1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * cfg80211 scan result handling 4 * 5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2016 Intel Deutschland GmbH 8 * Copyright (C) 2018-2023 Intel Corporation 9 */ 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/netdevice.h> 14 #include <linux/wireless.h> 15 #include <linux/nl80211.h> 16 #include <linux/etherdevice.h> 17 #include <linux/crc32.h> 18 #include <linux/bitfield.h> 19 #include <net/arp.h> 20 #include <net/cfg80211.h> 21 #include <net/cfg80211-wext.h> 22 #include <net/iw_handler.h> 23 #include "core.h" 24 #include "nl80211.h" 25 #include "wext-compat.h" 26 #include "rdev-ops.h" 27 28 /** 29 * DOC: BSS tree/list structure 30 * 31 * At the top level, the BSS list is kept in both a list in each 32 * registered device (@bss_list) as well as an RB-tree for faster 33 * lookup. In the RB-tree, entries can be looked up using their 34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID 35 * for other BSSes. 36 * 37 * Due to the possibility of hidden SSIDs, there's a second level 38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer. 39 * The hidden_list connects all BSSes belonging to a single AP 40 * that has a hidden SSID, and connects beacon and probe response 41 * entries. For a probe response entry for a hidden SSID, the 42 * hidden_beacon_bss pointer points to the BSS struct holding the 43 * beacon's information. 44 * 45 * Reference counting is done for all these references except for 46 * the hidden_list, so that a beacon BSS struct that is otherwise 47 * not referenced has one reference for being on the bss_list and 48 * one for each probe response entry that points to it using the 49 * hidden_beacon_bss pointer. When a BSS struct that has such a 50 * pointer is get/put, the refcount update is also propagated to 51 * the referenced struct, this ensure that it cannot get removed 52 * while somebody is using the probe response version. 53 * 54 * Note that the hidden_beacon_bss pointer never changes, due to 55 * the reference counting. Therefore, no locking is needed for 56 * it. 57 * 58 * Also note that the hidden_beacon_bss pointer is only relevant 59 * if the driver uses something other than the IEs, e.g. private 60 * data stored in the BSS struct, since the beacon IEs are 61 * also linked into the probe response struct. 62 */ 63 64 /* 65 * Limit the number of BSS entries stored in mac80211. Each one is 66 * a bit over 4k at most, so this limits to roughly 4-5M of memory. 67 * If somebody wants to really attack this though, they'd likely 68 * use small beacons, and only one type of frame, limiting each of 69 * the entries to a much smaller size (in order to generate more 70 * entries in total, so overhead is bigger.) 71 */ 72 static int bss_entries_limit = 1000; 73 module_param(bss_entries_limit, int, 0644); 74 MODULE_PARM_DESC(bss_entries_limit, 75 "limit to number of scan BSS entries (per wiphy, default 1000)"); 76 77 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ) 78 79 /** 80 * struct cfg80211_colocated_ap - colocated AP information 81 * 82 * @list: linked list to all colocated aPS 83 * @bssid: BSSID of the reported AP 84 * @ssid: SSID of the reported AP 85 * @ssid_len: length of the ssid 86 * @center_freq: frequency the reported AP is on 87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs 88 * that operate in the same channel as the reported AP and that might be 89 * detected by a STA receiving this frame, are transmitting unsolicited 90 * Probe Response frames every 20 TUs 91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP 92 * @same_ssid: the reported AP has the same SSID as the reporting AP 93 * @multi_bss: the reported AP is part of a multiple BSSID set 94 * @transmitted_bssid: the reported AP is the transmitting BSSID 95 * @colocated_ess: all the APs that share the same ESS as the reported AP are 96 * colocated and can be discovered via legacy bands. 97 * @short_ssid_valid: short_ssid is valid and can be used 98 * @short_ssid: the short SSID for this SSID 99 */ 100 struct cfg80211_colocated_ap { 101 struct list_head list; 102 u8 bssid[ETH_ALEN]; 103 u8 ssid[IEEE80211_MAX_SSID_LEN]; 104 size_t ssid_len; 105 u32 short_ssid; 106 u32 center_freq; 107 u8 unsolicited_probe:1, 108 oct_recommended:1, 109 same_ssid:1, 110 multi_bss:1, 111 transmitted_bssid:1, 112 colocated_ess:1, 113 short_ssid_valid:1; 114 }; 115 116 static void bss_free(struct cfg80211_internal_bss *bss) 117 { 118 struct cfg80211_bss_ies *ies; 119 120 if (WARN_ON(atomic_read(&bss->hold))) 121 return; 122 123 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies); 124 if (ies && !bss->pub.hidden_beacon_bss) 125 kfree_rcu(ies, rcu_head); 126 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies); 127 if (ies) 128 kfree_rcu(ies, rcu_head); 129 130 /* 131 * This happens when the module is removed, it doesn't 132 * really matter any more save for completeness 133 */ 134 if (!list_empty(&bss->hidden_list)) 135 list_del(&bss->hidden_list); 136 137 kfree(bss); 138 } 139 140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev, 141 struct cfg80211_internal_bss *bss) 142 { 143 lockdep_assert_held(&rdev->bss_lock); 144 145 bss->refcount++; 146 147 if (bss->pub.hidden_beacon_bss) 148 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++; 149 150 if (bss->pub.transmitted_bss) 151 bss_from_pub(bss->pub.transmitted_bss)->refcount++; 152 } 153 154 static inline void bss_ref_put(struct cfg80211_registered_device *rdev, 155 struct cfg80211_internal_bss *bss) 156 { 157 lockdep_assert_held(&rdev->bss_lock); 158 159 if (bss->pub.hidden_beacon_bss) { 160 struct cfg80211_internal_bss *hbss; 161 162 hbss = bss_from_pub(bss->pub.hidden_beacon_bss); 163 hbss->refcount--; 164 if (hbss->refcount == 0) 165 bss_free(hbss); 166 } 167 168 if (bss->pub.transmitted_bss) { 169 struct cfg80211_internal_bss *tbss; 170 171 tbss = bss_from_pub(bss->pub.transmitted_bss); 172 tbss->refcount--; 173 if (tbss->refcount == 0) 174 bss_free(tbss); 175 } 176 177 bss->refcount--; 178 if (bss->refcount == 0) 179 bss_free(bss); 180 } 181 182 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev, 183 struct cfg80211_internal_bss *bss) 184 { 185 lockdep_assert_held(&rdev->bss_lock); 186 187 if (!list_empty(&bss->hidden_list)) { 188 /* 189 * don't remove the beacon entry if it has 190 * probe responses associated with it 191 */ 192 if (!bss->pub.hidden_beacon_bss) 193 return false; 194 /* 195 * if it's a probe response entry break its 196 * link to the other entries in the group 197 */ 198 list_del_init(&bss->hidden_list); 199 } 200 201 list_del_init(&bss->list); 202 list_del_init(&bss->pub.nontrans_list); 203 rb_erase(&bss->rbn, &rdev->bss_tree); 204 rdev->bss_entries--; 205 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list), 206 "rdev bss entries[%d]/list[empty:%d] corruption\n", 207 rdev->bss_entries, list_empty(&rdev->bss_list)); 208 bss_ref_put(rdev, bss); 209 return true; 210 } 211 212 bool cfg80211_is_element_inherited(const struct element *elem, 213 const struct element *non_inherit_elem) 214 { 215 u8 id_len, ext_id_len, i, loop_len, id; 216 const u8 *list; 217 218 if (elem->id == WLAN_EID_MULTIPLE_BSSID) 219 return false; 220 221 if (!non_inherit_elem || non_inherit_elem->datalen < 2) 222 return true; 223 224 /* 225 * non inheritance element format is: 226 * ext ID (56) | IDs list len | list | extension IDs list len | list 227 * Both lists are optional. Both lengths are mandatory. 228 * This means valid length is: 229 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths 230 */ 231 id_len = non_inherit_elem->data[1]; 232 if (non_inherit_elem->datalen < 3 + id_len) 233 return true; 234 235 ext_id_len = non_inherit_elem->data[2 + id_len]; 236 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len) 237 return true; 238 239 if (elem->id == WLAN_EID_EXTENSION) { 240 if (!ext_id_len) 241 return true; 242 loop_len = ext_id_len; 243 list = &non_inherit_elem->data[3 + id_len]; 244 id = elem->data[0]; 245 } else { 246 if (!id_len) 247 return true; 248 loop_len = id_len; 249 list = &non_inherit_elem->data[2]; 250 id = elem->id; 251 } 252 253 for (i = 0; i < loop_len; i++) { 254 if (list[i] == id) 255 return false; 256 } 257 258 return true; 259 } 260 EXPORT_SYMBOL(cfg80211_is_element_inherited); 261 262 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen, 263 const u8 *subelement, size_t subie_len, 264 u8 *new_ie, gfp_t gfp) 265 { 266 u8 *pos, *tmp; 267 const u8 *tmp_old, *tmp_new; 268 const struct element *non_inherit_elem; 269 u8 *sub_copy; 270 271 /* copy subelement as we need to change its content to 272 * mark an ie after it is processed. 273 */ 274 sub_copy = kmemdup(subelement, subie_len, gfp); 275 if (!sub_copy) 276 return 0; 277 278 pos = &new_ie[0]; 279 280 /* set new ssid */ 281 tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len); 282 if (tmp_new) { 283 memcpy(pos, tmp_new, tmp_new[1] + 2); 284 pos += (tmp_new[1] + 2); 285 } 286 287 /* get non inheritance list if exists */ 288 non_inherit_elem = 289 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 290 sub_copy, subie_len); 291 292 /* go through IEs in ie (skip SSID) and subelement, 293 * merge them into new_ie 294 */ 295 tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen); 296 tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie; 297 298 while (tmp_old + 2 - ie <= ielen && 299 tmp_old + tmp_old[1] + 2 - ie <= ielen) { 300 if (tmp_old[0] == 0) { 301 tmp_old++; 302 continue; 303 } 304 305 if (tmp_old[0] == WLAN_EID_EXTENSION) 306 tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy, 307 subie_len); 308 else 309 tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy, 310 subie_len); 311 312 if (!tmp) { 313 const struct element *old_elem = (void *)tmp_old; 314 315 /* ie in old ie but not in subelement */ 316 if (cfg80211_is_element_inherited(old_elem, 317 non_inherit_elem)) { 318 memcpy(pos, tmp_old, tmp_old[1] + 2); 319 pos += tmp_old[1] + 2; 320 } 321 } else { 322 /* ie in transmitting ie also in subelement, 323 * copy from subelement and flag the ie in subelement 324 * as copied (by setting eid field to WLAN_EID_SSID, 325 * which is skipped anyway). 326 * For vendor ie, compare OUI + type + subType to 327 * determine if they are the same ie. 328 */ 329 if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) { 330 if (tmp_old[1] >= 5 && tmp[1] >= 5 && 331 !memcmp(tmp_old + 2, tmp + 2, 5)) { 332 /* same vendor ie, copy from 333 * subelement 334 */ 335 memcpy(pos, tmp, tmp[1] + 2); 336 pos += tmp[1] + 2; 337 tmp[0] = WLAN_EID_SSID; 338 } else { 339 memcpy(pos, tmp_old, tmp_old[1] + 2); 340 pos += tmp_old[1] + 2; 341 } 342 } else { 343 /* copy ie from subelement into new ie */ 344 memcpy(pos, tmp, tmp[1] + 2); 345 pos += tmp[1] + 2; 346 tmp[0] = WLAN_EID_SSID; 347 } 348 } 349 350 if (tmp_old + tmp_old[1] + 2 - ie == ielen) 351 break; 352 353 tmp_old += tmp_old[1] + 2; 354 } 355 356 /* go through subelement again to check if there is any ie not 357 * copied to new ie, skip ssid, capability, bssid-index ie 358 */ 359 tmp_new = sub_copy; 360 while (tmp_new + 2 - sub_copy <= subie_len && 361 tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) { 362 if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP || 363 tmp_new[0] == WLAN_EID_SSID)) { 364 memcpy(pos, tmp_new, tmp_new[1] + 2); 365 pos += tmp_new[1] + 2; 366 } 367 if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len) 368 break; 369 tmp_new += tmp_new[1] + 2; 370 } 371 372 kfree(sub_copy); 373 return pos - new_ie; 374 } 375 376 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid, 377 const u8 *ssid, size_t ssid_len) 378 { 379 const struct cfg80211_bss_ies *ies; 380 const struct element *ssid_elem; 381 382 if (bssid && !ether_addr_equal(a->bssid, bssid)) 383 return false; 384 385 if (!ssid) 386 return true; 387 388 ies = rcu_access_pointer(a->ies); 389 if (!ies) 390 return false; 391 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 392 if (!ssid_elem) 393 return false; 394 if (ssid_elem->datalen != ssid_len) 395 return false; 396 return memcmp(ssid_elem->data, ssid, ssid_len) == 0; 397 } 398 399 static int 400 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss, 401 struct cfg80211_bss *nontrans_bss) 402 { 403 const struct element *ssid_elem; 404 struct cfg80211_bss *bss = NULL; 405 406 rcu_read_lock(); 407 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID); 408 if (!ssid_elem) { 409 rcu_read_unlock(); 410 return -EINVAL; 411 } 412 413 /* check if nontrans_bss is in the list */ 414 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) { 415 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data, 416 ssid_elem->datalen)) { 417 rcu_read_unlock(); 418 return 0; 419 } 420 } 421 422 rcu_read_unlock(); 423 424 /* 425 * This is a bit weird - it's not on the list, but already on another 426 * one! The only way that could happen is if there's some BSSID/SSID 427 * shared by multiple APs in their multi-BSSID profiles, potentially 428 * with hidden SSID mixed in ... ignore it. 429 */ 430 if (!list_empty(&nontrans_bss->nontrans_list)) 431 return -EINVAL; 432 433 /* add to the list */ 434 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list); 435 return 0; 436 } 437 438 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev, 439 unsigned long expire_time) 440 { 441 struct cfg80211_internal_bss *bss, *tmp; 442 bool expired = false; 443 444 lockdep_assert_held(&rdev->bss_lock); 445 446 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) { 447 if (atomic_read(&bss->hold)) 448 continue; 449 if (!time_after(expire_time, bss->ts)) 450 continue; 451 452 if (__cfg80211_unlink_bss(rdev, bss)) 453 expired = true; 454 } 455 456 if (expired) 457 rdev->bss_generation++; 458 } 459 460 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev) 461 { 462 struct cfg80211_internal_bss *bss, *oldest = NULL; 463 bool ret; 464 465 lockdep_assert_held(&rdev->bss_lock); 466 467 list_for_each_entry(bss, &rdev->bss_list, list) { 468 if (atomic_read(&bss->hold)) 469 continue; 470 471 if (!list_empty(&bss->hidden_list) && 472 !bss->pub.hidden_beacon_bss) 473 continue; 474 475 if (oldest && time_before(oldest->ts, bss->ts)) 476 continue; 477 oldest = bss; 478 } 479 480 if (WARN_ON(!oldest)) 481 return false; 482 483 /* 484 * The callers make sure to increase rdev->bss_generation if anything 485 * gets removed (and a new entry added), so there's no need to also do 486 * it here. 487 */ 488 489 ret = __cfg80211_unlink_bss(rdev, oldest); 490 WARN_ON(!ret); 491 return ret; 492 } 493 494 static u8 cfg80211_parse_bss_param(u8 data, 495 struct cfg80211_colocated_ap *coloc_ap) 496 { 497 coloc_ap->oct_recommended = 498 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED); 499 coloc_ap->same_ssid = 500 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID); 501 coloc_ap->multi_bss = 502 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID); 503 coloc_ap->transmitted_bssid = 504 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID); 505 coloc_ap->unsolicited_probe = 506 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE); 507 coloc_ap->colocated_ess = 508 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS); 509 510 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP); 511 } 512 513 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies, 514 const struct element **elem, u32 *s_ssid) 515 { 516 517 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 518 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN) 519 return -EINVAL; 520 521 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen); 522 return 0; 523 } 524 525 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list) 526 { 527 struct cfg80211_colocated_ap *ap, *tmp_ap; 528 529 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) { 530 list_del(&ap->list); 531 kfree(ap); 532 } 533 } 534 535 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry, 536 const u8 *pos, u8 length, 537 const struct element *ssid_elem, 538 int s_ssid_tmp) 539 { 540 /* skip the TBTT offset */ 541 pos++; 542 543 /* ignore entries with invalid BSSID */ 544 if (!is_valid_ether_addr(pos)) 545 return -EINVAL; 546 547 memcpy(entry->bssid, pos, ETH_ALEN); 548 pos += ETH_ALEN; 549 550 if (length >= IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) { 551 memcpy(&entry->short_ssid, pos, 552 sizeof(entry->short_ssid)); 553 entry->short_ssid_valid = true; 554 pos += 4; 555 } 556 557 /* skip non colocated APs */ 558 if (!cfg80211_parse_bss_param(*pos, entry)) 559 return -EINVAL; 560 pos++; 561 562 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) { 563 /* 564 * no information about the short ssid. Consider the entry valid 565 * for now. It would later be dropped in case there are explicit 566 * SSIDs that need to be matched 567 */ 568 if (!entry->same_ssid) 569 return 0; 570 } 571 572 if (entry->same_ssid) { 573 entry->short_ssid = s_ssid_tmp; 574 entry->short_ssid_valid = true; 575 576 /* 577 * This is safe because we validate datalen in 578 * cfg80211_parse_colocated_ap(), before calling this 579 * function. 580 */ 581 memcpy(&entry->ssid, &ssid_elem->data, 582 ssid_elem->datalen); 583 entry->ssid_len = ssid_elem->datalen; 584 } 585 return 0; 586 } 587 588 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies, 589 struct list_head *list) 590 { 591 struct ieee80211_neighbor_ap_info *ap_info; 592 const struct element *elem, *ssid_elem; 593 const u8 *pos, *end; 594 u32 s_ssid_tmp; 595 int n_coloc = 0, ret; 596 LIST_HEAD(ap_list); 597 598 elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data, 599 ies->len); 600 if (!elem) 601 return 0; 602 603 pos = elem->data; 604 end = pos + elem->datalen; 605 606 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp); 607 if (ret) 608 return ret; 609 610 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ 611 while (pos + sizeof(*ap_info) <= end) { 612 enum nl80211_band band; 613 int freq; 614 u8 length, i, count; 615 616 ap_info = (void *)pos; 617 count = u8_get_bits(ap_info->tbtt_info_hdr, 618 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1; 619 length = ap_info->tbtt_info_len; 620 621 pos += sizeof(*ap_info); 622 623 if (!ieee80211_operating_class_to_band(ap_info->op_class, 624 &band)) 625 break; 626 627 freq = ieee80211_channel_to_frequency(ap_info->channel, band); 628 629 if (end - pos < count * length) 630 break; 631 632 /* 633 * TBTT info must include bss param + BSSID + 634 * (short SSID or same_ssid bit to be set). 635 * ignore other options, and move to the 636 * next AP info 637 */ 638 if (band != NL80211_BAND_6GHZ || 639 (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM && 640 length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) { 641 pos += count * length; 642 continue; 643 } 644 645 for (i = 0; i < count; i++) { 646 struct cfg80211_colocated_ap *entry; 647 648 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, 649 GFP_ATOMIC); 650 651 if (!entry) 652 break; 653 654 entry->center_freq = freq; 655 656 if (!cfg80211_parse_ap_info(entry, pos, length, 657 ssid_elem, s_ssid_tmp)) { 658 n_coloc++; 659 list_add_tail(&entry->list, &ap_list); 660 } else { 661 kfree(entry); 662 } 663 664 pos += length; 665 } 666 } 667 668 if (pos != end) { 669 cfg80211_free_coloc_ap_list(&ap_list); 670 return 0; 671 } 672 673 list_splice_tail(&ap_list, list); 674 return n_coloc; 675 } 676 677 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request, 678 struct ieee80211_channel *chan, 679 bool add_to_6ghz) 680 { 681 int i; 682 u32 n_channels = request->n_channels; 683 struct cfg80211_scan_6ghz_params *params = 684 &request->scan_6ghz_params[request->n_6ghz_params]; 685 686 for (i = 0; i < n_channels; i++) { 687 if (request->channels[i] == chan) { 688 if (add_to_6ghz) 689 params->channel_idx = i; 690 return; 691 } 692 } 693 694 request->channels[n_channels] = chan; 695 if (add_to_6ghz) 696 request->scan_6ghz_params[request->n_6ghz_params].channel_idx = 697 n_channels; 698 699 request->n_channels++; 700 } 701 702 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap, 703 struct cfg80211_scan_request *request) 704 { 705 int i; 706 u32 s_ssid; 707 708 for (i = 0; i < request->n_ssids; i++) { 709 /* wildcard ssid in the scan request */ 710 if (!request->ssids[i].ssid_len) { 711 if (ap->multi_bss && !ap->transmitted_bssid) 712 continue; 713 714 return true; 715 } 716 717 if (ap->ssid_len && 718 ap->ssid_len == request->ssids[i].ssid_len) { 719 if (!memcmp(request->ssids[i].ssid, ap->ssid, 720 ap->ssid_len)) 721 return true; 722 } else if (ap->short_ssid_valid) { 723 s_ssid = ~crc32_le(~0, request->ssids[i].ssid, 724 request->ssids[i].ssid_len); 725 726 if (ap->short_ssid == s_ssid) 727 return true; 728 } 729 } 730 731 return false; 732 } 733 734 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev) 735 { 736 u8 i; 737 struct cfg80211_colocated_ap *ap; 738 int n_channels, count = 0, err; 739 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req; 740 LIST_HEAD(coloc_ap_list); 741 bool need_scan_psc = true; 742 const struct ieee80211_sband_iftype_data *iftd; 743 744 rdev_req->scan_6ghz = true; 745 746 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ]) 747 return -EOPNOTSUPP; 748 749 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ], 750 rdev_req->wdev->iftype); 751 if (!iftd || !iftd->he_cap.has_he) 752 return -EOPNOTSUPP; 753 754 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels; 755 756 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) { 757 struct cfg80211_internal_bss *intbss; 758 759 spin_lock_bh(&rdev->bss_lock); 760 list_for_each_entry(intbss, &rdev->bss_list, list) { 761 struct cfg80211_bss *res = &intbss->pub; 762 const struct cfg80211_bss_ies *ies; 763 764 ies = rcu_access_pointer(res->ies); 765 count += cfg80211_parse_colocated_ap(ies, 766 &coloc_ap_list); 767 } 768 spin_unlock_bh(&rdev->bss_lock); 769 } 770 771 request = kzalloc(struct_size(request, channels, n_channels) + 772 sizeof(*request->scan_6ghz_params) * count + 773 sizeof(*request->ssids) * rdev_req->n_ssids, 774 GFP_KERNEL); 775 if (!request) { 776 cfg80211_free_coloc_ap_list(&coloc_ap_list); 777 return -ENOMEM; 778 } 779 780 *request = *rdev_req; 781 request->n_channels = 0; 782 request->scan_6ghz_params = 783 (void *)&request->channels[n_channels]; 784 785 /* 786 * PSC channels should not be scanned in case of direct scan with 1 SSID 787 * and at least one of the reported co-located APs with same SSID 788 * indicating that all APs in the same ESS are co-located 789 */ 790 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) { 791 list_for_each_entry(ap, &coloc_ap_list, list) { 792 if (ap->colocated_ess && 793 cfg80211_find_ssid_match(ap, request)) { 794 need_scan_psc = false; 795 break; 796 } 797 } 798 } 799 800 /* 801 * add to the scan request the channels that need to be scanned 802 * regardless of the collocated APs (PSC channels or all channels 803 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set) 804 */ 805 for (i = 0; i < rdev_req->n_channels; i++) { 806 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ && 807 ((need_scan_psc && 808 cfg80211_channel_is_psc(rdev_req->channels[i])) || 809 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) { 810 cfg80211_scan_req_add_chan(request, 811 rdev_req->channels[i], 812 false); 813 } 814 } 815 816 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ)) 817 goto skip; 818 819 list_for_each_entry(ap, &coloc_ap_list, list) { 820 bool found = false; 821 struct cfg80211_scan_6ghz_params *scan_6ghz_params = 822 &request->scan_6ghz_params[request->n_6ghz_params]; 823 struct ieee80211_channel *chan = 824 ieee80211_get_channel(&rdev->wiphy, ap->center_freq); 825 826 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED) 827 continue; 828 829 for (i = 0; i < rdev_req->n_channels; i++) { 830 if (rdev_req->channels[i] == chan) 831 found = true; 832 } 833 834 if (!found) 835 continue; 836 837 if (request->n_ssids > 0 && 838 !cfg80211_find_ssid_match(ap, request)) 839 continue; 840 841 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid) 842 continue; 843 844 cfg80211_scan_req_add_chan(request, chan, true); 845 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN); 846 scan_6ghz_params->short_ssid = ap->short_ssid; 847 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid; 848 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe; 849 850 /* 851 * If a PSC channel is added to the scan and 'need_scan_psc' is 852 * set to false, then all the APs that the scan logic is 853 * interested with on the channel are collocated and thus there 854 * is no need to perform the initial PSC channel listen. 855 */ 856 if (cfg80211_channel_is_psc(chan) && !need_scan_psc) 857 scan_6ghz_params->psc_no_listen = true; 858 859 request->n_6ghz_params++; 860 } 861 862 skip: 863 cfg80211_free_coloc_ap_list(&coloc_ap_list); 864 865 if (request->n_channels) { 866 struct cfg80211_scan_request *old = rdev->int_scan_req; 867 rdev->int_scan_req = request; 868 869 /* 870 * Add the ssids from the parent scan request to the new scan 871 * request, so the driver would be able to use them in its 872 * probe requests to discover hidden APs on PSC channels. 873 */ 874 request->ssids = (void *)&request->channels[request->n_channels]; 875 request->n_ssids = rdev_req->n_ssids; 876 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) * 877 request->n_ssids); 878 879 /* 880 * If this scan follows a previous scan, save the scan start 881 * info from the first part of the scan 882 */ 883 if (old) 884 rdev->int_scan_req->info = old->info; 885 886 err = rdev_scan(rdev, request); 887 if (err) { 888 rdev->int_scan_req = old; 889 kfree(request); 890 } else { 891 kfree(old); 892 } 893 894 return err; 895 } 896 897 kfree(request); 898 return -EINVAL; 899 } 900 901 int cfg80211_scan(struct cfg80211_registered_device *rdev) 902 { 903 struct cfg80211_scan_request *request; 904 struct cfg80211_scan_request *rdev_req = rdev->scan_req; 905 u32 n_channels = 0, idx, i; 906 907 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ)) 908 return rdev_scan(rdev, rdev_req); 909 910 for (i = 0; i < rdev_req->n_channels; i++) { 911 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 912 n_channels++; 913 } 914 915 if (!n_channels) 916 return cfg80211_scan_6ghz(rdev); 917 918 request = kzalloc(struct_size(request, channels, n_channels), 919 GFP_KERNEL); 920 if (!request) 921 return -ENOMEM; 922 923 *request = *rdev_req; 924 request->n_channels = n_channels; 925 926 for (i = idx = 0; i < rdev_req->n_channels; i++) { 927 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 928 request->channels[idx++] = rdev_req->channels[i]; 929 } 930 931 rdev_req->scan_6ghz = false; 932 rdev->int_scan_req = request; 933 return rdev_scan(rdev, request); 934 } 935 936 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, 937 bool send_message) 938 { 939 struct cfg80211_scan_request *request, *rdev_req; 940 struct wireless_dev *wdev; 941 struct sk_buff *msg; 942 #ifdef CONFIG_CFG80211_WEXT 943 union iwreq_data wrqu; 944 #endif 945 946 lockdep_assert_held(&rdev->wiphy.mtx); 947 948 if (rdev->scan_msg) { 949 nl80211_send_scan_msg(rdev, rdev->scan_msg); 950 rdev->scan_msg = NULL; 951 return; 952 } 953 954 rdev_req = rdev->scan_req; 955 if (!rdev_req) 956 return; 957 958 wdev = rdev_req->wdev; 959 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req; 960 961 if (wdev_running(wdev) && 962 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) && 963 !rdev_req->scan_6ghz && !request->info.aborted && 964 !cfg80211_scan_6ghz(rdev)) 965 return; 966 967 /* 968 * This must be before sending the other events! 969 * Otherwise, wpa_supplicant gets completely confused with 970 * wext events. 971 */ 972 if (wdev->netdev) 973 cfg80211_sme_scan_done(wdev->netdev); 974 975 if (!request->info.aborted && 976 request->flags & NL80211_SCAN_FLAG_FLUSH) { 977 /* flush entries from previous scans */ 978 spin_lock_bh(&rdev->bss_lock); 979 __cfg80211_bss_expire(rdev, request->scan_start); 980 spin_unlock_bh(&rdev->bss_lock); 981 } 982 983 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted); 984 985 #ifdef CONFIG_CFG80211_WEXT 986 if (wdev->netdev && !request->info.aborted) { 987 memset(&wrqu, 0, sizeof(wrqu)); 988 989 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL); 990 } 991 #endif 992 993 dev_put(wdev->netdev); 994 995 kfree(rdev->int_scan_req); 996 rdev->int_scan_req = NULL; 997 998 kfree(rdev->scan_req); 999 rdev->scan_req = NULL; 1000 1001 if (!send_message) 1002 rdev->scan_msg = msg; 1003 else 1004 nl80211_send_scan_msg(rdev, msg); 1005 } 1006 1007 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk) 1008 { 1009 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true); 1010 } 1011 1012 void cfg80211_scan_done(struct cfg80211_scan_request *request, 1013 struct cfg80211_scan_info *info) 1014 { 1015 struct cfg80211_scan_info old_info = request->info; 1016 1017 trace_cfg80211_scan_done(request, info); 1018 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req && 1019 request != wiphy_to_rdev(request->wiphy)->int_scan_req); 1020 1021 request->info = *info; 1022 1023 /* 1024 * In case the scan is split, the scan_start_tsf and tsf_bssid should 1025 * be of the first part. In such a case old_info.scan_start_tsf should 1026 * be non zero. 1027 */ 1028 if (request->scan_6ghz && old_info.scan_start_tsf) { 1029 request->info.scan_start_tsf = old_info.scan_start_tsf; 1030 memcpy(request->info.tsf_bssid, old_info.tsf_bssid, 1031 sizeof(request->info.tsf_bssid)); 1032 } 1033 1034 request->notified = true; 1035 wiphy_work_queue(request->wiphy, 1036 &wiphy_to_rdev(request->wiphy)->scan_done_wk); 1037 } 1038 EXPORT_SYMBOL(cfg80211_scan_done); 1039 1040 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, 1041 struct cfg80211_sched_scan_request *req) 1042 { 1043 lockdep_assert_held(&rdev->wiphy.mtx); 1044 1045 list_add_rcu(&req->list, &rdev->sched_scan_req_list); 1046 } 1047 1048 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev, 1049 struct cfg80211_sched_scan_request *req) 1050 { 1051 lockdep_assert_held(&rdev->wiphy.mtx); 1052 1053 list_del_rcu(&req->list); 1054 kfree_rcu(req, rcu_head); 1055 } 1056 1057 static struct cfg80211_sched_scan_request * 1058 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid) 1059 { 1060 struct cfg80211_sched_scan_request *pos; 1061 1062 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list, 1063 lockdep_is_held(&rdev->wiphy.mtx)) { 1064 if (pos->reqid == reqid) 1065 return pos; 1066 } 1067 return NULL; 1068 } 1069 1070 /* 1071 * Determines if a scheduled scan request can be handled. When a legacy 1072 * scheduled scan is running no other scheduled scan is allowed regardless 1073 * whether the request is for legacy or multi-support scan. When a multi-support 1074 * scheduled scan is running a request for legacy scan is not allowed. In this 1075 * case a request for multi-support scan can be handled if resources are 1076 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached. 1077 */ 1078 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, 1079 bool want_multi) 1080 { 1081 struct cfg80211_sched_scan_request *pos; 1082 int i = 0; 1083 1084 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) { 1085 /* request id zero means legacy in progress */ 1086 if (!i && !pos->reqid) 1087 return -EINPROGRESS; 1088 i++; 1089 } 1090 1091 if (i) { 1092 /* no legacy allowed when multi request(s) are active */ 1093 if (!want_multi) 1094 return -EINPROGRESS; 1095 1096 /* resource limit reached */ 1097 if (i == rdev->wiphy.max_sched_scan_reqs) 1098 return -ENOSPC; 1099 } 1100 return 0; 1101 } 1102 1103 void cfg80211_sched_scan_results_wk(struct work_struct *work) 1104 { 1105 struct cfg80211_registered_device *rdev; 1106 struct cfg80211_sched_scan_request *req, *tmp; 1107 1108 rdev = container_of(work, struct cfg80211_registered_device, 1109 sched_scan_res_wk); 1110 1111 wiphy_lock(&rdev->wiphy); 1112 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) { 1113 if (req->report_results) { 1114 req->report_results = false; 1115 if (req->flags & NL80211_SCAN_FLAG_FLUSH) { 1116 /* flush entries from previous scans */ 1117 spin_lock_bh(&rdev->bss_lock); 1118 __cfg80211_bss_expire(rdev, req->scan_start); 1119 spin_unlock_bh(&rdev->bss_lock); 1120 req->scan_start = jiffies; 1121 } 1122 nl80211_send_sched_scan(req, 1123 NL80211_CMD_SCHED_SCAN_RESULTS); 1124 } 1125 } 1126 wiphy_unlock(&rdev->wiphy); 1127 } 1128 1129 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid) 1130 { 1131 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1132 struct cfg80211_sched_scan_request *request; 1133 1134 trace_cfg80211_sched_scan_results(wiphy, reqid); 1135 /* ignore if we're not scanning */ 1136 1137 rcu_read_lock(); 1138 request = cfg80211_find_sched_scan_req(rdev, reqid); 1139 if (request) { 1140 request->report_results = true; 1141 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk); 1142 } 1143 rcu_read_unlock(); 1144 } 1145 EXPORT_SYMBOL(cfg80211_sched_scan_results); 1146 1147 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid) 1148 { 1149 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1150 1151 lockdep_assert_held(&wiphy->mtx); 1152 1153 trace_cfg80211_sched_scan_stopped(wiphy, reqid); 1154 1155 __cfg80211_stop_sched_scan(rdev, reqid, true); 1156 } 1157 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked); 1158 1159 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid) 1160 { 1161 wiphy_lock(wiphy); 1162 cfg80211_sched_scan_stopped_locked(wiphy, reqid); 1163 wiphy_unlock(wiphy); 1164 } 1165 EXPORT_SYMBOL(cfg80211_sched_scan_stopped); 1166 1167 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, 1168 struct cfg80211_sched_scan_request *req, 1169 bool driver_initiated) 1170 { 1171 lockdep_assert_held(&rdev->wiphy.mtx); 1172 1173 if (!driver_initiated) { 1174 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid); 1175 if (err) 1176 return err; 1177 } 1178 1179 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED); 1180 1181 cfg80211_del_sched_scan_req(rdev, req); 1182 1183 return 0; 1184 } 1185 1186 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, 1187 u64 reqid, bool driver_initiated) 1188 { 1189 struct cfg80211_sched_scan_request *sched_scan_req; 1190 1191 lockdep_assert_held(&rdev->wiphy.mtx); 1192 1193 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid); 1194 if (!sched_scan_req) 1195 return -ENOENT; 1196 1197 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req, 1198 driver_initiated); 1199 } 1200 1201 void cfg80211_bss_age(struct cfg80211_registered_device *rdev, 1202 unsigned long age_secs) 1203 { 1204 struct cfg80211_internal_bss *bss; 1205 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC); 1206 1207 spin_lock_bh(&rdev->bss_lock); 1208 list_for_each_entry(bss, &rdev->bss_list, list) 1209 bss->ts -= age_jiffies; 1210 spin_unlock_bh(&rdev->bss_lock); 1211 } 1212 1213 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev) 1214 { 1215 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE); 1216 } 1217 1218 void cfg80211_bss_flush(struct wiphy *wiphy) 1219 { 1220 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1221 1222 spin_lock_bh(&rdev->bss_lock); 1223 __cfg80211_bss_expire(rdev, jiffies); 1224 spin_unlock_bh(&rdev->bss_lock); 1225 } 1226 EXPORT_SYMBOL(cfg80211_bss_flush); 1227 1228 const struct element * 1229 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len, 1230 const u8 *match, unsigned int match_len, 1231 unsigned int match_offset) 1232 { 1233 const struct element *elem; 1234 1235 for_each_element_id(elem, eid, ies, len) { 1236 if (elem->datalen >= match_offset + match_len && 1237 !memcmp(elem->data + match_offset, match, match_len)) 1238 return elem; 1239 } 1240 1241 return NULL; 1242 } 1243 EXPORT_SYMBOL(cfg80211_find_elem_match); 1244 1245 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type, 1246 const u8 *ies, 1247 unsigned int len) 1248 { 1249 const struct element *elem; 1250 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type }; 1251 int match_len = (oui_type < 0) ? 3 : sizeof(match); 1252 1253 if (WARN_ON(oui_type > 0xff)) 1254 return NULL; 1255 1256 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len, 1257 match, match_len, 0); 1258 1259 if (!elem || elem->datalen < 4) 1260 return NULL; 1261 1262 return elem; 1263 } 1264 EXPORT_SYMBOL(cfg80211_find_vendor_elem); 1265 1266 /** 1267 * enum bss_compare_mode - BSS compare mode 1268 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find) 1269 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode 1270 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode 1271 */ 1272 enum bss_compare_mode { 1273 BSS_CMP_REGULAR, 1274 BSS_CMP_HIDE_ZLEN, 1275 BSS_CMP_HIDE_NUL, 1276 }; 1277 1278 static int cmp_bss(struct cfg80211_bss *a, 1279 struct cfg80211_bss *b, 1280 enum bss_compare_mode mode) 1281 { 1282 const struct cfg80211_bss_ies *a_ies, *b_ies; 1283 const u8 *ie1 = NULL; 1284 const u8 *ie2 = NULL; 1285 int i, r; 1286 1287 if (a->channel != b->channel) 1288 return (b->channel->center_freq * 1000 + b->channel->freq_offset) - 1289 (a->channel->center_freq * 1000 + a->channel->freq_offset); 1290 1291 a_ies = rcu_access_pointer(a->ies); 1292 if (!a_ies) 1293 return -1; 1294 b_ies = rcu_access_pointer(b->ies); 1295 if (!b_ies) 1296 return 1; 1297 1298 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability)) 1299 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1300 a_ies->data, a_ies->len); 1301 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability)) 1302 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1303 b_ies->data, b_ies->len); 1304 if (ie1 && ie2) { 1305 int mesh_id_cmp; 1306 1307 if (ie1[1] == ie2[1]) 1308 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1309 else 1310 mesh_id_cmp = ie2[1] - ie1[1]; 1311 1312 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1313 a_ies->data, a_ies->len); 1314 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1315 b_ies->data, b_ies->len); 1316 if (ie1 && ie2) { 1317 if (mesh_id_cmp) 1318 return mesh_id_cmp; 1319 if (ie1[1] != ie2[1]) 1320 return ie2[1] - ie1[1]; 1321 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1322 } 1323 } 1324 1325 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid)); 1326 if (r) 1327 return r; 1328 1329 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len); 1330 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len); 1331 1332 if (!ie1 && !ie2) 1333 return 0; 1334 1335 /* 1336 * Note that with "hide_ssid", the function returns a match if 1337 * the already-present BSS ("b") is a hidden SSID beacon for 1338 * the new BSS ("a"). 1339 */ 1340 1341 /* sort missing IE before (left of) present IE */ 1342 if (!ie1) 1343 return -1; 1344 if (!ie2) 1345 return 1; 1346 1347 switch (mode) { 1348 case BSS_CMP_HIDE_ZLEN: 1349 /* 1350 * In ZLEN mode we assume the BSS entry we're 1351 * looking for has a zero-length SSID. So if 1352 * the one we're looking at right now has that, 1353 * return 0. Otherwise, return the difference 1354 * in length, but since we're looking for the 1355 * 0-length it's really equivalent to returning 1356 * the length of the one we're looking at. 1357 * 1358 * No content comparison is needed as we assume 1359 * the content length is zero. 1360 */ 1361 return ie2[1]; 1362 case BSS_CMP_REGULAR: 1363 default: 1364 /* sort by length first, then by contents */ 1365 if (ie1[1] != ie2[1]) 1366 return ie2[1] - ie1[1]; 1367 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1368 case BSS_CMP_HIDE_NUL: 1369 if (ie1[1] != ie2[1]) 1370 return ie2[1] - ie1[1]; 1371 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */ 1372 for (i = 0; i < ie2[1]; i++) 1373 if (ie2[i + 2]) 1374 return -1; 1375 return 0; 1376 } 1377 } 1378 1379 static bool cfg80211_bss_type_match(u16 capability, 1380 enum nl80211_band band, 1381 enum ieee80211_bss_type bss_type) 1382 { 1383 bool ret = true; 1384 u16 mask, val; 1385 1386 if (bss_type == IEEE80211_BSS_TYPE_ANY) 1387 return ret; 1388 1389 if (band == NL80211_BAND_60GHZ) { 1390 mask = WLAN_CAPABILITY_DMG_TYPE_MASK; 1391 switch (bss_type) { 1392 case IEEE80211_BSS_TYPE_ESS: 1393 val = WLAN_CAPABILITY_DMG_TYPE_AP; 1394 break; 1395 case IEEE80211_BSS_TYPE_PBSS: 1396 val = WLAN_CAPABILITY_DMG_TYPE_PBSS; 1397 break; 1398 case IEEE80211_BSS_TYPE_IBSS: 1399 val = WLAN_CAPABILITY_DMG_TYPE_IBSS; 1400 break; 1401 default: 1402 return false; 1403 } 1404 } else { 1405 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS; 1406 switch (bss_type) { 1407 case IEEE80211_BSS_TYPE_ESS: 1408 val = WLAN_CAPABILITY_ESS; 1409 break; 1410 case IEEE80211_BSS_TYPE_IBSS: 1411 val = WLAN_CAPABILITY_IBSS; 1412 break; 1413 case IEEE80211_BSS_TYPE_MBSS: 1414 val = 0; 1415 break; 1416 default: 1417 return false; 1418 } 1419 } 1420 1421 ret = ((capability & mask) == val); 1422 return ret; 1423 } 1424 1425 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1426 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy, 1427 struct ieee80211_channel *channel, 1428 const u8 *bssid, 1429 const u8 *ssid, size_t ssid_len, 1430 enum ieee80211_bss_type bss_type, 1431 enum ieee80211_privacy privacy) 1432 { 1433 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1434 struct cfg80211_internal_bss *bss, *res = NULL; 1435 unsigned long now = jiffies; 1436 int bss_privacy; 1437 1438 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type, 1439 privacy); 1440 1441 spin_lock_bh(&rdev->bss_lock); 1442 1443 list_for_each_entry(bss, &rdev->bss_list, list) { 1444 if (!cfg80211_bss_type_match(bss->pub.capability, 1445 bss->pub.channel->band, bss_type)) 1446 continue; 1447 1448 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY); 1449 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) || 1450 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy)) 1451 continue; 1452 if (channel && bss->pub.channel != channel) 1453 continue; 1454 if (!is_valid_ether_addr(bss->pub.bssid)) 1455 continue; 1456 /* Don't get expired BSS structs */ 1457 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) && 1458 !atomic_read(&bss->hold)) 1459 continue; 1460 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) { 1461 res = bss; 1462 bss_ref_get(rdev, res); 1463 break; 1464 } 1465 } 1466 1467 spin_unlock_bh(&rdev->bss_lock); 1468 if (!res) 1469 return NULL; 1470 trace_cfg80211_return_bss(&res->pub); 1471 return &res->pub; 1472 } 1473 EXPORT_SYMBOL(cfg80211_get_bss); 1474 1475 static void rb_insert_bss(struct cfg80211_registered_device *rdev, 1476 struct cfg80211_internal_bss *bss) 1477 { 1478 struct rb_node **p = &rdev->bss_tree.rb_node; 1479 struct rb_node *parent = NULL; 1480 struct cfg80211_internal_bss *tbss; 1481 int cmp; 1482 1483 while (*p) { 1484 parent = *p; 1485 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn); 1486 1487 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR); 1488 1489 if (WARN_ON(!cmp)) { 1490 /* will sort of leak this BSS */ 1491 return; 1492 } 1493 1494 if (cmp < 0) 1495 p = &(*p)->rb_left; 1496 else 1497 p = &(*p)->rb_right; 1498 } 1499 1500 rb_link_node(&bss->rbn, parent, p); 1501 rb_insert_color(&bss->rbn, &rdev->bss_tree); 1502 } 1503 1504 static struct cfg80211_internal_bss * 1505 rb_find_bss(struct cfg80211_registered_device *rdev, 1506 struct cfg80211_internal_bss *res, 1507 enum bss_compare_mode mode) 1508 { 1509 struct rb_node *n = rdev->bss_tree.rb_node; 1510 struct cfg80211_internal_bss *bss; 1511 int r; 1512 1513 while (n) { 1514 bss = rb_entry(n, struct cfg80211_internal_bss, rbn); 1515 r = cmp_bss(&res->pub, &bss->pub, mode); 1516 1517 if (r == 0) 1518 return bss; 1519 else if (r < 0) 1520 n = n->rb_left; 1521 else 1522 n = n->rb_right; 1523 } 1524 1525 return NULL; 1526 } 1527 1528 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev, 1529 struct cfg80211_internal_bss *new) 1530 { 1531 const struct cfg80211_bss_ies *ies; 1532 struct cfg80211_internal_bss *bss; 1533 const u8 *ie; 1534 int i, ssidlen; 1535 u8 fold = 0; 1536 u32 n_entries = 0; 1537 1538 ies = rcu_access_pointer(new->pub.beacon_ies); 1539 if (WARN_ON(!ies)) 1540 return false; 1541 1542 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1543 if (!ie) { 1544 /* nothing to do */ 1545 return true; 1546 } 1547 1548 ssidlen = ie[1]; 1549 for (i = 0; i < ssidlen; i++) 1550 fold |= ie[2 + i]; 1551 1552 if (fold) { 1553 /* not a hidden SSID */ 1554 return true; 1555 } 1556 1557 /* This is the bad part ... */ 1558 1559 list_for_each_entry(bss, &rdev->bss_list, list) { 1560 /* 1561 * we're iterating all the entries anyway, so take the 1562 * opportunity to validate the list length accounting 1563 */ 1564 n_entries++; 1565 1566 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid)) 1567 continue; 1568 if (bss->pub.channel != new->pub.channel) 1569 continue; 1570 if (bss->pub.scan_width != new->pub.scan_width) 1571 continue; 1572 if (rcu_access_pointer(bss->pub.beacon_ies)) 1573 continue; 1574 ies = rcu_access_pointer(bss->pub.ies); 1575 if (!ies) 1576 continue; 1577 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1578 if (!ie) 1579 continue; 1580 if (ssidlen && ie[1] != ssidlen) 1581 continue; 1582 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss)) 1583 continue; 1584 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list))) 1585 list_del(&bss->hidden_list); 1586 /* combine them */ 1587 list_add(&bss->hidden_list, &new->hidden_list); 1588 bss->pub.hidden_beacon_bss = &new->pub; 1589 new->refcount += bss->refcount; 1590 rcu_assign_pointer(bss->pub.beacon_ies, 1591 new->pub.beacon_ies); 1592 } 1593 1594 WARN_ONCE(n_entries != rdev->bss_entries, 1595 "rdev bss entries[%d]/list[len:%d] corruption\n", 1596 rdev->bss_entries, n_entries); 1597 1598 return true; 1599 } 1600 1601 struct cfg80211_non_tx_bss { 1602 struct cfg80211_bss *tx_bss; 1603 u8 max_bssid_indicator; 1604 u8 bssid_index; 1605 }; 1606 1607 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known, 1608 const struct cfg80211_bss_ies *new_ies, 1609 const struct cfg80211_bss_ies *old_ies) 1610 { 1611 struct cfg80211_internal_bss *bss; 1612 1613 /* Assign beacon IEs to all sub entries */ 1614 list_for_each_entry(bss, &known->hidden_list, hidden_list) { 1615 const struct cfg80211_bss_ies *ies; 1616 1617 ies = rcu_access_pointer(bss->pub.beacon_ies); 1618 WARN_ON(ies != old_ies); 1619 1620 rcu_assign_pointer(bss->pub.beacon_ies, new_ies); 1621 } 1622 } 1623 1624 static bool 1625 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev, 1626 struct cfg80211_internal_bss *known, 1627 struct cfg80211_internal_bss *new, 1628 bool signal_valid) 1629 { 1630 lockdep_assert_held(&rdev->bss_lock); 1631 1632 /* Update IEs */ 1633 if (rcu_access_pointer(new->pub.proberesp_ies)) { 1634 const struct cfg80211_bss_ies *old; 1635 1636 old = rcu_access_pointer(known->pub.proberesp_ies); 1637 1638 rcu_assign_pointer(known->pub.proberesp_ies, 1639 new->pub.proberesp_ies); 1640 /* Override possible earlier Beacon frame IEs */ 1641 rcu_assign_pointer(known->pub.ies, 1642 new->pub.proberesp_ies); 1643 if (old) 1644 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1645 } else if (rcu_access_pointer(new->pub.beacon_ies)) { 1646 const struct cfg80211_bss_ies *old; 1647 1648 if (known->pub.hidden_beacon_bss && 1649 !list_empty(&known->hidden_list)) { 1650 const struct cfg80211_bss_ies *f; 1651 1652 /* The known BSS struct is one of the probe 1653 * response members of a group, but we're 1654 * receiving a beacon (beacon_ies in the new 1655 * bss is used). This can only mean that the 1656 * AP changed its beacon from not having an 1657 * SSID to showing it, which is confusing so 1658 * drop this information. 1659 */ 1660 1661 f = rcu_access_pointer(new->pub.beacon_ies); 1662 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head); 1663 return false; 1664 } 1665 1666 old = rcu_access_pointer(known->pub.beacon_ies); 1667 1668 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies); 1669 1670 /* Override IEs if they were from a beacon before */ 1671 if (old == rcu_access_pointer(known->pub.ies)) 1672 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies); 1673 1674 cfg80211_update_hidden_bsses(known, 1675 rcu_access_pointer(new->pub.beacon_ies), 1676 old); 1677 1678 if (old) 1679 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1680 } 1681 1682 known->pub.beacon_interval = new->pub.beacon_interval; 1683 1684 /* don't update the signal if beacon was heard on 1685 * adjacent channel. 1686 */ 1687 if (signal_valid) 1688 known->pub.signal = new->pub.signal; 1689 known->pub.capability = new->pub.capability; 1690 known->ts = new->ts; 1691 known->ts_boottime = new->ts_boottime; 1692 known->parent_tsf = new->parent_tsf; 1693 known->pub.chains = new->pub.chains; 1694 memcpy(known->pub.chain_signal, new->pub.chain_signal, 1695 IEEE80211_MAX_CHAINS); 1696 ether_addr_copy(known->parent_bssid, new->parent_bssid); 1697 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator; 1698 known->pub.bssid_index = new->pub.bssid_index; 1699 1700 return true; 1701 } 1702 1703 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1704 struct cfg80211_internal_bss * 1705 cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1706 struct cfg80211_internal_bss *tmp, 1707 bool signal_valid, unsigned long ts) 1708 { 1709 struct cfg80211_internal_bss *found = NULL; 1710 1711 if (WARN_ON(!tmp->pub.channel)) 1712 return NULL; 1713 1714 tmp->ts = ts; 1715 1716 spin_lock_bh(&rdev->bss_lock); 1717 1718 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) { 1719 spin_unlock_bh(&rdev->bss_lock); 1720 return NULL; 1721 } 1722 1723 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR); 1724 1725 if (found) { 1726 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid)) 1727 goto drop; 1728 } else { 1729 struct cfg80211_internal_bss *new; 1730 struct cfg80211_internal_bss *hidden; 1731 struct cfg80211_bss_ies *ies; 1732 1733 /* 1734 * create a copy -- the "res" variable that is passed in 1735 * is allocated on the stack since it's not needed in the 1736 * more common case of an update 1737 */ 1738 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size, 1739 GFP_ATOMIC); 1740 if (!new) { 1741 ies = (void *)rcu_dereference(tmp->pub.beacon_ies); 1742 if (ies) 1743 kfree_rcu(ies, rcu_head); 1744 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies); 1745 if (ies) 1746 kfree_rcu(ies, rcu_head); 1747 goto drop; 1748 } 1749 memcpy(new, tmp, sizeof(*new)); 1750 new->refcount = 1; 1751 INIT_LIST_HEAD(&new->hidden_list); 1752 INIT_LIST_HEAD(&new->pub.nontrans_list); 1753 /* we'll set this later if it was non-NULL */ 1754 new->pub.transmitted_bss = NULL; 1755 1756 if (rcu_access_pointer(tmp->pub.proberesp_ies)) { 1757 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN); 1758 if (!hidden) 1759 hidden = rb_find_bss(rdev, tmp, 1760 BSS_CMP_HIDE_NUL); 1761 if (hidden) { 1762 new->pub.hidden_beacon_bss = &hidden->pub; 1763 list_add(&new->hidden_list, 1764 &hidden->hidden_list); 1765 hidden->refcount++; 1766 rcu_assign_pointer(new->pub.beacon_ies, 1767 hidden->pub.beacon_ies); 1768 } 1769 } else { 1770 /* 1771 * Ok so we found a beacon, and don't have an entry. If 1772 * it's a beacon with hidden SSID, we might be in for an 1773 * expensive search for any probe responses that should 1774 * be grouped with this beacon for updates ... 1775 */ 1776 if (!cfg80211_combine_bsses(rdev, new)) { 1777 bss_ref_put(rdev, new); 1778 goto drop; 1779 } 1780 } 1781 1782 if (rdev->bss_entries >= bss_entries_limit && 1783 !cfg80211_bss_expire_oldest(rdev)) { 1784 bss_ref_put(rdev, new); 1785 goto drop; 1786 } 1787 1788 /* This must be before the call to bss_ref_get */ 1789 if (tmp->pub.transmitted_bss) { 1790 new->pub.transmitted_bss = tmp->pub.transmitted_bss; 1791 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss)); 1792 } 1793 1794 list_add_tail(&new->list, &rdev->bss_list); 1795 rdev->bss_entries++; 1796 rb_insert_bss(rdev, new); 1797 found = new; 1798 } 1799 1800 rdev->bss_generation++; 1801 bss_ref_get(rdev, found); 1802 spin_unlock_bh(&rdev->bss_lock); 1803 1804 return found; 1805 drop: 1806 spin_unlock_bh(&rdev->bss_lock); 1807 return NULL; 1808 } 1809 1810 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen, 1811 enum nl80211_band band) 1812 { 1813 const struct element *tmp; 1814 1815 if (band == NL80211_BAND_6GHZ) { 1816 struct ieee80211_he_operation *he_oper; 1817 1818 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, 1819 ielen); 1820 if (tmp && tmp->datalen >= sizeof(*he_oper) && 1821 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) { 1822 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 1823 1824 he_oper = (void *)&tmp->data[1]; 1825 1826 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 1827 if (!he_6ghz_oper) 1828 return -1; 1829 1830 return he_6ghz_oper->primary; 1831 } 1832 } else if (band == NL80211_BAND_S1GHZ) { 1833 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen); 1834 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) { 1835 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data; 1836 1837 return s1gop->oper_ch; 1838 } 1839 } else { 1840 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen); 1841 if (tmp && tmp->datalen == 1) 1842 return tmp->data[0]; 1843 1844 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen); 1845 if (tmp && 1846 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) { 1847 struct ieee80211_ht_operation *htop = (void *)tmp->data; 1848 1849 return htop->primary_chan; 1850 } 1851 } 1852 1853 return -1; 1854 } 1855 EXPORT_SYMBOL(cfg80211_get_ies_channel_number); 1856 1857 /* 1858 * Update RX channel information based on the available frame payload 1859 * information. This is mainly for the 2.4 GHz band where frames can be received 1860 * from neighboring channels and the Beacon frames use the DSSS Parameter Set 1861 * element to indicate the current (transmitting) channel, but this might also 1862 * be needed on other bands if RX frequency does not match with the actual 1863 * operating channel of a BSS, or if the AP reports a different primary channel. 1864 */ 1865 static struct ieee80211_channel * 1866 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen, 1867 struct ieee80211_channel *channel, 1868 enum nl80211_bss_scan_width scan_width) 1869 { 1870 u32 freq; 1871 int channel_number; 1872 struct ieee80211_channel *alt_channel; 1873 1874 channel_number = cfg80211_get_ies_channel_number(ie, ielen, 1875 channel->band); 1876 1877 if (channel_number < 0) { 1878 /* No channel information in frame payload */ 1879 return channel; 1880 } 1881 1882 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band); 1883 1884 /* 1885 * Frame info (beacon/prob res) is the same as received channel, 1886 * no need for further processing. 1887 */ 1888 if (freq == ieee80211_channel_to_khz(channel)) 1889 return channel; 1890 1891 alt_channel = ieee80211_get_channel_khz(wiphy, freq); 1892 if (!alt_channel) { 1893 if (channel->band == NL80211_BAND_2GHZ || 1894 channel->band == NL80211_BAND_6GHZ) { 1895 /* 1896 * Better not allow unexpected channels when that could 1897 * be going beyond the 1-11 range (e.g., discovering 1898 * BSS on channel 12 when radio is configured for 1899 * channel 11) or beyond the 6 GHz channel range. 1900 */ 1901 return NULL; 1902 } 1903 1904 /* No match for the payload channel number - ignore it */ 1905 return channel; 1906 } 1907 1908 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 || 1909 scan_width == NL80211_BSS_CHAN_WIDTH_5) { 1910 /* 1911 * Ignore channel number in 5 and 10 MHz channels where there 1912 * may not be an n:1 or 1:n mapping between frequencies and 1913 * channel numbers. 1914 */ 1915 return channel; 1916 } 1917 1918 /* 1919 * Use the channel determined through the payload channel number 1920 * instead of the RX channel reported by the driver. 1921 */ 1922 if (alt_channel->flags & IEEE80211_CHAN_DISABLED) 1923 return NULL; 1924 return alt_channel; 1925 } 1926 1927 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1928 static struct cfg80211_bss * 1929 cfg80211_inform_single_bss_data(struct wiphy *wiphy, 1930 struct cfg80211_inform_bss *data, 1931 enum cfg80211_bss_frame_type ftype, 1932 const u8 *bssid, u64 tsf, u16 capability, 1933 u16 beacon_interval, const u8 *ie, size_t ielen, 1934 struct cfg80211_non_tx_bss *non_tx_data, 1935 gfp_t gfp) 1936 { 1937 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1938 struct cfg80211_bss_ies *ies; 1939 struct ieee80211_channel *channel; 1940 struct cfg80211_internal_bss tmp = {}, *res; 1941 int bss_type; 1942 bool signal_valid; 1943 unsigned long ts; 1944 1945 if (WARN_ON(!wiphy)) 1946 return NULL; 1947 1948 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 1949 (data->signal < 0 || data->signal > 100))) 1950 return NULL; 1951 1952 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan, 1953 data->scan_width); 1954 if (!channel) 1955 return NULL; 1956 1957 memcpy(tmp.pub.bssid, bssid, ETH_ALEN); 1958 tmp.pub.channel = channel; 1959 tmp.pub.scan_width = data->scan_width; 1960 tmp.pub.signal = data->signal; 1961 tmp.pub.beacon_interval = beacon_interval; 1962 tmp.pub.capability = capability; 1963 tmp.ts_boottime = data->boottime_ns; 1964 tmp.parent_tsf = data->parent_tsf; 1965 ether_addr_copy(tmp.parent_bssid, data->parent_bssid); 1966 1967 if (non_tx_data) { 1968 tmp.pub.transmitted_bss = non_tx_data->tx_bss; 1969 ts = bss_from_pub(non_tx_data->tx_bss)->ts; 1970 tmp.pub.bssid_index = non_tx_data->bssid_index; 1971 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator; 1972 } else { 1973 ts = jiffies; 1974 } 1975 1976 /* 1977 * If we do not know here whether the IEs are from a Beacon or Probe 1978 * Response frame, we need to pick one of the options and only use it 1979 * with the driver that does not provide the full Beacon/Probe Response 1980 * frame. Use Beacon frame pointer to avoid indicating that this should 1981 * override the IEs pointer should we have received an earlier 1982 * indication of Probe Response data. 1983 */ 1984 ies = kzalloc(sizeof(*ies) + ielen, gfp); 1985 if (!ies) 1986 return NULL; 1987 ies->len = ielen; 1988 ies->tsf = tsf; 1989 ies->from_beacon = false; 1990 memcpy(ies->data, ie, ielen); 1991 1992 switch (ftype) { 1993 case CFG80211_BSS_FTYPE_BEACON: 1994 ies->from_beacon = true; 1995 fallthrough; 1996 case CFG80211_BSS_FTYPE_UNKNOWN: 1997 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 1998 break; 1999 case CFG80211_BSS_FTYPE_PRESP: 2000 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 2001 break; 2002 } 2003 rcu_assign_pointer(tmp.pub.ies, ies); 2004 2005 signal_valid = data->chan == channel; 2006 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts); 2007 if (!res) 2008 return NULL; 2009 2010 if (channel->band == NL80211_BAND_60GHZ) { 2011 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 2012 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2013 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2014 regulatory_hint_found_beacon(wiphy, channel, gfp); 2015 } else { 2016 if (res->pub.capability & WLAN_CAPABILITY_ESS) 2017 regulatory_hint_found_beacon(wiphy, channel, gfp); 2018 } 2019 2020 if (non_tx_data) { 2021 /* this is a nontransmitting bss, we need to add it to 2022 * transmitting bss' list if it is not there 2023 */ 2024 spin_lock_bh(&rdev->bss_lock); 2025 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss, 2026 &res->pub)) { 2027 if (__cfg80211_unlink_bss(rdev, res)) { 2028 rdev->bss_generation++; 2029 res = NULL; 2030 } 2031 } 2032 spin_unlock_bh(&rdev->bss_lock); 2033 2034 if (!res) 2035 return NULL; 2036 } 2037 2038 trace_cfg80211_return_bss(&res->pub); 2039 /* cfg80211_bss_update gives us a referenced result */ 2040 return &res->pub; 2041 } 2042 2043 static const struct element 2044 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen, 2045 const struct element *mbssid_elem, 2046 const struct element *sub_elem) 2047 { 2048 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen; 2049 const struct element *next_mbssid; 2050 const struct element *next_sub; 2051 2052 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2053 mbssid_end, 2054 ielen - (mbssid_end - ie)); 2055 2056 /* 2057 * If it is not the last subelement in current MBSSID IE or there isn't 2058 * a next MBSSID IE - profile is complete. 2059 */ 2060 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) || 2061 !next_mbssid) 2062 return NULL; 2063 2064 /* For any length error, just return NULL */ 2065 2066 if (next_mbssid->datalen < 4) 2067 return NULL; 2068 2069 next_sub = (void *)&next_mbssid->data[1]; 2070 2071 if (next_mbssid->data + next_mbssid->datalen < 2072 next_sub->data + next_sub->datalen) 2073 return NULL; 2074 2075 if (next_sub->id != 0 || next_sub->datalen < 2) 2076 return NULL; 2077 2078 /* 2079 * Check if the first element in the next sub element is a start 2080 * of a new profile 2081 */ 2082 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ? 2083 NULL : next_mbssid; 2084 } 2085 2086 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen, 2087 const struct element *mbssid_elem, 2088 const struct element *sub_elem, 2089 u8 *merged_ie, size_t max_copy_len) 2090 { 2091 size_t copied_len = sub_elem->datalen; 2092 const struct element *next_mbssid; 2093 2094 if (sub_elem->datalen > max_copy_len) 2095 return 0; 2096 2097 memcpy(merged_ie, sub_elem->data, sub_elem->datalen); 2098 2099 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen, 2100 mbssid_elem, 2101 sub_elem))) { 2102 const struct element *next_sub = (void *)&next_mbssid->data[1]; 2103 2104 if (copied_len + next_sub->datalen > max_copy_len) 2105 break; 2106 memcpy(merged_ie + copied_len, next_sub->data, 2107 next_sub->datalen); 2108 copied_len += next_sub->datalen; 2109 } 2110 2111 return copied_len; 2112 } 2113 EXPORT_SYMBOL(cfg80211_merge_profile); 2114 2115 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy, 2116 struct cfg80211_inform_bss *data, 2117 enum cfg80211_bss_frame_type ftype, 2118 const u8 *bssid, u64 tsf, 2119 u16 beacon_interval, const u8 *ie, 2120 size_t ielen, 2121 struct cfg80211_non_tx_bss *non_tx_data, 2122 gfp_t gfp) 2123 { 2124 const u8 *mbssid_index_ie; 2125 const struct element *elem, *sub; 2126 size_t new_ie_len; 2127 u8 new_bssid[ETH_ALEN]; 2128 u8 *new_ie, *profile; 2129 u64 seen_indices = 0; 2130 u16 capability; 2131 struct cfg80211_bss *bss; 2132 2133 if (!non_tx_data) 2134 return; 2135 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen)) 2136 return; 2137 if (!wiphy->support_mbssid) 2138 return; 2139 if (wiphy->support_only_he_mbssid && 2140 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen)) 2141 return; 2142 2143 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2144 if (!new_ie) 2145 return; 2146 2147 profile = kmalloc(ielen, gfp); 2148 if (!profile) 2149 goto out; 2150 2151 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) { 2152 if (elem->datalen < 4) 2153 continue; 2154 if (elem->data[0] < 1 || (int)elem->data[0] > 8) 2155 continue; 2156 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 2157 u8 profile_len; 2158 2159 if (sub->id != 0 || sub->datalen < 4) { 2160 /* not a valid BSS profile */ 2161 continue; 2162 } 2163 2164 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 2165 sub->data[1] != 2) { 2166 /* The first element within the Nontransmitted 2167 * BSSID Profile is not the Nontransmitted 2168 * BSSID Capability element. 2169 */ 2170 continue; 2171 } 2172 2173 memset(profile, 0, ielen); 2174 profile_len = cfg80211_merge_profile(ie, ielen, 2175 elem, 2176 sub, 2177 profile, 2178 ielen); 2179 2180 /* found a Nontransmitted BSSID Profile */ 2181 mbssid_index_ie = cfg80211_find_ie 2182 (WLAN_EID_MULTI_BSSID_IDX, 2183 profile, profile_len); 2184 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 || 2185 mbssid_index_ie[2] == 0 || 2186 mbssid_index_ie[2] > 46) { 2187 /* No valid Multiple BSSID-Index element */ 2188 continue; 2189 } 2190 2191 if (seen_indices & BIT_ULL(mbssid_index_ie[2])) 2192 /* We don't support legacy split of a profile */ 2193 net_dbg_ratelimited("Partial info for BSSID index %d\n", 2194 mbssid_index_ie[2]); 2195 2196 seen_indices |= BIT_ULL(mbssid_index_ie[2]); 2197 2198 non_tx_data->bssid_index = mbssid_index_ie[2]; 2199 non_tx_data->max_bssid_indicator = elem->data[0]; 2200 2201 cfg80211_gen_new_bssid(bssid, 2202 non_tx_data->max_bssid_indicator, 2203 non_tx_data->bssid_index, 2204 new_bssid); 2205 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 2206 new_ie_len = cfg80211_gen_new_ie(ie, ielen, 2207 profile, 2208 profile_len, new_ie, 2209 gfp); 2210 if (!new_ie_len) 2211 continue; 2212 2213 capability = get_unaligned_le16(profile + 2); 2214 bss = cfg80211_inform_single_bss_data(wiphy, data, 2215 ftype, 2216 new_bssid, tsf, 2217 capability, 2218 beacon_interval, 2219 new_ie, 2220 new_ie_len, 2221 non_tx_data, 2222 gfp); 2223 if (!bss) 2224 break; 2225 cfg80211_put_bss(wiphy, bss); 2226 } 2227 } 2228 2229 out: 2230 kfree(new_ie); 2231 kfree(profile); 2232 } 2233 2234 struct cfg80211_bss * 2235 cfg80211_inform_bss_data(struct wiphy *wiphy, 2236 struct cfg80211_inform_bss *data, 2237 enum cfg80211_bss_frame_type ftype, 2238 const u8 *bssid, u64 tsf, u16 capability, 2239 u16 beacon_interval, const u8 *ie, size_t ielen, 2240 gfp_t gfp) 2241 { 2242 struct cfg80211_bss *res; 2243 struct cfg80211_non_tx_bss non_tx_data; 2244 2245 res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf, 2246 capability, beacon_interval, ie, 2247 ielen, NULL, gfp); 2248 if (!res) 2249 return NULL; 2250 non_tx_data.tx_bss = res; 2251 cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf, 2252 beacon_interval, ie, ielen, &non_tx_data, 2253 gfp); 2254 return res; 2255 } 2256 EXPORT_SYMBOL(cfg80211_inform_bss_data); 2257 2258 static void 2259 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy, 2260 struct cfg80211_inform_bss *data, 2261 struct ieee80211_mgmt *mgmt, size_t len, 2262 struct cfg80211_non_tx_bss *non_tx_data, 2263 gfp_t gfp) 2264 { 2265 enum cfg80211_bss_frame_type ftype; 2266 const u8 *ie = mgmt->u.probe_resp.variable; 2267 size_t ielen = len - offsetof(struct ieee80211_mgmt, 2268 u.probe_resp.variable); 2269 2270 ftype = ieee80211_is_beacon(mgmt->frame_control) ? 2271 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP; 2272 2273 cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid, 2274 le64_to_cpu(mgmt->u.probe_resp.timestamp), 2275 le16_to_cpu(mgmt->u.probe_resp.beacon_int), 2276 ie, ielen, non_tx_data, gfp); 2277 } 2278 2279 static void 2280 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy, 2281 struct cfg80211_bss *nontrans_bss, 2282 struct ieee80211_mgmt *mgmt, size_t len) 2283 { 2284 u8 *ie, *new_ie, *pos; 2285 const struct element *nontrans_ssid; 2286 const u8 *trans_ssid, *mbssid; 2287 size_t ielen = len - offsetof(struct ieee80211_mgmt, 2288 u.probe_resp.variable); 2289 size_t new_ie_len; 2290 struct cfg80211_bss_ies *new_ies; 2291 const struct cfg80211_bss_ies *old; 2292 size_t cpy_len; 2293 2294 lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock); 2295 2296 ie = mgmt->u.probe_resp.variable; 2297 2298 new_ie_len = ielen; 2299 trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen); 2300 if (!trans_ssid) 2301 return; 2302 new_ie_len -= trans_ssid[1]; 2303 mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen); 2304 /* 2305 * It's not valid to have the MBSSID element before SSID 2306 * ignore if that happens - the code below assumes it is 2307 * after (while copying things inbetween). 2308 */ 2309 if (!mbssid || mbssid < trans_ssid) 2310 return; 2311 new_ie_len -= mbssid[1]; 2312 2313 nontrans_ssid = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID); 2314 if (!nontrans_ssid) 2315 return; 2316 2317 new_ie_len += nontrans_ssid->datalen; 2318 2319 /* generate new ie for nontrans BSS 2320 * 1. replace SSID with nontrans BSS' SSID 2321 * 2. skip MBSSID IE 2322 */ 2323 new_ie = kzalloc(new_ie_len, GFP_ATOMIC); 2324 if (!new_ie) 2325 return; 2326 2327 new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC); 2328 if (!new_ies) 2329 goto out_free; 2330 2331 pos = new_ie; 2332 2333 /* copy the nontransmitted SSID */ 2334 cpy_len = nontrans_ssid->datalen + 2; 2335 memcpy(pos, nontrans_ssid, cpy_len); 2336 pos += cpy_len; 2337 /* copy the IEs between SSID and MBSSID */ 2338 cpy_len = trans_ssid[1] + 2; 2339 memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len))); 2340 pos += (mbssid - (trans_ssid + cpy_len)); 2341 /* copy the IEs after MBSSID */ 2342 cpy_len = mbssid[1] + 2; 2343 memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len))); 2344 2345 /* update ie */ 2346 new_ies->len = new_ie_len; 2347 new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 2348 new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control); 2349 memcpy(new_ies->data, new_ie, new_ie_len); 2350 if (ieee80211_is_probe_resp(mgmt->frame_control)) { 2351 old = rcu_access_pointer(nontrans_bss->proberesp_ies); 2352 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies); 2353 rcu_assign_pointer(nontrans_bss->ies, new_ies); 2354 if (old) 2355 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 2356 } else { 2357 old = rcu_access_pointer(nontrans_bss->beacon_ies); 2358 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies); 2359 cfg80211_update_hidden_bsses(bss_from_pub(nontrans_bss), 2360 new_ies, old); 2361 rcu_assign_pointer(nontrans_bss->ies, new_ies); 2362 if (old) 2363 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 2364 } 2365 2366 out_free: 2367 kfree(new_ie); 2368 } 2369 2370 /* cfg80211_inform_bss_width_frame helper */ 2371 static struct cfg80211_bss * 2372 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy, 2373 struct cfg80211_inform_bss *data, 2374 struct ieee80211_mgmt *mgmt, size_t len, 2375 gfp_t gfp) 2376 { 2377 struct cfg80211_internal_bss tmp = {}, *res; 2378 struct cfg80211_bss_ies *ies; 2379 struct ieee80211_channel *channel; 2380 bool signal_valid; 2381 struct ieee80211_ext *ext = NULL; 2382 u8 *bssid, *variable; 2383 u16 capability, beacon_int; 2384 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt, 2385 u.probe_resp.variable); 2386 int bss_type; 2387 2388 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) != 2389 offsetof(struct ieee80211_mgmt, u.beacon.variable)); 2390 2391 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len); 2392 2393 if (WARN_ON(!mgmt)) 2394 return NULL; 2395 2396 if (WARN_ON(!wiphy)) 2397 return NULL; 2398 2399 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 2400 (data->signal < 0 || data->signal > 100))) 2401 return NULL; 2402 2403 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) { 2404 ext = (void *) mgmt; 2405 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon); 2406 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 2407 min_hdr_len = offsetof(struct ieee80211_ext, 2408 u.s1g_short_beacon.variable); 2409 } 2410 2411 if (WARN_ON(len < min_hdr_len)) 2412 return NULL; 2413 2414 ielen = len - min_hdr_len; 2415 variable = mgmt->u.probe_resp.variable; 2416 if (ext) { 2417 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 2418 variable = ext->u.s1g_short_beacon.variable; 2419 else 2420 variable = ext->u.s1g_beacon.variable; 2421 } 2422 2423 channel = cfg80211_get_bss_channel(wiphy, variable, 2424 ielen, data->chan, data->scan_width); 2425 if (!channel) 2426 return NULL; 2427 2428 if (ext) { 2429 const struct ieee80211_s1g_bcn_compat_ie *compat; 2430 const struct element *elem; 2431 2432 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, 2433 variable, ielen); 2434 if (!elem) 2435 return NULL; 2436 if (elem->datalen < sizeof(*compat)) 2437 return NULL; 2438 compat = (void *)elem->data; 2439 bssid = ext->u.s1g_beacon.sa; 2440 capability = le16_to_cpu(compat->compat_info); 2441 beacon_int = le16_to_cpu(compat->beacon_int); 2442 } else { 2443 bssid = mgmt->bssid; 2444 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int); 2445 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info); 2446 } 2447 2448 ies = kzalloc(sizeof(*ies) + ielen, gfp); 2449 if (!ies) 2450 return NULL; 2451 ies->len = ielen; 2452 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 2453 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) || 2454 ieee80211_is_s1g_beacon(mgmt->frame_control); 2455 memcpy(ies->data, variable, ielen); 2456 2457 if (ieee80211_is_probe_resp(mgmt->frame_control)) 2458 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 2459 else 2460 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 2461 rcu_assign_pointer(tmp.pub.ies, ies); 2462 2463 memcpy(tmp.pub.bssid, bssid, ETH_ALEN); 2464 tmp.pub.beacon_interval = beacon_int; 2465 tmp.pub.capability = capability; 2466 tmp.pub.channel = channel; 2467 tmp.pub.scan_width = data->scan_width; 2468 tmp.pub.signal = data->signal; 2469 tmp.ts_boottime = data->boottime_ns; 2470 tmp.parent_tsf = data->parent_tsf; 2471 tmp.pub.chains = data->chains; 2472 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS); 2473 ether_addr_copy(tmp.parent_bssid, data->parent_bssid); 2474 2475 signal_valid = data->chan == channel; 2476 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, 2477 jiffies); 2478 if (!res) 2479 return NULL; 2480 2481 if (channel->band == NL80211_BAND_60GHZ) { 2482 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 2483 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2484 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2485 regulatory_hint_found_beacon(wiphy, channel, gfp); 2486 } else { 2487 if (res->pub.capability & WLAN_CAPABILITY_ESS) 2488 regulatory_hint_found_beacon(wiphy, channel, gfp); 2489 } 2490 2491 trace_cfg80211_return_bss(&res->pub); 2492 /* cfg80211_bss_update gives us a referenced result */ 2493 return &res->pub; 2494 } 2495 2496 struct cfg80211_bss * 2497 cfg80211_inform_bss_frame_data(struct wiphy *wiphy, 2498 struct cfg80211_inform_bss *data, 2499 struct ieee80211_mgmt *mgmt, size_t len, 2500 gfp_t gfp) 2501 { 2502 struct cfg80211_bss *res, *tmp_bss; 2503 const u8 *ie = mgmt->u.probe_resp.variable; 2504 const struct cfg80211_bss_ies *ies1, *ies2; 2505 size_t ielen = len - offsetof(struct ieee80211_mgmt, 2506 u.probe_resp.variable); 2507 struct cfg80211_non_tx_bss non_tx_data = {}; 2508 2509 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt, 2510 len, gfp); 2511 2512 /* don't do any further MBSSID handling for S1G */ 2513 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 2514 return res; 2515 2516 if (!res || !wiphy->support_mbssid || 2517 !cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen)) 2518 return res; 2519 if (wiphy->support_only_he_mbssid && 2520 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen)) 2521 return res; 2522 2523 non_tx_data.tx_bss = res; 2524 /* process each non-transmitting bss */ 2525 cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len, 2526 &non_tx_data, gfp); 2527 2528 spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock); 2529 2530 /* check if the res has other nontransmitting bss which is not 2531 * in MBSSID IE 2532 */ 2533 ies1 = rcu_access_pointer(res->ies); 2534 2535 /* go through nontrans_list, if the timestamp of the BSS is 2536 * earlier than the timestamp of the transmitting BSS then 2537 * update it 2538 */ 2539 list_for_each_entry(tmp_bss, &res->nontrans_list, 2540 nontrans_list) { 2541 ies2 = rcu_access_pointer(tmp_bss->ies); 2542 if (ies2->tsf < ies1->tsf) 2543 cfg80211_update_notlisted_nontrans(wiphy, tmp_bss, 2544 mgmt, len); 2545 } 2546 spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock); 2547 2548 return res; 2549 } 2550 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data); 2551 2552 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2553 { 2554 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2555 2556 if (!pub) 2557 return; 2558 2559 spin_lock_bh(&rdev->bss_lock); 2560 bss_ref_get(rdev, bss_from_pub(pub)); 2561 spin_unlock_bh(&rdev->bss_lock); 2562 } 2563 EXPORT_SYMBOL(cfg80211_ref_bss); 2564 2565 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2566 { 2567 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2568 2569 if (!pub) 2570 return; 2571 2572 spin_lock_bh(&rdev->bss_lock); 2573 bss_ref_put(rdev, bss_from_pub(pub)); 2574 spin_unlock_bh(&rdev->bss_lock); 2575 } 2576 EXPORT_SYMBOL(cfg80211_put_bss); 2577 2578 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2579 { 2580 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2581 struct cfg80211_internal_bss *bss, *tmp1; 2582 struct cfg80211_bss *nontrans_bss, *tmp; 2583 2584 if (WARN_ON(!pub)) 2585 return; 2586 2587 bss = bss_from_pub(pub); 2588 2589 spin_lock_bh(&rdev->bss_lock); 2590 if (list_empty(&bss->list)) 2591 goto out; 2592 2593 list_for_each_entry_safe(nontrans_bss, tmp, 2594 &pub->nontrans_list, 2595 nontrans_list) { 2596 tmp1 = bss_from_pub(nontrans_bss); 2597 if (__cfg80211_unlink_bss(rdev, tmp1)) 2598 rdev->bss_generation++; 2599 } 2600 2601 if (__cfg80211_unlink_bss(rdev, bss)) 2602 rdev->bss_generation++; 2603 out: 2604 spin_unlock_bh(&rdev->bss_lock); 2605 } 2606 EXPORT_SYMBOL(cfg80211_unlink_bss); 2607 2608 void cfg80211_bss_iter(struct wiphy *wiphy, 2609 struct cfg80211_chan_def *chandef, 2610 void (*iter)(struct wiphy *wiphy, 2611 struct cfg80211_bss *bss, 2612 void *data), 2613 void *iter_data) 2614 { 2615 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2616 struct cfg80211_internal_bss *bss; 2617 2618 spin_lock_bh(&rdev->bss_lock); 2619 2620 list_for_each_entry(bss, &rdev->bss_list, list) { 2621 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel, 2622 false)) 2623 iter(wiphy, &bss->pub, iter_data); 2624 } 2625 2626 spin_unlock_bh(&rdev->bss_lock); 2627 } 2628 EXPORT_SYMBOL(cfg80211_bss_iter); 2629 2630 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, 2631 unsigned int link_id, 2632 struct ieee80211_channel *chan) 2633 { 2634 struct wiphy *wiphy = wdev->wiphy; 2635 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2636 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss; 2637 struct cfg80211_internal_bss *new = NULL; 2638 struct cfg80211_internal_bss *bss; 2639 struct cfg80211_bss *nontrans_bss; 2640 struct cfg80211_bss *tmp; 2641 2642 spin_lock_bh(&rdev->bss_lock); 2643 2644 /* 2645 * Some APs use CSA also for bandwidth changes, i.e., without actually 2646 * changing the control channel, so no need to update in such a case. 2647 */ 2648 if (cbss->pub.channel == chan) 2649 goto done; 2650 2651 /* use transmitting bss */ 2652 if (cbss->pub.transmitted_bss) 2653 cbss = bss_from_pub(cbss->pub.transmitted_bss); 2654 2655 cbss->pub.channel = chan; 2656 2657 list_for_each_entry(bss, &rdev->bss_list, list) { 2658 if (!cfg80211_bss_type_match(bss->pub.capability, 2659 bss->pub.channel->band, 2660 wdev->conn_bss_type)) 2661 continue; 2662 2663 if (bss == cbss) 2664 continue; 2665 2666 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) { 2667 new = bss; 2668 break; 2669 } 2670 } 2671 2672 if (new) { 2673 /* to save time, update IEs for transmitting bss only */ 2674 if (cfg80211_update_known_bss(rdev, cbss, new, false)) { 2675 new->pub.proberesp_ies = NULL; 2676 new->pub.beacon_ies = NULL; 2677 } 2678 2679 list_for_each_entry_safe(nontrans_bss, tmp, 2680 &new->pub.nontrans_list, 2681 nontrans_list) { 2682 bss = bss_from_pub(nontrans_bss); 2683 if (__cfg80211_unlink_bss(rdev, bss)) 2684 rdev->bss_generation++; 2685 } 2686 2687 WARN_ON(atomic_read(&new->hold)); 2688 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new))) 2689 rdev->bss_generation++; 2690 } 2691 2692 rb_erase(&cbss->rbn, &rdev->bss_tree); 2693 rb_insert_bss(rdev, cbss); 2694 rdev->bss_generation++; 2695 2696 list_for_each_entry_safe(nontrans_bss, tmp, 2697 &cbss->pub.nontrans_list, 2698 nontrans_list) { 2699 bss = bss_from_pub(nontrans_bss); 2700 bss->pub.channel = chan; 2701 rb_erase(&bss->rbn, &rdev->bss_tree); 2702 rb_insert_bss(rdev, bss); 2703 rdev->bss_generation++; 2704 } 2705 2706 done: 2707 spin_unlock_bh(&rdev->bss_lock); 2708 } 2709 2710 #ifdef CONFIG_CFG80211_WEXT 2711 static struct cfg80211_registered_device * 2712 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex) 2713 { 2714 struct cfg80211_registered_device *rdev; 2715 struct net_device *dev; 2716 2717 ASSERT_RTNL(); 2718 2719 dev = dev_get_by_index(net, ifindex); 2720 if (!dev) 2721 return ERR_PTR(-ENODEV); 2722 if (dev->ieee80211_ptr) 2723 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy); 2724 else 2725 rdev = ERR_PTR(-ENODEV); 2726 dev_put(dev); 2727 return rdev; 2728 } 2729 2730 int cfg80211_wext_siwscan(struct net_device *dev, 2731 struct iw_request_info *info, 2732 union iwreq_data *wrqu, char *extra) 2733 { 2734 struct cfg80211_registered_device *rdev; 2735 struct wiphy *wiphy; 2736 struct iw_scan_req *wreq = NULL; 2737 struct cfg80211_scan_request *creq; 2738 int i, err, n_channels = 0; 2739 enum nl80211_band band; 2740 2741 if (!netif_running(dev)) 2742 return -ENETDOWN; 2743 2744 if (wrqu->data.length == sizeof(struct iw_scan_req)) 2745 wreq = (struct iw_scan_req *)extra; 2746 2747 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 2748 2749 if (IS_ERR(rdev)) 2750 return PTR_ERR(rdev); 2751 2752 if (rdev->scan_req || rdev->scan_msg) 2753 return -EBUSY; 2754 2755 wiphy = &rdev->wiphy; 2756 2757 /* Determine number of channels, needed to allocate creq */ 2758 if (wreq && wreq->num_channels) 2759 n_channels = wreq->num_channels; 2760 else 2761 n_channels = ieee80211_get_num_supported_channels(wiphy); 2762 2763 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) + 2764 n_channels * sizeof(void *), 2765 GFP_ATOMIC); 2766 if (!creq) 2767 return -ENOMEM; 2768 2769 creq->wiphy = wiphy; 2770 creq->wdev = dev->ieee80211_ptr; 2771 /* SSIDs come after channels */ 2772 creq->ssids = (void *)&creq->channels[n_channels]; 2773 creq->n_channels = n_channels; 2774 creq->n_ssids = 1; 2775 creq->scan_start = jiffies; 2776 2777 /* translate "Scan on frequencies" request */ 2778 i = 0; 2779 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2780 int j; 2781 2782 if (!wiphy->bands[band]) 2783 continue; 2784 2785 for (j = 0; j < wiphy->bands[band]->n_channels; j++) { 2786 /* ignore disabled channels */ 2787 if (wiphy->bands[band]->channels[j].flags & 2788 IEEE80211_CHAN_DISABLED) 2789 continue; 2790 2791 /* If we have a wireless request structure and the 2792 * wireless request specifies frequencies, then search 2793 * for the matching hardware channel. 2794 */ 2795 if (wreq && wreq->num_channels) { 2796 int k; 2797 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq; 2798 for (k = 0; k < wreq->num_channels; k++) { 2799 struct iw_freq *freq = 2800 &wreq->channel_list[k]; 2801 int wext_freq = 2802 cfg80211_wext_freq(freq); 2803 2804 if (wext_freq == wiphy_freq) 2805 goto wext_freq_found; 2806 } 2807 goto wext_freq_not_found; 2808 } 2809 2810 wext_freq_found: 2811 creq->channels[i] = &wiphy->bands[band]->channels[j]; 2812 i++; 2813 wext_freq_not_found: ; 2814 } 2815 } 2816 /* No channels found? */ 2817 if (!i) { 2818 err = -EINVAL; 2819 goto out; 2820 } 2821 2822 /* Set real number of channels specified in creq->channels[] */ 2823 creq->n_channels = i; 2824 2825 /* translate "Scan for SSID" request */ 2826 if (wreq) { 2827 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { 2828 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) { 2829 err = -EINVAL; 2830 goto out; 2831 } 2832 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len); 2833 creq->ssids[0].ssid_len = wreq->essid_len; 2834 } 2835 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) 2836 creq->n_ssids = 0; 2837 } 2838 2839 for (i = 0; i < NUM_NL80211_BANDS; i++) 2840 if (wiphy->bands[i]) 2841 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1; 2842 2843 eth_broadcast_addr(creq->bssid); 2844 2845 wiphy_lock(&rdev->wiphy); 2846 2847 rdev->scan_req = creq; 2848 err = rdev_scan(rdev, creq); 2849 if (err) { 2850 rdev->scan_req = NULL; 2851 /* creq will be freed below */ 2852 } else { 2853 nl80211_send_scan_start(rdev, dev->ieee80211_ptr); 2854 /* creq now owned by driver */ 2855 creq = NULL; 2856 dev_hold(dev); 2857 } 2858 wiphy_unlock(&rdev->wiphy); 2859 out: 2860 kfree(creq); 2861 return err; 2862 } 2863 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan); 2864 2865 static char *ieee80211_scan_add_ies(struct iw_request_info *info, 2866 const struct cfg80211_bss_ies *ies, 2867 char *current_ev, char *end_buf) 2868 { 2869 const u8 *pos, *end, *next; 2870 struct iw_event iwe; 2871 2872 if (!ies) 2873 return current_ev; 2874 2875 /* 2876 * If needed, fragment the IEs buffer (at IE boundaries) into short 2877 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages. 2878 */ 2879 pos = ies->data; 2880 end = pos + ies->len; 2881 2882 while (end - pos > IW_GENERIC_IE_MAX) { 2883 next = pos + 2 + pos[1]; 2884 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX) 2885 next = next + 2 + next[1]; 2886 2887 memset(&iwe, 0, sizeof(iwe)); 2888 iwe.cmd = IWEVGENIE; 2889 iwe.u.data.length = next - pos; 2890 current_ev = iwe_stream_add_point_check(info, current_ev, 2891 end_buf, &iwe, 2892 (void *)pos); 2893 if (IS_ERR(current_ev)) 2894 return current_ev; 2895 pos = next; 2896 } 2897 2898 if (end > pos) { 2899 memset(&iwe, 0, sizeof(iwe)); 2900 iwe.cmd = IWEVGENIE; 2901 iwe.u.data.length = end - pos; 2902 current_ev = iwe_stream_add_point_check(info, current_ev, 2903 end_buf, &iwe, 2904 (void *)pos); 2905 if (IS_ERR(current_ev)) 2906 return current_ev; 2907 } 2908 2909 return current_ev; 2910 } 2911 2912 static char * 2913 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info, 2914 struct cfg80211_internal_bss *bss, char *current_ev, 2915 char *end_buf) 2916 { 2917 const struct cfg80211_bss_ies *ies; 2918 struct iw_event iwe; 2919 const u8 *ie; 2920 u8 buf[50]; 2921 u8 *cfg, *p, *tmp; 2922 int rem, i, sig; 2923 bool ismesh = false; 2924 2925 memset(&iwe, 0, sizeof(iwe)); 2926 iwe.cmd = SIOCGIWAP; 2927 iwe.u.ap_addr.sa_family = ARPHRD_ETHER; 2928 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN); 2929 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 2930 IW_EV_ADDR_LEN); 2931 if (IS_ERR(current_ev)) 2932 return current_ev; 2933 2934 memset(&iwe, 0, sizeof(iwe)); 2935 iwe.cmd = SIOCGIWFREQ; 2936 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq); 2937 iwe.u.freq.e = 0; 2938 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 2939 IW_EV_FREQ_LEN); 2940 if (IS_ERR(current_ev)) 2941 return current_ev; 2942 2943 memset(&iwe, 0, sizeof(iwe)); 2944 iwe.cmd = SIOCGIWFREQ; 2945 iwe.u.freq.m = bss->pub.channel->center_freq; 2946 iwe.u.freq.e = 6; 2947 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 2948 IW_EV_FREQ_LEN); 2949 if (IS_ERR(current_ev)) 2950 return current_ev; 2951 2952 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) { 2953 memset(&iwe, 0, sizeof(iwe)); 2954 iwe.cmd = IWEVQUAL; 2955 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED | 2956 IW_QUAL_NOISE_INVALID | 2957 IW_QUAL_QUAL_UPDATED; 2958 switch (wiphy->signal_type) { 2959 case CFG80211_SIGNAL_TYPE_MBM: 2960 sig = bss->pub.signal / 100; 2961 iwe.u.qual.level = sig; 2962 iwe.u.qual.updated |= IW_QUAL_DBM; 2963 if (sig < -110) /* rather bad */ 2964 sig = -110; 2965 else if (sig > -40) /* perfect */ 2966 sig = -40; 2967 /* will give a range of 0 .. 70 */ 2968 iwe.u.qual.qual = sig + 110; 2969 break; 2970 case CFG80211_SIGNAL_TYPE_UNSPEC: 2971 iwe.u.qual.level = bss->pub.signal; 2972 /* will give range 0 .. 100 */ 2973 iwe.u.qual.qual = bss->pub.signal; 2974 break; 2975 default: 2976 /* not reached */ 2977 break; 2978 } 2979 current_ev = iwe_stream_add_event_check(info, current_ev, 2980 end_buf, &iwe, 2981 IW_EV_QUAL_LEN); 2982 if (IS_ERR(current_ev)) 2983 return current_ev; 2984 } 2985 2986 memset(&iwe, 0, sizeof(iwe)); 2987 iwe.cmd = SIOCGIWENCODE; 2988 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY) 2989 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY; 2990 else 2991 iwe.u.data.flags = IW_ENCODE_DISABLED; 2992 iwe.u.data.length = 0; 2993 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 2994 &iwe, ""); 2995 if (IS_ERR(current_ev)) 2996 return current_ev; 2997 2998 rcu_read_lock(); 2999 ies = rcu_dereference(bss->pub.ies); 3000 rem = ies->len; 3001 ie = ies->data; 3002 3003 while (rem >= 2) { 3004 /* invalid data */ 3005 if (ie[1] > rem - 2) 3006 break; 3007 3008 switch (ie[0]) { 3009 case WLAN_EID_SSID: 3010 memset(&iwe, 0, sizeof(iwe)); 3011 iwe.cmd = SIOCGIWESSID; 3012 iwe.u.data.length = ie[1]; 3013 iwe.u.data.flags = 1; 3014 current_ev = iwe_stream_add_point_check(info, 3015 current_ev, 3016 end_buf, &iwe, 3017 (u8 *)ie + 2); 3018 if (IS_ERR(current_ev)) 3019 goto unlock; 3020 break; 3021 case WLAN_EID_MESH_ID: 3022 memset(&iwe, 0, sizeof(iwe)); 3023 iwe.cmd = SIOCGIWESSID; 3024 iwe.u.data.length = ie[1]; 3025 iwe.u.data.flags = 1; 3026 current_ev = iwe_stream_add_point_check(info, 3027 current_ev, 3028 end_buf, &iwe, 3029 (u8 *)ie + 2); 3030 if (IS_ERR(current_ev)) 3031 goto unlock; 3032 break; 3033 case WLAN_EID_MESH_CONFIG: 3034 ismesh = true; 3035 if (ie[1] != sizeof(struct ieee80211_meshconf_ie)) 3036 break; 3037 cfg = (u8 *)ie + 2; 3038 memset(&iwe, 0, sizeof(iwe)); 3039 iwe.cmd = IWEVCUSTOM; 3040 sprintf(buf, "Mesh Network Path Selection Protocol ID: " 3041 "0x%02X", cfg[0]); 3042 iwe.u.data.length = strlen(buf); 3043 current_ev = iwe_stream_add_point_check(info, 3044 current_ev, 3045 end_buf, 3046 &iwe, buf); 3047 if (IS_ERR(current_ev)) 3048 goto unlock; 3049 sprintf(buf, "Path Selection Metric ID: 0x%02X", 3050 cfg[1]); 3051 iwe.u.data.length = strlen(buf); 3052 current_ev = iwe_stream_add_point_check(info, 3053 current_ev, 3054 end_buf, 3055 &iwe, buf); 3056 if (IS_ERR(current_ev)) 3057 goto unlock; 3058 sprintf(buf, "Congestion Control Mode ID: 0x%02X", 3059 cfg[2]); 3060 iwe.u.data.length = strlen(buf); 3061 current_ev = iwe_stream_add_point_check(info, 3062 current_ev, 3063 end_buf, 3064 &iwe, buf); 3065 if (IS_ERR(current_ev)) 3066 goto unlock; 3067 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]); 3068 iwe.u.data.length = strlen(buf); 3069 current_ev = iwe_stream_add_point_check(info, 3070 current_ev, 3071 end_buf, 3072 &iwe, buf); 3073 if (IS_ERR(current_ev)) 3074 goto unlock; 3075 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]); 3076 iwe.u.data.length = strlen(buf); 3077 current_ev = iwe_stream_add_point_check(info, 3078 current_ev, 3079 end_buf, 3080 &iwe, buf); 3081 if (IS_ERR(current_ev)) 3082 goto unlock; 3083 sprintf(buf, "Formation Info: 0x%02X", cfg[5]); 3084 iwe.u.data.length = strlen(buf); 3085 current_ev = iwe_stream_add_point_check(info, 3086 current_ev, 3087 end_buf, 3088 &iwe, buf); 3089 if (IS_ERR(current_ev)) 3090 goto unlock; 3091 sprintf(buf, "Capabilities: 0x%02X", cfg[6]); 3092 iwe.u.data.length = strlen(buf); 3093 current_ev = iwe_stream_add_point_check(info, 3094 current_ev, 3095 end_buf, 3096 &iwe, buf); 3097 if (IS_ERR(current_ev)) 3098 goto unlock; 3099 break; 3100 case WLAN_EID_SUPP_RATES: 3101 case WLAN_EID_EXT_SUPP_RATES: 3102 /* display all supported rates in readable format */ 3103 p = current_ev + iwe_stream_lcp_len(info); 3104 3105 memset(&iwe, 0, sizeof(iwe)); 3106 iwe.cmd = SIOCGIWRATE; 3107 /* Those two flags are ignored... */ 3108 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0; 3109 3110 for (i = 0; i < ie[1]; i++) { 3111 iwe.u.bitrate.value = 3112 ((ie[i + 2] & 0x7f) * 500000); 3113 tmp = p; 3114 p = iwe_stream_add_value(info, current_ev, p, 3115 end_buf, &iwe, 3116 IW_EV_PARAM_LEN); 3117 if (p == tmp) { 3118 current_ev = ERR_PTR(-E2BIG); 3119 goto unlock; 3120 } 3121 } 3122 current_ev = p; 3123 break; 3124 } 3125 rem -= ie[1] + 2; 3126 ie += ie[1] + 2; 3127 } 3128 3129 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) || 3130 ismesh) { 3131 memset(&iwe, 0, sizeof(iwe)); 3132 iwe.cmd = SIOCGIWMODE; 3133 if (ismesh) 3134 iwe.u.mode = IW_MODE_MESH; 3135 else if (bss->pub.capability & WLAN_CAPABILITY_ESS) 3136 iwe.u.mode = IW_MODE_MASTER; 3137 else 3138 iwe.u.mode = IW_MODE_ADHOC; 3139 current_ev = iwe_stream_add_event_check(info, current_ev, 3140 end_buf, &iwe, 3141 IW_EV_UINT_LEN); 3142 if (IS_ERR(current_ev)) 3143 goto unlock; 3144 } 3145 3146 memset(&iwe, 0, sizeof(iwe)); 3147 iwe.cmd = IWEVCUSTOM; 3148 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf)); 3149 iwe.u.data.length = strlen(buf); 3150 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3151 &iwe, buf); 3152 if (IS_ERR(current_ev)) 3153 goto unlock; 3154 memset(&iwe, 0, sizeof(iwe)); 3155 iwe.cmd = IWEVCUSTOM; 3156 sprintf(buf, " Last beacon: %ums ago", 3157 elapsed_jiffies_msecs(bss->ts)); 3158 iwe.u.data.length = strlen(buf); 3159 current_ev = iwe_stream_add_point_check(info, current_ev, 3160 end_buf, &iwe, buf); 3161 if (IS_ERR(current_ev)) 3162 goto unlock; 3163 3164 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf); 3165 3166 unlock: 3167 rcu_read_unlock(); 3168 return current_ev; 3169 } 3170 3171 3172 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev, 3173 struct iw_request_info *info, 3174 char *buf, size_t len) 3175 { 3176 char *current_ev = buf; 3177 char *end_buf = buf + len; 3178 struct cfg80211_internal_bss *bss; 3179 int err = 0; 3180 3181 spin_lock_bh(&rdev->bss_lock); 3182 cfg80211_bss_expire(rdev); 3183 3184 list_for_each_entry(bss, &rdev->bss_list, list) { 3185 if (buf + len - current_ev <= IW_EV_ADDR_LEN) { 3186 err = -E2BIG; 3187 break; 3188 } 3189 current_ev = ieee80211_bss(&rdev->wiphy, info, bss, 3190 current_ev, end_buf); 3191 if (IS_ERR(current_ev)) { 3192 err = PTR_ERR(current_ev); 3193 break; 3194 } 3195 } 3196 spin_unlock_bh(&rdev->bss_lock); 3197 3198 if (err) 3199 return err; 3200 return current_ev - buf; 3201 } 3202 3203 3204 int cfg80211_wext_giwscan(struct net_device *dev, 3205 struct iw_request_info *info, 3206 union iwreq_data *wrqu, char *extra) 3207 { 3208 struct iw_point *data = &wrqu->data; 3209 struct cfg80211_registered_device *rdev; 3210 int res; 3211 3212 if (!netif_running(dev)) 3213 return -ENETDOWN; 3214 3215 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3216 3217 if (IS_ERR(rdev)) 3218 return PTR_ERR(rdev); 3219 3220 if (rdev->scan_req || rdev->scan_msg) 3221 return -EAGAIN; 3222 3223 res = ieee80211_scan_results(rdev, info, extra, data->length); 3224 data->length = 0; 3225 if (res >= 0) { 3226 data->length = res; 3227 res = 0; 3228 } 3229 3230 return res; 3231 } 3232 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan); 3233 #endif 3234