1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * cfg80211 scan result handling 4 * 5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2016 Intel Deutschland GmbH 8 * Copyright (C) 2018-2023 Intel Corporation 9 */ 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/netdevice.h> 14 #include <linux/wireless.h> 15 #include <linux/nl80211.h> 16 #include <linux/etherdevice.h> 17 #include <linux/crc32.h> 18 #include <linux/bitfield.h> 19 #include <net/arp.h> 20 #include <net/cfg80211.h> 21 #include <net/cfg80211-wext.h> 22 #include <net/iw_handler.h> 23 #include "core.h" 24 #include "nl80211.h" 25 #include "wext-compat.h" 26 #include "rdev-ops.h" 27 28 /** 29 * DOC: BSS tree/list structure 30 * 31 * At the top level, the BSS list is kept in both a list in each 32 * registered device (@bss_list) as well as an RB-tree for faster 33 * lookup. In the RB-tree, entries can be looked up using their 34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID 35 * for other BSSes. 36 * 37 * Due to the possibility of hidden SSIDs, there's a second level 38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer. 39 * The hidden_list connects all BSSes belonging to a single AP 40 * that has a hidden SSID, and connects beacon and probe response 41 * entries. For a probe response entry for a hidden SSID, the 42 * hidden_beacon_bss pointer points to the BSS struct holding the 43 * beacon's information. 44 * 45 * Reference counting is done for all these references except for 46 * the hidden_list, so that a beacon BSS struct that is otherwise 47 * not referenced has one reference for being on the bss_list and 48 * one for each probe response entry that points to it using the 49 * hidden_beacon_bss pointer. When a BSS struct that has such a 50 * pointer is get/put, the refcount update is also propagated to 51 * the referenced struct, this ensure that it cannot get removed 52 * while somebody is using the probe response version. 53 * 54 * Note that the hidden_beacon_bss pointer never changes, due to 55 * the reference counting. Therefore, no locking is needed for 56 * it. 57 * 58 * Also note that the hidden_beacon_bss pointer is only relevant 59 * if the driver uses something other than the IEs, e.g. private 60 * data stored in the BSS struct, since the beacon IEs are 61 * also linked into the probe response struct. 62 */ 63 64 /* 65 * Limit the number of BSS entries stored in mac80211. Each one is 66 * a bit over 4k at most, so this limits to roughly 4-5M of memory. 67 * If somebody wants to really attack this though, they'd likely 68 * use small beacons, and only one type of frame, limiting each of 69 * the entries to a much smaller size (in order to generate more 70 * entries in total, so overhead is bigger.) 71 */ 72 static int bss_entries_limit = 1000; 73 module_param(bss_entries_limit, int, 0644); 74 MODULE_PARM_DESC(bss_entries_limit, 75 "limit to number of scan BSS entries (per wiphy, default 1000)"); 76 77 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ) 78 79 /** 80 * struct cfg80211_colocated_ap - colocated AP information 81 * 82 * @list: linked list to all colocated aPS 83 * @bssid: BSSID of the reported AP 84 * @ssid: SSID of the reported AP 85 * @ssid_len: length of the ssid 86 * @center_freq: frequency the reported AP is on 87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs 88 * that operate in the same channel as the reported AP and that might be 89 * detected by a STA receiving this frame, are transmitting unsolicited 90 * Probe Response frames every 20 TUs 91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP 92 * @same_ssid: the reported AP has the same SSID as the reporting AP 93 * @multi_bss: the reported AP is part of a multiple BSSID set 94 * @transmitted_bssid: the reported AP is the transmitting BSSID 95 * @colocated_ess: all the APs that share the same ESS as the reported AP are 96 * colocated and can be discovered via legacy bands. 97 * @short_ssid_valid: short_ssid is valid and can be used 98 * @short_ssid: the short SSID for this SSID 99 * @psd_20: The 20MHz PSD EIRP of the primary 20MHz channel for the reported AP 100 */ 101 struct cfg80211_colocated_ap { 102 struct list_head list; 103 u8 bssid[ETH_ALEN]; 104 u8 ssid[IEEE80211_MAX_SSID_LEN]; 105 size_t ssid_len; 106 u32 short_ssid; 107 u32 center_freq; 108 u8 unsolicited_probe:1, 109 oct_recommended:1, 110 same_ssid:1, 111 multi_bss:1, 112 transmitted_bssid:1, 113 colocated_ess:1, 114 short_ssid_valid:1; 115 s8 psd_20; 116 }; 117 118 static void bss_free(struct cfg80211_internal_bss *bss) 119 { 120 struct cfg80211_bss_ies *ies; 121 122 if (WARN_ON(atomic_read(&bss->hold))) 123 return; 124 125 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies); 126 if (ies && !bss->pub.hidden_beacon_bss) 127 kfree_rcu(ies, rcu_head); 128 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies); 129 if (ies) 130 kfree_rcu(ies, rcu_head); 131 132 /* 133 * This happens when the module is removed, it doesn't 134 * really matter any more save for completeness 135 */ 136 if (!list_empty(&bss->hidden_list)) 137 list_del(&bss->hidden_list); 138 139 kfree(bss); 140 } 141 142 static inline void bss_ref_get(struct cfg80211_registered_device *rdev, 143 struct cfg80211_internal_bss *bss) 144 { 145 lockdep_assert_held(&rdev->bss_lock); 146 147 bss->refcount++; 148 149 if (bss->pub.hidden_beacon_bss) 150 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++; 151 152 if (bss->pub.transmitted_bss) 153 bss_from_pub(bss->pub.transmitted_bss)->refcount++; 154 } 155 156 static inline void bss_ref_put(struct cfg80211_registered_device *rdev, 157 struct cfg80211_internal_bss *bss) 158 { 159 lockdep_assert_held(&rdev->bss_lock); 160 161 if (bss->pub.hidden_beacon_bss) { 162 struct cfg80211_internal_bss *hbss; 163 164 hbss = bss_from_pub(bss->pub.hidden_beacon_bss); 165 hbss->refcount--; 166 if (hbss->refcount == 0) 167 bss_free(hbss); 168 } 169 170 if (bss->pub.transmitted_bss) { 171 struct cfg80211_internal_bss *tbss; 172 173 tbss = bss_from_pub(bss->pub.transmitted_bss); 174 tbss->refcount--; 175 if (tbss->refcount == 0) 176 bss_free(tbss); 177 } 178 179 bss->refcount--; 180 if (bss->refcount == 0) 181 bss_free(bss); 182 } 183 184 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev, 185 struct cfg80211_internal_bss *bss) 186 { 187 lockdep_assert_held(&rdev->bss_lock); 188 189 if (!list_empty(&bss->hidden_list)) { 190 /* 191 * don't remove the beacon entry if it has 192 * probe responses associated with it 193 */ 194 if (!bss->pub.hidden_beacon_bss) 195 return false; 196 /* 197 * if it's a probe response entry break its 198 * link to the other entries in the group 199 */ 200 list_del_init(&bss->hidden_list); 201 } 202 203 list_del_init(&bss->list); 204 list_del_init(&bss->pub.nontrans_list); 205 rb_erase(&bss->rbn, &rdev->bss_tree); 206 rdev->bss_entries--; 207 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list), 208 "rdev bss entries[%d]/list[empty:%d] corruption\n", 209 rdev->bss_entries, list_empty(&rdev->bss_list)); 210 bss_ref_put(rdev, bss); 211 return true; 212 } 213 214 bool cfg80211_is_element_inherited(const struct element *elem, 215 const struct element *non_inherit_elem) 216 { 217 u8 id_len, ext_id_len, i, loop_len, id; 218 const u8 *list; 219 220 if (elem->id == WLAN_EID_MULTIPLE_BSSID) 221 return false; 222 223 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 && 224 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK) 225 return false; 226 227 if (!non_inherit_elem || non_inherit_elem->datalen < 2) 228 return true; 229 230 /* 231 * non inheritance element format is: 232 * ext ID (56) | IDs list len | list | extension IDs list len | list 233 * Both lists are optional. Both lengths are mandatory. 234 * This means valid length is: 235 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths 236 */ 237 id_len = non_inherit_elem->data[1]; 238 if (non_inherit_elem->datalen < 3 + id_len) 239 return true; 240 241 ext_id_len = non_inherit_elem->data[2 + id_len]; 242 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len) 243 return true; 244 245 if (elem->id == WLAN_EID_EXTENSION) { 246 if (!ext_id_len) 247 return true; 248 loop_len = ext_id_len; 249 list = &non_inherit_elem->data[3 + id_len]; 250 id = elem->data[0]; 251 } else { 252 if (!id_len) 253 return true; 254 loop_len = id_len; 255 list = &non_inherit_elem->data[2]; 256 id = elem->id; 257 } 258 259 for (i = 0; i < loop_len; i++) { 260 if (list[i] == id) 261 return false; 262 } 263 264 return true; 265 } 266 EXPORT_SYMBOL(cfg80211_is_element_inherited); 267 268 static size_t cfg80211_copy_elem_with_frags(const struct element *elem, 269 const u8 *ie, size_t ie_len, 270 u8 **pos, u8 *buf, size_t buf_len) 271 { 272 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len || 273 elem->data + elem->datalen > ie + ie_len)) 274 return 0; 275 276 if (elem->datalen + 2 > buf + buf_len - *pos) 277 return 0; 278 279 memcpy(*pos, elem, elem->datalen + 2); 280 *pos += elem->datalen + 2; 281 282 /* Finish if it is not fragmented */ 283 if (elem->datalen != 255) 284 return *pos - buf; 285 286 ie_len = ie + ie_len - elem->data - elem->datalen; 287 ie = (const u8 *)elem->data + elem->datalen; 288 289 for_each_element(elem, ie, ie_len) { 290 if (elem->id != WLAN_EID_FRAGMENT) 291 break; 292 293 if (elem->datalen + 2 > buf + buf_len - *pos) 294 return 0; 295 296 memcpy(*pos, elem, elem->datalen + 2); 297 *pos += elem->datalen + 2; 298 299 if (elem->datalen != 255) 300 break; 301 } 302 303 return *pos - buf; 304 } 305 306 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen, 307 const u8 *subie, size_t subie_len, 308 u8 *new_ie, size_t new_ie_len) 309 { 310 const struct element *non_inherit_elem, *parent, *sub; 311 u8 *pos = new_ie; 312 u8 id, ext_id; 313 unsigned int match_len; 314 315 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 316 subie, subie_len); 317 318 /* We copy the elements one by one from the parent to the generated 319 * elements. 320 * If they are not inherited (included in subie or in the non 321 * inheritance element), then we copy all occurrences the first time 322 * we see this element type. 323 */ 324 for_each_element(parent, ie, ielen) { 325 if (parent->id == WLAN_EID_FRAGMENT) 326 continue; 327 328 if (parent->id == WLAN_EID_EXTENSION) { 329 if (parent->datalen < 1) 330 continue; 331 332 id = WLAN_EID_EXTENSION; 333 ext_id = parent->data[0]; 334 match_len = 1; 335 } else { 336 id = parent->id; 337 match_len = 0; 338 } 339 340 /* Find first occurrence in subie */ 341 sub = cfg80211_find_elem_match(id, subie, subie_len, 342 &ext_id, match_len, 0); 343 344 /* Copy from parent if not in subie and inherited */ 345 if (!sub && 346 cfg80211_is_element_inherited(parent, non_inherit_elem)) { 347 if (!cfg80211_copy_elem_with_frags(parent, 348 ie, ielen, 349 &pos, new_ie, 350 new_ie_len)) 351 return 0; 352 353 continue; 354 } 355 356 /* Already copied if an earlier element had the same type */ 357 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie, 358 &ext_id, match_len, 0)) 359 continue; 360 361 /* Not inheriting, copy all similar elements from subie */ 362 while (sub) { 363 if (!cfg80211_copy_elem_with_frags(sub, 364 subie, subie_len, 365 &pos, new_ie, 366 new_ie_len)) 367 return 0; 368 369 sub = cfg80211_find_elem_match(id, 370 sub->data + sub->datalen, 371 subie_len + subie - 372 (sub->data + 373 sub->datalen), 374 &ext_id, match_len, 0); 375 } 376 } 377 378 /* The above misses elements that are included in subie but not in the 379 * parent, so do a pass over subie and append those. 380 * Skip the non-tx BSSID caps and non-inheritance element. 381 */ 382 for_each_element(sub, subie, subie_len) { 383 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP) 384 continue; 385 386 if (sub->id == WLAN_EID_FRAGMENT) 387 continue; 388 389 if (sub->id == WLAN_EID_EXTENSION) { 390 if (sub->datalen < 1) 391 continue; 392 393 id = WLAN_EID_EXTENSION; 394 ext_id = sub->data[0]; 395 match_len = 1; 396 397 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE) 398 continue; 399 } else { 400 id = sub->id; 401 match_len = 0; 402 } 403 404 /* Processed if one was included in the parent */ 405 if (cfg80211_find_elem_match(id, ie, ielen, 406 &ext_id, match_len, 0)) 407 continue; 408 409 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len, 410 &pos, new_ie, new_ie_len)) 411 return 0; 412 } 413 414 return pos - new_ie; 415 } 416 417 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid, 418 const u8 *ssid, size_t ssid_len) 419 { 420 const struct cfg80211_bss_ies *ies; 421 const struct element *ssid_elem; 422 423 if (bssid && !ether_addr_equal(a->bssid, bssid)) 424 return false; 425 426 if (!ssid) 427 return true; 428 429 ies = rcu_access_pointer(a->ies); 430 if (!ies) 431 return false; 432 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 433 if (!ssid_elem) 434 return false; 435 if (ssid_elem->datalen != ssid_len) 436 return false; 437 return memcmp(ssid_elem->data, ssid, ssid_len) == 0; 438 } 439 440 static int 441 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss, 442 struct cfg80211_bss *nontrans_bss) 443 { 444 const struct element *ssid_elem; 445 struct cfg80211_bss *bss = NULL; 446 447 rcu_read_lock(); 448 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID); 449 if (!ssid_elem) { 450 rcu_read_unlock(); 451 return -EINVAL; 452 } 453 454 /* check if nontrans_bss is in the list */ 455 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) { 456 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data, 457 ssid_elem->datalen)) { 458 rcu_read_unlock(); 459 return 0; 460 } 461 } 462 463 rcu_read_unlock(); 464 465 /* 466 * This is a bit weird - it's not on the list, but already on another 467 * one! The only way that could happen is if there's some BSSID/SSID 468 * shared by multiple APs in their multi-BSSID profiles, potentially 469 * with hidden SSID mixed in ... ignore it. 470 */ 471 if (!list_empty(&nontrans_bss->nontrans_list)) 472 return -EINVAL; 473 474 /* add to the list */ 475 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list); 476 return 0; 477 } 478 479 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev, 480 unsigned long expire_time) 481 { 482 struct cfg80211_internal_bss *bss, *tmp; 483 bool expired = false; 484 485 lockdep_assert_held(&rdev->bss_lock); 486 487 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) { 488 if (atomic_read(&bss->hold)) 489 continue; 490 if (!time_after(expire_time, bss->ts)) 491 continue; 492 493 if (__cfg80211_unlink_bss(rdev, bss)) 494 expired = true; 495 } 496 497 if (expired) 498 rdev->bss_generation++; 499 } 500 501 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev) 502 { 503 struct cfg80211_internal_bss *bss, *oldest = NULL; 504 bool ret; 505 506 lockdep_assert_held(&rdev->bss_lock); 507 508 list_for_each_entry(bss, &rdev->bss_list, list) { 509 if (atomic_read(&bss->hold)) 510 continue; 511 512 if (!list_empty(&bss->hidden_list) && 513 !bss->pub.hidden_beacon_bss) 514 continue; 515 516 if (oldest && time_before(oldest->ts, bss->ts)) 517 continue; 518 oldest = bss; 519 } 520 521 if (WARN_ON(!oldest)) 522 return false; 523 524 /* 525 * The callers make sure to increase rdev->bss_generation if anything 526 * gets removed (and a new entry added), so there's no need to also do 527 * it here. 528 */ 529 530 ret = __cfg80211_unlink_bss(rdev, oldest); 531 WARN_ON(!ret); 532 return ret; 533 } 534 535 static u8 cfg80211_parse_bss_param(u8 data, 536 struct cfg80211_colocated_ap *coloc_ap) 537 { 538 coloc_ap->oct_recommended = 539 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED); 540 coloc_ap->same_ssid = 541 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID); 542 coloc_ap->multi_bss = 543 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID); 544 coloc_ap->transmitted_bssid = 545 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID); 546 coloc_ap->unsolicited_probe = 547 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE); 548 coloc_ap->colocated_ess = 549 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS); 550 551 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP); 552 } 553 554 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies, 555 const struct element **elem, u32 *s_ssid) 556 { 557 558 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 559 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN) 560 return -EINVAL; 561 562 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen); 563 return 0; 564 } 565 566 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list) 567 { 568 struct cfg80211_colocated_ap *ap, *tmp_ap; 569 570 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) { 571 list_del(&ap->list); 572 kfree(ap); 573 } 574 } 575 576 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry, 577 const u8 *pos, u8 length, 578 const struct element *ssid_elem, 579 u32 s_ssid_tmp) 580 { 581 u8 bss_params; 582 583 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED; 584 585 /* The length is already verified by the caller to contain bss_params */ 586 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) { 587 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos; 588 589 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN); 590 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid); 591 entry->short_ssid_valid = true; 592 593 bss_params = tbtt_info->bss_params; 594 595 /* Ignore disabled links */ 596 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) { 597 if (le16_get_bits(tbtt_info->mld_params.params, 598 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK)) 599 return -EINVAL; 600 } 601 602 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11, 603 psd_20)) 604 entry->psd_20 = tbtt_info->psd_20; 605 } else { 606 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos; 607 608 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN); 609 610 bss_params = tbtt_info->bss_params; 611 612 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9, 613 psd_20)) 614 entry->psd_20 = tbtt_info->psd_20; 615 } 616 617 /* ignore entries with invalid BSSID */ 618 if (!is_valid_ether_addr(entry->bssid)) 619 return -EINVAL; 620 621 /* skip non colocated APs */ 622 if (!cfg80211_parse_bss_param(bss_params, entry)) 623 return -EINVAL; 624 625 /* no information about the short ssid. Consider the entry valid 626 * for now. It would later be dropped in case there are explicit 627 * SSIDs that need to be matched 628 */ 629 if (!entry->same_ssid && !entry->short_ssid_valid) 630 return 0; 631 632 if (entry->same_ssid) { 633 entry->short_ssid = s_ssid_tmp; 634 entry->short_ssid_valid = true; 635 636 /* 637 * This is safe because we validate datalen in 638 * cfg80211_parse_colocated_ap(), before calling this 639 * function. 640 */ 641 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen); 642 entry->ssid_len = ssid_elem->datalen; 643 } 644 645 return 0; 646 } 647 648 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies, 649 struct list_head *list) 650 { 651 struct ieee80211_neighbor_ap_info *ap_info; 652 const struct element *elem, *ssid_elem; 653 const u8 *pos, *end; 654 u32 s_ssid_tmp; 655 int n_coloc = 0, ret; 656 LIST_HEAD(ap_list); 657 658 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp); 659 if (ret) 660 return ret; 661 662 for_each_element_id(elem, WLAN_EID_REDUCED_NEIGHBOR_REPORT, 663 ies->data, ies->len) { 664 pos = elem->data; 665 end = elem->data + elem->datalen; 666 667 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ 668 while (pos + sizeof(*ap_info) <= end) { 669 enum nl80211_band band; 670 int freq; 671 u8 length, i, count; 672 673 ap_info = (void *)pos; 674 count = u8_get_bits(ap_info->tbtt_info_hdr, 675 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1; 676 length = ap_info->tbtt_info_len; 677 678 pos += sizeof(*ap_info); 679 680 if (!ieee80211_operating_class_to_band(ap_info->op_class, 681 &band)) 682 break; 683 684 freq = ieee80211_channel_to_frequency(ap_info->channel, 685 band); 686 687 if (end - pos < count * length) 688 break; 689 690 if (u8_get_bits(ap_info->tbtt_info_hdr, 691 IEEE80211_AP_INFO_TBTT_HDR_TYPE) != 692 IEEE80211_TBTT_INFO_TYPE_TBTT) { 693 pos += count * length; 694 continue; 695 } 696 697 /* TBTT info must include bss param + BSSID + 698 * (short SSID or same_ssid bit to be set). 699 * ignore other options, and move to the 700 * next AP info 701 */ 702 if (band != NL80211_BAND_6GHZ || 703 !(length == offsetofend(struct ieee80211_tbtt_info_7_8_9, 704 bss_params) || 705 length == sizeof(struct ieee80211_tbtt_info_7_8_9) || 706 length >= offsetofend(struct ieee80211_tbtt_info_ge_11, 707 bss_params))) { 708 pos += count * length; 709 continue; 710 } 711 712 for (i = 0; i < count; i++) { 713 struct cfg80211_colocated_ap *entry; 714 715 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, 716 GFP_ATOMIC); 717 718 if (!entry) 719 goto error; 720 721 entry->center_freq = freq; 722 723 if (!cfg80211_parse_ap_info(entry, pos, length, 724 ssid_elem, 725 s_ssid_tmp)) { 726 n_coloc++; 727 list_add_tail(&entry->list, &ap_list); 728 } else { 729 kfree(entry); 730 } 731 732 pos += length; 733 } 734 } 735 736 error: 737 if (pos != end) { 738 cfg80211_free_coloc_ap_list(&ap_list); 739 return 0; 740 } 741 } 742 743 list_splice_tail(&ap_list, list); 744 return n_coloc; 745 } 746 747 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request, 748 struct ieee80211_channel *chan, 749 bool add_to_6ghz) 750 { 751 int i; 752 u32 n_channels = request->n_channels; 753 struct cfg80211_scan_6ghz_params *params = 754 &request->scan_6ghz_params[request->n_6ghz_params]; 755 756 for (i = 0; i < n_channels; i++) { 757 if (request->channels[i] == chan) { 758 if (add_to_6ghz) 759 params->channel_idx = i; 760 return; 761 } 762 } 763 764 request->channels[n_channels] = chan; 765 if (add_to_6ghz) 766 request->scan_6ghz_params[request->n_6ghz_params].channel_idx = 767 n_channels; 768 769 request->n_channels++; 770 } 771 772 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap, 773 struct cfg80211_scan_request *request) 774 { 775 int i; 776 u32 s_ssid; 777 778 for (i = 0; i < request->n_ssids; i++) { 779 /* wildcard ssid in the scan request */ 780 if (!request->ssids[i].ssid_len) { 781 if (ap->multi_bss && !ap->transmitted_bssid) 782 continue; 783 784 return true; 785 } 786 787 if (ap->ssid_len && 788 ap->ssid_len == request->ssids[i].ssid_len) { 789 if (!memcmp(request->ssids[i].ssid, ap->ssid, 790 ap->ssid_len)) 791 return true; 792 } else if (ap->short_ssid_valid) { 793 s_ssid = ~crc32_le(~0, request->ssids[i].ssid, 794 request->ssids[i].ssid_len); 795 796 if (ap->short_ssid == s_ssid) 797 return true; 798 } 799 } 800 801 return false; 802 } 803 804 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev) 805 { 806 u8 i; 807 struct cfg80211_colocated_ap *ap; 808 int n_channels, count = 0, err; 809 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req; 810 LIST_HEAD(coloc_ap_list); 811 bool need_scan_psc = true; 812 const struct ieee80211_sband_iftype_data *iftd; 813 814 rdev_req->scan_6ghz = true; 815 816 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ]) 817 return -EOPNOTSUPP; 818 819 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ], 820 rdev_req->wdev->iftype); 821 if (!iftd || !iftd->he_cap.has_he) 822 return -EOPNOTSUPP; 823 824 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels; 825 826 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) { 827 struct cfg80211_internal_bss *intbss; 828 829 spin_lock_bh(&rdev->bss_lock); 830 list_for_each_entry(intbss, &rdev->bss_list, list) { 831 struct cfg80211_bss *res = &intbss->pub; 832 const struct cfg80211_bss_ies *ies; 833 834 ies = rcu_access_pointer(res->ies); 835 count += cfg80211_parse_colocated_ap(ies, 836 &coloc_ap_list); 837 } 838 spin_unlock_bh(&rdev->bss_lock); 839 } 840 841 request = kzalloc(struct_size(request, channels, n_channels) + 842 sizeof(*request->scan_6ghz_params) * count + 843 sizeof(*request->ssids) * rdev_req->n_ssids, 844 GFP_KERNEL); 845 if (!request) { 846 cfg80211_free_coloc_ap_list(&coloc_ap_list); 847 return -ENOMEM; 848 } 849 850 *request = *rdev_req; 851 request->n_channels = 0; 852 request->scan_6ghz_params = 853 (void *)&request->channels[n_channels]; 854 855 /* 856 * PSC channels should not be scanned in case of direct scan with 1 SSID 857 * and at least one of the reported co-located APs with same SSID 858 * indicating that all APs in the same ESS are co-located 859 */ 860 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) { 861 list_for_each_entry(ap, &coloc_ap_list, list) { 862 if (ap->colocated_ess && 863 cfg80211_find_ssid_match(ap, request)) { 864 need_scan_psc = false; 865 break; 866 } 867 } 868 } 869 870 /* 871 * add to the scan request the channels that need to be scanned 872 * regardless of the collocated APs (PSC channels or all channels 873 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set) 874 */ 875 for (i = 0; i < rdev_req->n_channels; i++) { 876 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ && 877 ((need_scan_psc && 878 cfg80211_channel_is_psc(rdev_req->channels[i])) || 879 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) { 880 cfg80211_scan_req_add_chan(request, 881 rdev_req->channels[i], 882 false); 883 } 884 } 885 886 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ)) 887 goto skip; 888 889 list_for_each_entry(ap, &coloc_ap_list, list) { 890 bool found = false; 891 struct cfg80211_scan_6ghz_params *scan_6ghz_params = 892 &request->scan_6ghz_params[request->n_6ghz_params]; 893 struct ieee80211_channel *chan = 894 ieee80211_get_channel(&rdev->wiphy, ap->center_freq); 895 896 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED) 897 continue; 898 899 for (i = 0; i < rdev_req->n_channels; i++) { 900 if (rdev_req->channels[i] == chan) 901 found = true; 902 } 903 904 if (!found) 905 continue; 906 907 if (request->n_ssids > 0 && 908 !cfg80211_find_ssid_match(ap, request)) 909 continue; 910 911 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid) 912 continue; 913 914 cfg80211_scan_req_add_chan(request, chan, true); 915 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN); 916 scan_6ghz_params->short_ssid = ap->short_ssid; 917 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid; 918 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe; 919 scan_6ghz_params->psd_20 = ap->psd_20; 920 921 /* 922 * If a PSC channel is added to the scan and 'need_scan_psc' is 923 * set to false, then all the APs that the scan logic is 924 * interested with on the channel are collocated and thus there 925 * is no need to perform the initial PSC channel listen. 926 */ 927 if (cfg80211_channel_is_psc(chan) && !need_scan_psc) 928 scan_6ghz_params->psc_no_listen = true; 929 930 request->n_6ghz_params++; 931 } 932 933 skip: 934 cfg80211_free_coloc_ap_list(&coloc_ap_list); 935 936 if (request->n_channels) { 937 struct cfg80211_scan_request *old = rdev->int_scan_req; 938 rdev->int_scan_req = request; 939 940 /* 941 * Add the ssids from the parent scan request to the new scan 942 * request, so the driver would be able to use them in its 943 * probe requests to discover hidden APs on PSC channels. 944 */ 945 request->ssids = (void *)&request->channels[request->n_channels]; 946 request->n_ssids = rdev_req->n_ssids; 947 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) * 948 request->n_ssids); 949 950 /* 951 * If this scan follows a previous scan, save the scan start 952 * info from the first part of the scan 953 */ 954 if (old) 955 rdev->int_scan_req->info = old->info; 956 957 err = rdev_scan(rdev, request); 958 if (err) { 959 rdev->int_scan_req = old; 960 kfree(request); 961 } else { 962 kfree(old); 963 } 964 965 return err; 966 } 967 968 kfree(request); 969 return -EINVAL; 970 } 971 972 int cfg80211_scan(struct cfg80211_registered_device *rdev) 973 { 974 struct cfg80211_scan_request *request; 975 struct cfg80211_scan_request *rdev_req = rdev->scan_req; 976 u32 n_channels = 0, idx, i; 977 978 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ)) 979 return rdev_scan(rdev, rdev_req); 980 981 for (i = 0; i < rdev_req->n_channels; i++) { 982 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 983 n_channels++; 984 } 985 986 if (!n_channels) 987 return cfg80211_scan_6ghz(rdev); 988 989 request = kzalloc(struct_size(request, channels, n_channels), 990 GFP_KERNEL); 991 if (!request) 992 return -ENOMEM; 993 994 *request = *rdev_req; 995 request->n_channels = n_channels; 996 997 for (i = idx = 0; i < rdev_req->n_channels; i++) { 998 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 999 request->channels[idx++] = rdev_req->channels[i]; 1000 } 1001 1002 rdev_req->scan_6ghz = false; 1003 rdev->int_scan_req = request; 1004 return rdev_scan(rdev, request); 1005 } 1006 1007 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, 1008 bool send_message) 1009 { 1010 struct cfg80211_scan_request *request, *rdev_req; 1011 struct wireless_dev *wdev; 1012 struct sk_buff *msg; 1013 #ifdef CONFIG_CFG80211_WEXT 1014 union iwreq_data wrqu; 1015 #endif 1016 1017 lockdep_assert_held(&rdev->wiphy.mtx); 1018 1019 if (rdev->scan_msg) { 1020 nl80211_send_scan_msg(rdev, rdev->scan_msg); 1021 rdev->scan_msg = NULL; 1022 return; 1023 } 1024 1025 rdev_req = rdev->scan_req; 1026 if (!rdev_req) 1027 return; 1028 1029 wdev = rdev_req->wdev; 1030 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req; 1031 1032 if (wdev_running(wdev) && 1033 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) && 1034 !rdev_req->scan_6ghz && !request->info.aborted && 1035 !cfg80211_scan_6ghz(rdev)) 1036 return; 1037 1038 /* 1039 * This must be before sending the other events! 1040 * Otherwise, wpa_supplicant gets completely confused with 1041 * wext events. 1042 */ 1043 if (wdev->netdev) 1044 cfg80211_sme_scan_done(wdev->netdev); 1045 1046 if (!request->info.aborted && 1047 request->flags & NL80211_SCAN_FLAG_FLUSH) { 1048 /* flush entries from previous scans */ 1049 spin_lock_bh(&rdev->bss_lock); 1050 __cfg80211_bss_expire(rdev, request->scan_start); 1051 spin_unlock_bh(&rdev->bss_lock); 1052 } 1053 1054 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted); 1055 1056 #ifdef CONFIG_CFG80211_WEXT 1057 if (wdev->netdev && !request->info.aborted) { 1058 memset(&wrqu, 0, sizeof(wrqu)); 1059 1060 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL); 1061 } 1062 #endif 1063 1064 dev_put(wdev->netdev); 1065 1066 kfree(rdev->int_scan_req); 1067 rdev->int_scan_req = NULL; 1068 1069 kfree(rdev->scan_req); 1070 rdev->scan_req = NULL; 1071 1072 if (!send_message) 1073 rdev->scan_msg = msg; 1074 else 1075 nl80211_send_scan_msg(rdev, msg); 1076 } 1077 1078 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk) 1079 { 1080 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true); 1081 } 1082 1083 void cfg80211_scan_done(struct cfg80211_scan_request *request, 1084 struct cfg80211_scan_info *info) 1085 { 1086 struct cfg80211_scan_info old_info = request->info; 1087 1088 trace_cfg80211_scan_done(request, info); 1089 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req && 1090 request != wiphy_to_rdev(request->wiphy)->int_scan_req); 1091 1092 request->info = *info; 1093 1094 /* 1095 * In case the scan is split, the scan_start_tsf and tsf_bssid should 1096 * be of the first part. In such a case old_info.scan_start_tsf should 1097 * be non zero. 1098 */ 1099 if (request->scan_6ghz && old_info.scan_start_tsf) { 1100 request->info.scan_start_tsf = old_info.scan_start_tsf; 1101 memcpy(request->info.tsf_bssid, old_info.tsf_bssid, 1102 sizeof(request->info.tsf_bssid)); 1103 } 1104 1105 request->notified = true; 1106 wiphy_work_queue(request->wiphy, 1107 &wiphy_to_rdev(request->wiphy)->scan_done_wk); 1108 } 1109 EXPORT_SYMBOL(cfg80211_scan_done); 1110 1111 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, 1112 struct cfg80211_sched_scan_request *req) 1113 { 1114 lockdep_assert_held(&rdev->wiphy.mtx); 1115 1116 list_add_rcu(&req->list, &rdev->sched_scan_req_list); 1117 } 1118 1119 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev, 1120 struct cfg80211_sched_scan_request *req) 1121 { 1122 lockdep_assert_held(&rdev->wiphy.mtx); 1123 1124 list_del_rcu(&req->list); 1125 kfree_rcu(req, rcu_head); 1126 } 1127 1128 static struct cfg80211_sched_scan_request * 1129 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid) 1130 { 1131 struct cfg80211_sched_scan_request *pos; 1132 1133 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list, 1134 lockdep_is_held(&rdev->wiphy.mtx)) { 1135 if (pos->reqid == reqid) 1136 return pos; 1137 } 1138 return NULL; 1139 } 1140 1141 /* 1142 * Determines if a scheduled scan request can be handled. When a legacy 1143 * scheduled scan is running no other scheduled scan is allowed regardless 1144 * whether the request is for legacy or multi-support scan. When a multi-support 1145 * scheduled scan is running a request for legacy scan is not allowed. In this 1146 * case a request for multi-support scan can be handled if resources are 1147 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached. 1148 */ 1149 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, 1150 bool want_multi) 1151 { 1152 struct cfg80211_sched_scan_request *pos; 1153 int i = 0; 1154 1155 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) { 1156 /* request id zero means legacy in progress */ 1157 if (!i && !pos->reqid) 1158 return -EINPROGRESS; 1159 i++; 1160 } 1161 1162 if (i) { 1163 /* no legacy allowed when multi request(s) are active */ 1164 if (!want_multi) 1165 return -EINPROGRESS; 1166 1167 /* resource limit reached */ 1168 if (i == rdev->wiphy.max_sched_scan_reqs) 1169 return -ENOSPC; 1170 } 1171 return 0; 1172 } 1173 1174 void cfg80211_sched_scan_results_wk(struct work_struct *work) 1175 { 1176 struct cfg80211_registered_device *rdev; 1177 struct cfg80211_sched_scan_request *req, *tmp; 1178 1179 rdev = container_of(work, struct cfg80211_registered_device, 1180 sched_scan_res_wk); 1181 1182 wiphy_lock(&rdev->wiphy); 1183 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) { 1184 if (req->report_results) { 1185 req->report_results = false; 1186 if (req->flags & NL80211_SCAN_FLAG_FLUSH) { 1187 /* flush entries from previous scans */ 1188 spin_lock_bh(&rdev->bss_lock); 1189 __cfg80211_bss_expire(rdev, req->scan_start); 1190 spin_unlock_bh(&rdev->bss_lock); 1191 req->scan_start = jiffies; 1192 } 1193 nl80211_send_sched_scan(req, 1194 NL80211_CMD_SCHED_SCAN_RESULTS); 1195 } 1196 } 1197 wiphy_unlock(&rdev->wiphy); 1198 } 1199 1200 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid) 1201 { 1202 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1203 struct cfg80211_sched_scan_request *request; 1204 1205 trace_cfg80211_sched_scan_results(wiphy, reqid); 1206 /* ignore if we're not scanning */ 1207 1208 rcu_read_lock(); 1209 request = cfg80211_find_sched_scan_req(rdev, reqid); 1210 if (request) { 1211 request->report_results = true; 1212 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk); 1213 } 1214 rcu_read_unlock(); 1215 } 1216 EXPORT_SYMBOL(cfg80211_sched_scan_results); 1217 1218 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid) 1219 { 1220 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1221 1222 lockdep_assert_held(&wiphy->mtx); 1223 1224 trace_cfg80211_sched_scan_stopped(wiphy, reqid); 1225 1226 __cfg80211_stop_sched_scan(rdev, reqid, true); 1227 } 1228 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked); 1229 1230 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid) 1231 { 1232 wiphy_lock(wiphy); 1233 cfg80211_sched_scan_stopped_locked(wiphy, reqid); 1234 wiphy_unlock(wiphy); 1235 } 1236 EXPORT_SYMBOL(cfg80211_sched_scan_stopped); 1237 1238 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, 1239 struct cfg80211_sched_scan_request *req, 1240 bool driver_initiated) 1241 { 1242 lockdep_assert_held(&rdev->wiphy.mtx); 1243 1244 if (!driver_initiated) { 1245 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid); 1246 if (err) 1247 return err; 1248 } 1249 1250 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED); 1251 1252 cfg80211_del_sched_scan_req(rdev, req); 1253 1254 return 0; 1255 } 1256 1257 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, 1258 u64 reqid, bool driver_initiated) 1259 { 1260 struct cfg80211_sched_scan_request *sched_scan_req; 1261 1262 lockdep_assert_held(&rdev->wiphy.mtx); 1263 1264 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid); 1265 if (!sched_scan_req) 1266 return -ENOENT; 1267 1268 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req, 1269 driver_initiated); 1270 } 1271 1272 void cfg80211_bss_age(struct cfg80211_registered_device *rdev, 1273 unsigned long age_secs) 1274 { 1275 struct cfg80211_internal_bss *bss; 1276 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC); 1277 1278 spin_lock_bh(&rdev->bss_lock); 1279 list_for_each_entry(bss, &rdev->bss_list, list) 1280 bss->ts -= age_jiffies; 1281 spin_unlock_bh(&rdev->bss_lock); 1282 } 1283 1284 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev) 1285 { 1286 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE); 1287 } 1288 1289 void cfg80211_bss_flush(struct wiphy *wiphy) 1290 { 1291 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1292 1293 spin_lock_bh(&rdev->bss_lock); 1294 __cfg80211_bss_expire(rdev, jiffies); 1295 spin_unlock_bh(&rdev->bss_lock); 1296 } 1297 EXPORT_SYMBOL(cfg80211_bss_flush); 1298 1299 const struct element * 1300 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len, 1301 const u8 *match, unsigned int match_len, 1302 unsigned int match_offset) 1303 { 1304 const struct element *elem; 1305 1306 for_each_element_id(elem, eid, ies, len) { 1307 if (elem->datalen >= match_offset + match_len && 1308 !memcmp(elem->data + match_offset, match, match_len)) 1309 return elem; 1310 } 1311 1312 return NULL; 1313 } 1314 EXPORT_SYMBOL(cfg80211_find_elem_match); 1315 1316 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type, 1317 const u8 *ies, 1318 unsigned int len) 1319 { 1320 const struct element *elem; 1321 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type }; 1322 int match_len = (oui_type < 0) ? 3 : sizeof(match); 1323 1324 if (WARN_ON(oui_type > 0xff)) 1325 return NULL; 1326 1327 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len, 1328 match, match_len, 0); 1329 1330 if (!elem || elem->datalen < 4) 1331 return NULL; 1332 1333 return elem; 1334 } 1335 EXPORT_SYMBOL(cfg80211_find_vendor_elem); 1336 1337 /** 1338 * enum bss_compare_mode - BSS compare mode 1339 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find) 1340 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode 1341 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode 1342 */ 1343 enum bss_compare_mode { 1344 BSS_CMP_REGULAR, 1345 BSS_CMP_HIDE_ZLEN, 1346 BSS_CMP_HIDE_NUL, 1347 }; 1348 1349 static int cmp_bss(struct cfg80211_bss *a, 1350 struct cfg80211_bss *b, 1351 enum bss_compare_mode mode) 1352 { 1353 const struct cfg80211_bss_ies *a_ies, *b_ies; 1354 const u8 *ie1 = NULL; 1355 const u8 *ie2 = NULL; 1356 int i, r; 1357 1358 if (a->channel != b->channel) 1359 return (b->channel->center_freq * 1000 + b->channel->freq_offset) - 1360 (a->channel->center_freq * 1000 + a->channel->freq_offset); 1361 1362 a_ies = rcu_access_pointer(a->ies); 1363 if (!a_ies) 1364 return -1; 1365 b_ies = rcu_access_pointer(b->ies); 1366 if (!b_ies) 1367 return 1; 1368 1369 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability)) 1370 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1371 a_ies->data, a_ies->len); 1372 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability)) 1373 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1374 b_ies->data, b_ies->len); 1375 if (ie1 && ie2) { 1376 int mesh_id_cmp; 1377 1378 if (ie1[1] == ie2[1]) 1379 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1380 else 1381 mesh_id_cmp = ie2[1] - ie1[1]; 1382 1383 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1384 a_ies->data, a_ies->len); 1385 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1386 b_ies->data, b_ies->len); 1387 if (ie1 && ie2) { 1388 if (mesh_id_cmp) 1389 return mesh_id_cmp; 1390 if (ie1[1] != ie2[1]) 1391 return ie2[1] - ie1[1]; 1392 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1393 } 1394 } 1395 1396 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid)); 1397 if (r) 1398 return r; 1399 1400 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len); 1401 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len); 1402 1403 if (!ie1 && !ie2) 1404 return 0; 1405 1406 /* 1407 * Note that with "hide_ssid", the function returns a match if 1408 * the already-present BSS ("b") is a hidden SSID beacon for 1409 * the new BSS ("a"). 1410 */ 1411 1412 /* sort missing IE before (left of) present IE */ 1413 if (!ie1) 1414 return -1; 1415 if (!ie2) 1416 return 1; 1417 1418 switch (mode) { 1419 case BSS_CMP_HIDE_ZLEN: 1420 /* 1421 * In ZLEN mode we assume the BSS entry we're 1422 * looking for has a zero-length SSID. So if 1423 * the one we're looking at right now has that, 1424 * return 0. Otherwise, return the difference 1425 * in length, but since we're looking for the 1426 * 0-length it's really equivalent to returning 1427 * the length of the one we're looking at. 1428 * 1429 * No content comparison is needed as we assume 1430 * the content length is zero. 1431 */ 1432 return ie2[1]; 1433 case BSS_CMP_REGULAR: 1434 default: 1435 /* sort by length first, then by contents */ 1436 if (ie1[1] != ie2[1]) 1437 return ie2[1] - ie1[1]; 1438 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1439 case BSS_CMP_HIDE_NUL: 1440 if (ie1[1] != ie2[1]) 1441 return ie2[1] - ie1[1]; 1442 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */ 1443 for (i = 0; i < ie2[1]; i++) 1444 if (ie2[i + 2]) 1445 return -1; 1446 return 0; 1447 } 1448 } 1449 1450 static bool cfg80211_bss_type_match(u16 capability, 1451 enum nl80211_band band, 1452 enum ieee80211_bss_type bss_type) 1453 { 1454 bool ret = true; 1455 u16 mask, val; 1456 1457 if (bss_type == IEEE80211_BSS_TYPE_ANY) 1458 return ret; 1459 1460 if (band == NL80211_BAND_60GHZ) { 1461 mask = WLAN_CAPABILITY_DMG_TYPE_MASK; 1462 switch (bss_type) { 1463 case IEEE80211_BSS_TYPE_ESS: 1464 val = WLAN_CAPABILITY_DMG_TYPE_AP; 1465 break; 1466 case IEEE80211_BSS_TYPE_PBSS: 1467 val = WLAN_CAPABILITY_DMG_TYPE_PBSS; 1468 break; 1469 case IEEE80211_BSS_TYPE_IBSS: 1470 val = WLAN_CAPABILITY_DMG_TYPE_IBSS; 1471 break; 1472 default: 1473 return false; 1474 } 1475 } else { 1476 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS; 1477 switch (bss_type) { 1478 case IEEE80211_BSS_TYPE_ESS: 1479 val = WLAN_CAPABILITY_ESS; 1480 break; 1481 case IEEE80211_BSS_TYPE_IBSS: 1482 val = WLAN_CAPABILITY_IBSS; 1483 break; 1484 case IEEE80211_BSS_TYPE_MBSS: 1485 val = 0; 1486 break; 1487 default: 1488 return false; 1489 } 1490 } 1491 1492 ret = ((capability & mask) == val); 1493 return ret; 1494 } 1495 1496 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1497 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy, 1498 struct ieee80211_channel *channel, 1499 const u8 *bssid, 1500 const u8 *ssid, size_t ssid_len, 1501 enum ieee80211_bss_type bss_type, 1502 enum ieee80211_privacy privacy) 1503 { 1504 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1505 struct cfg80211_internal_bss *bss, *res = NULL; 1506 unsigned long now = jiffies; 1507 int bss_privacy; 1508 1509 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type, 1510 privacy); 1511 1512 spin_lock_bh(&rdev->bss_lock); 1513 1514 list_for_each_entry(bss, &rdev->bss_list, list) { 1515 if (!cfg80211_bss_type_match(bss->pub.capability, 1516 bss->pub.channel->band, bss_type)) 1517 continue; 1518 1519 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY); 1520 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) || 1521 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy)) 1522 continue; 1523 if (channel && bss->pub.channel != channel) 1524 continue; 1525 if (!is_valid_ether_addr(bss->pub.bssid)) 1526 continue; 1527 /* Don't get expired BSS structs */ 1528 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) && 1529 !atomic_read(&bss->hold)) 1530 continue; 1531 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) { 1532 res = bss; 1533 bss_ref_get(rdev, res); 1534 break; 1535 } 1536 } 1537 1538 spin_unlock_bh(&rdev->bss_lock); 1539 if (!res) 1540 return NULL; 1541 trace_cfg80211_return_bss(&res->pub); 1542 return &res->pub; 1543 } 1544 EXPORT_SYMBOL(cfg80211_get_bss); 1545 1546 static void rb_insert_bss(struct cfg80211_registered_device *rdev, 1547 struct cfg80211_internal_bss *bss) 1548 { 1549 struct rb_node **p = &rdev->bss_tree.rb_node; 1550 struct rb_node *parent = NULL; 1551 struct cfg80211_internal_bss *tbss; 1552 int cmp; 1553 1554 while (*p) { 1555 parent = *p; 1556 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn); 1557 1558 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR); 1559 1560 if (WARN_ON(!cmp)) { 1561 /* will sort of leak this BSS */ 1562 return; 1563 } 1564 1565 if (cmp < 0) 1566 p = &(*p)->rb_left; 1567 else 1568 p = &(*p)->rb_right; 1569 } 1570 1571 rb_link_node(&bss->rbn, parent, p); 1572 rb_insert_color(&bss->rbn, &rdev->bss_tree); 1573 } 1574 1575 static struct cfg80211_internal_bss * 1576 rb_find_bss(struct cfg80211_registered_device *rdev, 1577 struct cfg80211_internal_bss *res, 1578 enum bss_compare_mode mode) 1579 { 1580 struct rb_node *n = rdev->bss_tree.rb_node; 1581 struct cfg80211_internal_bss *bss; 1582 int r; 1583 1584 while (n) { 1585 bss = rb_entry(n, struct cfg80211_internal_bss, rbn); 1586 r = cmp_bss(&res->pub, &bss->pub, mode); 1587 1588 if (r == 0) 1589 return bss; 1590 else if (r < 0) 1591 n = n->rb_left; 1592 else 1593 n = n->rb_right; 1594 } 1595 1596 return NULL; 1597 } 1598 1599 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev, 1600 struct cfg80211_internal_bss *new) 1601 { 1602 const struct cfg80211_bss_ies *ies; 1603 struct cfg80211_internal_bss *bss; 1604 const u8 *ie; 1605 int i, ssidlen; 1606 u8 fold = 0; 1607 u32 n_entries = 0; 1608 1609 ies = rcu_access_pointer(new->pub.beacon_ies); 1610 if (WARN_ON(!ies)) 1611 return false; 1612 1613 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1614 if (!ie) { 1615 /* nothing to do */ 1616 return true; 1617 } 1618 1619 ssidlen = ie[1]; 1620 for (i = 0; i < ssidlen; i++) 1621 fold |= ie[2 + i]; 1622 1623 if (fold) { 1624 /* not a hidden SSID */ 1625 return true; 1626 } 1627 1628 /* This is the bad part ... */ 1629 1630 list_for_each_entry(bss, &rdev->bss_list, list) { 1631 /* 1632 * we're iterating all the entries anyway, so take the 1633 * opportunity to validate the list length accounting 1634 */ 1635 n_entries++; 1636 1637 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid)) 1638 continue; 1639 if (bss->pub.channel != new->pub.channel) 1640 continue; 1641 if (bss->pub.scan_width != new->pub.scan_width) 1642 continue; 1643 if (rcu_access_pointer(bss->pub.beacon_ies)) 1644 continue; 1645 ies = rcu_access_pointer(bss->pub.ies); 1646 if (!ies) 1647 continue; 1648 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1649 if (!ie) 1650 continue; 1651 if (ssidlen && ie[1] != ssidlen) 1652 continue; 1653 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss)) 1654 continue; 1655 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list))) 1656 list_del(&bss->hidden_list); 1657 /* combine them */ 1658 list_add(&bss->hidden_list, &new->hidden_list); 1659 bss->pub.hidden_beacon_bss = &new->pub; 1660 new->refcount += bss->refcount; 1661 rcu_assign_pointer(bss->pub.beacon_ies, 1662 new->pub.beacon_ies); 1663 } 1664 1665 WARN_ONCE(n_entries != rdev->bss_entries, 1666 "rdev bss entries[%d]/list[len:%d] corruption\n", 1667 rdev->bss_entries, n_entries); 1668 1669 return true; 1670 } 1671 1672 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known, 1673 const struct cfg80211_bss_ies *new_ies, 1674 const struct cfg80211_bss_ies *old_ies) 1675 { 1676 struct cfg80211_internal_bss *bss; 1677 1678 /* Assign beacon IEs to all sub entries */ 1679 list_for_each_entry(bss, &known->hidden_list, hidden_list) { 1680 const struct cfg80211_bss_ies *ies; 1681 1682 ies = rcu_access_pointer(bss->pub.beacon_ies); 1683 WARN_ON(ies != old_ies); 1684 1685 rcu_assign_pointer(bss->pub.beacon_ies, new_ies); 1686 } 1687 } 1688 1689 static bool 1690 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev, 1691 struct cfg80211_internal_bss *known, 1692 struct cfg80211_internal_bss *new, 1693 bool signal_valid) 1694 { 1695 lockdep_assert_held(&rdev->bss_lock); 1696 1697 /* Update IEs */ 1698 if (rcu_access_pointer(new->pub.proberesp_ies)) { 1699 const struct cfg80211_bss_ies *old; 1700 1701 old = rcu_access_pointer(known->pub.proberesp_ies); 1702 1703 rcu_assign_pointer(known->pub.proberesp_ies, 1704 new->pub.proberesp_ies); 1705 /* Override possible earlier Beacon frame IEs */ 1706 rcu_assign_pointer(known->pub.ies, 1707 new->pub.proberesp_ies); 1708 if (old) 1709 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1710 } else if (rcu_access_pointer(new->pub.beacon_ies)) { 1711 const struct cfg80211_bss_ies *old; 1712 1713 if (known->pub.hidden_beacon_bss && 1714 !list_empty(&known->hidden_list)) { 1715 const struct cfg80211_bss_ies *f; 1716 1717 /* The known BSS struct is one of the probe 1718 * response members of a group, but we're 1719 * receiving a beacon (beacon_ies in the new 1720 * bss is used). This can only mean that the 1721 * AP changed its beacon from not having an 1722 * SSID to showing it, which is confusing so 1723 * drop this information. 1724 */ 1725 1726 f = rcu_access_pointer(new->pub.beacon_ies); 1727 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head); 1728 return false; 1729 } 1730 1731 old = rcu_access_pointer(known->pub.beacon_ies); 1732 1733 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies); 1734 1735 /* Override IEs if they were from a beacon before */ 1736 if (old == rcu_access_pointer(known->pub.ies)) 1737 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies); 1738 1739 cfg80211_update_hidden_bsses(known, 1740 rcu_access_pointer(new->pub.beacon_ies), 1741 old); 1742 1743 if (old) 1744 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1745 } 1746 1747 known->pub.beacon_interval = new->pub.beacon_interval; 1748 1749 /* don't update the signal if beacon was heard on 1750 * adjacent channel. 1751 */ 1752 if (signal_valid) 1753 known->pub.signal = new->pub.signal; 1754 known->pub.capability = new->pub.capability; 1755 known->ts = new->ts; 1756 known->ts_boottime = new->ts_boottime; 1757 known->parent_tsf = new->parent_tsf; 1758 known->pub.chains = new->pub.chains; 1759 memcpy(known->pub.chain_signal, new->pub.chain_signal, 1760 IEEE80211_MAX_CHAINS); 1761 ether_addr_copy(known->parent_bssid, new->parent_bssid); 1762 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator; 1763 known->pub.bssid_index = new->pub.bssid_index; 1764 1765 return true; 1766 } 1767 1768 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1769 static struct cfg80211_internal_bss * 1770 __cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1771 struct cfg80211_internal_bss *tmp, 1772 bool signal_valid, unsigned long ts) 1773 { 1774 struct cfg80211_internal_bss *found = NULL; 1775 1776 if (WARN_ON(!tmp->pub.channel)) 1777 return NULL; 1778 1779 tmp->ts = ts; 1780 1781 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) { 1782 return NULL; 1783 } 1784 1785 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR); 1786 1787 if (found) { 1788 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid)) 1789 return NULL; 1790 } else { 1791 struct cfg80211_internal_bss *new; 1792 struct cfg80211_internal_bss *hidden; 1793 struct cfg80211_bss_ies *ies; 1794 1795 /* 1796 * create a copy -- the "res" variable that is passed in 1797 * is allocated on the stack since it's not needed in the 1798 * more common case of an update 1799 */ 1800 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size, 1801 GFP_ATOMIC); 1802 if (!new) { 1803 ies = (void *)rcu_dereference(tmp->pub.beacon_ies); 1804 if (ies) 1805 kfree_rcu(ies, rcu_head); 1806 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies); 1807 if (ies) 1808 kfree_rcu(ies, rcu_head); 1809 return NULL; 1810 } 1811 memcpy(new, tmp, sizeof(*new)); 1812 new->refcount = 1; 1813 INIT_LIST_HEAD(&new->hidden_list); 1814 INIT_LIST_HEAD(&new->pub.nontrans_list); 1815 /* we'll set this later if it was non-NULL */ 1816 new->pub.transmitted_bss = NULL; 1817 1818 if (rcu_access_pointer(tmp->pub.proberesp_ies)) { 1819 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN); 1820 if (!hidden) 1821 hidden = rb_find_bss(rdev, tmp, 1822 BSS_CMP_HIDE_NUL); 1823 if (hidden) { 1824 new->pub.hidden_beacon_bss = &hidden->pub; 1825 list_add(&new->hidden_list, 1826 &hidden->hidden_list); 1827 hidden->refcount++; 1828 rcu_assign_pointer(new->pub.beacon_ies, 1829 hidden->pub.beacon_ies); 1830 } 1831 } else { 1832 /* 1833 * Ok so we found a beacon, and don't have an entry. If 1834 * it's a beacon with hidden SSID, we might be in for an 1835 * expensive search for any probe responses that should 1836 * be grouped with this beacon for updates ... 1837 */ 1838 if (!cfg80211_combine_bsses(rdev, new)) { 1839 bss_ref_put(rdev, new); 1840 return NULL; 1841 } 1842 } 1843 1844 if (rdev->bss_entries >= bss_entries_limit && 1845 !cfg80211_bss_expire_oldest(rdev)) { 1846 bss_ref_put(rdev, new); 1847 return NULL; 1848 } 1849 1850 /* This must be before the call to bss_ref_get */ 1851 if (tmp->pub.transmitted_bss) { 1852 new->pub.transmitted_bss = tmp->pub.transmitted_bss; 1853 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss)); 1854 } 1855 1856 list_add_tail(&new->list, &rdev->bss_list); 1857 rdev->bss_entries++; 1858 rb_insert_bss(rdev, new); 1859 found = new; 1860 } 1861 1862 rdev->bss_generation++; 1863 bss_ref_get(rdev, found); 1864 1865 return found; 1866 } 1867 1868 struct cfg80211_internal_bss * 1869 cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1870 struct cfg80211_internal_bss *tmp, 1871 bool signal_valid, unsigned long ts) 1872 { 1873 struct cfg80211_internal_bss *res; 1874 1875 spin_lock_bh(&rdev->bss_lock); 1876 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts); 1877 spin_unlock_bh(&rdev->bss_lock); 1878 1879 return res; 1880 } 1881 1882 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen, 1883 enum nl80211_band band) 1884 { 1885 const struct element *tmp; 1886 1887 if (band == NL80211_BAND_6GHZ) { 1888 struct ieee80211_he_operation *he_oper; 1889 1890 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, 1891 ielen); 1892 if (tmp && tmp->datalen >= sizeof(*he_oper) && 1893 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) { 1894 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 1895 1896 he_oper = (void *)&tmp->data[1]; 1897 1898 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 1899 if (!he_6ghz_oper) 1900 return -1; 1901 1902 return he_6ghz_oper->primary; 1903 } 1904 } else if (band == NL80211_BAND_S1GHZ) { 1905 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen); 1906 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) { 1907 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data; 1908 1909 return s1gop->oper_ch; 1910 } 1911 } else { 1912 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen); 1913 if (tmp && tmp->datalen == 1) 1914 return tmp->data[0]; 1915 1916 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen); 1917 if (tmp && 1918 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) { 1919 struct ieee80211_ht_operation *htop = (void *)tmp->data; 1920 1921 return htop->primary_chan; 1922 } 1923 } 1924 1925 return -1; 1926 } 1927 EXPORT_SYMBOL(cfg80211_get_ies_channel_number); 1928 1929 /* 1930 * Update RX channel information based on the available frame payload 1931 * information. This is mainly for the 2.4 GHz band where frames can be received 1932 * from neighboring channels and the Beacon frames use the DSSS Parameter Set 1933 * element to indicate the current (transmitting) channel, but this might also 1934 * be needed on other bands if RX frequency does not match with the actual 1935 * operating channel of a BSS, or if the AP reports a different primary channel. 1936 */ 1937 static struct ieee80211_channel * 1938 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen, 1939 struct ieee80211_channel *channel, 1940 enum nl80211_bss_scan_width scan_width) 1941 { 1942 u32 freq; 1943 int channel_number; 1944 struct ieee80211_channel *alt_channel; 1945 1946 channel_number = cfg80211_get_ies_channel_number(ie, ielen, 1947 channel->band); 1948 1949 if (channel_number < 0) { 1950 /* No channel information in frame payload */ 1951 return channel; 1952 } 1953 1954 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band); 1955 1956 /* 1957 * Frame info (beacon/prob res) is the same as received channel, 1958 * no need for further processing. 1959 */ 1960 if (freq == ieee80211_channel_to_khz(channel)) 1961 return channel; 1962 1963 alt_channel = ieee80211_get_channel_khz(wiphy, freq); 1964 if (!alt_channel) { 1965 if (channel->band == NL80211_BAND_2GHZ || 1966 channel->band == NL80211_BAND_6GHZ) { 1967 /* 1968 * Better not allow unexpected channels when that could 1969 * be going beyond the 1-11 range (e.g., discovering 1970 * BSS on channel 12 when radio is configured for 1971 * channel 11) or beyond the 6 GHz channel range. 1972 */ 1973 return NULL; 1974 } 1975 1976 /* No match for the payload channel number - ignore it */ 1977 return channel; 1978 } 1979 1980 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 || 1981 scan_width == NL80211_BSS_CHAN_WIDTH_5) { 1982 /* 1983 * Ignore channel number in 5 and 10 MHz channels where there 1984 * may not be an n:1 or 1:n mapping between frequencies and 1985 * channel numbers. 1986 */ 1987 return channel; 1988 } 1989 1990 /* 1991 * Use the channel determined through the payload channel number 1992 * instead of the RX channel reported by the driver. 1993 */ 1994 if (alt_channel->flags & IEEE80211_CHAN_DISABLED) 1995 return NULL; 1996 return alt_channel; 1997 } 1998 1999 struct cfg80211_inform_single_bss_data { 2000 struct cfg80211_inform_bss *drv_data; 2001 enum cfg80211_bss_frame_type ftype; 2002 struct ieee80211_channel *channel; 2003 u8 bssid[ETH_ALEN]; 2004 u64 tsf; 2005 u16 capability; 2006 u16 beacon_interval; 2007 const u8 *ie; 2008 size_t ielen; 2009 2010 enum { 2011 BSS_SOURCE_DIRECT = 0, 2012 BSS_SOURCE_MBSSID, 2013 BSS_SOURCE_STA_PROFILE, 2014 } bss_source; 2015 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */ 2016 struct cfg80211_bss *source_bss; 2017 u8 max_bssid_indicator; 2018 u8 bssid_index; 2019 }; 2020 2021 /* Returned bss is reference counted and must be cleaned up appropriately. */ 2022 static struct cfg80211_bss * 2023 cfg80211_inform_single_bss_data(struct wiphy *wiphy, 2024 struct cfg80211_inform_single_bss_data *data, 2025 gfp_t gfp) 2026 { 2027 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2028 struct cfg80211_inform_bss *drv_data = data->drv_data; 2029 struct cfg80211_bss_ies *ies; 2030 struct ieee80211_channel *channel; 2031 struct cfg80211_internal_bss tmp = {}, *res; 2032 int bss_type; 2033 bool signal_valid; 2034 unsigned long ts; 2035 2036 if (WARN_ON(!wiphy)) 2037 return NULL; 2038 2039 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 2040 (drv_data->signal < 0 || drv_data->signal > 100))) 2041 return NULL; 2042 2043 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss)) 2044 return NULL; 2045 2046 channel = data->channel; 2047 if (!channel) 2048 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen, 2049 drv_data->chan, 2050 drv_data->scan_width); 2051 if (!channel) 2052 return NULL; 2053 2054 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN); 2055 tmp.pub.channel = channel; 2056 tmp.pub.scan_width = drv_data->scan_width; 2057 if (data->bss_source != BSS_SOURCE_STA_PROFILE) 2058 tmp.pub.signal = drv_data->signal; 2059 else 2060 tmp.pub.signal = 0; 2061 tmp.pub.beacon_interval = data->beacon_interval; 2062 tmp.pub.capability = data->capability; 2063 tmp.ts_boottime = drv_data->boottime_ns; 2064 tmp.parent_tsf = drv_data->parent_tsf; 2065 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid); 2066 2067 if (data->bss_source != BSS_SOURCE_DIRECT) { 2068 tmp.pub.transmitted_bss = data->source_bss; 2069 ts = bss_from_pub(data->source_bss)->ts; 2070 tmp.pub.bssid_index = data->bssid_index; 2071 tmp.pub.max_bssid_indicator = data->max_bssid_indicator; 2072 } else { 2073 ts = jiffies; 2074 2075 if (channel->band == NL80211_BAND_60GHZ) { 2076 bss_type = data->capability & 2077 WLAN_CAPABILITY_DMG_TYPE_MASK; 2078 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2079 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2080 regulatory_hint_found_beacon(wiphy, channel, 2081 gfp); 2082 } else { 2083 if (data->capability & WLAN_CAPABILITY_ESS) 2084 regulatory_hint_found_beacon(wiphy, channel, 2085 gfp); 2086 } 2087 } 2088 2089 /* 2090 * If we do not know here whether the IEs are from a Beacon or Probe 2091 * Response frame, we need to pick one of the options and only use it 2092 * with the driver that does not provide the full Beacon/Probe Response 2093 * frame. Use Beacon frame pointer to avoid indicating that this should 2094 * override the IEs pointer should we have received an earlier 2095 * indication of Probe Response data. 2096 */ 2097 ies = kzalloc(sizeof(*ies) + data->ielen, gfp); 2098 if (!ies) 2099 return NULL; 2100 ies->len = data->ielen; 2101 ies->tsf = data->tsf; 2102 ies->from_beacon = false; 2103 memcpy(ies->data, data->ie, data->ielen); 2104 2105 switch (data->ftype) { 2106 case CFG80211_BSS_FTYPE_BEACON: 2107 ies->from_beacon = true; 2108 fallthrough; 2109 case CFG80211_BSS_FTYPE_UNKNOWN: 2110 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 2111 break; 2112 case CFG80211_BSS_FTYPE_PRESP: 2113 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 2114 break; 2115 } 2116 rcu_assign_pointer(tmp.pub.ies, ies); 2117 2118 signal_valid = drv_data->chan == channel; 2119 spin_lock_bh(&rdev->bss_lock); 2120 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts); 2121 if (!res) 2122 goto drop; 2123 2124 rdev_inform_bss(rdev, &res->pub, ies, data->drv_data); 2125 2126 if (data->bss_source == BSS_SOURCE_MBSSID) { 2127 /* this is a nontransmitting bss, we need to add it to 2128 * transmitting bss' list if it is not there 2129 */ 2130 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) { 2131 if (__cfg80211_unlink_bss(rdev, res)) { 2132 rdev->bss_generation++; 2133 res = NULL; 2134 } 2135 } 2136 2137 if (!res) 2138 goto drop; 2139 } 2140 spin_unlock_bh(&rdev->bss_lock); 2141 2142 trace_cfg80211_return_bss(&res->pub); 2143 /* __cfg80211_bss_update gives us a referenced result */ 2144 return &res->pub; 2145 2146 drop: 2147 spin_unlock_bh(&rdev->bss_lock); 2148 return NULL; 2149 } 2150 2151 static const struct element 2152 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen, 2153 const struct element *mbssid_elem, 2154 const struct element *sub_elem) 2155 { 2156 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen; 2157 const struct element *next_mbssid; 2158 const struct element *next_sub; 2159 2160 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2161 mbssid_end, 2162 ielen - (mbssid_end - ie)); 2163 2164 /* 2165 * If it is not the last subelement in current MBSSID IE or there isn't 2166 * a next MBSSID IE - profile is complete. 2167 */ 2168 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) || 2169 !next_mbssid) 2170 return NULL; 2171 2172 /* For any length error, just return NULL */ 2173 2174 if (next_mbssid->datalen < 4) 2175 return NULL; 2176 2177 next_sub = (void *)&next_mbssid->data[1]; 2178 2179 if (next_mbssid->data + next_mbssid->datalen < 2180 next_sub->data + next_sub->datalen) 2181 return NULL; 2182 2183 if (next_sub->id != 0 || next_sub->datalen < 2) 2184 return NULL; 2185 2186 /* 2187 * Check if the first element in the next sub element is a start 2188 * of a new profile 2189 */ 2190 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ? 2191 NULL : next_mbssid; 2192 } 2193 2194 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen, 2195 const struct element *mbssid_elem, 2196 const struct element *sub_elem, 2197 u8 *merged_ie, size_t max_copy_len) 2198 { 2199 size_t copied_len = sub_elem->datalen; 2200 const struct element *next_mbssid; 2201 2202 if (sub_elem->datalen > max_copy_len) 2203 return 0; 2204 2205 memcpy(merged_ie, sub_elem->data, sub_elem->datalen); 2206 2207 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen, 2208 mbssid_elem, 2209 sub_elem))) { 2210 const struct element *next_sub = (void *)&next_mbssid->data[1]; 2211 2212 if (copied_len + next_sub->datalen > max_copy_len) 2213 break; 2214 memcpy(merged_ie + copied_len, next_sub->data, 2215 next_sub->datalen); 2216 copied_len += next_sub->datalen; 2217 } 2218 2219 return copied_len; 2220 } 2221 EXPORT_SYMBOL(cfg80211_merge_profile); 2222 2223 static void 2224 cfg80211_parse_mbssid_data(struct wiphy *wiphy, 2225 struct cfg80211_inform_single_bss_data *tx_data, 2226 struct cfg80211_bss *source_bss, 2227 gfp_t gfp) 2228 { 2229 struct cfg80211_inform_single_bss_data data = { 2230 .drv_data = tx_data->drv_data, 2231 .ftype = tx_data->ftype, 2232 .tsf = tx_data->tsf, 2233 .beacon_interval = tx_data->beacon_interval, 2234 .source_bss = source_bss, 2235 .bss_source = BSS_SOURCE_MBSSID, 2236 }; 2237 const u8 *mbssid_index_ie; 2238 const struct element *elem, *sub; 2239 u8 *new_ie, *profile; 2240 u64 seen_indices = 0; 2241 struct cfg80211_bss *bss; 2242 2243 if (!source_bss) 2244 return; 2245 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2246 tx_data->ie, tx_data->ielen)) 2247 return; 2248 if (!wiphy->support_mbssid) 2249 return; 2250 if (wiphy->support_only_he_mbssid && 2251 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, 2252 tx_data->ie, tx_data->ielen)) 2253 return; 2254 2255 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2256 if (!new_ie) 2257 return; 2258 2259 profile = kmalloc(tx_data->ielen, gfp); 2260 if (!profile) 2261 goto out; 2262 2263 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, 2264 tx_data->ie, tx_data->ielen) { 2265 if (elem->datalen < 4) 2266 continue; 2267 if (elem->data[0] < 1 || (int)elem->data[0] > 8) 2268 continue; 2269 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 2270 u8 profile_len; 2271 2272 if (sub->id != 0 || sub->datalen < 4) { 2273 /* not a valid BSS profile */ 2274 continue; 2275 } 2276 2277 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 2278 sub->data[1] != 2) { 2279 /* The first element within the Nontransmitted 2280 * BSSID Profile is not the Nontransmitted 2281 * BSSID Capability element. 2282 */ 2283 continue; 2284 } 2285 2286 memset(profile, 0, tx_data->ielen); 2287 profile_len = cfg80211_merge_profile(tx_data->ie, 2288 tx_data->ielen, 2289 elem, 2290 sub, 2291 profile, 2292 tx_data->ielen); 2293 2294 /* found a Nontransmitted BSSID Profile */ 2295 mbssid_index_ie = cfg80211_find_ie 2296 (WLAN_EID_MULTI_BSSID_IDX, 2297 profile, profile_len); 2298 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 || 2299 mbssid_index_ie[2] == 0 || 2300 mbssid_index_ie[2] > 46) { 2301 /* No valid Multiple BSSID-Index element */ 2302 continue; 2303 } 2304 2305 if (seen_indices & BIT_ULL(mbssid_index_ie[2])) 2306 /* We don't support legacy split of a profile */ 2307 net_dbg_ratelimited("Partial info for BSSID index %d\n", 2308 mbssid_index_ie[2]); 2309 2310 seen_indices |= BIT_ULL(mbssid_index_ie[2]); 2311 2312 data.bssid_index = mbssid_index_ie[2]; 2313 data.max_bssid_indicator = elem->data[0]; 2314 2315 cfg80211_gen_new_bssid(tx_data->bssid, 2316 data.max_bssid_indicator, 2317 data.bssid_index, 2318 data.bssid); 2319 2320 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 2321 data.ie = new_ie; 2322 data.ielen = cfg80211_gen_new_ie(tx_data->ie, 2323 tx_data->ielen, 2324 profile, 2325 profile_len, 2326 new_ie, 2327 IEEE80211_MAX_DATA_LEN); 2328 if (!data.ielen) 2329 continue; 2330 2331 data.capability = get_unaligned_le16(profile + 2); 2332 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp); 2333 if (!bss) 2334 break; 2335 cfg80211_put_bss(wiphy, bss); 2336 } 2337 } 2338 2339 out: 2340 kfree(new_ie); 2341 kfree(profile); 2342 } 2343 2344 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies, 2345 size_t ieslen, u8 *data, size_t data_len, 2346 u8 frag_id) 2347 { 2348 const struct element *next; 2349 ssize_t copied; 2350 u8 elem_datalen; 2351 2352 if (!elem) 2353 return -EINVAL; 2354 2355 /* elem might be invalid after the memmove */ 2356 next = (void *)(elem->data + elem->datalen); 2357 2358 elem_datalen = elem->datalen; 2359 if (elem->id == WLAN_EID_EXTENSION) { 2360 copied = elem->datalen - 1; 2361 if (copied > data_len) 2362 return -ENOSPC; 2363 2364 memmove(data, elem->data + 1, copied); 2365 } else { 2366 copied = elem->datalen; 2367 if (copied > data_len) 2368 return -ENOSPC; 2369 2370 memmove(data, elem->data, copied); 2371 } 2372 2373 /* Fragmented elements must have 255 bytes */ 2374 if (elem_datalen < 255) 2375 return copied; 2376 2377 for (elem = next; 2378 elem->data < ies + ieslen && 2379 elem->data + elem->datalen < ies + ieslen; 2380 elem = next) { 2381 /* elem might be invalid after the memmove */ 2382 next = (void *)(elem->data + elem->datalen); 2383 2384 if (elem->id != frag_id) 2385 break; 2386 2387 elem_datalen = elem->datalen; 2388 2389 if (copied + elem_datalen > data_len) 2390 return -ENOSPC; 2391 2392 memmove(data + copied, elem->data, elem_datalen); 2393 copied += elem_datalen; 2394 2395 /* Only the last fragment may be short */ 2396 if (elem_datalen != 255) 2397 break; 2398 } 2399 2400 return copied; 2401 } 2402 EXPORT_SYMBOL(cfg80211_defragment_element); 2403 2404 struct cfg80211_mle { 2405 struct ieee80211_multi_link_elem *mle; 2406 struct ieee80211_mle_per_sta_profile 2407 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS]; 2408 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS]; 2409 2410 u8 data[]; 2411 }; 2412 2413 static struct cfg80211_mle * 2414 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen, 2415 gfp_t gfp) 2416 { 2417 const struct element *elem; 2418 struct cfg80211_mle *res; 2419 size_t buf_len; 2420 ssize_t mle_len; 2421 u8 common_size, idx; 2422 2423 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1)) 2424 return NULL; 2425 2426 /* Required length for first defragmentation */ 2427 buf_len = mle->datalen - 1; 2428 for_each_element(elem, mle->data + mle->datalen, 2429 ielen - sizeof(*mle) + mle->datalen) { 2430 if (elem->id != WLAN_EID_FRAGMENT) 2431 break; 2432 2433 buf_len += elem->datalen; 2434 } 2435 2436 res = kzalloc(struct_size(res, data, buf_len), gfp); 2437 if (!res) 2438 return NULL; 2439 2440 mle_len = cfg80211_defragment_element(mle, ie, ielen, 2441 res->data, buf_len, 2442 WLAN_EID_FRAGMENT); 2443 if (mle_len < 0) 2444 goto error; 2445 2446 res->mle = (void *)res->data; 2447 2448 /* Find the sub-element area in the buffer */ 2449 common_size = ieee80211_mle_common_size((u8 *)res->mle); 2450 ie = res->data + common_size; 2451 ielen = mle_len - common_size; 2452 2453 idx = 0; 2454 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE, 2455 ie, ielen) { 2456 res->sta_prof[idx] = (void *)elem->data; 2457 res->sta_prof_len[idx] = elem->datalen; 2458 2459 idx++; 2460 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS) 2461 break; 2462 } 2463 if (!for_each_element_completed(elem, ie, ielen)) 2464 goto error; 2465 2466 /* Defragment sta_info in-place */ 2467 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx]; 2468 idx++) { 2469 if (res->sta_prof_len[idx] < 255) 2470 continue; 2471 2472 elem = (void *)res->sta_prof[idx] - 2; 2473 2474 if (idx + 1 < ARRAY_SIZE(res->sta_prof) && 2475 res->sta_prof[idx + 1]) 2476 buf_len = (u8 *)res->sta_prof[idx + 1] - 2477 (u8 *)res->sta_prof[idx]; 2478 else 2479 buf_len = ielen + ie - (u8 *)elem; 2480 2481 res->sta_prof_len[idx] = 2482 cfg80211_defragment_element(elem, 2483 (u8 *)elem, buf_len, 2484 (u8 *)res->sta_prof[idx], 2485 buf_len, 2486 IEEE80211_MLE_SUBELEM_FRAGMENT); 2487 if (res->sta_prof_len[idx] < 0) 2488 goto error; 2489 } 2490 2491 return res; 2492 2493 error: 2494 kfree(res); 2495 return NULL; 2496 } 2497 2498 static bool 2499 cfg80211_tbtt_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id, 2500 const struct ieee80211_neighbor_ap_info **ap_info, 2501 const u8 **tbtt_info) 2502 { 2503 const struct ieee80211_neighbor_ap_info *info; 2504 const struct element *rnr; 2505 const u8 *pos, *end; 2506 2507 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, ie, ielen) { 2508 pos = rnr->data; 2509 end = rnr->data + rnr->datalen; 2510 2511 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ 2512 while (sizeof(*info) <= end - pos) { 2513 const struct ieee80211_rnr_mld_params *mld_params; 2514 u16 params; 2515 u8 length, i, count, mld_params_offset; 2516 u8 type, lid; 2517 2518 info = (void *)pos; 2519 count = u8_get_bits(info->tbtt_info_hdr, 2520 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1; 2521 length = info->tbtt_info_len; 2522 2523 pos += sizeof(*info); 2524 2525 if (count * length > end - pos) 2526 return false; 2527 2528 type = u8_get_bits(info->tbtt_info_hdr, 2529 IEEE80211_AP_INFO_TBTT_HDR_TYPE); 2530 2531 /* Only accept full TBTT information. NSTR mobile APs 2532 * use the shortened version, but we ignore them here. 2533 */ 2534 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT && 2535 length >= 2536 offsetofend(struct ieee80211_tbtt_info_ge_11, 2537 mld_params)) { 2538 mld_params_offset = 2539 offsetof(struct ieee80211_tbtt_info_ge_11, mld_params); 2540 } else { 2541 pos += count * length; 2542 continue; 2543 } 2544 2545 for (i = 0; i < count; i++) { 2546 mld_params = (void *)pos + mld_params_offset; 2547 params = le16_to_cpu(mld_params->params); 2548 2549 lid = u16_get_bits(params, 2550 IEEE80211_RNR_MLD_PARAMS_LINK_ID); 2551 2552 if (mld_id == mld_params->mld_id && 2553 link_id == lid) { 2554 *ap_info = info; 2555 *tbtt_info = pos; 2556 2557 return true; 2558 } 2559 2560 pos += length; 2561 } 2562 } 2563 } 2564 2565 return false; 2566 } 2567 2568 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy, 2569 struct cfg80211_inform_single_bss_data *tx_data, 2570 struct cfg80211_bss *source_bss, 2571 gfp_t gfp) 2572 { 2573 struct cfg80211_inform_single_bss_data data = { 2574 .drv_data = tx_data->drv_data, 2575 .ftype = tx_data->ftype, 2576 .source_bss = source_bss, 2577 .bss_source = BSS_SOURCE_STA_PROFILE, 2578 }; 2579 struct ieee80211_multi_link_elem *ml_elem; 2580 const struct element *elem; 2581 struct cfg80211_mle *mle; 2582 u16 control; 2583 u8 *new_ie; 2584 struct cfg80211_bss *bss; 2585 int mld_id; 2586 u16 seen_links = 0; 2587 const u8 *pos; 2588 u8 i; 2589 2590 if (!source_bss) 2591 return; 2592 2593 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP) 2594 return; 2595 2596 elem = cfg80211_find_ext_elem(WLAN_EID_EXT_EHT_MULTI_LINK, 2597 tx_data->ie, tx_data->ielen); 2598 if (!elem || !ieee80211_mle_size_ok(elem->data + 1, elem->datalen - 1)) 2599 return; 2600 2601 ml_elem = (void *)elem->data + 1; 2602 control = le16_to_cpu(ml_elem->control); 2603 if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) != 2604 IEEE80211_ML_CONTROL_TYPE_BASIC) 2605 return; 2606 2607 /* Must be present when transmitted by an AP (in a probe response) */ 2608 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) || 2609 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) || 2610 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)) 2611 return; 2612 2613 /* length + MLD MAC address + link ID info + BSS Params Change Count */ 2614 pos = ml_elem->variable + 1 + 6 + 1 + 1; 2615 2616 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)) 2617 pos += 2; 2618 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_EML_CAPA)) 2619 pos += 2; 2620 2621 /* MLD capabilities and operations */ 2622 pos += 2; 2623 2624 /* Not included when the (nontransmitted) AP is responding itself, 2625 * but defined to zero then (Draft P802.11be_D3.0, 9.4.2.170.2) 2626 */ 2627 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MLD_ID)) { 2628 mld_id = *pos; 2629 pos += 1; 2630 } else { 2631 mld_id = 0; 2632 } 2633 2634 /* Extended MLD capabilities and operations */ 2635 pos += 2; 2636 2637 /* Fully defrag the ML element for sta information/profile iteration */ 2638 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp); 2639 if (!mle) 2640 return; 2641 2642 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2643 if (!new_ie) 2644 goto out; 2645 2646 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) { 2647 const struct ieee80211_neighbor_ap_info *ap_info; 2648 enum nl80211_band band; 2649 u32 freq; 2650 const u8 *profile; 2651 const u8 *tbtt_info; 2652 ssize_t profile_len; 2653 u8 link_id; 2654 2655 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i], 2656 mle->sta_prof_len[i])) 2657 continue; 2658 2659 control = le16_to_cpu(mle->sta_prof[i]->control); 2660 2661 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE)) 2662 continue; 2663 2664 link_id = u16_get_bits(control, 2665 IEEE80211_MLE_STA_CONTROL_LINK_ID); 2666 if (seen_links & BIT(link_id)) 2667 break; 2668 seen_links |= BIT(link_id); 2669 2670 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) || 2671 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) || 2672 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)) 2673 continue; 2674 2675 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN); 2676 data.beacon_interval = 2677 get_unaligned_le16(mle->sta_prof[i]->variable + 6); 2678 data.tsf = tx_data->tsf + 2679 get_unaligned_le64(mle->sta_prof[i]->variable + 8); 2680 2681 /* sta_info_len counts itself */ 2682 profile = mle->sta_prof[i]->variable + 2683 mle->sta_prof[i]->sta_info_len - 1; 2684 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] - 2685 profile; 2686 2687 if (profile_len < 2) 2688 continue; 2689 2690 data.capability = get_unaligned_le16(profile); 2691 profile += 2; 2692 profile_len -= 2; 2693 2694 /* Find in RNR to look up channel information */ 2695 if (!cfg80211_tbtt_info_for_mld_ap(tx_data->ie, tx_data->ielen, 2696 mld_id, link_id, 2697 &ap_info, &tbtt_info)) 2698 continue; 2699 2700 /* We could sanity check the BSSID is included */ 2701 2702 if (!ieee80211_operating_class_to_band(ap_info->op_class, 2703 &band)) 2704 continue; 2705 2706 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band); 2707 data.channel = ieee80211_get_channel_khz(wiphy, freq); 2708 2709 /* Generate new elements */ 2710 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 2711 data.ie = new_ie; 2712 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen, 2713 profile, profile_len, 2714 new_ie, 2715 IEEE80211_MAX_DATA_LEN); 2716 if (!data.ielen) 2717 continue; 2718 2719 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp); 2720 if (!bss) 2721 break; 2722 cfg80211_put_bss(wiphy, bss); 2723 } 2724 2725 out: 2726 kfree(new_ie); 2727 kfree(mle); 2728 } 2729 2730 struct cfg80211_bss * 2731 cfg80211_inform_bss_data(struct wiphy *wiphy, 2732 struct cfg80211_inform_bss *data, 2733 enum cfg80211_bss_frame_type ftype, 2734 const u8 *bssid, u64 tsf, u16 capability, 2735 u16 beacon_interval, const u8 *ie, size_t ielen, 2736 gfp_t gfp) 2737 { 2738 struct cfg80211_inform_single_bss_data inform_data = { 2739 .drv_data = data, 2740 .ftype = ftype, 2741 .tsf = tsf, 2742 .capability = capability, 2743 .beacon_interval = beacon_interval, 2744 .ie = ie, 2745 .ielen = ielen, 2746 }; 2747 struct cfg80211_bss *res; 2748 2749 memcpy(inform_data.bssid, bssid, ETH_ALEN); 2750 2751 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp); 2752 if (!res) 2753 return NULL; 2754 2755 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp); 2756 2757 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp); 2758 2759 return res; 2760 } 2761 EXPORT_SYMBOL(cfg80211_inform_bss_data); 2762 2763 /* cfg80211_inform_bss_width_frame helper */ 2764 static struct cfg80211_bss * 2765 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy, 2766 struct cfg80211_inform_bss *data, 2767 struct ieee80211_mgmt *mgmt, size_t len, 2768 gfp_t gfp) 2769 { 2770 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2771 struct cfg80211_internal_bss tmp = {}, *res; 2772 struct cfg80211_bss_ies *ies; 2773 struct ieee80211_channel *channel; 2774 bool signal_valid; 2775 struct ieee80211_ext *ext = NULL; 2776 u8 *bssid, *variable; 2777 u16 capability, beacon_int; 2778 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt, 2779 u.probe_resp.variable); 2780 int bss_type; 2781 2782 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) != 2783 offsetof(struct ieee80211_mgmt, u.beacon.variable)); 2784 2785 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len); 2786 2787 if (WARN_ON(!mgmt)) 2788 return NULL; 2789 2790 if (WARN_ON(!wiphy)) 2791 return NULL; 2792 2793 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 2794 (data->signal < 0 || data->signal > 100))) 2795 return NULL; 2796 2797 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) { 2798 ext = (void *) mgmt; 2799 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon); 2800 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 2801 min_hdr_len = offsetof(struct ieee80211_ext, 2802 u.s1g_short_beacon.variable); 2803 } 2804 2805 if (WARN_ON(len < min_hdr_len)) 2806 return NULL; 2807 2808 ielen = len - min_hdr_len; 2809 variable = mgmt->u.probe_resp.variable; 2810 if (ext) { 2811 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 2812 variable = ext->u.s1g_short_beacon.variable; 2813 else 2814 variable = ext->u.s1g_beacon.variable; 2815 } 2816 2817 channel = cfg80211_get_bss_channel(wiphy, variable, 2818 ielen, data->chan, data->scan_width); 2819 if (!channel) 2820 return NULL; 2821 2822 if (ext) { 2823 const struct ieee80211_s1g_bcn_compat_ie *compat; 2824 const struct element *elem; 2825 2826 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, 2827 variable, ielen); 2828 if (!elem) 2829 return NULL; 2830 if (elem->datalen < sizeof(*compat)) 2831 return NULL; 2832 compat = (void *)elem->data; 2833 bssid = ext->u.s1g_beacon.sa; 2834 capability = le16_to_cpu(compat->compat_info); 2835 beacon_int = le16_to_cpu(compat->beacon_int); 2836 } else { 2837 bssid = mgmt->bssid; 2838 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int); 2839 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info); 2840 } 2841 2842 if (channel->band == NL80211_BAND_60GHZ) { 2843 bss_type = capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 2844 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2845 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2846 regulatory_hint_found_beacon(wiphy, channel, gfp); 2847 } else { 2848 if (capability & WLAN_CAPABILITY_ESS) 2849 regulatory_hint_found_beacon(wiphy, channel, gfp); 2850 } 2851 2852 ies = kzalloc(sizeof(*ies) + ielen, gfp); 2853 if (!ies) 2854 return NULL; 2855 ies->len = ielen; 2856 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 2857 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) || 2858 ieee80211_is_s1g_beacon(mgmt->frame_control); 2859 memcpy(ies->data, variable, ielen); 2860 2861 if (ieee80211_is_probe_resp(mgmt->frame_control)) 2862 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 2863 else 2864 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 2865 rcu_assign_pointer(tmp.pub.ies, ies); 2866 2867 memcpy(tmp.pub.bssid, bssid, ETH_ALEN); 2868 tmp.pub.beacon_interval = beacon_int; 2869 tmp.pub.capability = capability; 2870 tmp.pub.channel = channel; 2871 tmp.pub.scan_width = data->scan_width; 2872 tmp.pub.signal = data->signal; 2873 tmp.ts_boottime = data->boottime_ns; 2874 tmp.parent_tsf = data->parent_tsf; 2875 tmp.pub.chains = data->chains; 2876 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS); 2877 ether_addr_copy(tmp.parent_bssid, data->parent_bssid); 2878 2879 signal_valid = data->chan == channel; 2880 spin_lock_bh(&rdev->bss_lock); 2881 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, jiffies); 2882 if (!res) 2883 goto drop; 2884 2885 rdev_inform_bss(rdev, &res->pub, ies, data->drv_data); 2886 2887 spin_unlock_bh(&rdev->bss_lock); 2888 2889 trace_cfg80211_return_bss(&res->pub); 2890 /* __cfg80211_bss_update gives us a referenced result */ 2891 return &res->pub; 2892 2893 drop: 2894 spin_unlock_bh(&rdev->bss_lock); 2895 return NULL; 2896 } 2897 2898 struct cfg80211_bss * 2899 cfg80211_inform_bss_frame_data(struct wiphy *wiphy, 2900 struct cfg80211_inform_bss *data, 2901 struct ieee80211_mgmt *mgmt, size_t len, 2902 gfp_t gfp) 2903 { 2904 struct cfg80211_inform_single_bss_data inform_data = { 2905 .drv_data = data, 2906 .ie = mgmt->u.probe_resp.variable, 2907 .ielen = len - offsetof(struct ieee80211_mgmt, 2908 u.probe_resp.variable), 2909 }; 2910 struct cfg80211_bss *res; 2911 2912 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt, 2913 len, gfp); 2914 if (!res) 2915 return NULL; 2916 2917 /* don't do any further MBSSID/ML handling for S1G */ 2918 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 2919 return res; 2920 2921 inform_data.ftype = ieee80211_is_beacon(mgmt->frame_control) ? 2922 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP; 2923 memcpy(inform_data.bssid, mgmt->bssid, ETH_ALEN); 2924 inform_data.tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 2925 inform_data.beacon_interval = 2926 le16_to_cpu(mgmt->u.probe_resp.beacon_int); 2927 2928 /* process each non-transmitting bss */ 2929 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp); 2930 2931 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp); 2932 2933 return res; 2934 } 2935 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data); 2936 2937 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2938 { 2939 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2940 2941 if (!pub) 2942 return; 2943 2944 spin_lock_bh(&rdev->bss_lock); 2945 bss_ref_get(rdev, bss_from_pub(pub)); 2946 spin_unlock_bh(&rdev->bss_lock); 2947 } 2948 EXPORT_SYMBOL(cfg80211_ref_bss); 2949 2950 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2951 { 2952 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2953 2954 if (!pub) 2955 return; 2956 2957 spin_lock_bh(&rdev->bss_lock); 2958 bss_ref_put(rdev, bss_from_pub(pub)); 2959 spin_unlock_bh(&rdev->bss_lock); 2960 } 2961 EXPORT_SYMBOL(cfg80211_put_bss); 2962 2963 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2964 { 2965 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2966 struct cfg80211_internal_bss *bss, *tmp1; 2967 struct cfg80211_bss *nontrans_bss, *tmp; 2968 2969 if (WARN_ON(!pub)) 2970 return; 2971 2972 bss = bss_from_pub(pub); 2973 2974 spin_lock_bh(&rdev->bss_lock); 2975 if (list_empty(&bss->list)) 2976 goto out; 2977 2978 list_for_each_entry_safe(nontrans_bss, tmp, 2979 &pub->nontrans_list, 2980 nontrans_list) { 2981 tmp1 = bss_from_pub(nontrans_bss); 2982 if (__cfg80211_unlink_bss(rdev, tmp1)) 2983 rdev->bss_generation++; 2984 } 2985 2986 if (__cfg80211_unlink_bss(rdev, bss)) 2987 rdev->bss_generation++; 2988 out: 2989 spin_unlock_bh(&rdev->bss_lock); 2990 } 2991 EXPORT_SYMBOL(cfg80211_unlink_bss); 2992 2993 void cfg80211_bss_iter(struct wiphy *wiphy, 2994 struct cfg80211_chan_def *chandef, 2995 void (*iter)(struct wiphy *wiphy, 2996 struct cfg80211_bss *bss, 2997 void *data), 2998 void *iter_data) 2999 { 3000 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3001 struct cfg80211_internal_bss *bss; 3002 3003 spin_lock_bh(&rdev->bss_lock); 3004 3005 list_for_each_entry(bss, &rdev->bss_list, list) { 3006 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel, 3007 false)) 3008 iter(wiphy, &bss->pub, iter_data); 3009 } 3010 3011 spin_unlock_bh(&rdev->bss_lock); 3012 } 3013 EXPORT_SYMBOL(cfg80211_bss_iter); 3014 3015 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, 3016 unsigned int link_id, 3017 struct ieee80211_channel *chan) 3018 { 3019 struct wiphy *wiphy = wdev->wiphy; 3020 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3021 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss; 3022 struct cfg80211_internal_bss *new = NULL; 3023 struct cfg80211_internal_bss *bss; 3024 struct cfg80211_bss *nontrans_bss; 3025 struct cfg80211_bss *tmp; 3026 3027 spin_lock_bh(&rdev->bss_lock); 3028 3029 /* 3030 * Some APs use CSA also for bandwidth changes, i.e., without actually 3031 * changing the control channel, so no need to update in such a case. 3032 */ 3033 if (cbss->pub.channel == chan) 3034 goto done; 3035 3036 /* use transmitting bss */ 3037 if (cbss->pub.transmitted_bss) 3038 cbss = bss_from_pub(cbss->pub.transmitted_bss); 3039 3040 cbss->pub.channel = chan; 3041 3042 list_for_each_entry(bss, &rdev->bss_list, list) { 3043 if (!cfg80211_bss_type_match(bss->pub.capability, 3044 bss->pub.channel->band, 3045 wdev->conn_bss_type)) 3046 continue; 3047 3048 if (bss == cbss) 3049 continue; 3050 3051 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) { 3052 new = bss; 3053 break; 3054 } 3055 } 3056 3057 if (new) { 3058 /* to save time, update IEs for transmitting bss only */ 3059 if (cfg80211_update_known_bss(rdev, cbss, new, false)) { 3060 new->pub.proberesp_ies = NULL; 3061 new->pub.beacon_ies = NULL; 3062 } 3063 3064 list_for_each_entry_safe(nontrans_bss, tmp, 3065 &new->pub.nontrans_list, 3066 nontrans_list) { 3067 bss = bss_from_pub(nontrans_bss); 3068 if (__cfg80211_unlink_bss(rdev, bss)) 3069 rdev->bss_generation++; 3070 } 3071 3072 WARN_ON(atomic_read(&new->hold)); 3073 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new))) 3074 rdev->bss_generation++; 3075 } 3076 3077 rb_erase(&cbss->rbn, &rdev->bss_tree); 3078 rb_insert_bss(rdev, cbss); 3079 rdev->bss_generation++; 3080 3081 list_for_each_entry_safe(nontrans_bss, tmp, 3082 &cbss->pub.nontrans_list, 3083 nontrans_list) { 3084 bss = bss_from_pub(nontrans_bss); 3085 bss->pub.channel = chan; 3086 rb_erase(&bss->rbn, &rdev->bss_tree); 3087 rb_insert_bss(rdev, bss); 3088 rdev->bss_generation++; 3089 } 3090 3091 done: 3092 spin_unlock_bh(&rdev->bss_lock); 3093 } 3094 3095 #ifdef CONFIG_CFG80211_WEXT 3096 static struct cfg80211_registered_device * 3097 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex) 3098 { 3099 struct cfg80211_registered_device *rdev; 3100 struct net_device *dev; 3101 3102 ASSERT_RTNL(); 3103 3104 dev = dev_get_by_index(net, ifindex); 3105 if (!dev) 3106 return ERR_PTR(-ENODEV); 3107 if (dev->ieee80211_ptr) 3108 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy); 3109 else 3110 rdev = ERR_PTR(-ENODEV); 3111 dev_put(dev); 3112 return rdev; 3113 } 3114 3115 int cfg80211_wext_siwscan(struct net_device *dev, 3116 struct iw_request_info *info, 3117 union iwreq_data *wrqu, char *extra) 3118 { 3119 struct cfg80211_registered_device *rdev; 3120 struct wiphy *wiphy; 3121 struct iw_scan_req *wreq = NULL; 3122 struct cfg80211_scan_request *creq; 3123 int i, err, n_channels = 0; 3124 enum nl80211_band band; 3125 3126 if (!netif_running(dev)) 3127 return -ENETDOWN; 3128 3129 if (wrqu->data.length == sizeof(struct iw_scan_req)) 3130 wreq = (struct iw_scan_req *)extra; 3131 3132 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3133 3134 if (IS_ERR(rdev)) 3135 return PTR_ERR(rdev); 3136 3137 if (rdev->scan_req || rdev->scan_msg) 3138 return -EBUSY; 3139 3140 wiphy = &rdev->wiphy; 3141 3142 /* Determine number of channels, needed to allocate creq */ 3143 if (wreq && wreq->num_channels) 3144 n_channels = wreq->num_channels; 3145 else 3146 n_channels = ieee80211_get_num_supported_channels(wiphy); 3147 3148 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) + 3149 n_channels * sizeof(void *), 3150 GFP_ATOMIC); 3151 if (!creq) 3152 return -ENOMEM; 3153 3154 creq->wiphy = wiphy; 3155 creq->wdev = dev->ieee80211_ptr; 3156 /* SSIDs come after channels */ 3157 creq->ssids = (void *)&creq->channels[n_channels]; 3158 creq->n_channels = n_channels; 3159 creq->n_ssids = 1; 3160 creq->scan_start = jiffies; 3161 3162 /* translate "Scan on frequencies" request */ 3163 i = 0; 3164 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3165 int j; 3166 3167 if (!wiphy->bands[band]) 3168 continue; 3169 3170 for (j = 0; j < wiphy->bands[band]->n_channels; j++) { 3171 /* ignore disabled channels */ 3172 if (wiphy->bands[band]->channels[j].flags & 3173 IEEE80211_CHAN_DISABLED) 3174 continue; 3175 3176 /* If we have a wireless request structure and the 3177 * wireless request specifies frequencies, then search 3178 * for the matching hardware channel. 3179 */ 3180 if (wreq && wreq->num_channels) { 3181 int k; 3182 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq; 3183 for (k = 0; k < wreq->num_channels; k++) { 3184 struct iw_freq *freq = 3185 &wreq->channel_list[k]; 3186 int wext_freq = 3187 cfg80211_wext_freq(freq); 3188 3189 if (wext_freq == wiphy_freq) 3190 goto wext_freq_found; 3191 } 3192 goto wext_freq_not_found; 3193 } 3194 3195 wext_freq_found: 3196 creq->channels[i] = &wiphy->bands[band]->channels[j]; 3197 i++; 3198 wext_freq_not_found: ; 3199 } 3200 } 3201 /* No channels found? */ 3202 if (!i) { 3203 err = -EINVAL; 3204 goto out; 3205 } 3206 3207 /* Set real number of channels specified in creq->channels[] */ 3208 creq->n_channels = i; 3209 3210 /* translate "Scan for SSID" request */ 3211 if (wreq) { 3212 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { 3213 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) { 3214 err = -EINVAL; 3215 goto out; 3216 } 3217 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len); 3218 creq->ssids[0].ssid_len = wreq->essid_len; 3219 } 3220 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) 3221 creq->n_ssids = 0; 3222 } 3223 3224 for (i = 0; i < NUM_NL80211_BANDS; i++) 3225 if (wiphy->bands[i]) 3226 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1; 3227 3228 eth_broadcast_addr(creq->bssid); 3229 3230 wiphy_lock(&rdev->wiphy); 3231 3232 rdev->scan_req = creq; 3233 err = rdev_scan(rdev, creq); 3234 if (err) { 3235 rdev->scan_req = NULL; 3236 /* creq will be freed below */ 3237 } else { 3238 nl80211_send_scan_start(rdev, dev->ieee80211_ptr); 3239 /* creq now owned by driver */ 3240 creq = NULL; 3241 dev_hold(dev); 3242 } 3243 wiphy_unlock(&rdev->wiphy); 3244 out: 3245 kfree(creq); 3246 return err; 3247 } 3248 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan); 3249 3250 static char *ieee80211_scan_add_ies(struct iw_request_info *info, 3251 const struct cfg80211_bss_ies *ies, 3252 char *current_ev, char *end_buf) 3253 { 3254 const u8 *pos, *end, *next; 3255 struct iw_event iwe; 3256 3257 if (!ies) 3258 return current_ev; 3259 3260 /* 3261 * If needed, fragment the IEs buffer (at IE boundaries) into short 3262 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages. 3263 */ 3264 pos = ies->data; 3265 end = pos + ies->len; 3266 3267 while (end - pos > IW_GENERIC_IE_MAX) { 3268 next = pos + 2 + pos[1]; 3269 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX) 3270 next = next + 2 + next[1]; 3271 3272 memset(&iwe, 0, sizeof(iwe)); 3273 iwe.cmd = IWEVGENIE; 3274 iwe.u.data.length = next - pos; 3275 current_ev = iwe_stream_add_point_check(info, current_ev, 3276 end_buf, &iwe, 3277 (void *)pos); 3278 if (IS_ERR(current_ev)) 3279 return current_ev; 3280 pos = next; 3281 } 3282 3283 if (end > pos) { 3284 memset(&iwe, 0, sizeof(iwe)); 3285 iwe.cmd = IWEVGENIE; 3286 iwe.u.data.length = end - pos; 3287 current_ev = iwe_stream_add_point_check(info, current_ev, 3288 end_buf, &iwe, 3289 (void *)pos); 3290 if (IS_ERR(current_ev)) 3291 return current_ev; 3292 } 3293 3294 return current_ev; 3295 } 3296 3297 static char * 3298 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info, 3299 struct cfg80211_internal_bss *bss, char *current_ev, 3300 char *end_buf) 3301 { 3302 const struct cfg80211_bss_ies *ies; 3303 struct iw_event iwe; 3304 const u8 *ie; 3305 u8 buf[50]; 3306 u8 *cfg, *p, *tmp; 3307 int rem, i, sig; 3308 bool ismesh = false; 3309 3310 memset(&iwe, 0, sizeof(iwe)); 3311 iwe.cmd = SIOCGIWAP; 3312 iwe.u.ap_addr.sa_family = ARPHRD_ETHER; 3313 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN); 3314 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3315 IW_EV_ADDR_LEN); 3316 if (IS_ERR(current_ev)) 3317 return current_ev; 3318 3319 memset(&iwe, 0, sizeof(iwe)); 3320 iwe.cmd = SIOCGIWFREQ; 3321 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq); 3322 iwe.u.freq.e = 0; 3323 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3324 IW_EV_FREQ_LEN); 3325 if (IS_ERR(current_ev)) 3326 return current_ev; 3327 3328 memset(&iwe, 0, sizeof(iwe)); 3329 iwe.cmd = SIOCGIWFREQ; 3330 iwe.u.freq.m = bss->pub.channel->center_freq; 3331 iwe.u.freq.e = 6; 3332 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3333 IW_EV_FREQ_LEN); 3334 if (IS_ERR(current_ev)) 3335 return current_ev; 3336 3337 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) { 3338 memset(&iwe, 0, sizeof(iwe)); 3339 iwe.cmd = IWEVQUAL; 3340 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED | 3341 IW_QUAL_NOISE_INVALID | 3342 IW_QUAL_QUAL_UPDATED; 3343 switch (wiphy->signal_type) { 3344 case CFG80211_SIGNAL_TYPE_MBM: 3345 sig = bss->pub.signal / 100; 3346 iwe.u.qual.level = sig; 3347 iwe.u.qual.updated |= IW_QUAL_DBM; 3348 if (sig < -110) /* rather bad */ 3349 sig = -110; 3350 else if (sig > -40) /* perfect */ 3351 sig = -40; 3352 /* will give a range of 0 .. 70 */ 3353 iwe.u.qual.qual = sig + 110; 3354 break; 3355 case CFG80211_SIGNAL_TYPE_UNSPEC: 3356 iwe.u.qual.level = bss->pub.signal; 3357 /* will give range 0 .. 100 */ 3358 iwe.u.qual.qual = bss->pub.signal; 3359 break; 3360 default: 3361 /* not reached */ 3362 break; 3363 } 3364 current_ev = iwe_stream_add_event_check(info, current_ev, 3365 end_buf, &iwe, 3366 IW_EV_QUAL_LEN); 3367 if (IS_ERR(current_ev)) 3368 return current_ev; 3369 } 3370 3371 memset(&iwe, 0, sizeof(iwe)); 3372 iwe.cmd = SIOCGIWENCODE; 3373 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY) 3374 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY; 3375 else 3376 iwe.u.data.flags = IW_ENCODE_DISABLED; 3377 iwe.u.data.length = 0; 3378 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3379 &iwe, ""); 3380 if (IS_ERR(current_ev)) 3381 return current_ev; 3382 3383 rcu_read_lock(); 3384 ies = rcu_dereference(bss->pub.ies); 3385 rem = ies->len; 3386 ie = ies->data; 3387 3388 while (rem >= 2) { 3389 /* invalid data */ 3390 if (ie[1] > rem - 2) 3391 break; 3392 3393 switch (ie[0]) { 3394 case WLAN_EID_SSID: 3395 memset(&iwe, 0, sizeof(iwe)); 3396 iwe.cmd = SIOCGIWESSID; 3397 iwe.u.data.length = ie[1]; 3398 iwe.u.data.flags = 1; 3399 current_ev = iwe_stream_add_point_check(info, 3400 current_ev, 3401 end_buf, &iwe, 3402 (u8 *)ie + 2); 3403 if (IS_ERR(current_ev)) 3404 goto unlock; 3405 break; 3406 case WLAN_EID_MESH_ID: 3407 memset(&iwe, 0, sizeof(iwe)); 3408 iwe.cmd = SIOCGIWESSID; 3409 iwe.u.data.length = ie[1]; 3410 iwe.u.data.flags = 1; 3411 current_ev = iwe_stream_add_point_check(info, 3412 current_ev, 3413 end_buf, &iwe, 3414 (u8 *)ie + 2); 3415 if (IS_ERR(current_ev)) 3416 goto unlock; 3417 break; 3418 case WLAN_EID_MESH_CONFIG: 3419 ismesh = true; 3420 if (ie[1] != sizeof(struct ieee80211_meshconf_ie)) 3421 break; 3422 cfg = (u8 *)ie + 2; 3423 memset(&iwe, 0, sizeof(iwe)); 3424 iwe.cmd = IWEVCUSTOM; 3425 sprintf(buf, "Mesh Network Path Selection Protocol ID: " 3426 "0x%02X", cfg[0]); 3427 iwe.u.data.length = strlen(buf); 3428 current_ev = iwe_stream_add_point_check(info, 3429 current_ev, 3430 end_buf, 3431 &iwe, buf); 3432 if (IS_ERR(current_ev)) 3433 goto unlock; 3434 sprintf(buf, "Path Selection Metric ID: 0x%02X", 3435 cfg[1]); 3436 iwe.u.data.length = strlen(buf); 3437 current_ev = iwe_stream_add_point_check(info, 3438 current_ev, 3439 end_buf, 3440 &iwe, buf); 3441 if (IS_ERR(current_ev)) 3442 goto unlock; 3443 sprintf(buf, "Congestion Control Mode ID: 0x%02X", 3444 cfg[2]); 3445 iwe.u.data.length = strlen(buf); 3446 current_ev = iwe_stream_add_point_check(info, 3447 current_ev, 3448 end_buf, 3449 &iwe, buf); 3450 if (IS_ERR(current_ev)) 3451 goto unlock; 3452 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]); 3453 iwe.u.data.length = strlen(buf); 3454 current_ev = iwe_stream_add_point_check(info, 3455 current_ev, 3456 end_buf, 3457 &iwe, buf); 3458 if (IS_ERR(current_ev)) 3459 goto unlock; 3460 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]); 3461 iwe.u.data.length = strlen(buf); 3462 current_ev = iwe_stream_add_point_check(info, 3463 current_ev, 3464 end_buf, 3465 &iwe, buf); 3466 if (IS_ERR(current_ev)) 3467 goto unlock; 3468 sprintf(buf, "Formation Info: 0x%02X", cfg[5]); 3469 iwe.u.data.length = strlen(buf); 3470 current_ev = iwe_stream_add_point_check(info, 3471 current_ev, 3472 end_buf, 3473 &iwe, buf); 3474 if (IS_ERR(current_ev)) 3475 goto unlock; 3476 sprintf(buf, "Capabilities: 0x%02X", cfg[6]); 3477 iwe.u.data.length = strlen(buf); 3478 current_ev = iwe_stream_add_point_check(info, 3479 current_ev, 3480 end_buf, 3481 &iwe, buf); 3482 if (IS_ERR(current_ev)) 3483 goto unlock; 3484 break; 3485 case WLAN_EID_SUPP_RATES: 3486 case WLAN_EID_EXT_SUPP_RATES: 3487 /* display all supported rates in readable format */ 3488 p = current_ev + iwe_stream_lcp_len(info); 3489 3490 memset(&iwe, 0, sizeof(iwe)); 3491 iwe.cmd = SIOCGIWRATE; 3492 /* Those two flags are ignored... */ 3493 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0; 3494 3495 for (i = 0; i < ie[1]; i++) { 3496 iwe.u.bitrate.value = 3497 ((ie[i + 2] & 0x7f) * 500000); 3498 tmp = p; 3499 p = iwe_stream_add_value(info, current_ev, p, 3500 end_buf, &iwe, 3501 IW_EV_PARAM_LEN); 3502 if (p == tmp) { 3503 current_ev = ERR_PTR(-E2BIG); 3504 goto unlock; 3505 } 3506 } 3507 current_ev = p; 3508 break; 3509 } 3510 rem -= ie[1] + 2; 3511 ie += ie[1] + 2; 3512 } 3513 3514 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) || 3515 ismesh) { 3516 memset(&iwe, 0, sizeof(iwe)); 3517 iwe.cmd = SIOCGIWMODE; 3518 if (ismesh) 3519 iwe.u.mode = IW_MODE_MESH; 3520 else if (bss->pub.capability & WLAN_CAPABILITY_ESS) 3521 iwe.u.mode = IW_MODE_MASTER; 3522 else 3523 iwe.u.mode = IW_MODE_ADHOC; 3524 current_ev = iwe_stream_add_event_check(info, current_ev, 3525 end_buf, &iwe, 3526 IW_EV_UINT_LEN); 3527 if (IS_ERR(current_ev)) 3528 goto unlock; 3529 } 3530 3531 memset(&iwe, 0, sizeof(iwe)); 3532 iwe.cmd = IWEVCUSTOM; 3533 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf)); 3534 iwe.u.data.length = strlen(buf); 3535 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3536 &iwe, buf); 3537 if (IS_ERR(current_ev)) 3538 goto unlock; 3539 memset(&iwe, 0, sizeof(iwe)); 3540 iwe.cmd = IWEVCUSTOM; 3541 sprintf(buf, " Last beacon: %ums ago", 3542 elapsed_jiffies_msecs(bss->ts)); 3543 iwe.u.data.length = strlen(buf); 3544 current_ev = iwe_stream_add_point_check(info, current_ev, 3545 end_buf, &iwe, buf); 3546 if (IS_ERR(current_ev)) 3547 goto unlock; 3548 3549 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf); 3550 3551 unlock: 3552 rcu_read_unlock(); 3553 return current_ev; 3554 } 3555 3556 3557 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev, 3558 struct iw_request_info *info, 3559 char *buf, size_t len) 3560 { 3561 char *current_ev = buf; 3562 char *end_buf = buf + len; 3563 struct cfg80211_internal_bss *bss; 3564 int err = 0; 3565 3566 spin_lock_bh(&rdev->bss_lock); 3567 cfg80211_bss_expire(rdev); 3568 3569 list_for_each_entry(bss, &rdev->bss_list, list) { 3570 if (buf + len - current_ev <= IW_EV_ADDR_LEN) { 3571 err = -E2BIG; 3572 break; 3573 } 3574 current_ev = ieee80211_bss(&rdev->wiphy, info, bss, 3575 current_ev, end_buf); 3576 if (IS_ERR(current_ev)) { 3577 err = PTR_ERR(current_ev); 3578 break; 3579 } 3580 } 3581 spin_unlock_bh(&rdev->bss_lock); 3582 3583 if (err) 3584 return err; 3585 return current_ev - buf; 3586 } 3587 3588 3589 int cfg80211_wext_giwscan(struct net_device *dev, 3590 struct iw_request_info *info, 3591 union iwreq_data *wrqu, char *extra) 3592 { 3593 struct iw_point *data = &wrqu->data; 3594 struct cfg80211_registered_device *rdev; 3595 int res; 3596 3597 if (!netif_running(dev)) 3598 return -ENETDOWN; 3599 3600 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3601 3602 if (IS_ERR(rdev)) 3603 return PTR_ERR(rdev); 3604 3605 if (rdev->scan_req || rdev->scan_msg) 3606 return -EAGAIN; 3607 3608 res = ieee80211_scan_results(rdev, info, extra, data->length); 3609 data->length = 0; 3610 if (res >= 0) { 3611 data->length = res; 3612 res = 0; 3613 } 3614 3615 return res; 3616 } 3617 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan); 3618 #endif 3619