1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * cfg80211 scan result handling 4 * 5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2016 Intel Deutschland GmbH 8 * Copyright (C) 2018-2022 Intel Corporation 9 */ 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/netdevice.h> 14 #include <linux/wireless.h> 15 #include <linux/nl80211.h> 16 #include <linux/etherdevice.h> 17 #include <linux/crc32.h> 18 #include <linux/bitfield.h> 19 #include <net/arp.h> 20 #include <net/cfg80211.h> 21 #include <net/cfg80211-wext.h> 22 #include <net/iw_handler.h> 23 #include "core.h" 24 #include "nl80211.h" 25 #include "wext-compat.h" 26 #include "rdev-ops.h" 27 28 /** 29 * DOC: BSS tree/list structure 30 * 31 * At the top level, the BSS list is kept in both a list in each 32 * registered device (@bss_list) as well as an RB-tree for faster 33 * lookup. In the RB-tree, entries can be looked up using their 34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID 35 * for other BSSes. 36 * 37 * Due to the possibility of hidden SSIDs, there's a second level 38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer. 39 * The hidden_list connects all BSSes belonging to a single AP 40 * that has a hidden SSID, and connects beacon and probe response 41 * entries. For a probe response entry for a hidden SSID, the 42 * hidden_beacon_bss pointer points to the BSS struct holding the 43 * beacon's information. 44 * 45 * Reference counting is done for all these references except for 46 * the hidden_list, so that a beacon BSS struct that is otherwise 47 * not referenced has one reference for being on the bss_list and 48 * one for each probe response entry that points to it using the 49 * hidden_beacon_bss pointer. When a BSS struct that has such a 50 * pointer is get/put, the refcount update is also propagated to 51 * the referenced struct, this ensure that it cannot get removed 52 * while somebody is using the probe response version. 53 * 54 * Note that the hidden_beacon_bss pointer never changes, due to 55 * the reference counting. Therefore, no locking is needed for 56 * it. 57 * 58 * Also note that the hidden_beacon_bss pointer is only relevant 59 * if the driver uses something other than the IEs, e.g. private 60 * data stored in the BSS struct, since the beacon IEs are 61 * also linked into the probe response struct. 62 */ 63 64 /* 65 * Limit the number of BSS entries stored in mac80211. Each one is 66 * a bit over 4k at most, so this limits to roughly 4-5M of memory. 67 * If somebody wants to really attack this though, they'd likely 68 * use small beacons, and only one type of frame, limiting each of 69 * the entries to a much smaller size (in order to generate more 70 * entries in total, so overhead is bigger.) 71 */ 72 static int bss_entries_limit = 1000; 73 module_param(bss_entries_limit, int, 0644); 74 MODULE_PARM_DESC(bss_entries_limit, 75 "limit to number of scan BSS entries (per wiphy, default 1000)"); 76 77 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ) 78 79 /** 80 * struct cfg80211_colocated_ap - colocated AP information 81 * 82 * @list: linked list to all colocated aPS 83 * @bssid: BSSID of the reported AP 84 * @ssid: SSID of the reported AP 85 * @ssid_len: length of the ssid 86 * @center_freq: frequency the reported AP is on 87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs 88 * that operate in the same channel as the reported AP and that might be 89 * detected by a STA receiving this frame, are transmitting unsolicited 90 * Probe Response frames every 20 TUs 91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP 92 * @same_ssid: the reported AP has the same SSID as the reporting AP 93 * @multi_bss: the reported AP is part of a multiple BSSID set 94 * @transmitted_bssid: the reported AP is the transmitting BSSID 95 * @colocated_ess: all the APs that share the same ESS as the reported AP are 96 * colocated and can be discovered via legacy bands. 97 * @short_ssid_valid: short_ssid is valid and can be used 98 * @short_ssid: the short SSID for this SSID 99 */ 100 struct cfg80211_colocated_ap { 101 struct list_head list; 102 u8 bssid[ETH_ALEN]; 103 u8 ssid[IEEE80211_MAX_SSID_LEN]; 104 size_t ssid_len; 105 u32 short_ssid; 106 u32 center_freq; 107 u8 unsolicited_probe:1, 108 oct_recommended:1, 109 same_ssid:1, 110 multi_bss:1, 111 transmitted_bssid:1, 112 colocated_ess:1, 113 short_ssid_valid:1; 114 }; 115 116 static void bss_free(struct cfg80211_internal_bss *bss) 117 { 118 struct cfg80211_bss_ies *ies; 119 120 if (WARN_ON(atomic_read(&bss->hold))) 121 return; 122 123 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies); 124 if (ies && !bss->pub.hidden_beacon_bss) 125 kfree_rcu(ies, rcu_head); 126 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies); 127 if (ies) 128 kfree_rcu(ies, rcu_head); 129 130 /* 131 * This happens when the module is removed, it doesn't 132 * really matter any more save for completeness 133 */ 134 if (!list_empty(&bss->hidden_list)) 135 list_del(&bss->hidden_list); 136 137 kfree(bss); 138 } 139 140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev, 141 struct cfg80211_internal_bss *bss) 142 { 143 lockdep_assert_held(&rdev->bss_lock); 144 145 bss->refcount++; 146 147 if (bss->pub.hidden_beacon_bss) 148 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++; 149 150 if (bss->pub.transmitted_bss) 151 bss_from_pub(bss->pub.transmitted_bss)->refcount++; 152 } 153 154 static inline void bss_ref_put(struct cfg80211_registered_device *rdev, 155 struct cfg80211_internal_bss *bss) 156 { 157 lockdep_assert_held(&rdev->bss_lock); 158 159 if (bss->pub.hidden_beacon_bss) { 160 struct cfg80211_internal_bss *hbss; 161 hbss = container_of(bss->pub.hidden_beacon_bss, 162 struct cfg80211_internal_bss, 163 pub); 164 hbss->refcount--; 165 if (hbss->refcount == 0) 166 bss_free(hbss); 167 } 168 169 if (bss->pub.transmitted_bss) { 170 struct cfg80211_internal_bss *tbss; 171 172 tbss = container_of(bss->pub.transmitted_bss, 173 struct cfg80211_internal_bss, 174 pub); 175 tbss->refcount--; 176 if (tbss->refcount == 0) 177 bss_free(tbss); 178 } 179 180 bss->refcount--; 181 if (bss->refcount == 0) 182 bss_free(bss); 183 } 184 185 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev, 186 struct cfg80211_internal_bss *bss) 187 { 188 lockdep_assert_held(&rdev->bss_lock); 189 190 if (!list_empty(&bss->hidden_list)) { 191 /* 192 * don't remove the beacon entry if it has 193 * probe responses associated with it 194 */ 195 if (!bss->pub.hidden_beacon_bss) 196 return false; 197 /* 198 * if it's a probe response entry break its 199 * link to the other entries in the group 200 */ 201 list_del_init(&bss->hidden_list); 202 } 203 204 list_del_init(&bss->list); 205 list_del_init(&bss->pub.nontrans_list); 206 rb_erase(&bss->rbn, &rdev->bss_tree); 207 rdev->bss_entries--; 208 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list), 209 "rdev bss entries[%d]/list[empty:%d] corruption\n", 210 rdev->bss_entries, list_empty(&rdev->bss_list)); 211 bss_ref_put(rdev, bss); 212 return true; 213 } 214 215 bool cfg80211_is_element_inherited(const struct element *elem, 216 const struct element *non_inherit_elem) 217 { 218 u8 id_len, ext_id_len, i, loop_len, id; 219 const u8 *list; 220 221 if (elem->id == WLAN_EID_MULTIPLE_BSSID) 222 return false; 223 224 if (!non_inherit_elem || non_inherit_elem->datalen < 2) 225 return true; 226 227 /* 228 * non inheritance element format is: 229 * ext ID (56) | IDs list len | list | extension IDs list len | list 230 * Both lists are optional. Both lengths are mandatory. 231 * This means valid length is: 232 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths 233 */ 234 id_len = non_inherit_elem->data[1]; 235 if (non_inherit_elem->datalen < 3 + id_len) 236 return true; 237 238 ext_id_len = non_inherit_elem->data[2 + id_len]; 239 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len) 240 return true; 241 242 if (elem->id == WLAN_EID_EXTENSION) { 243 if (!ext_id_len) 244 return true; 245 loop_len = ext_id_len; 246 list = &non_inherit_elem->data[3 + id_len]; 247 id = elem->data[0]; 248 } else { 249 if (!id_len) 250 return true; 251 loop_len = id_len; 252 list = &non_inherit_elem->data[2]; 253 id = elem->id; 254 } 255 256 for (i = 0; i < loop_len; i++) { 257 if (list[i] == id) 258 return false; 259 } 260 261 return true; 262 } 263 EXPORT_SYMBOL(cfg80211_is_element_inherited); 264 265 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen, 266 const u8 *subelement, size_t subie_len, 267 u8 *new_ie, gfp_t gfp) 268 { 269 u8 *pos, *tmp; 270 const u8 *tmp_old, *tmp_new; 271 const struct element *non_inherit_elem; 272 u8 *sub_copy; 273 274 /* copy subelement as we need to change its content to 275 * mark an ie after it is processed. 276 */ 277 sub_copy = kmemdup(subelement, subie_len, gfp); 278 if (!sub_copy) 279 return 0; 280 281 pos = &new_ie[0]; 282 283 /* set new ssid */ 284 tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len); 285 if (tmp_new) { 286 memcpy(pos, tmp_new, tmp_new[1] + 2); 287 pos += (tmp_new[1] + 2); 288 } 289 290 /* get non inheritance list if exists */ 291 non_inherit_elem = 292 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 293 sub_copy, subie_len); 294 295 /* go through IEs in ie (skip SSID) and subelement, 296 * merge them into new_ie 297 */ 298 tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen); 299 tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie; 300 301 while (tmp_old + 2 - ie <= ielen && 302 tmp_old + tmp_old[1] + 2 - ie <= ielen) { 303 if (tmp_old[0] == 0) { 304 tmp_old++; 305 continue; 306 } 307 308 if (tmp_old[0] == WLAN_EID_EXTENSION) 309 tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy, 310 subie_len); 311 else 312 tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy, 313 subie_len); 314 315 if (!tmp) { 316 const struct element *old_elem = (void *)tmp_old; 317 318 /* ie in old ie but not in subelement */ 319 if (cfg80211_is_element_inherited(old_elem, 320 non_inherit_elem)) { 321 memcpy(pos, tmp_old, tmp_old[1] + 2); 322 pos += tmp_old[1] + 2; 323 } 324 } else { 325 /* ie in transmitting ie also in subelement, 326 * copy from subelement and flag the ie in subelement 327 * as copied (by setting eid field to WLAN_EID_SSID, 328 * which is skipped anyway). 329 * For vendor ie, compare OUI + type + subType to 330 * determine if they are the same ie. 331 */ 332 if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) { 333 if (tmp_old[1] >= 5 && tmp[1] >= 5 && 334 !memcmp(tmp_old + 2, tmp + 2, 5)) { 335 /* same vendor ie, copy from 336 * subelement 337 */ 338 memcpy(pos, tmp, tmp[1] + 2); 339 pos += tmp[1] + 2; 340 tmp[0] = WLAN_EID_SSID; 341 } else { 342 memcpy(pos, tmp_old, tmp_old[1] + 2); 343 pos += tmp_old[1] + 2; 344 } 345 } else { 346 /* copy ie from subelement into new ie */ 347 memcpy(pos, tmp, tmp[1] + 2); 348 pos += tmp[1] + 2; 349 tmp[0] = WLAN_EID_SSID; 350 } 351 } 352 353 if (tmp_old + tmp_old[1] + 2 - ie == ielen) 354 break; 355 356 tmp_old += tmp_old[1] + 2; 357 } 358 359 /* go through subelement again to check if there is any ie not 360 * copied to new ie, skip ssid, capability, bssid-index ie 361 */ 362 tmp_new = sub_copy; 363 while (tmp_new + 2 - sub_copy <= subie_len && 364 tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) { 365 if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP || 366 tmp_new[0] == WLAN_EID_SSID)) { 367 memcpy(pos, tmp_new, tmp_new[1] + 2); 368 pos += tmp_new[1] + 2; 369 } 370 if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len) 371 break; 372 tmp_new += tmp_new[1] + 2; 373 } 374 375 kfree(sub_copy); 376 return pos - new_ie; 377 } 378 379 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid, 380 const u8 *ssid, size_t ssid_len) 381 { 382 const struct cfg80211_bss_ies *ies; 383 const struct element *ssid_elem; 384 385 if (bssid && !ether_addr_equal(a->bssid, bssid)) 386 return false; 387 388 if (!ssid) 389 return true; 390 391 ies = rcu_access_pointer(a->ies); 392 if (!ies) 393 return false; 394 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 395 if (!ssid_elem) 396 return false; 397 if (ssid_elem->datalen != ssid_len) 398 return false; 399 return memcmp(ssid_elem->data, ssid, ssid_len) == 0; 400 } 401 402 static int 403 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss, 404 struct cfg80211_bss *nontrans_bss) 405 { 406 const struct element *ssid_elem; 407 struct cfg80211_bss *bss = NULL; 408 409 rcu_read_lock(); 410 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID); 411 if (!ssid_elem) { 412 rcu_read_unlock(); 413 return -EINVAL; 414 } 415 416 /* check if nontrans_bss is in the list */ 417 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) { 418 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data, 419 ssid_elem->datalen)) { 420 rcu_read_unlock(); 421 return 0; 422 } 423 } 424 425 rcu_read_unlock(); 426 427 /* 428 * This is a bit weird - it's not on the list, but already on another 429 * one! The only way that could happen is if there's some BSSID/SSID 430 * shared by multiple APs in their multi-BSSID profiles, potentially 431 * with hidden SSID mixed in ... ignore it. 432 */ 433 if (!list_empty(&nontrans_bss->nontrans_list)) 434 return -EINVAL; 435 436 /* add to the list */ 437 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list); 438 return 0; 439 } 440 441 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev, 442 unsigned long expire_time) 443 { 444 struct cfg80211_internal_bss *bss, *tmp; 445 bool expired = false; 446 447 lockdep_assert_held(&rdev->bss_lock); 448 449 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) { 450 if (atomic_read(&bss->hold)) 451 continue; 452 if (!time_after(expire_time, bss->ts)) 453 continue; 454 455 if (__cfg80211_unlink_bss(rdev, bss)) 456 expired = true; 457 } 458 459 if (expired) 460 rdev->bss_generation++; 461 } 462 463 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev) 464 { 465 struct cfg80211_internal_bss *bss, *oldest = NULL; 466 bool ret; 467 468 lockdep_assert_held(&rdev->bss_lock); 469 470 list_for_each_entry(bss, &rdev->bss_list, list) { 471 if (atomic_read(&bss->hold)) 472 continue; 473 474 if (!list_empty(&bss->hidden_list) && 475 !bss->pub.hidden_beacon_bss) 476 continue; 477 478 if (oldest && time_before(oldest->ts, bss->ts)) 479 continue; 480 oldest = bss; 481 } 482 483 if (WARN_ON(!oldest)) 484 return false; 485 486 /* 487 * The callers make sure to increase rdev->bss_generation if anything 488 * gets removed (and a new entry added), so there's no need to also do 489 * it here. 490 */ 491 492 ret = __cfg80211_unlink_bss(rdev, oldest); 493 WARN_ON(!ret); 494 return ret; 495 } 496 497 static u8 cfg80211_parse_bss_param(u8 data, 498 struct cfg80211_colocated_ap *coloc_ap) 499 { 500 coloc_ap->oct_recommended = 501 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED); 502 coloc_ap->same_ssid = 503 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID); 504 coloc_ap->multi_bss = 505 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID); 506 coloc_ap->transmitted_bssid = 507 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID); 508 coloc_ap->unsolicited_probe = 509 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE); 510 coloc_ap->colocated_ess = 511 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS); 512 513 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP); 514 } 515 516 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies, 517 const struct element **elem, u32 *s_ssid) 518 { 519 520 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 521 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN) 522 return -EINVAL; 523 524 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen); 525 return 0; 526 } 527 528 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list) 529 { 530 struct cfg80211_colocated_ap *ap, *tmp_ap; 531 532 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) { 533 list_del(&ap->list); 534 kfree(ap); 535 } 536 } 537 538 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry, 539 const u8 *pos, u8 length, 540 const struct element *ssid_elem, 541 int s_ssid_tmp) 542 { 543 /* skip the TBTT offset */ 544 pos++; 545 546 memcpy(entry->bssid, pos, ETH_ALEN); 547 pos += ETH_ALEN; 548 549 if (length >= IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) { 550 memcpy(&entry->short_ssid, pos, 551 sizeof(entry->short_ssid)); 552 entry->short_ssid_valid = true; 553 pos += 4; 554 } 555 556 /* skip non colocated APs */ 557 if (!cfg80211_parse_bss_param(*pos, entry)) 558 return -EINVAL; 559 pos++; 560 561 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) { 562 /* 563 * no information about the short ssid. Consider the entry valid 564 * for now. It would later be dropped in case there are explicit 565 * SSIDs that need to be matched 566 */ 567 if (!entry->same_ssid) 568 return 0; 569 } 570 571 if (entry->same_ssid) { 572 entry->short_ssid = s_ssid_tmp; 573 entry->short_ssid_valid = true; 574 575 /* 576 * This is safe because we validate datalen in 577 * cfg80211_parse_colocated_ap(), before calling this 578 * function. 579 */ 580 memcpy(&entry->ssid, &ssid_elem->data, 581 ssid_elem->datalen); 582 entry->ssid_len = ssid_elem->datalen; 583 } 584 return 0; 585 } 586 587 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies, 588 struct list_head *list) 589 { 590 struct ieee80211_neighbor_ap_info *ap_info; 591 const struct element *elem, *ssid_elem; 592 const u8 *pos, *end; 593 u32 s_ssid_tmp; 594 int n_coloc = 0, ret; 595 LIST_HEAD(ap_list); 596 597 elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data, 598 ies->len); 599 if (!elem) 600 return 0; 601 602 pos = elem->data; 603 end = pos + elem->datalen; 604 605 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp); 606 if (ret) 607 return ret; 608 609 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ 610 while (pos + sizeof(*ap_info) <= end) { 611 enum nl80211_band band; 612 int freq; 613 u8 length, i, count; 614 615 ap_info = (void *)pos; 616 count = u8_get_bits(ap_info->tbtt_info_hdr, 617 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1; 618 length = ap_info->tbtt_info_len; 619 620 pos += sizeof(*ap_info); 621 622 if (!ieee80211_operating_class_to_band(ap_info->op_class, 623 &band)) 624 break; 625 626 freq = ieee80211_channel_to_frequency(ap_info->channel, band); 627 628 if (end - pos < count * length) 629 break; 630 631 /* 632 * TBTT info must include bss param + BSSID + 633 * (short SSID or same_ssid bit to be set). 634 * ignore other options, and move to the 635 * next AP info 636 */ 637 if (band != NL80211_BAND_6GHZ || 638 (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM && 639 length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) { 640 pos += count * length; 641 continue; 642 } 643 644 for (i = 0; i < count; i++) { 645 struct cfg80211_colocated_ap *entry; 646 647 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, 648 GFP_ATOMIC); 649 650 if (!entry) 651 break; 652 653 entry->center_freq = freq; 654 655 if (!cfg80211_parse_ap_info(entry, pos, length, 656 ssid_elem, s_ssid_tmp)) { 657 n_coloc++; 658 list_add_tail(&entry->list, &ap_list); 659 } else { 660 kfree(entry); 661 } 662 663 pos += length; 664 } 665 } 666 667 if (pos != end) { 668 cfg80211_free_coloc_ap_list(&ap_list); 669 return 0; 670 } 671 672 list_splice_tail(&ap_list, list); 673 return n_coloc; 674 } 675 676 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request, 677 struct ieee80211_channel *chan, 678 bool add_to_6ghz) 679 { 680 int i; 681 u32 n_channels = request->n_channels; 682 struct cfg80211_scan_6ghz_params *params = 683 &request->scan_6ghz_params[request->n_6ghz_params]; 684 685 for (i = 0; i < n_channels; i++) { 686 if (request->channels[i] == chan) { 687 if (add_to_6ghz) 688 params->channel_idx = i; 689 return; 690 } 691 } 692 693 request->channels[n_channels] = chan; 694 if (add_to_6ghz) 695 request->scan_6ghz_params[request->n_6ghz_params].channel_idx = 696 n_channels; 697 698 request->n_channels++; 699 } 700 701 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap, 702 struct cfg80211_scan_request *request) 703 { 704 int i; 705 u32 s_ssid; 706 707 for (i = 0; i < request->n_ssids; i++) { 708 /* wildcard ssid in the scan request */ 709 if (!request->ssids[i].ssid_len) { 710 if (ap->multi_bss && !ap->transmitted_bssid) 711 continue; 712 713 return true; 714 } 715 716 if (ap->ssid_len && 717 ap->ssid_len == request->ssids[i].ssid_len) { 718 if (!memcmp(request->ssids[i].ssid, ap->ssid, 719 ap->ssid_len)) 720 return true; 721 } else if (ap->short_ssid_valid) { 722 s_ssid = ~crc32_le(~0, request->ssids[i].ssid, 723 request->ssids[i].ssid_len); 724 725 if (ap->short_ssid == s_ssid) 726 return true; 727 } 728 } 729 730 return false; 731 } 732 733 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev) 734 { 735 u8 i; 736 struct cfg80211_colocated_ap *ap; 737 int n_channels, count = 0, err; 738 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req; 739 LIST_HEAD(coloc_ap_list); 740 bool need_scan_psc = true; 741 const struct ieee80211_sband_iftype_data *iftd; 742 743 rdev_req->scan_6ghz = true; 744 745 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ]) 746 return -EOPNOTSUPP; 747 748 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ], 749 rdev_req->wdev->iftype); 750 if (!iftd || !iftd->he_cap.has_he) 751 return -EOPNOTSUPP; 752 753 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels; 754 755 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) { 756 struct cfg80211_internal_bss *intbss; 757 758 spin_lock_bh(&rdev->bss_lock); 759 list_for_each_entry(intbss, &rdev->bss_list, list) { 760 struct cfg80211_bss *res = &intbss->pub; 761 const struct cfg80211_bss_ies *ies; 762 763 ies = rcu_access_pointer(res->ies); 764 count += cfg80211_parse_colocated_ap(ies, 765 &coloc_ap_list); 766 } 767 spin_unlock_bh(&rdev->bss_lock); 768 } 769 770 request = kzalloc(struct_size(request, channels, n_channels) + 771 sizeof(*request->scan_6ghz_params) * count + 772 sizeof(*request->ssids) * rdev_req->n_ssids, 773 GFP_KERNEL); 774 if (!request) { 775 cfg80211_free_coloc_ap_list(&coloc_ap_list); 776 return -ENOMEM; 777 } 778 779 *request = *rdev_req; 780 request->n_channels = 0; 781 request->scan_6ghz_params = 782 (void *)&request->channels[n_channels]; 783 784 /* 785 * PSC channels should not be scanned in case of direct scan with 1 SSID 786 * and at least one of the reported co-located APs with same SSID 787 * indicating that all APs in the same ESS are co-located 788 */ 789 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) { 790 list_for_each_entry(ap, &coloc_ap_list, list) { 791 if (ap->colocated_ess && 792 cfg80211_find_ssid_match(ap, request)) { 793 need_scan_psc = false; 794 break; 795 } 796 } 797 } 798 799 /* 800 * add to the scan request the channels that need to be scanned 801 * regardless of the collocated APs (PSC channels or all channels 802 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set) 803 */ 804 for (i = 0; i < rdev_req->n_channels; i++) { 805 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ && 806 ((need_scan_psc && 807 cfg80211_channel_is_psc(rdev_req->channels[i])) || 808 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) { 809 cfg80211_scan_req_add_chan(request, 810 rdev_req->channels[i], 811 false); 812 } 813 } 814 815 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ)) 816 goto skip; 817 818 list_for_each_entry(ap, &coloc_ap_list, list) { 819 bool found = false; 820 struct cfg80211_scan_6ghz_params *scan_6ghz_params = 821 &request->scan_6ghz_params[request->n_6ghz_params]; 822 struct ieee80211_channel *chan = 823 ieee80211_get_channel(&rdev->wiphy, ap->center_freq); 824 825 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED) 826 continue; 827 828 for (i = 0; i < rdev_req->n_channels; i++) { 829 if (rdev_req->channels[i] == chan) 830 found = true; 831 } 832 833 if (!found) 834 continue; 835 836 if (request->n_ssids > 0 && 837 !cfg80211_find_ssid_match(ap, request)) 838 continue; 839 840 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid) 841 continue; 842 843 cfg80211_scan_req_add_chan(request, chan, true); 844 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN); 845 scan_6ghz_params->short_ssid = ap->short_ssid; 846 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid; 847 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe; 848 849 /* 850 * If a PSC channel is added to the scan and 'need_scan_psc' is 851 * set to false, then all the APs that the scan logic is 852 * interested with on the channel are collocated and thus there 853 * is no need to perform the initial PSC channel listen. 854 */ 855 if (cfg80211_channel_is_psc(chan) && !need_scan_psc) 856 scan_6ghz_params->psc_no_listen = true; 857 858 request->n_6ghz_params++; 859 } 860 861 skip: 862 cfg80211_free_coloc_ap_list(&coloc_ap_list); 863 864 if (request->n_channels) { 865 struct cfg80211_scan_request *old = rdev->int_scan_req; 866 rdev->int_scan_req = request; 867 868 /* 869 * Add the ssids from the parent scan request to the new scan 870 * request, so the driver would be able to use them in its 871 * probe requests to discover hidden APs on PSC channels. 872 */ 873 request->ssids = (void *)&request->channels[request->n_channels]; 874 request->n_ssids = rdev_req->n_ssids; 875 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) * 876 request->n_ssids); 877 878 /* 879 * If this scan follows a previous scan, save the scan start 880 * info from the first part of the scan 881 */ 882 if (old) 883 rdev->int_scan_req->info = old->info; 884 885 err = rdev_scan(rdev, request); 886 if (err) { 887 rdev->int_scan_req = old; 888 kfree(request); 889 } else { 890 kfree(old); 891 } 892 893 return err; 894 } 895 896 kfree(request); 897 return -EINVAL; 898 } 899 900 int cfg80211_scan(struct cfg80211_registered_device *rdev) 901 { 902 struct cfg80211_scan_request *request; 903 struct cfg80211_scan_request *rdev_req = rdev->scan_req; 904 u32 n_channels = 0, idx, i; 905 906 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ)) 907 return rdev_scan(rdev, rdev_req); 908 909 for (i = 0; i < rdev_req->n_channels; i++) { 910 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 911 n_channels++; 912 } 913 914 if (!n_channels) 915 return cfg80211_scan_6ghz(rdev); 916 917 request = kzalloc(struct_size(request, channels, n_channels), 918 GFP_KERNEL); 919 if (!request) 920 return -ENOMEM; 921 922 *request = *rdev_req; 923 request->n_channels = n_channels; 924 925 for (i = idx = 0; i < rdev_req->n_channels; i++) { 926 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 927 request->channels[idx++] = rdev_req->channels[i]; 928 } 929 930 rdev_req->scan_6ghz = false; 931 rdev->int_scan_req = request; 932 return rdev_scan(rdev, request); 933 } 934 935 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, 936 bool send_message) 937 { 938 struct cfg80211_scan_request *request, *rdev_req; 939 struct wireless_dev *wdev; 940 struct sk_buff *msg; 941 #ifdef CONFIG_CFG80211_WEXT 942 union iwreq_data wrqu; 943 #endif 944 945 lockdep_assert_held(&rdev->wiphy.mtx); 946 947 if (rdev->scan_msg) { 948 nl80211_send_scan_msg(rdev, rdev->scan_msg); 949 rdev->scan_msg = NULL; 950 return; 951 } 952 953 rdev_req = rdev->scan_req; 954 if (!rdev_req) 955 return; 956 957 wdev = rdev_req->wdev; 958 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req; 959 960 if (wdev_running(wdev) && 961 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) && 962 !rdev_req->scan_6ghz && !request->info.aborted && 963 !cfg80211_scan_6ghz(rdev)) 964 return; 965 966 /* 967 * This must be before sending the other events! 968 * Otherwise, wpa_supplicant gets completely confused with 969 * wext events. 970 */ 971 if (wdev->netdev) 972 cfg80211_sme_scan_done(wdev->netdev); 973 974 if (!request->info.aborted && 975 request->flags & NL80211_SCAN_FLAG_FLUSH) { 976 /* flush entries from previous scans */ 977 spin_lock_bh(&rdev->bss_lock); 978 __cfg80211_bss_expire(rdev, request->scan_start); 979 spin_unlock_bh(&rdev->bss_lock); 980 } 981 982 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted); 983 984 #ifdef CONFIG_CFG80211_WEXT 985 if (wdev->netdev && !request->info.aborted) { 986 memset(&wrqu, 0, sizeof(wrqu)); 987 988 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL); 989 } 990 #endif 991 992 dev_put(wdev->netdev); 993 994 kfree(rdev->int_scan_req); 995 rdev->int_scan_req = NULL; 996 997 kfree(rdev->scan_req); 998 rdev->scan_req = NULL; 999 1000 if (!send_message) 1001 rdev->scan_msg = msg; 1002 else 1003 nl80211_send_scan_msg(rdev, msg); 1004 } 1005 1006 void __cfg80211_scan_done(struct work_struct *wk) 1007 { 1008 struct cfg80211_registered_device *rdev; 1009 1010 rdev = container_of(wk, struct cfg80211_registered_device, 1011 scan_done_wk); 1012 1013 wiphy_lock(&rdev->wiphy); 1014 ___cfg80211_scan_done(rdev, true); 1015 wiphy_unlock(&rdev->wiphy); 1016 } 1017 1018 void cfg80211_scan_done(struct cfg80211_scan_request *request, 1019 struct cfg80211_scan_info *info) 1020 { 1021 struct cfg80211_scan_info old_info = request->info; 1022 1023 trace_cfg80211_scan_done(request, info); 1024 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req && 1025 request != wiphy_to_rdev(request->wiphy)->int_scan_req); 1026 1027 request->info = *info; 1028 1029 /* 1030 * In case the scan is split, the scan_start_tsf and tsf_bssid should 1031 * be of the first part. In such a case old_info.scan_start_tsf should 1032 * be non zero. 1033 */ 1034 if (request->scan_6ghz && old_info.scan_start_tsf) { 1035 request->info.scan_start_tsf = old_info.scan_start_tsf; 1036 memcpy(request->info.tsf_bssid, old_info.tsf_bssid, 1037 sizeof(request->info.tsf_bssid)); 1038 } 1039 1040 request->notified = true; 1041 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk); 1042 } 1043 EXPORT_SYMBOL(cfg80211_scan_done); 1044 1045 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, 1046 struct cfg80211_sched_scan_request *req) 1047 { 1048 lockdep_assert_held(&rdev->wiphy.mtx); 1049 1050 list_add_rcu(&req->list, &rdev->sched_scan_req_list); 1051 } 1052 1053 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev, 1054 struct cfg80211_sched_scan_request *req) 1055 { 1056 lockdep_assert_held(&rdev->wiphy.mtx); 1057 1058 list_del_rcu(&req->list); 1059 kfree_rcu(req, rcu_head); 1060 } 1061 1062 static struct cfg80211_sched_scan_request * 1063 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid) 1064 { 1065 struct cfg80211_sched_scan_request *pos; 1066 1067 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list, 1068 lockdep_is_held(&rdev->wiphy.mtx)) { 1069 if (pos->reqid == reqid) 1070 return pos; 1071 } 1072 return NULL; 1073 } 1074 1075 /* 1076 * Determines if a scheduled scan request can be handled. When a legacy 1077 * scheduled scan is running no other scheduled scan is allowed regardless 1078 * whether the request is for legacy or multi-support scan. When a multi-support 1079 * scheduled scan is running a request for legacy scan is not allowed. In this 1080 * case a request for multi-support scan can be handled if resources are 1081 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached. 1082 */ 1083 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, 1084 bool want_multi) 1085 { 1086 struct cfg80211_sched_scan_request *pos; 1087 int i = 0; 1088 1089 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) { 1090 /* request id zero means legacy in progress */ 1091 if (!i && !pos->reqid) 1092 return -EINPROGRESS; 1093 i++; 1094 } 1095 1096 if (i) { 1097 /* no legacy allowed when multi request(s) are active */ 1098 if (!want_multi) 1099 return -EINPROGRESS; 1100 1101 /* resource limit reached */ 1102 if (i == rdev->wiphy.max_sched_scan_reqs) 1103 return -ENOSPC; 1104 } 1105 return 0; 1106 } 1107 1108 void cfg80211_sched_scan_results_wk(struct work_struct *work) 1109 { 1110 struct cfg80211_registered_device *rdev; 1111 struct cfg80211_sched_scan_request *req, *tmp; 1112 1113 rdev = container_of(work, struct cfg80211_registered_device, 1114 sched_scan_res_wk); 1115 1116 wiphy_lock(&rdev->wiphy); 1117 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) { 1118 if (req->report_results) { 1119 req->report_results = false; 1120 if (req->flags & NL80211_SCAN_FLAG_FLUSH) { 1121 /* flush entries from previous scans */ 1122 spin_lock_bh(&rdev->bss_lock); 1123 __cfg80211_bss_expire(rdev, req->scan_start); 1124 spin_unlock_bh(&rdev->bss_lock); 1125 req->scan_start = jiffies; 1126 } 1127 nl80211_send_sched_scan(req, 1128 NL80211_CMD_SCHED_SCAN_RESULTS); 1129 } 1130 } 1131 wiphy_unlock(&rdev->wiphy); 1132 } 1133 1134 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid) 1135 { 1136 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1137 struct cfg80211_sched_scan_request *request; 1138 1139 trace_cfg80211_sched_scan_results(wiphy, reqid); 1140 /* ignore if we're not scanning */ 1141 1142 rcu_read_lock(); 1143 request = cfg80211_find_sched_scan_req(rdev, reqid); 1144 if (request) { 1145 request->report_results = true; 1146 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk); 1147 } 1148 rcu_read_unlock(); 1149 } 1150 EXPORT_SYMBOL(cfg80211_sched_scan_results); 1151 1152 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid) 1153 { 1154 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1155 1156 lockdep_assert_held(&wiphy->mtx); 1157 1158 trace_cfg80211_sched_scan_stopped(wiphy, reqid); 1159 1160 __cfg80211_stop_sched_scan(rdev, reqid, true); 1161 } 1162 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked); 1163 1164 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid) 1165 { 1166 wiphy_lock(wiphy); 1167 cfg80211_sched_scan_stopped_locked(wiphy, reqid); 1168 wiphy_unlock(wiphy); 1169 } 1170 EXPORT_SYMBOL(cfg80211_sched_scan_stopped); 1171 1172 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, 1173 struct cfg80211_sched_scan_request *req, 1174 bool driver_initiated) 1175 { 1176 lockdep_assert_held(&rdev->wiphy.mtx); 1177 1178 if (!driver_initiated) { 1179 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid); 1180 if (err) 1181 return err; 1182 } 1183 1184 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED); 1185 1186 cfg80211_del_sched_scan_req(rdev, req); 1187 1188 return 0; 1189 } 1190 1191 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, 1192 u64 reqid, bool driver_initiated) 1193 { 1194 struct cfg80211_sched_scan_request *sched_scan_req; 1195 1196 lockdep_assert_held(&rdev->wiphy.mtx); 1197 1198 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid); 1199 if (!sched_scan_req) 1200 return -ENOENT; 1201 1202 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req, 1203 driver_initiated); 1204 } 1205 1206 void cfg80211_bss_age(struct cfg80211_registered_device *rdev, 1207 unsigned long age_secs) 1208 { 1209 struct cfg80211_internal_bss *bss; 1210 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC); 1211 1212 spin_lock_bh(&rdev->bss_lock); 1213 list_for_each_entry(bss, &rdev->bss_list, list) 1214 bss->ts -= age_jiffies; 1215 spin_unlock_bh(&rdev->bss_lock); 1216 } 1217 1218 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev) 1219 { 1220 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE); 1221 } 1222 1223 void cfg80211_bss_flush(struct wiphy *wiphy) 1224 { 1225 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1226 1227 spin_lock_bh(&rdev->bss_lock); 1228 __cfg80211_bss_expire(rdev, jiffies); 1229 spin_unlock_bh(&rdev->bss_lock); 1230 } 1231 EXPORT_SYMBOL(cfg80211_bss_flush); 1232 1233 const struct element * 1234 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len, 1235 const u8 *match, unsigned int match_len, 1236 unsigned int match_offset) 1237 { 1238 const struct element *elem; 1239 1240 for_each_element_id(elem, eid, ies, len) { 1241 if (elem->datalen >= match_offset + match_len && 1242 !memcmp(elem->data + match_offset, match, match_len)) 1243 return elem; 1244 } 1245 1246 return NULL; 1247 } 1248 EXPORT_SYMBOL(cfg80211_find_elem_match); 1249 1250 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type, 1251 const u8 *ies, 1252 unsigned int len) 1253 { 1254 const struct element *elem; 1255 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type }; 1256 int match_len = (oui_type < 0) ? 3 : sizeof(match); 1257 1258 if (WARN_ON(oui_type > 0xff)) 1259 return NULL; 1260 1261 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len, 1262 match, match_len, 0); 1263 1264 if (!elem || elem->datalen < 4) 1265 return NULL; 1266 1267 return elem; 1268 } 1269 EXPORT_SYMBOL(cfg80211_find_vendor_elem); 1270 1271 /** 1272 * enum bss_compare_mode - BSS compare mode 1273 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find) 1274 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode 1275 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode 1276 */ 1277 enum bss_compare_mode { 1278 BSS_CMP_REGULAR, 1279 BSS_CMP_HIDE_ZLEN, 1280 BSS_CMP_HIDE_NUL, 1281 }; 1282 1283 static int cmp_bss(struct cfg80211_bss *a, 1284 struct cfg80211_bss *b, 1285 enum bss_compare_mode mode) 1286 { 1287 const struct cfg80211_bss_ies *a_ies, *b_ies; 1288 const u8 *ie1 = NULL; 1289 const u8 *ie2 = NULL; 1290 int i, r; 1291 1292 if (a->channel != b->channel) 1293 return b->channel->center_freq - a->channel->center_freq; 1294 1295 a_ies = rcu_access_pointer(a->ies); 1296 if (!a_ies) 1297 return -1; 1298 b_ies = rcu_access_pointer(b->ies); 1299 if (!b_ies) 1300 return 1; 1301 1302 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability)) 1303 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1304 a_ies->data, a_ies->len); 1305 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability)) 1306 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1307 b_ies->data, b_ies->len); 1308 if (ie1 && ie2) { 1309 int mesh_id_cmp; 1310 1311 if (ie1[1] == ie2[1]) 1312 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1313 else 1314 mesh_id_cmp = ie2[1] - ie1[1]; 1315 1316 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1317 a_ies->data, a_ies->len); 1318 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1319 b_ies->data, b_ies->len); 1320 if (ie1 && ie2) { 1321 if (mesh_id_cmp) 1322 return mesh_id_cmp; 1323 if (ie1[1] != ie2[1]) 1324 return ie2[1] - ie1[1]; 1325 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1326 } 1327 } 1328 1329 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid)); 1330 if (r) 1331 return r; 1332 1333 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len); 1334 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len); 1335 1336 if (!ie1 && !ie2) 1337 return 0; 1338 1339 /* 1340 * Note that with "hide_ssid", the function returns a match if 1341 * the already-present BSS ("b") is a hidden SSID beacon for 1342 * the new BSS ("a"). 1343 */ 1344 1345 /* sort missing IE before (left of) present IE */ 1346 if (!ie1) 1347 return -1; 1348 if (!ie2) 1349 return 1; 1350 1351 switch (mode) { 1352 case BSS_CMP_HIDE_ZLEN: 1353 /* 1354 * In ZLEN mode we assume the BSS entry we're 1355 * looking for has a zero-length SSID. So if 1356 * the one we're looking at right now has that, 1357 * return 0. Otherwise, return the difference 1358 * in length, but since we're looking for the 1359 * 0-length it's really equivalent to returning 1360 * the length of the one we're looking at. 1361 * 1362 * No content comparison is needed as we assume 1363 * the content length is zero. 1364 */ 1365 return ie2[1]; 1366 case BSS_CMP_REGULAR: 1367 default: 1368 /* sort by length first, then by contents */ 1369 if (ie1[1] != ie2[1]) 1370 return ie2[1] - ie1[1]; 1371 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1372 case BSS_CMP_HIDE_NUL: 1373 if (ie1[1] != ie2[1]) 1374 return ie2[1] - ie1[1]; 1375 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */ 1376 for (i = 0; i < ie2[1]; i++) 1377 if (ie2[i + 2]) 1378 return -1; 1379 return 0; 1380 } 1381 } 1382 1383 static bool cfg80211_bss_type_match(u16 capability, 1384 enum nl80211_band band, 1385 enum ieee80211_bss_type bss_type) 1386 { 1387 bool ret = true; 1388 u16 mask, val; 1389 1390 if (bss_type == IEEE80211_BSS_TYPE_ANY) 1391 return ret; 1392 1393 if (band == NL80211_BAND_60GHZ) { 1394 mask = WLAN_CAPABILITY_DMG_TYPE_MASK; 1395 switch (bss_type) { 1396 case IEEE80211_BSS_TYPE_ESS: 1397 val = WLAN_CAPABILITY_DMG_TYPE_AP; 1398 break; 1399 case IEEE80211_BSS_TYPE_PBSS: 1400 val = WLAN_CAPABILITY_DMG_TYPE_PBSS; 1401 break; 1402 case IEEE80211_BSS_TYPE_IBSS: 1403 val = WLAN_CAPABILITY_DMG_TYPE_IBSS; 1404 break; 1405 default: 1406 return false; 1407 } 1408 } else { 1409 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS; 1410 switch (bss_type) { 1411 case IEEE80211_BSS_TYPE_ESS: 1412 val = WLAN_CAPABILITY_ESS; 1413 break; 1414 case IEEE80211_BSS_TYPE_IBSS: 1415 val = WLAN_CAPABILITY_IBSS; 1416 break; 1417 case IEEE80211_BSS_TYPE_MBSS: 1418 val = 0; 1419 break; 1420 default: 1421 return false; 1422 } 1423 } 1424 1425 ret = ((capability & mask) == val); 1426 return ret; 1427 } 1428 1429 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1430 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy, 1431 struct ieee80211_channel *channel, 1432 const u8 *bssid, 1433 const u8 *ssid, size_t ssid_len, 1434 enum ieee80211_bss_type bss_type, 1435 enum ieee80211_privacy privacy) 1436 { 1437 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1438 struct cfg80211_internal_bss *bss, *res = NULL; 1439 unsigned long now = jiffies; 1440 int bss_privacy; 1441 1442 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type, 1443 privacy); 1444 1445 spin_lock_bh(&rdev->bss_lock); 1446 1447 list_for_each_entry(bss, &rdev->bss_list, list) { 1448 if (!cfg80211_bss_type_match(bss->pub.capability, 1449 bss->pub.channel->band, bss_type)) 1450 continue; 1451 1452 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY); 1453 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) || 1454 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy)) 1455 continue; 1456 if (channel && bss->pub.channel != channel) 1457 continue; 1458 if (!is_valid_ether_addr(bss->pub.bssid)) 1459 continue; 1460 /* Don't get expired BSS structs */ 1461 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) && 1462 !atomic_read(&bss->hold)) 1463 continue; 1464 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) { 1465 res = bss; 1466 bss_ref_get(rdev, res); 1467 break; 1468 } 1469 } 1470 1471 spin_unlock_bh(&rdev->bss_lock); 1472 if (!res) 1473 return NULL; 1474 trace_cfg80211_return_bss(&res->pub); 1475 return &res->pub; 1476 } 1477 EXPORT_SYMBOL(cfg80211_get_bss); 1478 1479 static void rb_insert_bss(struct cfg80211_registered_device *rdev, 1480 struct cfg80211_internal_bss *bss) 1481 { 1482 struct rb_node **p = &rdev->bss_tree.rb_node; 1483 struct rb_node *parent = NULL; 1484 struct cfg80211_internal_bss *tbss; 1485 int cmp; 1486 1487 while (*p) { 1488 parent = *p; 1489 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn); 1490 1491 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR); 1492 1493 if (WARN_ON(!cmp)) { 1494 /* will sort of leak this BSS */ 1495 return; 1496 } 1497 1498 if (cmp < 0) 1499 p = &(*p)->rb_left; 1500 else 1501 p = &(*p)->rb_right; 1502 } 1503 1504 rb_link_node(&bss->rbn, parent, p); 1505 rb_insert_color(&bss->rbn, &rdev->bss_tree); 1506 } 1507 1508 static struct cfg80211_internal_bss * 1509 rb_find_bss(struct cfg80211_registered_device *rdev, 1510 struct cfg80211_internal_bss *res, 1511 enum bss_compare_mode mode) 1512 { 1513 struct rb_node *n = rdev->bss_tree.rb_node; 1514 struct cfg80211_internal_bss *bss; 1515 int r; 1516 1517 while (n) { 1518 bss = rb_entry(n, struct cfg80211_internal_bss, rbn); 1519 r = cmp_bss(&res->pub, &bss->pub, mode); 1520 1521 if (r == 0) 1522 return bss; 1523 else if (r < 0) 1524 n = n->rb_left; 1525 else 1526 n = n->rb_right; 1527 } 1528 1529 return NULL; 1530 } 1531 1532 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev, 1533 struct cfg80211_internal_bss *new) 1534 { 1535 const struct cfg80211_bss_ies *ies; 1536 struct cfg80211_internal_bss *bss; 1537 const u8 *ie; 1538 int i, ssidlen; 1539 u8 fold = 0; 1540 u32 n_entries = 0; 1541 1542 ies = rcu_access_pointer(new->pub.beacon_ies); 1543 if (WARN_ON(!ies)) 1544 return false; 1545 1546 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1547 if (!ie) { 1548 /* nothing to do */ 1549 return true; 1550 } 1551 1552 ssidlen = ie[1]; 1553 for (i = 0; i < ssidlen; i++) 1554 fold |= ie[2 + i]; 1555 1556 if (fold) { 1557 /* not a hidden SSID */ 1558 return true; 1559 } 1560 1561 /* This is the bad part ... */ 1562 1563 list_for_each_entry(bss, &rdev->bss_list, list) { 1564 /* 1565 * we're iterating all the entries anyway, so take the 1566 * opportunity to validate the list length accounting 1567 */ 1568 n_entries++; 1569 1570 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid)) 1571 continue; 1572 if (bss->pub.channel != new->pub.channel) 1573 continue; 1574 if (bss->pub.scan_width != new->pub.scan_width) 1575 continue; 1576 if (rcu_access_pointer(bss->pub.beacon_ies)) 1577 continue; 1578 ies = rcu_access_pointer(bss->pub.ies); 1579 if (!ies) 1580 continue; 1581 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1582 if (!ie) 1583 continue; 1584 if (ssidlen && ie[1] != ssidlen) 1585 continue; 1586 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss)) 1587 continue; 1588 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list))) 1589 list_del(&bss->hidden_list); 1590 /* combine them */ 1591 list_add(&bss->hidden_list, &new->hidden_list); 1592 bss->pub.hidden_beacon_bss = &new->pub; 1593 new->refcount += bss->refcount; 1594 rcu_assign_pointer(bss->pub.beacon_ies, 1595 new->pub.beacon_ies); 1596 } 1597 1598 WARN_ONCE(n_entries != rdev->bss_entries, 1599 "rdev bss entries[%d]/list[len:%d] corruption\n", 1600 rdev->bss_entries, n_entries); 1601 1602 return true; 1603 } 1604 1605 struct cfg80211_non_tx_bss { 1606 struct cfg80211_bss *tx_bss; 1607 u8 max_bssid_indicator; 1608 u8 bssid_index; 1609 }; 1610 1611 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known, 1612 const struct cfg80211_bss_ies *new_ies, 1613 const struct cfg80211_bss_ies *old_ies) 1614 { 1615 struct cfg80211_internal_bss *bss; 1616 1617 /* Assign beacon IEs to all sub entries */ 1618 list_for_each_entry(bss, &known->hidden_list, hidden_list) { 1619 const struct cfg80211_bss_ies *ies; 1620 1621 ies = rcu_access_pointer(bss->pub.beacon_ies); 1622 WARN_ON(ies != old_ies); 1623 1624 rcu_assign_pointer(bss->pub.beacon_ies, new_ies); 1625 } 1626 } 1627 1628 static bool 1629 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev, 1630 struct cfg80211_internal_bss *known, 1631 struct cfg80211_internal_bss *new, 1632 bool signal_valid) 1633 { 1634 lockdep_assert_held(&rdev->bss_lock); 1635 1636 /* Update IEs */ 1637 if (rcu_access_pointer(new->pub.proberesp_ies)) { 1638 const struct cfg80211_bss_ies *old; 1639 1640 old = rcu_access_pointer(known->pub.proberesp_ies); 1641 1642 rcu_assign_pointer(known->pub.proberesp_ies, 1643 new->pub.proberesp_ies); 1644 /* Override possible earlier Beacon frame IEs */ 1645 rcu_assign_pointer(known->pub.ies, 1646 new->pub.proberesp_ies); 1647 if (old) 1648 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1649 } else if (rcu_access_pointer(new->pub.beacon_ies)) { 1650 const struct cfg80211_bss_ies *old; 1651 1652 if (known->pub.hidden_beacon_bss && 1653 !list_empty(&known->hidden_list)) { 1654 const struct cfg80211_bss_ies *f; 1655 1656 /* The known BSS struct is one of the probe 1657 * response members of a group, but we're 1658 * receiving a beacon (beacon_ies in the new 1659 * bss is used). This can only mean that the 1660 * AP changed its beacon from not having an 1661 * SSID to showing it, which is confusing so 1662 * drop this information. 1663 */ 1664 1665 f = rcu_access_pointer(new->pub.beacon_ies); 1666 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head); 1667 return false; 1668 } 1669 1670 old = rcu_access_pointer(known->pub.beacon_ies); 1671 1672 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies); 1673 1674 /* Override IEs if they were from a beacon before */ 1675 if (old == rcu_access_pointer(known->pub.ies)) 1676 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies); 1677 1678 cfg80211_update_hidden_bsses(known, 1679 rcu_access_pointer(new->pub.beacon_ies), 1680 old); 1681 1682 if (old) 1683 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1684 } 1685 1686 known->pub.beacon_interval = new->pub.beacon_interval; 1687 1688 /* don't update the signal if beacon was heard on 1689 * adjacent channel. 1690 */ 1691 if (signal_valid) 1692 known->pub.signal = new->pub.signal; 1693 known->pub.capability = new->pub.capability; 1694 known->ts = new->ts; 1695 known->ts_boottime = new->ts_boottime; 1696 known->parent_tsf = new->parent_tsf; 1697 known->pub.chains = new->pub.chains; 1698 memcpy(known->pub.chain_signal, new->pub.chain_signal, 1699 IEEE80211_MAX_CHAINS); 1700 ether_addr_copy(known->parent_bssid, new->parent_bssid); 1701 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator; 1702 known->pub.bssid_index = new->pub.bssid_index; 1703 1704 return true; 1705 } 1706 1707 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1708 struct cfg80211_internal_bss * 1709 cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1710 struct cfg80211_internal_bss *tmp, 1711 bool signal_valid, unsigned long ts) 1712 { 1713 struct cfg80211_internal_bss *found = NULL; 1714 1715 if (WARN_ON(!tmp->pub.channel)) 1716 return NULL; 1717 1718 tmp->ts = ts; 1719 1720 spin_lock_bh(&rdev->bss_lock); 1721 1722 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) { 1723 spin_unlock_bh(&rdev->bss_lock); 1724 return NULL; 1725 } 1726 1727 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR); 1728 1729 if (found) { 1730 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid)) 1731 goto drop; 1732 } else { 1733 struct cfg80211_internal_bss *new; 1734 struct cfg80211_internal_bss *hidden; 1735 struct cfg80211_bss_ies *ies; 1736 1737 /* 1738 * create a copy -- the "res" variable that is passed in 1739 * is allocated on the stack since it's not needed in the 1740 * more common case of an update 1741 */ 1742 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size, 1743 GFP_ATOMIC); 1744 if (!new) { 1745 ies = (void *)rcu_dereference(tmp->pub.beacon_ies); 1746 if (ies) 1747 kfree_rcu(ies, rcu_head); 1748 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies); 1749 if (ies) 1750 kfree_rcu(ies, rcu_head); 1751 goto drop; 1752 } 1753 memcpy(new, tmp, sizeof(*new)); 1754 new->refcount = 1; 1755 INIT_LIST_HEAD(&new->hidden_list); 1756 INIT_LIST_HEAD(&new->pub.nontrans_list); 1757 /* we'll set this later if it was non-NULL */ 1758 new->pub.transmitted_bss = NULL; 1759 1760 if (rcu_access_pointer(tmp->pub.proberesp_ies)) { 1761 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN); 1762 if (!hidden) 1763 hidden = rb_find_bss(rdev, tmp, 1764 BSS_CMP_HIDE_NUL); 1765 if (hidden) { 1766 new->pub.hidden_beacon_bss = &hidden->pub; 1767 list_add(&new->hidden_list, 1768 &hidden->hidden_list); 1769 hidden->refcount++; 1770 rcu_assign_pointer(new->pub.beacon_ies, 1771 hidden->pub.beacon_ies); 1772 } 1773 } else { 1774 /* 1775 * Ok so we found a beacon, and don't have an entry. If 1776 * it's a beacon with hidden SSID, we might be in for an 1777 * expensive search for any probe responses that should 1778 * be grouped with this beacon for updates ... 1779 */ 1780 if (!cfg80211_combine_bsses(rdev, new)) { 1781 bss_ref_put(rdev, new); 1782 goto drop; 1783 } 1784 } 1785 1786 if (rdev->bss_entries >= bss_entries_limit && 1787 !cfg80211_bss_expire_oldest(rdev)) { 1788 bss_ref_put(rdev, new); 1789 goto drop; 1790 } 1791 1792 /* This must be before the call to bss_ref_get */ 1793 if (tmp->pub.transmitted_bss) { 1794 struct cfg80211_internal_bss *pbss = 1795 container_of(tmp->pub.transmitted_bss, 1796 struct cfg80211_internal_bss, 1797 pub); 1798 1799 new->pub.transmitted_bss = tmp->pub.transmitted_bss; 1800 bss_ref_get(rdev, pbss); 1801 } 1802 1803 list_add_tail(&new->list, &rdev->bss_list); 1804 rdev->bss_entries++; 1805 rb_insert_bss(rdev, new); 1806 found = new; 1807 } 1808 1809 rdev->bss_generation++; 1810 bss_ref_get(rdev, found); 1811 spin_unlock_bh(&rdev->bss_lock); 1812 1813 return found; 1814 drop: 1815 spin_unlock_bh(&rdev->bss_lock); 1816 return NULL; 1817 } 1818 1819 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen, 1820 enum nl80211_band band, 1821 enum cfg80211_bss_frame_type ftype) 1822 { 1823 const struct element *tmp; 1824 1825 if (band == NL80211_BAND_6GHZ) { 1826 struct ieee80211_he_operation *he_oper; 1827 1828 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, 1829 ielen); 1830 if (tmp && tmp->datalen >= sizeof(*he_oper) && 1831 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) { 1832 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 1833 1834 he_oper = (void *)&tmp->data[1]; 1835 1836 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 1837 if (!he_6ghz_oper) 1838 return -1; 1839 1840 if (ftype != CFG80211_BSS_FTYPE_BEACON || 1841 he_6ghz_oper->control & IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON) 1842 return he_6ghz_oper->primary; 1843 } 1844 } else if (band == NL80211_BAND_S1GHZ) { 1845 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen); 1846 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) { 1847 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data; 1848 1849 return s1gop->oper_ch; 1850 } 1851 } else { 1852 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen); 1853 if (tmp && tmp->datalen == 1) 1854 return tmp->data[0]; 1855 1856 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen); 1857 if (tmp && 1858 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) { 1859 struct ieee80211_ht_operation *htop = (void *)tmp->data; 1860 1861 return htop->primary_chan; 1862 } 1863 } 1864 1865 return -1; 1866 } 1867 EXPORT_SYMBOL(cfg80211_get_ies_channel_number); 1868 1869 /* 1870 * Update RX channel information based on the available frame payload 1871 * information. This is mainly for the 2.4 GHz band where frames can be received 1872 * from neighboring channels and the Beacon frames use the DSSS Parameter Set 1873 * element to indicate the current (transmitting) channel, but this might also 1874 * be needed on other bands if RX frequency does not match with the actual 1875 * operating channel of a BSS, or if the AP reports a different primary channel. 1876 */ 1877 static struct ieee80211_channel * 1878 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen, 1879 struct ieee80211_channel *channel, 1880 enum nl80211_bss_scan_width scan_width, 1881 enum cfg80211_bss_frame_type ftype) 1882 { 1883 u32 freq; 1884 int channel_number; 1885 struct ieee80211_channel *alt_channel; 1886 1887 channel_number = cfg80211_get_ies_channel_number(ie, ielen, 1888 channel->band, ftype); 1889 1890 if (channel_number < 0) { 1891 /* No channel information in frame payload */ 1892 return channel; 1893 } 1894 1895 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band); 1896 1897 /* 1898 * In 6GHz, duplicated beacon indication is relevant for 1899 * beacons only. 1900 */ 1901 if (channel->band == NL80211_BAND_6GHZ && 1902 (freq == channel->center_freq || 1903 abs(freq - channel->center_freq) > 80)) 1904 return channel; 1905 1906 alt_channel = ieee80211_get_channel_khz(wiphy, freq); 1907 if (!alt_channel) { 1908 if (channel->band == NL80211_BAND_2GHZ) { 1909 /* 1910 * Better not allow unexpected channels when that could 1911 * be going beyond the 1-11 range (e.g., discovering 1912 * BSS on channel 12 when radio is configured for 1913 * channel 11. 1914 */ 1915 return NULL; 1916 } 1917 1918 /* No match for the payload channel number - ignore it */ 1919 return channel; 1920 } 1921 1922 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 || 1923 scan_width == NL80211_BSS_CHAN_WIDTH_5) { 1924 /* 1925 * Ignore channel number in 5 and 10 MHz channels where there 1926 * may not be an n:1 or 1:n mapping between frequencies and 1927 * channel numbers. 1928 */ 1929 return channel; 1930 } 1931 1932 /* 1933 * Use the channel determined through the payload channel number 1934 * instead of the RX channel reported by the driver. 1935 */ 1936 if (alt_channel->flags & IEEE80211_CHAN_DISABLED) 1937 return NULL; 1938 return alt_channel; 1939 } 1940 1941 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1942 static struct cfg80211_bss * 1943 cfg80211_inform_single_bss_data(struct wiphy *wiphy, 1944 struct cfg80211_inform_bss *data, 1945 enum cfg80211_bss_frame_type ftype, 1946 const u8 *bssid, u64 tsf, u16 capability, 1947 u16 beacon_interval, const u8 *ie, size_t ielen, 1948 struct cfg80211_non_tx_bss *non_tx_data, 1949 gfp_t gfp) 1950 { 1951 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1952 struct cfg80211_bss_ies *ies; 1953 struct ieee80211_channel *channel; 1954 struct cfg80211_internal_bss tmp = {}, *res; 1955 int bss_type; 1956 bool signal_valid; 1957 unsigned long ts; 1958 1959 if (WARN_ON(!wiphy)) 1960 return NULL; 1961 1962 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 1963 (data->signal < 0 || data->signal > 100))) 1964 return NULL; 1965 1966 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan, 1967 data->scan_width, ftype); 1968 if (!channel) 1969 return NULL; 1970 1971 memcpy(tmp.pub.bssid, bssid, ETH_ALEN); 1972 tmp.pub.channel = channel; 1973 tmp.pub.scan_width = data->scan_width; 1974 tmp.pub.signal = data->signal; 1975 tmp.pub.beacon_interval = beacon_interval; 1976 tmp.pub.capability = capability; 1977 tmp.ts_boottime = data->boottime_ns; 1978 tmp.parent_tsf = data->parent_tsf; 1979 ether_addr_copy(tmp.parent_bssid, data->parent_bssid); 1980 1981 if (non_tx_data) { 1982 tmp.pub.transmitted_bss = non_tx_data->tx_bss; 1983 ts = bss_from_pub(non_tx_data->tx_bss)->ts; 1984 tmp.pub.bssid_index = non_tx_data->bssid_index; 1985 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator; 1986 } else { 1987 ts = jiffies; 1988 } 1989 1990 /* 1991 * If we do not know here whether the IEs are from a Beacon or Probe 1992 * Response frame, we need to pick one of the options and only use it 1993 * with the driver that does not provide the full Beacon/Probe Response 1994 * frame. Use Beacon frame pointer to avoid indicating that this should 1995 * override the IEs pointer should we have received an earlier 1996 * indication of Probe Response data. 1997 */ 1998 ies = kzalloc(sizeof(*ies) + ielen, gfp); 1999 if (!ies) 2000 return NULL; 2001 ies->len = ielen; 2002 ies->tsf = tsf; 2003 ies->from_beacon = false; 2004 memcpy(ies->data, ie, ielen); 2005 2006 switch (ftype) { 2007 case CFG80211_BSS_FTYPE_BEACON: 2008 ies->from_beacon = true; 2009 fallthrough; 2010 case CFG80211_BSS_FTYPE_UNKNOWN: 2011 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 2012 break; 2013 case CFG80211_BSS_FTYPE_PRESP: 2014 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 2015 break; 2016 } 2017 rcu_assign_pointer(tmp.pub.ies, ies); 2018 2019 signal_valid = data->chan == channel; 2020 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts); 2021 if (!res) 2022 return NULL; 2023 2024 if (channel->band == NL80211_BAND_60GHZ) { 2025 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 2026 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2027 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2028 regulatory_hint_found_beacon(wiphy, channel, gfp); 2029 } else { 2030 if (res->pub.capability & WLAN_CAPABILITY_ESS) 2031 regulatory_hint_found_beacon(wiphy, channel, gfp); 2032 } 2033 2034 if (non_tx_data) { 2035 /* this is a nontransmitting bss, we need to add it to 2036 * transmitting bss' list if it is not there 2037 */ 2038 spin_lock_bh(&rdev->bss_lock); 2039 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss, 2040 &res->pub)) { 2041 if (__cfg80211_unlink_bss(rdev, res)) { 2042 rdev->bss_generation++; 2043 res = NULL; 2044 } 2045 } 2046 spin_unlock_bh(&rdev->bss_lock); 2047 2048 if (!res) 2049 return NULL; 2050 } 2051 2052 trace_cfg80211_return_bss(&res->pub); 2053 /* cfg80211_bss_update gives us a referenced result */ 2054 return &res->pub; 2055 } 2056 2057 static const struct element 2058 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen, 2059 const struct element *mbssid_elem, 2060 const struct element *sub_elem) 2061 { 2062 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen; 2063 const struct element *next_mbssid; 2064 const struct element *next_sub; 2065 2066 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2067 mbssid_end, 2068 ielen - (mbssid_end - ie)); 2069 2070 /* 2071 * If it is not the last subelement in current MBSSID IE or there isn't 2072 * a next MBSSID IE - profile is complete. 2073 */ 2074 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) || 2075 !next_mbssid) 2076 return NULL; 2077 2078 /* For any length error, just return NULL */ 2079 2080 if (next_mbssid->datalen < 4) 2081 return NULL; 2082 2083 next_sub = (void *)&next_mbssid->data[1]; 2084 2085 if (next_mbssid->data + next_mbssid->datalen < 2086 next_sub->data + next_sub->datalen) 2087 return NULL; 2088 2089 if (next_sub->id != 0 || next_sub->datalen < 2) 2090 return NULL; 2091 2092 /* 2093 * Check if the first element in the next sub element is a start 2094 * of a new profile 2095 */ 2096 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ? 2097 NULL : next_mbssid; 2098 } 2099 2100 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen, 2101 const struct element *mbssid_elem, 2102 const struct element *sub_elem, 2103 u8 *merged_ie, size_t max_copy_len) 2104 { 2105 size_t copied_len = sub_elem->datalen; 2106 const struct element *next_mbssid; 2107 2108 if (sub_elem->datalen > max_copy_len) 2109 return 0; 2110 2111 memcpy(merged_ie, sub_elem->data, sub_elem->datalen); 2112 2113 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen, 2114 mbssid_elem, 2115 sub_elem))) { 2116 const struct element *next_sub = (void *)&next_mbssid->data[1]; 2117 2118 if (copied_len + next_sub->datalen > max_copy_len) 2119 break; 2120 memcpy(merged_ie + copied_len, next_sub->data, 2121 next_sub->datalen); 2122 copied_len += next_sub->datalen; 2123 } 2124 2125 return copied_len; 2126 } 2127 EXPORT_SYMBOL(cfg80211_merge_profile); 2128 2129 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy, 2130 struct cfg80211_inform_bss *data, 2131 enum cfg80211_bss_frame_type ftype, 2132 const u8 *bssid, u64 tsf, 2133 u16 beacon_interval, const u8 *ie, 2134 size_t ielen, 2135 struct cfg80211_non_tx_bss *non_tx_data, 2136 gfp_t gfp) 2137 { 2138 const u8 *mbssid_index_ie; 2139 const struct element *elem, *sub; 2140 size_t new_ie_len; 2141 u8 new_bssid[ETH_ALEN]; 2142 u8 *new_ie, *profile; 2143 u64 seen_indices = 0; 2144 u16 capability; 2145 struct cfg80211_bss *bss; 2146 2147 if (!non_tx_data) 2148 return; 2149 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen)) 2150 return; 2151 if (!wiphy->support_mbssid) 2152 return; 2153 if (wiphy->support_only_he_mbssid && 2154 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen)) 2155 return; 2156 2157 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2158 if (!new_ie) 2159 return; 2160 2161 profile = kmalloc(ielen, gfp); 2162 if (!profile) 2163 goto out; 2164 2165 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) { 2166 if (elem->datalen < 4) 2167 continue; 2168 if (elem->data[0] < 1 || (int)elem->data[0] > 8) 2169 continue; 2170 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 2171 u8 profile_len; 2172 2173 if (sub->id != 0 || sub->datalen < 4) { 2174 /* not a valid BSS profile */ 2175 continue; 2176 } 2177 2178 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 2179 sub->data[1] != 2) { 2180 /* The first element within the Nontransmitted 2181 * BSSID Profile is not the Nontransmitted 2182 * BSSID Capability element. 2183 */ 2184 continue; 2185 } 2186 2187 memset(profile, 0, ielen); 2188 profile_len = cfg80211_merge_profile(ie, ielen, 2189 elem, 2190 sub, 2191 profile, 2192 ielen); 2193 2194 /* found a Nontransmitted BSSID Profile */ 2195 mbssid_index_ie = cfg80211_find_ie 2196 (WLAN_EID_MULTI_BSSID_IDX, 2197 profile, profile_len); 2198 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 || 2199 mbssid_index_ie[2] == 0 || 2200 mbssid_index_ie[2] > 46) { 2201 /* No valid Multiple BSSID-Index element */ 2202 continue; 2203 } 2204 2205 if (seen_indices & BIT_ULL(mbssid_index_ie[2])) 2206 /* We don't support legacy split of a profile */ 2207 net_dbg_ratelimited("Partial info for BSSID index %d\n", 2208 mbssid_index_ie[2]); 2209 2210 seen_indices |= BIT_ULL(mbssid_index_ie[2]); 2211 2212 non_tx_data->bssid_index = mbssid_index_ie[2]; 2213 non_tx_data->max_bssid_indicator = elem->data[0]; 2214 2215 cfg80211_gen_new_bssid(bssid, 2216 non_tx_data->max_bssid_indicator, 2217 non_tx_data->bssid_index, 2218 new_bssid); 2219 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 2220 new_ie_len = cfg80211_gen_new_ie(ie, ielen, 2221 profile, 2222 profile_len, new_ie, 2223 gfp); 2224 if (!new_ie_len) 2225 continue; 2226 2227 capability = get_unaligned_le16(profile + 2); 2228 bss = cfg80211_inform_single_bss_data(wiphy, data, 2229 ftype, 2230 new_bssid, tsf, 2231 capability, 2232 beacon_interval, 2233 new_ie, 2234 new_ie_len, 2235 non_tx_data, 2236 gfp); 2237 if (!bss) 2238 break; 2239 cfg80211_put_bss(wiphy, bss); 2240 } 2241 } 2242 2243 out: 2244 kfree(new_ie); 2245 kfree(profile); 2246 } 2247 2248 struct cfg80211_bss * 2249 cfg80211_inform_bss_data(struct wiphy *wiphy, 2250 struct cfg80211_inform_bss *data, 2251 enum cfg80211_bss_frame_type ftype, 2252 const u8 *bssid, u64 tsf, u16 capability, 2253 u16 beacon_interval, const u8 *ie, size_t ielen, 2254 gfp_t gfp) 2255 { 2256 struct cfg80211_bss *res; 2257 struct cfg80211_non_tx_bss non_tx_data; 2258 2259 res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf, 2260 capability, beacon_interval, ie, 2261 ielen, NULL, gfp); 2262 if (!res) 2263 return NULL; 2264 non_tx_data.tx_bss = res; 2265 cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf, 2266 beacon_interval, ie, ielen, &non_tx_data, 2267 gfp); 2268 return res; 2269 } 2270 EXPORT_SYMBOL(cfg80211_inform_bss_data); 2271 2272 static void 2273 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy, 2274 struct cfg80211_inform_bss *data, 2275 struct ieee80211_mgmt *mgmt, size_t len, 2276 struct cfg80211_non_tx_bss *non_tx_data, 2277 gfp_t gfp) 2278 { 2279 enum cfg80211_bss_frame_type ftype; 2280 const u8 *ie = mgmt->u.probe_resp.variable; 2281 size_t ielen = len - offsetof(struct ieee80211_mgmt, 2282 u.probe_resp.variable); 2283 2284 ftype = ieee80211_is_beacon(mgmt->frame_control) ? 2285 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP; 2286 2287 cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid, 2288 le64_to_cpu(mgmt->u.probe_resp.timestamp), 2289 le16_to_cpu(mgmt->u.probe_resp.beacon_int), 2290 ie, ielen, non_tx_data, gfp); 2291 } 2292 2293 static void 2294 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy, 2295 struct cfg80211_bss *nontrans_bss, 2296 struct ieee80211_mgmt *mgmt, size_t len) 2297 { 2298 u8 *ie, *new_ie, *pos; 2299 const struct element *nontrans_ssid; 2300 const u8 *trans_ssid, *mbssid; 2301 size_t ielen = len - offsetof(struct ieee80211_mgmt, 2302 u.probe_resp.variable); 2303 size_t new_ie_len; 2304 struct cfg80211_bss_ies *new_ies; 2305 const struct cfg80211_bss_ies *old; 2306 size_t cpy_len; 2307 2308 lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock); 2309 2310 ie = mgmt->u.probe_resp.variable; 2311 2312 new_ie_len = ielen; 2313 trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen); 2314 if (!trans_ssid) 2315 return; 2316 new_ie_len -= trans_ssid[1]; 2317 mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen); 2318 /* 2319 * It's not valid to have the MBSSID element before SSID 2320 * ignore if that happens - the code below assumes it is 2321 * after (while copying things inbetween). 2322 */ 2323 if (!mbssid || mbssid < trans_ssid) 2324 return; 2325 new_ie_len -= mbssid[1]; 2326 2327 nontrans_ssid = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID); 2328 if (!nontrans_ssid) 2329 return; 2330 2331 new_ie_len += nontrans_ssid->datalen; 2332 2333 /* generate new ie for nontrans BSS 2334 * 1. replace SSID with nontrans BSS' SSID 2335 * 2. skip MBSSID IE 2336 */ 2337 new_ie = kzalloc(new_ie_len, GFP_ATOMIC); 2338 if (!new_ie) 2339 return; 2340 2341 new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC); 2342 if (!new_ies) 2343 goto out_free; 2344 2345 pos = new_ie; 2346 2347 /* copy the nontransmitted SSID */ 2348 cpy_len = nontrans_ssid->datalen + 2; 2349 memcpy(pos, nontrans_ssid, cpy_len); 2350 pos += cpy_len; 2351 /* copy the IEs between SSID and MBSSID */ 2352 cpy_len = trans_ssid[1] + 2; 2353 memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len))); 2354 pos += (mbssid - (trans_ssid + cpy_len)); 2355 /* copy the IEs after MBSSID */ 2356 cpy_len = mbssid[1] + 2; 2357 memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len))); 2358 2359 /* update ie */ 2360 new_ies->len = new_ie_len; 2361 new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 2362 new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control); 2363 memcpy(new_ies->data, new_ie, new_ie_len); 2364 if (ieee80211_is_probe_resp(mgmt->frame_control)) { 2365 old = rcu_access_pointer(nontrans_bss->proberesp_ies); 2366 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies); 2367 rcu_assign_pointer(nontrans_bss->ies, new_ies); 2368 if (old) 2369 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 2370 } else { 2371 old = rcu_access_pointer(nontrans_bss->beacon_ies); 2372 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies); 2373 cfg80211_update_hidden_bsses(bss_from_pub(nontrans_bss), 2374 new_ies, old); 2375 rcu_assign_pointer(nontrans_bss->ies, new_ies); 2376 if (old) 2377 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 2378 } 2379 2380 out_free: 2381 kfree(new_ie); 2382 } 2383 2384 /* cfg80211_inform_bss_width_frame helper */ 2385 static struct cfg80211_bss * 2386 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy, 2387 struct cfg80211_inform_bss *data, 2388 struct ieee80211_mgmt *mgmt, size_t len, 2389 gfp_t gfp) 2390 { 2391 struct cfg80211_internal_bss tmp = {}, *res; 2392 struct cfg80211_bss_ies *ies; 2393 struct ieee80211_channel *channel; 2394 bool signal_valid; 2395 struct ieee80211_ext *ext = NULL; 2396 u8 *bssid, *variable; 2397 u16 capability, beacon_int; 2398 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt, 2399 u.probe_resp.variable); 2400 int bss_type; 2401 enum cfg80211_bss_frame_type ftype; 2402 2403 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) != 2404 offsetof(struct ieee80211_mgmt, u.beacon.variable)); 2405 2406 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len); 2407 2408 if (WARN_ON(!mgmt)) 2409 return NULL; 2410 2411 if (WARN_ON(!wiphy)) 2412 return NULL; 2413 2414 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 2415 (data->signal < 0 || data->signal > 100))) 2416 return NULL; 2417 2418 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) { 2419 ext = (void *) mgmt; 2420 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon); 2421 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 2422 min_hdr_len = offsetof(struct ieee80211_ext, 2423 u.s1g_short_beacon.variable); 2424 } 2425 2426 if (WARN_ON(len < min_hdr_len)) 2427 return NULL; 2428 2429 ielen = len - min_hdr_len; 2430 variable = mgmt->u.probe_resp.variable; 2431 if (ext) { 2432 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 2433 variable = ext->u.s1g_short_beacon.variable; 2434 else 2435 variable = ext->u.s1g_beacon.variable; 2436 } 2437 2438 if (ieee80211_is_beacon(mgmt->frame_control)) 2439 ftype = CFG80211_BSS_FTYPE_BEACON; 2440 else if (ieee80211_is_probe_resp(mgmt->frame_control)) 2441 ftype = CFG80211_BSS_FTYPE_PRESP; 2442 else 2443 ftype = CFG80211_BSS_FTYPE_UNKNOWN; 2444 2445 channel = cfg80211_get_bss_channel(wiphy, variable, 2446 ielen, data->chan, data->scan_width, 2447 ftype); 2448 if (!channel) 2449 return NULL; 2450 2451 if (ext) { 2452 const struct ieee80211_s1g_bcn_compat_ie *compat; 2453 const struct element *elem; 2454 2455 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, 2456 variable, ielen); 2457 if (!elem) 2458 return NULL; 2459 if (elem->datalen < sizeof(*compat)) 2460 return NULL; 2461 compat = (void *)elem->data; 2462 bssid = ext->u.s1g_beacon.sa; 2463 capability = le16_to_cpu(compat->compat_info); 2464 beacon_int = le16_to_cpu(compat->beacon_int); 2465 } else { 2466 bssid = mgmt->bssid; 2467 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int); 2468 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info); 2469 } 2470 2471 ies = kzalloc(sizeof(*ies) + ielen, gfp); 2472 if (!ies) 2473 return NULL; 2474 ies->len = ielen; 2475 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 2476 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) || 2477 ieee80211_is_s1g_beacon(mgmt->frame_control); 2478 memcpy(ies->data, variable, ielen); 2479 2480 if (ieee80211_is_probe_resp(mgmt->frame_control)) 2481 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 2482 else 2483 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 2484 rcu_assign_pointer(tmp.pub.ies, ies); 2485 2486 memcpy(tmp.pub.bssid, bssid, ETH_ALEN); 2487 tmp.pub.beacon_interval = beacon_int; 2488 tmp.pub.capability = capability; 2489 tmp.pub.channel = channel; 2490 tmp.pub.scan_width = data->scan_width; 2491 tmp.pub.signal = data->signal; 2492 tmp.ts_boottime = data->boottime_ns; 2493 tmp.parent_tsf = data->parent_tsf; 2494 tmp.pub.chains = data->chains; 2495 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS); 2496 ether_addr_copy(tmp.parent_bssid, data->parent_bssid); 2497 2498 signal_valid = data->chan == channel; 2499 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, 2500 jiffies); 2501 if (!res) 2502 return NULL; 2503 2504 if (channel->band == NL80211_BAND_60GHZ) { 2505 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 2506 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2507 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2508 regulatory_hint_found_beacon(wiphy, channel, gfp); 2509 } else { 2510 if (res->pub.capability & WLAN_CAPABILITY_ESS) 2511 regulatory_hint_found_beacon(wiphy, channel, gfp); 2512 } 2513 2514 trace_cfg80211_return_bss(&res->pub); 2515 /* cfg80211_bss_update gives us a referenced result */ 2516 return &res->pub; 2517 } 2518 2519 struct cfg80211_bss * 2520 cfg80211_inform_bss_frame_data(struct wiphy *wiphy, 2521 struct cfg80211_inform_bss *data, 2522 struct ieee80211_mgmt *mgmt, size_t len, 2523 gfp_t gfp) 2524 { 2525 struct cfg80211_bss *res, *tmp_bss; 2526 const u8 *ie = mgmt->u.probe_resp.variable; 2527 const struct cfg80211_bss_ies *ies1, *ies2; 2528 size_t ielen = len - offsetof(struct ieee80211_mgmt, 2529 u.probe_resp.variable); 2530 struct cfg80211_non_tx_bss non_tx_data = {}; 2531 2532 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt, 2533 len, gfp); 2534 2535 /* don't do any further MBSSID handling for S1G */ 2536 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 2537 return res; 2538 2539 if (!res || !wiphy->support_mbssid || 2540 !cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen)) 2541 return res; 2542 if (wiphy->support_only_he_mbssid && 2543 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen)) 2544 return res; 2545 2546 non_tx_data.tx_bss = res; 2547 /* process each non-transmitting bss */ 2548 cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len, 2549 &non_tx_data, gfp); 2550 2551 spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock); 2552 2553 /* check if the res has other nontransmitting bss which is not 2554 * in MBSSID IE 2555 */ 2556 ies1 = rcu_access_pointer(res->ies); 2557 2558 /* go through nontrans_list, if the timestamp of the BSS is 2559 * earlier than the timestamp of the transmitting BSS then 2560 * update it 2561 */ 2562 list_for_each_entry(tmp_bss, &res->nontrans_list, 2563 nontrans_list) { 2564 ies2 = rcu_access_pointer(tmp_bss->ies); 2565 if (ies2->tsf < ies1->tsf) 2566 cfg80211_update_notlisted_nontrans(wiphy, tmp_bss, 2567 mgmt, len); 2568 } 2569 spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock); 2570 2571 return res; 2572 } 2573 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data); 2574 2575 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2576 { 2577 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2578 struct cfg80211_internal_bss *bss; 2579 2580 if (!pub) 2581 return; 2582 2583 bss = container_of(pub, struct cfg80211_internal_bss, pub); 2584 2585 spin_lock_bh(&rdev->bss_lock); 2586 bss_ref_get(rdev, bss); 2587 spin_unlock_bh(&rdev->bss_lock); 2588 } 2589 EXPORT_SYMBOL(cfg80211_ref_bss); 2590 2591 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2592 { 2593 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2594 struct cfg80211_internal_bss *bss; 2595 2596 if (!pub) 2597 return; 2598 2599 bss = container_of(pub, struct cfg80211_internal_bss, pub); 2600 2601 spin_lock_bh(&rdev->bss_lock); 2602 bss_ref_put(rdev, bss); 2603 spin_unlock_bh(&rdev->bss_lock); 2604 } 2605 EXPORT_SYMBOL(cfg80211_put_bss); 2606 2607 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2608 { 2609 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2610 struct cfg80211_internal_bss *bss, *tmp1; 2611 struct cfg80211_bss *nontrans_bss, *tmp; 2612 2613 if (WARN_ON(!pub)) 2614 return; 2615 2616 bss = container_of(pub, struct cfg80211_internal_bss, pub); 2617 2618 spin_lock_bh(&rdev->bss_lock); 2619 if (list_empty(&bss->list)) 2620 goto out; 2621 2622 list_for_each_entry_safe(nontrans_bss, tmp, 2623 &pub->nontrans_list, 2624 nontrans_list) { 2625 tmp1 = container_of(nontrans_bss, 2626 struct cfg80211_internal_bss, pub); 2627 if (__cfg80211_unlink_bss(rdev, tmp1)) 2628 rdev->bss_generation++; 2629 } 2630 2631 if (__cfg80211_unlink_bss(rdev, bss)) 2632 rdev->bss_generation++; 2633 out: 2634 spin_unlock_bh(&rdev->bss_lock); 2635 } 2636 EXPORT_SYMBOL(cfg80211_unlink_bss); 2637 2638 void cfg80211_bss_iter(struct wiphy *wiphy, 2639 struct cfg80211_chan_def *chandef, 2640 void (*iter)(struct wiphy *wiphy, 2641 struct cfg80211_bss *bss, 2642 void *data), 2643 void *iter_data) 2644 { 2645 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2646 struct cfg80211_internal_bss *bss; 2647 2648 spin_lock_bh(&rdev->bss_lock); 2649 2650 list_for_each_entry(bss, &rdev->bss_list, list) { 2651 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel, 2652 false)) 2653 iter(wiphy, &bss->pub, iter_data); 2654 } 2655 2656 spin_unlock_bh(&rdev->bss_lock); 2657 } 2658 EXPORT_SYMBOL(cfg80211_bss_iter); 2659 2660 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, 2661 unsigned int link_id, 2662 struct ieee80211_channel *chan) 2663 { 2664 struct wiphy *wiphy = wdev->wiphy; 2665 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2666 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss; 2667 struct cfg80211_internal_bss *new = NULL; 2668 struct cfg80211_internal_bss *bss; 2669 struct cfg80211_bss *nontrans_bss; 2670 struct cfg80211_bss *tmp; 2671 2672 spin_lock_bh(&rdev->bss_lock); 2673 2674 /* 2675 * Some APs use CSA also for bandwidth changes, i.e., without actually 2676 * changing the control channel, so no need to update in such a case. 2677 */ 2678 if (cbss->pub.channel == chan) 2679 goto done; 2680 2681 /* use transmitting bss */ 2682 if (cbss->pub.transmitted_bss) 2683 cbss = container_of(cbss->pub.transmitted_bss, 2684 struct cfg80211_internal_bss, 2685 pub); 2686 2687 cbss->pub.channel = chan; 2688 2689 list_for_each_entry(bss, &rdev->bss_list, list) { 2690 if (!cfg80211_bss_type_match(bss->pub.capability, 2691 bss->pub.channel->band, 2692 wdev->conn_bss_type)) 2693 continue; 2694 2695 if (bss == cbss) 2696 continue; 2697 2698 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) { 2699 new = bss; 2700 break; 2701 } 2702 } 2703 2704 if (new) { 2705 /* to save time, update IEs for transmitting bss only */ 2706 if (cfg80211_update_known_bss(rdev, cbss, new, false)) { 2707 new->pub.proberesp_ies = NULL; 2708 new->pub.beacon_ies = NULL; 2709 } 2710 2711 list_for_each_entry_safe(nontrans_bss, tmp, 2712 &new->pub.nontrans_list, 2713 nontrans_list) { 2714 bss = container_of(nontrans_bss, 2715 struct cfg80211_internal_bss, pub); 2716 if (__cfg80211_unlink_bss(rdev, bss)) 2717 rdev->bss_generation++; 2718 } 2719 2720 WARN_ON(atomic_read(&new->hold)); 2721 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new))) 2722 rdev->bss_generation++; 2723 } 2724 2725 rb_erase(&cbss->rbn, &rdev->bss_tree); 2726 rb_insert_bss(rdev, cbss); 2727 rdev->bss_generation++; 2728 2729 list_for_each_entry_safe(nontrans_bss, tmp, 2730 &cbss->pub.nontrans_list, 2731 nontrans_list) { 2732 bss = container_of(nontrans_bss, 2733 struct cfg80211_internal_bss, pub); 2734 bss->pub.channel = chan; 2735 rb_erase(&bss->rbn, &rdev->bss_tree); 2736 rb_insert_bss(rdev, bss); 2737 rdev->bss_generation++; 2738 } 2739 2740 done: 2741 spin_unlock_bh(&rdev->bss_lock); 2742 } 2743 2744 #ifdef CONFIG_CFG80211_WEXT 2745 static struct cfg80211_registered_device * 2746 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex) 2747 { 2748 struct cfg80211_registered_device *rdev; 2749 struct net_device *dev; 2750 2751 ASSERT_RTNL(); 2752 2753 dev = dev_get_by_index(net, ifindex); 2754 if (!dev) 2755 return ERR_PTR(-ENODEV); 2756 if (dev->ieee80211_ptr) 2757 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy); 2758 else 2759 rdev = ERR_PTR(-ENODEV); 2760 dev_put(dev); 2761 return rdev; 2762 } 2763 2764 int cfg80211_wext_siwscan(struct net_device *dev, 2765 struct iw_request_info *info, 2766 union iwreq_data *wrqu, char *extra) 2767 { 2768 struct cfg80211_registered_device *rdev; 2769 struct wiphy *wiphy; 2770 struct iw_scan_req *wreq = NULL; 2771 struct cfg80211_scan_request *creq; 2772 int i, err, n_channels = 0; 2773 enum nl80211_band band; 2774 2775 if (!netif_running(dev)) 2776 return -ENETDOWN; 2777 2778 if (wrqu->data.length == sizeof(struct iw_scan_req)) 2779 wreq = (struct iw_scan_req *)extra; 2780 2781 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 2782 2783 if (IS_ERR(rdev)) 2784 return PTR_ERR(rdev); 2785 2786 if (rdev->scan_req || rdev->scan_msg) 2787 return -EBUSY; 2788 2789 wiphy = &rdev->wiphy; 2790 2791 /* Determine number of channels, needed to allocate creq */ 2792 if (wreq && wreq->num_channels) 2793 n_channels = wreq->num_channels; 2794 else 2795 n_channels = ieee80211_get_num_supported_channels(wiphy); 2796 2797 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) + 2798 n_channels * sizeof(void *), 2799 GFP_ATOMIC); 2800 if (!creq) 2801 return -ENOMEM; 2802 2803 creq->wiphy = wiphy; 2804 creq->wdev = dev->ieee80211_ptr; 2805 /* SSIDs come after channels */ 2806 creq->ssids = (void *)&creq->channels[n_channels]; 2807 creq->n_channels = n_channels; 2808 creq->n_ssids = 1; 2809 creq->scan_start = jiffies; 2810 2811 /* translate "Scan on frequencies" request */ 2812 i = 0; 2813 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2814 int j; 2815 2816 if (!wiphy->bands[band]) 2817 continue; 2818 2819 for (j = 0; j < wiphy->bands[band]->n_channels; j++) { 2820 /* ignore disabled channels */ 2821 if (wiphy->bands[band]->channels[j].flags & 2822 IEEE80211_CHAN_DISABLED) 2823 continue; 2824 2825 /* If we have a wireless request structure and the 2826 * wireless request specifies frequencies, then search 2827 * for the matching hardware channel. 2828 */ 2829 if (wreq && wreq->num_channels) { 2830 int k; 2831 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq; 2832 for (k = 0; k < wreq->num_channels; k++) { 2833 struct iw_freq *freq = 2834 &wreq->channel_list[k]; 2835 int wext_freq = 2836 cfg80211_wext_freq(freq); 2837 2838 if (wext_freq == wiphy_freq) 2839 goto wext_freq_found; 2840 } 2841 goto wext_freq_not_found; 2842 } 2843 2844 wext_freq_found: 2845 creq->channels[i] = &wiphy->bands[band]->channels[j]; 2846 i++; 2847 wext_freq_not_found: ; 2848 } 2849 } 2850 /* No channels found? */ 2851 if (!i) { 2852 err = -EINVAL; 2853 goto out; 2854 } 2855 2856 /* Set real number of channels specified in creq->channels[] */ 2857 creq->n_channels = i; 2858 2859 /* translate "Scan for SSID" request */ 2860 if (wreq) { 2861 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { 2862 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) { 2863 err = -EINVAL; 2864 goto out; 2865 } 2866 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len); 2867 creq->ssids[0].ssid_len = wreq->essid_len; 2868 } 2869 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) 2870 creq->n_ssids = 0; 2871 } 2872 2873 for (i = 0; i < NUM_NL80211_BANDS; i++) 2874 if (wiphy->bands[i]) 2875 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1; 2876 2877 eth_broadcast_addr(creq->bssid); 2878 2879 wiphy_lock(&rdev->wiphy); 2880 2881 rdev->scan_req = creq; 2882 err = rdev_scan(rdev, creq); 2883 if (err) { 2884 rdev->scan_req = NULL; 2885 /* creq will be freed below */ 2886 } else { 2887 nl80211_send_scan_start(rdev, dev->ieee80211_ptr); 2888 /* creq now owned by driver */ 2889 creq = NULL; 2890 dev_hold(dev); 2891 } 2892 wiphy_unlock(&rdev->wiphy); 2893 out: 2894 kfree(creq); 2895 return err; 2896 } 2897 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan); 2898 2899 static char *ieee80211_scan_add_ies(struct iw_request_info *info, 2900 const struct cfg80211_bss_ies *ies, 2901 char *current_ev, char *end_buf) 2902 { 2903 const u8 *pos, *end, *next; 2904 struct iw_event iwe; 2905 2906 if (!ies) 2907 return current_ev; 2908 2909 /* 2910 * If needed, fragment the IEs buffer (at IE boundaries) into short 2911 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages. 2912 */ 2913 pos = ies->data; 2914 end = pos + ies->len; 2915 2916 while (end - pos > IW_GENERIC_IE_MAX) { 2917 next = pos + 2 + pos[1]; 2918 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX) 2919 next = next + 2 + next[1]; 2920 2921 memset(&iwe, 0, sizeof(iwe)); 2922 iwe.cmd = IWEVGENIE; 2923 iwe.u.data.length = next - pos; 2924 current_ev = iwe_stream_add_point_check(info, current_ev, 2925 end_buf, &iwe, 2926 (void *)pos); 2927 if (IS_ERR(current_ev)) 2928 return current_ev; 2929 pos = next; 2930 } 2931 2932 if (end > pos) { 2933 memset(&iwe, 0, sizeof(iwe)); 2934 iwe.cmd = IWEVGENIE; 2935 iwe.u.data.length = end - pos; 2936 current_ev = iwe_stream_add_point_check(info, current_ev, 2937 end_buf, &iwe, 2938 (void *)pos); 2939 if (IS_ERR(current_ev)) 2940 return current_ev; 2941 } 2942 2943 return current_ev; 2944 } 2945 2946 static char * 2947 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info, 2948 struct cfg80211_internal_bss *bss, char *current_ev, 2949 char *end_buf) 2950 { 2951 const struct cfg80211_bss_ies *ies; 2952 struct iw_event iwe; 2953 const u8 *ie; 2954 u8 buf[50]; 2955 u8 *cfg, *p, *tmp; 2956 int rem, i, sig; 2957 bool ismesh = false; 2958 2959 memset(&iwe, 0, sizeof(iwe)); 2960 iwe.cmd = SIOCGIWAP; 2961 iwe.u.ap_addr.sa_family = ARPHRD_ETHER; 2962 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN); 2963 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 2964 IW_EV_ADDR_LEN); 2965 if (IS_ERR(current_ev)) 2966 return current_ev; 2967 2968 memset(&iwe, 0, sizeof(iwe)); 2969 iwe.cmd = SIOCGIWFREQ; 2970 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq); 2971 iwe.u.freq.e = 0; 2972 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 2973 IW_EV_FREQ_LEN); 2974 if (IS_ERR(current_ev)) 2975 return current_ev; 2976 2977 memset(&iwe, 0, sizeof(iwe)); 2978 iwe.cmd = SIOCGIWFREQ; 2979 iwe.u.freq.m = bss->pub.channel->center_freq; 2980 iwe.u.freq.e = 6; 2981 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 2982 IW_EV_FREQ_LEN); 2983 if (IS_ERR(current_ev)) 2984 return current_ev; 2985 2986 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) { 2987 memset(&iwe, 0, sizeof(iwe)); 2988 iwe.cmd = IWEVQUAL; 2989 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED | 2990 IW_QUAL_NOISE_INVALID | 2991 IW_QUAL_QUAL_UPDATED; 2992 switch (wiphy->signal_type) { 2993 case CFG80211_SIGNAL_TYPE_MBM: 2994 sig = bss->pub.signal / 100; 2995 iwe.u.qual.level = sig; 2996 iwe.u.qual.updated |= IW_QUAL_DBM; 2997 if (sig < -110) /* rather bad */ 2998 sig = -110; 2999 else if (sig > -40) /* perfect */ 3000 sig = -40; 3001 /* will give a range of 0 .. 70 */ 3002 iwe.u.qual.qual = sig + 110; 3003 break; 3004 case CFG80211_SIGNAL_TYPE_UNSPEC: 3005 iwe.u.qual.level = bss->pub.signal; 3006 /* will give range 0 .. 100 */ 3007 iwe.u.qual.qual = bss->pub.signal; 3008 break; 3009 default: 3010 /* not reached */ 3011 break; 3012 } 3013 current_ev = iwe_stream_add_event_check(info, current_ev, 3014 end_buf, &iwe, 3015 IW_EV_QUAL_LEN); 3016 if (IS_ERR(current_ev)) 3017 return current_ev; 3018 } 3019 3020 memset(&iwe, 0, sizeof(iwe)); 3021 iwe.cmd = SIOCGIWENCODE; 3022 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY) 3023 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY; 3024 else 3025 iwe.u.data.flags = IW_ENCODE_DISABLED; 3026 iwe.u.data.length = 0; 3027 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3028 &iwe, ""); 3029 if (IS_ERR(current_ev)) 3030 return current_ev; 3031 3032 rcu_read_lock(); 3033 ies = rcu_dereference(bss->pub.ies); 3034 rem = ies->len; 3035 ie = ies->data; 3036 3037 while (rem >= 2) { 3038 /* invalid data */ 3039 if (ie[1] > rem - 2) 3040 break; 3041 3042 switch (ie[0]) { 3043 case WLAN_EID_SSID: 3044 memset(&iwe, 0, sizeof(iwe)); 3045 iwe.cmd = SIOCGIWESSID; 3046 iwe.u.data.length = ie[1]; 3047 iwe.u.data.flags = 1; 3048 current_ev = iwe_stream_add_point_check(info, 3049 current_ev, 3050 end_buf, &iwe, 3051 (u8 *)ie + 2); 3052 if (IS_ERR(current_ev)) 3053 goto unlock; 3054 break; 3055 case WLAN_EID_MESH_ID: 3056 memset(&iwe, 0, sizeof(iwe)); 3057 iwe.cmd = SIOCGIWESSID; 3058 iwe.u.data.length = ie[1]; 3059 iwe.u.data.flags = 1; 3060 current_ev = iwe_stream_add_point_check(info, 3061 current_ev, 3062 end_buf, &iwe, 3063 (u8 *)ie + 2); 3064 if (IS_ERR(current_ev)) 3065 goto unlock; 3066 break; 3067 case WLAN_EID_MESH_CONFIG: 3068 ismesh = true; 3069 if (ie[1] != sizeof(struct ieee80211_meshconf_ie)) 3070 break; 3071 cfg = (u8 *)ie + 2; 3072 memset(&iwe, 0, sizeof(iwe)); 3073 iwe.cmd = IWEVCUSTOM; 3074 sprintf(buf, "Mesh Network Path Selection Protocol ID: " 3075 "0x%02X", cfg[0]); 3076 iwe.u.data.length = strlen(buf); 3077 current_ev = iwe_stream_add_point_check(info, 3078 current_ev, 3079 end_buf, 3080 &iwe, buf); 3081 if (IS_ERR(current_ev)) 3082 goto unlock; 3083 sprintf(buf, "Path Selection Metric ID: 0x%02X", 3084 cfg[1]); 3085 iwe.u.data.length = strlen(buf); 3086 current_ev = iwe_stream_add_point_check(info, 3087 current_ev, 3088 end_buf, 3089 &iwe, buf); 3090 if (IS_ERR(current_ev)) 3091 goto unlock; 3092 sprintf(buf, "Congestion Control Mode ID: 0x%02X", 3093 cfg[2]); 3094 iwe.u.data.length = strlen(buf); 3095 current_ev = iwe_stream_add_point_check(info, 3096 current_ev, 3097 end_buf, 3098 &iwe, buf); 3099 if (IS_ERR(current_ev)) 3100 goto unlock; 3101 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]); 3102 iwe.u.data.length = strlen(buf); 3103 current_ev = iwe_stream_add_point_check(info, 3104 current_ev, 3105 end_buf, 3106 &iwe, buf); 3107 if (IS_ERR(current_ev)) 3108 goto unlock; 3109 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]); 3110 iwe.u.data.length = strlen(buf); 3111 current_ev = iwe_stream_add_point_check(info, 3112 current_ev, 3113 end_buf, 3114 &iwe, buf); 3115 if (IS_ERR(current_ev)) 3116 goto unlock; 3117 sprintf(buf, "Formation Info: 0x%02X", cfg[5]); 3118 iwe.u.data.length = strlen(buf); 3119 current_ev = iwe_stream_add_point_check(info, 3120 current_ev, 3121 end_buf, 3122 &iwe, buf); 3123 if (IS_ERR(current_ev)) 3124 goto unlock; 3125 sprintf(buf, "Capabilities: 0x%02X", cfg[6]); 3126 iwe.u.data.length = strlen(buf); 3127 current_ev = iwe_stream_add_point_check(info, 3128 current_ev, 3129 end_buf, 3130 &iwe, buf); 3131 if (IS_ERR(current_ev)) 3132 goto unlock; 3133 break; 3134 case WLAN_EID_SUPP_RATES: 3135 case WLAN_EID_EXT_SUPP_RATES: 3136 /* display all supported rates in readable format */ 3137 p = current_ev + iwe_stream_lcp_len(info); 3138 3139 memset(&iwe, 0, sizeof(iwe)); 3140 iwe.cmd = SIOCGIWRATE; 3141 /* Those two flags are ignored... */ 3142 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0; 3143 3144 for (i = 0; i < ie[1]; i++) { 3145 iwe.u.bitrate.value = 3146 ((ie[i + 2] & 0x7f) * 500000); 3147 tmp = p; 3148 p = iwe_stream_add_value(info, current_ev, p, 3149 end_buf, &iwe, 3150 IW_EV_PARAM_LEN); 3151 if (p == tmp) { 3152 current_ev = ERR_PTR(-E2BIG); 3153 goto unlock; 3154 } 3155 } 3156 current_ev = p; 3157 break; 3158 } 3159 rem -= ie[1] + 2; 3160 ie += ie[1] + 2; 3161 } 3162 3163 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) || 3164 ismesh) { 3165 memset(&iwe, 0, sizeof(iwe)); 3166 iwe.cmd = SIOCGIWMODE; 3167 if (ismesh) 3168 iwe.u.mode = IW_MODE_MESH; 3169 else if (bss->pub.capability & WLAN_CAPABILITY_ESS) 3170 iwe.u.mode = IW_MODE_MASTER; 3171 else 3172 iwe.u.mode = IW_MODE_ADHOC; 3173 current_ev = iwe_stream_add_event_check(info, current_ev, 3174 end_buf, &iwe, 3175 IW_EV_UINT_LEN); 3176 if (IS_ERR(current_ev)) 3177 goto unlock; 3178 } 3179 3180 memset(&iwe, 0, sizeof(iwe)); 3181 iwe.cmd = IWEVCUSTOM; 3182 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf)); 3183 iwe.u.data.length = strlen(buf); 3184 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3185 &iwe, buf); 3186 if (IS_ERR(current_ev)) 3187 goto unlock; 3188 memset(&iwe, 0, sizeof(iwe)); 3189 iwe.cmd = IWEVCUSTOM; 3190 sprintf(buf, " Last beacon: %ums ago", 3191 elapsed_jiffies_msecs(bss->ts)); 3192 iwe.u.data.length = strlen(buf); 3193 current_ev = iwe_stream_add_point_check(info, current_ev, 3194 end_buf, &iwe, buf); 3195 if (IS_ERR(current_ev)) 3196 goto unlock; 3197 3198 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf); 3199 3200 unlock: 3201 rcu_read_unlock(); 3202 return current_ev; 3203 } 3204 3205 3206 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev, 3207 struct iw_request_info *info, 3208 char *buf, size_t len) 3209 { 3210 char *current_ev = buf; 3211 char *end_buf = buf + len; 3212 struct cfg80211_internal_bss *bss; 3213 int err = 0; 3214 3215 spin_lock_bh(&rdev->bss_lock); 3216 cfg80211_bss_expire(rdev); 3217 3218 list_for_each_entry(bss, &rdev->bss_list, list) { 3219 if (buf + len - current_ev <= IW_EV_ADDR_LEN) { 3220 err = -E2BIG; 3221 break; 3222 } 3223 current_ev = ieee80211_bss(&rdev->wiphy, info, bss, 3224 current_ev, end_buf); 3225 if (IS_ERR(current_ev)) { 3226 err = PTR_ERR(current_ev); 3227 break; 3228 } 3229 } 3230 spin_unlock_bh(&rdev->bss_lock); 3231 3232 if (err) 3233 return err; 3234 return current_ev - buf; 3235 } 3236 3237 3238 int cfg80211_wext_giwscan(struct net_device *dev, 3239 struct iw_request_info *info, 3240 struct iw_point *data, char *extra) 3241 { 3242 struct cfg80211_registered_device *rdev; 3243 int res; 3244 3245 if (!netif_running(dev)) 3246 return -ENETDOWN; 3247 3248 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3249 3250 if (IS_ERR(rdev)) 3251 return PTR_ERR(rdev); 3252 3253 if (rdev->scan_req || rdev->scan_msg) 3254 return -EAGAIN; 3255 3256 res = ieee80211_scan_results(rdev, info, extra, data->length); 3257 data->length = 0; 3258 if (res >= 0) { 3259 data->length = res; 3260 res = 0; 3261 } 3262 3263 return res; 3264 } 3265 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan); 3266 #endif 3267