1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * cfg80211 scan result handling 4 * 5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2016 Intel Deutschland GmbH 8 */ 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/module.h> 12 #include <linux/netdevice.h> 13 #include <linux/wireless.h> 14 #include <linux/nl80211.h> 15 #include <linux/etherdevice.h> 16 #include <net/arp.h> 17 #include <net/cfg80211.h> 18 #include <net/cfg80211-wext.h> 19 #include <net/iw_handler.h> 20 #include "core.h" 21 #include "nl80211.h" 22 #include "wext-compat.h" 23 #include "rdev-ops.h" 24 25 /** 26 * DOC: BSS tree/list structure 27 * 28 * At the top level, the BSS list is kept in both a list in each 29 * registered device (@bss_list) as well as an RB-tree for faster 30 * lookup. In the RB-tree, entries can be looked up using their 31 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID 32 * for other BSSes. 33 * 34 * Due to the possibility of hidden SSIDs, there's a second level 35 * structure, the "hidden_list" and "hidden_beacon_bss" pointer. 36 * The hidden_list connects all BSSes belonging to a single AP 37 * that has a hidden SSID, and connects beacon and probe response 38 * entries. For a probe response entry for a hidden SSID, the 39 * hidden_beacon_bss pointer points to the BSS struct holding the 40 * beacon's information. 41 * 42 * Reference counting is done for all these references except for 43 * the hidden_list, so that a beacon BSS struct that is otherwise 44 * not referenced has one reference for being on the bss_list and 45 * one for each probe response entry that points to it using the 46 * hidden_beacon_bss pointer. When a BSS struct that has such a 47 * pointer is get/put, the refcount update is also propagated to 48 * the referenced struct, this ensure that it cannot get removed 49 * while somebody is using the probe response version. 50 * 51 * Note that the hidden_beacon_bss pointer never changes, due to 52 * the reference counting. Therefore, no locking is needed for 53 * it. 54 * 55 * Also note that the hidden_beacon_bss pointer is only relevant 56 * if the driver uses something other than the IEs, e.g. private 57 * data stored stored in the BSS struct, since the beacon IEs are 58 * also linked into the probe response struct. 59 */ 60 61 /* 62 * Limit the number of BSS entries stored in mac80211. Each one is 63 * a bit over 4k at most, so this limits to roughly 4-5M of memory. 64 * If somebody wants to really attack this though, they'd likely 65 * use small beacons, and only one type of frame, limiting each of 66 * the entries to a much smaller size (in order to generate more 67 * entries in total, so overhead is bigger.) 68 */ 69 static int bss_entries_limit = 1000; 70 module_param(bss_entries_limit, int, 0644); 71 MODULE_PARM_DESC(bss_entries_limit, 72 "limit to number of scan BSS entries (per wiphy, default 1000)"); 73 74 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ) 75 76 static void bss_free(struct cfg80211_internal_bss *bss) 77 { 78 struct cfg80211_bss_ies *ies; 79 80 if (WARN_ON(atomic_read(&bss->hold))) 81 return; 82 83 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies); 84 if (ies && !bss->pub.hidden_beacon_bss) 85 kfree_rcu(ies, rcu_head); 86 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies); 87 if (ies) 88 kfree_rcu(ies, rcu_head); 89 90 /* 91 * This happens when the module is removed, it doesn't 92 * really matter any more save for completeness 93 */ 94 if (!list_empty(&bss->hidden_list)) 95 list_del(&bss->hidden_list); 96 97 kfree(bss); 98 } 99 100 static inline void bss_ref_get(struct cfg80211_registered_device *rdev, 101 struct cfg80211_internal_bss *bss) 102 { 103 lockdep_assert_held(&rdev->bss_lock); 104 105 bss->refcount++; 106 if (bss->pub.hidden_beacon_bss) { 107 bss = container_of(bss->pub.hidden_beacon_bss, 108 struct cfg80211_internal_bss, 109 pub); 110 bss->refcount++; 111 } 112 } 113 114 static inline void bss_ref_put(struct cfg80211_registered_device *rdev, 115 struct cfg80211_internal_bss *bss) 116 { 117 lockdep_assert_held(&rdev->bss_lock); 118 119 if (bss->pub.hidden_beacon_bss) { 120 struct cfg80211_internal_bss *hbss; 121 hbss = container_of(bss->pub.hidden_beacon_bss, 122 struct cfg80211_internal_bss, 123 pub); 124 hbss->refcount--; 125 if (hbss->refcount == 0) 126 bss_free(hbss); 127 } 128 bss->refcount--; 129 if (bss->refcount == 0) 130 bss_free(bss); 131 } 132 133 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev, 134 struct cfg80211_internal_bss *bss) 135 { 136 lockdep_assert_held(&rdev->bss_lock); 137 138 if (!list_empty(&bss->hidden_list)) { 139 /* 140 * don't remove the beacon entry if it has 141 * probe responses associated with it 142 */ 143 if (!bss->pub.hidden_beacon_bss) 144 return false; 145 /* 146 * if it's a probe response entry break its 147 * link to the other entries in the group 148 */ 149 list_del_init(&bss->hidden_list); 150 } 151 152 list_del_init(&bss->list); 153 rb_erase(&bss->rbn, &rdev->bss_tree); 154 rdev->bss_entries--; 155 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list), 156 "rdev bss entries[%d]/list[empty:%d] corruption\n", 157 rdev->bss_entries, list_empty(&rdev->bss_list)); 158 bss_ref_put(rdev, bss); 159 return true; 160 } 161 162 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev, 163 unsigned long expire_time) 164 { 165 struct cfg80211_internal_bss *bss, *tmp; 166 bool expired = false; 167 168 lockdep_assert_held(&rdev->bss_lock); 169 170 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) { 171 if (atomic_read(&bss->hold)) 172 continue; 173 if (!time_after(expire_time, bss->ts)) 174 continue; 175 176 if (__cfg80211_unlink_bss(rdev, bss)) 177 expired = true; 178 } 179 180 if (expired) 181 rdev->bss_generation++; 182 } 183 184 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev) 185 { 186 struct cfg80211_internal_bss *bss, *oldest = NULL; 187 bool ret; 188 189 lockdep_assert_held(&rdev->bss_lock); 190 191 list_for_each_entry(bss, &rdev->bss_list, list) { 192 if (atomic_read(&bss->hold)) 193 continue; 194 195 if (!list_empty(&bss->hidden_list) && 196 !bss->pub.hidden_beacon_bss) 197 continue; 198 199 if (oldest && time_before(oldest->ts, bss->ts)) 200 continue; 201 oldest = bss; 202 } 203 204 if (WARN_ON(!oldest)) 205 return false; 206 207 /* 208 * The callers make sure to increase rdev->bss_generation if anything 209 * gets removed (and a new entry added), so there's no need to also do 210 * it here. 211 */ 212 213 ret = __cfg80211_unlink_bss(rdev, oldest); 214 WARN_ON(!ret); 215 return ret; 216 } 217 218 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, 219 bool send_message) 220 { 221 struct cfg80211_scan_request *request; 222 struct wireless_dev *wdev; 223 struct sk_buff *msg; 224 #ifdef CONFIG_CFG80211_WEXT 225 union iwreq_data wrqu; 226 #endif 227 228 ASSERT_RTNL(); 229 230 if (rdev->scan_msg) { 231 nl80211_send_scan_msg(rdev, rdev->scan_msg); 232 rdev->scan_msg = NULL; 233 return; 234 } 235 236 request = rdev->scan_req; 237 if (!request) 238 return; 239 240 wdev = request->wdev; 241 242 /* 243 * This must be before sending the other events! 244 * Otherwise, wpa_supplicant gets completely confused with 245 * wext events. 246 */ 247 if (wdev->netdev) 248 cfg80211_sme_scan_done(wdev->netdev); 249 250 if (!request->info.aborted && 251 request->flags & NL80211_SCAN_FLAG_FLUSH) { 252 /* flush entries from previous scans */ 253 spin_lock_bh(&rdev->bss_lock); 254 __cfg80211_bss_expire(rdev, request->scan_start); 255 spin_unlock_bh(&rdev->bss_lock); 256 } 257 258 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted); 259 260 #ifdef CONFIG_CFG80211_WEXT 261 if (wdev->netdev && !request->info.aborted) { 262 memset(&wrqu, 0, sizeof(wrqu)); 263 264 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL); 265 } 266 #endif 267 268 if (wdev->netdev) 269 dev_put(wdev->netdev); 270 271 rdev->scan_req = NULL; 272 kfree(request); 273 274 if (!send_message) 275 rdev->scan_msg = msg; 276 else 277 nl80211_send_scan_msg(rdev, msg); 278 } 279 280 void __cfg80211_scan_done(struct work_struct *wk) 281 { 282 struct cfg80211_registered_device *rdev; 283 284 rdev = container_of(wk, struct cfg80211_registered_device, 285 scan_done_wk); 286 287 rtnl_lock(); 288 ___cfg80211_scan_done(rdev, true); 289 rtnl_unlock(); 290 } 291 292 void cfg80211_scan_done(struct cfg80211_scan_request *request, 293 struct cfg80211_scan_info *info) 294 { 295 trace_cfg80211_scan_done(request, info); 296 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req); 297 298 request->info = *info; 299 request->notified = true; 300 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk); 301 } 302 EXPORT_SYMBOL(cfg80211_scan_done); 303 304 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, 305 struct cfg80211_sched_scan_request *req) 306 { 307 ASSERT_RTNL(); 308 309 list_add_rcu(&req->list, &rdev->sched_scan_req_list); 310 } 311 312 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev, 313 struct cfg80211_sched_scan_request *req) 314 { 315 ASSERT_RTNL(); 316 317 list_del_rcu(&req->list); 318 kfree_rcu(req, rcu_head); 319 } 320 321 static struct cfg80211_sched_scan_request * 322 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid) 323 { 324 struct cfg80211_sched_scan_request *pos; 325 326 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 327 328 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list) { 329 if (pos->reqid == reqid) 330 return pos; 331 } 332 return NULL; 333 } 334 335 /* 336 * Determines if a scheduled scan request can be handled. When a legacy 337 * scheduled scan is running no other scheduled scan is allowed regardless 338 * whether the request is for legacy or multi-support scan. When a multi-support 339 * scheduled scan is running a request for legacy scan is not allowed. In this 340 * case a request for multi-support scan can be handled if resources are 341 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached. 342 */ 343 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, 344 bool want_multi) 345 { 346 struct cfg80211_sched_scan_request *pos; 347 int i = 0; 348 349 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) { 350 /* request id zero means legacy in progress */ 351 if (!i && !pos->reqid) 352 return -EINPROGRESS; 353 i++; 354 } 355 356 if (i) { 357 /* no legacy allowed when multi request(s) are active */ 358 if (!want_multi) 359 return -EINPROGRESS; 360 361 /* resource limit reached */ 362 if (i == rdev->wiphy.max_sched_scan_reqs) 363 return -ENOSPC; 364 } 365 return 0; 366 } 367 368 void cfg80211_sched_scan_results_wk(struct work_struct *work) 369 { 370 struct cfg80211_registered_device *rdev; 371 struct cfg80211_sched_scan_request *req, *tmp; 372 373 rdev = container_of(work, struct cfg80211_registered_device, 374 sched_scan_res_wk); 375 376 rtnl_lock(); 377 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) { 378 if (req->report_results) { 379 req->report_results = false; 380 if (req->flags & NL80211_SCAN_FLAG_FLUSH) { 381 /* flush entries from previous scans */ 382 spin_lock_bh(&rdev->bss_lock); 383 __cfg80211_bss_expire(rdev, req->scan_start); 384 spin_unlock_bh(&rdev->bss_lock); 385 req->scan_start = jiffies; 386 } 387 nl80211_send_sched_scan(req, 388 NL80211_CMD_SCHED_SCAN_RESULTS); 389 } 390 } 391 rtnl_unlock(); 392 } 393 394 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid) 395 { 396 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 397 struct cfg80211_sched_scan_request *request; 398 399 trace_cfg80211_sched_scan_results(wiphy, reqid); 400 /* ignore if we're not scanning */ 401 402 rcu_read_lock(); 403 request = cfg80211_find_sched_scan_req(rdev, reqid); 404 if (request) { 405 request->report_results = true; 406 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk); 407 } 408 rcu_read_unlock(); 409 } 410 EXPORT_SYMBOL(cfg80211_sched_scan_results); 411 412 void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy, u64 reqid) 413 { 414 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 415 416 ASSERT_RTNL(); 417 418 trace_cfg80211_sched_scan_stopped(wiphy, reqid); 419 420 __cfg80211_stop_sched_scan(rdev, reqid, true); 421 } 422 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_rtnl); 423 424 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid) 425 { 426 rtnl_lock(); 427 cfg80211_sched_scan_stopped_rtnl(wiphy, reqid); 428 rtnl_unlock(); 429 } 430 EXPORT_SYMBOL(cfg80211_sched_scan_stopped); 431 432 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, 433 struct cfg80211_sched_scan_request *req, 434 bool driver_initiated) 435 { 436 ASSERT_RTNL(); 437 438 if (!driver_initiated) { 439 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid); 440 if (err) 441 return err; 442 } 443 444 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED); 445 446 cfg80211_del_sched_scan_req(rdev, req); 447 448 return 0; 449 } 450 451 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, 452 u64 reqid, bool driver_initiated) 453 { 454 struct cfg80211_sched_scan_request *sched_scan_req; 455 456 ASSERT_RTNL(); 457 458 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid); 459 if (!sched_scan_req) 460 return -ENOENT; 461 462 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req, 463 driver_initiated); 464 } 465 466 void cfg80211_bss_age(struct cfg80211_registered_device *rdev, 467 unsigned long age_secs) 468 { 469 struct cfg80211_internal_bss *bss; 470 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC); 471 472 spin_lock_bh(&rdev->bss_lock); 473 list_for_each_entry(bss, &rdev->bss_list, list) 474 bss->ts -= age_jiffies; 475 spin_unlock_bh(&rdev->bss_lock); 476 } 477 478 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev) 479 { 480 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE); 481 } 482 483 const u8 *cfg80211_find_ie_match(u8 eid, const u8 *ies, int len, 484 const u8 *match, int match_len, 485 int match_offset) 486 { 487 /* match_offset can't be smaller than 2, unless match_len is 488 * zero, in which case match_offset must be zero as well. 489 */ 490 if (WARN_ON((match_len && match_offset < 2) || 491 (!match_len && match_offset))) 492 return NULL; 493 494 while (len >= 2 && len >= ies[1] + 2) { 495 if ((ies[0] == eid) && 496 (ies[1] + 2 >= match_offset + match_len) && 497 !memcmp(ies + match_offset, match, match_len)) 498 return ies; 499 500 len -= ies[1] + 2; 501 ies += ies[1] + 2; 502 } 503 504 return NULL; 505 } 506 EXPORT_SYMBOL(cfg80211_find_ie_match); 507 508 const u8 *cfg80211_find_vendor_ie(unsigned int oui, int oui_type, 509 const u8 *ies, int len) 510 { 511 const u8 *ie; 512 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type }; 513 int match_len = (oui_type < 0) ? 3 : sizeof(match); 514 515 if (WARN_ON(oui_type > 0xff)) 516 return NULL; 517 518 ie = cfg80211_find_ie_match(WLAN_EID_VENDOR_SPECIFIC, ies, len, 519 match, match_len, 2); 520 521 if (ie && (ie[1] < 4)) 522 return NULL; 523 524 return ie; 525 } 526 EXPORT_SYMBOL(cfg80211_find_vendor_ie); 527 528 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid, 529 const u8 *ssid, size_t ssid_len) 530 { 531 const struct cfg80211_bss_ies *ies; 532 const u8 *ssidie; 533 534 if (bssid && !ether_addr_equal(a->bssid, bssid)) 535 return false; 536 537 if (!ssid) 538 return true; 539 540 ies = rcu_access_pointer(a->ies); 541 if (!ies) 542 return false; 543 ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 544 if (!ssidie) 545 return false; 546 if (ssidie[1] != ssid_len) 547 return false; 548 return memcmp(ssidie + 2, ssid, ssid_len) == 0; 549 } 550 551 /** 552 * enum bss_compare_mode - BSS compare mode 553 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find) 554 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode 555 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode 556 */ 557 enum bss_compare_mode { 558 BSS_CMP_REGULAR, 559 BSS_CMP_HIDE_ZLEN, 560 BSS_CMP_HIDE_NUL, 561 }; 562 563 static int cmp_bss(struct cfg80211_bss *a, 564 struct cfg80211_bss *b, 565 enum bss_compare_mode mode) 566 { 567 const struct cfg80211_bss_ies *a_ies, *b_ies; 568 const u8 *ie1 = NULL; 569 const u8 *ie2 = NULL; 570 int i, r; 571 572 if (a->channel != b->channel) 573 return b->channel->center_freq - a->channel->center_freq; 574 575 a_ies = rcu_access_pointer(a->ies); 576 if (!a_ies) 577 return -1; 578 b_ies = rcu_access_pointer(b->ies); 579 if (!b_ies) 580 return 1; 581 582 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability)) 583 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID, 584 a_ies->data, a_ies->len); 585 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability)) 586 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID, 587 b_ies->data, b_ies->len); 588 if (ie1 && ie2) { 589 int mesh_id_cmp; 590 591 if (ie1[1] == ie2[1]) 592 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]); 593 else 594 mesh_id_cmp = ie2[1] - ie1[1]; 595 596 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 597 a_ies->data, a_ies->len); 598 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 599 b_ies->data, b_ies->len); 600 if (ie1 && ie2) { 601 if (mesh_id_cmp) 602 return mesh_id_cmp; 603 if (ie1[1] != ie2[1]) 604 return ie2[1] - ie1[1]; 605 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 606 } 607 } 608 609 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid)); 610 if (r) 611 return r; 612 613 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len); 614 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len); 615 616 if (!ie1 && !ie2) 617 return 0; 618 619 /* 620 * Note that with "hide_ssid", the function returns a match if 621 * the already-present BSS ("b") is a hidden SSID beacon for 622 * the new BSS ("a"). 623 */ 624 625 /* sort missing IE before (left of) present IE */ 626 if (!ie1) 627 return -1; 628 if (!ie2) 629 return 1; 630 631 switch (mode) { 632 case BSS_CMP_HIDE_ZLEN: 633 /* 634 * In ZLEN mode we assume the BSS entry we're 635 * looking for has a zero-length SSID. So if 636 * the one we're looking at right now has that, 637 * return 0. Otherwise, return the difference 638 * in length, but since we're looking for the 639 * 0-length it's really equivalent to returning 640 * the length of the one we're looking at. 641 * 642 * No content comparison is needed as we assume 643 * the content length is zero. 644 */ 645 return ie2[1]; 646 case BSS_CMP_REGULAR: 647 default: 648 /* sort by length first, then by contents */ 649 if (ie1[1] != ie2[1]) 650 return ie2[1] - ie1[1]; 651 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 652 case BSS_CMP_HIDE_NUL: 653 if (ie1[1] != ie2[1]) 654 return ie2[1] - ie1[1]; 655 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */ 656 for (i = 0; i < ie2[1]; i++) 657 if (ie2[i + 2]) 658 return -1; 659 return 0; 660 } 661 } 662 663 static bool cfg80211_bss_type_match(u16 capability, 664 enum nl80211_band band, 665 enum ieee80211_bss_type bss_type) 666 { 667 bool ret = true; 668 u16 mask, val; 669 670 if (bss_type == IEEE80211_BSS_TYPE_ANY) 671 return ret; 672 673 if (band == NL80211_BAND_60GHZ) { 674 mask = WLAN_CAPABILITY_DMG_TYPE_MASK; 675 switch (bss_type) { 676 case IEEE80211_BSS_TYPE_ESS: 677 val = WLAN_CAPABILITY_DMG_TYPE_AP; 678 break; 679 case IEEE80211_BSS_TYPE_PBSS: 680 val = WLAN_CAPABILITY_DMG_TYPE_PBSS; 681 break; 682 case IEEE80211_BSS_TYPE_IBSS: 683 val = WLAN_CAPABILITY_DMG_TYPE_IBSS; 684 break; 685 default: 686 return false; 687 } 688 } else { 689 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS; 690 switch (bss_type) { 691 case IEEE80211_BSS_TYPE_ESS: 692 val = WLAN_CAPABILITY_ESS; 693 break; 694 case IEEE80211_BSS_TYPE_IBSS: 695 val = WLAN_CAPABILITY_IBSS; 696 break; 697 case IEEE80211_BSS_TYPE_MBSS: 698 val = 0; 699 break; 700 default: 701 return false; 702 } 703 } 704 705 ret = ((capability & mask) == val); 706 return ret; 707 } 708 709 /* Returned bss is reference counted and must be cleaned up appropriately. */ 710 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy, 711 struct ieee80211_channel *channel, 712 const u8 *bssid, 713 const u8 *ssid, size_t ssid_len, 714 enum ieee80211_bss_type bss_type, 715 enum ieee80211_privacy privacy) 716 { 717 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 718 struct cfg80211_internal_bss *bss, *res = NULL; 719 unsigned long now = jiffies; 720 int bss_privacy; 721 722 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type, 723 privacy); 724 725 spin_lock_bh(&rdev->bss_lock); 726 727 list_for_each_entry(bss, &rdev->bss_list, list) { 728 if (!cfg80211_bss_type_match(bss->pub.capability, 729 bss->pub.channel->band, bss_type)) 730 continue; 731 732 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY); 733 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) || 734 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy)) 735 continue; 736 if (channel && bss->pub.channel != channel) 737 continue; 738 if (!is_valid_ether_addr(bss->pub.bssid)) 739 continue; 740 /* Don't get expired BSS structs */ 741 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) && 742 !atomic_read(&bss->hold)) 743 continue; 744 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) { 745 res = bss; 746 bss_ref_get(rdev, res); 747 break; 748 } 749 } 750 751 spin_unlock_bh(&rdev->bss_lock); 752 if (!res) 753 return NULL; 754 trace_cfg80211_return_bss(&res->pub); 755 return &res->pub; 756 } 757 EXPORT_SYMBOL(cfg80211_get_bss); 758 759 static void rb_insert_bss(struct cfg80211_registered_device *rdev, 760 struct cfg80211_internal_bss *bss) 761 { 762 struct rb_node **p = &rdev->bss_tree.rb_node; 763 struct rb_node *parent = NULL; 764 struct cfg80211_internal_bss *tbss; 765 int cmp; 766 767 while (*p) { 768 parent = *p; 769 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn); 770 771 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR); 772 773 if (WARN_ON(!cmp)) { 774 /* will sort of leak this BSS */ 775 return; 776 } 777 778 if (cmp < 0) 779 p = &(*p)->rb_left; 780 else 781 p = &(*p)->rb_right; 782 } 783 784 rb_link_node(&bss->rbn, parent, p); 785 rb_insert_color(&bss->rbn, &rdev->bss_tree); 786 } 787 788 static struct cfg80211_internal_bss * 789 rb_find_bss(struct cfg80211_registered_device *rdev, 790 struct cfg80211_internal_bss *res, 791 enum bss_compare_mode mode) 792 { 793 struct rb_node *n = rdev->bss_tree.rb_node; 794 struct cfg80211_internal_bss *bss; 795 int r; 796 797 while (n) { 798 bss = rb_entry(n, struct cfg80211_internal_bss, rbn); 799 r = cmp_bss(&res->pub, &bss->pub, mode); 800 801 if (r == 0) 802 return bss; 803 else if (r < 0) 804 n = n->rb_left; 805 else 806 n = n->rb_right; 807 } 808 809 return NULL; 810 } 811 812 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev, 813 struct cfg80211_internal_bss *new) 814 { 815 const struct cfg80211_bss_ies *ies; 816 struct cfg80211_internal_bss *bss; 817 const u8 *ie; 818 int i, ssidlen; 819 u8 fold = 0; 820 u32 n_entries = 0; 821 822 ies = rcu_access_pointer(new->pub.beacon_ies); 823 if (WARN_ON(!ies)) 824 return false; 825 826 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 827 if (!ie) { 828 /* nothing to do */ 829 return true; 830 } 831 832 ssidlen = ie[1]; 833 for (i = 0; i < ssidlen; i++) 834 fold |= ie[2 + i]; 835 836 if (fold) { 837 /* not a hidden SSID */ 838 return true; 839 } 840 841 /* This is the bad part ... */ 842 843 list_for_each_entry(bss, &rdev->bss_list, list) { 844 /* 845 * we're iterating all the entries anyway, so take the 846 * opportunity to validate the list length accounting 847 */ 848 n_entries++; 849 850 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid)) 851 continue; 852 if (bss->pub.channel != new->pub.channel) 853 continue; 854 if (bss->pub.scan_width != new->pub.scan_width) 855 continue; 856 if (rcu_access_pointer(bss->pub.beacon_ies)) 857 continue; 858 ies = rcu_access_pointer(bss->pub.ies); 859 if (!ies) 860 continue; 861 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 862 if (!ie) 863 continue; 864 if (ssidlen && ie[1] != ssidlen) 865 continue; 866 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss)) 867 continue; 868 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list))) 869 list_del(&bss->hidden_list); 870 /* combine them */ 871 list_add(&bss->hidden_list, &new->hidden_list); 872 bss->pub.hidden_beacon_bss = &new->pub; 873 new->refcount += bss->refcount; 874 rcu_assign_pointer(bss->pub.beacon_ies, 875 new->pub.beacon_ies); 876 } 877 878 WARN_ONCE(n_entries != rdev->bss_entries, 879 "rdev bss entries[%d]/list[len:%d] corruption\n", 880 rdev->bss_entries, n_entries); 881 882 return true; 883 } 884 885 /* Returned bss is reference counted and must be cleaned up appropriately. */ 886 static struct cfg80211_internal_bss * 887 cfg80211_bss_update(struct cfg80211_registered_device *rdev, 888 struct cfg80211_internal_bss *tmp, 889 bool signal_valid) 890 { 891 struct cfg80211_internal_bss *found = NULL; 892 893 if (WARN_ON(!tmp->pub.channel)) 894 return NULL; 895 896 tmp->ts = jiffies; 897 898 spin_lock_bh(&rdev->bss_lock); 899 900 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) { 901 spin_unlock_bh(&rdev->bss_lock); 902 return NULL; 903 } 904 905 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR); 906 907 if (found) { 908 /* Update IEs */ 909 if (rcu_access_pointer(tmp->pub.proberesp_ies)) { 910 const struct cfg80211_bss_ies *old; 911 912 old = rcu_access_pointer(found->pub.proberesp_ies); 913 914 rcu_assign_pointer(found->pub.proberesp_ies, 915 tmp->pub.proberesp_ies); 916 /* Override possible earlier Beacon frame IEs */ 917 rcu_assign_pointer(found->pub.ies, 918 tmp->pub.proberesp_ies); 919 if (old) 920 kfree_rcu((struct cfg80211_bss_ies *)old, 921 rcu_head); 922 } else if (rcu_access_pointer(tmp->pub.beacon_ies)) { 923 const struct cfg80211_bss_ies *old; 924 struct cfg80211_internal_bss *bss; 925 926 if (found->pub.hidden_beacon_bss && 927 !list_empty(&found->hidden_list)) { 928 const struct cfg80211_bss_ies *f; 929 930 /* 931 * The found BSS struct is one of the probe 932 * response members of a group, but we're 933 * receiving a beacon (beacon_ies in the tmp 934 * bss is used). This can only mean that the 935 * AP changed its beacon from not having an 936 * SSID to showing it, which is confusing so 937 * drop this information. 938 */ 939 940 f = rcu_access_pointer(tmp->pub.beacon_ies); 941 kfree_rcu((struct cfg80211_bss_ies *)f, 942 rcu_head); 943 goto drop; 944 } 945 946 old = rcu_access_pointer(found->pub.beacon_ies); 947 948 rcu_assign_pointer(found->pub.beacon_ies, 949 tmp->pub.beacon_ies); 950 951 /* Override IEs if they were from a beacon before */ 952 if (old == rcu_access_pointer(found->pub.ies)) 953 rcu_assign_pointer(found->pub.ies, 954 tmp->pub.beacon_ies); 955 956 /* Assign beacon IEs to all sub entries */ 957 list_for_each_entry(bss, &found->hidden_list, 958 hidden_list) { 959 const struct cfg80211_bss_ies *ies; 960 961 ies = rcu_access_pointer(bss->pub.beacon_ies); 962 WARN_ON(ies != old); 963 964 rcu_assign_pointer(bss->pub.beacon_ies, 965 tmp->pub.beacon_ies); 966 } 967 968 if (old) 969 kfree_rcu((struct cfg80211_bss_ies *)old, 970 rcu_head); 971 } 972 973 found->pub.beacon_interval = tmp->pub.beacon_interval; 974 /* 975 * don't update the signal if beacon was heard on 976 * adjacent channel. 977 */ 978 if (signal_valid) 979 found->pub.signal = tmp->pub.signal; 980 found->pub.capability = tmp->pub.capability; 981 found->ts = tmp->ts; 982 found->ts_boottime = tmp->ts_boottime; 983 found->parent_tsf = tmp->parent_tsf; 984 found->pub.chains = tmp->pub.chains; 985 memcpy(found->pub.chain_signal, tmp->pub.chain_signal, 986 IEEE80211_MAX_CHAINS); 987 ether_addr_copy(found->parent_bssid, tmp->parent_bssid); 988 } else { 989 struct cfg80211_internal_bss *new; 990 struct cfg80211_internal_bss *hidden; 991 struct cfg80211_bss_ies *ies; 992 993 /* 994 * create a copy -- the "res" variable that is passed in 995 * is allocated on the stack since it's not needed in the 996 * more common case of an update 997 */ 998 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size, 999 GFP_ATOMIC); 1000 if (!new) { 1001 ies = (void *)rcu_dereference(tmp->pub.beacon_ies); 1002 if (ies) 1003 kfree_rcu(ies, rcu_head); 1004 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies); 1005 if (ies) 1006 kfree_rcu(ies, rcu_head); 1007 goto drop; 1008 } 1009 memcpy(new, tmp, sizeof(*new)); 1010 new->refcount = 1; 1011 INIT_LIST_HEAD(&new->hidden_list); 1012 1013 if (rcu_access_pointer(tmp->pub.proberesp_ies)) { 1014 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN); 1015 if (!hidden) 1016 hidden = rb_find_bss(rdev, tmp, 1017 BSS_CMP_HIDE_NUL); 1018 if (hidden) { 1019 new->pub.hidden_beacon_bss = &hidden->pub; 1020 list_add(&new->hidden_list, 1021 &hidden->hidden_list); 1022 hidden->refcount++; 1023 rcu_assign_pointer(new->pub.beacon_ies, 1024 hidden->pub.beacon_ies); 1025 } 1026 } else { 1027 /* 1028 * Ok so we found a beacon, and don't have an entry. If 1029 * it's a beacon with hidden SSID, we might be in for an 1030 * expensive search for any probe responses that should 1031 * be grouped with this beacon for updates ... 1032 */ 1033 if (!cfg80211_combine_bsses(rdev, new)) { 1034 kfree(new); 1035 goto drop; 1036 } 1037 } 1038 1039 if (rdev->bss_entries >= bss_entries_limit && 1040 !cfg80211_bss_expire_oldest(rdev)) { 1041 kfree(new); 1042 goto drop; 1043 } 1044 1045 list_add_tail(&new->list, &rdev->bss_list); 1046 rdev->bss_entries++; 1047 rb_insert_bss(rdev, new); 1048 found = new; 1049 } 1050 1051 rdev->bss_generation++; 1052 bss_ref_get(rdev, found); 1053 spin_unlock_bh(&rdev->bss_lock); 1054 1055 return found; 1056 drop: 1057 spin_unlock_bh(&rdev->bss_lock); 1058 return NULL; 1059 } 1060 1061 static struct ieee80211_channel * 1062 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen, 1063 struct ieee80211_channel *channel) 1064 { 1065 const u8 *tmp; 1066 u32 freq; 1067 int channel_number = -1; 1068 1069 tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen); 1070 if (tmp && tmp[1] == 1) { 1071 channel_number = tmp[2]; 1072 } else { 1073 tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen); 1074 if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) { 1075 struct ieee80211_ht_operation *htop = (void *)(tmp + 2); 1076 1077 channel_number = htop->primary_chan; 1078 } 1079 } 1080 1081 if (channel_number < 0) 1082 return channel; 1083 1084 freq = ieee80211_channel_to_frequency(channel_number, channel->band); 1085 channel = ieee80211_get_channel(wiphy, freq); 1086 if (!channel) 1087 return NULL; 1088 if (channel->flags & IEEE80211_CHAN_DISABLED) 1089 return NULL; 1090 return channel; 1091 } 1092 1093 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1094 struct cfg80211_bss * 1095 cfg80211_inform_bss_data(struct wiphy *wiphy, 1096 struct cfg80211_inform_bss *data, 1097 enum cfg80211_bss_frame_type ftype, 1098 const u8 *bssid, u64 tsf, u16 capability, 1099 u16 beacon_interval, const u8 *ie, size_t ielen, 1100 gfp_t gfp) 1101 { 1102 struct cfg80211_bss_ies *ies; 1103 struct ieee80211_channel *channel; 1104 struct cfg80211_internal_bss tmp = {}, *res; 1105 int bss_type; 1106 bool signal_valid; 1107 1108 if (WARN_ON(!wiphy)) 1109 return NULL; 1110 1111 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 1112 (data->signal < 0 || data->signal > 100))) 1113 return NULL; 1114 1115 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan); 1116 if (!channel) 1117 return NULL; 1118 1119 memcpy(tmp.pub.bssid, bssid, ETH_ALEN); 1120 tmp.pub.channel = channel; 1121 tmp.pub.scan_width = data->scan_width; 1122 tmp.pub.signal = data->signal; 1123 tmp.pub.beacon_interval = beacon_interval; 1124 tmp.pub.capability = capability; 1125 tmp.ts_boottime = data->boottime_ns; 1126 1127 /* 1128 * If we do not know here whether the IEs are from a Beacon or Probe 1129 * Response frame, we need to pick one of the options and only use it 1130 * with the driver that does not provide the full Beacon/Probe Response 1131 * frame. Use Beacon frame pointer to avoid indicating that this should 1132 * override the IEs pointer should we have received an earlier 1133 * indication of Probe Response data. 1134 */ 1135 ies = kzalloc(sizeof(*ies) + ielen, gfp); 1136 if (!ies) 1137 return NULL; 1138 ies->len = ielen; 1139 ies->tsf = tsf; 1140 ies->from_beacon = false; 1141 memcpy(ies->data, ie, ielen); 1142 1143 switch (ftype) { 1144 case CFG80211_BSS_FTYPE_BEACON: 1145 ies->from_beacon = true; 1146 /* fall through to assign */ 1147 case CFG80211_BSS_FTYPE_UNKNOWN: 1148 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 1149 break; 1150 case CFG80211_BSS_FTYPE_PRESP: 1151 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 1152 break; 1153 } 1154 rcu_assign_pointer(tmp.pub.ies, ies); 1155 1156 signal_valid = abs(data->chan->center_freq - channel->center_freq) <= 1157 wiphy->max_adj_channel_rssi_comp; 1158 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid); 1159 if (!res) 1160 return NULL; 1161 1162 if (channel->band == NL80211_BAND_60GHZ) { 1163 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 1164 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 1165 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 1166 regulatory_hint_found_beacon(wiphy, channel, gfp); 1167 } else { 1168 if (res->pub.capability & WLAN_CAPABILITY_ESS) 1169 regulatory_hint_found_beacon(wiphy, channel, gfp); 1170 } 1171 1172 trace_cfg80211_return_bss(&res->pub); 1173 /* cfg80211_bss_update gives us a referenced result */ 1174 return &res->pub; 1175 } 1176 EXPORT_SYMBOL(cfg80211_inform_bss_data); 1177 1178 /* cfg80211_inform_bss_width_frame helper */ 1179 struct cfg80211_bss * 1180 cfg80211_inform_bss_frame_data(struct wiphy *wiphy, 1181 struct cfg80211_inform_bss *data, 1182 struct ieee80211_mgmt *mgmt, size_t len, 1183 gfp_t gfp) 1184 1185 { 1186 struct cfg80211_internal_bss tmp = {}, *res; 1187 struct cfg80211_bss_ies *ies; 1188 struct ieee80211_channel *channel; 1189 bool signal_valid; 1190 size_t ielen = len - offsetof(struct ieee80211_mgmt, 1191 u.probe_resp.variable); 1192 int bss_type; 1193 1194 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) != 1195 offsetof(struct ieee80211_mgmt, u.beacon.variable)); 1196 1197 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len); 1198 1199 if (WARN_ON(!mgmt)) 1200 return NULL; 1201 1202 if (WARN_ON(!wiphy)) 1203 return NULL; 1204 1205 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 1206 (data->signal < 0 || data->signal > 100))) 1207 return NULL; 1208 1209 if (WARN_ON(len < offsetof(struct ieee80211_mgmt, u.probe_resp.variable))) 1210 return NULL; 1211 1212 channel = cfg80211_get_bss_channel(wiphy, mgmt->u.beacon.variable, 1213 ielen, data->chan); 1214 if (!channel) 1215 return NULL; 1216 1217 ies = kzalloc(sizeof(*ies) + ielen, gfp); 1218 if (!ies) 1219 return NULL; 1220 ies->len = ielen; 1221 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 1222 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control); 1223 memcpy(ies->data, mgmt->u.probe_resp.variable, ielen); 1224 1225 if (ieee80211_is_probe_resp(mgmt->frame_control)) 1226 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 1227 else 1228 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 1229 rcu_assign_pointer(tmp.pub.ies, ies); 1230 1231 memcpy(tmp.pub.bssid, mgmt->bssid, ETH_ALEN); 1232 tmp.pub.channel = channel; 1233 tmp.pub.scan_width = data->scan_width; 1234 tmp.pub.signal = data->signal; 1235 tmp.pub.beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int); 1236 tmp.pub.capability = le16_to_cpu(mgmt->u.probe_resp.capab_info); 1237 tmp.ts_boottime = data->boottime_ns; 1238 tmp.parent_tsf = data->parent_tsf; 1239 tmp.pub.chains = data->chains; 1240 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS); 1241 ether_addr_copy(tmp.parent_bssid, data->parent_bssid); 1242 1243 signal_valid = abs(data->chan->center_freq - channel->center_freq) <= 1244 wiphy->max_adj_channel_rssi_comp; 1245 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid); 1246 if (!res) 1247 return NULL; 1248 1249 if (channel->band == NL80211_BAND_60GHZ) { 1250 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 1251 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 1252 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 1253 regulatory_hint_found_beacon(wiphy, channel, gfp); 1254 } else { 1255 if (res->pub.capability & WLAN_CAPABILITY_ESS) 1256 regulatory_hint_found_beacon(wiphy, channel, gfp); 1257 } 1258 1259 trace_cfg80211_return_bss(&res->pub); 1260 /* cfg80211_bss_update gives us a referenced result */ 1261 return &res->pub; 1262 } 1263 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data); 1264 1265 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 1266 { 1267 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1268 struct cfg80211_internal_bss *bss; 1269 1270 if (!pub) 1271 return; 1272 1273 bss = container_of(pub, struct cfg80211_internal_bss, pub); 1274 1275 spin_lock_bh(&rdev->bss_lock); 1276 bss_ref_get(rdev, bss); 1277 spin_unlock_bh(&rdev->bss_lock); 1278 } 1279 EXPORT_SYMBOL(cfg80211_ref_bss); 1280 1281 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 1282 { 1283 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1284 struct cfg80211_internal_bss *bss; 1285 1286 if (!pub) 1287 return; 1288 1289 bss = container_of(pub, struct cfg80211_internal_bss, pub); 1290 1291 spin_lock_bh(&rdev->bss_lock); 1292 bss_ref_put(rdev, bss); 1293 spin_unlock_bh(&rdev->bss_lock); 1294 } 1295 EXPORT_SYMBOL(cfg80211_put_bss); 1296 1297 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 1298 { 1299 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1300 struct cfg80211_internal_bss *bss; 1301 1302 if (WARN_ON(!pub)) 1303 return; 1304 1305 bss = container_of(pub, struct cfg80211_internal_bss, pub); 1306 1307 spin_lock_bh(&rdev->bss_lock); 1308 if (!list_empty(&bss->list)) { 1309 if (__cfg80211_unlink_bss(rdev, bss)) 1310 rdev->bss_generation++; 1311 } 1312 spin_unlock_bh(&rdev->bss_lock); 1313 } 1314 EXPORT_SYMBOL(cfg80211_unlink_bss); 1315 1316 #ifdef CONFIG_CFG80211_WEXT 1317 static struct cfg80211_registered_device * 1318 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex) 1319 { 1320 struct cfg80211_registered_device *rdev; 1321 struct net_device *dev; 1322 1323 ASSERT_RTNL(); 1324 1325 dev = dev_get_by_index(net, ifindex); 1326 if (!dev) 1327 return ERR_PTR(-ENODEV); 1328 if (dev->ieee80211_ptr) 1329 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy); 1330 else 1331 rdev = ERR_PTR(-ENODEV); 1332 dev_put(dev); 1333 return rdev; 1334 } 1335 1336 int cfg80211_wext_siwscan(struct net_device *dev, 1337 struct iw_request_info *info, 1338 union iwreq_data *wrqu, char *extra) 1339 { 1340 struct cfg80211_registered_device *rdev; 1341 struct wiphy *wiphy; 1342 struct iw_scan_req *wreq = NULL; 1343 struct cfg80211_scan_request *creq = NULL; 1344 int i, err, n_channels = 0; 1345 enum nl80211_band band; 1346 1347 if (!netif_running(dev)) 1348 return -ENETDOWN; 1349 1350 if (wrqu->data.length == sizeof(struct iw_scan_req)) 1351 wreq = (struct iw_scan_req *)extra; 1352 1353 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 1354 1355 if (IS_ERR(rdev)) 1356 return PTR_ERR(rdev); 1357 1358 if (rdev->scan_req || rdev->scan_msg) { 1359 err = -EBUSY; 1360 goto out; 1361 } 1362 1363 wiphy = &rdev->wiphy; 1364 1365 /* Determine number of channels, needed to allocate creq */ 1366 if (wreq && wreq->num_channels) 1367 n_channels = wreq->num_channels; 1368 else 1369 n_channels = ieee80211_get_num_supported_channels(wiphy); 1370 1371 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) + 1372 n_channels * sizeof(void *), 1373 GFP_ATOMIC); 1374 if (!creq) { 1375 err = -ENOMEM; 1376 goto out; 1377 } 1378 1379 creq->wiphy = wiphy; 1380 creq->wdev = dev->ieee80211_ptr; 1381 /* SSIDs come after channels */ 1382 creq->ssids = (void *)&creq->channels[n_channels]; 1383 creq->n_channels = n_channels; 1384 creq->n_ssids = 1; 1385 creq->scan_start = jiffies; 1386 1387 /* translate "Scan on frequencies" request */ 1388 i = 0; 1389 for (band = 0; band < NUM_NL80211_BANDS; band++) { 1390 int j; 1391 1392 if (!wiphy->bands[band]) 1393 continue; 1394 1395 for (j = 0; j < wiphy->bands[band]->n_channels; j++) { 1396 /* ignore disabled channels */ 1397 if (wiphy->bands[band]->channels[j].flags & 1398 IEEE80211_CHAN_DISABLED) 1399 continue; 1400 1401 /* If we have a wireless request structure and the 1402 * wireless request specifies frequencies, then search 1403 * for the matching hardware channel. 1404 */ 1405 if (wreq && wreq->num_channels) { 1406 int k; 1407 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq; 1408 for (k = 0; k < wreq->num_channels; k++) { 1409 struct iw_freq *freq = 1410 &wreq->channel_list[k]; 1411 int wext_freq = 1412 cfg80211_wext_freq(freq); 1413 1414 if (wext_freq == wiphy_freq) 1415 goto wext_freq_found; 1416 } 1417 goto wext_freq_not_found; 1418 } 1419 1420 wext_freq_found: 1421 creq->channels[i] = &wiphy->bands[band]->channels[j]; 1422 i++; 1423 wext_freq_not_found: ; 1424 } 1425 } 1426 /* No channels found? */ 1427 if (!i) { 1428 err = -EINVAL; 1429 goto out; 1430 } 1431 1432 /* Set real number of channels specified in creq->channels[] */ 1433 creq->n_channels = i; 1434 1435 /* translate "Scan for SSID" request */ 1436 if (wreq) { 1437 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { 1438 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) { 1439 err = -EINVAL; 1440 goto out; 1441 } 1442 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len); 1443 creq->ssids[0].ssid_len = wreq->essid_len; 1444 } 1445 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) 1446 creq->n_ssids = 0; 1447 } 1448 1449 for (i = 0; i < NUM_NL80211_BANDS; i++) 1450 if (wiphy->bands[i]) 1451 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1; 1452 1453 eth_broadcast_addr(creq->bssid); 1454 1455 rdev->scan_req = creq; 1456 err = rdev_scan(rdev, creq); 1457 if (err) { 1458 rdev->scan_req = NULL; 1459 /* creq will be freed below */ 1460 } else { 1461 nl80211_send_scan_start(rdev, dev->ieee80211_ptr); 1462 /* creq now owned by driver */ 1463 creq = NULL; 1464 dev_hold(dev); 1465 } 1466 out: 1467 kfree(creq); 1468 return err; 1469 } 1470 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan); 1471 1472 static char *ieee80211_scan_add_ies(struct iw_request_info *info, 1473 const struct cfg80211_bss_ies *ies, 1474 char *current_ev, char *end_buf) 1475 { 1476 const u8 *pos, *end, *next; 1477 struct iw_event iwe; 1478 1479 if (!ies) 1480 return current_ev; 1481 1482 /* 1483 * If needed, fragment the IEs buffer (at IE boundaries) into short 1484 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages. 1485 */ 1486 pos = ies->data; 1487 end = pos + ies->len; 1488 1489 while (end - pos > IW_GENERIC_IE_MAX) { 1490 next = pos + 2 + pos[1]; 1491 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX) 1492 next = next + 2 + next[1]; 1493 1494 memset(&iwe, 0, sizeof(iwe)); 1495 iwe.cmd = IWEVGENIE; 1496 iwe.u.data.length = next - pos; 1497 current_ev = iwe_stream_add_point_check(info, current_ev, 1498 end_buf, &iwe, 1499 (void *)pos); 1500 if (IS_ERR(current_ev)) 1501 return current_ev; 1502 pos = next; 1503 } 1504 1505 if (end > pos) { 1506 memset(&iwe, 0, sizeof(iwe)); 1507 iwe.cmd = IWEVGENIE; 1508 iwe.u.data.length = end - pos; 1509 current_ev = iwe_stream_add_point_check(info, current_ev, 1510 end_buf, &iwe, 1511 (void *)pos); 1512 if (IS_ERR(current_ev)) 1513 return current_ev; 1514 } 1515 1516 return current_ev; 1517 } 1518 1519 static char * 1520 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info, 1521 struct cfg80211_internal_bss *bss, char *current_ev, 1522 char *end_buf) 1523 { 1524 const struct cfg80211_bss_ies *ies; 1525 struct iw_event iwe; 1526 const u8 *ie; 1527 u8 buf[50]; 1528 u8 *cfg, *p, *tmp; 1529 int rem, i, sig; 1530 bool ismesh = false; 1531 1532 memset(&iwe, 0, sizeof(iwe)); 1533 iwe.cmd = SIOCGIWAP; 1534 iwe.u.ap_addr.sa_family = ARPHRD_ETHER; 1535 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN); 1536 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 1537 IW_EV_ADDR_LEN); 1538 if (IS_ERR(current_ev)) 1539 return current_ev; 1540 1541 memset(&iwe, 0, sizeof(iwe)); 1542 iwe.cmd = SIOCGIWFREQ; 1543 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq); 1544 iwe.u.freq.e = 0; 1545 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 1546 IW_EV_FREQ_LEN); 1547 if (IS_ERR(current_ev)) 1548 return current_ev; 1549 1550 memset(&iwe, 0, sizeof(iwe)); 1551 iwe.cmd = SIOCGIWFREQ; 1552 iwe.u.freq.m = bss->pub.channel->center_freq; 1553 iwe.u.freq.e = 6; 1554 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 1555 IW_EV_FREQ_LEN); 1556 if (IS_ERR(current_ev)) 1557 return current_ev; 1558 1559 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) { 1560 memset(&iwe, 0, sizeof(iwe)); 1561 iwe.cmd = IWEVQUAL; 1562 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED | 1563 IW_QUAL_NOISE_INVALID | 1564 IW_QUAL_QUAL_UPDATED; 1565 switch (wiphy->signal_type) { 1566 case CFG80211_SIGNAL_TYPE_MBM: 1567 sig = bss->pub.signal / 100; 1568 iwe.u.qual.level = sig; 1569 iwe.u.qual.updated |= IW_QUAL_DBM; 1570 if (sig < -110) /* rather bad */ 1571 sig = -110; 1572 else if (sig > -40) /* perfect */ 1573 sig = -40; 1574 /* will give a range of 0 .. 70 */ 1575 iwe.u.qual.qual = sig + 110; 1576 break; 1577 case CFG80211_SIGNAL_TYPE_UNSPEC: 1578 iwe.u.qual.level = bss->pub.signal; 1579 /* will give range 0 .. 100 */ 1580 iwe.u.qual.qual = bss->pub.signal; 1581 break; 1582 default: 1583 /* not reached */ 1584 break; 1585 } 1586 current_ev = iwe_stream_add_event_check(info, current_ev, 1587 end_buf, &iwe, 1588 IW_EV_QUAL_LEN); 1589 if (IS_ERR(current_ev)) 1590 return current_ev; 1591 } 1592 1593 memset(&iwe, 0, sizeof(iwe)); 1594 iwe.cmd = SIOCGIWENCODE; 1595 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY) 1596 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY; 1597 else 1598 iwe.u.data.flags = IW_ENCODE_DISABLED; 1599 iwe.u.data.length = 0; 1600 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 1601 &iwe, ""); 1602 if (IS_ERR(current_ev)) 1603 return current_ev; 1604 1605 rcu_read_lock(); 1606 ies = rcu_dereference(bss->pub.ies); 1607 rem = ies->len; 1608 ie = ies->data; 1609 1610 while (rem >= 2) { 1611 /* invalid data */ 1612 if (ie[1] > rem - 2) 1613 break; 1614 1615 switch (ie[0]) { 1616 case WLAN_EID_SSID: 1617 memset(&iwe, 0, sizeof(iwe)); 1618 iwe.cmd = SIOCGIWESSID; 1619 iwe.u.data.length = ie[1]; 1620 iwe.u.data.flags = 1; 1621 current_ev = iwe_stream_add_point_check(info, 1622 current_ev, 1623 end_buf, &iwe, 1624 (u8 *)ie + 2); 1625 if (IS_ERR(current_ev)) 1626 goto unlock; 1627 break; 1628 case WLAN_EID_MESH_ID: 1629 memset(&iwe, 0, sizeof(iwe)); 1630 iwe.cmd = SIOCGIWESSID; 1631 iwe.u.data.length = ie[1]; 1632 iwe.u.data.flags = 1; 1633 current_ev = iwe_stream_add_point_check(info, 1634 current_ev, 1635 end_buf, &iwe, 1636 (u8 *)ie + 2); 1637 if (IS_ERR(current_ev)) 1638 goto unlock; 1639 break; 1640 case WLAN_EID_MESH_CONFIG: 1641 ismesh = true; 1642 if (ie[1] != sizeof(struct ieee80211_meshconf_ie)) 1643 break; 1644 cfg = (u8 *)ie + 2; 1645 memset(&iwe, 0, sizeof(iwe)); 1646 iwe.cmd = IWEVCUSTOM; 1647 sprintf(buf, "Mesh Network Path Selection Protocol ID: " 1648 "0x%02X", cfg[0]); 1649 iwe.u.data.length = strlen(buf); 1650 current_ev = iwe_stream_add_point_check(info, 1651 current_ev, 1652 end_buf, 1653 &iwe, buf); 1654 if (IS_ERR(current_ev)) 1655 goto unlock; 1656 sprintf(buf, "Path Selection Metric ID: 0x%02X", 1657 cfg[1]); 1658 iwe.u.data.length = strlen(buf); 1659 current_ev = iwe_stream_add_point_check(info, 1660 current_ev, 1661 end_buf, 1662 &iwe, buf); 1663 if (IS_ERR(current_ev)) 1664 goto unlock; 1665 sprintf(buf, "Congestion Control Mode ID: 0x%02X", 1666 cfg[2]); 1667 iwe.u.data.length = strlen(buf); 1668 current_ev = iwe_stream_add_point_check(info, 1669 current_ev, 1670 end_buf, 1671 &iwe, buf); 1672 if (IS_ERR(current_ev)) 1673 goto unlock; 1674 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]); 1675 iwe.u.data.length = strlen(buf); 1676 current_ev = iwe_stream_add_point_check(info, 1677 current_ev, 1678 end_buf, 1679 &iwe, buf); 1680 if (IS_ERR(current_ev)) 1681 goto unlock; 1682 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]); 1683 iwe.u.data.length = strlen(buf); 1684 current_ev = iwe_stream_add_point_check(info, 1685 current_ev, 1686 end_buf, 1687 &iwe, buf); 1688 if (IS_ERR(current_ev)) 1689 goto unlock; 1690 sprintf(buf, "Formation Info: 0x%02X", cfg[5]); 1691 iwe.u.data.length = strlen(buf); 1692 current_ev = iwe_stream_add_point_check(info, 1693 current_ev, 1694 end_buf, 1695 &iwe, buf); 1696 if (IS_ERR(current_ev)) 1697 goto unlock; 1698 sprintf(buf, "Capabilities: 0x%02X", cfg[6]); 1699 iwe.u.data.length = strlen(buf); 1700 current_ev = iwe_stream_add_point_check(info, 1701 current_ev, 1702 end_buf, 1703 &iwe, buf); 1704 if (IS_ERR(current_ev)) 1705 goto unlock; 1706 break; 1707 case WLAN_EID_SUPP_RATES: 1708 case WLAN_EID_EXT_SUPP_RATES: 1709 /* display all supported rates in readable format */ 1710 p = current_ev + iwe_stream_lcp_len(info); 1711 1712 memset(&iwe, 0, sizeof(iwe)); 1713 iwe.cmd = SIOCGIWRATE; 1714 /* Those two flags are ignored... */ 1715 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0; 1716 1717 for (i = 0; i < ie[1]; i++) { 1718 iwe.u.bitrate.value = 1719 ((ie[i + 2] & 0x7f) * 500000); 1720 tmp = p; 1721 p = iwe_stream_add_value(info, current_ev, p, 1722 end_buf, &iwe, 1723 IW_EV_PARAM_LEN); 1724 if (p == tmp) { 1725 current_ev = ERR_PTR(-E2BIG); 1726 goto unlock; 1727 } 1728 } 1729 current_ev = p; 1730 break; 1731 } 1732 rem -= ie[1] + 2; 1733 ie += ie[1] + 2; 1734 } 1735 1736 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) || 1737 ismesh) { 1738 memset(&iwe, 0, sizeof(iwe)); 1739 iwe.cmd = SIOCGIWMODE; 1740 if (ismesh) 1741 iwe.u.mode = IW_MODE_MESH; 1742 else if (bss->pub.capability & WLAN_CAPABILITY_ESS) 1743 iwe.u.mode = IW_MODE_MASTER; 1744 else 1745 iwe.u.mode = IW_MODE_ADHOC; 1746 current_ev = iwe_stream_add_event_check(info, current_ev, 1747 end_buf, &iwe, 1748 IW_EV_UINT_LEN); 1749 if (IS_ERR(current_ev)) 1750 goto unlock; 1751 } 1752 1753 memset(&iwe, 0, sizeof(iwe)); 1754 iwe.cmd = IWEVCUSTOM; 1755 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf)); 1756 iwe.u.data.length = strlen(buf); 1757 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 1758 &iwe, buf); 1759 if (IS_ERR(current_ev)) 1760 goto unlock; 1761 memset(&iwe, 0, sizeof(iwe)); 1762 iwe.cmd = IWEVCUSTOM; 1763 sprintf(buf, " Last beacon: %ums ago", 1764 elapsed_jiffies_msecs(bss->ts)); 1765 iwe.u.data.length = strlen(buf); 1766 current_ev = iwe_stream_add_point_check(info, current_ev, 1767 end_buf, &iwe, buf); 1768 if (IS_ERR(current_ev)) 1769 goto unlock; 1770 1771 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf); 1772 1773 unlock: 1774 rcu_read_unlock(); 1775 return current_ev; 1776 } 1777 1778 1779 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev, 1780 struct iw_request_info *info, 1781 char *buf, size_t len) 1782 { 1783 char *current_ev = buf; 1784 char *end_buf = buf + len; 1785 struct cfg80211_internal_bss *bss; 1786 int err = 0; 1787 1788 spin_lock_bh(&rdev->bss_lock); 1789 cfg80211_bss_expire(rdev); 1790 1791 list_for_each_entry(bss, &rdev->bss_list, list) { 1792 if (buf + len - current_ev <= IW_EV_ADDR_LEN) { 1793 err = -E2BIG; 1794 break; 1795 } 1796 current_ev = ieee80211_bss(&rdev->wiphy, info, bss, 1797 current_ev, end_buf); 1798 if (IS_ERR(current_ev)) { 1799 err = PTR_ERR(current_ev); 1800 break; 1801 } 1802 } 1803 spin_unlock_bh(&rdev->bss_lock); 1804 1805 if (err) 1806 return err; 1807 return current_ev - buf; 1808 } 1809 1810 1811 int cfg80211_wext_giwscan(struct net_device *dev, 1812 struct iw_request_info *info, 1813 struct iw_point *data, char *extra) 1814 { 1815 struct cfg80211_registered_device *rdev; 1816 int res; 1817 1818 if (!netif_running(dev)) 1819 return -ENETDOWN; 1820 1821 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 1822 1823 if (IS_ERR(rdev)) 1824 return PTR_ERR(rdev); 1825 1826 if (rdev->scan_req || rdev->scan_msg) 1827 return -EAGAIN; 1828 1829 res = ieee80211_scan_results(rdev, info, extra, data->length); 1830 data->length = 0; 1831 if (res >= 0) { 1832 data->length = res; 1833 res = 0; 1834 } 1835 1836 return res; 1837 } 1838 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan); 1839 #endif 1840