1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * cfg80211 scan result handling 4 * 5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2016 Intel Deutschland GmbH 8 * Copyright (C) 2018-2021 Intel Corporation 9 */ 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/netdevice.h> 14 #include <linux/wireless.h> 15 #include <linux/nl80211.h> 16 #include <linux/etherdevice.h> 17 #include <linux/crc32.h> 18 #include <linux/bitfield.h> 19 #include <net/arp.h> 20 #include <net/cfg80211.h> 21 #include <net/cfg80211-wext.h> 22 #include <net/iw_handler.h> 23 #include "core.h" 24 #include "nl80211.h" 25 #include "wext-compat.h" 26 #include "rdev-ops.h" 27 28 /** 29 * DOC: BSS tree/list structure 30 * 31 * At the top level, the BSS list is kept in both a list in each 32 * registered device (@bss_list) as well as an RB-tree for faster 33 * lookup. In the RB-tree, entries can be looked up using their 34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID 35 * for other BSSes. 36 * 37 * Due to the possibility of hidden SSIDs, there's a second level 38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer. 39 * The hidden_list connects all BSSes belonging to a single AP 40 * that has a hidden SSID, and connects beacon and probe response 41 * entries. For a probe response entry for a hidden SSID, the 42 * hidden_beacon_bss pointer points to the BSS struct holding the 43 * beacon's information. 44 * 45 * Reference counting is done for all these references except for 46 * the hidden_list, so that a beacon BSS struct that is otherwise 47 * not referenced has one reference for being on the bss_list and 48 * one for each probe response entry that points to it using the 49 * hidden_beacon_bss pointer. When a BSS struct that has such a 50 * pointer is get/put, the refcount update is also propagated to 51 * the referenced struct, this ensure that it cannot get removed 52 * while somebody is using the probe response version. 53 * 54 * Note that the hidden_beacon_bss pointer never changes, due to 55 * the reference counting. Therefore, no locking is needed for 56 * it. 57 * 58 * Also note that the hidden_beacon_bss pointer is only relevant 59 * if the driver uses something other than the IEs, e.g. private 60 * data stored in the BSS struct, since the beacon IEs are 61 * also linked into the probe response struct. 62 */ 63 64 /* 65 * Limit the number of BSS entries stored in mac80211. Each one is 66 * a bit over 4k at most, so this limits to roughly 4-5M of memory. 67 * If somebody wants to really attack this though, they'd likely 68 * use small beacons, and only one type of frame, limiting each of 69 * the entries to a much smaller size (in order to generate more 70 * entries in total, so overhead is bigger.) 71 */ 72 static int bss_entries_limit = 1000; 73 module_param(bss_entries_limit, int, 0644); 74 MODULE_PARM_DESC(bss_entries_limit, 75 "limit to number of scan BSS entries (per wiphy, default 1000)"); 76 77 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ) 78 79 /** 80 * struct cfg80211_colocated_ap - colocated AP information 81 * 82 * @list: linked list to all colocated aPS 83 * @bssid: BSSID of the reported AP 84 * @ssid: SSID of the reported AP 85 * @ssid_len: length of the ssid 86 * @center_freq: frequency the reported AP is on 87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs 88 * that operate in the same channel as the reported AP and that might be 89 * detected by a STA receiving this frame, are transmitting unsolicited 90 * Probe Response frames every 20 TUs 91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP 92 * @same_ssid: the reported AP has the same SSID as the reporting AP 93 * @multi_bss: the reported AP is part of a multiple BSSID set 94 * @transmitted_bssid: the reported AP is the transmitting BSSID 95 * @colocated_ess: all the APs that share the same ESS as the reported AP are 96 * colocated and can be discovered via legacy bands. 97 * @short_ssid_valid: short_ssid is valid and can be used 98 * @short_ssid: the short SSID for this SSID 99 */ 100 struct cfg80211_colocated_ap { 101 struct list_head list; 102 u8 bssid[ETH_ALEN]; 103 u8 ssid[IEEE80211_MAX_SSID_LEN]; 104 size_t ssid_len; 105 u32 short_ssid; 106 u32 center_freq; 107 u8 unsolicited_probe:1, 108 oct_recommended:1, 109 same_ssid:1, 110 multi_bss:1, 111 transmitted_bssid:1, 112 colocated_ess:1, 113 short_ssid_valid:1; 114 }; 115 116 static void bss_free(struct cfg80211_internal_bss *bss) 117 { 118 struct cfg80211_bss_ies *ies; 119 120 if (WARN_ON(atomic_read(&bss->hold))) 121 return; 122 123 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies); 124 if (ies && !bss->pub.hidden_beacon_bss) 125 kfree_rcu(ies, rcu_head); 126 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies); 127 if (ies) 128 kfree_rcu(ies, rcu_head); 129 130 /* 131 * This happens when the module is removed, it doesn't 132 * really matter any more save for completeness 133 */ 134 if (!list_empty(&bss->hidden_list)) 135 list_del(&bss->hidden_list); 136 137 kfree(bss); 138 } 139 140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev, 141 struct cfg80211_internal_bss *bss) 142 { 143 lockdep_assert_held(&rdev->bss_lock); 144 145 bss->refcount++; 146 if (bss->pub.hidden_beacon_bss) { 147 bss = container_of(bss->pub.hidden_beacon_bss, 148 struct cfg80211_internal_bss, 149 pub); 150 bss->refcount++; 151 } 152 if (bss->pub.transmitted_bss) { 153 bss = container_of(bss->pub.transmitted_bss, 154 struct cfg80211_internal_bss, 155 pub); 156 bss->refcount++; 157 } 158 } 159 160 static inline void bss_ref_put(struct cfg80211_registered_device *rdev, 161 struct cfg80211_internal_bss *bss) 162 { 163 lockdep_assert_held(&rdev->bss_lock); 164 165 if (bss->pub.hidden_beacon_bss) { 166 struct cfg80211_internal_bss *hbss; 167 hbss = container_of(bss->pub.hidden_beacon_bss, 168 struct cfg80211_internal_bss, 169 pub); 170 hbss->refcount--; 171 if (hbss->refcount == 0) 172 bss_free(hbss); 173 } 174 175 if (bss->pub.transmitted_bss) { 176 struct cfg80211_internal_bss *tbss; 177 178 tbss = container_of(bss->pub.transmitted_bss, 179 struct cfg80211_internal_bss, 180 pub); 181 tbss->refcount--; 182 if (tbss->refcount == 0) 183 bss_free(tbss); 184 } 185 186 bss->refcount--; 187 if (bss->refcount == 0) 188 bss_free(bss); 189 } 190 191 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev, 192 struct cfg80211_internal_bss *bss) 193 { 194 lockdep_assert_held(&rdev->bss_lock); 195 196 if (!list_empty(&bss->hidden_list)) { 197 /* 198 * don't remove the beacon entry if it has 199 * probe responses associated with it 200 */ 201 if (!bss->pub.hidden_beacon_bss) 202 return false; 203 /* 204 * if it's a probe response entry break its 205 * link to the other entries in the group 206 */ 207 list_del_init(&bss->hidden_list); 208 } 209 210 list_del_init(&bss->list); 211 list_del_init(&bss->pub.nontrans_list); 212 rb_erase(&bss->rbn, &rdev->bss_tree); 213 rdev->bss_entries--; 214 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list), 215 "rdev bss entries[%d]/list[empty:%d] corruption\n", 216 rdev->bss_entries, list_empty(&rdev->bss_list)); 217 bss_ref_put(rdev, bss); 218 return true; 219 } 220 221 bool cfg80211_is_element_inherited(const struct element *elem, 222 const struct element *non_inherit_elem) 223 { 224 u8 id_len, ext_id_len, i, loop_len, id; 225 const u8 *list; 226 227 if (elem->id == WLAN_EID_MULTIPLE_BSSID) 228 return false; 229 230 if (!non_inherit_elem || non_inherit_elem->datalen < 2) 231 return true; 232 233 /* 234 * non inheritance element format is: 235 * ext ID (56) | IDs list len | list | extension IDs list len | list 236 * Both lists are optional. Both lengths are mandatory. 237 * This means valid length is: 238 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths 239 */ 240 id_len = non_inherit_elem->data[1]; 241 if (non_inherit_elem->datalen < 3 + id_len) 242 return true; 243 244 ext_id_len = non_inherit_elem->data[2 + id_len]; 245 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len) 246 return true; 247 248 if (elem->id == WLAN_EID_EXTENSION) { 249 if (!ext_id_len) 250 return true; 251 loop_len = ext_id_len; 252 list = &non_inherit_elem->data[3 + id_len]; 253 id = elem->data[0]; 254 } else { 255 if (!id_len) 256 return true; 257 loop_len = id_len; 258 list = &non_inherit_elem->data[2]; 259 id = elem->id; 260 } 261 262 for (i = 0; i < loop_len; i++) { 263 if (list[i] == id) 264 return false; 265 } 266 267 return true; 268 } 269 EXPORT_SYMBOL(cfg80211_is_element_inherited); 270 271 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen, 272 const u8 *subelement, size_t subie_len, 273 u8 *new_ie, gfp_t gfp) 274 { 275 u8 *pos, *tmp; 276 const u8 *tmp_old, *tmp_new; 277 const struct element *non_inherit_elem; 278 u8 *sub_copy; 279 280 /* copy subelement as we need to change its content to 281 * mark an ie after it is processed. 282 */ 283 sub_copy = kmemdup(subelement, subie_len, gfp); 284 if (!sub_copy) 285 return 0; 286 287 pos = &new_ie[0]; 288 289 /* set new ssid */ 290 tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len); 291 if (tmp_new) { 292 memcpy(pos, tmp_new, tmp_new[1] + 2); 293 pos += (tmp_new[1] + 2); 294 } 295 296 /* get non inheritance list if exists */ 297 non_inherit_elem = 298 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 299 sub_copy, subie_len); 300 301 /* go through IEs in ie (skip SSID) and subelement, 302 * merge them into new_ie 303 */ 304 tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen); 305 tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie; 306 307 while (tmp_old + tmp_old[1] + 2 - ie <= ielen) { 308 if (tmp_old[0] == 0) { 309 tmp_old++; 310 continue; 311 } 312 313 if (tmp_old[0] == WLAN_EID_EXTENSION) 314 tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy, 315 subie_len); 316 else 317 tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy, 318 subie_len); 319 320 if (!tmp) { 321 const struct element *old_elem = (void *)tmp_old; 322 323 /* ie in old ie but not in subelement */ 324 if (cfg80211_is_element_inherited(old_elem, 325 non_inherit_elem)) { 326 memcpy(pos, tmp_old, tmp_old[1] + 2); 327 pos += tmp_old[1] + 2; 328 } 329 } else { 330 /* ie in transmitting ie also in subelement, 331 * copy from subelement and flag the ie in subelement 332 * as copied (by setting eid field to WLAN_EID_SSID, 333 * which is skipped anyway). 334 * For vendor ie, compare OUI + type + subType to 335 * determine if they are the same ie. 336 */ 337 if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) { 338 if (!memcmp(tmp_old + 2, tmp + 2, 5)) { 339 /* same vendor ie, copy from 340 * subelement 341 */ 342 memcpy(pos, tmp, tmp[1] + 2); 343 pos += tmp[1] + 2; 344 tmp[0] = WLAN_EID_SSID; 345 } else { 346 memcpy(pos, tmp_old, tmp_old[1] + 2); 347 pos += tmp_old[1] + 2; 348 } 349 } else { 350 /* copy ie from subelement into new ie */ 351 memcpy(pos, tmp, tmp[1] + 2); 352 pos += tmp[1] + 2; 353 tmp[0] = WLAN_EID_SSID; 354 } 355 } 356 357 if (tmp_old + tmp_old[1] + 2 - ie == ielen) 358 break; 359 360 tmp_old += tmp_old[1] + 2; 361 } 362 363 /* go through subelement again to check if there is any ie not 364 * copied to new ie, skip ssid, capability, bssid-index ie 365 */ 366 tmp_new = sub_copy; 367 while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) { 368 if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP || 369 tmp_new[0] == WLAN_EID_SSID)) { 370 memcpy(pos, tmp_new, tmp_new[1] + 2); 371 pos += tmp_new[1] + 2; 372 } 373 if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len) 374 break; 375 tmp_new += tmp_new[1] + 2; 376 } 377 378 kfree(sub_copy); 379 return pos - new_ie; 380 } 381 382 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid, 383 const u8 *ssid, size_t ssid_len) 384 { 385 const struct cfg80211_bss_ies *ies; 386 const struct element *ssid_elem; 387 388 if (bssid && !ether_addr_equal(a->bssid, bssid)) 389 return false; 390 391 if (!ssid) 392 return true; 393 394 ies = rcu_access_pointer(a->ies); 395 if (!ies) 396 return false; 397 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 398 if (!ssid_elem) 399 return false; 400 if (ssid_elem->datalen != ssid_len) 401 return false; 402 return memcmp(ssid_elem->data, ssid, ssid_len) == 0; 403 } 404 405 static int 406 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss, 407 struct cfg80211_bss *nontrans_bss) 408 { 409 const struct element *ssid_elem; 410 struct cfg80211_bss *bss = NULL; 411 412 rcu_read_lock(); 413 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID); 414 if (!ssid_elem) { 415 rcu_read_unlock(); 416 return -EINVAL; 417 } 418 419 /* check if nontrans_bss is in the list */ 420 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) { 421 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data, 422 ssid_elem->datalen)) { 423 rcu_read_unlock(); 424 return 0; 425 } 426 } 427 428 rcu_read_unlock(); 429 430 /* add to the list */ 431 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list); 432 return 0; 433 } 434 435 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev, 436 unsigned long expire_time) 437 { 438 struct cfg80211_internal_bss *bss, *tmp; 439 bool expired = false; 440 441 lockdep_assert_held(&rdev->bss_lock); 442 443 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) { 444 if (atomic_read(&bss->hold)) 445 continue; 446 if (!time_after(expire_time, bss->ts)) 447 continue; 448 449 if (__cfg80211_unlink_bss(rdev, bss)) 450 expired = true; 451 } 452 453 if (expired) 454 rdev->bss_generation++; 455 } 456 457 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev) 458 { 459 struct cfg80211_internal_bss *bss, *oldest = NULL; 460 bool ret; 461 462 lockdep_assert_held(&rdev->bss_lock); 463 464 list_for_each_entry(bss, &rdev->bss_list, list) { 465 if (atomic_read(&bss->hold)) 466 continue; 467 468 if (!list_empty(&bss->hidden_list) && 469 !bss->pub.hidden_beacon_bss) 470 continue; 471 472 if (oldest && time_before(oldest->ts, bss->ts)) 473 continue; 474 oldest = bss; 475 } 476 477 if (WARN_ON(!oldest)) 478 return false; 479 480 /* 481 * The callers make sure to increase rdev->bss_generation if anything 482 * gets removed (and a new entry added), so there's no need to also do 483 * it here. 484 */ 485 486 ret = __cfg80211_unlink_bss(rdev, oldest); 487 WARN_ON(!ret); 488 return ret; 489 } 490 491 static u8 cfg80211_parse_bss_param(u8 data, 492 struct cfg80211_colocated_ap *coloc_ap) 493 { 494 coloc_ap->oct_recommended = 495 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED); 496 coloc_ap->same_ssid = 497 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID); 498 coloc_ap->multi_bss = 499 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID); 500 coloc_ap->transmitted_bssid = 501 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID); 502 coloc_ap->unsolicited_probe = 503 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE); 504 coloc_ap->colocated_ess = 505 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS); 506 507 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP); 508 } 509 510 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies, 511 const struct element **elem, u32 *s_ssid) 512 { 513 514 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 515 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN) 516 return -EINVAL; 517 518 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen); 519 return 0; 520 } 521 522 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list) 523 { 524 struct cfg80211_colocated_ap *ap, *tmp_ap; 525 526 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) { 527 list_del(&ap->list); 528 kfree(ap); 529 } 530 } 531 532 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry, 533 const u8 *pos, u8 length, 534 const struct element *ssid_elem, 535 int s_ssid_tmp) 536 { 537 /* skip the TBTT offset */ 538 pos++; 539 540 memcpy(entry->bssid, pos, ETH_ALEN); 541 pos += ETH_ALEN; 542 543 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) { 544 memcpy(&entry->short_ssid, pos, 545 sizeof(entry->short_ssid)); 546 entry->short_ssid_valid = true; 547 pos += 4; 548 } 549 550 /* skip non colocated APs */ 551 if (!cfg80211_parse_bss_param(*pos, entry)) 552 return -EINVAL; 553 pos++; 554 555 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) { 556 /* 557 * no information about the short ssid. Consider the entry valid 558 * for now. It would later be dropped in case there are explicit 559 * SSIDs that need to be matched 560 */ 561 if (!entry->same_ssid) 562 return 0; 563 } 564 565 if (entry->same_ssid) { 566 entry->short_ssid = s_ssid_tmp; 567 entry->short_ssid_valid = true; 568 569 /* 570 * This is safe because we validate datalen in 571 * cfg80211_parse_colocated_ap(), before calling this 572 * function. 573 */ 574 memcpy(&entry->ssid, &ssid_elem->data, 575 ssid_elem->datalen); 576 entry->ssid_len = ssid_elem->datalen; 577 } 578 return 0; 579 } 580 581 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies, 582 struct list_head *list) 583 { 584 struct ieee80211_neighbor_ap_info *ap_info; 585 const struct element *elem, *ssid_elem; 586 const u8 *pos, *end; 587 u32 s_ssid_tmp; 588 int n_coloc = 0, ret; 589 LIST_HEAD(ap_list); 590 591 elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data, 592 ies->len); 593 if (!elem) 594 return 0; 595 596 pos = elem->data; 597 end = pos + elem->datalen; 598 599 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp); 600 if (ret) 601 return ret; 602 603 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ 604 while (pos + sizeof(*ap_info) <= end) { 605 enum nl80211_band band; 606 int freq; 607 u8 length, i, count; 608 609 ap_info = (void *)pos; 610 count = u8_get_bits(ap_info->tbtt_info_hdr, 611 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1; 612 length = ap_info->tbtt_info_len; 613 614 pos += sizeof(*ap_info); 615 616 if (!ieee80211_operating_class_to_band(ap_info->op_class, 617 &band)) 618 break; 619 620 freq = ieee80211_channel_to_frequency(ap_info->channel, band); 621 622 if (end - pos < count * length) 623 break; 624 625 /* 626 * TBTT info must include bss param + BSSID + 627 * (short SSID or same_ssid bit to be set). 628 * ignore other options, and move to the 629 * next AP info 630 */ 631 if (band != NL80211_BAND_6GHZ || 632 (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM && 633 length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) { 634 pos += count * length; 635 continue; 636 } 637 638 for (i = 0; i < count; i++) { 639 struct cfg80211_colocated_ap *entry; 640 641 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, 642 GFP_ATOMIC); 643 644 if (!entry) 645 break; 646 647 entry->center_freq = freq; 648 649 if (!cfg80211_parse_ap_info(entry, pos, length, 650 ssid_elem, s_ssid_tmp)) { 651 n_coloc++; 652 list_add_tail(&entry->list, &ap_list); 653 } else { 654 kfree(entry); 655 } 656 657 pos += length; 658 } 659 } 660 661 if (pos != end) { 662 cfg80211_free_coloc_ap_list(&ap_list); 663 return 0; 664 } 665 666 list_splice_tail(&ap_list, list); 667 return n_coloc; 668 } 669 670 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request, 671 struct ieee80211_channel *chan, 672 bool add_to_6ghz) 673 { 674 int i; 675 u32 n_channels = request->n_channels; 676 struct cfg80211_scan_6ghz_params *params = 677 &request->scan_6ghz_params[request->n_6ghz_params]; 678 679 for (i = 0; i < n_channels; i++) { 680 if (request->channels[i] == chan) { 681 if (add_to_6ghz) 682 params->channel_idx = i; 683 return; 684 } 685 } 686 687 request->channels[n_channels] = chan; 688 if (add_to_6ghz) 689 request->scan_6ghz_params[request->n_6ghz_params].channel_idx = 690 n_channels; 691 692 request->n_channels++; 693 } 694 695 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap, 696 struct cfg80211_scan_request *request) 697 { 698 int i; 699 u32 s_ssid; 700 701 for (i = 0; i < request->n_ssids; i++) { 702 /* wildcard ssid in the scan request */ 703 if (!request->ssids[i].ssid_len) { 704 if (ap->multi_bss && !ap->transmitted_bssid) 705 continue; 706 707 return true; 708 } 709 710 if (ap->ssid_len && 711 ap->ssid_len == request->ssids[i].ssid_len) { 712 if (!memcmp(request->ssids[i].ssid, ap->ssid, 713 ap->ssid_len)) 714 return true; 715 } else if (ap->short_ssid_valid) { 716 s_ssid = ~crc32_le(~0, request->ssids[i].ssid, 717 request->ssids[i].ssid_len); 718 719 if (ap->short_ssid == s_ssid) 720 return true; 721 } 722 } 723 724 return false; 725 } 726 727 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev) 728 { 729 u8 i; 730 struct cfg80211_colocated_ap *ap; 731 int n_channels, count = 0, err; 732 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req; 733 LIST_HEAD(coloc_ap_list); 734 bool need_scan_psc = true; 735 const struct ieee80211_sband_iftype_data *iftd; 736 737 rdev_req->scan_6ghz = true; 738 739 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ]) 740 return -EOPNOTSUPP; 741 742 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ], 743 rdev_req->wdev->iftype); 744 if (!iftd || !iftd->he_cap.has_he) 745 return -EOPNOTSUPP; 746 747 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels; 748 749 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) { 750 struct cfg80211_internal_bss *intbss; 751 752 spin_lock_bh(&rdev->bss_lock); 753 list_for_each_entry(intbss, &rdev->bss_list, list) { 754 struct cfg80211_bss *res = &intbss->pub; 755 const struct cfg80211_bss_ies *ies; 756 757 ies = rcu_access_pointer(res->ies); 758 count += cfg80211_parse_colocated_ap(ies, 759 &coloc_ap_list); 760 } 761 spin_unlock_bh(&rdev->bss_lock); 762 } 763 764 request = kzalloc(struct_size(request, channels, n_channels) + 765 sizeof(*request->scan_6ghz_params) * count + 766 sizeof(*request->ssids) * rdev_req->n_ssids, 767 GFP_KERNEL); 768 if (!request) { 769 cfg80211_free_coloc_ap_list(&coloc_ap_list); 770 return -ENOMEM; 771 } 772 773 *request = *rdev_req; 774 request->n_channels = 0; 775 request->scan_6ghz_params = 776 (void *)&request->channels[n_channels]; 777 778 /* 779 * PSC channels should not be scanned in case of direct scan with 1 SSID 780 * and at least one of the reported co-located APs with same SSID 781 * indicating that all APs in the same ESS are co-located 782 */ 783 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) { 784 list_for_each_entry(ap, &coloc_ap_list, list) { 785 if (ap->colocated_ess && 786 cfg80211_find_ssid_match(ap, request)) { 787 need_scan_psc = false; 788 break; 789 } 790 } 791 } 792 793 /* 794 * add to the scan request the channels that need to be scanned 795 * regardless of the collocated APs (PSC channels or all channels 796 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set) 797 */ 798 for (i = 0; i < rdev_req->n_channels; i++) { 799 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ && 800 ((need_scan_psc && 801 cfg80211_channel_is_psc(rdev_req->channels[i])) || 802 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) { 803 cfg80211_scan_req_add_chan(request, 804 rdev_req->channels[i], 805 false); 806 } 807 } 808 809 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ)) 810 goto skip; 811 812 list_for_each_entry(ap, &coloc_ap_list, list) { 813 bool found = false; 814 struct cfg80211_scan_6ghz_params *scan_6ghz_params = 815 &request->scan_6ghz_params[request->n_6ghz_params]; 816 struct ieee80211_channel *chan = 817 ieee80211_get_channel(&rdev->wiphy, ap->center_freq); 818 819 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED) 820 continue; 821 822 for (i = 0; i < rdev_req->n_channels; i++) { 823 if (rdev_req->channels[i] == chan) 824 found = true; 825 } 826 827 if (!found) 828 continue; 829 830 if (request->n_ssids > 0 && 831 !cfg80211_find_ssid_match(ap, request)) 832 continue; 833 834 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid) 835 continue; 836 837 cfg80211_scan_req_add_chan(request, chan, true); 838 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN); 839 scan_6ghz_params->short_ssid = ap->short_ssid; 840 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid; 841 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe; 842 843 /* 844 * If a PSC channel is added to the scan and 'need_scan_psc' is 845 * set to false, then all the APs that the scan logic is 846 * interested with on the channel are collocated and thus there 847 * is no need to perform the initial PSC channel listen. 848 */ 849 if (cfg80211_channel_is_psc(chan) && !need_scan_psc) 850 scan_6ghz_params->psc_no_listen = true; 851 852 request->n_6ghz_params++; 853 } 854 855 skip: 856 cfg80211_free_coloc_ap_list(&coloc_ap_list); 857 858 if (request->n_channels) { 859 struct cfg80211_scan_request *old = rdev->int_scan_req; 860 rdev->int_scan_req = request; 861 862 /* 863 * Add the ssids from the parent scan request to the new scan 864 * request, so the driver would be able to use them in its 865 * probe requests to discover hidden APs on PSC channels. 866 */ 867 request->ssids = (void *)&request->channels[request->n_channels]; 868 request->n_ssids = rdev_req->n_ssids; 869 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) * 870 request->n_ssids); 871 872 /* 873 * If this scan follows a previous scan, save the scan start 874 * info from the first part of the scan 875 */ 876 if (old) 877 rdev->int_scan_req->info = old->info; 878 879 err = rdev_scan(rdev, request); 880 if (err) { 881 rdev->int_scan_req = old; 882 kfree(request); 883 } else { 884 kfree(old); 885 } 886 887 return err; 888 } 889 890 kfree(request); 891 return -EINVAL; 892 } 893 894 int cfg80211_scan(struct cfg80211_registered_device *rdev) 895 { 896 struct cfg80211_scan_request *request; 897 struct cfg80211_scan_request *rdev_req = rdev->scan_req; 898 u32 n_channels = 0, idx, i; 899 900 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ)) 901 return rdev_scan(rdev, rdev_req); 902 903 for (i = 0; i < rdev_req->n_channels; i++) { 904 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 905 n_channels++; 906 } 907 908 if (!n_channels) 909 return cfg80211_scan_6ghz(rdev); 910 911 request = kzalloc(struct_size(request, channels, n_channels), 912 GFP_KERNEL); 913 if (!request) 914 return -ENOMEM; 915 916 *request = *rdev_req; 917 request->n_channels = n_channels; 918 919 for (i = idx = 0; i < rdev_req->n_channels; i++) { 920 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 921 request->channels[idx++] = rdev_req->channels[i]; 922 } 923 924 rdev_req->scan_6ghz = false; 925 rdev->int_scan_req = request; 926 return rdev_scan(rdev, request); 927 } 928 929 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, 930 bool send_message) 931 { 932 struct cfg80211_scan_request *request, *rdev_req; 933 struct wireless_dev *wdev; 934 struct sk_buff *msg; 935 #ifdef CONFIG_CFG80211_WEXT 936 union iwreq_data wrqu; 937 #endif 938 939 lockdep_assert_held(&rdev->wiphy.mtx); 940 941 if (rdev->scan_msg) { 942 nl80211_send_scan_msg(rdev, rdev->scan_msg); 943 rdev->scan_msg = NULL; 944 return; 945 } 946 947 rdev_req = rdev->scan_req; 948 if (!rdev_req) 949 return; 950 951 wdev = rdev_req->wdev; 952 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req; 953 954 if (wdev_running(wdev) && 955 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) && 956 !rdev_req->scan_6ghz && !request->info.aborted && 957 !cfg80211_scan_6ghz(rdev)) 958 return; 959 960 /* 961 * This must be before sending the other events! 962 * Otherwise, wpa_supplicant gets completely confused with 963 * wext events. 964 */ 965 if (wdev->netdev) 966 cfg80211_sme_scan_done(wdev->netdev); 967 968 if (!request->info.aborted && 969 request->flags & NL80211_SCAN_FLAG_FLUSH) { 970 /* flush entries from previous scans */ 971 spin_lock_bh(&rdev->bss_lock); 972 __cfg80211_bss_expire(rdev, request->scan_start); 973 spin_unlock_bh(&rdev->bss_lock); 974 } 975 976 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted); 977 978 #ifdef CONFIG_CFG80211_WEXT 979 if (wdev->netdev && !request->info.aborted) { 980 memset(&wrqu, 0, sizeof(wrqu)); 981 982 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL); 983 } 984 #endif 985 986 dev_put(wdev->netdev); 987 988 kfree(rdev->int_scan_req); 989 rdev->int_scan_req = NULL; 990 991 kfree(rdev->scan_req); 992 rdev->scan_req = NULL; 993 994 if (!send_message) 995 rdev->scan_msg = msg; 996 else 997 nl80211_send_scan_msg(rdev, msg); 998 } 999 1000 void __cfg80211_scan_done(struct work_struct *wk) 1001 { 1002 struct cfg80211_registered_device *rdev; 1003 1004 rdev = container_of(wk, struct cfg80211_registered_device, 1005 scan_done_wk); 1006 1007 wiphy_lock(&rdev->wiphy); 1008 ___cfg80211_scan_done(rdev, true); 1009 wiphy_unlock(&rdev->wiphy); 1010 } 1011 1012 void cfg80211_scan_done(struct cfg80211_scan_request *request, 1013 struct cfg80211_scan_info *info) 1014 { 1015 struct cfg80211_scan_info old_info = request->info; 1016 1017 trace_cfg80211_scan_done(request, info); 1018 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req && 1019 request != wiphy_to_rdev(request->wiphy)->int_scan_req); 1020 1021 request->info = *info; 1022 1023 /* 1024 * In case the scan is split, the scan_start_tsf and tsf_bssid should 1025 * be of the first part. In such a case old_info.scan_start_tsf should 1026 * be non zero. 1027 */ 1028 if (request->scan_6ghz && old_info.scan_start_tsf) { 1029 request->info.scan_start_tsf = old_info.scan_start_tsf; 1030 memcpy(request->info.tsf_bssid, old_info.tsf_bssid, 1031 sizeof(request->info.tsf_bssid)); 1032 } 1033 1034 request->notified = true; 1035 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk); 1036 } 1037 EXPORT_SYMBOL(cfg80211_scan_done); 1038 1039 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, 1040 struct cfg80211_sched_scan_request *req) 1041 { 1042 lockdep_assert_held(&rdev->wiphy.mtx); 1043 1044 list_add_rcu(&req->list, &rdev->sched_scan_req_list); 1045 } 1046 1047 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev, 1048 struct cfg80211_sched_scan_request *req) 1049 { 1050 lockdep_assert_held(&rdev->wiphy.mtx); 1051 1052 list_del_rcu(&req->list); 1053 kfree_rcu(req, rcu_head); 1054 } 1055 1056 static struct cfg80211_sched_scan_request * 1057 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid) 1058 { 1059 struct cfg80211_sched_scan_request *pos; 1060 1061 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list, 1062 lockdep_is_held(&rdev->wiphy.mtx)) { 1063 if (pos->reqid == reqid) 1064 return pos; 1065 } 1066 return NULL; 1067 } 1068 1069 /* 1070 * Determines if a scheduled scan request can be handled. When a legacy 1071 * scheduled scan is running no other scheduled scan is allowed regardless 1072 * whether the request is for legacy or multi-support scan. When a multi-support 1073 * scheduled scan is running a request for legacy scan is not allowed. In this 1074 * case a request for multi-support scan can be handled if resources are 1075 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached. 1076 */ 1077 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, 1078 bool want_multi) 1079 { 1080 struct cfg80211_sched_scan_request *pos; 1081 int i = 0; 1082 1083 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) { 1084 /* request id zero means legacy in progress */ 1085 if (!i && !pos->reqid) 1086 return -EINPROGRESS; 1087 i++; 1088 } 1089 1090 if (i) { 1091 /* no legacy allowed when multi request(s) are active */ 1092 if (!want_multi) 1093 return -EINPROGRESS; 1094 1095 /* resource limit reached */ 1096 if (i == rdev->wiphy.max_sched_scan_reqs) 1097 return -ENOSPC; 1098 } 1099 return 0; 1100 } 1101 1102 void cfg80211_sched_scan_results_wk(struct work_struct *work) 1103 { 1104 struct cfg80211_registered_device *rdev; 1105 struct cfg80211_sched_scan_request *req, *tmp; 1106 1107 rdev = container_of(work, struct cfg80211_registered_device, 1108 sched_scan_res_wk); 1109 1110 wiphy_lock(&rdev->wiphy); 1111 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) { 1112 if (req->report_results) { 1113 req->report_results = false; 1114 if (req->flags & NL80211_SCAN_FLAG_FLUSH) { 1115 /* flush entries from previous scans */ 1116 spin_lock_bh(&rdev->bss_lock); 1117 __cfg80211_bss_expire(rdev, req->scan_start); 1118 spin_unlock_bh(&rdev->bss_lock); 1119 req->scan_start = jiffies; 1120 } 1121 nl80211_send_sched_scan(req, 1122 NL80211_CMD_SCHED_SCAN_RESULTS); 1123 } 1124 } 1125 wiphy_unlock(&rdev->wiphy); 1126 } 1127 1128 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid) 1129 { 1130 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1131 struct cfg80211_sched_scan_request *request; 1132 1133 trace_cfg80211_sched_scan_results(wiphy, reqid); 1134 /* ignore if we're not scanning */ 1135 1136 rcu_read_lock(); 1137 request = cfg80211_find_sched_scan_req(rdev, reqid); 1138 if (request) { 1139 request->report_results = true; 1140 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk); 1141 } 1142 rcu_read_unlock(); 1143 } 1144 EXPORT_SYMBOL(cfg80211_sched_scan_results); 1145 1146 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid) 1147 { 1148 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1149 1150 lockdep_assert_held(&wiphy->mtx); 1151 1152 trace_cfg80211_sched_scan_stopped(wiphy, reqid); 1153 1154 __cfg80211_stop_sched_scan(rdev, reqid, true); 1155 } 1156 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked); 1157 1158 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid) 1159 { 1160 wiphy_lock(wiphy); 1161 cfg80211_sched_scan_stopped_locked(wiphy, reqid); 1162 wiphy_unlock(wiphy); 1163 } 1164 EXPORT_SYMBOL(cfg80211_sched_scan_stopped); 1165 1166 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, 1167 struct cfg80211_sched_scan_request *req, 1168 bool driver_initiated) 1169 { 1170 lockdep_assert_held(&rdev->wiphy.mtx); 1171 1172 if (!driver_initiated) { 1173 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid); 1174 if (err) 1175 return err; 1176 } 1177 1178 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED); 1179 1180 cfg80211_del_sched_scan_req(rdev, req); 1181 1182 return 0; 1183 } 1184 1185 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, 1186 u64 reqid, bool driver_initiated) 1187 { 1188 struct cfg80211_sched_scan_request *sched_scan_req; 1189 1190 lockdep_assert_held(&rdev->wiphy.mtx); 1191 1192 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid); 1193 if (!sched_scan_req) 1194 return -ENOENT; 1195 1196 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req, 1197 driver_initiated); 1198 } 1199 1200 void cfg80211_bss_age(struct cfg80211_registered_device *rdev, 1201 unsigned long age_secs) 1202 { 1203 struct cfg80211_internal_bss *bss; 1204 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC); 1205 1206 spin_lock_bh(&rdev->bss_lock); 1207 list_for_each_entry(bss, &rdev->bss_list, list) 1208 bss->ts -= age_jiffies; 1209 spin_unlock_bh(&rdev->bss_lock); 1210 } 1211 1212 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev) 1213 { 1214 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE); 1215 } 1216 1217 void cfg80211_bss_flush(struct wiphy *wiphy) 1218 { 1219 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1220 1221 spin_lock_bh(&rdev->bss_lock); 1222 __cfg80211_bss_expire(rdev, jiffies); 1223 spin_unlock_bh(&rdev->bss_lock); 1224 } 1225 EXPORT_SYMBOL(cfg80211_bss_flush); 1226 1227 const struct element * 1228 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len, 1229 const u8 *match, unsigned int match_len, 1230 unsigned int match_offset) 1231 { 1232 const struct element *elem; 1233 1234 for_each_element_id(elem, eid, ies, len) { 1235 if (elem->datalen >= match_offset + match_len && 1236 !memcmp(elem->data + match_offset, match, match_len)) 1237 return elem; 1238 } 1239 1240 return NULL; 1241 } 1242 EXPORT_SYMBOL(cfg80211_find_elem_match); 1243 1244 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type, 1245 const u8 *ies, 1246 unsigned int len) 1247 { 1248 const struct element *elem; 1249 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type }; 1250 int match_len = (oui_type < 0) ? 3 : sizeof(match); 1251 1252 if (WARN_ON(oui_type > 0xff)) 1253 return NULL; 1254 1255 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len, 1256 match, match_len, 0); 1257 1258 if (!elem || elem->datalen < 4) 1259 return NULL; 1260 1261 return elem; 1262 } 1263 EXPORT_SYMBOL(cfg80211_find_vendor_elem); 1264 1265 /** 1266 * enum bss_compare_mode - BSS compare mode 1267 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find) 1268 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode 1269 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode 1270 */ 1271 enum bss_compare_mode { 1272 BSS_CMP_REGULAR, 1273 BSS_CMP_HIDE_ZLEN, 1274 BSS_CMP_HIDE_NUL, 1275 }; 1276 1277 static int cmp_bss(struct cfg80211_bss *a, 1278 struct cfg80211_bss *b, 1279 enum bss_compare_mode mode) 1280 { 1281 const struct cfg80211_bss_ies *a_ies, *b_ies; 1282 const u8 *ie1 = NULL; 1283 const u8 *ie2 = NULL; 1284 int i, r; 1285 1286 if (a->channel != b->channel) 1287 return b->channel->center_freq - a->channel->center_freq; 1288 1289 a_ies = rcu_access_pointer(a->ies); 1290 if (!a_ies) 1291 return -1; 1292 b_ies = rcu_access_pointer(b->ies); 1293 if (!b_ies) 1294 return 1; 1295 1296 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability)) 1297 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1298 a_ies->data, a_ies->len); 1299 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability)) 1300 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1301 b_ies->data, b_ies->len); 1302 if (ie1 && ie2) { 1303 int mesh_id_cmp; 1304 1305 if (ie1[1] == ie2[1]) 1306 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1307 else 1308 mesh_id_cmp = ie2[1] - ie1[1]; 1309 1310 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1311 a_ies->data, a_ies->len); 1312 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1313 b_ies->data, b_ies->len); 1314 if (ie1 && ie2) { 1315 if (mesh_id_cmp) 1316 return mesh_id_cmp; 1317 if (ie1[1] != ie2[1]) 1318 return ie2[1] - ie1[1]; 1319 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1320 } 1321 } 1322 1323 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid)); 1324 if (r) 1325 return r; 1326 1327 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len); 1328 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len); 1329 1330 if (!ie1 && !ie2) 1331 return 0; 1332 1333 /* 1334 * Note that with "hide_ssid", the function returns a match if 1335 * the already-present BSS ("b") is a hidden SSID beacon for 1336 * the new BSS ("a"). 1337 */ 1338 1339 /* sort missing IE before (left of) present IE */ 1340 if (!ie1) 1341 return -1; 1342 if (!ie2) 1343 return 1; 1344 1345 switch (mode) { 1346 case BSS_CMP_HIDE_ZLEN: 1347 /* 1348 * In ZLEN mode we assume the BSS entry we're 1349 * looking for has a zero-length SSID. So if 1350 * the one we're looking at right now has that, 1351 * return 0. Otherwise, return the difference 1352 * in length, but since we're looking for the 1353 * 0-length it's really equivalent to returning 1354 * the length of the one we're looking at. 1355 * 1356 * No content comparison is needed as we assume 1357 * the content length is zero. 1358 */ 1359 return ie2[1]; 1360 case BSS_CMP_REGULAR: 1361 default: 1362 /* sort by length first, then by contents */ 1363 if (ie1[1] != ie2[1]) 1364 return ie2[1] - ie1[1]; 1365 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1366 case BSS_CMP_HIDE_NUL: 1367 if (ie1[1] != ie2[1]) 1368 return ie2[1] - ie1[1]; 1369 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */ 1370 for (i = 0; i < ie2[1]; i++) 1371 if (ie2[i + 2]) 1372 return -1; 1373 return 0; 1374 } 1375 } 1376 1377 static bool cfg80211_bss_type_match(u16 capability, 1378 enum nl80211_band band, 1379 enum ieee80211_bss_type bss_type) 1380 { 1381 bool ret = true; 1382 u16 mask, val; 1383 1384 if (bss_type == IEEE80211_BSS_TYPE_ANY) 1385 return ret; 1386 1387 if (band == NL80211_BAND_60GHZ) { 1388 mask = WLAN_CAPABILITY_DMG_TYPE_MASK; 1389 switch (bss_type) { 1390 case IEEE80211_BSS_TYPE_ESS: 1391 val = WLAN_CAPABILITY_DMG_TYPE_AP; 1392 break; 1393 case IEEE80211_BSS_TYPE_PBSS: 1394 val = WLAN_CAPABILITY_DMG_TYPE_PBSS; 1395 break; 1396 case IEEE80211_BSS_TYPE_IBSS: 1397 val = WLAN_CAPABILITY_DMG_TYPE_IBSS; 1398 break; 1399 default: 1400 return false; 1401 } 1402 } else { 1403 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS; 1404 switch (bss_type) { 1405 case IEEE80211_BSS_TYPE_ESS: 1406 val = WLAN_CAPABILITY_ESS; 1407 break; 1408 case IEEE80211_BSS_TYPE_IBSS: 1409 val = WLAN_CAPABILITY_IBSS; 1410 break; 1411 case IEEE80211_BSS_TYPE_MBSS: 1412 val = 0; 1413 break; 1414 default: 1415 return false; 1416 } 1417 } 1418 1419 ret = ((capability & mask) == val); 1420 return ret; 1421 } 1422 1423 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1424 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy, 1425 struct ieee80211_channel *channel, 1426 const u8 *bssid, 1427 const u8 *ssid, size_t ssid_len, 1428 enum ieee80211_bss_type bss_type, 1429 enum ieee80211_privacy privacy) 1430 { 1431 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1432 struct cfg80211_internal_bss *bss, *res = NULL; 1433 unsigned long now = jiffies; 1434 int bss_privacy; 1435 1436 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type, 1437 privacy); 1438 1439 spin_lock_bh(&rdev->bss_lock); 1440 1441 list_for_each_entry(bss, &rdev->bss_list, list) { 1442 if (!cfg80211_bss_type_match(bss->pub.capability, 1443 bss->pub.channel->band, bss_type)) 1444 continue; 1445 1446 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY); 1447 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) || 1448 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy)) 1449 continue; 1450 if (channel && bss->pub.channel != channel) 1451 continue; 1452 if (!is_valid_ether_addr(bss->pub.bssid)) 1453 continue; 1454 /* Don't get expired BSS structs */ 1455 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) && 1456 !atomic_read(&bss->hold)) 1457 continue; 1458 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) { 1459 res = bss; 1460 bss_ref_get(rdev, res); 1461 break; 1462 } 1463 } 1464 1465 spin_unlock_bh(&rdev->bss_lock); 1466 if (!res) 1467 return NULL; 1468 trace_cfg80211_return_bss(&res->pub); 1469 return &res->pub; 1470 } 1471 EXPORT_SYMBOL(cfg80211_get_bss); 1472 1473 static void rb_insert_bss(struct cfg80211_registered_device *rdev, 1474 struct cfg80211_internal_bss *bss) 1475 { 1476 struct rb_node **p = &rdev->bss_tree.rb_node; 1477 struct rb_node *parent = NULL; 1478 struct cfg80211_internal_bss *tbss; 1479 int cmp; 1480 1481 while (*p) { 1482 parent = *p; 1483 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn); 1484 1485 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR); 1486 1487 if (WARN_ON(!cmp)) { 1488 /* will sort of leak this BSS */ 1489 return; 1490 } 1491 1492 if (cmp < 0) 1493 p = &(*p)->rb_left; 1494 else 1495 p = &(*p)->rb_right; 1496 } 1497 1498 rb_link_node(&bss->rbn, parent, p); 1499 rb_insert_color(&bss->rbn, &rdev->bss_tree); 1500 } 1501 1502 static struct cfg80211_internal_bss * 1503 rb_find_bss(struct cfg80211_registered_device *rdev, 1504 struct cfg80211_internal_bss *res, 1505 enum bss_compare_mode mode) 1506 { 1507 struct rb_node *n = rdev->bss_tree.rb_node; 1508 struct cfg80211_internal_bss *bss; 1509 int r; 1510 1511 while (n) { 1512 bss = rb_entry(n, struct cfg80211_internal_bss, rbn); 1513 r = cmp_bss(&res->pub, &bss->pub, mode); 1514 1515 if (r == 0) 1516 return bss; 1517 else if (r < 0) 1518 n = n->rb_left; 1519 else 1520 n = n->rb_right; 1521 } 1522 1523 return NULL; 1524 } 1525 1526 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev, 1527 struct cfg80211_internal_bss *new) 1528 { 1529 const struct cfg80211_bss_ies *ies; 1530 struct cfg80211_internal_bss *bss; 1531 const u8 *ie; 1532 int i, ssidlen; 1533 u8 fold = 0; 1534 u32 n_entries = 0; 1535 1536 ies = rcu_access_pointer(new->pub.beacon_ies); 1537 if (WARN_ON(!ies)) 1538 return false; 1539 1540 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1541 if (!ie) { 1542 /* nothing to do */ 1543 return true; 1544 } 1545 1546 ssidlen = ie[1]; 1547 for (i = 0; i < ssidlen; i++) 1548 fold |= ie[2 + i]; 1549 1550 if (fold) { 1551 /* not a hidden SSID */ 1552 return true; 1553 } 1554 1555 /* This is the bad part ... */ 1556 1557 list_for_each_entry(bss, &rdev->bss_list, list) { 1558 /* 1559 * we're iterating all the entries anyway, so take the 1560 * opportunity to validate the list length accounting 1561 */ 1562 n_entries++; 1563 1564 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid)) 1565 continue; 1566 if (bss->pub.channel != new->pub.channel) 1567 continue; 1568 if (bss->pub.scan_width != new->pub.scan_width) 1569 continue; 1570 if (rcu_access_pointer(bss->pub.beacon_ies)) 1571 continue; 1572 ies = rcu_access_pointer(bss->pub.ies); 1573 if (!ies) 1574 continue; 1575 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1576 if (!ie) 1577 continue; 1578 if (ssidlen && ie[1] != ssidlen) 1579 continue; 1580 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss)) 1581 continue; 1582 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list))) 1583 list_del(&bss->hidden_list); 1584 /* combine them */ 1585 list_add(&bss->hidden_list, &new->hidden_list); 1586 bss->pub.hidden_beacon_bss = &new->pub; 1587 new->refcount += bss->refcount; 1588 rcu_assign_pointer(bss->pub.beacon_ies, 1589 new->pub.beacon_ies); 1590 } 1591 1592 WARN_ONCE(n_entries != rdev->bss_entries, 1593 "rdev bss entries[%d]/list[len:%d] corruption\n", 1594 rdev->bss_entries, n_entries); 1595 1596 return true; 1597 } 1598 1599 struct cfg80211_non_tx_bss { 1600 struct cfg80211_bss *tx_bss; 1601 u8 max_bssid_indicator; 1602 u8 bssid_index; 1603 }; 1604 1605 static bool 1606 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev, 1607 struct cfg80211_internal_bss *known, 1608 struct cfg80211_internal_bss *new, 1609 bool signal_valid) 1610 { 1611 lockdep_assert_held(&rdev->bss_lock); 1612 1613 /* Update IEs */ 1614 if (rcu_access_pointer(new->pub.proberesp_ies)) { 1615 const struct cfg80211_bss_ies *old; 1616 1617 old = rcu_access_pointer(known->pub.proberesp_ies); 1618 1619 rcu_assign_pointer(known->pub.proberesp_ies, 1620 new->pub.proberesp_ies); 1621 /* Override possible earlier Beacon frame IEs */ 1622 rcu_assign_pointer(known->pub.ies, 1623 new->pub.proberesp_ies); 1624 if (old) 1625 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1626 } else if (rcu_access_pointer(new->pub.beacon_ies)) { 1627 const struct cfg80211_bss_ies *old; 1628 struct cfg80211_internal_bss *bss; 1629 1630 if (known->pub.hidden_beacon_bss && 1631 !list_empty(&known->hidden_list)) { 1632 const struct cfg80211_bss_ies *f; 1633 1634 /* The known BSS struct is one of the probe 1635 * response members of a group, but we're 1636 * receiving a beacon (beacon_ies in the new 1637 * bss is used). This can only mean that the 1638 * AP changed its beacon from not having an 1639 * SSID to showing it, which is confusing so 1640 * drop this information. 1641 */ 1642 1643 f = rcu_access_pointer(new->pub.beacon_ies); 1644 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head); 1645 return false; 1646 } 1647 1648 old = rcu_access_pointer(known->pub.beacon_ies); 1649 1650 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies); 1651 1652 /* Override IEs if they were from a beacon before */ 1653 if (old == rcu_access_pointer(known->pub.ies)) 1654 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies); 1655 1656 /* Assign beacon IEs to all sub entries */ 1657 list_for_each_entry(bss, &known->hidden_list, hidden_list) { 1658 const struct cfg80211_bss_ies *ies; 1659 1660 ies = rcu_access_pointer(bss->pub.beacon_ies); 1661 WARN_ON(ies != old); 1662 1663 rcu_assign_pointer(bss->pub.beacon_ies, 1664 new->pub.beacon_ies); 1665 } 1666 1667 if (old) 1668 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1669 } 1670 1671 known->pub.beacon_interval = new->pub.beacon_interval; 1672 1673 /* don't update the signal if beacon was heard on 1674 * adjacent channel. 1675 */ 1676 if (signal_valid) 1677 known->pub.signal = new->pub.signal; 1678 known->pub.capability = new->pub.capability; 1679 known->ts = new->ts; 1680 known->ts_boottime = new->ts_boottime; 1681 known->parent_tsf = new->parent_tsf; 1682 known->pub.chains = new->pub.chains; 1683 memcpy(known->pub.chain_signal, new->pub.chain_signal, 1684 IEEE80211_MAX_CHAINS); 1685 ether_addr_copy(known->parent_bssid, new->parent_bssid); 1686 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator; 1687 known->pub.bssid_index = new->pub.bssid_index; 1688 1689 return true; 1690 } 1691 1692 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1693 struct cfg80211_internal_bss * 1694 cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1695 struct cfg80211_internal_bss *tmp, 1696 bool signal_valid, unsigned long ts) 1697 { 1698 struct cfg80211_internal_bss *found = NULL; 1699 1700 if (WARN_ON(!tmp->pub.channel)) 1701 return NULL; 1702 1703 tmp->ts = ts; 1704 1705 spin_lock_bh(&rdev->bss_lock); 1706 1707 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) { 1708 spin_unlock_bh(&rdev->bss_lock); 1709 return NULL; 1710 } 1711 1712 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR); 1713 1714 if (found) { 1715 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid)) 1716 goto drop; 1717 } else { 1718 struct cfg80211_internal_bss *new; 1719 struct cfg80211_internal_bss *hidden; 1720 struct cfg80211_bss_ies *ies; 1721 1722 /* 1723 * create a copy -- the "res" variable that is passed in 1724 * is allocated on the stack since it's not needed in the 1725 * more common case of an update 1726 */ 1727 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size, 1728 GFP_ATOMIC); 1729 if (!new) { 1730 ies = (void *)rcu_dereference(tmp->pub.beacon_ies); 1731 if (ies) 1732 kfree_rcu(ies, rcu_head); 1733 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies); 1734 if (ies) 1735 kfree_rcu(ies, rcu_head); 1736 goto drop; 1737 } 1738 memcpy(new, tmp, sizeof(*new)); 1739 new->refcount = 1; 1740 INIT_LIST_HEAD(&new->hidden_list); 1741 INIT_LIST_HEAD(&new->pub.nontrans_list); 1742 1743 if (rcu_access_pointer(tmp->pub.proberesp_ies)) { 1744 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN); 1745 if (!hidden) 1746 hidden = rb_find_bss(rdev, tmp, 1747 BSS_CMP_HIDE_NUL); 1748 if (hidden) { 1749 new->pub.hidden_beacon_bss = &hidden->pub; 1750 list_add(&new->hidden_list, 1751 &hidden->hidden_list); 1752 hidden->refcount++; 1753 rcu_assign_pointer(new->pub.beacon_ies, 1754 hidden->pub.beacon_ies); 1755 } 1756 } else { 1757 /* 1758 * Ok so we found a beacon, and don't have an entry. If 1759 * it's a beacon with hidden SSID, we might be in for an 1760 * expensive search for any probe responses that should 1761 * be grouped with this beacon for updates ... 1762 */ 1763 if (!cfg80211_combine_bsses(rdev, new)) { 1764 bss_ref_put(rdev, new); 1765 goto drop; 1766 } 1767 } 1768 1769 if (rdev->bss_entries >= bss_entries_limit && 1770 !cfg80211_bss_expire_oldest(rdev)) { 1771 bss_ref_put(rdev, new); 1772 goto drop; 1773 } 1774 1775 /* This must be before the call to bss_ref_get */ 1776 if (tmp->pub.transmitted_bss) { 1777 struct cfg80211_internal_bss *pbss = 1778 container_of(tmp->pub.transmitted_bss, 1779 struct cfg80211_internal_bss, 1780 pub); 1781 1782 new->pub.transmitted_bss = tmp->pub.transmitted_bss; 1783 bss_ref_get(rdev, pbss); 1784 } 1785 1786 list_add_tail(&new->list, &rdev->bss_list); 1787 rdev->bss_entries++; 1788 rb_insert_bss(rdev, new); 1789 found = new; 1790 } 1791 1792 rdev->bss_generation++; 1793 bss_ref_get(rdev, found); 1794 spin_unlock_bh(&rdev->bss_lock); 1795 1796 return found; 1797 drop: 1798 spin_unlock_bh(&rdev->bss_lock); 1799 return NULL; 1800 } 1801 1802 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen, 1803 enum nl80211_band band, 1804 enum cfg80211_bss_frame_type ftype) 1805 { 1806 const struct element *tmp; 1807 1808 if (band == NL80211_BAND_6GHZ) { 1809 struct ieee80211_he_operation *he_oper; 1810 1811 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, 1812 ielen); 1813 if (tmp && tmp->datalen >= sizeof(*he_oper) && 1814 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) { 1815 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 1816 1817 he_oper = (void *)&tmp->data[1]; 1818 1819 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 1820 if (!he_6ghz_oper) 1821 return -1; 1822 1823 if (ftype != CFG80211_BSS_FTYPE_BEACON || 1824 he_6ghz_oper->control & IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON) 1825 return he_6ghz_oper->primary; 1826 } 1827 } else if (band == NL80211_BAND_S1GHZ) { 1828 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen); 1829 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) { 1830 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data; 1831 1832 return s1gop->primary_ch; 1833 } 1834 } else { 1835 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen); 1836 if (tmp && tmp->datalen == 1) 1837 return tmp->data[0]; 1838 1839 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen); 1840 if (tmp && 1841 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) { 1842 struct ieee80211_ht_operation *htop = (void *)tmp->data; 1843 1844 return htop->primary_chan; 1845 } 1846 } 1847 1848 return -1; 1849 } 1850 EXPORT_SYMBOL(cfg80211_get_ies_channel_number); 1851 1852 /* 1853 * Update RX channel information based on the available frame payload 1854 * information. This is mainly for the 2.4 GHz band where frames can be received 1855 * from neighboring channels and the Beacon frames use the DSSS Parameter Set 1856 * element to indicate the current (transmitting) channel, but this might also 1857 * be needed on other bands if RX frequency does not match with the actual 1858 * operating channel of a BSS, or if the AP reports a different primary channel. 1859 */ 1860 static struct ieee80211_channel * 1861 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen, 1862 struct ieee80211_channel *channel, 1863 enum nl80211_bss_scan_width scan_width, 1864 enum cfg80211_bss_frame_type ftype) 1865 { 1866 u32 freq; 1867 int channel_number; 1868 struct ieee80211_channel *alt_channel; 1869 1870 channel_number = cfg80211_get_ies_channel_number(ie, ielen, 1871 channel->band, ftype); 1872 1873 if (channel_number < 0) { 1874 /* No channel information in frame payload */ 1875 return channel; 1876 } 1877 1878 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band); 1879 1880 /* 1881 * In 6GHz, duplicated beacon indication is relevant for 1882 * beacons only. 1883 */ 1884 if (channel->band == NL80211_BAND_6GHZ && 1885 (freq == channel->center_freq || 1886 abs(freq - channel->center_freq) > 80)) 1887 return channel; 1888 1889 alt_channel = ieee80211_get_channel_khz(wiphy, freq); 1890 if (!alt_channel) { 1891 if (channel->band == NL80211_BAND_2GHZ) { 1892 /* 1893 * Better not allow unexpected channels when that could 1894 * be going beyond the 1-11 range (e.g., discovering 1895 * BSS on channel 12 when radio is configured for 1896 * channel 11. 1897 */ 1898 return NULL; 1899 } 1900 1901 /* No match for the payload channel number - ignore it */ 1902 return channel; 1903 } 1904 1905 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 || 1906 scan_width == NL80211_BSS_CHAN_WIDTH_5) { 1907 /* 1908 * Ignore channel number in 5 and 10 MHz channels where there 1909 * may not be an n:1 or 1:n mapping between frequencies and 1910 * channel numbers. 1911 */ 1912 return channel; 1913 } 1914 1915 /* 1916 * Use the channel determined through the payload channel number 1917 * instead of the RX channel reported by the driver. 1918 */ 1919 if (alt_channel->flags & IEEE80211_CHAN_DISABLED) 1920 return NULL; 1921 return alt_channel; 1922 } 1923 1924 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1925 static struct cfg80211_bss * 1926 cfg80211_inform_single_bss_data(struct wiphy *wiphy, 1927 struct cfg80211_inform_bss *data, 1928 enum cfg80211_bss_frame_type ftype, 1929 const u8 *bssid, u64 tsf, u16 capability, 1930 u16 beacon_interval, const u8 *ie, size_t ielen, 1931 struct cfg80211_non_tx_bss *non_tx_data, 1932 gfp_t gfp) 1933 { 1934 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1935 struct cfg80211_bss_ies *ies; 1936 struct ieee80211_channel *channel; 1937 struct cfg80211_internal_bss tmp = {}, *res; 1938 int bss_type; 1939 bool signal_valid; 1940 unsigned long ts; 1941 1942 if (WARN_ON(!wiphy)) 1943 return NULL; 1944 1945 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 1946 (data->signal < 0 || data->signal > 100))) 1947 return NULL; 1948 1949 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan, 1950 data->scan_width, ftype); 1951 if (!channel) 1952 return NULL; 1953 1954 memcpy(tmp.pub.bssid, bssid, ETH_ALEN); 1955 tmp.pub.channel = channel; 1956 tmp.pub.scan_width = data->scan_width; 1957 tmp.pub.signal = data->signal; 1958 tmp.pub.beacon_interval = beacon_interval; 1959 tmp.pub.capability = capability; 1960 tmp.ts_boottime = data->boottime_ns; 1961 tmp.parent_tsf = data->parent_tsf; 1962 ether_addr_copy(tmp.parent_bssid, data->parent_bssid); 1963 1964 if (non_tx_data) { 1965 tmp.pub.transmitted_bss = non_tx_data->tx_bss; 1966 ts = bss_from_pub(non_tx_data->tx_bss)->ts; 1967 tmp.pub.bssid_index = non_tx_data->bssid_index; 1968 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator; 1969 } else { 1970 ts = jiffies; 1971 } 1972 1973 /* 1974 * If we do not know here whether the IEs are from a Beacon or Probe 1975 * Response frame, we need to pick one of the options and only use it 1976 * with the driver that does not provide the full Beacon/Probe Response 1977 * frame. Use Beacon frame pointer to avoid indicating that this should 1978 * override the IEs pointer should we have received an earlier 1979 * indication of Probe Response data. 1980 */ 1981 ies = kzalloc(sizeof(*ies) + ielen, gfp); 1982 if (!ies) 1983 return NULL; 1984 ies->len = ielen; 1985 ies->tsf = tsf; 1986 ies->from_beacon = false; 1987 memcpy(ies->data, ie, ielen); 1988 1989 switch (ftype) { 1990 case CFG80211_BSS_FTYPE_BEACON: 1991 ies->from_beacon = true; 1992 fallthrough; 1993 case CFG80211_BSS_FTYPE_UNKNOWN: 1994 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 1995 break; 1996 case CFG80211_BSS_FTYPE_PRESP: 1997 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 1998 break; 1999 } 2000 rcu_assign_pointer(tmp.pub.ies, ies); 2001 2002 signal_valid = data->chan == channel; 2003 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts); 2004 if (!res) 2005 return NULL; 2006 2007 if (channel->band == NL80211_BAND_60GHZ) { 2008 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 2009 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2010 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2011 regulatory_hint_found_beacon(wiphy, channel, gfp); 2012 } else { 2013 if (res->pub.capability & WLAN_CAPABILITY_ESS) 2014 regulatory_hint_found_beacon(wiphy, channel, gfp); 2015 } 2016 2017 if (non_tx_data) { 2018 /* this is a nontransmitting bss, we need to add it to 2019 * transmitting bss' list if it is not there 2020 */ 2021 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss, 2022 &res->pub)) { 2023 if (__cfg80211_unlink_bss(rdev, res)) 2024 rdev->bss_generation++; 2025 } 2026 } 2027 2028 trace_cfg80211_return_bss(&res->pub); 2029 /* cfg80211_bss_update gives us a referenced result */ 2030 return &res->pub; 2031 } 2032 2033 static const struct element 2034 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen, 2035 const struct element *mbssid_elem, 2036 const struct element *sub_elem) 2037 { 2038 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen; 2039 const struct element *next_mbssid; 2040 const struct element *next_sub; 2041 2042 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2043 mbssid_end, 2044 ielen - (mbssid_end - ie)); 2045 2046 /* 2047 * If it is not the last subelement in current MBSSID IE or there isn't 2048 * a next MBSSID IE - profile is complete. 2049 */ 2050 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) || 2051 !next_mbssid) 2052 return NULL; 2053 2054 /* For any length error, just return NULL */ 2055 2056 if (next_mbssid->datalen < 4) 2057 return NULL; 2058 2059 next_sub = (void *)&next_mbssid->data[1]; 2060 2061 if (next_mbssid->data + next_mbssid->datalen < 2062 next_sub->data + next_sub->datalen) 2063 return NULL; 2064 2065 if (next_sub->id != 0 || next_sub->datalen < 2) 2066 return NULL; 2067 2068 /* 2069 * Check if the first element in the next sub element is a start 2070 * of a new profile 2071 */ 2072 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ? 2073 NULL : next_mbssid; 2074 } 2075 2076 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen, 2077 const struct element *mbssid_elem, 2078 const struct element *sub_elem, 2079 u8 *merged_ie, size_t max_copy_len) 2080 { 2081 size_t copied_len = sub_elem->datalen; 2082 const struct element *next_mbssid; 2083 2084 if (sub_elem->datalen > max_copy_len) 2085 return 0; 2086 2087 memcpy(merged_ie, sub_elem->data, sub_elem->datalen); 2088 2089 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen, 2090 mbssid_elem, 2091 sub_elem))) { 2092 const struct element *next_sub = (void *)&next_mbssid->data[1]; 2093 2094 if (copied_len + next_sub->datalen > max_copy_len) 2095 break; 2096 memcpy(merged_ie + copied_len, next_sub->data, 2097 next_sub->datalen); 2098 copied_len += next_sub->datalen; 2099 } 2100 2101 return copied_len; 2102 } 2103 EXPORT_SYMBOL(cfg80211_merge_profile); 2104 2105 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy, 2106 struct cfg80211_inform_bss *data, 2107 enum cfg80211_bss_frame_type ftype, 2108 const u8 *bssid, u64 tsf, 2109 u16 beacon_interval, const u8 *ie, 2110 size_t ielen, 2111 struct cfg80211_non_tx_bss *non_tx_data, 2112 gfp_t gfp) 2113 { 2114 const u8 *mbssid_index_ie; 2115 const struct element *elem, *sub; 2116 size_t new_ie_len; 2117 u8 new_bssid[ETH_ALEN]; 2118 u8 *new_ie, *profile; 2119 u64 seen_indices = 0; 2120 u16 capability; 2121 struct cfg80211_bss *bss; 2122 2123 if (!non_tx_data) 2124 return; 2125 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen)) 2126 return; 2127 if (!wiphy->support_mbssid) 2128 return; 2129 if (wiphy->support_only_he_mbssid && 2130 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen)) 2131 return; 2132 2133 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2134 if (!new_ie) 2135 return; 2136 2137 profile = kmalloc(ielen, gfp); 2138 if (!profile) 2139 goto out; 2140 2141 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) { 2142 if (elem->datalen < 4) 2143 continue; 2144 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 2145 u8 profile_len; 2146 2147 if (sub->id != 0 || sub->datalen < 4) { 2148 /* not a valid BSS profile */ 2149 continue; 2150 } 2151 2152 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 2153 sub->data[1] != 2) { 2154 /* The first element within the Nontransmitted 2155 * BSSID Profile is not the Nontransmitted 2156 * BSSID Capability element. 2157 */ 2158 continue; 2159 } 2160 2161 memset(profile, 0, ielen); 2162 profile_len = cfg80211_merge_profile(ie, ielen, 2163 elem, 2164 sub, 2165 profile, 2166 ielen); 2167 2168 /* found a Nontransmitted BSSID Profile */ 2169 mbssid_index_ie = cfg80211_find_ie 2170 (WLAN_EID_MULTI_BSSID_IDX, 2171 profile, profile_len); 2172 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 || 2173 mbssid_index_ie[2] == 0 || 2174 mbssid_index_ie[2] > 46) { 2175 /* No valid Multiple BSSID-Index element */ 2176 continue; 2177 } 2178 2179 if (seen_indices & BIT_ULL(mbssid_index_ie[2])) 2180 /* We don't support legacy split of a profile */ 2181 net_dbg_ratelimited("Partial info for BSSID index %d\n", 2182 mbssid_index_ie[2]); 2183 2184 seen_indices |= BIT_ULL(mbssid_index_ie[2]); 2185 2186 non_tx_data->bssid_index = mbssid_index_ie[2]; 2187 non_tx_data->max_bssid_indicator = elem->data[0]; 2188 2189 cfg80211_gen_new_bssid(bssid, 2190 non_tx_data->max_bssid_indicator, 2191 non_tx_data->bssid_index, 2192 new_bssid); 2193 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 2194 new_ie_len = cfg80211_gen_new_ie(ie, ielen, 2195 profile, 2196 profile_len, new_ie, 2197 gfp); 2198 if (!new_ie_len) 2199 continue; 2200 2201 capability = get_unaligned_le16(profile + 2); 2202 bss = cfg80211_inform_single_bss_data(wiphy, data, 2203 ftype, 2204 new_bssid, tsf, 2205 capability, 2206 beacon_interval, 2207 new_ie, 2208 new_ie_len, 2209 non_tx_data, 2210 gfp); 2211 if (!bss) 2212 break; 2213 cfg80211_put_bss(wiphy, bss); 2214 } 2215 } 2216 2217 out: 2218 kfree(new_ie); 2219 kfree(profile); 2220 } 2221 2222 struct cfg80211_bss * 2223 cfg80211_inform_bss_data(struct wiphy *wiphy, 2224 struct cfg80211_inform_bss *data, 2225 enum cfg80211_bss_frame_type ftype, 2226 const u8 *bssid, u64 tsf, u16 capability, 2227 u16 beacon_interval, const u8 *ie, size_t ielen, 2228 gfp_t gfp) 2229 { 2230 struct cfg80211_bss *res; 2231 struct cfg80211_non_tx_bss non_tx_data; 2232 2233 res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf, 2234 capability, beacon_interval, ie, 2235 ielen, NULL, gfp); 2236 if (!res) 2237 return NULL; 2238 non_tx_data.tx_bss = res; 2239 cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf, 2240 beacon_interval, ie, ielen, &non_tx_data, 2241 gfp); 2242 return res; 2243 } 2244 EXPORT_SYMBOL(cfg80211_inform_bss_data); 2245 2246 static void 2247 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy, 2248 struct cfg80211_inform_bss *data, 2249 struct ieee80211_mgmt *mgmt, size_t len, 2250 struct cfg80211_non_tx_bss *non_tx_data, 2251 gfp_t gfp) 2252 { 2253 enum cfg80211_bss_frame_type ftype; 2254 const u8 *ie = mgmt->u.probe_resp.variable; 2255 size_t ielen = len - offsetof(struct ieee80211_mgmt, 2256 u.probe_resp.variable); 2257 2258 ftype = ieee80211_is_beacon(mgmt->frame_control) ? 2259 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP; 2260 2261 cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid, 2262 le64_to_cpu(mgmt->u.probe_resp.timestamp), 2263 le16_to_cpu(mgmt->u.probe_resp.beacon_int), 2264 ie, ielen, non_tx_data, gfp); 2265 } 2266 2267 static void 2268 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy, 2269 struct cfg80211_bss *nontrans_bss, 2270 struct ieee80211_mgmt *mgmt, size_t len) 2271 { 2272 u8 *ie, *new_ie, *pos; 2273 const struct element *nontrans_ssid; 2274 const u8 *trans_ssid, *mbssid; 2275 size_t ielen = len - offsetof(struct ieee80211_mgmt, 2276 u.probe_resp.variable); 2277 size_t new_ie_len; 2278 struct cfg80211_bss_ies *new_ies; 2279 const struct cfg80211_bss_ies *old; 2280 u8 cpy_len; 2281 2282 lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock); 2283 2284 ie = mgmt->u.probe_resp.variable; 2285 2286 new_ie_len = ielen; 2287 trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen); 2288 if (!trans_ssid) 2289 return; 2290 new_ie_len -= trans_ssid[1]; 2291 mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen); 2292 /* 2293 * It's not valid to have the MBSSID element before SSID 2294 * ignore if that happens - the code below assumes it is 2295 * after (while copying things inbetween). 2296 */ 2297 if (!mbssid || mbssid < trans_ssid) 2298 return; 2299 new_ie_len -= mbssid[1]; 2300 2301 nontrans_ssid = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID); 2302 if (!nontrans_ssid) 2303 return; 2304 2305 new_ie_len += nontrans_ssid->datalen; 2306 2307 /* generate new ie for nontrans BSS 2308 * 1. replace SSID with nontrans BSS' SSID 2309 * 2. skip MBSSID IE 2310 */ 2311 new_ie = kzalloc(new_ie_len, GFP_ATOMIC); 2312 if (!new_ie) 2313 return; 2314 2315 new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC); 2316 if (!new_ies) 2317 goto out_free; 2318 2319 pos = new_ie; 2320 2321 /* copy the nontransmitted SSID */ 2322 cpy_len = nontrans_ssid->datalen + 2; 2323 memcpy(pos, nontrans_ssid, cpy_len); 2324 pos += cpy_len; 2325 /* copy the IEs between SSID and MBSSID */ 2326 cpy_len = trans_ssid[1] + 2; 2327 memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len))); 2328 pos += (mbssid - (trans_ssid + cpy_len)); 2329 /* copy the IEs after MBSSID */ 2330 cpy_len = mbssid[1] + 2; 2331 memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len))); 2332 2333 /* update ie */ 2334 new_ies->len = new_ie_len; 2335 new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 2336 new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control); 2337 memcpy(new_ies->data, new_ie, new_ie_len); 2338 if (ieee80211_is_probe_resp(mgmt->frame_control)) { 2339 old = rcu_access_pointer(nontrans_bss->proberesp_ies); 2340 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies); 2341 rcu_assign_pointer(nontrans_bss->ies, new_ies); 2342 if (old) 2343 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 2344 } else { 2345 old = rcu_access_pointer(nontrans_bss->beacon_ies); 2346 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies); 2347 rcu_assign_pointer(nontrans_bss->ies, new_ies); 2348 if (old) 2349 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 2350 } 2351 2352 out_free: 2353 kfree(new_ie); 2354 } 2355 2356 /* cfg80211_inform_bss_width_frame helper */ 2357 static struct cfg80211_bss * 2358 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy, 2359 struct cfg80211_inform_bss *data, 2360 struct ieee80211_mgmt *mgmt, size_t len, 2361 gfp_t gfp) 2362 { 2363 struct cfg80211_internal_bss tmp = {}, *res; 2364 struct cfg80211_bss_ies *ies; 2365 struct ieee80211_channel *channel; 2366 bool signal_valid; 2367 struct ieee80211_ext *ext = NULL; 2368 u8 *bssid, *variable; 2369 u16 capability, beacon_int; 2370 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt, 2371 u.probe_resp.variable); 2372 int bss_type; 2373 enum cfg80211_bss_frame_type ftype; 2374 2375 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) != 2376 offsetof(struct ieee80211_mgmt, u.beacon.variable)); 2377 2378 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len); 2379 2380 if (WARN_ON(!mgmt)) 2381 return NULL; 2382 2383 if (WARN_ON(!wiphy)) 2384 return NULL; 2385 2386 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 2387 (data->signal < 0 || data->signal > 100))) 2388 return NULL; 2389 2390 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) { 2391 ext = (void *) mgmt; 2392 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon); 2393 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 2394 min_hdr_len = offsetof(struct ieee80211_ext, 2395 u.s1g_short_beacon.variable); 2396 } 2397 2398 if (WARN_ON(len < min_hdr_len)) 2399 return NULL; 2400 2401 ielen = len - min_hdr_len; 2402 variable = mgmt->u.probe_resp.variable; 2403 if (ext) { 2404 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 2405 variable = ext->u.s1g_short_beacon.variable; 2406 else 2407 variable = ext->u.s1g_beacon.variable; 2408 } 2409 2410 if (ieee80211_is_beacon(mgmt->frame_control)) 2411 ftype = CFG80211_BSS_FTYPE_BEACON; 2412 else if (ieee80211_is_probe_resp(mgmt->frame_control)) 2413 ftype = CFG80211_BSS_FTYPE_PRESP; 2414 else 2415 ftype = CFG80211_BSS_FTYPE_UNKNOWN; 2416 2417 channel = cfg80211_get_bss_channel(wiphy, variable, 2418 ielen, data->chan, data->scan_width, 2419 ftype); 2420 if (!channel) 2421 return NULL; 2422 2423 if (ext) { 2424 const struct ieee80211_s1g_bcn_compat_ie *compat; 2425 const struct element *elem; 2426 2427 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, 2428 variable, ielen); 2429 if (!elem) 2430 return NULL; 2431 if (elem->datalen < sizeof(*compat)) 2432 return NULL; 2433 compat = (void *)elem->data; 2434 bssid = ext->u.s1g_beacon.sa; 2435 capability = le16_to_cpu(compat->compat_info); 2436 beacon_int = le16_to_cpu(compat->beacon_int); 2437 } else { 2438 bssid = mgmt->bssid; 2439 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int); 2440 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info); 2441 } 2442 2443 ies = kzalloc(sizeof(*ies) + ielen, gfp); 2444 if (!ies) 2445 return NULL; 2446 ies->len = ielen; 2447 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 2448 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) || 2449 ieee80211_is_s1g_beacon(mgmt->frame_control); 2450 memcpy(ies->data, variable, ielen); 2451 2452 if (ieee80211_is_probe_resp(mgmt->frame_control)) 2453 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 2454 else 2455 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 2456 rcu_assign_pointer(tmp.pub.ies, ies); 2457 2458 memcpy(tmp.pub.bssid, bssid, ETH_ALEN); 2459 tmp.pub.beacon_interval = beacon_int; 2460 tmp.pub.capability = capability; 2461 tmp.pub.channel = channel; 2462 tmp.pub.scan_width = data->scan_width; 2463 tmp.pub.signal = data->signal; 2464 tmp.ts_boottime = data->boottime_ns; 2465 tmp.parent_tsf = data->parent_tsf; 2466 tmp.pub.chains = data->chains; 2467 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS); 2468 ether_addr_copy(tmp.parent_bssid, data->parent_bssid); 2469 2470 signal_valid = data->chan == channel; 2471 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, 2472 jiffies); 2473 if (!res) 2474 return NULL; 2475 2476 if (channel->band == NL80211_BAND_60GHZ) { 2477 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 2478 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2479 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2480 regulatory_hint_found_beacon(wiphy, channel, gfp); 2481 } else { 2482 if (res->pub.capability & WLAN_CAPABILITY_ESS) 2483 regulatory_hint_found_beacon(wiphy, channel, gfp); 2484 } 2485 2486 trace_cfg80211_return_bss(&res->pub); 2487 /* cfg80211_bss_update gives us a referenced result */ 2488 return &res->pub; 2489 } 2490 2491 struct cfg80211_bss * 2492 cfg80211_inform_bss_frame_data(struct wiphy *wiphy, 2493 struct cfg80211_inform_bss *data, 2494 struct ieee80211_mgmt *mgmt, size_t len, 2495 gfp_t gfp) 2496 { 2497 struct cfg80211_bss *res, *tmp_bss; 2498 const u8 *ie = mgmt->u.probe_resp.variable; 2499 const struct cfg80211_bss_ies *ies1, *ies2; 2500 size_t ielen = len - offsetof(struct ieee80211_mgmt, 2501 u.probe_resp.variable); 2502 struct cfg80211_non_tx_bss non_tx_data; 2503 2504 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt, 2505 len, gfp); 2506 if (!res || !wiphy->support_mbssid || 2507 !cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen)) 2508 return res; 2509 if (wiphy->support_only_he_mbssid && 2510 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen)) 2511 return res; 2512 2513 non_tx_data.tx_bss = res; 2514 /* process each non-transmitting bss */ 2515 cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len, 2516 &non_tx_data, gfp); 2517 2518 spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock); 2519 2520 /* check if the res has other nontransmitting bss which is not 2521 * in MBSSID IE 2522 */ 2523 ies1 = rcu_access_pointer(res->ies); 2524 2525 /* go through nontrans_list, if the timestamp of the BSS is 2526 * earlier than the timestamp of the transmitting BSS then 2527 * update it 2528 */ 2529 list_for_each_entry(tmp_bss, &res->nontrans_list, 2530 nontrans_list) { 2531 ies2 = rcu_access_pointer(tmp_bss->ies); 2532 if (ies2->tsf < ies1->tsf) 2533 cfg80211_update_notlisted_nontrans(wiphy, tmp_bss, 2534 mgmt, len); 2535 } 2536 spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock); 2537 2538 return res; 2539 } 2540 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data); 2541 2542 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2543 { 2544 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2545 struct cfg80211_internal_bss *bss; 2546 2547 if (!pub) 2548 return; 2549 2550 bss = container_of(pub, struct cfg80211_internal_bss, pub); 2551 2552 spin_lock_bh(&rdev->bss_lock); 2553 bss_ref_get(rdev, bss); 2554 spin_unlock_bh(&rdev->bss_lock); 2555 } 2556 EXPORT_SYMBOL(cfg80211_ref_bss); 2557 2558 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2559 { 2560 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2561 struct cfg80211_internal_bss *bss; 2562 2563 if (!pub) 2564 return; 2565 2566 bss = container_of(pub, struct cfg80211_internal_bss, pub); 2567 2568 spin_lock_bh(&rdev->bss_lock); 2569 bss_ref_put(rdev, bss); 2570 spin_unlock_bh(&rdev->bss_lock); 2571 } 2572 EXPORT_SYMBOL(cfg80211_put_bss); 2573 2574 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2575 { 2576 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2577 struct cfg80211_internal_bss *bss, *tmp1; 2578 struct cfg80211_bss *nontrans_bss, *tmp; 2579 2580 if (WARN_ON(!pub)) 2581 return; 2582 2583 bss = container_of(pub, struct cfg80211_internal_bss, pub); 2584 2585 spin_lock_bh(&rdev->bss_lock); 2586 if (list_empty(&bss->list)) 2587 goto out; 2588 2589 list_for_each_entry_safe(nontrans_bss, tmp, 2590 &pub->nontrans_list, 2591 nontrans_list) { 2592 tmp1 = container_of(nontrans_bss, 2593 struct cfg80211_internal_bss, pub); 2594 if (__cfg80211_unlink_bss(rdev, tmp1)) 2595 rdev->bss_generation++; 2596 } 2597 2598 if (__cfg80211_unlink_bss(rdev, bss)) 2599 rdev->bss_generation++; 2600 out: 2601 spin_unlock_bh(&rdev->bss_lock); 2602 } 2603 EXPORT_SYMBOL(cfg80211_unlink_bss); 2604 2605 void cfg80211_bss_iter(struct wiphy *wiphy, 2606 struct cfg80211_chan_def *chandef, 2607 void (*iter)(struct wiphy *wiphy, 2608 struct cfg80211_bss *bss, 2609 void *data), 2610 void *iter_data) 2611 { 2612 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2613 struct cfg80211_internal_bss *bss; 2614 2615 spin_lock_bh(&rdev->bss_lock); 2616 2617 list_for_each_entry(bss, &rdev->bss_list, list) { 2618 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel)) 2619 iter(wiphy, &bss->pub, iter_data); 2620 } 2621 2622 spin_unlock_bh(&rdev->bss_lock); 2623 } 2624 EXPORT_SYMBOL(cfg80211_bss_iter); 2625 2626 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, 2627 struct ieee80211_channel *chan) 2628 { 2629 struct wiphy *wiphy = wdev->wiphy; 2630 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2631 struct cfg80211_internal_bss *cbss = wdev->current_bss; 2632 struct cfg80211_internal_bss *new = NULL; 2633 struct cfg80211_internal_bss *bss; 2634 struct cfg80211_bss *nontrans_bss; 2635 struct cfg80211_bss *tmp; 2636 2637 spin_lock_bh(&rdev->bss_lock); 2638 2639 /* 2640 * Some APs use CSA also for bandwidth changes, i.e., without actually 2641 * changing the control channel, so no need to update in such a case. 2642 */ 2643 if (cbss->pub.channel == chan) 2644 goto done; 2645 2646 /* use transmitting bss */ 2647 if (cbss->pub.transmitted_bss) 2648 cbss = container_of(cbss->pub.transmitted_bss, 2649 struct cfg80211_internal_bss, 2650 pub); 2651 2652 cbss->pub.channel = chan; 2653 2654 list_for_each_entry(bss, &rdev->bss_list, list) { 2655 if (!cfg80211_bss_type_match(bss->pub.capability, 2656 bss->pub.channel->band, 2657 wdev->conn_bss_type)) 2658 continue; 2659 2660 if (bss == cbss) 2661 continue; 2662 2663 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) { 2664 new = bss; 2665 break; 2666 } 2667 } 2668 2669 if (new) { 2670 /* to save time, update IEs for transmitting bss only */ 2671 if (cfg80211_update_known_bss(rdev, cbss, new, false)) { 2672 new->pub.proberesp_ies = NULL; 2673 new->pub.beacon_ies = NULL; 2674 } 2675 2676 list_for_each_entry_safe(nontrans_bss, tmp, 2677 &new->pub.nontrans_list, 2678 nontrans_list) { 2679 bss = container_of(nontrans_bss, 2680 struct cfg80211_internal_bss, pub); 2681 if (__cfg80211_unlink_bss(rdev, bss)) 2682 rdev->bss_generation++; 2683 } 2684 2685 WARN_ON(atomic_read(&new->hold)); 2686 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new))) 2687 rdev->bss_generation++; 2688 } 2689 2690 rb_erase(&cbss->rbn, &rdev->bss_tree); 2691 rb_insert_bss(rdev, cbss); 2692 rdev->bss_generation++; 2693 2694 list_for_each_entry_safe(nontrans_bss, tmp, 2695 &cbss->pub.nontrans_list, 2696 nontrans_list) { 2697 bss = container_of(nontrans_bss, 2698 struct cfg80211_internal_bss, pub); 2699 bss->pub.channel = chan; 2700 rb_erase(&bss->rbn, &rdev->bss_tree); 2701 rb_insert_bss(rdev, bss); 2702 rdev->bss_generation++; 2703 } 2704 2705 done: 2706 spin_unlock_bh(&rdev->bss_lock); 2707 } 2708 2709 #ifdef CONFIG_CFG80211_WEXT 2710 static struct cfg80211_registered_device * 2711 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex) 2712 { 2713 struct cfg80211_registered_device *rdev; 2714 struct net_device *dev; 2715 2716 ASSERT_RTNL(); 2717 2718 dev = dev_get_by_index(net, ifindex); 2719 if (!dev) 2720 return ERR_PTR(-ENODEV); 2721 if (dev->ieee80211_ptr) 2722 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy); 2723 else 2724 rdev = ERR_PTR(-ENODEV); 2725 dev_put(dev); 2726 return rdev; 2727 } 2728 2729 int cfg80211_wext_siwscan(struct net_device *dev, 2730 struct iw_request_info *info, 2731 union iwreq_data *wrqu, char *extra) 2732 { 2733 struct cfg80211_registered_device *rdev; 2734 struct wiphy *wiphy; 2735 struct iw_scan_req *wreq = NULL; 2736 struct cfg80211_scan_request *creq; 2737 int i, err, n_channels = 0; 2738 enum nl80211_band band; 2739 2740 if (!netif_running(dev)) 2741 return -ENETDOWN; 2742 2743 if (wrqu->data.length == sizeof(struct iw_scan_req)) 2744 wreq = (struct iw_scan_req *)extra; 2745 2746 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 2747 2748 if (IS_ERR(rdev)) 2749 return PTR_ERR(rdev); 2750 2751 if (rdev->scan_req || rdev->scan_msg) 2752 return -EBUSY; 2753 2754 wiphy = &rdev->wiphy; 2755 2756 /* Determine number of channels, needed to allocate creq */ 2757 if (wreq && wreq->num_channels) 2758 n_channels = wreq->num_channels; 2759 else 2760 n_channels = ieee80211_get_num_supported_channels(wiphy); 2761 2762 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) + 2763 n_channels * sizeof(void *), 2764 GFP_ATOMIC); 2765 if (!creq) 2766 return -ENOMEM; 2767 2768 creq->wiphy = wiphy; 2769 creq->wdev = dev->ieee80211_ptr; 2770 /* SSIDs come after channels */ 2771 creq->ssids = (void *)&creq->channels[n_channels]; 2772 creq->n_channels = n_channels; 2773 creq->n_ssids = 1; 2774 creq->scan_start = jiffies; 2775 2776 /* translate "Scan on frequencies" request */ 2777 i = 0; 2778 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2779 int j; 2780 2781 if (!wiphy->bands[band]) 2782 continue; 2783 2784 for (j = 0; j < wiphy->bands[band]->n_channels; j++) { 2785 /* ignore disabled channels */ 2786 if (wiphy->bands[band]->channels[j].flags & 2787 IEEE80211_CHAN_DISABLED) 2788 continue; 2789 2790 /* If we have a wireless request structure and the 2791 * wireless request specifies frequencies, then search 2792 * for the matching hardware channel. 2793 */ 2794 if (wreq && wreq->num_channels) { 2795 int k; 2796 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq; 2797 for (k = 0; k < wreq->num_channels; k++) { 2798 struct iw_freq *freq = 2799 &wreq->channel_list[k]; 2800 int wext_freq = 2801 cfg80211_wext_freq(freq); 2802 2803 if (wext_freq == wiphy_freq) 2804 goto wext_freq_found; 2805 } 2806 goto wext_freq_not_found; 2807 } 2808 2809 wext_freq_found: 2810 creq->channels[i] = &wiphy->bands[band]->channels[j]; 2811 i++; 2812 wext_freq_not_found: ; 2813 } 2814 } 2815 /* No channels found? */ 2816 if (!i) { 2817 err = -EINVAL; 2818 goto out; 2819 } 2820 2821 /* Set real number of channels specified in creq->channels[] */ 2822 creq->n_channels = i; 2823 2824 /* translate "Scan for SSID" request */ 2825 if (wreq) { 2826 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { 2827 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) { 2828 err = -EINVAL; 2829 goto out; 2830 } 2831 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len); 2832 creq->ssids[0].ssid_len = wreq->essid_len; 2833 } 2834 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) 2835 creq->n_ssids = 0; 2836 } 2837 2838 for (i = 0; i < NUM_NL80211_BANDS; i++) 2839 if (wiphy->bands[i]) 2840 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1; 2841 2842 eth_broadcast_addr(creq->bssid); 2843 2844 wiphy_lock(&rdev->wiphy); 2845 2846 rdev->scan_req = creq; 2847 err = rdev_scan(rdev, creq); 2848 if (err) { 2849 rdev->scan_req = NULL; 2850 /* creq will be freed below */ 2851 } else { 2852 nl80211_send_scan_start(rdev, dev->ieee80211_ptr); 2853 /* creq now owned by driver */ 2854 creq = NULL; 2855 dev_hold(dev); 2856 } 2857 wiphy_unlock(&rdev->wiphy); 2858 out: 2859 kfree(creq); 2860 return err; 2861 } 2862 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan); 2863 2864 static char *ieee80211_scan_add_ies(struct iw_request_info *info, 2865 const struct cfg80211_bss_ies *ies, 2866 char *current_ev, char *end_buf) 2867 { 2868 const u8 *pos, *end, *next; 2869 struct iw_event iwe; 2870 2871 if (!ies) 2872 return current_ev; 2873 2874 /* 2875 * If needed, fragment the IEs buffer (at IE boundaries) into short 2876 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages. 2877 */ 2878 pos = ies->data; 2879 end = pos + ies->len; 2880 2881 while (end - pos > IW_GENERIC_IE_MAX) { 2882 next = pos + 2 + pos[1]; 2883 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX) 2884 next = next + 2 + next[1]; 2885 2886 memset(&iwe, 0, sizeof(iwe)); 2887 iwe.cmd = IWEVGENIE; 2888 iwe.u.data.length = next - pos; 2889 current_ev = iwe_stream_add_point_check(info, current_ev, 2890 end_buf, &iwe, 2891 (void *)pos); 2892 if (IS_ERR(current_ev)) 2893 return current_ev; 2894 pos = next; 2895 } 2896 2897 if (end > pos) { 2898 memset(&iwe, 0, sizeof(iwe)); 2899 iwe.cmd = IWEVGENIE; 2900 iwe.u.data.length = end - pos; 2901 current_ev = iwe_stream_add_point_check(info, current_ev, 2902 end_buf, &iwe, 2903 (void *)pos); 2904 if (IS_ERR(current_ev)) 2905 return current_ev; 2906 } 2907 2908 return current_ev; 2909 } 2910 2911 static char * 2912 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info, 2913 struct cfg80211_internal_bss *bss, char *current_ev, 2914 char *end_buf) 2915 { 2916 const struct cfg80211_bss_ies *ies; 2917 struct iw_event iwe; 2918 const u8 *ie; 2919 u8 buf[50]; 2920 u8 *cfg, *p, *tmp; 2921 int rem, i, sig; 2922 bool ismesh = false; 2923 2924 memset(&iwe, 0, sizeof(iwe)); 2925 iwe.cmd = SIOCGIWAP; 2926 iwe.u.ap_addr.sa_family = ARPHRD_ETHER; 2927 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN); 2928 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 2929 IW_EV_ADDR_LEN); 2930 if (IS_ERR(current_ev)) 2931 return current_ev; 2932 2933 memset(&iwe, 0, sizeof(iwe)); 2934 iwe.cmd = SIOCGIWFREQ; 2935 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq); 2936 iwe.u.freq.e = 0; 2937 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 2938 IW_EV_FREQ_LEN); 2939 if (IS_ERR(current_ev)) 2940 return current_ev; 2941 2942 memset(&iwe, 0, sizeof(iwe)); 2943 iwe.cmd = SIOCGIWFREQ; 2944 iwe.u.freq.m = bss->pub.channel->center_freq; 2945 iwe.u.freq.e = 6; 2946 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 2947 IW_EV_FREQ_LEN); 2948 if (IS_ERR(current_ev)) 2949 return current_ev; 2950 2951 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) { 2952 memset(&iwe, 0, sizeof(iwe)); 2953 iwe.cmd = IWEVQUAL; 2954 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED | 2955 IW_QUAL_NOISE_INVALID | 2956 IW_QUAL_QUAL_UPDATED; 2957 switch (wiphy->signal_type) { 2958 case CFG80211_SIGNAL_TYPE_MBM: 2959 sig = bss->pub.signal / 100; 2960 iwe.u.qual.level = sig; 2961 iwe.u.qual.updated |= IW_QUAL_DBM; 2962 if (sig < -110) /* rather bad */ 2963 sig = -110; 2964 else if (sig > -40) /* perfect */ 2965 sig = -40; 2966 /* will give a range of 0 .. 70 */ 2967 iwe.u.qual.qual = sig + 110; 2968 break; 2969 case CFG80211_SIGNAL_TYPE_UNSPEC: 2970 iwe.u.qual.level = bss->pub.signal; 2971 /* will give range 0 .. 100 */ 2972 iwe.u.qual.qual = bss->pub.signal; 2973 break; 2974 default: 2975 /* not reached */ 2976 break; 2977 } 2978 current_ev = iwe_stream_add_event_check(info, current_ev, 2979 end_buf, &iwe, 2980 IW_EV_QUAL_LEN); 2981 if (IS_ERR(current_ev)) 2982 return current_ev; 2983 } 2984 2985 memset(&iwe, 0, sizeof(iwe)); 2986 iwe.cmd = SIOCGIWENCODE; 2987 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY) 2988 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY; 2989 else 2990 iwe.u.data.flags = IW_ENCODE_DISABLED; 2991 iwe.u.data.length = 0; 2992 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 2993 &iwe, ""); 2994 if (IS_ERR(current_ev)) 2995 return current_ev; 2996 2997 rcu_read_lock(); 2998 ies = rcu_dereference(bss->pub.ies); 2999 rem = ies->len; 3000 ie = ies->data; 3001 3002 while (rem >= 2) { 3003 /* invalid data */ 3004 if (ie[1] > rem - 2) 3005 break; 3006 3007 switch (ie[0]) { 3008 case WLAN_EID_SSID: 3009 memset(&iwe, 0, sizeof(iwe)); 3010 iwe.cmd = SIOCGIWESSID; 3011 iwe.u.data.length = ie[1]; 3012 iwe.u.data.flags = 1; 3013 current_ev = iwe_stream_add_point_check(info, 3014 current_ev, 3015 end_buf, &iwe, 3016 (u8 *)ie + 2); 3017 if (IS_ERR(current_ev)) 3018 goto unlock; 3019 break; 3020 case WLAN_EID_MESH_ID: 3021 memset(&iwe, 0, sizeof(iwe)); 3022 iwe.cmd = SIOCGIWESSID; 3023 iwe.u.data.length = ie[1]; 3024 iwe.u.data.flags = 1; 3025 current_ev = iwe_stream_add_point_check(info, 3026 current_ev, 3027 end_buf, &iwe, 3028 (u8 *)ie + 2); 3029 if (IS_ERR(current_ev)) 3030 goto unlock; 3031 break; 3032 case WLAN_EID_MESH_CONFIG: 3033 ismesh = true; 3034 if (ie[1] != sizeof(struct ieee80211_meshconf_ie)) 3035 break; 3036 cfg = (u8 *)ie + 2; 3037 memset(&iwe, 0, sizeof(iwe)); 3038 iwe.cmd = IWEVCUSTOM; 3039 sprintf(buf, "Mesh Network Path Selection Protocol ID: " 3040 "0x%02X", cfg[0]); 3041 iwe.u.data.length = strlen(buf); 3042 current_ev = iwe_stream_add_point_check(info, 3043 current_ev, 3044 end_buf, 3045 &iwe, buf); 3046 if (IS_ERR(current_ev)) 3047 goto unlock; 3048 sprintf(buf, "Path Selection Metric ID: 0x%02X", 3049 cfg[1]); 3050 iwe.u.data.length = strlen(buf); 3051 current_ev = iwe_stream_add_point_check(info, 3052 current_ev, 3053 end_buf, 3054 &iwe, buf); 3055 if (IS_ERR(current_ev)) 3056 goto unlock; 3057 sprintf(buf, "Congestion Control Mode ID: 0x%02X", 3058 cfg[2]); 3059 iwe.u.data.length = strlen(buf); 3060 current_ev = iwe_stream_add_point_check(info, 3061 current_ev, 3062 end_buf, 3063 &iwe, buf); 3064 if (IS_ERR(current_ev)) 3065 goto unlock; 3066 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]); 3067 iwe.u.data.length = strlen(buf); 3068 current_ev = iwe_stream_add_point_check(info, 3069 current_ev, 3070 end_buf, 3071 &iwe, buf); 3072 if (IS_ERR(current_ev)) 3073 goto unlock; 3074 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]); 3075 iwe.u.data.length = strlen(buf); 3076 current_ev = iwe_stream_add_point_check(info, 3077 current_ev, 3078 end_buf, 3079 &iwe, buf); 3080 if (IS_ERR(current_ev)) 3081 goto unlock; 3082 sprintf(buf, "Formation Info: 0x%02X", cfg[5]); 3083 iwe.u.data.length = strlen(buf); 3084 current_ev = iwe_stream_add_point_check(info, 3085 current_ev, 3086 end_buf, 3087 &iwe, buf); 3088 if (IS_ERR(current_ev)) 3089 goto unlock; 3090 sprintf(buf, "Capabilities: 0x%02X", cfg[6]); 3091 iwe.u.data.length = strlen(buf); 3092 current_ev = iwe_stream_add_point_check(info, 3093 current_ev, 3094 end_buf, 3095 &iwe, buf); 3096 if (IS_ERR(current_ev)) 3097 goto unlock; 3098 break; 3099 case WLAN_EID_SUPP_RATES: 3100 case WLAN_EID_EXT_SUPP_RATES: 3101 /* display all supported rates in readable format */ 3102 p = current_ev + iwe_stream_lcp_len(info); 3103 3104 memset(&iwe, 0, sizeof(iwe)); 3105 iwe.cmd = SIOCGIWRATE; 3106 /* Those two flags are ignored... */ 3107 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0; 3108 3109 for (i = 0; i < ie[1]; i++) { 3110 iwe.u.bitrate.value = 3111 ((ie[i + 2] & 0x7f) * 500000); 3112 tmp = p; 3113 p = iwe_stream_add_value(info, current_ev, p, 3114 end_buf, &iwe, 3115 IW_EV_PARAM_LEN); 3116 if (p == tmp) { 3117 current_ev = ERR_PTR(-E2BIG); 3118 goto unlock; 3119 } 3120 } 3121 current_ev = p; 3122 break; 3123 } 3124 rem -= ie[1] + 2; 3125 ie += ie[1] + 2; 3126 } 3127 3128 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) || 3129 ismesh) { 3130 memset(&iwe, 0, sizeof(iwe)); 3131 iwe.cmd = SIOCGIWMODE; 3132 if (ismesh) 3133 iwe.u.mode = IW_MODE_MESH; 3134 else if (bss->pub.capability & WLAN_CAPABILITY_ESS) 3135 iwe.u.mode = IW_MODE_MASTER; 3136 else 3137 iwe.u.mode = IW_MODE_ADHOC; 3138 current_ev = iwe_stream_add_event_check(info, current_ev, 3139 end_buf, &iwe, 3140 IW_EV_UINT_LEN); 3141 if (IS_ERR(current_ev)) 3142 goto unlock; 3143 } 3144 3145 memset(&iwe, 0, sizeof(iwe)); 3146 iwe.cmd = IWEVCUSTOM; 3147 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf)); 3148 iwe.u.data.length = strlen(buf); 3149 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3150 &iwe, buf); 3151 if (IS_ERR(current_ev)) 3152 goto unlock; 3153 memset(&iwe, 0, sizeof(iwe)); 3154 iwe.cmd = IWEVCUSTOM; 3155 sprintf(buf, " Last beacon: %ums ago", 3156 elapsed_jiffies_msecs(bss->ts)); 3157 iwe.u.data.length = strlen(buf); 3158 current_ev = iwe_stream_add_point_check(info, current_ev, 3159 end_buf, &iwe, buf); 3160 if (IS_ERR(current_ev)) 3161 goto unlock; 3162 3163 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf); 3164 3165 unlock: 3166 rcu_read_unlock(); 3167 return current_ev; 3168 } 3169 3170 3171 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev, 3172 struct iw_request_info *info, 3173 char *buf, size_t len) 3174 { 3175 char *current_ev = buf; 3176 char *end_buf = buf + len; 3177 struct cfg80211_internal_bss *bss; 3178 int err = 0; 3179 3180 spin_lock_bh(&rdev->bss_lock); 3181 cfg80211_bss_expire(rdev); 3182 3183 list_for_each_entry(bss, &rdev->bss_list, list) { 3184 if (buf + len - current_ev <= IW_EV_ADDR_LEN) { 3185 err = -E2BIG; 3186 break; 3187 } 3188 current_ev = ieee80211_bss(&rdev->wiphy, info, bss, 3189 current_ev, end_buf); 3190 if (IS_ERR(current_ev)) { 3191 err = PTR_ERR(current_ev); 3192 break; 3193 } 3194 } 3195 spin_unlock_bh(&rdev->bss_lock); 3196 3197 if (err) 3198 return err; 3199 return current_ev - buf; 3200 } 3201 3202 3203 int cfg80211_wext_giwscan(struct net_device *dev, 3204 struct iw_request_info *info, 3205 struct iw_point *data, char *extra) 3206 { 3207 struct cfg80211_registered_device *rdev; 3208 int res; 3209 3210 if (!netif_running(dev)) 3211 return -ENETDOWN; 3212 3213 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3214 3215 if (IS_ERR(rdev)) 3216 return PTR_ERR(rdev); 3217 3218 if (rdev->scan_req || rdev->scan_msg) 3219 return -EAGAIN; 3220 3221 res = ieee80211_scan_results(rdev, info, extra, data->length); 3222 data->length = 0; 3223 if (res >= 0) { 3224 data->length = res; 3225 res = 0; 3226 } 3227 3228 return res; 3229 } 3230 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan); 3231 #endif 3232