34133, /* 16.666666... */
1151 		17067, /*  8.333333... */
1152 		11378, /*  5.555555... */
1153 		 8533, /*  4.166666... */
1154 		 5689, /*  2.777777... */
1155 		 4267, /*  2.083333... */
1156 		 3923, /*  1.851851... */
1157 		 3413, /*  1.666666... */
1158 		 2844, /*  1.388888... */
1159 		 2560, /*  1.250000... */
1160 		 2276, /*  1.111111... */
1161 		 2048, /*  1.000000... */
1162 	};
1163 	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1164 	u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1165 	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1166 	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1167 	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1168 	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1169 	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1170 	u64 tmp;
1171 	u32 result;
1172 
1173 	if (WARN_ON_ONCE(rate->mcs > 11))
1174 		return 0;
1175 
1176 	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1177 		return 0;
1178 	if (WARN_ON_ONCE(rate->he_ru_alloc >
1179 			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1180 		return 0;
1181 	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1182 		return 0;
1183 
1184 	if (rate->bw == RATE_INFO_BW_160)
1185 		result = rates_160M[rate->he_gi];
1186 	else if (rate->bw == RATE_INFO_BW_80 ||
1187 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1188 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1189 		result = rates_969[rate->he_gi];
1190 	else if (rate->bw == RATE_INFO_BW_40 ||
1191 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1192 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1193 		result = rates_484[rate->he_gi];
1194 	else if (rate->bw == RATE_INFO_BW_20 ||
1195 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1196 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1197 		result = rates_242[rate->he_gi];
1198 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1199 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1200 		result = rates_106[rate->he_gi];
1201 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1202 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1203 		result = rates_52[rate->he_gi];
1204 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1205 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1206 		result = rates_26[rate->he_gi];
1207 	else if (WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1208 		      rate->bw, rate->he_ru_alloc))
1209 		return 0;
1210 
1211 	/* now scale to the appropriate MCS */
1212 	tmp = result;
1213 	tmp *= SCALE;
1214 	do_div(tmp, mcs_divisors[rate->mcs]);
1215 	result = tmp;
1216 
1217 	/* and take NSS, DCM into account */
1218 	result = (result * rate->nss) / 8;
1219 	if (rate->he_dcm)
1220 		result /= 2;
1221 
1222 	return result;
1223 }
1224 
1225 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1226 {
1227 	if (rate->flags & RATE_INFO_FLAGS_MCS)
1228 		return cfg80211_calculate_bitrate_ht(rate);
1229 	if (rate->flags & RATE_INFO_FLAGS_60G)
1230 		return cfg80211_calculate_bitrate_60g(rate);
1231 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1232 		return cfg80211_calculate_bitrate_vht(rate);
1233 	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1234 		return cfg80211_calculate_bitrate_he(rate);
1235 
1236 	return rate->legacy;
1237 }
1238 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1239 
1240 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1241 			  enum ieee80211_p2p_attr_id attr,
1242 			  u8 *buf, unsigned int bufsize)
1243 {
1244 	u8 *out = buf;
1245 	u16 attr_remaining = 0;
1246 	bool desired_attr = false;
1247 	u16 desired_len = 0;
1248 
1249 	while (len > 0) {
1250 		unsigned int iedatalen;
1251 		unsigned int copy;
1252 		const u8 *iedata;
1253 
1254 		if (len < 2)
1255 			return -EILSEQ;
1256 		iedatalen = ies[1];
1257 		if (iedatalen + 2 > len)
1258 			return -EILSEQ;
1259 
1260 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1261 			goto cont;
1262 
1263 		if (iedatalen < 4)
1264 			goto cont;
1265 
1266 		iedata = ies + 2;
1267 
1268 		/* check WFA OUI, P2P subtype */
1269 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1270 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1271 			goto cont;
1272 
1273 		iedatalen -= 4;
1274 		iedata += 4;
1275 
1276 		/* check attribute continuation into this IE */
1277 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1278 		if (copy && desired_attr) {
1279 			desired_len += copy;
1280 			if (out) {
1281 				memcpy(out, iedata, min(bufsize, copy));
1282 				out += min(bufsize, copy);
1283 				bufsize -= min(bufsize, copy);
1284 			}
1285 
1286 
1287 			if (copy == attr_remaining)
1288 				return desired_len;
1289 		}
1290 
1291 		attr_remaining -= copy;
1292 		if (attr_remaining)
1293 			goto cont;
1294 
1295 		iedatalen -= copy;
1296 		iedata += copy;
1297 
1298 		while (iedatalen > 0) {
1299 			u16 attr_len;
1300 
1301 			/* P2P attribute ID & size must fit */
1302 			if (iedatalen < 3)
1303 				return -EILSEQ;
1304 			desired_attr = iedata[0] == attr;
1305 			attr_len = get_unaligned_le16(iedata + 1);
1306 			iedatalen -= 3;
1307 			iedata += 3;
1308 
1309 			copy = min_t(unsigned int, attr_len, iedatalen);
1310 
1311 			if (desired_attr) {
1312 				desired_len += copy;
1313 				if (out) {
1314 					memcpy(out, iedata, min(bufsize, copy));
1315 					out += min(bufsize, copy);
1316 					bufsize -= min(bufsize, copy);
1317 				}
1318 
1319 				if (copy == attr_len)
1320 					return desired_len;
1321 			}
1322 
1323 			iedata += copy;
1324 			iedatalen -= copy;
1325 			attr_remaining = attr_len - copy;
1326 		}
1327 
1328  cont:
1329 		len -= ies[1] + 2;
1330 		ies += ies[1] + 2;
1331 	}
1332 
1333 	if (attr_remaining && desired_attr)
1334 		return -EILSEQ;
1335 
1336 	return -ENOENT;
1337 }
1338 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1339 
1340 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1341 {
1342 	int i;
1343 
1344 	/* Make sure array values are legal */
1345 	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1346 		return false;
1347 
1348 	i = 0;
1349 	while (i < n_ids) {
1350 		if (ids[i] == WLAN_EID_EXTENSION) {
1351 			if (id_ext && (ids[i + 1] == id))
1352 				return true;
1353 
1354 			i += 2;
1355 			continue;
1356 		}
1357 
1358 		if (ids[i] == id && !id_ext)
1359 			return true;
1360 
1361 		i++;
1362 	}
1363 	return false;
1364 }
1365 
1366 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1367 {
1368 	/* we assume a validly formed IEs buffer */
1369 	u8 len = ies[pos + 1];
1370 
1371 	pos += 2 + len;
1372 
1373 	/* the IE itself must have 255 bytes for fragments to follow */
1374 	if (len < 255)
1375 		return pos;
1376 
1377 	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1378 		len = ies[pos + 1];
1379 		pos += 2 + len;
1380 	}
1381 
1382 	return pos;
1383 }
1384 
1385 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1386 			      const u8 *ids, int n_ids,
1387 			      const u8 *after_ric, int n_after_ric,
1388 			      size_t offset)
1389 {
1390 	size_t pos = offset;
1391 
1392 	while (pos < ielen) {
1393 		u8 ext = 0;
1394 
1395 		if (ies[pos] == WLAN_EID_EXTENSION)
1396 			ext = 2;
1397 		if ((pos + ext) >= ielen)
1398 			break;
1399 
1400 		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1401 					  ies[pos] == WLAN_EID_EXTENSION))
1402 			break;
1403 
1404 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1405 			pos = skip_ie(ies, ielen, pos);
1406 
1407 			while (pos < ielen) {
1408 				if (ies[pos] == WLAN_EID_EXTENSION)
1409 					ext = 2;
1410 				else
1411 					ext = 0;
1412 
1413 				if ((pos + ext) >= ielen)
1414 					break;
1415 
1416 				if (!ieee80211_id_in_list(after_ric,
1417 							  n_after_ric,
1418 							  ies[pos + ext],
1419 							  ext == 2))
1420 					pos = skip_ie(ies, ielen, pos);
1421 			}
1422 		} else {
1423 			pos = skip_ie(ies, ielen, pos);
1424 		}
1425 	}
1426 
1427 	return pos;
1428 }
1429 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1430 
1431 bool ieee80211_operating_class_to_band(u8 operating_class,
1432 				       enum nl80211_band *band)
1433 {
1434 	switch (operating_class) {
1435 	case 112:
1436 	case 115 ... 127:
1437 	case 128 ... 130:
1438 		*band = NL80211_BAND_5GHZ;
1439 		return true;
1440 	case 81:
1441 	case 82:
1442 	case 83:
1443 	case 84:
1444 		*band = NL80211_BAND_2GHZ;
1445 		return true;
1446 	case 180:
1447 		*band = NL80211_BAND_60GHZ;
1448 		return true;
1449 	}
1450 
1451 	return false;
1452 }
1453 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1454 
1455 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1456 					  u8 *op_class)
1457 {
1458 	u8 vht_opclass;
1459 	u16 freq = chandef->center_freq1;
1460 
1461 	if (freq >= 2412 && freq <= 2472) {
1462 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1463 			return false;
1464 
1465 		/* 2.407 GHz, channels 1..13 */
1466 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1467 			if (freq > chandef->chan->center_freq)
1468 				*op_class = 83; /* HT40+ */
1469 			else
1470 				*op_class = 84; /* HT40- */
1471 		} else {
1472 			*op_class = 81;
1473 		}
1474 
1475 		return true;
1476 	}
1477 
1478 	if (freq == 2484) {
1479 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1480 			return false;
1481 
1482 		*op_class = 82; /* channel 14 */
1483 		return true;
1484 	}
1485 
1486 	switch (chandef->width) {
1487 	case NL80211_CHAN_WIDTH_80:
1488 		vht_opclass = 128;
1489 		break;
1490 	case NL80211_CHAN_WIDTH_160:
1491 		vht_opclass = 129;
1492 		break;
1493 	case NL80211_CHAN_WIDTH_80P80:
1494 		vht_opclass = 130;
1495 		break;
1496 	case NL80211_CHAN_WIDTH_10:
1497 	case NL80211_CHAN_WIDTH_5:
1498 		return false; /* unsupported for now */
1499 	default:
1500 		vht_opclass = 0;
1501 		break;
1502 	}
1503 
1504 	/* 5 GHz, channels 36..48 */
1505 	if (freq >= 5180 && freq <= 5240) {
1506 		if (vht_opclass) {
1507 			*op_class = vht_opclass;
1508 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1509 			if (freq > chandef->chan->center_freq)
1510 				*op_class = 116;
1511 			else
1512 				*op_class = 117;
1513 		} else {
1514 			*op_class = 115;
1515 		}
1516 
1517 		return true;
1518 	}
1519 
1520 	/* 5 GHz, channels 52..64 */
1521 	if (freq >= 5260 && freq <= 5320) {
1522 		if (vht_opclass) {
1523 			*op_class = vht_opclass;
1524 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1525 			if (freq > chandef->chan->center_freq)
1526 				*op_class = 119;
1527 			else
1528 				*op_class = 120;
1529 		} else {
1530 			*op_class = 118;
1531 		}
1532 
1533 		return true;
1534 	}
1535 
1536 	/* 5 GHz, channels 100..144 */
1537 	if (freq >= 5500 && freq <= 5720) {
1538 		if (vht_opclass) {
1539 			*op_class = vht_opclass;
1540 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1541 			if (freq > chandef->chan->center_freq)
1542 				*op_class = 122;
1543 			else
1544 				*op_class = 123;
1545 		} else {
1546 			*op_class = 121;
1547 		}
1548 
1549 		return true;
1550 	}
1551 
1552 	/* 5 GHz, channels 149..169 */
1553 	if (freq >= 5745 && freq <= 5845) {
1554 		if (vht_opclass) {
1555 			*op_class = vht_opclass;
1556 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1557 			if (freq > chandef->chan->center_freq)
1558 				*op_class = 126;
1559 			else
1560 				*op_class = 127;
1561 		} else if (freq <= 5805) {
1562 			*op_class = 124;
1563 		} else {
1564 			*op_class = 125;
1565 		}
1566 
1567 		return true;
1568 	}
1569 
1570 	/* 56.16 GHz, channel 1..4 */
1571 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1572 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1573 			return false;
1574 
1575 		*op_class = 180;
1576 		return true;
1577 	}
1578 
1579 	/* not supported yet */
1580 	return false;
1581 }
1582 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1583 
1584 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1585 				       u32 *beacon_int_gcd,
1586 				       bool *beacon_int_different)
1587 {
1588 	struct wireless_dev *wdev;
1589 
1590 	*beacon_int_gcd = 0;
1591 	*beacon_int_different = false;
1592 
1593 	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1594 		if (!wdev->beacon_interval)
1595 			continue;
1596 
1597 		if (!*beacon_int_gcd) {
1598 			*beacon_int_gcd = wdev->beacon_interval;
1599 			continue;
1600 		}
1601 
1602 		if (wdev->beacon_interval == *beacon_int_gcd)
1603 			continue;
1604 
1605 		*beacon_int_different = true;
1606 		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1607 	}
1608 
1609 	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1610 		if (*beacon_int_gcd)
1611 			*beacon_int_different = true;
1612 		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1613 	}
1614 }
1615 
1616 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1617 				 enum nl80211_iftype iftype, u32 beacon_int)
1618 {
1619 	/*
1620 	 * This is just a basic pre-condition check; if interface combinations
1621 	 * are possible the driver must already be checking those with a call
1622 	 * to cfg80211_check_combinations(), in which case we'll validate more
1623 	 * through the cfg80211_calculate_bi_data() call and code in
1624 	 * cfg80211_iter_combinations().
1625 	 */
1626 
1627 	if (beacon_int < 10 || beacon_int > 10000)
1628 		return -EINVAL;
1629 
1630 	return 0;
1631 }
1632 
1633 int cfg80211_iter_combinations(struct wiphy *wiphy,
1634 			       struct iface_combination_params *params,
1635 			       void (*iter)(const struct ieee80211_iface_combination *c,
1636 					    void *data),
1637 			       void *data)
1638 {
1639 	const struct ieee80211_regdomain *regdom;
1640 	enum nl80211_dfs_regions region = 0;
1641 	int i, j, iftype;
1642 	int num_interfaces = 0;
1643 	u32 used_iftypes = 0;
1644 	u32 beacon_int_gcd;
1645 	bool beacon_int_different;
1646 
1647 	/*
1648 	 * This is a bit strange, since the iteration used to rely only on
1649 	 * the data given by the driver, but here it now relies on context,
1650 	 * in form of the currently operating interfaces.
1651 	 * This is OK for all current users, and saves us from having to
1652 	 * push the GCD calculations into all the drivers.
1653 	 * In the future, this should probably rely more on data that's in
1654 	 * cfg80211 already - the only thing not would appear to be any new
1655 	 * interfaces (while being brought up) and channel/radar data.
1656 	 */
1657 	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1658 				   &beacon_int_gcd, &beacon_int_different);
1659 
1660 	if (params->radar_detect) {
1661 		rcu_read_lock();
1662 		regdom = rcu_dereference(cfg80211_regdomain);
1663 		if (regdom)
1664 			region = regdom->dfs_region;
1665 		rcu_read_unlock();
1666 	}
1667 
1668 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1669 		num_interfaces += params->iftype_num[iftype];
1670 		if (params->iftype_num[iftype] > 0 &&
1671 		    !(wiphy->software_iftypes & BIT(iftype)))
1672 			used_iftypes |= BIT(iftype);
1673 	}
1674 
1675 	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1676 		const struct ieee80211_iface_combination *c;
1677 		struct ieee80211_iface_limit *limits;
1678 		u32 all_iftypes = 0;
1679 
1680 		c = &wiphy->iface_combinations[i];
1681 
1682 		if (num_interfaces > c->max_interfaces)
1683 			continue;
1684 		if (params->num_different_channels > c->num_different_channels)
1685 			continue;
1686 
1687 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1688 				 GFP_KERNEL);
1689 		if (!limits)
1690 			return -ENOMEM;
1691 
1692 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1693 			if (wiphy->software_iftypes & BIT(iftype))
1694 				continue;
1695 			for (j = 0; j < c->n_limits; j++) {
1696 				all_iftypes |= limits[j].types;
1697 				if (!(limits[j].types & BIT(iftype)))
1698 					continue;
1699 				if (limits[j].max < params->iftype_num[iftype])
1700 					goto cont;
1701 				limits[j].max -= params->iftype_num[iftype];
1702 			}
1703 		}
1704 
1705 		if (params->radar_detect !=
1706 			(c->radar_detect_widths & params->radar_detect))
1707 			goto cont;
1708 
1709 		if (params->radar_detect && c->radar_detect_regions &&
1710 		    !(c->radar_detect_regions & BIT(region)))
1711 			goto cont;
1712 
1713 		/* Finally check that all iftypes that we're currently
1714 		 * using are actually part of this combination. If they
1715 		 * aren't then we can't use this combination and have
1716 		 * to continue to the next.
1717 		 */
1718 		if ((all_iftypes & used_iftypes) != used_iftypes)
1719 			goto cont;
1720 
1721 		if (beacon_int_gcd) {
1722 			if (c->beacon_int_min_gcd &&
1723 			    beacon_int_gcd < c->beacon_int_min_gcd)
1724 				goto cont;
1725 			if (!c->beacon_int_min_gcd && beacon_int_different)
1726 				goto cont;
1727 		}
1728 
1729 		/* This combination covered all interface types and
1730 		 * supported the requested numbers, so we're good.
1731 		 */
1732 
1733 		(*iter)(c, data);
1734  cont:
1735 		kfree(limits);
1736 	}
1737 
1738 	return 0;
1739 }
1740 EXPORT_SYMBOL(cfg80211_iter_combinations);
1741 
1742 static void
1743 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1744 			  void *data)
1745 {
1746 	int *num = data;
1747 	(*num)++;
1748 }
1749 
1750 int cfg80211_check_combinations(struct wiphy *wiphy,
1751 				struct iface_combination_params *params)
1752 {
1753 	int err, num = 0;
1754 
1755 	err = cfg80211_iter_combinations(wiphy, params,
1756 					 cfg80211_iter_sum_ifcombs, &num);
1757 	if (err)
1758 		return err;
1759 	if (num == 0)
1760 		return -EBUSY;
1761 
1762 	return 0;
1763 }
1764 EXPORT_SYMBOL(cfg80211_check_combinations);
1765 
1766 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1767 			   const u8 *rates, unsigned int n_rates,
1768 			   u32 *mask)
1769 {
1770 	int i, j;
1771 
1772 	if (!sband)
1773 		return -EINVAL;
1774 
1775 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1776 		return -EINVAL;
1777 
1778 	*mask = 0;
1779 
1780 	for (i = 0; i < n_rates; i++) {
1781 		int rate = (rates[i] & 0x7f) * 5;
1782 		bool found = false;
1783 
1784 		for (j = 0; j < sband->n_bitrates; j++) {
1785 			if (sband->bitrates[j].bitrate == rate) {
1786 				found = true;
1787 				*mask |= BIT(j);
1788 				break;
1789 			}
1790 		}
1791 		if (!found)
1792 			return -EINVAL;
1793 	}
1794 
1795 	/*
1796 	 * mask must have at least one bit set here since we
1797 	 * didn't accept a 0-length rates array nor allowed
1798 	 * entries in the array that didn't exist
1799 	 */
1800 
1801 	return 0;
1802 }
1803 
1804 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1805 {
1806 	enum nl80211_band band;
1807 	unsigned int n_channels = 0;
1808 
1809 	for (band = 0; band < NUM_NL80211_BANDS; band++)
1810 		if (wiphy->bands[band])
1811 			n_channels += wiphy->bands[band]->n_channels;
1812 
1813 	return n_channels;
1814 }
1815 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1816 
1817 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1818 			 struct station_info *sinfo)
1819 {
1820 	struct cfg80211_registered_device *rdev;
1821 	struct wireless_dev *wdev;
1822 
1823 	wdev = dev->ieee80211_ptr;
1824 	if (!wdev)
1825 		return -EOPNOTSUPP;
1826 
1827 	rdev = wiphy_to_rdev(wdev->wiphy);
1828 	if (!rdev->ops->get_station)
1829 		return -EOPNOTSUPP;
1830 
1831 	memset(sinfo, 0, sizeof(*sinfo));
1832 
1833 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1834 }
1835 EXPORT_SYMBOL(cfg80211_get_station);
1836 
1837 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1838 {
1839 	int i;
1840 
1841 	if (!f)
1842 		return;
1843 
1844 	kfree(f->serv_spec_info);
1845 	kfree(f->srf_bf);
1846 	kfree(f->srf_macs);
1847 	for (i = 0; i < f->num_rx_filters; i++)
1848 		kfree(f->rx_filters[i].filter);
1849 
1850 	for (i = 0; i < f->num_tx_filters; i++)
1851 		kfree(f->tx_filters[i].filter);
1852 
1853 	kfree(f->rx_filters);
1854 	kfree(f->tx_filters);
1855 	kfree(f);
1856 }
1857 EXPORT_SYMBOL(cfg80211_free_nan_func);
1858 
1859 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1860 				u32 center_freq_khz, u32 bw_khz)
1861 {
1862 	u32 start_freq_khz, end_freq_khz;
1863 
1864 	start_freq_khz = center_freq_khz - (bw_khz / 2);
1865 	end_freq_khz = center_freq_khz + (bw_khz / 2);
1866 
1867 	if (start_freq_khz >= freq_range->start_freq_khz &&
1868 	    end_freq_khz <= freq_range->end_freq_khz)
1869 		return true;
1870 
1871 	return false;
1872 }
1873 
1874 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1875 {
1876 	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1877 				sizeof(*(sinfo->pertid)),
1878 				gfp);
1879 	if (!sinfo->pertid)
1880 		return -ENOMEM;
1881 
1882 	return 0;
1883 }
1884 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1885 
1886 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1887 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1888 const unsigned char rfc1042_header[] __aligned(2) =
1889 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1890 EXPORT_SYMBOL(rfc1042_header);
1891 
1892 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1893 const unsigned char bridge_tunnel_header[] __aligned(2) =
1894 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1895 EXPORT_SYMBOL(bridge_tunnel_header);
1896