xref: /openbmc/linux/net/wireless/scan.c (revision dfd4f649)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016	Intel Deutschland GmbH
8  * Copyright (C) 2018-2019 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <net/arp.h>
18 #include <net/cfg80211.h>
19 #include <net/cfg80211-wext.h>
20 #include <net/iw_handler.h>
21 #include "core.h"
22 #include "nl80211.h"
23 #include "wext-compat.h"
24 #include "rdev-ops.h"
25 
26 /**
27  * DOC: BSS tree/list structure
28  *
29  * At the top level, the BSS list is kept in both a list in each
30  * registered device (@bss_list) as well as an RB-tree for faster
31  * lookup. In the RB-tree, entries can be looked up using their
32  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
33  * for other BSSes.
34  *
35  * Due to the possibility of hidden SSIDs, there's a second level
36  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
37  * The hidden_list connects all BSSes belonging to a single AP
38  * that has a hidden SSID, and connects beacon and probe response
39  * entries. For a probe response entry for a hidden SSID, the
40  * hidden_beacon_bss pointer points to the BSS struct holding the
41  * beacon's information.
42  *
43  * Reference counting is done for all these references except for
44  * the hidden_list, so that a beacon BSS struct that is otherwise
45  * not referenced has one reference for being on the bss_list and
46  * one for each probe response entry that points to it using the
47  * hidden_beacon_bss pointer. When a BSS struct that has such a
48  * pointer is get/put, the refcount update is also propagated to
49  * the referenced struct, this ensure that it cannot get removed
50  * while somebody is using the probe response version.
51  *
52  * Note that the hidden_beacon_bss pointer never changes, due to
53  * the reference counting. Therefore, no locking is needed for
54  * it.
55  *
56  * Also note that the hidden_beacon_bss pointer is only relevant
57  * if the driver uses something other than the IEs, e.g. private
58  * data stored stored in the BSS struct, since the beacon IEs are
59  * also linked into the probe response struct.
60  */
61 
62 /*
63  * Limit the number of BSS entries stored in mac80211. Each one is
64  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
65  * If somebody wants to really attack this though, they'd likely
66  * use small beacons, and only one type of frame, limiting each of
67  * the entries to a much smaller size (in order to generate more
68  * entries in total, so overhead is bigger.)
69  */
70 static int bss_entries_limit = 1000;
71 module_param(bss_entries_limit, int, 0644);
72 MODULE_PARM_DESC(bss_entries_limit,
73                  "limit to number of scan BSS entries (per wiphy, default 1000)");
74 
75 #define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
76 
77 static void bss_free(struct cfg80211_internal_bss *bss)
78 {
79 	struct cfg80211_bss_ies *ies;
80 
81 	if (WARN_ON(atomic_read(&bss->hold)))
82 		return;
83 
84 	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
85 	if (ies && !bss->pub.hidden_beacon_bss)
86 		kfree_rcu(ies, rcu_head);
87 	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
88 	if (ies)
89 		kfree_rcu(ies, rcu_head);
90 
91 	/*
92 	 * This happens when the module is removed, it doesn't
93 	 * really matter any more save for completeness
94 	 */
95 	if (!list_empty(&bss->hidden_list))
96 		list_del(&bss->hidden_list);
97 
98 	kfree(bss);
99 }
100 
101 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
102 			       struct cfg80211_internal_bss *bss)
103 {
104 	lockdep_assert_held(&rdev->bss_lock);
105 
106 	bss->refcount++;
107 	if (bss->pub.hidden_beacon_bss) {
108 		bss = container_of(bss->pub.hidden_beacon_bss,
109 				   struct cfg80211_internal_bss,
110 				   pub);
111 		bss->refcount++;
112 	}
113 	if (bss->pub.transmitted_bss) {
114 		bss = container_of(bss->pub.transmitted_bss,
115 				   struct cfg80211_internal_bss,
116 				   pub);
117 		bss->refcount++;
118 	}
119 }
120 
121 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
122 			       struct cfg80211_internal_bss *bss)
123 {
124 	lockdep_assert_held(&rdev->bss_lock);
125 
126 	if (bss->pub.hidden_beacon_bss) {
127 		struct cfg80211_internal_bss *hbss;
128 		hbss = container_of(bss->pub.hidden_beacon_bss,
129 				    struct cfg80211_internal_bss,
130 				    pub);
131 		hbss->refcount--;
132 		if (hbss->refcount == 0)
133 			bss_free(hbss);
134 	}
135 
136 	if (bss->pub.transmitted_bss) {
137 		struct cfg80211_internal_bss *tbss;
138 
139 		tbss = container_of(bss->pub.transmitted_bss,
140 				    struct cfg80211_internal_bss,
141 				    pub);
142 		tbss->refcount--;
143 		if (tbss->refcount == 0)
144 			bss_free(tbss);
145 	}
146 
147 	bss->refcount--;
148 	if (bss->refcount == 0)
149 		bss_free(bss);
150 }
151 
152 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
153 				  struct cfg80211_internal_bss *bss)
154 {
155 	lockdep_assert_held(&rdev->bss_lock);
156 
157 	if (!list_empty(&bss->hidden_list)) {
158 		/*
159 		 * don't remove the beacon entry if it has
160 		 * probe responses associated with it
161 		 */
162 		if (!bss->pub.hidden_beacon_bss)
163 			return false;
164 		/*
165 		 * if it's a probe response entry break its
166 		 * link to the other entries in the group
167 		 */
168 		list_del_init(&bss->hidden_list);
169 	}
170 
171 	list_del_init(&bss->list);
172 	list_del_init(&bss->pub.nontrans_list);
173 	rb_erase(&bss->rbn, &rdev->bss_tree);
174 	rdev->bss_entries--;
175 	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
176 		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
177 		  rdev->bss_entries, list_empty(&rdev->bss_list));
178 	bss_ref_put(rdev, bss);
179 	return true;
180 }
181 
182 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
183 				  const u8 *subelement, size_t subie_len,
184 				  u8 *new_ie, gfp_t gfp)
185 {
186 	u8 *pos, *tmp;
187 	const u8 *tmp_old, *tmp_new;
188 	u8 *sub_copy;
189 
190 	/* copy subelement as we need to change its content to
191 	 * mark an ie after it is processed.
192 	 */
193 	sub_copy = kmalloc(subie_len, gfp);
194 	if (!sub_copy)
195 		return 0;
196 	memcpy(sub_copy, subelement, subie_len);
197 
198 	pos = &new_ie[0];
199 
200 	/* set new ssid */
201 	tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
202 	if (tmp_new) {
203 		memcpy(pos, tmp_new, tmp_new[1] + 2);
204 		pos += (tmp_new[1] + 2);
205 	}
206 
207 	/* go through IEs in ie (skip SSID) and subelement,
208 	 * merge them into new_ie
209 	 */
210 	tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
211 	tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
212 
213 	while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
214 		if (tmp_old[0] == 0) {
215 			tmp_old++;
216 			continue;
217 		}
218 
219 		if (tmp_old[0] == WLAN_EID_EXTENSION)
220 			tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
221 							 subie_len);
222 		else
223 			tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
224 						     subie_len);
225 
226 		if (!tmp) {
227 			/* ie in old ie but not in subelement */
228 			if (tmp_old[0] != WLAN_EID_MULTIPLE_BSSID) {
229 				memcpy(pos, tmp_old, tmp_old[1] + 2);
230 				pos += tmp_old[1] + 2;
231 			}
232 		} else {
233 			/* ie in transmitting ie also in subelement,
234 			 * copy from subelement and flag the ie in subelement
235 			 * as copied (by setting eid field to WLAN_EID_SSID,
236 			 * which is skipped anyway).
237 			 * For vendor ie, compare OUI + type + subType to
238 			 * determine if they are the same ie.
239 			 */
240 			if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
241 				if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
242 					/* same vendor ie, copy from
243 					 * subelement
244 					 */
245 					memcpy(pos, tmp, tmp[1] + 2);
246 					pos += tmp[1] + 2;
247 					tmp[0] = WLAN_EID_SSID;
248 				} else {
249 					memcpy(pos, tmp_old, tmp_old[1] + 2);
250 					pos += tmp_old[1] + 2;
251 				}
252 			} else {
253 				/* copy ie from subelement into new ie */
254 				memcpy(pos, tmp, tmp[1] + 2);
255 				pos += tmp[1] + 2;
256 				tmp[0] = WLAN_EID_SSID;
257 			}
258 		}
259 
260 		if (tmp_old + tmp_old[1] + 2 - ie == ielen)
261 			break;
262 
263 		tmp_old += tmp_old[1] + 2;
264 	}
265 
266 	/* go through subelement again to check if there is any ie not
267 	 * copied to new ie, skip ssid, capability, bssid-index ie
268 	 */
269 	tmp_new = sub_copy;
270 	while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
271 		if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
272 		      tmp_new[0] == WLAN_EID_SSID ||
273 		      tmp_new[0] == WLAN_EID_MULTI_BSSID_IDX)) {
274 			memcpy(pos, tmp_new, tmp_new[1] + 2);
275 			pos += tmp_new[1] + 2;
276 		}
277 		if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
278 			break;
279 		tmp_new += tmp_new[1] + 2;
280 	}
281 
282 	kfree(sub_copy);
283 	return pos - new_ie;
284 }
285 
286 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
287 		   const u8 *ssid, size_t ssid_len)
288 {
289 	const struct cfg80211_bss_ies *ies;
290 	const u8 *ssidie;
291 
292 	if (bssid && !ether_addr_equal(a->bssid, bssid))
293 		return false;
294 
295 	if (!ssid)
296 		return true;
297 
298 	ies = rcu_access_pointer(a->ies);
299 	if (!ies)
300 		return false;
301 	ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
302 	if (!ssidie)
303 		return false;
304 	if (ssidie[1] != ssid_len)
305 		return false;
306 	return memcmp(ssidie + 2, ssid, ssid_len) == 0;
307 }
308 
309 static int
310 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
311 			   struct cfg80211_bss *nontrans_bss)
312 {
313 	const u8 *ssid;
314 	size_t ssid_len;
315 	struct cfg80211_bss *bss = NULL;
316 
317 	rcu_read_lock();
318 	ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
319 	if (!ssid) {
320 		rcu_read_unlock();
321 		return -EINVAL;
322 	}
323 	ssid_len = ssid[1];
324 	ssid = ssid + 2;
325 	rcu_read_unlock();
326 
327 	/* check if nontrans_bss is in the list */
328 	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
329 		if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len))
330 			return 0;
331 	}
332 
333 	/* add to the list */
334 	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
335 	return 0;
336 }
337 
338 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
339 				  unsigned long expire_time)
340 {
341 	struct cfg80211_internal_bss *bss, *tmp;
342 	bool expired = false;
343 
344 	lockdep_assert_held(&rdev->bss_lock);
345 
346 	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
347 		if (atomic_read(&bss->hold))
348 			continue;
349 		if (!time_after(expire_time, bss->ts))
350 			continue;
351 
352 		if (__cfg80211_unlink_bss(rdev, bss))
353 			expired = true;
354 	}
355 
356 	if (expired)
357 		rdev->bss_generation++;
358 }
359 
360 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
361 {
362 	struct cfg80211_internal_bss *bss, *oldest = NULL;
363 	bool ret;
364 
365 	lockdep_assert_held(&rdev->bss_lock);
366 
367 	list_for_each_entry(bss, &rdev->bss_list, list) {
368 		if (atomic_read(&bss->hold))
369 			continue;
370 
371 		if (!list_empty(&bss->hidden_list) &&
372 		    !bss->pub.hidden_beacon_bss)
373 			continue;
374 
375 		if (oldest && time_before(oldest->ts, bss->ts))
376 			continue;
377 		oldest = bss;
378 	}
379 
380 	if (WARN_ON(!oldest))
381 		return false;
382 
383 	/*
384 	 * The callers make sure to increase rdev->bss_generation if anything
385 	 * gets removed (and a new entry added), so there's no need to also do
386 	 * it here.
387 	 */
388 
389 	ret = __cfg80211_unlink_bss(rdev, oldest);
390 	WARN_ON(!ret);
391 	return ret;
392 }
393 
394 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
395 			   bool send_message)
396 {
397 	struct cfg80211_scan_request *request;
398 	struct wireless_dev *wdev;
399 	struct sk_buff *msg;
400 #ifdef CONFIG_CFG80211_WEXT
401 	union iwreq_data wrqu;
402 #endif
403 
404 	ASSERT_RTNL();
405 
406 	if (rdev->scan_msg) {
407 		nl80211_send_scan_msg(rdev, rdev->scan_msg);
408 		rdev->scan_msg = NULL;
409 		return;
410 	}
411 
412 	request = rdev->scan_req;
413 	if (!request)
414 		return;
415 
416 	wdev = request->wdev;
417 
418 	/*
419 	 * This must be before sending the other events!
420 	 * Otherwise, wpa_supplicant gets completely confused with
421 	 * wext events.
422 	 */
423 	if (wdev->netdev)
424 		cfg80211_sme_scan_done(wdev->netdev);
425 
426 	if (!request->info.aborted &&
427 	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
428 		/* flush entries from previous scans */
429 		spin_lock_bh(&rdev->bss_lock);
430 		__cfg80211_bss_expire(rdev, request->scan_start);
431 		spin_unlock_bh(&rdev->bss_lock);
432 	}
433 
434 	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
435 
436 #ifdef CONFIG_CFG80211_WEXT
437 	if (wdev->netdev && !request->info.aborted) {
438 		memset(&wrqu, 0, sizeof(wrqu));
439 
440 		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
441 	}
442 #endif
443 
444 	if (wdev->netdev)
445 		dev_put(wdev->netdev);
446 
447 	rdev->scan_req = NULL;
448 	kfree(request);
449 
450 	if (!send_message)
451 		rdev->scan_msg = msg;
452 	else
453 		nl80211_send_scan_msg(rdev, msg);
454 }
455 
456 void __cfg80211_scan_done(struct work_struct *wk)
457 {
458 	struct cfg80211_registered_device *rdev;
459 
460 	rdev = container_of(wk, struct cfg80211_registered_device,
461 			    scan_done_wk);
462 
463 	rtnl_lock();
464 	___cfg80211_scan_done(rdev, true);
465 	rtnl_unlock();
466 }
467 
468 void cfg80211_scan_done(struct cfg80211_scan_request *request,
469 			struct cfg80211_scan_info *info)
470 {
471 	trace_cfg80211_scan_done(request, info);
472 	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req);
473 
474 	request->info = *info;
475 	request->notified = true;
476 	queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
477 }
478 EXPORT_SYMBOL(cfg80211_scan_done);
479 
480 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
481 				 struct cfg80211_sched_scan_request *req)
482 {
483 	ASSERT_RTNL();
484 
485 	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
486 }
487 
488 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
489 					struct cfg80211_sched_scan_request *req)
490 {
491 	ASSERT_RTNL();
492 
493 	list_del_rcu(&req->list);
494 	kfree_rcu(req, rcu_head);
495 }
496 
497 static struct cfg80211_sched_scan_request *
498 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
499 {
500 	struct cfg80211_sched_scan_request *pos;
501 
502 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
503 
504 	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list) {
505 		if (pos->reqid == reqid)
506 			return pos;
507 	}
508 	return NULL;
509 }
510 
511 /*
512  * Determines if a scheduled scan request can be handled. When a legacy
513  * scheduled scan is running no other scheduled scan is allowed regardless
514  * whether the request is for legacy or multi-support scan. When a multi-support
515  * scheduled scan is running a request for legacy scan is not allowed. In this
516  * case a request for multi-support scan can be handled if resources are
517  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
518  */
519 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
520 				     bool want_multi)
521 {
522 	struct cfg80211_sched_scan_request *pos;
523 	int i = 0;
524 
525 	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
526 		/* request id zero means legacy in progress */
527 		if (!i && !pos->reqid)
528 			return -EINPROGRESS;
529 		i++;
530 	}
531 
532 	if (i) {
533 		/* no legacy allowed when multi request(s) are active */
534 		if (!want_multi)
535 			return -EINPROGRESS;
536 
537 		/* resource limit reached */
538 		if (i == rdev->wiphy.max_sched_scan_reqs)
539 			return -ENOSPC;
540 	}
541 	return 0;
542 }
543 
544 void cfg80211_sched_scan_results_wk(struct work_struct *work)
545 {
546 	struct cfg80211_registered_device *rdev;
547 	struct cfg80211_sched_scan_request *req, *tmp;
548 
549 	rdev = container_of(work, struct cfg80211_registered_device,
550 			   sched_scan_res_wk);
551 
552 	rtnl_lock();
553 	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
554 		if (req->report_results) {
555 			req->report_results = false;
556 			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
557 				/* flush entries from previous scans */
558 				spin_lock_bh(&rdev->bss_lock);
559 				__cfg80211_bss_expire(rdev, req->scan_start);
560 				spin_unlock_bh(&rdev->bss_lock);
561 				req->scan_start = jiffies;
562 			}
563 			nl80211_send_sched_scan(req,
564 						NL80211_CMD_SCHED_SCAN_RESULTS);
565 		}
566 	}
567 	rtnl_unlock();
568 }
569 
570 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
571 {
572 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
573 	struct cfg80211_sched_scan_request *request;
574 
575 	trace_cfg80211_sched_scan_results(wiphy, reqid);
576 	/* ignore if we're not scanning */
577 
578 	rcu_read_lock();
579 	request = cfg80211_find_sched_scan_req(rdev, reqid);
580 	if (request) {
581 		request->report_results = true;
582 		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
583 	}
584 	rcu_read_unlock();
585 }
586 EXPORT_SYMBOL(cfg80211_sched_scan_results);
587 
588 void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy, u64 reqid)
589 {
590 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
591 
592 	ASSERT_RTNL();
593 
594 	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
595 
596 	__cfg80211_stop_sched_scan(rdev, reqid, true);
597 }
598 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_rtnl);
599 
600 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
601 {
602 	rtnl_lock();
603 	cfg80211_sched_scan_stopped_rtnl(wiphy, reqid);
604 	rtnl_unlock();
605 }
606 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
607 
608 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
609 				 struct cfg80211_sched_scan_request *req,
610 				 bool driver_initiated)
611 {
612 	ASSERT_RTNL();
613 
614 	if (!driver_initiated) {
615 		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
616 		if (err)
617 			return err;
618 	}
619 
620 	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
621 
622 	cfg80211_del_sched_scan_req(rdev, req);
623 
624 	return 0;
625 }
626 
627 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
628 			       u64 reqid, bool driver_initiated)
629 {
630 	struct cfg80211_sched_scan_request *sched_scan_req;
631 
632 	ASSERT_RTNL();
633 
634 	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
635 	if (!sched_scan_req)
636 		return -ENOENT;
637 
638 	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
639 					    driver_initiated);
640 }
641 
642 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
643                       unsigned long age_secs)
644 {
645 	struct cfg80211_internal_bss *bss;
646 	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
647 
648 	spin_lock_bh(&rdev->bss_lock);
649 	list_for_each_entry(bss, &rdev->bss_list, list)
650 		bss->ts -= age_jiffies;
651 	spin_unlock_bh(&rdev->bss_lock);
652 }
653 
654 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
655 {
656 	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
657 }
658 
659 const struct element *
660 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
661 			 const u8 *match, unsigned int match_len,
662 			 unsigned int match_offset)
663 {
664 	const struct element *elem;
665 
666 	for_each_element_id(elem, eid, ies, len) {
667 		if (elem->datalen >= match_offset + match_len &&
668 		    !memcmp(elem->data + match_offset, match, match_len))
669 			return elem;
670 	}
671 
672 	return NULL;
673 }
674 EXPORT_SYMBOL(cfg80211_find_elem_match);
675 
676 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
677 						const u8 *ies,
678 						unsigned int len)
679 {
680 	const struct element *elem;
681 	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
682 	int match_len = (oui_type < 0) ? 3 : sizeof(match);
683 
684 	if (WARN_ON(oui_type > 0xff))
685 		return NULL;
686 
687 	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
688 					match, match_len, 0);
689 
690 	if (!elem || elem->datalen < 4)
691 		return NULL;
692 
693 	return elem;
694 }
695 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
696 
697 /**
698  * enum bss_compare_mode - BSS compare mode
699  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
700  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
701  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
702  */
703 enum bss_compare_mode {
704 	BSS_CMP_REGULAR,
705 	BSS_CMP_HIDE_ZLEN,
706 	BSS_CMP_HIDE_NUL,
707 };
708 
709 static int cmp_bss(struct cfg80211_bss *a,
710 		   struct cfg80211_bss *b,
711 		   enum bss_compare_mode mode)
712 {
713 	const struct cfg80211_bss_ies *a_ies, *b_ies;
714 	const u8 *ie1 = NULL;
715 	const u8 *ie2 = NULL;
716 	int i, r;
717 
718 	if (a->channel != b->channel)
719 		return b->channel->center_freq - a->channel->center_freq;
720 
721 	a_ies = rcu_access_pointer(a->ies);
722 	if (!a_ies)
723 		return -1;
724 	b_ies = rcu_access_pointer(b->ies);
725 	if (!b_ies)
726 		return 1;
727 
728 	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
729 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
730 				       a_ies->data, a_ies->len);
731 	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
732 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
733 				       b_ies->data, b_ies->len);
734 	if (ie1 && ie2) {
735 		int mesh_id_cmp;
736 
737 		if (ie1[1] == ie2[1])
738 			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
739 		else
740 			mesh_id_cmp = ie2[1] - ie1[1];
741 
742 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
743 				       a_ies->data, a_ies->len);
744 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
745 				       b_ies->data, b_ies->len);
746 		if (ie1 && ie2) {
747 			if (mesh_id_cmp)
748 				return mesh_id_cmp;
749 			if (ie1[1] != ie2[1])
750 				return ie2[1] - ie1[1];
751 			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
752 		}
753 	}
754 
755 	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
756 	if (r)
757 		return r;
758 
759 	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
760 	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
761 
762 	if (!ie1 && !ie2)
763 		return 0;
764 
765 	/*
766 	 * Note that with "hide_ssid", the function returns a match if
767 	 * the already-present BSS ("b") is a hidden SSID beacon for
768 	 * the new BSS ("a").
769 	 */
770 
771 	/* sort missing IE before (left of) present IE */
772 	if (!ie1)
773 		return -1;
774 	if (!ie2)
775 		return 1;
776 
777 	switch (mode) {
778 	case BSS_CMP_HIDE_ZLEN:
779 		/*
780 		 * In ZLEN mode we assume the BSS entry we're
781 		 * looking for has a zero-length SSID. So if
782 		 * the one we're looking at right now has that,
783 		 * return 0. Otherwise, return the difference
784 		 * in length, but since we're looking for the
785 		 * 0-length it's really equivalent to returning
786 		 * the length of the one we're looking at.
787 		 *
788 		 * No content comparison is needed as we assume
789 		 * the content length is zero.
790 		 */
791 		return ie2[1];
792 	case BSS_CMP_REGULAR:
793 	default:
794 		/* sort by length first, then by contents */
795 		if (ie1[1] != ie2[1])
796 			return ie2[1] - ie1[1];
797 		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
798 	case BSS_CMP_HIDE_NUL:
799 		if (ie1[1] != ie2[1])
800 			return ie2[1] - ie1[1];
801 		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
802 		for (i = 0; i < ie2[1]; i++)
803 			if (ie2[i + 2])
804 				return -1;
805 		return 0;
806 	}
807 }
808 
809 static bool cfg80211_bss_type_match(u16 capability,
810 				    enum nl80211_band band,
811 				    enum ieee80211_bss_type bss_type)
812 {
813 	bool ret = true;
814 	u16 mask, val;
815 
816 	if (bss_type == IEEE80211_BSS_TYPE_ANY)
817 		return ret;
818 
819 	if (band == NL80211_BAND_60GHZ) {
820 		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
821 		switch (bss_type) {
822 		case IEEE80211_BSS_TYPE_ESS:
823 			val = WLAN_CAPABILITY_DMG_TYPE_AP;
824 			break;
825 		case IEEE80211_BSS_TYPE_PBSS:
826 			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
827 			break;
828 		case IEEE80211_BSS_TYPE_IBSS:
829 			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
830 			break;
831 		default:
832 			return false;
833 		}
834 	} else {
835 		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
836 		switch (bss_type) {
837 		case IEEE80211_BSS_TYPE_ESS:
838 			val = WLAN_CAPABILITY_ESS;
839 			break;
840 		case IEEE80211_BSS_TYPE_IBSS:
841 			val = WLAN_CAPABILITY_IBSS;
842 			break;
843 		case IEEE80211_BSS_TYPE_MBSS:
844 			val = 0;
845 			break;
846 		default:
847 			return false;
848 		}
849 	}
850 
851 	ret = ((capability & mask) == val);
852 	return ret;
853 }
854 
855 /* Returned bss is reference counted and must be cleaned up appropriately. */
856 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
857 				      struct ieee80211_channel *channel,
858 				      const u8 *bssid,
859 				      const u8 *ssid, size_t ssid_len,
860 				      enum ieee80211_bss_type bss_type,
861 				      enum ieee80211_privacy privacy)
862 {
863 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
864 	struct cfg80211_internal_bss *bss, *res = NULL;
865 	unsigned long now = jiffies;
866 	int bss_privacy;
867 
868 	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
869 			       privacy);
870 
871 	spin_lock_bh(&rdev->bss_lock);
872 
873 	list_for_each_entry(bss, &rdev->bss_list, list) {
874 		if (!cfg80211_bss_type_match(bss->pub.capability,
875 					     bss->pub.channel->band, bss_type))
876 			continue;
877 
878 		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
879 		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
880 		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
881 			continue;
882 		if (channel && bss->pub.channel != channel)
883 			continue;
884 		if (!is_valid_ether_addr(bss->pub.bssid))
885 			continue;
886 		/* Don't get expired BSS structs */
887 		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
888 		    !atomic_read(&bss->hold))
889 			continue;
890 		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
891 			res = bss;
892 			bss_ref_get(rdev, res);
893 			break;
894 		}
895 	}
896 
897 	spin_unlock_bh(&rdev->bss_lock);
898 	if (!res)
899 		return NULL;
900 	trace_cfg80211_return_bss(&res->pub);
901 	return &res->pub;
902 }
903 EXPORT_SYMBOL(cfg80211_get_bss);
904 
905 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
906 			  struct cfg80211_internal_bss *bss)
907 {
908 	struct rb_node **p = &rdev->bss_tree.rb_node;
909 	struct rb_node *parent = NULL;
910 	struct cfg80211_internal_bss *tbss;
911 	int cmp;
912 
913 	while (*p) {
914 		parent = *p;
915 		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
916 
917 		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
918 
919 		if (WARN_ON(!cmp)) {
920 			/* will sort of leak this BSS */
921 			return;
922 		}
923 
924 		if (cmp < 0)
925 			p = &(*p)->rb_left;
926 		else
927 			p = &(*p)->rb_right;
928 	}
929 
930 	rb_link_node(&bss->rbn, parent, p);
931 	rb_insert_color(&bss->rbn, &rdev->bss_tree);
932 }
933 
934 static struct cfg80211_internal_bss *
935 rb_find_bss(struct cfg80211_registered_device *rdev,
936 	    struct cfg80211_internal_bss *res,
937 	    enum bss_compare_mode mode)
938 {
939 	struct rb_node *n = rdev->bss_tree.rb_node;
940 	struct cfg80211_internal_bss *bss;
941 	int r;
942 
943 	while (n) {
944 		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
945 		r = cmp_bss(&res->pub, &bss->pub, mode);
946 
947 		if (r == 0)
948 			return bss;
949 		else if (r < 0)
950 			n = n->rb_left;
951 		else
952 			n = n->rb_right;
953 	}
954 
955 	return NULL;
956 }
957 
958 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
959 				   struct cfg80211_internal_bss *new)
960 {
961 	const struct cfg80211_bss_ies *ies;
962 	struct cfg80211_internal_bss *bss;
963 	const u8 *ie;
964 	int i, ssidlen;
965 	u8 fold = 0;
966 	u32 n_entries = 0;
967 
968 	ies = rcu_access_pointer(new->pub.beacon_ies);
969 	if (WARN_ON(!ies))
970 		return false;
971 
972 	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
973 	if (!ie) {
974 		/* nothing to do */
975 		return true;
976 	}
977 
978 	ssidlen = ie[1];
979 	for (i = 0; i < ssidlen; i++)
980 		fold |= ie[2 + i];
981 
982 	if (fold) {
983 		/* not a hidden SSID */
984 		return true;
985 	}
986 
987 	/* This is the bad part ... */
988 
989 	list_for_each_entry(bss, &rdev->bss_list, list) {
990 		/*
991 		 * we're iterating all the entries anyway, so take the
992 		 * opportunity to validate the list length accounting
993 		 */
994 		n_entries++;
995 
996 		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
997 			continue;
998 		if (bss->pub.channel != new->pub.channel)
999 			continue;
1000 		if (bss->pub.scan_width != new->pub.scan_width)
1001 			continue;
1002 		if (rcu_access_pointer(bss->pub.beacon_ies))
1003 			continue;
1004 		ies = rcu_access_pointer(bss->pub.ies);
1005 		if (!ies)
1006 			continue;
1007 		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1008 		if (!ie)
1009 			continue;
1010 		if (ssidlen && ie[1] != ssidlen)
1011 			continue;
1012 		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1013 			continue;
1014 		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1015 			list_del(&bss->hidden_list);
1016 		/* combine them */
1017 		list_add(&bss->hidden_list, &new->hidden_list);
1018 		bss->pub.hidden_beacon_bss = &new->pub;
1019 		new->refcount += bss->refcount;
1020 		rcu_assign_pointer(bss->pub.beacon_ies,
1021 				   new->pub.beacon_ies);
1022 	}
1023 
1024 	WARN_ONCE(n_entries != rdev->bss_entries,
1025 		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1026 		  rdev->bss_entries, n_entries);
1027 
1028 	return true;
1029 }
1030 
1031 struct cfg80211_non_tx_bss {
1032 	struct cfg80211_bss *tx_bss;
1033 	u8 max_bssid_indicator;
1034 	u8 bssid_index;
1035 };
1036 
1037 /* Returned bss is reference counted and must be cleaned up appropriately. */
1038 static struct cfg80211_internal_bss *
1039 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1040 		    struct cfg80211_internal_bss *tmp,
1041 		    bool signal_valid)
1042 {
1043 	struct cfg80211_internal_bss *found = NULL;
1044 
1045 	if (WARN_ON(!tmp->pub.channel))
1046 		return NULL;
1047 
1048 	tmp->ts = jiffies;
1049 
1050 	spin_lock_bh(&rdev->bss_lock);
1051 
1052 	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1053 		spin_unlock_bh(&rdev->bss_lock);
1054 		return NULL;
1055 	}
1056 
1057 	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1058 
1059 	if (found) {
1060 		/* Update IEs */
1061 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1062 			const struct cfg80211_bss_ies *old;
1063 
1064 			old = rcu_access_pointer(found->pub.proberesp_ies);
1065 
1066 			rcu_assign_pointer(found->pub.proberesp_ies,
1067 					   tmp->pub.proberesp_ies);
1068 			/* Override possible earlier Beacon frame IEs */
1069 			rcu_assign_pointer(found->pub.ies,
1070 					   tmp->pub.proberesp_ies);
1071 			if (old)
1072 				kfree_rcu((struct cfg80211_bss_ies *)old,
1073 					  rcu_head);
1074 		} else if (rcu_access_pointer(tmp->pub.beacon_ies)) {
1075 			const struct cfg80211_bss_ies *old;
1076 			struct cfg80211_internal_bss *bss;
1077 
1078 			if (found->pub.hidden_beacon_bss &&
1079 			    !list_empty(&found->hidden_list)) {
1080 				const struct cfg80211_bss_ies *f;
1081 
1082 				/*
1083 				 * The found BSS struct is one of the probe
1084 				 * response members of a group, but we're
1085 				 * receiving a beacon (beacon_ies in the tmp
1086 				 * bss is used). This can only mean that the
1087 				 * AP changed its beacon from not having an
1088 				 * SSID to showing it, which is confusing so
1089 				 * drop this information.
1090 				 */
1091 
1092 				f = rcu_access_pointer(tmp->pub.beacon_ies);
1093 				kfree_rcu((struct cfg80211_bss_ies *)f,
1094 					  rcu_head);
1095 				goto drop;
1096 			}
1097 
1098 			old = rcu_access_pointer(found->pub.beacon_ies);
1099 
1100 			rcu_assign_pointer(found->pub.beacon_ies,
1101 					   tmp->pub.beacon_ies);
1102 
1103 			/* Override IEs if they were from a beacon before */
1104 			if (old == rcu_access_pointer(found->pub.ies))
1105 				rcu_assign_pointer(found->pub.ies,
1106 						   tmp->pub.beacon_ies);
1107 
1108 			/* Assign beacon IEs to all sub entries */
1109 			list_for_each_entry(bss, &found->hidden_list,
1110 					    hidden_list) {
1111 				const struct cfg80211_bss_ies *ies;
1112 
1113 				ies = rcu_access_pointer(bss->pub.beacon_ies);
1114 				WARN_ON(ies != old);
1115 
1116 				rcu_assign_pointer(bss->pub.beacon_ies,
1117 						   tmp->pub.beacon_ies);
1118 			}
1119 
1120 			if (old)
1121 				kfree_rcu((struct cfg80211_bss_ies *)old,
1122 					  rcu_head);
1123 		}
1124 
1125 		found->pub.beacon_interval = tmp->pub.beacon_interval;
1126 		/*
1127 		 * don't update the signal if beacon was heard on
1128 		 * adjacent channel.
1129 		 */
1130 		if (signal_valid)
1131 			found->pub.signal = tmp->pub.signal;
1132 		found->pub.capability = tmp->pub.capability;
1133 		found->ts = tmp->ts;
1134 		found->ts_boottime = tmp->ts_boottime;
1135 		found->parent_tsf = tmp->parent_tsf;
1136 		found->pub.chains = tmp->pub.chains;
1137 		memcpy(found->pub.chain_signal, tmp->pub.chain_signal,
1138 		       IEEE80211_MAX_CHAINS);
1139 		ether_addr_copy(found->parent_bssid, tmp->parent_bssid);
1140 		found->pub.max_bssid_indicator = tmp->pub.max_bssid_indicator;
1141 		found->pub.bssid_index = tmp->pub.bssid_index;
1142 	} else {
1143 		struct cfg80211_internal_bss *new;
1144 		struct cfg80211_internal_bss *hidden;
1145 		struct cfg80211_bss_ies *ies;
1146 
1147 		/*
1148 		 * create a copy -- the "res" variable that is passed in
1149 		 * is allocated on the stack since it's not needed in the
1150 		 * more common case of an update
1151 		 */
1152 		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1153 			      GFP_ATOMIC);
1154 		if (!new) {
1155 			ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1156 			if (ies)
1157 				kfree_rcu(ies, rcu_head);
1158 			ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1159 			if (ies)
1160 				kfree_rcu(ies, rcu_head);
1161 			goto drop;
1162 		}
1163 		memcpy(new, tmp, sizeof(*new));
1164 		new->refcount = 1;
1165 		INIT_LIST_HEAD(&new->hidden_list);
1166 		INIT_LIST_HEAD(&new->pub.nontrans_list);
1167 
1168 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1169 			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1170 			if (!hidden)
1171 				hidden = rb_find_bss(rdev, tmp,
1172 						     BSS_CMP_HIDE_NUL);
1173 			if (hidden) {
1174 				new->pub.hidden_beacon_bss = &hidden->pub;
1175 				list_add(&new->hidden_list,
1176 					 &hidden->hidden_list);
1177 				hidden->refcount++;
1178 				rcu_assign_pointer(new->pub.beacon_ies,
1179 						   hidden->pub.beacon_ies);
1180 			}
1181 		} else {
1182 			/*
1183 			 * Ok so we found a beacon, and don't have an entry. If
1184 			 * it's a beacon with hidden SSID, we might be in for an
1185 			 * expensive search for any probe responses that should
1186 			 * be grouped with this beacon for updates ...
1187 			 */
1188 			if (!cfg80211_combine_bsses(rdev, new)) {
1189 				kfree(new);
1190 				goto drop;
1191 			}
1192 		}
1193 
1194 		if (rdev->bss_entries >= bss_entries_limit &&
1195 		    !cfg80211_bss_expire_oldest(rdev)) {
1196 			kfree(new);
1197 			goto drop;
1198 		}
1199 
1200 		/* This must be before the call to bss_ref_get */
1201 		if (tmp->pub.transmitted_bss) {
1202 			struct cfg80211_internal_bss *pbss =
1203 				container_of(tmp->pub.transmitted_bss,
1204 					     struct cfg80211_internal_bss,
1205 					     pub);
1206 
1207 			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1208 			bss_ref_get(rdev, pbss);
1209 		}
1210 
1211 		list_add_tail(&new->list, &rdev->bss_list);
1212 		rdev->bss_entries++;
1213 		rb_insert_bss(rdev, new);
1214 		found = new;
1215 	}
1216 
1217 	rdev->bss_generation++;
1218 	bss_ref_get(rdev, found);
1219 	spin_unlock_bh(&rdev->bss_lock);
1220 
1221 	return found;
1222  drop:
1223 	spin_unlock_bh(&rdev->bss_lock);
1224 	return NULL;
1225 }
1226 
1227 /*
1228  * Update RX channel information based on the available frame payload
1229  * information. This is mainly for the 2.4 GHz band where frames can be received
1230  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1231  * element to indicate the current (transmitting) channel, but this might also
1232  * be needed on other bands if RX frequency does not match with the actual
1233  * operating channel of a BSS.
1234  */
1235 static struct ieee80211_channel *
1236 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1237 			 struct ieee80211_channel *channel,
1238 			 enum nl80211_bss_scan_width scan_width)
1239 {
1240 	const u8 *tmp;
1241 	u32 freq;
1242 	int channel_number = -1;
1243 	struct ieee80211_channel *alt_channel;
1244 
1245 	tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1246 	if (tmp && tmp[1] == 1) {
1247 		channel_number = tmp[2];
1248 	} else {
1249 		tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1250 		if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1251 			struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1252 
1253 			channel_number = htop->primary_chan;
1254 		}
1255 	}
1256 
1257 	if (channel_number < 0) {
1258 		/* No channel information in frame payload */
1259 		return channel;
1260 	}
1261 
1262 	freq = ieee80211_channel_to_frequency(channel_number, channel->band);
1263 	alt_channel = ieee80211_get_channel(wiphy, freq);
1264 	if (!alt_channel) {
1265 		if (channel->band == NL80211_BAND_2GHZ) {
1266 			/*
1267 			 * Better not allow unexpected channels when that could
1268 			 * be going beyond the 1-11 range (e.g., discovering
1269 			 * BSS on channel 12 when radio is configured for
1270 			 * channel 11.
1271 			 */
1272 			return NULL;
1273 		}
1274 
1275 		/* No match for the payload channel number - ignore it */
1276 		return channel;
1277 	}
1278 
1279 	if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1280 	    scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1281 		/*
1282 		 * Ignore channel number in 5 and 10 MHz channels where there
1283 		 * may not be an n:1 or 1:n mapping between frequencies and
1284 		 * channel numbers.
1285 		 */
1286 		return channel;
1287 	}
1288 
1289 	/*
1290 	 * Use the channel determined through the payload channel number
1291 	 * instead of the RX channel reported by the driver.
1292 	 */
1293 	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1294 		return NULL;
1295 	return alt_channel;
1296 }
1297 
1298 /* Returned bss is reference counted and must be cleaned up appropriately. */
1299 static struct cfg80211_bss *
1300 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1301 				struct cfg80211_inform_bss *data,
1302 				enum cfg80211_bss_frame_type ftype,
1303 				const u8 *bssid, u64 tsf, u16 capability,
1304 				u16 beacon_interval, const u8 *ie, size_t ielen,
1305 				struct cfg80211_non_tx_bss *non_tx_data,
1306 				gfp_t gfp)
1307 {
1308 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1309 	struct cfg80211_bss_ies *ies;
1310 	struct ieee80211_channel *channel;
1311 	struct cfg80211_internal_bss tmp = {}, *res;
1312 	int bss_type;
1313 	bool signal_valid;
1314 
1315 	if (WARN_ON(!wiphy))
1316 		return NULL;
1317 
1318 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1319 		    (data->signal < 0 || data->signal > 100)))
1320 		return NULL;
1321 
1322 	channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1323 					   data->scan_width);
1324 	if (!channel)
1325 		return NULL;
1326 
1327 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1328 	tmp.pub.channel = channel;
1329 	tmp.pub.scan_width = data->scan_width;
1330 	tmp.pub.signal = data->signal;
1331 	tmp.pub.beacon_interval = beacon_interval;
1332 	tmp.pub.capability = capability;
1333 	tmp.ts_boottime = data->boottime_ns;
1334 	if (non_tx_data) {
1335 		tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1336 		tmp.pub.bssid_index = non_tx_data->bssid_index;
1337 		tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1338 	}
1339 
1340 	/*
1341 	 * If we do not know here whether the IEs are from a Beacon or Probe
1342 	 * Response frame, we need to pick one of the options and only use it
1343 	 * with the driver that does not provide the full Beacon/Probe Response
1344 	 * frame. Use Beacon frame pointer to avoid indicating that this should
1345 	 * override the IEs pointer should we have received an earlier
1346 	 * indication of Probe Response data.
1347 	 */
1348 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
1349 	if (!ies)
1350 		return NULL;
1351 	ies->len = ielen;
1352 	ies->tsf = tsf;
1353 	ies->from_beacon = false;
1354 	memcpy(ies->data, ie, ielen);
1355 
1356 	switch (ftype) {
1357 	case CFG80211_BSS_FTYPE_BEACON:
1358 		ies->from_beacon = true;
1359 		/* fall through */
1360 	case CFG80211_BSS_FTYPE_UNKNOWN:
1361 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1362 		break;
1363 	case CFG80211_BSS_FTYPE_PRESP:
1364 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1365 		break;
1366 	}
1367 	rcu_assign_pointer(tmp.pub.ies, ies);
1368 
1369 	signal_valid = abs(data->chan->center_freq - channel->center_freq) <=
1370 		wiphy->max_adj_channel_rssi_comp;
1371 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid);
1372 	if (!res)
1373 		return NULL;
1374 
1375 	if (channel->band == NL80211_BAND_60GHZ) {
1376 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1377 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1378 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1379 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1380 	} else {
1381 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
1382 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1383 	}
1384 
1385 	if (non_tx_data && non_tx_data->tx_bss) {
1386 		/* this is a nontransmitting bss, we need to add it to
1387 		 * transmitting bss' list if it is not there
1388 		 */
1389 		if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
1390 					       &res->pub)) {
1391 			if (__cfg80211_unlink_bss(rdev, res))
1392 				rdev->bss_generation++;
1393 		}
1394 	}
1395 
1396 	trace_cfg80211_return_bss(&res->pub);
1397 	/* cfg80211_bss_update gives us a referenced result */
1398 	return &res->pub;
1399 }
1400 
1401 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
1402 				       struct cfg80211_inform_bss *data,
1403 				       enum cfg80211_bss_frame_type ftype,
1404 				       const u8 *bssid, u64 tsf,
1405 				       u16 beacon_interval, const u8 *ie,
1406 				       size_t ielen,
1407 				       struct cfg80211_non_tx_bss *non_tx_data,
1408 				       gfp_t gfp)
1409 {
1410 	const u8 *mbssid_index_ie;
1411 	const struct element *elem, *sub;
1412 	size_t new_ie_len;
1413 	u8 new_bssid[ETH_ALEN];
1414 	u8 *new_ie;
1415 	u16 capability;
1416 	struct cfg80211_bss *bss;
1417 
1418 	if (!non_tx_data)
1419 		return;
1420 	if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
1421 		return;
1422 	if (!wiphy->support_mbssid)
1423 		return;
1424 	if (wiphy->support_only_he_mbssid &&
1425 	    !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
1426 		return;
1427 
1428 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
1429 	if (!new_ie)
1430 		return;
1431 
1432 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
1433 		if (elem->datalen < 4)
1434 			continue;
1435 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
1436 			if (sub->id != 0 || sub->datalen < 4) {
1437 				/* not a valid BSS profile */
1438 				continue;
1439 			}
1440 
1441 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
1442 			    sub->data[1] != 2) {
1443 				/* The first element within the Nontransmitted
1444 				 * BSSID Profile is not the Nontransmitted
1445 				 * BSSID Capability element.
1446 				 */
1447 				continue;
1448 			}
1449 
1450 			/* found a Nontransmitted BSSID Profile */
1451 			mbssid_index_ie = cfg80211_find_ie
1452 				(WLAN_EID_MULTI_BSSID_IDX,
1453 				 sub->data, sub->datalen);
1454 			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
1455 			    mbssid_index_ie[2] == 0) {
1456 				/* No valid Multiple BSSID-Index element */
1457 				continue;
1458 			}
1459 
1460 			non_tx_data->bssid_index = mbssid_index_ie[2];
1461 			non_tx_data->max_bssid_indicator = elem->data[0];
1462 
1463 			cfg80211_gen_new_bssid(bssid,
1464 					       non_tx_data->max_bssid_indicator,
1465 					       non_tx_data->bssid_index,
1466 					       new_bssid);
1467 			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
1468 			new_ie_len = cfg80211_gen_new_ie(ie, ielen, sub->data,
1469 							 sub->datalen, new_ie,
1470 							 gfp);
1471 			if (!new_ie_len)
1472 				continue;
1473 
1474 			capability = get_unaligned_le16(sub->data + 2);
1475 			bss = cfg80211_inform_single_bss_data(wiphy, data,
1476 							      ftype,
1477 							      new_bssid, tsf,
1478 							      capability,
1479 							      beacon_interval,
1480 							      new_ie,
1481 							      new_ie_len,
1482 							      non_tx_data,
1483 							      gfp);
1484 			if (!bss)
1485 				break;
1486 			cfg80211_put_bss(wiphy, bss);
1487 		}
1488 	}
1489 
1490 	kfree(new_ie);
1491 }
1492 
1493 struct cfg80211_bss *
1494 cfg80211_inform_bss_data(struct wiphy *wiphy,
1495 			 struct cfg80211_inform_bss *data,
1496 			 enum cfg80211_bss_frame_type ftype,
1497 			 const u8 *bssid, u64 tsf, u16 capability,
1498 			 u16 beacon_interval, const u8 *ie, size_t ielen,
1499 			 gfp_t gfp)
1500 {
1501 	struct cfg80211_bss *res;
1502 	struct cfg80211_non_tx_bss non_tx_data;
1503 
1504 	res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
1505 					      capability, beacon_interval, ie,
1506 					      ielen, NULL, gfp);
1507 	non_tx_data.tx_bss = res;
1508 	cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
1509 				   beacon_interval, ie, ielen, &non_tx_data,
1510 				   gfp);
1511 	return res;
1512 }
1513 EXPORT_SYMBOL(cfg80211_inform_bss_data);
1514 
1515 static void
1516 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
1517 				 struct cfg80211_inform_bss *data,
1518 				 struct ieee80211_mgmt *mgmt, size_t len,
1519 				 struct cfg80211_non_tx_bss *non_tx_data,
1520 				 gfp_t gfp)
1521 {
1522 	enum cfg80211_bss_frame_type ftype;
1523 	const u8 *ie = mgmt->u.probe_resp.variable;
1524 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
1525 				      u.probe_resp.variable);
1526 
1527 	ftype = ieee80211_is_beacon(mgmt->frame_control) ?
1528 		CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
1529 
1530 	cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
1531 				   le64_to_cpu(mgmt->u.probe_resp.timestamp),
1532 				   le16_to_cpu(mgmt->u.probe_resp.beacon_int),
1533 				   ie, ielen, non_tx_data, gfp);
1534 }
1535 
1536 static void
1537 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
1538 				   struct cfg80211_bss *nontrans_bss,
1539 				   struct ieee80211_mgmt *mgmt, size_t len,
1540 				   gfp_t gfp)
1541 {
1542 	u8 *ie, *new_ie, *pos;
1543 	const u8 *nontrans_ssid, *trans_ssid, *mbssid;
1544 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
1545 				      u.probe_resp.variable);
1546 	size_t new_ie_len;
1547 	struct cfg80211_bss_ies *new_ies;
1548 	const struct cfg80211_bss_ies *old;
1549 	u8 cpy_len;
1550 
1551 	ie = mgmt->u.probe_resp.variable;
1552 
1553 	new_ie_len = ielen;
1554 	trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
1555 	if (!trans_ssid)
1556 		return;
1557 	new_ie_len -= trans_ssid[1];
1558 	mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
1559 	if (!mbssid)
1560 		return;
1561 	new_ie_len -= mbssid[1];
1562 	rcu_read_lock();
1563 	nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
1564 	if (!nontrans_ssid) {
1565 		rcu_read_unlock();
1566 		return;
1567 	}
1568 	new_ie_len += nontrans_ssid[1];
1569 	rcu_read_unlock();
1570 
1571 	/* generate new ie for nontrans BSS
1572 	 * 1. replace SSID with nontrans BSS' SSID
1573 	 * 2. skip MBSSID IE
1574 	 */
1575 	new_ie = kzalloc(new_ie_len, gfp);
1576 	if (!new_ie)
1577 		return;
1578 	new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, gfp);
1579 	if (!new_ies)
1580 		goto out_free;
1581 
1582 	pos = new_ie;
1583 
1584 	/* copy the nontransmitted SSID */
1585 	cpy_len = nontrans_ssid[1] + 2;
1586 	memcpy(pos, nontrans_ssid, cpy_len);
1587 	pos += cpy_len;
1588 	/* copy the IEs between SSID and MBSSID */
1589 	cpy_len = trans_ssid[1] + 2;
1590 	memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
1591 	pos += (mbssid - (trans_ssid + cpy_len));
1592 	/* copy the IEs after MBSSID */
1593 	cpy_len = mbssid[1] + 2;
1594 	memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
1595 
1596 	/* update ie */
1597 	new_ies->len = new_ie_len;
1598 	new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
1599 	new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
1600 	memcpy(new_ies->data, new_ie, new_ie_len);
1601 	if (ieee80211_is_probe_resp(mgmt->frame_control)) {
1602 		old = rcu_access_pointer(nontrans_bss->proberesp_ies);
1603 		rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
1604 		rcu_assign_pointer(nontrans_bss->ies, new_ies);
1605 		if (old)
1606 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1607 	} else {
1608 		old = rcu_access_pointer(nontrans_bss->beacon_ies);
1609 		rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
1610 		rcu_assign_pointer(nontrans_bss->ies, new_ies);
1611 		if (old)
1612 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1613 	}
1614 
1615 out_free:
1616 	kfree(new_ie);
1617 }
1618 
1619 /* cfg80211_inform_bss_width_frame helper */
1620 static struct cfg80211_bss *
1621 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
1622 				      struct cfg80211_inform_bss *data,
1623 				      struct ieee80211_mgmt *mgmt, size_t len,
1624 				      struct cfg80211_non_tx_bss *non_tx_data,
1625 				      gfp_t gfp)
1626 {
1627 	struct cfg80211_internal_bss tmp = {}, *res;
1628 	struct cfg80211_bss_ies *ies;
1629 	struct ieee80211_channel *channel;
1630 	bool signal_valid;
1631 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
1632 				      u.probe_resp.variable);
1633 	int bss_type;
1634 
1635 	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
1636 			offsetof(struct ieee80211_mgmt, u.beacon.variable));
1637 
1638 	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
1639 
1640 	if (WARN_ON(!mgmt))
1641 		return NULL;
1642 
1643 	if (WARN_ON(!wiphy))
1644 		return NULL;
1645 
1646 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1647 		    (data->signal < 0 || data->signal > 100)))
1648 		return NULL;
1649 
1650 	if (WARN_ON(len < offsetof(struct ieee80211_mgmt, u.probe_resp.variable)))
1651 		return NULL;
1652 
1653 	channel = cfg80211_get_bss_channel(wiphy, mgmt->u.beacon.variable,
1654 					   ielen, data->chan, data->scan_width);
1655 	if (!channel)
1656 		return NULL;
1657 
1658 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
1659 	if (!ies)
1660 		return NULL;
1661 	ies->len = ielen;
1662 	ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
1663 	ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
1664 	memcpy(ies->data, mgmt->u.probe_resp.variable, ielen);
1665 
1666 	if (ieee80211_is_probe_resp(mgmt->frame_control))
1667 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1668 	else
1669 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1670 	rcu_assign_pointer(tmp.pub.ies, ies);
1671 
1672 	memcpy(tmp.pub.bssid, mgmt->bssid, ETH_ALEN);
1673 	tmp.pub.channel = channel;
1674 	tmp.pub.scan_width = data->scan_width;
1675 	tmp.pub.signal = data->signal;
1676 	tmp.pub.beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
1677 	tmp.pub.capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
1678 	tmp.ts_boottime = data->boottime_ns;
1679 	tmp.parent_tsf = data->parent_tsf;
1680 	tmp.pub.chains = data->chains;
1681 	memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
1682 	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1683 	if (non_tx_data) {
1684 		tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1685 		tmp.pub.bssid_index = non_tx_data->bssid_index;
1686 		tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1687 	}
1688 
1689 	signal_valid = abs(data->chan->center_freq - channel->center_freq) <=
1690 		wiphy->max_adj_channel_rssi_comp;
1691 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid);
1692 	if (!res)
1693 		return NULL;
1694 
1695 	if (channel->band == NL80211_BAND_60GHZ) {
1696 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1697 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1698 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1699 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1700 	} else {
1701 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
1702 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1703 	}
1704 
1705 	trace_cfg80211_return_bss(&res->pub);
1706 	/* cfg80211_bss_update gives us a referenced result */
1707 	return &res->pub;
1708 }
1709 
1710 struct cfg80211_bss *
1711 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
1712 			       struct cfg80211_inform_bss *data,
1713 			       struct ieee80211_mgmt *mgmt, size_t len,
1714 			       gfp_t gfp)
1715 {
1716 	struct cfg80211_bss *res, *tmp_bss;
1717 	const u8 *ie = mgmt->u.probe_resp.variable;
1718 	const struct cfg80211_bss_ies *ies1, *ies2;
1719 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
1720 				      u.probe_resp.variable);
1721 	struct cfg80211_non_tx_bss non_tx_data;
1722 
1723 	res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
1724 						    len, NULL, gfp);
1725 	if (!res || !wiphy->support_mbssid ||
1726 	    !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
1727 		return res;
1728 	if (wiphy->support_only_he_mbssid &&
1729 	    !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
1730 		return res;
1731 
1732 	non_tx_data.tx_bss = res;
1733 	/* process each non-transmitting bss */
1734 	cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
1735 					 &non_tx_data, gfp);
1736 
1737 	/* check if the res has other nontransmitting bss which is not
1738 	 * in MBSSID IE
1739 	 */
1740 	ies1 = rcu_access_pointer(res->ies);
1741 
1742 	/* go through nontrans_list, if the timestamp of the BSS is
1743 	 * earlier than the timestamp of the transmitting BSS then
1744 	 * update it
1745 	 */
1746 	list_for_each_entry(tmp_bss, &res->nontrans_list,
1747 			    nontrans_list) {
1748 		ies2 = rcu_access_pointer(tmp_bss->ies);
1749 		if (ies2->tsf < ies1->tsf)
1750 			cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
1751 							   mgmt, len, gfp);
1752 	}
1753 
1754 	return res;
1755 }
1756 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
1757 
1758 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1759 {
1760 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1761 	struct cfg80211_internal_bss *bss;
1762 
1763 	if (!pub)
1764 		return;
1765 
1766 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
1767 
1768 	spin_lock_bh(&rdev->bss_lock);
1769 	bss_ref_get(rdev, bss);
1770 	spin_unlock_bh(&rdev->bss_lock);
1771 }
1772 EXPORT_SYMBOL(cfg80211_ref_bss);
1773 
1774 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1775 {
1776 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1777 	struct cfg80211_internal_bss *bss;
1778 
1779 	if (!pub)
1780 		return;
1781 
1782 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
1783 
1784 	spin_lock_bh(&rdev->bss_lock);
1785 	bss_ref_put(rdev, bss);
1786 	spin_unlock_bh(&rdev->bss_lock);
1787 }
1788 EXPORT_SYMBOL(cfg80211_put_bss);
1789 
1790 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1791 {
1792 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1793 	struct cfg80211_internal_bss *bss, *tmp1;
1794 	struct cfg80211_bss *nontrans_bss, *tmp;
1795 
1796 	if (WARN_ON(!pub))
1797 		return;
1798 
1799 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
1800 
1801 	spin_lock_bh(&rdev->bss_lock);
1802 	if (list_empty(&bss->list))
1803 		goto out;
1804 
1805 	list_for_each_entry_safe(nontrans_bss, tmp,
1806 				 &pub->nontrans_list,
1807 				 nontrans_list) {
1808 		tmp1 = container_of(nontrans_bss,
1809 				    struct cfg80211_internal_bss, pub);
1810 		if (__cfg80211_unlink_bss(rdev, tmp1))
1811 			rdev->bss_generation++;
1812 	}
1813 
1814 	if (__cfg80211_unlink_bss(rdev, bss))
1815 		rdev->bss_generation++;
1816 out:
1817 	spin_unlock_bh(&rdev->bss_lock);
1818 }
1819 EXPORT_SYMBOL(cfg80211_unlink_bss);
1820 
1821 #ifdef CONFIG_CFG80211_WEXT
1822 static struct cfg80211_registered_device *
1823 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
1824 {
1825 	struct cfg80211_registered_device *rdev;
1826 	struct net_device *dev;
1827 
1828 	ASSERT_RTNL();
1829 
1830 	dev = dev_get_by_index(net, ifindex);
1831 	if (!dev)
1832 		return ERR_PTR(-ENODEV);
1833 	if (dev->ieee80211_ptr)
1834 		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
1835 	else
1836 		rdev = ERR_PTR(-ENODEV);
1837 	dev_put(dev);
1838 	return rdev;
1839 }
1840 
1841 int cfg80211_wext_siwscan(struct net_device *dev,
1842 			  struct iw_request_info *info,
1843 			  union iwreq_data *wrqu, char *extra)
1844 {
1845 	struct cfg80211_registered_device *rdev;
1846 	struct wiphy *wiphy;
1847 	struct iw_scan_req *wreq = NULL;
1848 	struct cfg80211_scan_request *creq = NULL;
1849 	int i, err, n_channels = 0;
1850 	enum nl80211_band band;
1851 
1852 	if (!netif_running(dev))
1853 		return -ENETDOWN;
1854 
1855 	if (wrqu->data.length == sizeof(struct iw_scan_req))
1856 		wreq = (struct iw_scan_req *)extra;
1857 
1858 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
1859 
1860 	if (IS_ERR(rdev))
1861 		return PTR_ERR(rdev);
1862 
1863 	if (rdev->scan_req || rdev->scan_msg) {
1864 		err = -EBUSY;
1865 		goto out;
1866 	}
1867 
1868 	wiphy = &rdev->wiphy;
1869 
1870 	/* Determine number of channels, needed to allocate creq */
1871 	if (wreq && wreq->num_channels)
1872 		n_channels = wreq->num_channels;
1873 	else
1874 		n_channels = ieee80211_get_num_supported_channels(wiphy);
1875 
1876 	creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
1877 		       n_channels * sizeof(void *),
1878 		       GFP_ATOMIC);
1879 	if (!creq) {
1880 		err = -ENOMEM;
1881 		goto out;
1882 	}
1883 
1884 	creq->wiphy = wiphy;
1885 	creq->wdev = dev->ieee80211_ptr;
1886 	/* SSIDs come after channels */
1887 	creq->ssids = (void *)&creq->channels[n_channels];
1888 	creq->n_channels = n_channels;
1889 	creq->n_ssids = 1;
1890 	creq->scan_start = jiffies;
1891 
1892 	/* translate "Scan on frequencies" request */
1893 	i = 0;
1894 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
1895 		int j;
1896 
1897 		if (!wiphy->bands[band])
1898 			continue;
1899 
1900 		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
1901 			/* ignore disabled channels */
1902 			if (wiphy->bands[band]->channels[j].flags &
1903 						IEEE80211_CHAN_DISABLED)
1904 				continue;
1905 
1906 			/* If we have a wireless request structure and the
1907 			 * wireless request specifies frequencies, then search
1908 			 * for the matching hardware channel.
1909 			 */
1910 			if (wreq && wreq->num_channels) {
1911 				int k;
1912 				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
1913 				for (k = 0; k < wreq->num_channels; k++) {
1914 					struct iw_freq *freq =
1915 						&wreq->channel_list[k];
1916 					int wext_freq =
1917 						cfg80211_wext_freq(freq);
1918 
1919 					if (wext_freq == wiphy_freq)
1920 						goto wext_freq_found;
1921 				}
1922 				goto wext_freq_not_found;
1923 			}
1924 
1925 		wext_freq_found:
1926 			creq->channels[i] = &wiphy->bands[band]->channels[j];
1927 			i++;
1928 		wext_freq_not_found: ;
1929 		}
1930 	}
1931 	/* No channels found? */
1932 	if (!i) {
1933 		err = -EINVAL;
1934 		goto out;
1935 	}
1936 
1937 	/* Set real number of channels specified in creq->channels[] */
1938 	creq->n_channels = i;
1939 
1940 	/* translate "Scan for SSID" request */
1941 	if (wreq) {
1942 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
1943 			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
1944 				err = -EINVAL;
1945 				goto out;
1946 			}
1947 			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
1948 			creq->ssids[0].ssid_len = wreq->essid_len;
1949 		}
1950 		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
1951 			creq->n_ssids = 0;
1952 	}
1953 
1954 	for (i = 0; i < NUM_NL80211_BANDS; i++)
1955 		if (wiphy->bands[i])
1956 			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
1957 
1958 	eth_broadcast_addr(creq->bssid);
1959 
1960 	rdev->scan_req = creq;
1961 	err = rdev_scan(rdev, creq);
1962 	if (err) {
1963 		rdev->scan_req = NULL;
1964 		/* creq will be freed below */
1965 	} else {
1966 		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
1967 		/* creq now owned by driver */
1968 		creq = NULL;
1969 		dev_hold(dev);
1970 	}
1971  out:
1972 	kfree(creq);
1973 	return err;
1974 }
1975 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
1976 
1977 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
1978 				    const struct cfg80211_bss_ies *ies,
1979 				    char *current_ev, char *end_buf)
1980 {
1981 	const u8 *pos, *end, *next;
1982 	struct iw_event iwe;
1983 
1984 	if (!ies)
1985 		return current_ev;
1986 
1987 	/*
1988 	 * If needed, fragment the IEs buffer (at IE boundaries) into short
1989 	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
1990 	 */
1991 	pos = ies->data;
1992 	end = pos + ies->len;
1993 
1994 	while (end - pos > IW_GENERIC_IE_MAX) {
1995 		next = pos + 2 + pos[1];
1996 		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
1997 			next = next + 2 + next[1];
1998 
1999 		memset(&iwe, 0, sizeof(iwe));
2000 		iwe.cmd = IWEVGENIE;
2001 		iwe.u.data.length = next - pos;
2002 		current_ev = iwe_stream_add_point_check(info, current_ev,
2003 							end_buf, &iwe,
2004 							(void *)pos);
2005 		if (IS_ERR(current_ev))
2006 			return current_ev;
2007 		pos = next;
2008 	}
2009 
2010 	if (end > pos) {
2011 		memset(&iwe, 0, sizeof(iwe));
2012 		iwe.cmd = IWEVGENIE;
2013 		iwe.u.data.length = end - pos;
2014 		current_ev = iwe_stream_add_point_check(info, current_ev,
2015 							end_buf, &iwe,
2016 							(void *)pos);
2017 		if (IS_ERR(current_ev))
2018 			return current_ev;
2019 	}
2020 
2021 	return current_ev;
2022 }
2023 
2024 static char *
2025 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2026 	      struct cfg80211_internal_bss *bss, char *current_ev,
2027 	      char *end_buf)
2028 {
2029 	const struct cfg80211_bss_ies *ies;
2030 	struct iw_event iwe;
2031 	const u8 *ie;
2032 	u8 buf[50];
2033 	u8 *cfg, *p, *tmp;
2034 	int rem, i, sig;
2035 	bool ismesh = false;
2036 
2037 	memset(&iwe, 0, sizeof(iwe));
2038 	iwe.cmd = SIOCGIWAP;
2039 	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2040 	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2041 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2042 						IW_EV_ADDR_LEN);
2043 	if (IS_ERR(current_ev))
2044 		return current_ev;
2045 
2046 	memset(&iwe, 0, sizeof(iwe));
2047 	iwe.cmd = SIOCGIWFREQ;
2048 	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2049 	iwe.u.freq.e = 0;
2050 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2051 						IW_EV_FREQ_LEN);
2052 	if (IS_ERR(current_ev))
2053 		return current_ev;
2054 
2055 	memset(&iwe, 0, sizeof(iwe));
2056 	iwe.cmd = SIOCGIWFREQ;
2057 	iwe.u.freq.m = bss->pub.channel->center_freq;
2058 	iwe.u.freq.e = 6;
2059 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2060 						IW_EV_FREQ_LEN);
2061 	if (IS_ERR(current_ev))
2062 		return current_ev;
2063 
2064 	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2065 		memset(&iwe, 0, sizeof(iwe));
2066 		iwe.cmd = IWEVQUAL;
2067 		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2068 				     IW_QUAL_NOISE_INVALID |
2069 				     IW_QUAL_QUAL_UPDATED;
2070 		switch (wiphy->signal_type) {
2071 		case CFG80211_SIGNAL_TYPE_MBM:
2072 			sig = bss->pub.signal / 100;
2073 			iwe.u.qual.level = sig;
2074 			iwe.u.qual.updated |= IW_QUAL_DBM;
2075 			if (sig < -110)		/* rather bad */
2076 				sig = -110;
2077 			else if (sig > -40)	/* perfect */
2078 				sig = -40;
2079 			/* will give a range of 0 .. 70 */
2080 			iwe.u.qual.qual = sig + 110;
2081 			break;
2082 		case CFG80211_SIGNAL_TYPE_UNSPEC:
2083 			iwe.u.qual.level = bss->pub.signal;
2084 			/* will give range 0 .. 100 */
2085 			iwe.u.qual.qual = bss->pub.signal;
2086 			break;
2087 		default:
2088 			/* not reached */
2089 			break;
2090 		}
2091 		current_ev = iwe_stream_add_event_check(info, current_ev,
2092 							end_buf, &iwe,
2093 							IW_EV_QUAL_LEN);
2094 		if (IS_ERR(current_ev))
2095 			return current_ev;
2096 	}
2097 
2098 	memset(&iwe, 0, sizeof(iwe));
2099 	iwe.cmd = SIOCGIWENCODE;
2100 	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2101 		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2102 	else
2103 		iwe.u.data.flags = IW_ENCODE_DISABLED;
2104 	iwe.u.data.length = 0;
2105 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2106 						&iwe, "");
2107 	if (IS_ERR(current_ev))
2108 		return current_ev;
2109 
2110 	rcu_read_lock();
2111 	ies = rcu_dereference(bss->pub.ies);
2112 	rem = ies->len;
2113 	ie = ies->data;
2114 
2115 	while (rem >= 2) {
2116 		/* invalid data */
2117 		if (ie[1] > rem - 2)
2118 			break;
2119 
2120 		switch (ie[0]) {
2121 		case WLAN_EID_SSID:
2122 			memset(&iwe, 0, sizeof(iwe));
2123 			iwe.cmd = SIOCGIWESSID;
2124 			iwe.u.data.length = ie[1];
2125 			iwe.u.data.flags = 1;
2126 			current_ev = iwe_stream_add_point_check(info,
2127 								current_ev,
2128 								end_buf, &iwe,
2129 								(u8 *)ie + 2);
2130 			if (IS_ERR(current_ev))
2131 				goto unlock;
2132 			break;
2133 		case WLAN_EID_MESH_ID:
2134 			memset(&iwe, 0, sizeof(iwe));
2135 			iwe.cmd = SIOCGIWESSID;
2136 			iwe.u.data.length = ie[1];
2137 			iwe.u.data.flags = 1;
2138 			current_ev = iwe_stream_add_point_check(info,
2139 								current_ev,
2140 								end_buf, &iwe,
2141 								(u8 *)ie + 2);
2142 			if (IS_ERR(current_ev))
2143 				goto unlock;
2144 			break;
2145 		case WLAN_EID_MESH_CONFIG:
2146 			ismesh = true;
2147 			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
2148 				break;
2149 			cfg = (u8 *)ie + 2;
2150 			memset(&iwe, 0, sizeof(iwe));
2151 			iwe.cmd = IWEVCUSTOM;
2152 			sprintf(buf, "Mesh Network Path Selection Protocol ID: "
2153 				"0x%02X", cfg[0]);
2154 			iwe.u.data.length = strlen(buf);
2155 			current_ev = iwe_stream_add_point_check(info,
2156 								current_ev,
2157 								end_buf,
2158 								&iwe, buf);
2159 			if (IS_ERR(current_ev))
2160 				goto unlock;
2161 			sprintf(buf, "Path Selection Metric ID: 0x%02X",
2162 				cfg[1]);
2163 			iwe.u.data.length = strlen(buf);
2164 			current_ev = iwe_stream_add_point_check(info,
2165 								current_ev,
2166 								end_buf,
2167 								&iwe, buf);
2168 			if (IS_ERR(current_ev))
2169 				goto unlock;
2170 			sprintf(buf, "Congestion Control Mode ID: 0x%02X",
2171 				cfg[2]);
2172 			iwe.u.data.length = strlen(buf);
2173 			current_ev = iwe_stream_add_point_check(info,
2174 								current_ev,
2175 								end_buf,
2176 								&iwe, buf);
2177 			if (IS_ERR(current_ev))
2178 				goto unlock;
2179 			sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
2180 			iwe.u.data.length = strlen(buf);
2181 			current_ev = iwe_stream_add_point_check(info,
2182 								current_ev,
2183 								end_buf,
2184 								&iwe, buf);
2185 			if (IS_ERR(current_ev))
2186 				goto unlock;
2187 			sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
2188 			iwe.u.data.length = strlen(buf);
2189 			current_ev = iwe_stream_add_point_check(info,
2190 								current_ev,
2191 								end_buf,
2192 								&iwe, buf);
2193 			if (IS_ERR(current_ev))
2194 				goto unlock;
2195 			sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
2196 			iwe.u.data.length = strlen(buf);
2197 			current_ev = iwe_stream_add_point_check(info,
2198 								current_ev,
2199 								end_buf,
2200 								&iwe, buf);
2201 			if (IS_ERR(current_ev))
2202 				goto unlock;
2203 			sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
2204 			iwe.u.data.length = strlen(buf);
2205 			current_ev = iwe_stream_add_point_check(info,
2206 								current_ev,
2207 								end_buf,
2208 								&iwe, buf);
2209 			if (IS_ERR(current_ev))
2210 				goto unlock;
2211 			break;
2212 		case WLAN_EID_SUPP_RATES:
2213 		case WLAN_EID_EXT_SUPP_RATES:
2214 			/* display all supported rates in readable format */
2215 			p = current_ev + iwe_stream_lcp_len(info);
2216 
2217 			memset(&iwe, 0, sizeof(iwe));
2218 			iwe.cmd = SIOCGIWRATE;
2219 			/* Those two flags are ignored... */
2220 			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
2221 
2222 			for (i = 0; i < ie[1]; i++) {
2223 				iwe.u.bitrate.value =
2224 					((ie[i + 2] & 0x7f) * 500000);
2225 				tmp = p;
2226 				p = iwe_stream_add_value(info, current_ev, p,
2227 							 end_buf, &iwe,
2228 							 IW_EV_PARAM_LEN);
2229 				if (p == tmp) {
2230 					current_ev = ERR_PTR(-E2BIG);
2231 					goto unlock;
2232 				}
2233 			}
2234 			current_ev = p;
2235 			break;
2236 		}
2237 		rem -= ie[1] + 2;
2238 		ie += ie[1] + 2;
2239 	}
2240 
2241 	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
2242 	    ismesh) {
2243 		memset(&iwe, 0, sizeof(iwe));
2244 		iwe.cmd = SIOCGIWMODE;
2245 		if (ismesh)
2246 			iwe.u.mode = IW_MODE_MESH;
2247 		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
2248 			iwe.u.mode = IW_MODE_MASTER;
2249 		else
2250 			iwe.u.mode = IW_MODE_ADHOC;
2251 		current_ev = iwe_stream_add_event_check(info, current_ev,
2252 							end_buf, &iwe,
2253 							IW_EV_UINT_LEN);
2254 		if (IS_ERR(current_ev))
2255 			goto unlock;
2256 	}
2257 
2258 	memset(&iwe, 0, sizeof(iwe));
2259 	iwe.cmd = IWEVCUSTOM;
2260 	sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
2261 	iwe.u.data.length = strlen(buf);
2262 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2263 						&iwe, buf);
2264 	if (IS_ERR(current_ev))
2265 		goto unlock;
2266 	memset(&iwe, 0, sizeof(iwe));
2267 	iwe.cmd = IWEVCUSTOM;
2268 	sprintf(buf, " Last beacon: %ums ago",
2269 		elapsed_jiffies_msecs(bss->ts));
2270 	iwe.u.data.length = strlen(buf);
2271 	current_ev = iwe_stream_add_point_check(info, current_ev,
2272 						end_buf, &iwe, buf);
2273 	if (IS_ERR(current_ev))
2274 		goto unlock;
2275 
2276 	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
2277 
2278  unlock:
2279 	rcu_read_unlock();
2280 	return current_ev;
2281 }
2282 
2283 
2284 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
2285 				  struct iw_request_info *info,
2286 				  char *buf, size_t len)
2287 {
2288 	char *current_ev = buf;
2289 	char *end_buf = buf + len;
2290 	struct cfg80211_internal_bss *bss;
2291 	int err = 0;
2292 
2293 	spin_lock_bh(&rdev->bss_lock);
2294 	cfg80211_bss_expire(rdev);
2295 
2296 	list_for_each_entry(bss, &rdev->bss_list, list) {
2297 		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
2298 			err = -E2BIG;
2299 			break;
2300 		}
2301 		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
2302 					   current_ev, end_buf);
2303 		if (IS_ERR(current_ev)) {
2304 			err = PTR_ERR(current_ev);
2305 			break;
2306 		}
2307 	}
2308 	spin_unlock_bh(&rdev->bss_lock);
2309 
2310 	if (err)
2311 		return err;
2312 	return current_ev - buf;
2313 }
2314 
2315 
2316 int cfg80211_wext_giwscan(struct net_device *dev,
2317 			  struct iw_request_info *info,
2318 			  struct iw_point *data, char *extra)
2319 {
2320 	struct cfg80211_registered_device *rdev;
2321 	int res;
2322 
2323 	if (!netif_running(dev))
2324 		return -ENETDOWN;
2325 
2326 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2327 
2328 	if (IS_ERR(rdev))
2329 		return PTR_ERR(rdev);
2330 
2331 	if (rdev->scan_req || rdev->scan_msg)
2332 		return -EAGAIN;
2333 
2334 	res = ieee80211_scan_results(rdev, info, extra, data->length);
2335 	data->length = 0;
2336 	if (res >= 0) {
2337 		data->length = res;
2338 		res = 0;
2339 	}
2340 
2341 	return res;
2342 }
2343 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
2344 #endif
2345