1 /* 2 * Wireless utility functions 3 * 4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net> 5 */ 6 #include <linux/export.h> 7 #include <linux/bitops.h> 8 #include <linux/etherdevice.h> 9 #include <linux/slab.h> 10 #include <net/cfg80211.h> 11 #include <net/ip.h> 12 #include <net/dsfield.h> 13 #include "core.h" 14 15 struct ieee80211_rate * 16 ieee80211_get_response_rate(struct ieee80211_supported_band *sband, 17 u32 basic_rates, int bitrate) 18 { 19 struct ieee80211_rate *result = &sband->bitrates[0]; 20 int i; 21 22 for (i = 0; i < sband->n_bitrates; i++) { 23 if (!(basic_rates & BIT(i))) 24 continue; 25 if (sband->bitrates[i].bitrate > bitrate) 26 continue; 27 result = &sband->bitrates[i]; 28 } 29 30 return result; 31 } 32 EXPORT_SYMBOL(ieee80211_get_response_rate); 33 34 int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band) 35 { 36 /* see 802.11 17.3.8.3.2 and Annex J 37 * there are overlapping channel numbers in 5GHz and 2GHz bands */ 38 if (chan <= 0) 39 return 0; /* not supported */ 40 switch (band) { 41 case IEEE80211_BAND_2GHZ: 42 if (chan == 14) 43 return 2484; 44 else if (chan < 14) 45 return 2407 + chan * 5; 46 break; 47 case IEEE80211_BAND_5GHZ: 48 if (chan >= 182 && chan <= 196) 49 return 4000 + chan * 5; 50 else 51 return 5000 + chan * 5; 52 break; 53 case IEEE80211_BAND_60GHZ: 54 if (chan < 5) 55 return 56160 + chan * 2160; 56 break; 57 default: 58 ; 59 } 60 return 0; /* not supported */ 61 } 62 EXPORT_SYMBOL(ieee80211_channel_to_frequency); 63 64 int ieee80211_frequency_to_channel(int freq) 65 { 66 /* see 802.11 17.3.8.3.2 and Annex J */ 67 if (freq == 2484) 68 return 14; 69 else if (freq < 2484) 70 return (freq - 2407) / 5; 71 else if (freq >= 4910 && freq <= 4980) 72 return (freq - 4000) / 5; 73 else if (freq <= 45000) /* DMG band lower limit */ 74 return (freq - 5000) / 5; 75 else if (freq >= 58320 && freq <= 64800) 76 return (freq - 56160) / 2160; 77 else 78 return 0; 79 } 80 EXPORT_SYMBOL(ieee80211_frequency_to_channel); 81 82 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy, 83 int freq) 84 { 85 enum ieee80211_band band; 86 struct ieee80211_supported_band *sband; 87 int i; 88 89 for (band = 0; band < IEEE80211_NUM_BANDS; band++) { 90 sband = wiphy->bands[band]; 91 92 if (!sband) 93 continue; 94 95 for (i = 0; i < sband->n_channels; i++) { 96 if (sband->channels[i].center_freq == freq) 97 return &sband->channels[i]; 98 } 99 } 100 101 return NULL; 102 } 103 EXPORT_SYMBOL(__ieee80211_get_channel); 104 105 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband, 106 enum ieee80211_band band) 107 { 108 int i, want; 109 110 switch (band) { 111 case IEEE80211_BAND_5GHZ: 112 want = 3; 113 for (i = 0; i < sband->n_bitrates; i++) { 114 if (sband->bitrates[i].bitrate == 60 || 115 sband->bitrates[i].bitrate == 120 || 116 sband->bitrates[i].bitrate == 240) { 117 sband->bitrates[i].flags |= 118 IEEE80211_RATE_MANDATORY_A; 119 want--; 120 } 121 } 122 WARN_ON(want); 123 break; 124 case IEEE80211_BAND_2GHZ: 125 want = 7; 126 for (i = 0; i < sband->n_bitrates; i++) { 127 if (sband->bitrates[i].bitrate == 10) { 128 sband->bitrates[i].flags |= 129 IEEE80211_RATE_MANDATORY_B | 130 IEEE80211_RATE_MANDATORY_G; 131 want--; 132 } 133 134 if (sband->bitrates[i].bitrate == 20 || 135 sband->bitrates[i].bitrate == 55 || 136 sband->bitrates[i].bitrate == 110 || 137 sband->bitrates[i].bitrate == 60 || 138 sband->bitrates[i].bitrate == 120 || 139 sband->bitrates[i].bitrate == 240) { 140 sband->bitrates[i].flags |= 141 IEEE80211_RATE_MANDATORY_G; 142 want--; 143 } 144 145 if (sband->bitrates[i].bitrate != 10 && 146 sband->bitrates[i].bitrate != 20 && 147 sband->bitrates[i].bitrate != 55 && 148 sband->bitrates[i].bitrate != 110) 149 sband->bitrates[i].flags |= 150 IEEE80211_RATE_ERP_G; 151 } 152 WARN_ON(want != 0 && want != 3 && want != 6); 153 break; 154 case IEEE80211_BAND_60GHZ: 155 /* check for mandatory HT MCS 1..4 */ 156 WARN_ON(!sband->ht_cap.ht_supported); 157 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); 158 break; 159 case IEEE80211_NUM_BANDS: 160 WARN_ON(1); 161 break; 162 } 163 } 164 165 void ieee80211_set_bitrate_flags(struct wiphy *wiphy) 166 { 167 enum ieee80211_band band; 168 169 for (band = 0; band < IEEE80211_NUM_BANDS; band++) 170 if (wiphy->bands[band]) 171 set_mandatory_flags_band(wiphy->bands[band], band); 172 } 173 174 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) 175 { 176 int i; 177 for (i = 0; i < wiphy->n_cipher_suites; i++) 178 if (cipher == wiphy->cipher_suites[i]) 179 return true; 180 return false; 181 } 182 183 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, 184 struct key_params *params, int key_idx, 185 bool pairwise, const u8 *mac_addr) 186 { 187 if (key_idx > 5) 188 return -EINVAL; 189 190 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) 191 return -EINVAL; 192 193 if (pairwise && !mac_addr) 194 return -EINVAL; 195 196 /* 197 * Disallow pairwise keys with non-zero index unless it's WEP 198 * or a vendor specific cipher (because current deployments use 199 * pairwise WEP keys with non-zero indices and for vendor specific 200 * ciphers this should be validated in the driver or hardware level 201 * - but 802.11i clearly specifies to use zero) 202 */ 203 if (pairwise && key_idx && 204 ((params->cipher == WLAN_CIPHER_SUITE_TKIP) || 205 (params->cipher == WLAN_CIPHER_SUITE_CCMP) || 206 (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC))) 207 return -EINVAL; 208 209 switch (params->cipher) { 210 case WLAN_CIPHER_SUITE_WEP40: 211 if (params->key_len != WLAN_KEY_LEN_WEP40) 212 return -EINVAL; 213 break; 214 case WLAN_CIPHER_SUITE_TKIP: 215 if (params->key_len != WLAN_KEY_LEN_TKIP) 216 return -EINVAL; 217 break; 218 case WLAN_CIPHER_SUITE_CCMP: 219 if (params->key_len != WLAN_KEY_LEN_CCMP) 220 return -EINVAL; 221 break; 222 case WLAN_CIPHER_SUITE_WEP104: 223 if (params->key_len != WLAN_KEY_LEN_WEP104) 224 return -EINVAL; 225 break; 226 case WLAN_CIPHER_SUITE_AES_CMAC: 227 if (params->key_len != WLAN_KEY_LEN_AES_CMAC) 228 return -EINVAL; 229 break; 230 default: 231 /* 232 * We don't know anything about this algorithm, 233 * allow using it -- but the driver must check 234 * all parameters! We still check below whether 235 * or not the driver supports this algorithm, 236 * of course. 237 */ 238 break; 239 } 240 241 if (params->seq) { 242 switch (params->cipher) { 243 case WLAN_CIPHER_SUITE_WEP40: 244 case WLAN_CIPHER_SUITE_WEP104: 245 /* These ciphers do not use key sequence */ 246 return -EINVAL; 247 case WLAN_CIPHER_SUITE_TKIP: 248 case WLAN_CIPHER_SUITE_CCMP: 249 case WLAN_CIPHER_SUITE_AES_CMAC: 250 if (params->seq_len != 6) 251 return -EINVAL; 252 break; 253 } 254 } 255 256 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) 257 return -EINVAL; 258 259 return 0; 260 } 261 262 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) 263 { 264 unsigned int hdrlen = 24; 265 266 if (ieee80211_is_data(fc)) { 267 if (ieee80211_has_a4(fc)) 268 hdrlen = 30; 269 if (ieee80211_is_data_qos(fc)) { 270 hdrlen += IEEE80211_QOS_CTL_LEN; 271 if (ieee80211_has_order(fc)) 272 hdrlen += IEEE80211_HT_CTL_LEN; 273 } 274 goto out; 275 } 276 277 if (ieee80211_is_ctl(fc)) { 278 /* 279 * ACK and CTS are 10 bytes, all others 16. To see how 280 * to get this condition consider 281 * subtype mask: 0b0000000011110000 (0x00F0) 282 * ACK subtype: 0b0000000011010000 (0x00D0) 283 * CTS subtype: 0b0000000011000000 (0x00C0) 284 * bits that matter: ^^^ (0x00E0) 285 * value of those: 0b0000000011000000 (0x00C0) 286 */ 287 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) 288 hdrlen = 10; 289 else 290 hdrlen = 16; 291 } 292 out: 293 return hdrlen; 294 } 295 EXPORT_SYMBOL(ieee80211_hdrlen); 296 297 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) 298 { 299 const struct ieee80211_hdr *hdr = 300 (const struct ieee80211_hdr *)skb->data; 301 unsigned int hdrlen; 302 303 if (unlikely(skb->len < 10)) 304 return 0; 305 hdrlen = ieee80211_hdrlen(hdr->frame_control); 306 if (unlikely(hdrlen > skb->len)) 307 return 0; 308 return hdrlen; 309 } 310 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); 311 312 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) 313 { 314 int ae = meshhdr->flags & MESH_FLAGS_AE; 315 /* 802.11-2012, 8.2.4.7.3 */ 316 switch (ae) { 317 default: 318 case 0: 319 return 6; 320 case MESH_FLAGS_AE_A4: 321 return 12; 322 case MESH_FLAGS_AE_A5_A6: 323 return 18; 324 } 325 } 326 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); 327 328 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr, 329 enum nl80211_iftype iftype) 330 { 331 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 332 u16 hdrlen, ethertype; 333 u8 *payload; 334 u8 dst[ETH_ALEN]; 335 u8 src[ETH_ALEN] __aligned(2); 336 337 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 338 return -1; 339 340 hdrlen = ieee80211_hdrlen(hdr->frame_control); 341 342 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 343 * header 344 * IEEE 802.11 address fields: 345 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 346 * 0 0 DA SA BSSID n/a 347 * 0 1 DA BSSID SA n/a 348 * 1 0 BSSID SA DA n/a 349 * 1 1 RA TA DA SA 350 */ 351 memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN); 352 memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN); 353 354 switch (hdr->frame_control & 355 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 356 case cpu_to_le16(IEEE80211_FCTL_TODS): 357 if (unlikely(iftype != NL80211_IFTYPE_AP && 358 iftype != NL80211_IFTYPE_AP_VLAN && 359 iftype != NL80211_IFTYPE_P2P_GO)) 360 return -1; 361 break; 362 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 363 if (unlikely(iftype != NL80211_IFTYPE_WDS && 364 iftype != NL80211_IFTYPE_MESH_POINT && 365 iftype != NL80211_IFTYPE_AP_VLAN && 366 iftype != NL80211_IFTYPE_STATION)) 367 return -1; 368 if (iftype == NL80211_IFTYPE_MESH_POINT) { 369 struct ieee80211s_hdr *meshdr = 370 (struct ieee80211s_hdr *) (skb->data + hdrlen); 371 /* make sure meshdr->flags is on the linear part */ 372 if (!pskb_may_pull(skb, hdrlen + 1)) 373 return -1; 374 if (meshdr->flags & MESH_FLAGS_AE_A4) 375 return -1; 376 if (meshdr->flags & MESH_FLAGS_AE_A5_A6) { 377 skb_copy_bits(skb, hdrlen + 378 offsetof(struct ieee80211s_hdr, eaddr1), 379 dst, ETH_ALEN); 380 skb_copy_bits(skb, hdrlen + 381 offsetof(struct ieee80211s_hdr, eaddr2), 382 src, ETH_ALEN); 383 } 384 hdrlen += ieee80211_get_mesh_hdrlen(meshdr); 385 } 386 break; 387 case cpu_to_le16(IEEE80211_FCTL_FROMDS): 388 if ((iftype != NL80211_IFTYPE_STATION && 389 iftype != NL80211_IFTYPE_P2P_CLIENT && 390 iftype != NL80211_IFTYPE_MESH_POINT) || 391 (is_multicast_ether_addr(dst) && 392 ether_addr_equal(src, addr))) 393 return -1; 394 if (iftype == NL80211_IFTYPE_MESH_POINT) { 395 struct ieee80211s_hdr *meshdr = 396 (struct ieee80211s_hdr *) (skb->data + hdrlen); 397 /* make sure meshdr->flags is on the linear part */ 398 if (!pskb_may_pull(skb, hdrlen + 1)) 399 return -1; 400 if (meshdr->flags & MESH_FLAGS_AE_A5_A6) 401 return -1; 402 if (meshdr->flags & MESH_FLAGS_AE_A4) 403 skb_copy_bits(skb, hdrlen + 404 offsetof(struct ieee80211s_hdr, eaddr1), 405 src, ETH_ALEN); 406 hdrlen += ieee80211_get_mesh_hdrlen(meshdr); 407 } 408 break; 409 case cpu_to_le16(0): 410 if (iftype != NL80211_IFTYPE_ADHOC && 411 iftype != NL80211_IFTYPE_STATION) 412 return -1; 413 break; 414 } 415 416 if (!pskb_may_pull(skb, hdrlen + 8)) 417 return -1; 418 419 payload = skb->data + hdrlen; 420 ethertype = (payload[6] << 8) | payload[7]; 421 422 if (likely((ether_addr_equal(payload, rfc1042_header) && 423 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 424 ether_addr_equal(payload, bridge_tunnel_header))) { 425 /* remove RFC1042 or Bridge-Tunnel encapsulation and 426 * replace EtherType */ 427 skb_pull(skb, hdrlen + 6); 428 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN); 429 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN); 430 } else { 431 struct ethhdr *ehdr; 432 __be16 len; 433 434 skb_pull(skb, hdrlen); 435 len = htons(skb->len); 436 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr)); 437 memcpy(ehdr->h_dest, dst, ETH_ALEN); 438 memcpy(ehdr->h_source, src, ETH_ALEN); 439 ehdr->h_proto = len; 440 } 441 return 0; 442 } 443 EXPORT_SYMBOL(ieee80211_data_to_8023); 444 445 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr, 446 enum nl80211_iftype iftype, u8 *bssid, bool qos) 447 { 448 struct ieee80211_hdr hdr; 449 u16 hdrlen, ethertype; 450 __le16 fc; 451 const u8 *encaps_data; 452 int encaps_len, skip_header_bytes; 453 int nh_pos, h_pos; 454 int head_need; 455 456 if (unlikely(skb->len < ETH_HLEN)) 457 return -EINVAL; 458 459 nh_pos = skb_network_header(skb) - skb->data; 460 h_pos = skb_transport_header(skb) - skb->data; 461 462 /* convert Ethernet header to proper 802.11 header (based on 463 * operation mode) */ 464 ethertype = (skb->data[12] << 8) | skb->data[13]; 465 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); 466 467 switch (iftype) { 468 case NL80211_IFTYPE_AP: 469 case NL80211_IFTYPE_AP_VLAN: 470 case NL80211_IFTYPE_P2P_GO: 471 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); 472 /* DA BSSID SA */ 473 memcpy(hdr.addr1, skb->data, ETH_ALEN); 474 memcpy(hdr.addr2, addr, ETH_ALEN); 475 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 476 hdrlen = 24; 477 break; 478 case NL80211_IFTYPE_STATION: 479 case NL80211_IFTYPE_P2P_CLIENT: 480 fc |= cpu_to_le16(IEEE80211_FCTL_TODS); 481 /* BSSID SA DA */ 482 memcpy(hdr.addr1, bssid, ETH_ALEN); 483 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 484 memcpy(hdr.addr3, skb->data, ETH_ALEN); 485 hdrlen = 24; 486 break; 487 case NL80211_IFTYPE_ADHOC: 488 /* DA SA BSSID */ 489 memcpy(hdr.addr1, skb->data, ETH_ALEN); 490 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 491 memcpy(hdr.addr3, bssid, ETH_ALEN); 492 hdrlen = 24; 493 break; 494 default: 495 return -EOPNOTSUPP; 496 } 497 498 if (qos) { 499 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 500 hdrlen += 2; 501 } 502 503 hdr.frame_control = fc; 504 hdr.duration_id = 0; 505 hdr.seq_ctrl = 0; 506 507 skip_header_bytes = ETH_HLEN; 508 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 509 encaps_data = bridge_tunnel_header; 510 encaps_len = sizeof(bridge_tunnel_header); 511 skip_header_bytes -= 2; 512 } else if (ethertype > 0x600) { 513 encaps_data = rfc1042_header; 514 encaps_len = sizeof(rfc1042_header); 515 skip_header_bytes -= 2; 516 } else { 517 encaps_data = NULL; 518 encaps_len = 0; 519 } 520 521 skb_pull(skb, skip_header_bytes); 522 nh_pos -= skip_header_bytes; 523 h_pos -= skip_header_bytes; 524 525 head_need = hdrlen + encaps_len - skb_headroom(skb); 526 527 if (head_need > 0 || skb_cloned(skb)) { 528 head_need = max(head_need, 0); 529 if (head_need) 530 skb_orphan(skb); 531 532 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) 533 return -ENOMEM; 534 535 skb->truesize += head_need; 536 } 537 538 if (encaps_data) { 539 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 540 nh_pos += encaps_len; 541 h_pos += encaps_len; 542 } 543 544 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 545 546 nh_pos += hdrlen; 547 h_pos += hdrlen; 548 549 /* Update skb pointers to various headers since this modified frame 550 * is going to go through Linux networking code that may potentially 551 * need things like pointer to IP header. */ 552 skb_set_mac_header(skb, 0); 553 skb_set_network_header(skb, nh_pos); 554 skb_set_transport_header(skb, h_pos); 555 556 return 0; 557 } 558 EXPORT_SYMBOL(ieee80211_data_from_8023); 559 560 561 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, 562 const u8 *addr, enum nl80211_iftype iftype, 563 const unsigned int extra_headroom, 564 bool has_80211_header) 565 { 566 struct sk_buff *frame = NULL; 567 u16 ethertype; 568 u8 *payload; 569 const struct ethhdr *eth; 570 int remaining, err; 571 u8 dst[ETH_ALEN], src[ETH_ALEN]; 572 573 if (has_80211_header) { 574 err = ieee80211_data_to_8023(skb, addr, iftype); 575 if (err) 576 goto out; 577 578 /* skip the wrapping header */ 579 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr)); 580 if (!eth) 581 goto out; 582 } else { 583 eth = (struct ethhdr *) skb->data; 584 } 585 586 while (skb != frame) { 587 u8 padding; 588 __be16 len = eth->h_proto; 589 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len); 590 591 remaining = skb->len; 592 memcpy(dst, eth->h_dest, ETH_ALEN); 593 memcpy(src, eth->h_source, ETH_ALEN); 594 595 padding = (4 - subframe_len) & 0x3; 596 /* the last MSDU has no padding */ 597 if (subframe_len > remaining) 598 goto purge; 599 600 skb_pull(skb, sizeof(struct ethhdr)); 601 /* reuse skb for the last subframe */ 602 if (remaining <= subframe_len + padding) 603 frame = skb; 604 else { 605 unsigned int hlen = ALIGN(extra_headroom, 4); 606 /* 607 * Allocate and reserve two bytes more for payload 608 * alignment since sizeof(struct ethhdr) is 14. 609 */ 610 frame = dev_alloc_skb(hlen + subframe_len + 2); 611 if (!frame) 612 goto purge; 613 614 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); 615 memcpy(skb_put(frame, ntohs(len)), skb->data, 616 ntohs(len)); 617 618 eth = (struct ethhdr *)skb_pull(skb, ntohs(len) + 619 padding); 620 if (!eth) { 621 dev_kfree_skb(frame); 622 goto purge; 623 } 624 } 625 626 skb_reset_network_header(frame); 627 frame->dev = skb->dev; 628 frame->priority = skb->priority; 629 630 payload = frame->data; 631 ethertype = (payload[6] << 8) | payload[7]; 632 633 if (likely((ether_addr_equal(payload, rfc1042_header) && 634 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 635 ether_addr_equal(payload, bridge_tunnel_header))) { 636 /* remove RFC1042 or Bridge-Tunnel 637 * encapsulation and replace EtherType */ 638 skb_pull(frame, 6); 639 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); 640 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); 641 } else { 642 memcpy(skb_push(frame, sizeof(__be16)), &len, 643 sizeof(__be16)); 644 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); 645 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); 646 } 647 __skb_queue_tail(list, frame); 648 } 649 650 return; 651 652 purge: 653 __skb_queue_purge(list); 654 out: 655 dev_kfree_skb(skb); 656 } 657 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); 658 659 /* Given a data frame determine the 802.1p/1d tag to use. */ 660 unsigned int cfg80211_classify8021d(struct sk_buff *skb) 661 { 662 unsigned int dscp; 663 664 /* skb->priority values from 256->263 are magic values to 665 * directly indicate a specific 802.1d priority. This is used 666 * to allow 802.1d priority to be passed directly in from VLAN 667 * tags, etc. 668 */ 669 if (skb->priority >= 256 && skb->priority <= 263) 670 return skb->priority - 256; 671 672 switch (skb->protocol) { 673 case htons(ETH_P_IP): 674 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; 675 break; 676 case htons(ETH_P_IPV6): 677 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; 678 break; 679 default: 680 return 0; 681 } 682 683 return dscp >> 5; 684 } 685 EXPORT_SYMBOL(cfg80211_classify8021d); 686 687 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie) 688 { 689 if (bss->information_elements == NULL) 690 return NULL; 691 return cfg80211_find_ie(ie, bss->information_elements, 692 bss->len_information_elements); 693 } 694 EXPORT_SYMBOL(ieee80211_bss_get_ie); 695 696 void cfg80211_upload_connect_keys(struct wireless_dev *wdev) 697 { 698 struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy); 699 struct net_device *dev = wdev->netdev; 700 int i; 701 702 if (!wdev->connect_keys) 703 return; 704 705 for (i = 0; i < 6; i++) { 706 if (!wdev->connect_keys->params[i].cipher) 707 continue; 708 if (rdev->ops->add_key(wdev->wiphy, dev, i, false, NULL, 709 &wdev->connect_keys->params[i])) { 710 netdev_err(dev, "failed to set key %d\n", i); 711 continue; 712 } 713 if (wdev->connect_keys->def == i) 714 if (rdev->ops->set_default_key(wdev->wiphy, dev, 715 i, true, true)) { 716 netdev_err(dev, "failed to set defkey %d\n", i); 717 continue; 718 } 719 if (wdev->connect_keys->defmgmt == i) 720 if (rdev->ops->set_default_mgmt_key(wdev->wiphy, dev, i)) 721 netdev_err(dev, "failed to set mgtdef %d\n", i); 722 } 723 724 kfree(wdev->connect_keys); 725 wdev->connect_keys = NULL; 726 } 727 728 void cfg80211_process_wdev_events(struct wireless_dev *wdev) 729 { 730 struct cfg80211_event *ev; 731 unsigned long flags; 732 const u8 *bssid = NULL; 733 734 spin_lock_irqsave(&wdev->event_lock, flags); 735 while (!list_empty(&wdev->event_list)) { 736 ev = list_first_entry(&wdev->event_list, 737 struct cfg80211_event, list); 738 list_del(&ev->list); 739 spin_unlock_irqrestore(&wdev->event_lock, flags); 740 741 wdev_lock(wdev); 742 switch (ev->type) { 743 case EVENT_CONNECT_RESULT: 744 if (!is_zero_ether_addr(ev->cr.bssid)) 745 bssid = ev->cr.bssid; 746 __cfg80211_connect_result( 747 wdev->netdev, bssid, 748 ev->cr.req_ie, ev->cr.req_ie_len, 749 ev->cr.resp_ie, ev->cr.resp_ie_len, 750 ev->cr.status, 751 ev->cr.status == WLAN_STATUS_SUCCESS, 752 NULL); 753 break; 754 case EVENT_ROAMED: 755 __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie, 756 ev->rm.req_ie_len, ev->rm.resp_ie, 757 ev->rm.resp_ie_len); 758 break; 759 case EVENT_DISCONNECTED: 760 __cfg80211_disconnected(wdev->netdev, 761 ev->dc.ie, ev->dc.ie_len, 762 ev->dc.reason, true); 763 break; 764 case EVENT_IBSS_JOINED: 765 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid); 766 break; 767 } 768 wdev_unlock(wdev); 769 770 kfree(ev); 771 772 spin_lock_irqsave(&wdev->event_lock, flags); 773 } 774 spin_unlock_irqrestore(&wdev->event_lock, flags); 775 } 776 777 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) 778 { 779 struct wireless_dev *wdev; 780 781 ASSERT_RTNL(); 782 ASSERT_RDEV_LOCK(rdev); 783 784 mutex_lock(&rdev->devlist_mtx); 785 786 list_for_each_entry(wdev, &rdev->wdev_list, list) 787 cfg80211_process_wdev_events(wdev); 788 789 mutex_unlock(&rdev->devlist_mtx); 790 } 791 792 int cfg80211_change_iface(struct cfg80211_registered_device *rdev, 793 struct net_device *dev, enum nl80211_iftype ntype, 794 u32 *flags, struct vif_params *params) 795 { 796 int err; 797 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; 798 799 ASSERT_RDEV_LOCK(rdev); 800 801 /* don't support changing VLANs, you just re-create them */ 802 if (otype == NL80211_IFTYPE_AP_VLAN) 803 return -EOPNOTSUPP; 804 805 /* cannot change into P2P device type */ 806 if (ntype == NL80211_IFTYPE_P2P_DEVICE) 807 return -EOPNOTSUPP; 808 809 if (!rdev->ops->change_virtual_intf || 810 !(rdev->wiphy.interface_modes & (1 << ntype))) 811 return -EOPNOTSUPP; 812 813 /* if it's part of a bridge, reject changing type to station/ibss */ 814 if ((dev->priv_flags & IFF_BRIDGE_PORT) && 815 (ntype == NL80211_IFTYPE_ADHOC || 816 ntype == NL80211_IFTYPE_STATION || 817 ntype == NL80211_IFTYPE_P2P_CLIENT)) 818 return -EBUSY; 819 820 if (ntype != otype && netif_running(dev)) { 821 mutex_lock(&rdev->devlist_mtx); 822 err = cfg80211_can_change_interface(rdev, dev->ieee80211_ptr, 823 ntype); 824 mutex_unlock(&rdev->devlist_mtx); 825 if (err) 826 return err; 827 828 dev->ieee80211_ptr->use_4addr = false; 829 dev->ieee80211_ptr->mesh_id_up_len = 0; 830 831 switch (otype) { 832 case NL80211_IFTYPE_AP: 833 cfg80211_stop_ap(rdev, dev); 834 break; 835 case NL80211_IFTYPE_ADHOC: 836 cfg80211_leave_ibss(rdev, dev, false); 837 break; 838 case NL80211_IFTYPE_STATION: 839 case NL80211_IFTYPE_P2P_CLIENT: 840 cfg80211_disconnect(rdev, dev, 841 WLAN_REASON_DEAUTH_LEAVING, true); 842 break; 843 case NL80211_IFTYPE_MESH_POINT: 844 /* mesh should be handled? */ 845 break; 846 default: 847 break; 848 } 849 850 cfg80211_process_rdev_events(rdev); 851 } 852 853 err = rdev->ops->change_virtual_intf(&rdev->wiphy, dev, 854 ntype, flags, params); 855 856 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); 857 858 if (!err && params && params->use_4addr != -1) 859 dev->ieee80211_ptr->use_4addr = params->use_4addr; 860 861 if (!err) { 862 dev->priv_flags &= ~IFF_DONT_BRIDGE; 863 switch (ntype) { 864 case NL80211_IFTYPE_STATION: 865 if (dev->ieee80211_ptr->use_4addr) 866 break; 867 /* fall through */ 868 case NL80211_IFTYPE_P2P_CLIENT: 869 case NL80211_IFTYPE_ADHOC: 870 dev->priv_flags |= IFF_DONT_BRIDGE; 871 break; 872 case NL80211_IFTYPE_P2P_GO: 873 case NL80211_IFTYPE_AP: 874 case NL80211_IFTYPE_AP_VLAN: 875 case NL80211_IFTYPE_WDS: 876 case NL80211_IFTYPE_MESH_POINT: 877 /* bridging OK */ 878 break; 879 case NL80211_IFTYPE_MONITOR: 880 /* monitor can't bridge anyway */ 881 break; 882 case NL80211_IFTYPE_UNSPECIFIED: 883 case NUM_NL80211_IFTYPES: 884 /* not happening */ 885 break; 886 case NL80211_IFTYPE_P2P_DEVICE: 887 WARN_ON(1); 888 break; 889 } 890 } 891 892 if (!err && ntype != otype && netif_running(dev)) { 893 cfg80211_update_iface_num(rdev, ntype, 1); 894 cfg80211_update_iface_num(rdev, otype, -1); 895 } 896 897 return err; 898 } 899 900 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate) 901 { 902 static const u32 __mcs2bitrate[] = { 903 /* control PHY */ 904 [0] = 275, 905 /* SC PHY */ 906 [1] = 3850, 907 [2] = 7700, 908 [3] = 9625, 909 [4] = 11550, 910 [5] = 12512, /* 1251.25 mbps */ 911 [6] = 15400, 912 [7] = 19250, 913 [8] = 23100, 914 [9] = 25025, 915 [10] = 30800, 916 [11] = 38500, 917 [12] = 46200, 918 /* OFDM PHY */ 919 [13] = 6930, 920 [14] = 8662, /* 866.25 mbps */ 921 [15] = 13860, 922 [16] = 17325, 923 [17] = 20790, 924 [18] = 27720, 925 [19] = 34650, 926 [20] = 41580, 927 [21] = 45045, 928 [22] = 51975, 929 [23] = 62370, 930 [24] = 67568, /* 6756.75 mbps */ 931 /* LP-SC PHY */ 932 [25] = 6260, 933 [26] = 8340, 934 [27] = 11120, 935 [28] = 12510, 936 [29] = 16680, 937 [30] = 22240, 938 [31] = 25030, 939 }; 940 941 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) 942 return 0; 943 944 return __mcs2bitrate[rate->mcs]; 945 } 946 947 u32 cfg80211_calculate_bitrate(struct rate_info *rate) 948 { 949 int modulation, streams, bitrate; 950 951 if (!(rate->flags & RATE_INFO_FLAGS_MCS)) 952 return rate->legacy; 953 if (rate->flags & RATE_INFO_FLAGS_60G) 954 return cfg80211_calculate_bitrate_60g(rate); 955 956 /* the formula below does only work for MCS values smaller than 32 */ 957 if (WARN_ON_ONCE(rate->mcs >= 32)) 958 return 0; 959 960 modulation = rate->mcs & 7; 961 streams = (rate->mcs >> 3) + 1; 962 963 bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ? 964 13500000 : 6500000; 965 966 if (modulation < 4) 967 bitrate *= (modulation + 1); 968 else if (modulation == 4) 969 bitrate *= (modulation + 2); 970 else 971 bitrate *= (modulation + 3); 972 973 bitrate *= streams; 974 975 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) 976 bitrate = (bitrate / 9) * 10; 977 978 /* do NOT round down here */ 979 return (bitrate + 50000) / 100000; 980 } 981 EXPORT_SYMBOL(cfg80211_calculate_bitrate); 982 983 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, 984 u32 beacon_int) 985 { 986 struct wireless_dev *wdev; 987 int res = 0; 988 989 if (!beacon_int) 990 return -EINVAL; 991 992 mutex_lock(&rdev->devlist_mtx); 993 994 list_for_each_entry(wdev, &rdev->wdev_list, list) { 995 if (!wdev->beacon_interval) 996 continue; 997 if (wdev->beacon_interval != beacon_int) { 998 res = -EINVAL; 999 break; 1000 } 1001 } 1002 1003 mutex_unlock(&rdev->devlist_mtx); 1004 1005 return res; 1006 } 1007 1008 int cfg80211_can_use_iftype_chan(struct cfg80211_registered_device *rdev, 1009 struct wireless_dev *wdev, 1010 enum nl80211_iftype iftype, 1011 struct ieee80211_channel *chan, 1012 enum cfg80211_chan_mode chanmode) 1013 { 1014 struct wireless_dev *wdev_iter; 1015 u32 used_iftypes = BIT(iftype); 1016 int num[NUM_NL80211_IFTYPES]; 1017 struct ieee80211_channel 1018 *used_channels[CFG80211_MAX_NUM_DIFFERENT_CHANNELS]; 1019 struct ieee80211_channel *ch; 1020 enum cfg80211_chan_mode chmode; 1021 int num_different_channels = 0; 1022 int total = 1; 1023 int i, j; 1024 1025 ASSERT_RTNL(); 1026 lockdep_assert_held(&rdev->devlist_mtx); 1027 1028 /* Always allow software iftypes */ 1029 if (rdev->wiphy.software_iftypes & BIT(iftype)) 1030 return 0; 1031 1032 memset(num, 0, sizeof(num)); 1033 memset(used_channels, 0, sizeof(used_channels)); 1034 1035 num[iftype] = 1; 1036 1037 switch (chanmode) { 1038 case CHAN_MODE_UNDEFINED: 1039 break; 1040 case CHAN_MODE_SHARED: 1041 WARN_ON(!chan); 1042 used_channels[0] = chan; 1043 num_different_channels++; 1044 break; 1045 case CHAN_MODE_EXCLUSIVE: 1046 num_different_channels++; 1047 break; 1048 } 1049 1050 list_for_each_entry(wdev_iter, &rdev->wdev_list, list) { 1051 if (wdev_iter == wdev) 1052 continue; 1053 if (wdev_iter->netdev) { 1054 if (!netif_running(wdev_iter->netdev)) 1055 continue; 1056 } else if (wdev_iter->iftype == NL80211_IFTYPE_P2P_DEVICE) { 1057 if (!wdev_iter->p2p_started) 1058 continue; 1059 } else { 1060 WARN_ON(1); 1061 } 1062 1063 if (rdev->wiphy.software_iftypes & BIT(wdev_iter->iftype)) 1064 continue; 1065 1066 /* 1067 * We may be holding the "wdev" mutex, but now need to lock 1068 * wdev_iter. This is OK because once we get here wdev_iter 1069 * is not wdev (tested above), but we need to use the nested 1070 * locking for lockdep. 1071 */ 1072 mutex_lock_nested(&wdev_iter->mtx, 1); 1073 __acquire(wdev_iter->mtx); 1074 cfg80211_get_chan_state(wdev_iter, &ch, &chmode); 1075 wdev_unlock(wdev_iter); 1076 1077 switch (chmode) { 1078 case CHAN_MODE_UNDEFINED: 1079 break; 1080 case CHAN_MODE_SHARED: 1081 for (i = 0; i < CFG80211_MAX_NUM_DIFFERENT_CHANNELS; i++) 1082 if (!used_channels[i] || used_channels[i] == ch) 1083 break; 1084 1085 if (i == CFG80211_MAX_NUM_DIFFERENT_CHANNELS) 1086 return -EBUSY; 1087 1088 if (used_channels[i] == NULL) { 1089 used_channels[i] = ch; 1090 num_different_channels++; 1091 } 1092 break; 1093 case CHAN_MODE_EXCLUSIVE: 1094 num_different_channels++; 1095 break; 1096 } 1097 1098 num[wdev_iter->iftype]++; 1099 total++; 1100 used_iftypes |= BIT(wdev_iter->iftype); 1101 } 1102 1103 if (total == 1) 1104 return 0; 1105 1106 for (i = 0; i < rdev->wiphy.n_iface_combinations; i++) { 1107 const struct ieee80211_iface_combination *c; 1108 struct ieee80211_iface_limit *limits; 1109 u32 all_iftypes = 0; 1110 1111 c = &rdev->wiphy.iface_combinations[i]; 1112 1113 if (total > c->max_interfaces) 1114 continue; 1115 if (num_different_channels > c->num_different_channels) 1116 continue; 1117 1118 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, 1119 GFP_KERNEL); 1120 if (!limits) 1121 return -ENOMEM; 1122 1123 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { 1124 if (rdev->wiphy.software_iftypes & BIT(iftype)) 1125 continue; 1126 for (j = 0; j < c->n_limits; j++) { 1127 all_iftypes |= limits[j].types; 1128 if (!(limits[j].types & BIT(iftype))) 1129 continue; 1130 if (limits[j].max < num[iftype]) 1131 goto cont; 1132 limits[j].max -= num[iftype]; 1133 } 1134 } 1135 1136 /* 1137 * Finally check that all iftypes that we're currently 1138 * using are actually part of this combination. If they 1139 * aren't then we can't use this combination and have 1140 * to continue to the next. 1141 */ 1142 if ((all_iftypes & used_iftypes) != used_iftypes) 1143 goto cont; 1144 1145 /* 1146 * This combination covered all interface types and 1147 * supported the requested numbers, so we're good. 1148 */ 1149 kfree(limits); 1150 return 0; 1151 cont: 1152 kfree(limits); 1153 } 1154 1155 return -EBUSY; 1156 } 1157 1158 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, 1159 const u8 *rates, unsigned int n_rates, 1160 u32 *mask) 1161 { 1162 int i, j; 1163 1164 if (!sband) 1165 return -EINVAL; 1166 1167 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) 1168 return -EINVAL; 1169 1170 *mask = 0; 1171 1172 for (i = 0; i < n_rates; i++) { 1173 int rate = (rates[i] & 0x7f) * 5; 1174 bool found = false; 1175 1176 for (j = 0; j < sband->n_bitrates; j++) { 1177 if (sband->bitrates[j].bitrate == rate) { 1178 found = true; 1179 *mask |= BIT(j); 1180 break; 1181 } 1182 } 1183 if (!found) 1184 return -EINVAL; 1185 } 1186 1187 /* 1188 * mask must have at least one bit set here since we 1189 * didn't accept a 0-length rates array nor allowed 1190 * entries in the array that didn't exist 1191 */ 1192 1193 return 0; 1194 } 1195 1196 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ 1197 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ 1198 const unsigned char rfc1042_header[] __aligned(2) = 1199 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; 1200 EXPORT_SYMBOL(rfc1042_header); 1201 1202 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ 1203 const unsigned char bridge_tunnel_header[] __aligned(2) = 1204 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; 1205 EXPORT_SYMBOL(bridge_tunnel_header); 1206