xref: /openbmc/linux/net/wireless/scan.c (revision dc3401c8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016	Intel Deutschland GmbH
8  * Copyright (C) 2018-2021 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include "core.h"
24 #include "nl80211.h"
25 #include "wext-compat.h"
26 #include "rdev-ops.h"
27 
28 /**
29  * DOC: BSS tree/list structure
30  *
31  * At the top level, the BSS list is kept in both a list in each
32  * registered device (@bss_list) as well as an RB-tree for faster
33  * lookup. In the RB-tree, entries can be looked up using their
34  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35  * for other BSSes.
36  *
37  * Due to the possibility of hidden SSIDs, there's a second level
38  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39  * The hidden_list connects all BSSes belonging to a single AP
40  * that has a hidden SSID, and connects beacon and probe response
41  * entries. For a probe response entry for a hidden SSID, the
42  * hidden_beacon_bss pointer points to the BSS struct holding the
43  * beacon's information.
44  *
45  * Reference counting is done for all these references except for
46  * the hidden_list, so that a beacon BSS struct that is otherwise
47  * not referenced has one reference for being on the bss_list and
48  * one for each probe response entry that points to it using the
49  * hidden_beacon_bss pointer. When a BSS struct that has such a
50  * pointer is get/put, the refcount update is also propagated to
51  * the referenced struct, this ensure that it cannot get removed
52  * while somebody is using the probe response version.
53  *
54  * Note that the hidden_beacon_bss pointer never changes, due to
55  * the reference counting. Therefore, no locking is needed for
56  * it.
57  *
58  * Also note that the hidden_beacon_bss pointer is only relevant
59  * if the driver uses something other than the IEs, e.g. private
60  * data stored in the BSS struct, since the beacon IEs are
61  * also linked into the probe response struct.
62  */
63 
64 /*
65  * Limit the number of BSS entries stored in mac80211. Each one is
66  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67  * If somebody wants to really attack this though, they'd likely
68  * use small beacons, and only one type of frame, limiting each of
69  * the entries to a much smaller size (in order to generate more
70  * entries in total, so overhead is bigger.)
71  */
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75                  "limit to number of scan BSS entries (per wiphy, default 1000)");
76 
77 #define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
78 
79 /**
80  * struct cfg80211_colocated_ap - colocated AP information
81  *
82  * @list: linked list to all colocated aPS
83  * @bssid: BSSID of the reported AP
84  * @ssid: SSID of the reported AP
85  * @ssid_len: length of the ssid
86  * @center_freq: frequency the reported AP is on
87  * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88  *	that operate in the same channel as the reported AP and that might be
89  *	detected by a STA receiving this frame, are transmitting unsolicited
90  *	Probe Response frames every 20 TUs
91  * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92  * @same_ssid: the reported AP has the same SSID as the reporting AP
93  * @multi_bss: the reported AP is part of a multiple BSSID set
94  * @transmitted_bssid: the reported AP is the transmitting BSSID
95  * @colocated_ess: all the APs that share the same ESS as the reported AP are
96  *	colocated and can be discovered via legacy bands.
97  * @short_ssid_valid: short_ssid is valid and can be used
98  * @short_ssid: the short SSID for this SSID
99  */
100 struct cfg80211_colocated_ap {
101 	struct list_head list;
102 	u8 bssid[ETH_ALEN];
103 	u8 ssid[IEEE80211_MAX_SSID_LEN];
104 	size_t ssid_len;
105 	u32 short_ssid;
106 	u32 center_freq;
107 	u8 unsolicited_probe:1,
108 	   oct_recommended:1,
109 	   same_ssid:1,
110 	   multi_bss:1,
111 	   transmitted_bssid:1,
112 	   colocated_ess:1,
113 	   short_ssid_valid:1;
114 };
115 
116 static void bss_free(struct cfg80211_internal_bss *bss)
117 {
118 	struct cfg80211_bss_ies *ies;
119 
120 	if (WARN_ON(atomic_read(&bss->hold)))
121 		return;
122 
123 	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124 	if (ies && !bss->pub.hidden_beacon_bss)
125 		kfree_rcu(ies, rcu_head);
126 	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
127 	if (ies)
128 		kfree_rcu(ies, rcu_head);
129 
130 	/*
131 	 * This happens when the module is removed, it doesn't
132 	 * really matter any more save for completeness
133 	 */
134 	if (!list_empty(&bss->hidden_list))
135 		list_del(&bss->hidden_list);
136 
137 	kfree(bss);
138 }
139 
140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141 			       struct cfg80211_internal_bss *bss)
142 {
143 	lockdep_assert_held(&rdev->bss_lock);
144 
145 	bss->refcount++;
146 	if (bss->pub.hidden_beacon_bss) {
147 		bss = container_of(bss->pub.hidden_beacon_bss,
148 				   struct cfg80211_internal_bss,
149 				   pub);
150 		bss->refcount++;
151 	}
152 	if (bss->pub.transmitted_bss) {
153 		bss = container_of(bss->pub.transmitted_bss,
154 				   struct cfg80211_internal_bss,
155 				   pub);
156 		bss->refcount++;
157 	}
158 }
159 
160 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
161 			       struct cfg80211_internal_bss *bss)
162 {
163 	lockdep_assert_held(&rdev->bss_lock);
164 
165 	if (bss->pub.hidden_beacon_bss) {
166 		struct cfg80211_internal_bss *hbss;
167 		hbss = container_of(bss->pub.hidden_beacon_bss,
168 				    struct cfg80211_internal_bss,
169 				    pub);
170 		hbss->refcount--;
171 		if (hbss->refcount == 0)
172 			bss_free(hbss);
173 	}
174 
175 	if (bss->pub.transmitted_bss) {
176 		struct cfg80211_internal_bss *tbss;
177 
178 		tbss = container_of(bss->pub.transmitted_bss,
179 				    struct cfg80211_internal_bss,
180 				    pub);
181 		tbss->refcount--;
182 		if (tbss->refcount == 0)
183 			bss_free(tbss);
184 	}
185 
186 	bss->refcount--;
187 	if (bss->refcount == 0)
188 		bss_free(bss);
189 }
190 
191 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
192 				  struct cfg80211_internal_bss *bss)
193 {
194 	lockdep_assert_held(&rdev->bss_lock);
195 
196 	if (!list_empty(&bss->hidden_list)) {
197 		/*
198 		 * don't remove the beacon entry if it has
199 		 * probe responses associated with it
200 		 */
201 		if (!bss->pub.hidden_beacon_bss)
202 			return false;
203 		/*
204 		 * if it's a probe response entry break its
205 		 * link to the other entries in the group
206 		 */
207 		list_del_init(&bss->hidden_list);
208 	}
209 
210 	list_del_init(&bss->list);
211 	list_del_init(&bss->pub.nontrans_list);
212 	rb_erase(&bss->rbn, &rdev->bss_tree);
213 	rdev->bss_entries--;
214 	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
215 		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
216 		  rdev->bss_entries, list_empty(&rdev->bss_list));
217 	bss_ref_put(rdev, bss);
218 	return true;
219 }
220 
221 bool cfg80211_is_element_inherited(const struct element *elem,
222 				   const struct element *non_inherit_elem)
223 {
224 	u8 id_len, ext_id_len, i, loop_len, id;
225 	const u8 *list;
226 
227 	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
228 		return false;
229 
230 	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
231 		return true;
232 
233 	/*
234 	 * non inheritance element format is:
235 	 * ext ID (56) | IDs list len | list | extension IDs list len | list
236 	 * Both lists are optional. Both lengths are mandatory.
237 	 * This means valid length is:
238 	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
239 	 */
240 	id_len = non_inherit_elem->data[1];
241 	if (non_inherit_elem->datalen < 3 + id_len)
242 		return true;
243 
244 	ext_id_len = non_inherit_elem->data[2 + id_len];
245 	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
246 		return true;
247 
248 	if (elem->id == WLAN_EID_EXTENSION) {
249 		if (!ext_id_len)
250 			return true;
251 		loop_len = ext_id_len;
252 		list = &non_inherit_elem->data[3 + id_len];
253 		id = elem->data[0];
254 	} else {
255 		if (!id_len)
256 			return true;
257 		loop_len = id_len;
258 		list = &non_inherit_elem->data[2];
259 		id = elem->id;
260 	}
261 
262 	for (i = 0; i < loop_len; i++) {
263 		if (list[i] == id)
264 			return false;
265 	}
266 
267 	return true;
268 }
269 EXPORT_SYMBOL(cfg80211_is_element_inherited);
270 
271 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
272 				  const u8 *subelement, size_t subie_len,
273 				  u8 *new_ie, gfp_t gfp)
274 {
275 	u8 *pos, *tmp;
276 	const u8 *tmp_old, *tmp_new;
277 	const struct element *non_inherit_elem;
278 	u8 *sub_copy;
279 
280 	/* copy subelement as we need to change its content to
281 	 * mark an ie after it is processed.
282 	 */
283 	sub_copy = kmemdup(subelement, subie_len, gfp);
284 	if (!sub_copy)
285 		return 0;
286 
287 	pos = &new_ie[0];
288 
289 	/* set new ssid */
290 	tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
291 	if (tmp_new) {
292 		memcpy(pos, tmp_new, tmp_new[1] + 2);
293 		pos += (tmp_new[1] + 2);
294 	}
295 
296 	/* get non inheritance list if exists */
297 	non_inherit_elem =
298 		cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
299 				       sub_copy, subie_len);
300 
301 	/* go through IEs in ie (skip SSID) and subelement,
302 	 * merge them into new_ie
303 	 */
304 	tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
305 	tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
306 
307 	while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
308 		if (tmp_old[0] == 0) {
309 			tmp_old++;
310 			continue;
311 		}
312 
313 		if (tmp_old[0] == WLAN_EID_EXTENSION)
314 			tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
315 							 subie_len);
316 		else
317 			tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
318 						     subie_len);
319 
320 		if (!tmp) {
321 			const struct element *old_elem = (void *)tmp_old;
322 
323 			/* ie in old ie but not in subelement */
324 			if (cfg80211_is_element_inherited(old_elem,
325 							  non_inherit_elem)) {
326 				memcpy(pos, tmp_old, tmp_old[1] + 2);
327 				pos += tmp_old[1] + 2;
328 			}
329 		} else {
330 			/* ie in transmitting ie also in subelement,
331 			 * copy from subelement and flag the ie in subelement
332 			 * as copied (by setting eid field to WLAN_EID_SSID,
333 			 * which is skipped anyway).
334 			 * For vendor ie, compare OUI + type + subType to
335 			 * determine if they are the same ie.
336 			 */
337 			if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
338 				if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
339 					/* same vendor ie, copy from
340 					 * subelement
341 					 */
342 					memcpy(pos, tmp, tmp[1] + 2);
343 					pos += tmp[1] + 2;
344 					tmp[0] = WLAN_EID_SSID;
345 				} else {
346 					memcpy(pos, tmp_old, tmp_old[1] + 2);
347 					pos += tmp_old[1] + 2;
348 				}
349 			} else {
350 				/* copy ie from subelement into new ie */
351 				memcpy(pos, tmp, tmp[1] + 2);
352 				pos += tmp[1] + 2;
353 				tmp[0] = WLAN_EID_SSID;
354 			}
355 		}
356 
357 		if (tmp_old + tmp_old[1] + 2 - ie == ielen)
358 			break;
359 
360 		tmp_old += tmp_old[1] + 2;
361 	}
362 
363 	/* go through subelement again to check if there is any ie not
364 	 * copied to new ie, skip ssid, capability, bssid-index ie
365 	 */
366 	tmp_new = sub_copy;
367 	while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
368 		if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
369 		      tmp_new[0] == WLAN_EID_SSID)) {
370 			memcpy(pos, tmp_new, tmp_new[1] + 2);
371 			pos += tmp_new[1] + 2;
372 		}
373 		if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
374 			break;
375 		tmp_new += tmp_new[1] + 2;
376 	}
377 
378 	kfree(sub_copy);
379 	return pos - new_ie;
380 }
381 
382 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
383 		   const u8 *ssid, size_t ssid_len)
384 {
385 	const struct cfg80211_bss_ies *ies;
386 	const u8 *ssidie;
387 
388 	if (bssid && !ether_addr_equal(a->bssid, bssid))
389 		return false;
390 
391 	if (!ssid)
392 		return true;
393 
394 	ies = rcu_access_pointer(a->ies);
395 	if (!ies)
396 		return false;
397 	ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
398 	if (!ssidie)
399 		return false;
400 	if (ssidie[1] != ssid_len)
401 		return false;
402 	return memcmp(ssidie + 2, ssid, ssid_len) == 0;
403 }
404 
405 static int
406 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
407 			   struct cfg80211_bss *nontrans_bss)
408 {
409 	const u8 *ssid;
410 	size_t ssid_len;
411 	struct cfg80211_bss *bss = NULL;
412 
413 	rcu_read_lock();
414 	ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
415 	if (!ssid) {
416 		rcu_read_unlock();
417 		return -EINVAL;
418 	}
419 	ssid_len = ssid[1];
420 	ssid = ssid + 2;
421 	rcu_read_unlock();
422 
423 	/* check if nontrans_bss is in the list */
424 	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
425 		if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len))
426 			return 0;
427 	}
428 
429 	/* add to the list */
430 	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
431 	return 0;
432 }
433 
434 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
435 				  unsigned long expire_time)
436 {
437 	struct cfg80211_internal_bss *bss, *tmp;
438 	bool expired = false;
439 
440 	lockdep_assert_held(&rdev->bss_lock);
441 
442 	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
443 		if (atomic_read(&bss->hold))
444 			continue;
445 		if (!time_after(expire_time, bss->ts))
446 			continue;
447 
448 		if (__cfg80211_unlink_bss(rdev, bss))
449 			expired = true;
450 	}
451 
452 	if (expired)
453 		rdev->bss_generation++;
454 }
455 
456 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
457 {
458 	struct cfg80211_internal_bss *bss, *oldest = NULL;
459 	bool ret;
460 
461 	lockdep_assert_held(&rdev->bss_lock);
462 
463 	list_for_each_entry(bss, &rdev->bss_list, list) {
464 		if (atomic_read(&bss->hold))
465 			continue;
466 
467 		if (!list_empty(&bss->hidden_list) &&
468 		    !bss->pub.hidden_beacon_bss)
469 			continue;
470 
471 		if (oldest && time_before(oldest->ts, bss->ts))
472 			continue;
473 		oldest = bss;
474 	}
475 
476 	if (WARN_ON(!oldest))
477 		return false;
478 
479 	/*
480 	 * The callers make sure to increase rdev->bss_generation if anything
481 	 * gets removed (and a new entry added), so there's no need to also do
482 	 * it here.
483 	 */
484 
485 	ret = __cfg80211_unlink_bss(rdev, oldest);
486 	WARN_ON(!ret);
487 	return ret;
488 }
489 
490 static u8 cfg80211_parse_bss_param(u8 data,
491 				   struct cfg80211_colocated_ap *coloc_ap)
492 {
493 	coloc_ap->oct_recommended =
494 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
495 	coloc_ap->same_ssid =
496 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
497 	coloc_ap->multi_bss =
498 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
499 	coloc_ap->transmitted_bssid =
500 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
501 	coloc_ap->unsolicited_probe =
502 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
503 	coloc_ap->colocated_ess =
504 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
505 
506 	return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
507 }
508 
509 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
510 				    const struct element **elem, u32 *s_ssid)
511 {
512 
513 	*elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
514 	if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
515 		return -EINVAL;
516 
517 	*s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
518 	return 0;
519 }
520 
521 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
522 {
523 	struct cfg80211_colocated_ap *ap, *tmp_ap;
524 
525 	list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
526 		list_del(&ap->list);
527 		kfree(ap);
528 	}
529 }
530 
531 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
532 				  const u8 *pos, u8 length,
533 				  const struct element *ssid_elem,
534 				  int s_ssid_tmp)
535 {
536 	/* skip the TBTT offset */
537 	pos++;
538 
539 	memcpy(entry->bssid, pos, ETH_ALEN);
540 	pos += ETH_ALEN;
541 
542 	if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
543 		memcpy(&entry->short_ssid, pos,
544 		       sizeof(entry->short_ssid));
545 		entry->short_ssid_valid = true;
546 		pos += 4;
547 	}
548 
549 	/* skip non colocated APs */
550 	if (!cfg80211_parse_bss_param(*pos, entry))
551 		return -EINVAL;
552 	pos++;
553 
554 	if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
555 		/*
556 		 * no information about the short ssid. Consider the entry valid
557 		 * for now. It would later be dropped in case there are explicit
558 		 * SSIDs that need to be matched
559 		 */
560 		if (!entry->same_ssid)
561 			return 0;
562 	}
563 
564 	if (entry->same_ssid) {
565 		entry->short_ssid = s_ssid_tmp;
566 		entry->short_ssid_valid = true;
567 
568 		/*
569 		 * This is safe because we validate datalen in
570 		 * cfg80211_parse_colocated_ap(), before calling this
571 		 * function.
572 		 */
573 		memcpy(&entry->ssid, &ssid_elem->data,
574 		       ssid_elem->datalen);
575 		entry->ssid_len = ssid_elem->datalen;
576 	}
577 	return 0;
578 }
579 
580 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
581 				       struct list_head *list)
582 {
583 	struct ieee80211_neighbor_ap_info *ap_info;
584 	const struct element *elem, *ssid_elem;
585 	const u8 *pos, *end;
586 	u32 s_ssid_tmp;
587 	int n_coloc = 0, ret;
588 	LIST_HEAD(ap_list);
589 
590 	elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
591 				  ies->len);
592 	if (!elem)
593 		return 0;
594 
595 	pos = elem->data;
596 	end = pos + elem->datalen;
597 
598 	ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
599 	if (ret)
600 		return ret;
601 
602 	/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
603 	while (pos + sizeof(*ap_info) <= end) {
604 		enum nl80211_band band;
605 		int freq;
606 		u8 length, i, count;
607 
608 		ap_info = (void *)pos;
609 		count = u8_get_bits(ap_info->tbtt_info_hdr,
610 				    IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
611 		length = ap_info->tbtt_info_len;
612 
613 		pos += sizeof(*ap_info);
614 
615 		if (!ieee80211_operating_class_to_band(ap_info->op_class,
616 						       &band))
617 			break;
618 
619 		freq = ieee80211_channel_to_frequency(ap_info->channel, band);
620 
621 		if (end - pos < count * length)
622 			break;
623 
624 		/*
625 		 * TBTT info must include bss param + BSSID +
626 		 * (short SSID or same_ssid bit to be set).
627 		 * ignore other options, and move to the
628 		 * next AP info
629 		 */
630 		if (band != NL80211_BAND_6GHZ ||
631 		    (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
632 		     length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
633 			pos += count * length;
634 			continue;
635 		}
636 
637 		for (i = 0; i < count; i++) {
638 			struct cfg80211_colocated_ap *entry;
639 
640 			entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
641 					GFP_ATOMIC);
642 
643 			if (!entry)
644 				break;
645 
646 			entry->center_freq = freq;
647 
648 			if (!cfg80211_parse_ap_info(entry, pos, length,
649 						    ssid_elem, s_ssid_tmp)) {
650 				n_coloc++;
651 				list_add_tail(&entry->list, &ap_list);
652 			} else {
653 				kfree(entry);
654 			}
655 
656 			pos += length;
657 		}
658 	}
659 
660 	if (pos != end) {
661 		cfg80211_free_coloc_ap_list(&ap_list);
662 		return 0;
663 	}
664 
665 	list_splice_tail(&ap_list, list);
666 	return n_coloc;
667 }
668 
669 static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
670 					struct ieee80211_channel *chan,
671 					bool add_to_6ghz)
672 {
673 	int i;
674 	u32 n_channels = request->n_channels;
675 	struct cfg80211_scan_6ghz_params *params =
676 		&request->scan_6ghz_params[request->n_6ghz_params];
677 
678 	for (i = 0; i < n_channels; i++) {
679 		if (request->channels[i] == chan) {
680 			if (add_to_6ghz)
681 				params->channel_idx = i;
682 			return;
683 		}
684 	}
685 
686 	request->channels[n_channels] = chan;
687 	if (add_to_6ghz)
688 		request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
689 			n_channels;
690 
691 	request->n_channels++;
692 }
693 
694 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
695 				     struct cfg80211_scan_request *request)
696 {
697 	int i;
698 	u32 s_ssid;
699 
700 	for (i = 0; i < request->n_ssids; i++) {
701 		/* wildcard ssid in the scan request */
702 		if (!request->ssids[i].ssid_len)
703 			return true;
704 
705 		if (ap->ssid_len &&
706 		    ap->ssid_len == request->ssids[i].ssid_len) {
707 			if (!memcmp(request->ssids[i].ssid, ap->ssid,
708 				    ap->ssid_len))
709 				return true;
710 		} else if (ap->short_ssid_valid) {
711 			s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
712 					   request->ssids[i].ssid_len);
713 
714 			if (ap->short_ssid == s_ssid)
715 				return true;
716 		}
717 	}
718 
719 	return false;
720 }
721 
722 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
723 {
724 	u8 i;
725 	struct cfg80211_colocated_ap *ap;
726 	int n_channels, count = 0, err;
727 	struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
728 	LIST_HEAD(coloc_ap_list);
729 	bool need_scan_psc = true;
730 	const struct ieee80211_sband_iftype_data *iftd;
731 
732 	rdev_req->scan_6ghz = true;
733 
734 	if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
735 		return -EOPNOTSUPP;
736 
737 	iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
738 					       rdev_req->wdev->iftype);
739 	if (!iftd || !iftd->he_cap.has_he)
740 		return -EOPNOTSUPP;
741 
742 	n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
743 
744 	if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
745 		struct cfg80211_internal_bss *intbss;
746 
747 		spin_lock_bh(&rdev->bss_lock);
748 		list_for_each_entry(intbss, &rdev->bss_list, list) {
749 			struct cfg80211_bss *res = &intbss->pub;
750 			const struct cfg80211_bss_ies *ies;
751 
752 			ies = rcu_access_pointer(res->ies);
753 			count += cfg80211_parse_colocated_ap(ies,
754 							     &coloc_ap_list);
755 		}
756 		spin_unlock_bh(&rdev->bss_lock);
757 	}
758 
759 	request = kzalloc(struct_size(request, channels, n_channels) +
760 			  sizeof(*request->scan_6ghz_params) * count +
761 			  sizeof(*request->ssids) * rdev_req->n_ssids,
762 			  GFP_KERNEL);
763 	if (!request) {
764 		cfg80211_free_coloc_ap_list(&coloc_ap_list);
765 		return -ENOMEM;
766 	}
767 
768 	*request = *rdev_req;
769 	request->n_channels = 0;
770 	request->scan_6ghz_params =
771 		(void *)&request->channels[n_channels];
772 
773 	/*
774 	 * PSC channels should not be scanned in case of direct scan with 1 SSID
775 	 * and at least one of the reported co-located APs with same SSID
776 	 * indicating that all APs in the same ESS are co-located
777 	 */
778 	if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
779 		list_for_each_entry(ap, &coloc_ap_list, list) {
780 			if (ap->colocated_ess &&
781 			    cfg80211_find_ssid_match(ap, request)) {
782 				need_scan_psc = false;
783 				break;
784 			}
785 		}
786 	}
787 
788 	/*
789 	 * add to the scan request the channels that need to be scanned
790 	 * regardless of the collocated APs (PSC channels or all channels
791 	 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
792 	 */
793 	for (i = 0; i < rdev_req->n_channels; i++) {
794 		if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
795 		    ((need_scan_psc &&
796 		      cfg80211_channel_is_psc(rdev_req->channels[i])) ||
797 		     !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
798 			cfg80211_scan_req_add_chan(request,
799 						   rdev_req->channels[i],
800 						   false);
801 		}
802 	}
803 
804 	if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
805 		goto skip;
806 
807 	list_for_each_entry(ap, &coloc_ap_list, list) {
808 		bool found = false;
809 		struct cfg80211_scan_6ghz_params *scan_6ghz_params =
810 			&request->scan_6ghz_params[request->n_6ghz_params];
811 		struct ieee80211_channel *chan =
812 			ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
813 
814 		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
815 			continue;
816 
817 		for (i = 0; i < rdev_req->n_channels; i++) {
818 			if (rdev_req->channels[i] == chan)
819 				found = true;
820 		}
821 
822 		if (!found)
823 			continue;
824 
825 		if (request->n_ssids > 0 &&
826 		    !cfg80211_find_ssid_match(ap, request))
827 			continue;
828 
829 		cfg80211_scan_req_add_chan(request, chan, true);
830 		memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
831 		scan_6ghz_params->short_ssid = ap->short_ssid;
832 		scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
833 		scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
834 
835 		/*
836 		 * If a PSC channel is added to the scan and 'need_scan_psc' is
837 		 * set to false, then all the APs that the scan logic is
838 		 * interested with on the channel are collocated and thus there
839 		 * is no need to perform the initial PSC channel listen.
840 		 */
841 		if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
842 			scan_6ghz_params->psc_no_listen = true;
843 
844 		request->n_6ghz_params++;
845 	}
846 
847 skip:
848 	cfg80211_free_coloc_ap_list(&coloc_ap_list);
849 
850 	if (request->n_channels) {
851 		struct cfg80211_scan_request *old = rdev->int_scan_req;
852 		rdev->int_scan_req = request;
853 
854 		/*
855 		 * Add the ssids from the parent scan request to the new scan
856 		 * request, so the driver would be able to use them in its
857 		 * probe requests to discover hidden APs on PSC channels.
858 		 */
859 		request->ssids = (void *)&request->channels[request->n_channels];
860 		request->n_ssids = rdev_req->n_ssids;
861 		memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
862 		       request->n_ssids);
863 
864 		/*
865 		 * If this scan follows a previous scan, save the scan start
866 		 * info from the first part of the scan
867 		 */
868 		if (old)
869 			rdev->int_scan_req->info = old->info;
870 
871 		err = rdev_scan(rdev, request);
872 		if (err) {
873 			rdev->int_scan_req = old;
874 			kfree(request);
875 		} else {
876 			kfree(old);
877 		}
878 
879 		return err;
880 	}
881 
882 	kfree(request);
883 	return -EINVAL;
884 }
885 
886 int cfg80211_scan(struct cfg80211_registered_device *rdev)
887 {
888 	struct cfg80211_scan_request *request;
889 	struct cfg80211_scan_request *rdev_req = rdev->scan_req;
890 	u32 n_channels = 0, idx, i;
891 
892 	if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
893 		return rdev_scan(rdev, rdev_req);
894 
895 	for (i = 0; i < rdev_req->n_channels; i++) {
896 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
897 			n_channels++;
898 	}
899 
900 	if (!n_channels)
901 		return cfg80211_scan_6ghz(rdev);
902 
903 	request = kzalloc(struct_size(request, channels, n_channels),
904 			  GFP_KERNEL);
905 	if (!request)
906 		return -ENOMEM;
907 
908 	*request = *rdev_req;
909 	request->n_channels = n_channels;
910 
911 	for (i = idx = 0; i < rdev_req->n_channels; i++) {
912 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
913 			request->channels[idx++] = rdev_req->channels[i];
914 	}
915 
916 	rdev_req->scan_6ghz = false;
917 	rdev->int_scan_req = request;
918 	return rdev_scan(rdev, request);
919 }
920 
921 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
922 			   bool send_message)
923 {
924 	struct cfg80211_scan_request *request, *rdev_req;
925 	struct wireless_dev *wdev;
926 	struct sk_buff *msg;
927 #ifdef CONFIG_CFG80211_WEXT
928 	union iwreq_data wrqu;
929 #endif
930 
931 	lockdep_assert_held(&rdev->wiphy.mtx);
932 
933 	if (rdev->scan_msg) {
934 		nl80211_send_scan_msg(rdev, rdev->scan_msg);
935 		rdev->scan_msg = NULL;
936 		return;
937 	}
938 
939 	rdev_req = rdev->scan_req;
940 	if (!rdev_req)
941 		return;
942 
943 	wdev = rdev_req->wdev;
944 	request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
945 
946 	if (wdev_running(wdev) &&
947 	    (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
948 	    !rdev_req->scan_6ghz && !request->info.aborted &&
949 	    !cfg80211_scan_6ghz(rdev))
950 		return;
951 
952 	/*
953 	 * This must be before sending the other events!
954 	 * Otherwise, wpa_supplicant gets completely confused with
955 	 * wext events.
956 	 */
957 	if (wdev->netdev)
958 		cfg80211_sme_scan_done(wdev->netdev);
959 
960 	if (!request->info.aborted &&
961 	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
962 		/* flush entries from previous scans */
963 		spin_lock_bh(&rdev->bss_lock);
964 		__cfg80211_bss_expire(rdev, request->scan_start);
965 		spin_unlock_bh(&rdev->bss_lock);
966 	}
967 
968 	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
969 
970 #ifdef CONFIG_CFG80211_WEXT
971 	if (wdev->netdev && !request->info.aborted) {
972 		memset(&wrqu, 0, sizeof(wrqu));
973 
974 		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
975 	}
976 #endif
977 
978 	dev_put(wdev->netdev);
979 
980 	kfree(rdev->int_scan_req);
981 	rdev->int_scan_req = NULL;
982 
983 	kfree(rdev->scan_req);
984 	rdev->scan_req = NULL;
985 
986 	if (!send_message)
987 		rdev->scan_msg = msg;
988 	else
989 		nl80211_send_scan_msg(rdev, msg);
990 }
991 
992 void __cfg80211_scan_done(struct work_struct *wk)
993 {
994 	struct cfg80211_registered_device *rdev;
995 
996 	rdev = container_of(wk, struct cfg80211_registered_device,
997 			    scan_done_wk);
998 
999 	wiphy_lock(&rdev->wiphy);
1000 	___cfg80211_scan_done(rdev, true);
1001 	wiphy_unlock(&rdev->wiphy);
1002 }
1003 
1004 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1005 			struct cfg80211_scan_info *info)
1006 {
1007 	struct cfg80211_scan_info old_info = request->info;
1008 
1009 	trace_cfg80211_scan_done(request, info);
1010 	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1011 		request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1012 
1013 	request->info = *info;
1014 
1015 	/*
1016 	 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1017 	 * be of the first part. In such a case old_info.scan_start_tsf should
1018 	 * be non zero.
1019 	 */
1020 	if (request->scan_6ghz && old_info.scan_start_tsf) {
1021 		request->info.scan_start_tsf = old_info.scan_start_tsf;
1022 		memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1023 		       sizeof(request->info.tsf_bssid));
1024 	}
1025 
1026 	request->notified = true;
1027 	queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1028 }
1029 EXPORT_SYMBOL(cfg80211_scan_done);
1030 
1031 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1032 				 struct cfg80211_sched_scan_request *req)
1033 {
1034 	lockdep_assert_held(&rdev->wiphy.mtx);
1035 
1036 	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1037 }
1038 
1039 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1040 					struct cfg80211_sched_scan_request *req)
1041 {
1042 	lockdep_assert_held(&rdev->wiphy.mtx);
1043 
1044 	list_del_rcu(&req->list);
1045 	kfree_rcu(req, rcu_head);
1046 }
1047 
1048 static struct cfg80211_sched_scan_request *
1049 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1050 {
1051 	struct cfg80211_sched_scan_request *pos;
1052 
1053 	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1054 				lockdep_is_held(&rdev->wiphy.mtx)) {
1055 		if (pos->reqid == reqid)
1056 			return pos;
1057 	}
1058 	return NULL;
1059 }
1060 
1061 /*
1062  * Determines if a scheduled scan request can be handled. When a legacy
1063  * scheduled scan is running no other scheduled scan is allowed regardless
1064  * whether the request is for legacy or multi-support scan. When a multi-support
1065  * scheduled scan is running a request for legacy scan is not allowed. In this
1066  * case a request for multi-support scan can be handled if resources are
1067  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1068  */
1069 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1070 				     bool want_multi)
1071 {
1072 	struct cfg80211_sched_scan_request *pos;
1073 	int i = 0;
1074 
1075 	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1076 		/* request id zero means legacy in progress */
1077 		if (!i && !pos->reqid)
1078 			return -EINPROGRESS;
1079 		i++;
1080 	}
1081 
1082 	if (i) {
1083 		/* no legacy allowed when multi request(s) are active */
1084 		if (!want_multi)
1085 			return -EINPROGRESS;
1086 
1087 		/* resource limit reached */
1088 		if (i == rdev->wiphy.max_sched_scan_reqs)
1089 			return -ENOSPC;
1090 	}
1091 	return 0;
1092 }
1093 
1094 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1095 {
1096 	struct cfg80211_registered_device *rdev;
1097 	struct cfg80211_sched_scan_request *req, *tmp;
1098 
1099 	rdev = container_of(work, struct cfg80211_registered_device,
1100 			   sched_scan_res_wk);
1101 
1102 	wiphy_lock(&rdev->wiphy);
1103 	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1104 		if (req->report_results) {
1105 			req->report_results = false;
1106 			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1107 				/* flush entries from previous scans */
1108 				spin_lock_bh(&rdev->bss_lock);
1109 				__cfg80211_bss_expire(rdev, req->scan_start);
1110 				spin_unlock_bh(&rdev->bss_lock);
1111 				req->scan_start = jiffies;
1112 			}
1113 			nl80211_send_sched_scan(req,
1114 						NL80211_CMD_SCHED_SCAN_RESULTS);
1115 		}
1116 	}
1117 	wiphy_unlock(&rdev->wiphy);
1118 }
1119 
1120 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1121 {
1122 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1123 	struct cfg80211_sched_scan_request *request;
1124 
1125 	trace_cfg80211_sched_scan_results(wiphy, reqid);
1126 	/* ignore if we're not scanning */
1127 
1128 	rcu_read_lock();
1129 	request = cfg80211_find_sched_scan_req(rdev, reqid);
1130 	if (request) {
1131 		request->report_results = true;
1132 		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1133 	}
1134 	rcu_read_unlock();
1135 }
1136 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1137 
1138 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1139 {
1140 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1141 
1142 	lockdep_assert_held(&wiphy->mtx);
1143 
1144 	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1145 
1146 	__cfg80211_stop_sched_scan(rdev, reqid, true);
1147 }
1148 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1149 
1150 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1151 {
1152 	wiphy_lock(wiphy);
1153 	cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1154 	wiphy_unlock(wiphy);
1155 }
1156 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1157 
1158 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1159 				 struct cfg80211_sched_scan_request *req,
1160 				 bool driver_initiated)
1161 {
1162 	lockdep_assert_held(&rdev->wiphy.mtx);
1163 
1164 	if (!driver_initiated) {
1165 		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1166 		if (err)
1167 			return err;
1168 	}
1169 
1170 	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1171 
1172 	cfg80211_del_sched_scan_req(rdev, req);
1173 
1174 	return 0;
1175 }
1176 
1177 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1178 			       u64 reqid, bool driver_initiated)
1179 {
1180 	struct cfg80211_sched_scan_request *sched_scan_req;
1181 
1182 	lockdep_assert_held(&rdev->wiphy.mtx);
1183 
1184 	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1185 	if (!sched_scan_req)
1186 		return -ENOENT;
1187 
1188 	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1189 					    driver_initiated);
1190 }
1191 
1192 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1193                       unsigned long age_secs)
1194 {
1195 	struct cfg80211_internal_bss *bss;
1196 	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1197 
1198 	spin_lock_bh(&rdev->bss_lock);
1199 	list_for_each_entry(bss, &rdev->bss_list, list)
1200 		bss->ts -= age_jiffies;
1201 	spin_unlock_bh(&rdev->bss_lock);
1202 }
1203 
1204 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1205 {
1206 	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1207 }
1208 
1209 void cfg80211_bss_flush(struct wiphy *wiphy)
1210 {
1211 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1212 
1213 	spin_lock_bh(&rdev->bss_lock);
1214 	__cfg80211_bss_expire(rdev, jiffies);
1215 	spin_unlock_bh(&rdev->bss_lock);
1216 }
1217 EXPORT_SYMBOL(cfg80211_bss_flush);
1218 
1219 const struct element *
1220 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1221 			 const u8 *match, unsigned int match_len,
1222 			 unsigned int match_offset)
1223 {
1224 	const struct element *elem;
1225 
1226 	for_each_element_id(elem, eid, ies, len) {
1227 		if (elem->datalen >= match_offset + match_len &&
1228 		    !memcmp(elem->data + match_offset, match, match_len))
1229 			return elem;
1230 	}
1231 
1232 	return NULL;
1233 }
1234 EXPORT_SYMBOL(cfg80211_find_elem_match);
1235 
1236 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1237 						const u8 *ies,
1238 						unsigned int len)
1239 {
1240 	const struct element *elem;
1241 	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1242 	int match_len = (oui_type < 0) ? 3 : sizeof(match);
1243 
1244 	if (WARN_ON(oui_type > 0xff))
1245 		return NULL;
1246 
1247 	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1248 					match, match_len, 0);
1249 
1250 	if (!elem || elem->datalen < 4)
1251 		return NULL;
1252 
1253 	return elem;
1254 }
1255 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1256 
1257 /**
1258  * enum bss_compare_mode - BSS compare mode
1259  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1260  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1261  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1262  */
1263 enum bss_compare_mode {
1264 	BSS_CMP_REGULAR,
1265 	BSS_CMP_HIDE_ZLEN,
1266 	BSS_CMP_HIDE_NUL,
1267 };
1268 
1269 static int cmp_bss(struct cfg80211_bss *a,
1270 		   struct cfg80211_bss *b,
1271 		   enum bss_compare_mode mode)
1272 {
1273 	const struct cfg80211_bss_ies *a_ies, *b_ies;
1274 	const u8 *ie1 = NULL;
1275 	const u8 *ie2 = NULL;
1276 	int i, r;
1277 
1278 	if (a->channel != b->channel)
1279 		return b->channel->center_freq - a->channel->center_freq;
1280 
1281 	a_ies = rcu_access_pointer(a->ies);
1282 	if (!a_ies)
1283 		return -1;
1284 	b_ies = rcu_access_pointer(b->ies);
1285 	if (!b_ies)
1286 		return 1;
1287 
1288 	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1289 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1290 				       a_ies->data, a_ies->len);
1291 	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1292 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1293 				       b_ies->data, b_ies->len);
1294 	if (ie1 && ie2) {
1295 		int mesh_id_cmp;
1296 
1297 		if (ie1[1] == ie2[1])
1298 			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1299 		else
1300 			mesh_id_cmp = ie2[1] - ie1[1];
1301 
1302 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1303 				       a_ies->data, a_ies->len);
1304 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1305 				       b_ies->data, b_ies->len);
1306 		if (ie1 && ie2) {
1307 			if (mesh_id_cmp)
1308 				return mesh_id_cmp;
1309 			if (ie1[1] != ie2[1])
1310 				return ie2[1] - ie1[1];
1311 			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1312 		}
1313 	}
1314 
1315 	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1316 	if (r)
1317 		return r;
1318 
1319 	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1320 	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1321 
1322 	if (!ie1 && !ie2)
1323 		return 0;
1324 
1325 	/*
1326 	 * Note that with "hide_ssid", the function returns a match if
1327 	 * the already-present BSS ("b") is a hidden SSID beacon for
1328 	 * the new BSS ("a").
1329 	 */
1330 
1331 	/* sort missing IE before (left of) present IE */
1332 	if (!ie1)
1333 		return -1;
1334 	if (!ie2)
1335 		return 1;
1336 
1337 	switch (mode) {
1338 	case BSS_CMP_HIDE_ZLEN:
1339 		/*
1340 		 * In ZLEN mode we assume the BSS entry we're
1341 		 * looking for has a zero-length SSID. So if
1342 		 * the one we're looking at right now has that,
1343 		 * return 0. Otherwise, return the difference
1344 		 * in length, but since we're looking for the
1345 		 * 0-length it's really equivalent to returning
1346 		 * the length of the one we're looking at.
1347 		 *
1348 		 * No content comparison is needed as we assume
1349 		 * the content length is zero.
1350 		 */
1351 		return ie2[1];
1352 	case BSS_CMP_REGULAR:
1353 	default:
1354 		/* sort by length first, then by contents */
1355 		if (ie1[1] != ie2[1])
1356 			return ie2[1] - ie1[1];
1357 		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1358 	case BSS_CMP_HIDE_NUL:
1359 		if (ie1[1] != ie2[1])
1360 			return ie2[1] - ie1[1];
1361 		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1362 		for (i = 0; i < ie2[1]; i++)
1363 			if (ie2[i + 2])
1364 				return -1;
1365 		return 0;
1366 	}
1367 }
1368 
1369 static bool cfg80211_bss_type_match(u16 capability,
1370 				    enum nl80211_band band,
1371 				    enum ieee80211_bss_type bss_type)
1372 {
1373 	bool ret = true;
1374 	u16 mask, val;
1375 
1376 	if (bss_type == IEEE80211_BSS_TYPE_ANY)
1377 		return ret;
1378 
1379 	if (band == NL80211_BAND_60GHZ) {
1380 		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1381 		switch (bss_type) {
1382 		case IEEE80211_BSS_TYPE_ESS:
1383 			val = WLAN_CAPABILITY_DMG_TYPE_AP;
1384 			break;
1385 		case IEEE80211_BSS_TYPE_PBSS:
1386 			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1387 			break;
1388 		case IEEE80211_BSS_TYPE_IBSS:
1389 			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1390 			break;
1391 		default:
1392 			return false;
1393 		}
1394 	} else {
1395 		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1396 		switch (bss_type) {
1397 		case IEEE80211_BSS_TYPE_ESS:
1398 			val = WLAN_CAPABILITY_ESS;
1399 			break;
1400 		case IEEE80211_BSS_TYPE_IBSS:
1401 			val = WLAN_CAPABILITY_IBSS;
1402 			break;
1403 		case IEEE80211_BSS_TYPE_MBSS:
1404 			val = 0;
1405 			break;
1406 		default:
1407 			return false;
1408 		}
1409 	}
1410 
1411 	ret = ((capability & mask) == val);
1412 	return ret;
1413 }
1414 
1415 /* Returned bss is reference counted and must be cleaned up appropriately. */
1416 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1417 				      struct ieee80211_channel *channel,
1418 				      const u8 *bssid,
1419 				      const u8 *ssid, size_t ssid_len,
1420 				      enum ieee80211_bss_type bss_type,
1421 				      enum ieee80211_privacy privacy)
1422 {
1423 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1424 	struct cfg80211_internal_bss *bss, *res = NULL;
1425 	unsigned long now = jiffies;
1426 	int bss_privacy;
1427 
1428 	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1429 			       privacy);
1430 
1431 	spin_lock_bh(&rdev->bss_lock);
1432 
1433 	list_for_each_entry(bss, &rdev->bss_list, list) {
1434 		if (!cfg80211_bss_type_match(bss->pub.capability,
1435 					     bss->pub.channel->band, bss_type))
1436 			continue;
1437 
1438 		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1439 		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1440 		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1441 			continue;
1442 		if (channel && bss->pub.channel != channel)
1443 			continue;
1444 		if (!is_valid_ether_addr(bss->pub.bssid))
1445 			continue;
1446 		/* Don't get expired BSS structs */
1447 		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1448 		    !atomic_read(&bss->hold))
1449 			continue;
1450 		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1451 			res = bss;
1452 			bss_ref_get(rdev, res);
1453 			break;
1454 		}
1455 	}
1456 
1457 	spin_unlock_bh(&rdev->bss_lock);
1458 	if (!res)
1459 		return NULL;
1460 	trace_cfg80211_return_bss(&res->pub);
1461 	return &res->pub;
1462 }
1463 EXPORT_SYMBOL(cfg80211_get_bss);
1464 
1465 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1466 			  struct cfg80211_internal_bss *bss)
1467 {
1468 	struct rb_node **p = &rdev->bss_tree.rb_node;
1469 	struct rb_node *parent = NULL;
1470 	struct cfg80211_internal_bss *tbss;
1471 	int cmp;
1472 
1473 	while (*p) {
1474 		parent = *p;
1475 		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1476 
1477 		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1478 
1479 		if (WARN_ON(!cmp)) {
1480 			/* will sort of leak this BSS */
1481 			return;
1482 		}
1483 
1484 		if (cmp < 0)
1485 			p = &(*p)->rb_left;
1486 		else
1487 			p = &(*p)->rb_right;
1488 	}
1489 
1490 	rb_link_node(&bss->rbn, parent, p);
1491 	rb_insert_color(&bss->rbn, &rdev->bss_tree);
1492 }
1493 
1494 static struct cfg80211_internal_bss *
1495 rb_find_bss(struct cfg80211_registered_device *rdev,
1496 	    struct cfg80211_internal_bss *res,
1497 	    enum bss_compare_mode mode)
1498 {
1499 	struct rb_node *n = rdev->bss_tree.rb_node;
1500 	struct cfg80211_internal_bss *bss;
1501 	int r;
1502 
1503 	while (n) {
1504 		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1505 		r = cmp_bss(&res->pub, &bss->pub, mode);
1506 
1507 		if (r == 0)
1508 			return bss;
1509 		else if (r < 0)
1510 			n = n->rb_left;
1511 		else
1512 			n = n->rb_right;
1513 	}
1514 
1515 	return NULL;
1516 }
1517 
1518 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1519 				   struct cfg80211_internal_bss *new)
1520 {
1521 	const struct cfg80211_bss_ies *ies;
1522 	struct cfg80211_internal_bss *bss;
1523 	const u8 *ie;
1524 	int i, ssidlen;
1525 	u8 fold = 0;
1526 	u32 n_entries = 0;
1527 
1528 	ies = rcu_access_pointer(new->pub.beacon_ies);
1529 	if (WARN_ON(!ies))
1530 		return false;
1531 
1532 	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1533 	if (!ie) {
1534 		/* nothing to do */
1535 		return true;
1536 	}
1537 
1538 	ssidlen = ie[1];
1539 	for (i = 0; i < ssidlen; i++)
1540 		fold |= ie[2 + i];
1541 
1542 	if (fold) {
1543 		/* not a hidden SSID */
1544 		return true;
1545 	}
1546 
1547 	/* This is the bad part ... */
1548 
1549 	list_for_each_entry(bss, &rdev->bss_list, list) {
1550 		/*
1551 		 * we're iterating all the entries anyway, so take the
1552 		 * opportunity to validate the list length accounting
1553 		 */
1554 		n_entries++;
1555 
1556 		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1557 			continue;
1558 		if (bss->pub.channel != new->pub.channel)
1559 			continue;
1560 		if (bss->pub.scan_width != new->pub.scan_width)
1561 			continue;
1562 		if (rcu_access_pointer(bss->pub.beacon_ies))
1563 			continue;
1564 		ies = rcu_access_pointer(bss->pub.ies);
1565 		if (!ies)
1566 			continue;
1567 		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1568 		if (!ie)
1569 			continue;
1570 		if (ssidlen && ie[1] != ssidlen)
1571 			continue;
1572 		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1573 			continue;
1574 		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1575 			list_del(&bss->hidden_list);
1576 		/* combine them */
1577 		list_add(&bss->hidden_list, &new->hidden_list);
1578 		bss->pub.hidden_beacon_bss = &new->pub;
1579 		new->refcount += bss->refcount;
1580 		rcu_assign_pointer(bss->pub.beacon_ies,
1581 				   new->pub.beacon_ies);
1582 	}
1583 
1584 	WARN_ONCE(n_entries != rdev->bss_entries,
1585 		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1586 		  rdev->bss_entries, n_entries);
1587 
1588 	return true;
1589 }
1590 
1591 struct cfg80211_non_tx_bss {
1592 	struct cfg80211_bss *tx_bss;
1593 	u8 max_bssid_indicator;
1594 	u8 bssid_index;
1595 };
1596 
1597 static bool
1598 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1599 			  struct cfg80211_internal_bss *known,
1600 			  struct cfg80211_internal_bss *new,
1601 			  bool signal_valid)
1602 {
1603 	lockdep_assert_held(&rdev->bss_lock);
1604 
1605 	/* Update IEs */
1606 	if (rcu_access_pointer(new->pub.proberesp_ies)) {
1607 		const struct cfg80211_bss_ies *old;
1608 
1609 		old = rcu_access_pointer(known->pub.proberesp_ies);
1610 
1611 		rcu_assign_pointer(known->pub.proberesp_ies,
1612 				   new->pub.proberesp_ies);
1613 		/* Override possible earlier Beacon frame IEs */
1614 		rcu_assign_pointer(known->pub.ies,
1615 				   new->pub.proberesp_ies);
1616 		if (old)
1617 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1618 	} else if (rcu_access_pointer(new->pub.beacon_ies)) {
1619 		const struct cfg80211_bss_ies *old;
1620 		struct cfg80211_internal_bss *bss;
1621 
1622 		if (known->pub.hidden_beacon_bss &&
1623 		    !list_empty(&known->hidden_list)) {
1624 			const struct cfg80211_bss_ies *f;
1625 
1626 			/* The known BSS struct is one of the probe
1627 			 * response members of a group, but we're
1628 			 * receiving a beacon (beacon_ies in the new
1629 			 * bss is used). This can only mean that the
1630 			 * AP changed its beacon from not having an
1631 			 * SSID to showing it, which is confusing so
1632 			 * drop this information.
1633 			 */
1634 
1635 			f = rcu_access_pointer(new->pub.beacon_ies);
1636 			kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1637 			return false;
1638 		}
1639 
1640 		old = rcu_access_pointer(known->pub.beacon_ies);
1641 
1642 		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1643 
1644 		/* Override IEs if they were from a beacon before */
1645 		if (old == rcu_access_pointer(known->pub.ies))
1646 			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1647 
1648 		/* Assign beacon IEs to all sub entries */
1649 		list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1650 			const struct cfg80211_bss_ies *ies;
1651 
1652 			ies = rcu_access_pointer(bss->pub.beacon_ies);
1653 			WARN_ON(ies != old);
1654 
1655 			rcu_assign_pointer(bss->pub.beacon_ies,
1656 					   new->pub.beacon_ies);
1657 		}
1658 
1659 		if (old)
1660 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1661 	}
1662 
1663 	known->pub.beacon_interval = new->pub.beacon_interval;
1664 
1665 	/* don't update the signal if beacon was heard on
1666 	 * adjacent channel.
1667 	 */
1668 	if (signal_valid)
1669 		known->pub.signal = new->pub.signal;
1670 	known->pub.capability = new->pub.capability;
1671 	known->ts = new->ts;
1672 	known->ts_boottime = new->ts_boottime;
1673 	known->parent_tsf = new->parent_tsf;
1674 	known->pub.chains = new->pub.chains;
1675 	memcpy(known->pub.chain_signal, new->pub.chain_signal,
1676 	       IEEE80211_MAX_CHAINS);
1677 	ether_addr_copy(known->parent_bssid, new->parent_bssid);
1678 	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1679 	known->pub.bssid_index = new->pub.bssid_index;
1680 
1681 	return true;
1682 }
1683 
1684 /* Returned bss is reference counted and must be cleaned up appropriately. */
1685 struct cfg80211_internal_bss *
1686 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1687 		    struct cfg80211_internal_bss *tmp,
1688 		    bool signal_valid, unsigned long ts)
1689 {
1690 	struct cfg80211_internal_bss *found = NULL;
1691 
1692 	if (WARN_ON(!tmp->pub.channel))
1693 		return NULL;
1694 
1695 	tmp->ts = ts;
1696 
1697 	spin_lock_bh(&rdev->bss_lock);
1698 
1699 	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1700 		spin_unlock_bh(&rdev->bss_lock);
1701 		return NULL;
1702 	}
1703 
1704 	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1705 
1706 	if (found) {
1707 		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1708 			goto drop;
1709 	} else {
1710 		struct cfg80211_internal_bss *new;
1711 		struct cfg80211_internal_bss *hidden;
1712 		struct cfg80211_bss_ies *ies;
1713 
1714 		/*
1715 		 * create a copy -- the "res" variable that is passed in
1716 		 * is allocated on the stack since it's not needed in the
1717 		 * more common case of an update
1718 		 */
1719 		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1720 			      GFP_ATOMIC);
1721 		if (!new) {
1722 			ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1723 			if (ies)
1724 				kfree_rcu(ies, rcu_head);
1725 			ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1726 			if (ies)
1727 				kfree_rcu(ies, rcu_head);
1728 			goto drop;
1729 		}
1730 		memcpy(new, tmp, sizeof(*new));
1731 		new->refcount = 1;
1732 		INIT_LIST_HEAD(&new->hidden_list);
1733 		INIT_LIST_HEAD(&new->pub.nontrans_list);
1734 
1735 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1736 			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1737 			if (!hidden)
1738 				hidden = rb_find_bss(rdev, tmp,
1739 						     BSS_CMP_HIDE_NUL);
1740 			if (hidden) {
1741 				new->pub.hidden_beacon_bss = &hidden->pub;
1742 				list_add(&new->hidden_list,
1743 					 &hidden->hidden_list);
1744 				hidden->refcount++;
1745 				rcu_assign_pointer(new->pub.beacon_ies,
1746 						   hidden->pub.beacon_ies);
1747 			}
1748 		} else {
1749 			/*
1750 			 * Ok so we found a beacon, and don't have an entry. If
1751 			 * it's a beacon with hidden SSID, we might be in for an
1752 			 * expensive search for any probe responses that should
1753 			 * be grouped with this beacon for updates ...
1754 			 */
1755 			if (!cfg80211_combine_bsses(rdev, new)) {
1756 				bss_ref_put(rdev, new);
1757 				goto drop;
1758 			}
1759 		}
1760 
1761 		if (rdev->bss_entries >= bss_entries_limit &&
1762 		    !cfg80211_bss_expire_oldest(rdev)) {
1763 			bss_ref_put(rdev, new);
1764 			goto drop;
1765 		}
1766 
1767 		/* This must be before the call to bss_ref_get */
1768 		if (tmp->pub.transmitted_bss) {
1769 			struct cfg80211_internal_bss *pbss =
1770 				container_of(tmp->pub.transmitted_bss,
1771 					     struct cfg80211_internal_bss,
1772 					     pub);
1773 
1774 			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1775 			bss_ref_get(rdev, pbss);
1776 		}
1777 
1778 		list_add_tail(&new->list, &rdev->bss_list);
1779 		rdev->bss_entries++;
1780 		rb_insert_bss(rdev, new);
1781 		found = new;
1782 	}
1783 
1784 	rdev->bss_generation++;
1785 	bss_ref_get(rdev, found);
1786 	spin_unlock_bh(&rdev->bss_lock);
1787 
1788 	return found;
1789  drop:
1790 	spin_unlock_bh(&rdev->bss_lock);
1791 	return NULL;
1792 }
1793 
1794 /*
1795  * Update RX channel information based on the available frame payload
1796  * information. This is mainly for the 2.4 GHz band where frames can be received
1797  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1798  * element to indicate the current (transmitting) channel, but this might also
1799  * be needed on other bands if RX frequency does not match with the actual
1800  * operating channel of a BSS.
1801  */
1802 static struct ieee80211_channel *
1803 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1804 			 struct ieee80211_channel *channel,
1805 			 enum nl80211_bss_scan_width scan_width)
1806 {
1807 	const u8 *tmp;
1808 	u32 freq;
1809 	int channel_number = -1;
1810 	struct ieee80211_channel *alt_channel;
1811 
1812 	if (channel->band == NL80211_BAND_S1GHZ) {
1813 		tmp = cfg80211_find_ie(WLAN_EID_S1G_OPERATION, ie, ielen);
1814 		if (tmp && tmp[1] >= sizeof(struct ieee80211_s1g_oper_ie)) {
1815 			struct ieee80211_s1g_oper_ie *s1gop = (void *)(tmp + 2);
1816 
1817 			channel_number = s1gop->primary_ch;
1818 		}
1819 	} else {
1820 		tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1821 		if (tmp && tmp[1] == 1) {
1822 			channel_number = tmp[2];
1823 		} else {
1824 			tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1825 			if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1826 				struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1827 
1828 				channel_number = htop->primary_chan;
1829 			}
1830 		}
1831 	}
1832 
1833 	if (channel_number < 0) {
1834 		/* No channel information in frame payload */
1835 		return channel;
1836 	}
1837 
1838 	freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1839 	alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1840 	if (!alt_channel) {
1841 		if (channel->band == NL80211_BAND_2GHZ) {
1842 			/*
1843 			 * Better not allow unexpected channels when that could
1844 			 * be going beyond the 1-11 range (e.g., discovering
1845 			 * BSS on channel 12 when radio is configured for
1846 			 * channel 11.
1847 			 */
1848 			return NULL;
1849 		}
1850 
1851 		/* No match for the payload channel number - ignore it */
1852 		return channel;
1853 	}
1854 
1855 	if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1856 	    scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1857 		/*
1858 		 * Ignore channel number in 5 and 10 MHz channels where there
1859 		 * may not be an n:1 or 1:n mapping between frequencies and
1860 		 * channel numbers.
1861 		 */
1862 		return channel;
1863 	}
1864 
1865 	/*
1866 	 * Use the channel determined through the payload channel number
1867 	 * instead of the RX channel reported by the driver.
1868 	 */
1869 	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1870 		return NULL;
1871 	return alt_channel;
1872 }
1873 
1874 /* Returned bss is reference counted and must be cleaned up appropriately. */
1875 static struct cfg80211_bss *
1876 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1877 				struct cfg80211_inform_bss *data,
1878 				enum cfg80211_bss_frame_type ftype,
1879 				const u8 *bssid, u64 tsf, u16 capability,
1880 				u16 beacon_interval, const u8 *ie, size_t ielen,
1881 				struct cfg80211_non_tx_bss *non_tx_data,
1882 				gfp_t gfp)
1883 {
1884 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1885 	struct cfg80211_bss_ies *ies;
1886 	struct ieee80211_channel *channel;
1887 	struct cfg80211_internal_bss tmp = {}, *res;
1888 	int bss_type;
1889 	bool signal_valid;
1890 	unsigned long ts;
1891 
1892 	if (WARN_ON(!wiphy))
1893 		return NULL;
1894 
1895 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1896 		    (data->signal < 0 || data->signal > 100)))
1897 		return NULL;
1898 
1899 	channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1900 					   data->scan_width);
1901 	if (!channel)
1902 		return NULL;
1903 
1904 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1905 	tmp.pub.channel = channel;
1906 	tmp.pub.scan_width = data->scan_width;
1907 	tmp.pub.signal = data->signal;
1908 	tmp.pub.beacon_interval = beacon_interval;
1909 	tmp.pub.capability = capability;
1910 	tmp.ts_boottime = data->boottime_ns;
1911 	tmp.parent_tsf = data->parent_tsf;
1912 	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1913 
1914 	if (non_tx_data) {
1915 		tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1916 		ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1917 		tmp.pub.bssid_index = non_tx_data->bssid_index;
1918 		tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1919 	} else {
1920 		ts = jiffies;
1921 	}
1922 
1923 	/*
1924 	 * If we do not know here whether the IEs are from a Beacon or Probe
1925 	 * Response frame, we need to pick one of the options and only use it
1926 	 * with the driver that does not provide the full Beacon/Probe Response
1927 	 * frame. Use Beacon frame pointer to avoid indicating that this should
1928 	 * override the IEs pointer should we have received an earlier
1929 	 * indication of Probe Response data.
1930 	 */
1931 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
1932 	if (!ies)
1933 		return NULL;
1934 	ies->len = ielen;
1935 	ies->tsf = tsf;
1936 	ies->from_beacon = false;
1937 	memcpy(ies->data, ie, ielen);
1938 
1939 	switch (ftype) {
1940 	case CFG80211_BSS_FTYPE_BEACON:
1941 		ies->from_beacon = true;
1942 		fallthrough;
1943 	case CFG80211_BSS_FTYPE_UNKNOWN:
1944 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1945 		break;
1946 	case CFG80211_BSS_FTYPE_PRESP:
1947 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1948 		break;
1949 	}
1950 	rcu_assign_pointer(tmp.pub.ies, ies);
1951 
1952 	signal_valid = data->chan == channel;
1953 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
1954 	if (!res)
1955 		return NULL;
1956 
1957 	if (channel->band == NL80211_BAND_60GHZ) {
1958 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1959 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1960 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1961 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1962 	} else {
1963 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
1964 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1965 	}
1966 
1967 	if (non_tx_data) {
1968 		/* this is a nontransmitting bss, we need to add it to
1969 		 * transmitting bss' list if it is not there
1970 		 */
1971 		if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
1972 					       &res->pub)) {
1973 			if (__cfg80211_unlink_bss(rdev, res))
1974 				rdev->bss_generation++;
1975 		}
1976 	}
1977 
1978 	trace_cfg80211_return_bss(&res->pub);
1979 	/* cfg80211_bss_update gives us a referenced result */
1980 	return &res->pub;
1981 }
1982 
1983 static const struct element
1984 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
1985 				   const struct element *mbssid_elem,
1986 				   const struct element *sub_elem)
1987 {
1988 	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
1989 	const struct element *next_mbssid;
1990 	const struct element *next_sub;
1991 
1992 	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
1993 					 mbssid_end,
1994 					 ielen - (mbssid_end - ie));
1995 
1996 	/*
1997 	 * If it is not the last subelement in current MBSSID IE or there isn't
1998 	 * a next MBSSID IE - profile is complete.
1999 	*/
2000 	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2001 	    !next_mbssid)
2002 		return NULL;
2003 
2004 	/* For any length error, just return NULL */
2005 
2006 	if (next_mbssid->datalen < 4)
2007 		return NULL;
2008 
2009 	next_sub = (void *)&next_mbssid->data[1];
2010 
2011 	if (next_mbssid->data + next_mbssid->datalen <
2012 	    next_sub->data + next_sub->datalen)
2013 		return NULL;
2014 
2015 	if (next_sub->id != 0 || next_sub->datalen < 2)
2016 		return NULL;
2017 
2018 	/*
2019 	 * Check if the first element in the next sub element is a start
2020 	 * of a new profile
2021 	 */
2022 	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2023 	       NULL : next_mbssid;
2024 }
2025 
2026 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2027 			      const struct element *mbssid_elem,
2028 			      const struct element *sub_elem,
2029 			      u8 *merged_ie, size_t max_copy_len)
2030 {
2031 	size_t copied_len = sub_elem->datalen;
2032 	const struct element *next_mbssid;
2033 
2034 	if (sub_elem->datalen > max_copy_len)
2035 		return 0;
2036 
2037 	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2038 
2039 	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2040 								mbssid_elem,
2041 								sub_elem))) {
2042 		const struct element *next_sub = (void *)&next_mbssid->data[1];
2043 
2044 		if (copied_len + next_sub->datalen > max_copy_len)
2045 			break;
2046 		memcpy(merged_ie + copied_len, next_sub->data,
2047 		       next_sub->datalen);
2048 		copied_len += next_sub->datalen;
2049 	}
2050 
2051 	return copied_len;
2052 }
2053 EXPORT_SYMBOL(cfg80211_merge_profile);
2054 
2055 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2056 				       struct cfg80211_inform_bss *data,
2057 				       enum cfg80211_bss_frame_type ftype,
2058 				       const u8 *bssid, u64 tsf,
2059 				       u16 beacon_interval, const u8 *ie,
2060 				       size_t ielen,
2061 				       struct cfg80211_non_tx_bss *non_tx_data,
2062 				       gfp_t gfp)
2063 {
2064 	const u8 *mbssid_index_ie;
2065 	const struct element *elem, *sub;
2066 	size_t new_ie_len;
2067 	u8 new_bssid[ETH_ALEN];
2068 	u8 *new_ie, *profile;
2069 	u64 seen_indices = 0;
2070 	u16 capability;
2071 	struct cfg80211_bss *bss;
2072 
2073 	if (!non_tx_data)
2074 		return;
2075 	if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2076 		return;
2077 	if (!wiphy->support_mbssid)
2078 		return;
2079 	if (wiphy->support_only_he_mbssid &&
2080 	    !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2081 		return;
2082 
2083 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2084 	if (!new_ie)
2085 		return;
2086 
2087 	profile = kmalloc(ielen, gfp);
2088 	if (!profile)
2089 		goto out;
2090 
2091 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2092 		if (elem->datalen < 4)
2093 			continue;
2094 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2095 			u8 profile_len;
2096 
2097 			if (sub->id != 0 || sub->datalen < 4) {
2098 				/* not a valid BSS profile */
2099 				continue;
2100 			}
2101 
2102 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2103 			    sub->data[1] != 2) {
2104 				/* The first element within the Nontransmitted
2105 				 * BSSID Profile is not the Nontransmitted
2106 				 * BSSID Capability element.
2107 				 */
2108 				continue;
2109 			}
2110 
2111 			memset(profile, 0, ielen);
2112 			profile_len = cfg80211_merge_profile(ie, ielen,
2113 							     elem,
2114 							     sub,
2115 							     profile,
2116 							     ielen);
2117 
2118 			/* found a Nontransmitted BSSID Profile */
2119 			mbssid_index_ie = cfg80211_find_ie
2120 				(WLAN_EID_MULTI_BSSID_IDX,
2121 				 profile, profile_len);
2122 			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2123 			    mbssid_index_ie[2] == 0 ||
2124 			    mbssid_index_ie[2] > 46) {
2125 				/* No valid Multiple BSSID-Index element */
2126 				continue;
2127 			}
2128 
2129 			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2130 				/* We don't support legacy split of a profile */
2131 				net_dbg_ratelimited("Partial info for BSSID index %d\n",
2132 						    mbssid_index_ie[2]);
2133 
2134 			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2135 
2136 			non_tx_data->bssid_index = mbssid_index_ie[2];
2137 			non_tx_data->max_bssid_indicator = elem->data[0];
2138 
2139 			cfg80211_gen_new_bssid(bssid,
2140 					       non_tx_data->max_bssid_indicator,
2141 					       non_tx_data->bssid_index,
2142 					       new_bssid);
2143 			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2144 			new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2145 							 profile,
2146 							 profile_len, new_ie,
2147 							 gfp);
2148 			if (!new_ie_len)
2149 				continue;
2150 
2151 			capability = get_unaligned_le16(profile + 2);
2152 			bss = cfg80211_inform_single_bss_data(wiphy, data,
2153 							      ftype,
2154 							      new_bssid, tsf,
2155 							      capability,
2156 							      beacon_interval,
2157 							      new_ie,
2158 							      new_ie_len,
2159 							      non_tx_data,
2160 							      gfp);
2161 			if (!bss)
2162 				break;
2163 			cfg80211_put_bss(wiphy, bss);
2164 		}
2165 	}
2166 
2167 out:
2168 	kfree(new_ie);
2169 	kfree(profile);
2170 }
2171 
2172 struct cfg80211_bss *
2173 cfg80211_inform_bss_data(struct wiphy *wiphy,
2174 			 struct cfg80211_inform_bss *data,
2175 			 enum cfg80211_bss_frame_type ftype,
2176 			 const u8 *bssid, u64 tsf, u16 capability,
2177 			 u16 beacon_interval, const u8 *ie, size_t ielen,
2178 			 gfp_t gfp)
2179 {
2180 	struct cfg80211_bss *res;
2181 	struct cfg80211_non_tx_bss non_tx_data;
2182 
2183 	res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2184 					      capability, beacon_interval, ie,
2185 					      ielen, NULL, gfp);
2186 	if (!res)
2187 		return NULL;
2188 	non_tx_data.tx_bss = res;
2189 	cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2190 				   beacon_interval, ie, ielen, &non_tx_data,
2191 				   gfp);
2192 	return res;
2193 }
2194 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2195 
2196 static void
2197 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2198 				 struct cfg80211_inform_bss *data,
2199 				 struct ieee80211_mgmt *mgmt, size_t len,
2200 				 struct cfg80211_non_tx_bss *non_tx_data,
2201 				 gfp_t gfp)
2202 {
2203 	enum cfg80211_bss_frame_type ftype;
2204 	const u8 *ie = mgmt->u.probe_resp.variable;
2205 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2206 				      u.probe_resp.variable);
2207 
2208 	ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2209 		CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2210 
2211 	cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2212 				   le64_to_cpu(mgmt->u.probe_resp.timestamp),
2213 				   le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2214 				   ie, ielen, non_tx_data, gfp);
2215 }
2216 
2217 static void
2218 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2219 				   struct cfg80211_bss *nontrans_bss,
2220 				   struct ieee80211_mgmt *mgmt, size_t len)
2221 {
2222 	u8 *ie, *new_ie, *pos;
2223 	const u8 *nontrans_ssid, *trans_ssid, *mbssid;
2224 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2225 				      u.probe_resp.variable);
2226 	size_t new_ie_len;
2227 	struct cfg80211_bss_ies *new_ies;
2228 	const struct cfg80211_bss_ies *old;
2229 	u8 cpy_len;
2230 
2231 	lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2232 
2233 	ie = mgmt->u.probe_resp.variable;
2234 
2235 	new_ie_len = ielen;
2236 	trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2237 	if (!trans_ssid)
2238 		return;
2239 	new_ie_len -= trans_ssid[1];
2240 	mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2241 	/*
2242 	 * It's not valid to have the MBSSID element before SSID
2243 	 * ignore if that happens - the code below assumes it is
2244 	 * after (while copying things inbetween).
2245 	 */
2246 	if (!mbssid || mbssid < trans_ssid)
2247 		return;
2248 	new_ie_len -= mbssid[1];
2249 
2250 	nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
2251 	if (!nontrans_ssid)
2252 		return;
2253 
2254 	new_ie_len += nontrans_ssid[1];
2255 
2256 	/* generate new ie for nontrans BSS
2257 	 * 1. replace SSID with nontrans BSS' SSID
2258 	 * 2. skip MBSSID IE
2259 	 */
2260 	new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2261 	if (!new_ie)
2262 		return;
2263 
2264 	new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2265 	if (!new_ies)
2266 		goto out_free;
2267 
2268 	pos = new_ie;
2269 
2270 	/* copy the nontransmitted SSID */
2271 	cpy_len = nontrans_ssid[1] + 2;
2272 	memcpy(pos, nontrans_ssid, cpy_len);
2273 	pos += cpy_len;
2274 	/* copy the IEs between SSID and MBSSID */
2275 	cpy_len = trans_ssid[1] + 2;
2276 	memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2277 	pos += (mbssid - (trans_ssid + cpy_len));
2278 	/* copy the IEs after MBSSID */
2279 	cpy_len = mbssid[1] + 2;
2280 	memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2281 
2282 	/* update ie */
2283 	new_ies->len = new_ie_len;
2284 	new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2285 	new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2286 	memcpy(new_ies->data, new_ie, new_ie_len);
2287 	if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2288 		old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2289 		rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2290 		rcu_assign_pointer(nontrans_bss->ies, new_ies);
2291 		if (old)
2292 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2293 	} else {
2294 		old = rcu_access_pointer(nontrans_bss->beacon_ies);
2295 		rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2296 		rcu_assign_pointer(nontrans_bss->ies, new_ies);
2297 		if (old)
2298 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2299 	}
2300 
2301 out_free:
2302 	kfree(new_ie);
2303 }
2304 
2305 /* cfg80211_inform_bss_width_frame helper */
2306 static struct cfg80211_bss *
2307 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2308 				      struct cfg80211_inform_bss *data,
2309 				      struct ieee80211_mgmt *mgmt, size_t len,
2310 				      gfp_t gfp)
2311 {
2312 	struct cfg80211_internal_bss tmp = {}, *res;
2313 	struct cfg80211_bss_ies *ies;
2314 	struct ieee80211_channel *channel;
2315 	bool signal_valid;
2316 	struct ieee80211_ext *ext = NULL;
2317 	u8 *bssid, *variable;
2318 	u16 capability, beacon_int;
2319 	size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2320 					     u.probe_resp.variable);
2321 	int bss_type;
2322 
2323 	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2324 			offsetof(struct ieee80211_mgmt, u.beacon.variable));
2325 
2326 	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2327 
2328 	if (WARN_ON(!mgmt))
2329 		return NULL;
2330 
2331 	if (WARN_ON(!wiphy))
2332 		return NULL;
2333 
2334 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2335 		    (data->signal < 0 || data->signal > 100)))
2336 		return NULL;
2337 
2338 	if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2339 		ext = (void *) mgmt;
2340 		min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2341 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2342 			min_hdr_len = offsetof(struct ieee80211_ext,
2343 					       u.s1g_short_beacon.variable);
2344 	}
2345 
2346 	if (WARN_ON(len < min_hdr_len))
2347 		return NULL;
2348 
2349 	ielen = len - min_hdr_len;
2350 	variable = mgmt->u.probe_resp.variable;
2351 	if (ext) {
2352 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2353 			variable = ext->u.s1g_short_beacon.variable;
2354 		else
2355 			variable = ext->u.s1g_beacon.variable;
2356 	}
2357 
2358 	channel = cfg80211_get_bss_channel(wiphy, variable,
2359 					   ielen, data->chan, data->scan_width);
2360 	if (!channel)
2361 		return NULL;
2362 
2363 	if (ext) {
2364 		const struct ieee80211_s1g_bcn_compat_ie *compat;
2365 		const struct element *elem;
2366 
2367 		elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2368 					  variable, ielen);
2369 		if (!elem)
2370 			return NULL;
2371 		if (elem->datalen < sizeof(*compat))
2372 			return NULL;
2373 		compat = (void *)elem->data;
2374 		bssid = ext->u.s1g_beacon.sa;
2375 		capability = le16_to_cpu(compat->compat_info);
2376 		beacon_int = le16_to_cpu(compat->beacon_int);
2377 	} else {
2378 		bssid = mgmt->bssid;
2379 		beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2380 		capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2381 	}
2382 
2383 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
2384 	if (!ies)
2385 		return NULL;
2386 	ies->len = ielen;
2387 	ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2388 	ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2389 			   ieee80211_is_s1g_beacon(mgmt->frame_control);
2390 	memcpy(ies->data, variable, ielen);
2391 
2392 	if (ieee80211_is_probe_resp(mgmt->frame_control))
2393 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2394 	else
2395 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2396 	rcu_assign_pointer(tmp.pub.ies, ies);
2397 
2398 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2399 	tmp.pub.beacon_interval = beacon_int;
2400 	tmp.pub.capability = capability;
2401 	tmp.pub.channel = channel;
2402 	tmp.pub.scan_width = data->scan_width;
2403 	tmp.pub.signal = data->signal;
2404 	tmp.ts_boottime = data->boottime_ns;
2405 	tmp.parent_tsf = data->parent_tsf;
2406 	tmp.pub.chains = data->chains;
2407 	memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2408 	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2409 
2410 	signal_valid = data->chan == channel;
2411 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2412 				  jiffies);
2413 	if (!res)
2414 		return NULL;
2415 
2416 	if (channel->band == NL80211_BAND_60GHZ) {
2417 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2418 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2419 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2420 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2421 	} else {
2422 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
2423 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2424 	}
2425 
2426 	trace_cfg80211_return_bss(&res->pub);
2427 	/* cfg80211_bss_update gives us a referenced result */
2428 	return &res->pub;
2429 }
2430 
2431 struct cfg80211_bss *
2432 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2433 			       struct cfg80211_inform_bss *data,
2434 			       struct ieee80211_mgmt *mgmt, size_t len,
2435 			       gfp_t gfp)
2436 {
2437 	struct cfg80211_bss *res, *tmp_bss;
2438 	const u8 *ie = mgmt->u.probe_resp.variable;
2439 	const struct cfg80211_bss_ies *ies1, *ies2;
2440 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2441 				      u.probe_resp.variable);
2442 	struct cfg80211_non_tx_bss non_tx_data;
2443 
2444 	res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2445 						    len, gfp);
2446 	if (!res || !wiphy->support_mbssid ||
2447 	    !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2448 		return res;
2449 	if (wiphy->support_only_he_mbssid &&
2450 	    !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2451 		return res;
2452 
2453 	non_tx_data.tx_bss = res;
2454 	/* process each non-transmitting bss */
2455 	cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2456 					 &non_tx_data, gfp);
2457 
2458 	spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2459 
2460 	/* check if the res has other nontransmitting bss which is not
2461 	 * in MBSSID IE
2462 	 */
2463 	ies1 = rcu_access_pointer(res->ies);
2464 
2465 	/* go through nontrans_list, if the timestamp of the BSS is
2466 	 * earlier than the timestamp of the transmitting BSS then
2467 	 * update it
2468 	 */
2469 	list_for_each_entry(tmp_bss, &res->nontrans_list,
2470 			    nontrans_list) {
2471 		ies2 = rcu_access_pointer(tmp_bss->ies);
2472 		if (ies2->tsf < ies1->tsf)
2473 			cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2474 							   mgmt, len);
2475 	}
2476 	spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2477 
2478 	return res;
2479 }
2480 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2481 
2482 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2483 {
2484 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2485 	struct cfg80211_internal_bss *bss;
2486 
2487 	if (!pub)
2488 		return;
2489 
2490 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2491 
2492 	spin_lock_bh(&rdev->bss_lock);
2493 	bss_ref_get(rdev, bss);
2494 	spin_unlock_bh(&rdev->bss_lock);
2495 }
2496 EXPORT_SYMBOL(cfg80211_ref_bss);
2497 
2498 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2499 {
2500 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2501 	struct cfg80211_internal_bss *bss;
2502 
2503 	if (!pub)
2504 		return;
2505 
2506 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2507 
2508 	spin_lock_bh(&rdev->bss_lock);
2509 	bss_ref_put(rdev, bss);
2510 	spin_unlock_bh(&rdev->bss_lock);
2511 }
2512 EXPORT_SYMBOL(cfg80211_put_bss);
2513 
2514 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2515 {
2516 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2517 	struct cfg80211_internal_bss *bss, *tmp1;
2518 	struct cfg80211_bss *nontrans_bss, *tmp;
2519 
2520 	if (WARN_ON(!pub))
2521 		return;
2522 
2523 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2524 
2525 	spin_lock_bh(&rdev->bss_lock);
2526 	if (list_empty(&bss->list))
2527 		goto out;
2528 
2529 	list_for_each_entry_safe(nontrans_bss, tmp,
2530 				 &pub->nontrans_list,
2531 				 nontrans_list) {
2532 		tmp1 = container_of(nontrans_bss,
2533 				    struct cfg80211_internal_bss, pub);
2534 		if (__cfg80211_unlink_bss(rdev, tmp1))
2535 			rdev->bss_generation++;
2536 	}
2537 
2538 	if (__cfg80211_unlink_bss(rdev, bss))
2539 		rdev->bss_generation++;
2540 out:
2541 	spin_unlock_bh(&rdev->bss_lock);
2542 }
2543 EXPORT_SYMBOL(cfg80211_unlink_bss);
2544 
2545 void cfg80211_bss_iter(struct wiphy *wiphy,
2546 		       struct cfg80211_chan_def *chandef,
2547 		       void (*iter)(struct wiphy *wiphy,
2548 				    struct cfg80211_bss *bss,
2549 				    void *data),
2550 		       void *iter_data)
2551 {
2552 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2553 	struct cfg80211_internal_bss *bss;
2554 
2555 	spin_lock_bh(&rdev->bss_lock);
2556 
2557 	list_for_each_entry(bss, &rdev->bss_list, list) {
2558 		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel))
2559 			iter(wiphy, &bss->pub, iter_data);
2560 	}
2561 
2562 	spin_unlock_bh(&rdev->bss_lock);
2563 }
2564 EXPORT_SYMBOL(cfg80211_bss_iter);
2565 
2566 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2567 				     struct ieee80211_channel *chan)
2568 {
2569 	struct wiphy *wiphy = wdev->wiphy;
2570 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2571 	struct cfg80211_internal_bss *cbss = wdev->current_bss;
2572 	struct cfg80211_internal_bss *new = NULL;
2573 	struct cfg80211_internal_bss *bss;
2574 	struct cfg80211_bss *nontrans_bss;
2575 	struct cfg80211_bss *tmp;
2576 
2577 	spin_lock_bh(&rdev->bss_lock);
2578 
2579 	/*
2580 	 * Some APs use CSA also for bandwidth changes, i.e., without actually
2581 	 * changing the control channel, so no need to update in such a case.
2582 	 */
2583 	if (cbss->pub.channel == chan)
2584 		goto done;
2585 
2586 	/* use transmitting bss */
2587 	if (cbss->pub.transmitted_bss)
2588 		cbss = container_of(cbss->pub.transmitted_bss,
2589 				    struct cfg80211_internal_bss,
2590 				    pub);
2591 
2592 	cbss->pub.channel = chan;
2593 
2594 	list_for_each_entry(bss, &rdev->bss_list, list) {
2595 		if (!cfg80211_bss_type_match(bss->pub.capability,
2596 					     bss->pub.channel->band,
2597 					     wdev->conn_bss_type))
2598 			continue;
2599 
2600 		if (bss == cbss)
2601 			continue;
2602 
2603 		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2604 			new = bss;
2605 			break;
2606 		}
2607 	}
2608 
2609 	if (new) {
2610 		/* to save time, update IEs for transmitting bss only */
2611 		if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2612 			new->pub.proberesp_ies = NULL;
2613 			new->pub.beacon_ies = NULL;
2614 		}
2615 
2616 		list_for_each_entry_safe(nontrans_bss, tmp,
2617 					 &new->pub.nontrans_list,
2618 					 nontrans_list) {
2619 			bss = container_of(nontrans_bss,
2620 					   struct cfg80211_internal_bss, pub);
2621 			if (__cfg80211_unlink_bss(rdev, bss))
2622 				rdev->bss_generation++;
2623 		}
2624 
2625 		WARN_ON(atomic_read(&new->hold));
2626 		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2627 			rdev->bss_generation++;
2628 	}
2629 
2630 	rb_erase(&cbss->rbn, &rdev->bss_tree);
2631 	rb_insert_bss(rdev, cbss);
2632 	rdev->bss_generation++;
2633 
2634 	list_for_each_entry_safe(nontrans_bss, tmp,
2635 				 &cbss->pub.nontrans_list,
2636 				 nontrans_list) {
2637 		bss = container_of(nontrans_bss,
2638 				   struct cfg80211_internal_bss, pub);
2639 		bss->pub.channel = chan;
2640 		rb_erase(&bss->rbn, &rdev->bss_tree);
2641 		rb_insert_bss(rdev, bss);
2642 		rdev->bss_generation++;
2643 	}
2644 
2645 done:
2646 	spin_unlock_bh(&rdev->bss_lock);
2647 }
2648 
2649 #ifdef CONFIG_CFG80211_WEXT
2650 static struct cfg80211_registered_device *
2651 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2652 {
2653 	struct cfg80211_registered_device *rdev;
2654 	struct net_device *dev;
2655 
2656 	ASSERT_RTNL();
2657 
2658 	dev = dev_get_by_index(net, ifindex);
2659 	if (!dev)
2660 		return ERR_PTR(-ENODEV);
2661 	if (dev->ieee80211_ptr)
2662 		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2663 	else
2664 		rdev = ERR_PTR(-ENODEV);
2665 	dev_put(dev);
2666 	return rdev;
2667 }
2668 
2669 int cfg80211_wext_siwscan(struct net_device *dev,
2670 			  struct iw_request_info *info,
2671 			  union iwreq_data *wrqu, char *extra)
2672 {
2673 	struct cfg80211_registered_device *rdev;
2674 	struct wiphy *wiphy;
2675 	struct iw_scan_req *wreq = NULL;
2676 	struct cfg80211_scan_request *creq = NULL;
2677 	int i, err, n_channels = 0;
2678 	enum nl80211_band band;
2679 
2680 	if (!netif_running(dev))
2681 		return -ENETDOWN;
2682 
2683 	if (wrqu->data.length == sizeof(struct iw_scan_req))
2684 		wreq = (struct iw_scan_req *)extra;
2685 
2686 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2687 
2688 	if (IS_ERR(rdev))
2689 		return PTR_ERR(rdev);
2690 
2691 	if (rdev->scan_req || rdev->scan_msg) {
2692 		err = -EBUSY;
2693 		goto out;
2694 	}
2695 
2696 	wiphy = &rdev->wiphy;
2697 
2698 	/* Determine number of channels, needed to allocate creq */
2699 	if (wreq && wreq->num_channels)
2700 		n_channels = wreq->num_channels;
2701 	else
2702 		n_channels = ieee80211_get_num_supported_channels(wiphy);
2703 
2704 	creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2705 		       n_channels * sizeof(void *),
2706 		       GFP_ATOMIC);
2707 	if (!creq) {
2708 		err = -ENOMEM;
2709 		goto out;
2710 	}
2711 
2712 	creq->wiphy = wiphy;
2713 	creq->wdev = dev->ieee80211_ptr;
2714 	/* SSIDs come after channels */
2715 	creq->ssids = (void *)&creq->channels[n_channels];
2716 	creq->n_channels = n_channels;
2717 	creq->n_ssids = 1;
2718 	creq->scan_start = jiffies;
2719 
2720 	/* translate "Scan on frequencies" request */
2721 	i = 0;
2722 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2723 		int j;
2724 
2725 		if (!wiphy->bands[band])
2726 			continue;
2727 
2728 		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2729 			/* ignore disabled channels */
2730 			if (wiphy->bands[band]->channels[j].flags &
2731 						IEEE80211_CHAN_DISABLED)
2732 				continue;
2733 
2734 			/* If we have a wireless request structure and the
2735 			 * wireless request specifies frequencies, then search
2736 			 * for the matching hardware channel.
2737 			 */
2738 			if (wreq && wreq->num_channels) {
2739 				int k;
2740 				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2741 				for (k = 0; k < wreq->num_channels; k++) {
2742 					struct iw_freq *freq =
2743 						&wreq->channel_list[k];
2744 					int wext_freq =
2745 						cfg80211_wext_freq(freq);
2746 
2747 					if (wext_freq == wiphy_freq)
2748 						goto wext_freq_found;
2749 				}
2750 				goto wext_freq_not_found;
2751 			}
2752 
2753 		wext_freq_found:
2754 			creq->channels[i] = &wiphy->bands[band]->channels[j];
2755 			i++;
2756 		wext_freq_not_found: ;
2757 		}
2758 	}
2759 	/* No channels found? */
2760 	if (!i) {
2761 		err = -EINVAL;
2762 		goto out;
2763 	}
2764 
2765 	/* Set real number of channels specified in creq->channels[] */
2766 	creq->n_channels = i;
2767 
2768 	/* translate "Scan for SSID" request */
2769 	if (wreq) {
2770 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2771 			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2772 				err = -EINVAL;
2773 				goto out;
2774 			}
2775 			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2776 			creq->ssids[0].ssid_len = wreq->essid_len;
2777 		}
2778 		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2779 			creq->n_ssids = 0;
2780 	}
2781 
2782 	for (i = 0; i < NUM_NL80211_BANDS; i++)
2783 		if (wiphy->bands[i])
2784 			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2785 
2786 	eth_broadcast_addr(creq->bssid);
2787 
2788 	wiphy_lock(&rdev->wiphy);
2789 
2790 	rdev->scan_req = creq;
2791 	err = rdev_scan(rdev, creq);
2792 	if (err) {
2793 		rdev->scan_req = NULL;
2794 		/* creq will be freed below */
2795 	} else {
2796 		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2797 		/* creq now owned by driver */
2798 		creq = NULL;
2799 		dev_hold(dev);
2800 	}
2801 	wiphy_unlock(&rdev->wiphy);
2802  out:
2803 	kfree(creq);
2804 	return err;
2805 }
2806 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2807 
2808 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2809 				    const struct cfg80211_bss_ies *ies,
2810 				    char *current_ev, char *end_buf)
2811 {
2812 	const u8 *pos, *end, *next;
2813 	struct iw_event iwe;
2814 
2815 	if (!ies)
2816 		return current_ev;
2817 
2818 	/*
2819 	 * If needed, fragment the IEs buffer (at IE boundaries) into short
2820 	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2821 	 */
2822 	pos = ies->data;
2823 	end = pos + ies->len;
2824 
2825 	while (end - pos > IW_GENERIC_IE_MAX) {
2826 		next = pos + 2 + pos[1];
2827 		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2828 			next = next + 2 + next[1];
2829 
2830 		memset(&iwe, 0, sizeof(iwe));
2831 		iwe.cmd = IWEVGENIE;
2832 		iwe.u.data.length = next - pos;
2833 		current_ev = iwe_stream_add_point_check(info, current_ev,
2834 							end_buf, &iwe,
2835 							(void *)pos);
2836 		if (IS_ERR(current_ev))
2837 			return current_ev;
2838 		pos = next;
2839 	}
2840 
2841 	if (end > pos) {
2842 		memset(&iwe, 0, sizeof(iwe));
2843 		iwe.cmd = IWEVGENIE;
2844 		iwe.u.data.length = end - pos;
2845 		current_ev = iwe_stream_add_point_check(info, current_ev,
2846 							end_buf, &iwe,
2847 							(void *)pos);
2848 		if (IS_ERR(current_ev))
2849 			return current_ev;
2850 	}
2851 
2852 	return current_ev;
2853 }
2854 
2855 static char *
2856 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2857 	      struct cfg80211_internal_bss *bss, char *current_ev,
2858 	      char *end_buf)
2859 {
2860 	const struct cfg80211_bss_ies *ies;
2861 	struct iw_event iwe;
2862 	const u8 *ie;
2863 	u8 buf[50];
2864 	u8 *cfg, *p, *tmp;
2865 	int rem, i, sig;
2866 	bool ismesh = false;
2867 
2868 	memset(&iwe, 0, sizeof(iwe));
2869 	iwe.cmd = SIOCGIWAP;
2870 	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2871 	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2872 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2873 						IW_EV_ADDR_LEN);
2874 	if (IS_ERR(current_ev))
2875 		return current_ev;
2876 
2877 	memset(&iwe, 0, sizeof(iwe));
2878 	iwe.cmd = SIOCGIWFREQ;
2879 	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2880 	iwe.u.freq.e = 0;
2881 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2882 						IW_EV_FREQ_LEN);
2883 	if (IS_ERR(current_ev))
2884 		return current_ev;
2885 
2886 	memset(&iwe, 0, sizeof(iwe));
2887 	iwe.cmd = SIOCGIWFREQ;
2888 	iwe.u.freq.m = bss->pub.channel->center_freq;
2889 	iwe.u.freq.e = 6;
2890 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2891 						IW_EV_FREQ_LEN);
2892 	if (IS_ERR(current_ev))
2893 		return current_ev;
2894 
2895 	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2896 		memset(&iwe, 0, sizeof(iwe));
2897 		iwe.cmd = IWEVQUAL;
2898 		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2899 				     IW_QUAL_NOISE_INVALID |
2900 				     IW_QUAL_QUAL_UPDATED;
2901 		switch (wiphy->signal_type) {
2902 		case CFG80211_SIGNAL_TYPE_MBM:
2903 			sig = bss->pub.signal / 100;
2904 			iwe.u.qual.level = sig;
2905 			iwe.u.qual.updated |= IW_QUAL_DBM;
2906 			if (sig < -110)		/* rather bad */
2907 				sig = -110;
2908 			else if (sig > -40)	/* perfect */
2909 				sig = -40;
2910 			/* will give a range of 0 .. 70 */
2911 			iwe.u.qual.qual = sig + 110;
2912 			break;
2913 		case CFG80211_SIGNAL_TYPE_UNSPEC:
2914 			iwe.u.qual.level = bss->pub.signal;
2915 			/* will give range 0 .. 100 */
2916 			iwe.u.qual.qual = bss->pub.signal;
2917 			break;
2918 		default:
2919 			/* not reached */
2920 			break;
2921 		}
2922 		current_ev = iwe_stream_add_event_check(info, current_ev,
2923 							end_buf, &iwe,
2924 							IW_EV_QUAL_LEN);
2925 		if (IS_ERR(current_ev))
2926 			return current_ev;
2927 	}
2928 
2929 	memset(&iwe, 0, sizeof(iwe));
2930 	iwe.cmd = SIOCGIWENCODE;
2931 	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2932 		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2933 	else
2934 		iwe.u.data.flags = IW_ENCODE_DISABLED;
2935 	iwe.u.data.length = 0;
2936 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2937 						&iwe, "");
2938 	if (IS_ERR(current_ev))
2939 		return current_ev;
2940 
2941 	rcu_read_lock();
2942 	ies = rcu_dereference(bss->pub.ies);
2943 	rem = ies->len;
2944 	ie = ies->data;
2945 
2946 	while (rem >= 2) {
2947 		/* invalid data */
2948 		if (ie[1] > rem - 2)
2949 			break;
2950 
2951 		switch (ie[0]) {
2952 		case WLAN_EID_SSID:
2953 			memset(&iwe, 0, sizeof(iwe));
2954 			iwe.cmd = SIOCGIWESSID;
2955 			iwe.u.data.length = ie[1];
2956 			iwe.u.data.flags = 1;
2957 			current_ev = iwe_stream_add_point_check(info,
2958 								current_ev,
2959 								end_buf, &iwe,
2960 								(u8 *)ie + 2);
2961 			if (IS_ERR(current_ev))
2962 				goto unlock;
2963 			break;
2964 		case WLAN_EID_MESH_ID:
2965 			memset(&iwe, 0, sizeof(iwe));
2966 			iwe.cmd = SIOCGIWESSID;
2967 			iwe.u.data.length = ie[1];
2968 			iwe.u.data.flags = 1;
2969 			current_ev = iwe_stream_add_point_check(info,
2970 								current_ev,
2971 								end_buf, &iwe,
2972 								(u8 *)ie + 2);
2973 			if (IS_ERR(current_ev))
2974 				goto unlock;
2975 			break;
2976 		case WLAN_EID_MESH_CONFIG:
2977 			ismesh = true;
2978 			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
2979 				break;
2980 			cfg = (u8 *)ie + 2;
2981 			memset(&iwe, 0, sizeof(iwe));
2982 			iwe.cmd = IWEVCUSTOM;
2983 			sprintf(buf, "Mesh Network Path Selection Protocol ID: "
2984 				"0x%02X", cfg[0]);
2985 			iwe.u.data.length = strlen(buf);
2986 			current_ev = iwe_stream_add_point_check(info,
2987 								current_ev,
2988 								end_buf,
2989 								&iwe, buf);
2990 			if (IS_ERR(current_ev))
2991 				goto unlock;
2992 			sprintf(buf, "Path Selection Metric ID: 0x%02X",
2993 				cfg[1]);
2994 			iwe.u.data.length = strlen(buf);
2995 			current_ev = iwe_stream_add_point_check(info,
2996 								current_ev,
2997 								end_buf,
2998 								&iwe, buf);
2999 			if (IS_ERR(current_ev))
3000 				goto unlock;
3001 			sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3002 				cfg[2]);
3003 			iwe.u.data.length = strlen(buf);
3004 			current_ev = iwe_stream_add_point_check(info,
3005 								current_ev,
3006 								end_buf,
3007 								&iwe, buf);
3008 			if (IS_ERR(current_ev))
3009 				goto unlock;
3010 			sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3011 			iwe.u.data.length = strlen(buf);
3012 			current_ev = iwe_stream_add_point_check(info,
3013 								current_ev,
3014 								end_buf,
3015 								&iwe, buf);
3016 			if (IS_ERR(current_ev))
3017 				goto unlock;
3018 			sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3019 			iwe.u.data.length = strlen(buf);
3020 			current_ev = iwe_stream_add_point_check(info,
3021 								current_ev,
3022 								end_buf,
3023 								&iwe, buf);
3024 			if (IS_ERR(current_ev))
3025 				goto unlock;
3026 			sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3027 			iwe.u.data.length = strlen(buf);
3028 			current_ev = iwe_stream_add_point_check(info,
3029 								current_ev,
3030 								end_buf,
3031 								&iwe, buf);
3032 			if (IS_ERR(current_ev))
3033 				goto unlock;
3034 			sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3035 			iwe.u.data.length = strlen(buf);
3036 			current_ev = iwe_stream_add_point_check(info,
3037 								current_ev,
3038 								end_buf,
3039 								&iwe, buf);
3040 			if (IS_ERR(current_ev))
3041 				goto unlock;
3042 			break;
3043 		case WLAN_EID_SUPP_RATES:
3044 		case WLAN_EID_EXT_SUPP_RATES:
3045 			/* display all supported rates in readable format */
3046 			p = current_ev + iwe_stream_lcp_len(info);
3047 
3048 			memset(&iwe, 0, sizeof(iwe));
3049 			iwe.cmd = SIOCGIWRATE;
3050 			/* Those two flags are ignored... */
3051 			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3052 
3053 			for (i = 0; i < ie[1]; i++) {
3054 				iwe.u.bitrate.value =
3055 					((ie[i + 2] & 0x7f) * 500000);
3056 				tmp = p;
3057 				p = iwe_stream_add_value(info, current_ev, p,
3058 							 end_buf, &iwe,
3059 							 IW_EV_PARAM_LEN);
3060 				if (p == tmp) {
3061 					current_ev = ERR_PTR(-E2BIG);
3062 					goto unlock;
3063 				}
3064 			}
3065 			current_ev = p;
3066 			break;
3067 		}
3068 		rem -= ie[1] + 2;
3069 		ie += ie[1] + 2;
3070 	}
3071 
3072 	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3073 	    ismesh) {
3074 		memset(&iwe, 0, sizeof(iwe));
3075 		iwe.cmd = SIOCGIWMODE;
3076 		if (ismesh)
3077 			iwe.u.mode = IW_MODE_MESH;
3078 		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3079 			iwe.u.mode = IW_MODE_MASTER;
3080 		else
3081 			iwe.u.mode = IW_MODE_ADHOC;
3082 		current_ev = iwe_stream_add_event_check(info, current_ev,
3083 							end_buf, &iwe,
3084 							IW_EV_UINT_LEN);
3085 		if (IS_ERR(current_ev))
3086 			goto unlock;
3087 	}
3088 
3089 	memset(&iwe, 0, sizeof(iwe));
3090 	iwe.cmd = IWEVCUSTOM;
3091 	sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3092 	iwe.u.data.length = strlen(buf);
3093 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3094 						&iwe, buf);
3095 	if (IS_ERR(current_ev))
3096 		goto unlock;
3097 	memset(&iwe, 0, sizeof(iwe));
3098 	iwe.cmd = IWEVCUSTOM;
3099 	sprintf(buf, " Last beacon: %ums ago",
3100 		elapsed_jiffies_msecs(bss->ts));
3101 	iwe.u.data.length = strlen(buf);
3102 	current_ev = iwe_stream_add_point_check(info, current_ev,
3103 						end_buf, &iwe, buf);
3104 	if (IS_ERR(current_ev))
3105 		goto unlock;
3106 
3107 	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3108 
3109  unlock:
3110 	rcu_read_unlock();
3111 	return current_ev;
3112 }
3113 
3114 
3115 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3116 				  struct iw_request_info *info,
3117 				  char *buf, size_t len)
3118 {
3119 	char *current_ev = buf;
3120 	char *end_buf = buf + len;
3121 	struct cfg80211_internal_bss *bss;
3122 	int err = 0;
3123 
3124 	spin_lock_bh(&rdev->bss_lock);
3125 	cfg80211_bss_expire(rdev);
3126 
3127 	list_for_each_entry(bss, &rdev->bss_list, list) {
3128 		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3129 			err = -E2BIG;
3130 			break;
3131 		}
3132 		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3133 					   current_ev, end_buf);
3134 		if (IS_ERR(current_ev)) {
3135 			err = PTR_ERR(current_ev);
3136 			break;
3137 		}
3138 	}
3139 	spin_unlock_bh(&rdev->bss_lock);
3140 
3141 	if (err)
3142 		return err;
3143 	return current_ev - buf;
3144 }
3145 
3146 
3147 int cfg80211_wext_giwscan(struct net_device *dev,
3148 			  struct iw_request_info *info,
3149 			  struct iw_point *data, char *extra)
3150 {
3151 	struct cfg80211_registered_device *rdev;
3152 	int res;
3153 
3154 	if (!netif_running(dev))
3155 		return -ENETDOWN;
3156 
3157 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3158 
3159 	if (IS_ERR(rdev))
3160 		return PTR_ERR(rdev);
3161 
3162 	if (rdev->scan_req || rdev->scan_msg)
3163 		return -EAGAIN;
3164 
3165 	res = ieee80211_scan_results(rdev, info, extra, data->length);
3166 	data->length = 0;
3167 	if (res >= 0) {
3168 		data->length = res;
3169 		res = 0;
3170 	}
3171 
3172 	return res;
3173 }
3174 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3175 #endif
3176