1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * cfg80211 scan result handling 4 * 5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2016 Intel Deutschland GmbH 8 * Copyright (C) 2018-2021 Intel Corporation 9 */ 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/netdevice.h> 14 #include <linux/wireless.h> 15 #include <linux/nl80211.h> 16 #include <linux/etherdevice.h> 17 #include <linux/crc32.h> 18 #include <linux/bitfield.h> 19 #include <net/arp.h> 20 #include <net/cfg80211.h> 21 #include <net/cfg80211-wext.h> 22 #include <net/iw_handler.h> 23 #include "core.h" 24 #include "nl80211.h" 25 #include "wext-compat.h" 26 #include "rdev-ops.h" 27 28 /** 29 * DOC: BSS tree/list structure 30 * 31 * At the top level, the BSS list is kept in both a list in each 32 * registered device (@bss_list) as well as an RB-tree for faster 33 * lookup. In the RB-tree, entries can be looked up using their 34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID 35 * for other BSSes. 36 * 37 * Due to the possibility of hidden SSIDs, there's a second level 38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer. 39 * The hidden_list connects all BSSes belonging to a single AP 40 * that has a hidden SSID, and connects beacon and probe response 41 * entries. For a probe response entry for a hidden SSID, the 42 * hidden_beacon_bss pointer points to the BSS struct holding the 43 * beacon's information. 44 * 45 * Reference counting is done for all these references except for 46 * the hidden_list, so that a beacon BSS struct that is otherwise 47 * not referenced has one reference for being on the bss_list and 48 * one for each probe response entry that points to it using the 49 * hidden_beacon_bss pointer. When a BSS struct that has such a 50 * pointer is get/put, the refcount update is also propagated to 51 * the referenced struct, this ensure that it cannot get removed 52 * while somebody is using the probe response version. 53 * 54 * Note that the hidden_beacon_bss pointer never changes, due to 55 * the reference counting. Therefore, no locking is needed for 56 * it. 57 * 58 * Also note that the hidden_beacon_bss pointer is only relevant 59 * if the driver uses something other than the IEs, e.g. private 60 * data stored in the BSS struct, since the beacon IEs are 61 * also linked into the probe response struct. 62 */ 63 64 /* 65 * Limit the number of BSS entries stored in mac80211. Each one is 66 * a bit over 4k at most, so this limits to roughly 4-5M of memory. 67 * If somebody wants to really attack this though, they'd likely 68 * use small beacons, and only one type of frame, limiting each of 69 * the entries to a much smaller size (in order to generate more 70 * entries in total, so overhead is bigger.) 71 */ 72 static int bss_entries_limit = 1000; 73 module_param(bss_entries_limit, int, 0644); 74 MODULE_PARM_DESC(bss_entries_limit, 75 "limit to number of scan BSS entries (per wiphy, default 1000)"); 76 77 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ) 78 79 /** 80 * struct cfg80211_colocated_ap - colocated AP information 81 * 82 * @list: linked list to all colocated aPS 83 * @bssid: BSSID of the reported AP 84 * @ssid: SSID of the reported AP 85 * @ssid_len: length of the ssid 86 * @center_freq: frequency the reported AP is on 87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs 88 * that operate in the same channel as the reported AP and that might be 89 * detected by a STA receiving this frame, are transmitting unsolicited 90 * Probe Response frames every 20 TUs 91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP 92 * @same_ssid: the reported AP has the same SSID as the reporting AP 93 * @multi_bss: the reported AP is part of a multiple BSSID set 94 * @transmitted_bssid: the reported AP is the transmitting BSSID 95 * @colocated_ess: all the APs that share the same ESS as the reported AP are 96 * colocated and can be discovered via legacy bands. 97 * @short_ssid_valid: short_ssid is valid and can be used 98 * @short_ssid: the short SSID for this SSID 99 */ 100 struct cfg80211_colocated_ap { 101 struct list_head list; 102 u8 bssid[ETH_ALEN]; 103 u8 ssid[IEEE80211_MAX_SSID_LEN]; 104 size_t ssid_len; 105 u32 short_ssid; 106 u32 center_freq; 107 u8 unsolicited_probe:1, 108 oct_recommended:1, 109 same_ssid:1, 110 multi_bss:1, 111 transmitted_bssid:1, 112 colocated_ess:1, 113 short_ssid_valid:1; 114 }; 115 116 static void bss_free(struct cfg80211_internal_bss *bss) 117 { 118 struct cfg80211_bss_ies *ies; 119 120 if (WARN_ON(atomic_read(&bss->hold))) 121 return; 122 123 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies); 124 if (ies && !bss->pub.hidden_beacon_bss) 125 kfree_rcu(ies, rcu_head); 126 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies); 127 if (ies) 128 kfree_rcu(ies, rcu_head); 129 130 /* 131 * This happens when the module is removed, it doesn't 132 * really matter any more save for completeness 133 */ 134 if (!list_empty(&bss->hidden_list)) 135 list_del(&bss->hidden_list); 136 137 kfree(bss); 138 } 139 140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev, 141 struct cfg80211_internal_bss *bss) 142 { 143 lockdep_assert_held(&rdev->bss_lock); 144 145 bss->refcount++; 146 if (bss->pub.hidden_beacon_bss) { 147 bss = container_of(bss->pub.hidden_beacon_bss, 148 struct cfg80211_internal_bss, 149 pub); 150 bss->refcount++; 151 } 152 if (bss->pub.transmitted_bss) { 153 bss = container_of(bss->pub.transmitted_bss, 154 struct cfg80211_internal_bss, 155 pub); 156 bss->refcount++; 157 } 158 } 159 160 static inline void bss_ref_put(struct cfg80211_registered_device *rdev, 161 struct cfg80211_internal_bss *bss) 162 { 163 lockdep_assert_held(&rdev->bss_lock); 164 165 if (bss->pub.hidden_beacon_bss) { 166 struct cfg80211_internal_bss *hbss; 167 hbss = container_of(bss->pub.hidden_beacon_bss, 168 struct cfg80211_internal_bss, 169 pub); 170 hbss->refcount--; 171 if (hbss->refcount == 0) 172 bss_free(hbss); 173 } 174 175 if (bss->pub.transmitted_bss) { 176 struct cfg80211_internal_bss *tbss; 177 178 tbss = container_of(bss->pub.transmitted_bss, 179 struct cfg80211_internal_bss, 180 pub); 181 tbss->refcount--; 182 if (tbss->refcount == 0) 183 bss_free(tbss); 184 } 185 186 bss->refcount--; 187 if (bss->refcount == 0) 188 bss_free(bss); 189 } 190 191 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev, 192 struct cfg80211_internal_bss *bss) 193 { 194 lockdep_assert_held(&rdev->bss_lock); 195 196 if (!list_empty(&bss->hidden_list)) { 197 /* 198 * don't remove the beacon entry if it has 199 * probe responses associated with it 200 */ 201 if (!bss->pub.hidden_beacon_bss) 202 return false; 203 /* 204 * if it's a probe response entry break its 205 * link to the other entries in the group 206 */ 207 list_del_init(&bss->hidden_list); 208 } 209 210 list_del_init(&bss->list); 211 list_del_init(&bss->pub.nontrans_list); 212 rb_erase(&bss->rbn, &rdev->bss_tree); 213 rdev->bss_entries--; 214 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list), 215 "rdev bss entries[%d]/list[empty:%d] corruption\n", 216 rdev->bss_entries, list_empty(&rdev->bss_list)); 217 bss_ref_put(rdev, bss); 218 return true; 219 } 220 221 bool cfg80211_is_element_inherited(const struct element *elem, 222 const struct element *non_inherit_elem) 223 { 224 u8 id_len, ext_id_len, i, loop_len, id; 225 const u8 *list; 226 227 if (elem->id == WLAN_EID_MULTIPLE_BSSID) 228 return false; 229 230 if (!non_inherit_elem || non_inherit_elem->datalen < 2) 231 return true; 232 233 /* 234 * non inheritance element format is: 235 * ext ID (56) | IDs list len | list | extension IDs list len | list 236 * Both lists are optional. Both lengths are mandatory. 237 * This means valid length is: 238 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths 239 */ 240 id_len = non_inherit_elem->data[1]; 241 if (non_inherit_elem->datalen < 3 + id_len) 242 return true; 243 244 ext_id_len = non_inherit_elem->data[2 + id_len]; 245 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len) 246 return true; 247 248 if (elem->id == WLAN_EID_EXTENSION) { 249 if (!ext_id_len) 250 return true; 251 loop_len = ext_id_len; 252 list = &non_inherit_elem->data[3 + id_len]; 253 id = elem->data[0]; 254 } else { 255 if (!id_len) 256 return true; 257 loop_len = id_len; 258 list = &non_inherit_elem->data[2]; 259 id = elem->id; 260 } 261 262 for (i = 0; i < loop_len; i++) { 263 if (list[i] == id) 264 return false; 265 } 266 267 return true; 268 } 269 EXPORT_SYMBOL(cfg80211_is_element_inherited); 270 271 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen, 272 const u8 *subelement, size_t subie_len, 273 u8 *new_ie, gfp_t gfp) 274 { 275 u8 *pos, *tmp; 276 const u8 *tmp_old, *tmp_new; 277 const struct element *non_inherit_elem; 278 u8 *sub_copy; 279 280 /* copy subelement as we need to change its content to 281 * mark an ie after it is processed. 282 */ 283 sub_copy = kmemdup(subelement, subie_len, gfp); 284 if (!sub_copy) 285 return 0; 286 287 pos = &new_ie[0]; 288 289 /* set new ssid */ 290 tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len); 291 if (tmp_new) { 292 memcpy(pos, tmp_new, tmp_new[1] + 2); 293 pos += (tmp_new[1] + 2); 294 } 295 296 /* get non inheritance list if exists */ 297 non_inherit_elem = 298 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 299 sub_copy, subie_len); 300 301 /* go through IEs in ie (skip SSID) and subelement, 302 * merge them into new_ie 303 */ 304 tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen); 305 tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie; 306 307 while (tmp_old + tmp_old[1] + 2 - ie <= ielen) { 308 if (tmp_old[0] == 0) { 309 tmp_old++; 310 continue; 311 } 312 313 if (tmp_old[0] == WLAN_EID_EXTENSION) 314 tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy, 315 subie_len); 316 else 317 tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy, 318 subie_len); 319 320 if (!tmp) { 321 const struct element *old_elem = (void *)tmp_old; 322 323 /* ie in old ie but not in subelement */ 324 if (cfg80211_is_element_inherited(old_elem, 325 non_inherit_elem)) { 326 memcpy(pos, tmp_old, tmp_old[1] + 2); 327 pos += tmp_old[1] + 2; 328 } 329 } else { 330 /* ie in transmitting ie also in subelement, 331 * copy from subelement and flag the ie in subelement 332 * as copied (by setting eid field to WLAN_EID_SSID, 333 * which is skipped anyway). 334 * For vendor ie, compare OUI + type + subType to 335 * determine if they are the same ie. 336 */ 337 if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) { 338 if (!memcmp(tmp_old + 2, tmp + 2, 5)) { 339 /* same vendor ie, copy from 340 * subelement 341 */ 342 memcpy(pos, tmp, tmp[1] + 2); 343 pos += tmp[1] + 2; 344 tmp[0] = WLAN_EID_SSID; 345 } else { 346 memcpy(pos, tmp_old, tmp_old[1] + 2); 347 pos += tmp_old[1] + 2; 348 } 349 } else { 350 /* copy ie from subelement into new ie */ 351 memcpy(pos, tmp, tmp[1] + 2); 352 pos += tmp[1] + 2; 353 tmp[0] = WLAN_EID_SSID; 354 } 355 } 356 357 if (tmp_old + tmp_old[1] + 2 - ie == ielen) 358 break; 359 360 tmp_old += tmp_old[1] + 2; 361 } 362 363 /* go through subelement again to check if there is any ie not 364 * copied to new ie, skip ssid, capability, bssid-index ie 365 */ 366 tmp_new = sub_copy; 367 while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) { 368 if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP || 369 tmp_new[0] == WLAN_EID_SSID)) { 370 memcpy(pos, tmp_new, tmp_new[1] + 2); 371 pos += tmp_new[1] + 2; 372 } 373 if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len) 374 break; 375 tmp_new += tmp_new[1] + 2; 376 } 377 378 kfree(sub_copy); 379 return pos - new_ie; 380 } 381 382 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid, 383 const u8 *ssid, size_t ssid_len) 384 { 385 const struct cfg80211_bss_ies *ies; 386 const u8 *ssidie; 387 388 if (bssid && !ether_addr_equal(a->bssid, bssid)) 389 return false; 390 391 if (!ssid) 392 return true; 393 394 ies = rcu_access_pointer(a->ies); 395 if (!ies) 396 return false; 397 ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 398 if (!ssidie) 399 return false; 400 if (ssidie[1] != ssid_len) 401 return false; 402 return memcmp(ssidie + 2, ssid, ssid_len) == 0; 403 } 404 405 static int 406 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss, 407 struct cfg80211_bss *nontrans_bss) 408 { 409 const u8 *ssid; 410 size_t ssid_len; 411 struct cfg80211_bss *bss = NULL; 412 413 rcu_read_lock(); 414 ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID); 415 if (!ssid) { 416 rcu_read_unlock(); 417 return -EINVAL; 418 } 419 ssid_len = ssid[1]; 420 ssid = ssid + 2; 421 rcu_read_unlock(); 422 423 /* check if nontrans_bss is in the list */ 424 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) { 425 if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len)) 426 return 0; 427 } 428 429 /* add to the list */ 430 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list); 431 return 0; 432 } 433 434 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev, 435 unsigned long expire_time) 436 { 437 struct cfg80211_internal_bss *bss, *tmp; 438 bool expired = false; 439 440 lockdep_assert_held(&rdev->bss_lock); 441 442 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) { 443 if (atomic_read(&bss->hold)) 444 continue; 445 if (!time_after(expire_time, bss->ts)) 446 continue; 447 448 if (__cfg80211_unlink_bss(rdev, bss)) 449 expired = true; 450 } 451 452 if (expired) 453 rdev->bss_generation++; 454 } 455 456 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev) 457 { 458 struct cfg80211_internal_bss *bss, *oldest = NULL; 459 bool ret; 460 461 lockdep_assert_held(&rdev->bss_lock); 462 463 list_for_each_entry(bss, &rdev->bss_list, list) { 464 if (atomic_read(&bss->hold)) 465 continue; 466 467 if (!list_empty(&bss->hidden_list) && 468 !bss->pub.hidden_beacon_bss) 469 continue; 470 471 if (oldest && time_before(oldest->ts, bss->ts)) 472 continue; 473 oldest = bss; 474 } 475 476 if (WARN_ON(!oldest)) 477 return false; 478 479 /* 480 * The callers make sure to increase rdev->bss_generation if anything 481 * gets removed (and a new entry added), so there's no need to also do 482 * it here. 483 */ 484 485 ret = __cfg80211_unlink_bss(rdev, oldest); 486 WARN_ON(!ret); 487 return ret; 488 } 489 490 static u8 cfg80211_parse_bss_param(u8 data, 491 struct cfg80211_colocated_ap *coloc_ap) 492 { 493 coloc_ap->oct_recommended = 494 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED); 495 coloc_ap->same_ssid = 496 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID); 497 coloc_ap->multi_bss = 498 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID); 499 coloc_ap->transmitted_bssid = 500 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID); 501 coloc_ap->unsolicited_probe = 502 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE); 503 coloc_ap->colocated_ess = 504 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS); 505 506 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP); 507 } 508 509 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies, 510 const struct element **elem, u32 *s_ssid) 511 { 512 513 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 514 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN) 515 return -EINVAL; 516 517 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen); 518 return 0; 519 } 520 521 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list) 522 { 523 struct cfg80211_colocated_ap *ap, *tmp_ap; 524 525 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) { 526 list_del(&ap->list); 527 kfree(ap); 528 } 529 } 530 531 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry, 532 const u8 *pos, u8 length, 533 const struct element *ssid_elem, 534 int s_ssid_tmp) 535 { 536 /* skip the TBTT offset */ 537 pos++; 538 539 memcpy(entry->bssid, pos, ETH_ALEN); 540 pos += ETH_ALEN; 541 542 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) { 543 memcpy(&entry->short_ssid, pos, 544 sizeof(entry->short_ssid)); 545 entry->short_ssid_valid = true; 546 pos += 4; 547 } 548 549 /* skip non colocated APs */ 550 if (!cfg80211_parse_bss_param(*pos, entry)) 551 return -EINVAL; 552 pos++; 553 554 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) { 555 /* 556 * no information about the short ssid. Consider the entry valid 557 * for now. It would later be dropped in case there are explicit 558 * SSIDs that need to be matched 559 */ 560 if (!entry->same_ssid) 561 return 0; 562 } 563 564 if (entry->same_ssid) { 565 entry->short_ssid = s_ssid_tmp; 566 entry->short_ssid_valid = true; 567 568 /* 569 * This is safe because we validate datalen in 570 * cfg80211_parse_colocated_ap(), before calling this 571 * function. 572 */ 573 memcpy(&entry->ssid, &ssid_elem->data, 574 ssid_elem->datalen); 575 entry->ssid_len = ssid_elem->datalen; 576 } 577 return 0; 578 } 579 580 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies, 581 struct list_head *list) 582 { 583 struct ieee80211_neighbor_ap_info *ap_info; 584 const struct element *elem, *ssid_elem; 585 const u8 *pos, *end; 586 u32 s_ssid_tmp; 587 int n_coloc = 0, ret; 588 LIST_HEAD(ap_list); 589 590 elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data, 591 ies->len); 592 if (!elem) 593 return 0; 594 595 pos = elem->data; 596 end = pos + elem->datalen; 597 598 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp); 599 if (ret) 600 return ret; 601 602 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ 603 while (pos + sizeof(*ap_info) <= end) { 604 enum nl80211_band band; 605 int freq; 606 u8 length, i, count; 607 608 ap_info = (void *)pos; 609 count = u8_get_bits(ap_info->tbtt_info_hdr, 610 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1; 611 length = ap_info->tbtt_info_len; 612 613 pos += sizeof(*ap_info); 614 615 if (!ieee80211_operating_class_to_band(ap_info->op_class, 616 &band)) 617 break; 618 619 freq = ieee80211_channel_to_frequency(ap_info->channel, band); 620 621 if (end - pos < count * length) 622 break; 623 624 /* 625 * TBTT info must include bss param + BSSID + 626 * (short SSID or same_ssid bit to be set). 627 * ignore other options, and move to the 628 * next AP info 629 */ 630 if (band != NL80211_BAND_6GHZ || 631 (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM && 632 length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) { 633 pos += count * length; 634 continue; 635 } 636 637 for (i = 0; i < count; i++) { 638 struct cfg80211_colocated_ap *entry; 639 640 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, 641 GFP_ATOMIC); 642 643 if (!entry) 644 break; 645 646 entry->center_freq = freq; 647 648 if (!cfg80211_parse_ap_info(entry, pos, length, 649 ssid_elem, s_ssid_tmp)) { 650 n_coloc++; 651 list_add_tail(&entry->list, &ap_list); 652 } else { 653 kfree(entry); 654 } 655 656 pos += length; 657 } 658 } 659 660 if (pos != end) { 661 cfg80211_free_coloc_ap_list(&ap_list); 662 return 0; 663 } 664 665 list_splice_tail(&ap_list, list); 666 return n_coloc; 667 } 668 669 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request, 670 struct ieee80211_channel *chan, 671 bool add_to_6ghz) 672 { 673 int i; 674 u32 n_channels = request->n_channels; 675 struct cfg80211_scan_6ghz_params *params = 676 &request->scan_6ghz_params[request->n_6ghz_params]; 677 678 for (i = 0; i < n_channels; i++) { 679 if (request->channels[i] == chan) { 680 if (add_to_6ghz) 681 params->channel_idx = i; 682 return; 683 } 684 } 685 686 request->channels[n_channels] = chan; 687 if (add_to_6ghz) 688 request->scan_6ghz_params[request->n_6ghz_params].channel_idx = 689 n_channels; 690 691 request->n_channels++; 692 } 693 694 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap, 695 struct cfg80211_scan_request *request) 696 { 697 int i; 698 u32 s_ssid; 699 700 for (i = 0; i < request->n_ssids; i++) { 701 /* wildcard ssid in the scan request */ 702 if (!request->ssids[i].ssid_len) 703 return true; 704 705 if (ap->ssid_len && 706 ap->ssid_len == request->ssids[i].ssid_len) { 707 if (!memcmp(request->ssids[i].ssid, ap->ssid, 708 ap->ssid_len)) 709 return true; 710 } else if (ap->short_ssid_valid) { 711 s_ssid = ~crc32_le(~0, request->ssids[i].ssid, 712 request->ssids[i].ssid_len); 713 714 if (ap->short_ssid == s_ssid) 715 return true; 716 } 717 } 718 719 return false; 720 } 721 722 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev) 723 { 724 u8 i; 725 struct cfg80211_colocated_ap *ap; 726 int n_channels, count = 0, err; 727 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req; 728 LIST_HEAD(coloc_ap_list); 729 bool need_scan_psc = true; 730 const struct ieee80211_sband_iftype_data *iftd; 731 732 rdev_req->scan_6ghz = true; 733 734 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ]) 735 return -EOPNOTSUPP; 736 737 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ], 738 rdev_req->wdev->iftype); 739 if (!iftd || !iftd->he_cap.has_he) 740 return -EOPNOTSUPP; 741 742 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels; 743 744 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) { 745 struct cfg80211_internal_bss *intbss; 746 747 spin_lock_bh(&rdev->bss_lock); 748 list_for_each_entry(intbss, &rdev->bss_list, list) { 749 struct cfg80211_bss *res = &intbss->pub; 750 const struct cfg80211_bss_ies *ies; 751 752 ies = rcu_access_pointer(res->ies); 753 count += cfg80211_parse_colocated_ap(ies, 754 &coloc_ap_list); 755 } 756 spin_unlock_bh(&rdev->bss_lock); 757 } 758 759 request = kzalloc(struct_size(request, channels, n_channels) + 760 sizeof(*request->scan_6ghz_params) * count + 761 sizeof(*request->ssids) * rdev_req->n_ssids, 762 GFP_KERNEL); 763 if (!request) { 764 cfg80211_free_coloc_ap_list(&coloc_ap_list); 765 return -ENOMEM; 766 } 767 768 *request = *rdev_req; 769 request->n_channels = 0; 770 request->scan_6ghz_params = 771 (void *)&request->channels[n_channels]; 772 773 /* 774 * PSC channels should not be scanned in case of direct scan with 1 SSID 775 * and at least one of the reported co-located APs with same SSID 776 * indicating that all APs in the same ESS are co-located 777 */ 778 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) { 779 list_for_each_entry(ap, &coloc_ap_list, list) { 780 if (ap->colocated_ess && 781 cfg80211_find_ssid_match(ap, request)) { 782 need_scan_psc = false; 783 break; 784 } 785 } 786 } 787 788 /* 789 * add to the scan request the channels that need to be scanned 790 * regardless of the collocated APs (PSC channels or all channels 791 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set) 792 */ 793 for (i = 0; i < rdev_req->n_channels; i++) { 794 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ && 795 ((need_scan_psc && 796 cfg80211_channel_is_psc(rdev_req->channels[i])) || 797 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) { 798 cfg80211_scan_req_add_chan(request, 799 rdev_req->channels[i], 800 false); 801 } 802 } 803 804 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ)) 805 goto skip; 806 807 list_for_each_entry(ap, &coloc_ap_list, list) { 808 bool found = false; 809 struct cfg80211_scan_6ghz_params *scan_6ghz_params = 810 &request->scan_6ghz_params[request->n_6ghz_params]; 811 struct ieee80211_channel *chan = 812 ieee80211_get_channel(&rdev->wiphy, ap->center_freq); 813 814 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED) 815 continue; 816 817 for (i = 0; i < rdev_req->n_channels; i++) { 818 if (rdev_req->channels[i] == chan) 819 found = true; 820 } 821 822 if (!found) 823 continue; 824 825 if (request->n_ssids > 0 && 826 !cfg80211_find_ssid_match(ap, request)) 827 continue; 828 829 cfg80211_scan_req_add_chan(request, chan, true); 830 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN); 831 scan_6ghz_params->short_ssid = ap->short_ssid; 832 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid; 833 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe; 834 835 /* 836 * If a PSC channel is added to the scan and 'need_scan_psc' is 837 * set to false, then all the APs that the scan logic is 838 * interested with on the channel are collocated and thus there 839 * is no need to perform the initial PSC channel listen. 840 */ 841 if (cfg80211_channel_is_psc(chan) && !need_scan_psc) 842 scan_6ghz_params->psc_no_listen = true; 843 844 request->n_6ghz_params++; 845 } 846 847 skip: 848 cfg80211_free_coloc_ap_list(&coloc_ap_list); 849 850 if (request->n_channels) { 851 struct cfg80211_scan_request *old = rdev->int_scan_req; 852 rdev->int_scan_req = request; 853 854 /* 855 * Add the ssids from the parent scan request to the new scan 856 * request, so the driver would be able to use them in its 857 * probe requests to discover hidden APs on PSC channels. 858 */ 859 request->ssids = (void *)&request->channels[request->n_channels]; 860 request->n_ssids = rdev_req->n_ssids; 861 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) * 862 request->n_ssids); 863 864 /* 865 * If this scan follows a previous scan, save the scan start 866 * info from the first part of the scan 867 */ 868 if (old) 869 rdev->int_scan_req->info = old->info; 870 871 err = rdev_scan(rdev, request); 872 if (err) { 873 rdev->int_scan_req = old; 874 kfree(request); 875 } else { 876 kfree(old); 877 } 878 879 return err; 880 } 881 882 kfree(request); 883 return -EINVAL; 884 } 885 886 int cfg80211_scan(struct cfg80211_registered_device *rdev) 887 { 888 struct cfg80211_scan_request *request; 889 struct cfg80211_scan_request *rdev_req = rdev->scan_req; 890 u32 n_channels = 0, idx, i; 891 892 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ)) 893 return rdev_scan(rdev, rdev_req); 894 895 for (i = 0; i < rdev_req->n_channels; i++) { 896 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 897 n_channels++; 898 } 899 900 if (!n_channels) 901 return cfg80211_scan_6ghz(rdev); 902 903 request = kzalloc(struct_size(request, channels, n_channels), 904 GFP_KERNEL); 905 if (!request) 906 return -ENOMEM; 907 908 *request = *rdev_req; 909 request->n_channels = n_channels; 910 911 for (i = idx = 0; i < rdev_req->n_channels; i++) { 912 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 913 request->channels[idx++] = rdev_req->channels[i]; 914 } 915 916 rdev_req->scan_6ghz = false; 917 rdev->int_scan_req = request; 918 return rdev_scan(rdev, request); 919 } 920 921 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, 922 bool send_message) 923 { 924 struct cfg80211_scan_request *request, *rdev_req; 925 struct wireless_dev *wdev; 926 struct sk_buff *msg; 927 #ifdef CONFIG_CFG80211_WEXT 928 union iwreq_data wrqu; 929 #endif 930 931 lockdep_assert_held(&rdev->wiphy.mtx); 932 933 if (rdev->scan_msg) { 934 nl80211_send_scan_msg(rdev, rdev->scan_msg); 935 rdev->scan_msg = NULL; 936 return; 937 } 938 939 rdev_req = rdev->scan_req; 940 if (!rdev_req) 941 return; 942 943 wdev = rdev_req->wdev; 944 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req; 945 946 if (wdev_running(wdev) && 947 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) && 948 !rdev_req->scan_6ghz && !request->info.aborted && 949 !cfg80211_scan_6ghz(rdev)) 950 return; 951 952 /* 953 * This must be before sending the other events! 954 * Otherwise, wpa_supplicant gets completely confused with 955 * wext events. 956 */ 957 if (wdev->netdev) 958 cfg80211_sme_scan_done(wdev->netdev); 959 960 if (!request->info.aborted && 961 request->flags & NL80211_SCAN_FLAG_FLUSH) { 962 /* flush entries from previous scans */ 963 spin_lock_bh(&rdev->bss_lock); 964 __cfg80211_bss_expire(rdev, request->scan_start); 965 spin_unlock_bh(&rdev->bss_lock); 966 } 967 968 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted); 969 970 #ifdef CONFIG_CFG80211_WEXT 971 if (wdev->netdev && !request->info.aborted) { 972 memset(&wrqu, 0, sizeof(wrqu)); 973 974 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL); 975 } 976 #endif 977 978 if (wdev->netdev) 979 dev_put(wdev->netdev); 980 981 kfree(rdev->int_scan_req); 982 rdev->int_scan_req = NULL; 983 984 kfree(rdev->scan_req); 985 rdev->scan_req = NULL; 986 987 if (!send_message) 988 rdev->scan_msg = msg; 989 else 990 nl80211_send_scan_msg(rdev, msg); 991 } 992 993 void __cfg80211_scan_done(struct work_struct *wk) 994 { 995 struct cfg80211_registered_device *rdev; 996 997 rdev = container_of(wk, struct cfg80211_registered_device, 998 scan_done_wk); 999 1000 wiphy_lock(&rdev->wiphy); 1001 ___cfg80211_scan_done(rdev, true); 1002 wiphy_unlock(&rdev->wiphy); 1003 } 1004 1005 void cfg80211_scan_done(struct cfg80211_scan_request *request, 1006 struct cfg80211_scan_info *info) 1007 { 1008 struct cfg80211_scan_info old_info = request->info; 1009 1010 trace_cfg80211_scan_done(request, info); 1011 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req && 1012 request != wiphy_to_rdev(request->wiphy)->int_scan_req); 1013 1014 request->info = *info; 1015 1016 /* 1017 * In case the scan is split, the scan_start_tsf and tsf_bssid should 1018 * be of the first part. In such a case old_info.scan_start_tsf should 1019 * be non zero. 1020 */ 1021 if (request->scan_6ghz && old_info.scan_start_tsf) { 1022 request->info.scan_start_tsf = old_info.scan_start_tsf; 1023 memcpy(request->info.tsf_bssid, old_info.tsf_bssid, 1024 sizeof(request->info.tsf_bssid)); 1025 } 1026 1027 request->notified = true; 1028 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk); 1029 } 1030 EXPORT_SYMBOL(cfg80211_scan_done); 1031 1032 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, 1033 struct cfg80211_sched_scan_request *req) 1034 { 1035 lockdep_assert_held(&rdev->wiphy.mtx); 1036 1037 list_add_rcu(&req->list, &rdev->sched_scan_req_list); 1038 } 1039 1040 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev, 1041 struct cfg80211_sched_scan_request *req) 1042 { 1043 lockdep_assert_held(&rdev->wiphy.mtx); 1044 1045 list_del_rcu(&req->list); 1046 kfree_rcu(req, rcu_head); 1047 } 1048 1049 static struct cfg80211_sched_scan_request * 1050 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid) 1051 { 1052 struct cfg80211_sched_scan_request *pos; 1053 1054 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list, 1055 lockdep_is_held(&rdev->wiphy.mtx)) { 1056 if (pos->reqid == reqid) 1057 return pos; 1058 } 1059 return NULL; 1060 } 1061 1062 /* 1063 * Determines if a scheduled scan request can be handled. When a legacy 1064 * scheduled scan is running no other scheduled scan is allowed regardless 1065 * whether the request is for legacy or multi-support scan. When a multi-support 1066 * scheduled scan is running a request for legacy scan is not allowed. In this 1067 * case a request for multi-support scan can be handled if resources are 1068 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached. 1069 */ 1070 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, 1071 bool want_multi) 1072 { 1073 struct cfg80211_sched_scan_request *pos; 1074 int i = 0; 1075 1076 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) { 1077 /* request id zero means legacy in progress */ 1078 if (!i && !pos->reqid) 1079 return -EINPROGRESS; 1080 i++; 1081 } 1082 1083 if (i) { 1084 /* no legacy allowed when multi request(s) are active */ 1085 if (!want_multi) 1086 return -EINPROGRESS; 1087 1088 /* resource limit reached */ 1089 if (i == rdev->wiphy.max_sched_scan_reqs) 1090 return -ENOSPC; 1091 } 1092 return 0; 1093 } 1094 1095 void cfg80211_sched_scan_results_wk(struct work_struct *work) 1096 { 1097 struct cfg80211_registered_device *rdev; 1098 struct cfg80211_sched_scan_request *req, *tmp; 1099 1100 rdev = container_of(work, struct cfg80211_registered_device, 1101 sched_scan_res_wk); 1102 1103 wiphy_lock(&rdev->wiphy); 1104 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) { 1105 if (req->report_results) { 1106 req->report_results = false; 1107 if (req->flags & NL80211_SCAN_FLAG_FLUSH) { 1108 /* flush entries from previous scans */ 1109 spin_lock_bh(&rdev->bss_lock); 1110 __cfg80211_bss_expire(rdev, req->scan_start); 1111 spin_unlock_bh(&rdev->bss_lock); 1112 req->scan_start = jiffies; 1113 } 1114 nl80211_send_sched_scan(req, 1115 NL80211_CMD_SCHED_SCAN_RESULTS); 1116 } 1117 } 1118 wiphy_unlock(&rdev->wiphy); 1119 } 1120 1121 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid) 1122 { 1123 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1124 struct cfg80211_sched_scan_request *request; 1125 1126 trace_cfg80211_sched_scan_results(wiphy, reqid); 1127 /* ignore if we're not scanning */ 1128 1129 rcu_read_lock(); 1130 request = cfg80211_find_sched_scan_req(rdev, reqid); 1131 if (request) { 1132 request->report_results = true; 1133 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk); 1134 } 1135 rcu_read_unlock(); 1136 } 1137 EXPORT_SYMBOL(cfg80211_sched_scan_results); 1138 1139 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid) 1140 { 1141 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1142 1143 lockdep_assert_held(&wiphy->mtx); 1144 1145 trace_cfg80211_sched_scan_stopped(wiphy, reqid); 1146 1147 __cfg80211_stop_sched_scan(rdev, reqid, true); 1148 } 1149 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked); 1150 1151 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid) 1152 { 1153 wiphy_lock(wiphy); 1154 cfg80211_sched_scan_stopped_locked(wiphy, reqid); 1155 wiphy_unlock(wiphy); 1156 } 1157 EXPORT_SYMBOL(cfg80211_sched_scan_stopped); 1158 1159 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, 1160 struct cfg80211_sched_scan_request *req, 1161 bool driver_initiated) 1162 { 1163 lockdep_assert_held(&rdev->wiphy.mtx); 1164 1165 if (!driver_initiated) { 1166 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid); 1167 if (err) 1168 return err; 1169 } 1170 1171 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED); 1172 1173 cfg80211_del_sched_scan_req(rdev, req); 1174 1175 return 0; 1176 } 1177 1178 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, 1179 u64 reqid, bool driver_initiated) 1180 { 1181 struct cfg80211_sched_scan_request *sched_scan_req; 1182 1183 lockdep_assert_held(&rdev->wiphy.mtx); 1184 1185 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid); 1186 if (!sched_scan_req) 1187 return -ENOENT; 1188 1189 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req, 1190 driver_initiated); 1191 } 1192 1193 void cfg80211_bss_age(struct cfg80211_registered_device *rdev, 1194 unsigned long age_secs) 1195 { 1196 struct cfg80211_internal_bss *bss; 1197 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC); 1198 1199 spin_lock_bh(&rdev->bss_lock); 1200 list_for_each_entry(bss, &rdev->bss_list, list) 1201 bss->ts -= age_jiffies; 1202 spin_unlock_bh(&rdev->bss_lock); 1203 } 1204 1205 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev) 1206 { 1207 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE); 1208 } 1209 1210 void cfg80211_bss_flush(struct wiphy *wiphy) 1211 { 1212 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1213 1214 spin_lock_bh(&rdev->bss_lock); 1215 __cfg80211_bss_expire(rdev, jiffies); 1216 spin_unlock_bh(&rdev->bss_lock); 1217 } 1218 EXPORT_SYMBOL(cfg80211_bss_flush); 1219 1220 const struct element * 1221 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len, 1222 const u8 *match, unsigned int match_len, 1223 unsigned int match_offset) 1224 { 1225 const struct element *elem; 1226 1227 for_each_element_id(elem, eid, ies, len) { 1228 if (elem->datalen >= match_offset + match_len && 1229 !memcmp(elem->data + match_offset, match, match_len)) 1230 return elem; 1231 } 1232 1233 return NULL; 1234 } 1235 EXPORT_SYMBOL(cfg80211_find_elem_match); 1236 1237 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type, 1238 const u8 *ies, 1239 unsigned int len) 1240 { 1241 const struct element *elem; 1242 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type }; 1243 int match_len = (oui_type < 0) ? 3 : sizeof(match); 1244 1245 if (WARN_ON(oui_type > 0xff)) 1246 return NULL; 1247 1248 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len, 1249 match, match_len, 0); 1250 1251 if (!elem || elem->datalen < 4) 1252 return NULL; 1253 1254 return elem; 1255 } 1256 EXPORT_SYMBOL(cfg80211_find_vendor_elem); 1257 1258 /** 1259 * enum bss_compare_mode - BSS compare mode 1260 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find) 1261 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode 1262 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode 1263 */ 1264 enum bss_compare_mode { 1265 BSS_CMP_REGULAR, 1266 BSS_CMP_HIDE_ZLEN, 1267 BSS_CMP_HIDE_NUL, 1268 }; 1269 1270 static int cmp_bss(struct cfg80211_bss *a, 1271 struct cfg80211_bss *b, 1272 enum bss_compare_mode mode) 1273 { 1274 const struct cfg80211_bss_ies *a_ies, *b_ies; 1275 const u8 *ie1 = NULL; 1276 const u8 *ie2 = NULL; 1277 int i, r; 1278 1279 if (a->channel != b->channel) 1280 return b->channel->center_freq - a->channel->center_freq; 1281 1282 a_ies = rcu_access_pointer(a->ies); 1283 if (!a_ies) 1284 return -1; 1285 b_ies = rcu_access_pointer(b->ies); 1286 if (!b_ies) 1287 return 1; 1288 1289 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability)) 1290 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1291 a_ies->data, a_ies->len); 1292 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability)) 1293 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1294 b_ies->data, b_ies->len); 1295 if (ie1 && ie2) { 1296 int mesh_id_cmp; 1297 1298 if (ie1[1] == ie2[1]) 1299 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1300 else 1301 mesh_id_cmp = ie2[1] - ie1[1]; 1302 1303 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1304 a_ies->data, a_ies->len); 1305 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1306 b_ies->data, b_ies->len); 1307 if (ie1 && ie2) { 1308 if (mesh_id_cmp) 1309 return mesh_id_cmp; 1310 if (ie1[1] != ie2[1]) 1311 return ie2[1] - ie1[1]; 1312 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1313 } 1314 } 1315 1316 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid)); 1317 if (r) 1318 return r; 1319 1320 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len); 1321 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len); 1322 1323 if (!ie1 && !ie2) 1324 return 0; 1325 1326 /* 1327 * Note that with "hide_ssid", the function returns a match if 1328 * the already-present BSS ("b") is a hidden SSID beacon for 1329 * the new BSS ("a"). 1330 */ 1331 1332 /* sort missing IE before (left of) present IE */ 1333 if (!ie1) 1334 return -1; 1335 if (!ie2) 1336 return 1; 1337 1338 switch (mode) { 1339 case BSS_CMP_HIDE_ZLEN: 1340 /* 1341 * In ZLEN mode we assume the BSS entry we're 1342 * looking for has a zero-length SSID. So if 1343 * the one we're looking at right now has that, 1344 * return 0. Otherwise, return the difference 1345 * in length, but since we're looking for the 1346 * 0-length it's really equivalent to returning 1347 * the length of the one we're looking at. 1348 * 1349 * No content comparison is needed as we assume 1350 * the content length is zero. 1351 */ 1352 return ie2[1]; 1353 case BSS_CMP_REGULAR: 1354 default: 1355 /* sort by length first, then by contents */ 1356 if (ie1[1] != ie2[1]) 1357 return ie2[1] - ie1[1]; 1358 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1359 case BSS_CMP_HIDE_NUL: 1360 if (ie1[1] != ie2[1]) 1361 return ie2[1] - ie1[1]; 1362 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */ 1363 for (i = 0; i < ie2[1]; i++) 1364 if (ie2[i + 2]) 1365 return -1; 1366 return 0; 1367 } 1368 } 1369 1370 static bool cfg80211_bss_type_match(u16 capability, 1371 enum nl80211_band band, 1372 enum ieee80211_bss_type bss_type) 1373 { 1374 bool ret = true; 1375 u16 mask, val; 1376 1377 if (bss_type == IEEE80211_BSS_TYPE_ANY) 1378 return ret; 1379 1380 if (band == NL80211_BAND_60GHZ) { 1381 mask = WLAN_CAPABILITY_DMG_TYPE_MASK; 1382 switch (bss_type) { 1383 case IEEE80211_BSS_TYPE_ESS: 1384 val = WLAN_CAPABILITY_DMG_TYPE_AP; 1385 break; 1386 case IEEE80211_BSS_TYPE_PBSS: 1387 val = WLAN_CAPABILITY_DMG_TYPE_PBSS; 1388 break; 1389 case IEEE80211_BSS_TYPE_IBSS: 1390 val = WLAN_CAPABILITY_DMG_TYPE_IBSS; 1391 break; 1392 default: 1393 return false; 1394 } 1395 } else { 1396 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS; 1397 switch (bss_type) { 1398 case IEEE80211_BSS_TYPE_ESS: 1399 val = WLAN_CAPABILITY_ESS; 1400 break; 1401 case IEEE80211_BSS_TYPE_IBSS: 1402 val = WLAN_CAPABILITY_IBSS; 1403 break; 1404 case IEEE80211_BSS_TYPE_MBSS: 1405 val = 0; 1406 break; 1407 default: 1408 return false; 1409 } 1410 } 1411 1412 ret = ((capability & mask) == val); 1413 return ret; 1414 } 1415 1416 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1417 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy, 1418 struct ieee80211_channel *channel, 1419 const u8 *bssid, 1420 const u8 *ssid, size_t ssid_len, 1421 enum ieee80211_bss_type bss_type, 1422 enum ieee80211_privacy privacy) 1423 { 1424 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1425 struct cfg80211_internal_bss *bss, *res = NULL; 1426 unsigned long now = jiffies; 1427 int bss_privacy; 1428 1429 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type, 1430 privacy); 1431 1432 spin_lock_bh(&rdev->bss_lock); 1433 1434 list_for_each_entry(bss, &rdev->bss_list, list) { 1435 if (!cfg80211_bss_type_match(bss->pub.capability, 1436 bss->pub.channel->band, bss_type)) 1437 continue; 1438 1439 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY); 1440 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) || 1441 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy)) 1442 continue; 1443 if (channel && bss->pub.channel != channel) 1444 continue; 1445 if (!is_valid_ether_addr(bss->pub.bssid)) 1446 continue; 1447 /* Don't get expired BSS structs */ 1448 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) && 1449 !atomic_read(&bss->hold)) 1450 continue; 1451 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) { 1452 res = bss; 1453 bss_ref_get(rdev, res); 1454 break; 1455 } 1456 } 1457 1458 spin_unlock_bh(&rdev->bss_lock); 1459 if (!res) 1460 return NULL; 1461 trace_cfg80211_return_bss(&res->pub); 1462 return &res->pub; 1463 } 1464 EXPORT_SYMBOL(cfg80211_get_bss); 1465 1466 static void rb_insert_bss(struct cfg80211_registered_device *rdev, 1467 struct cfg80211_internal_bss *bss) 1468 { 1469 struct rb_node **p = &rdev->bss_tree.rb_node; 1470 struct rb_node *parent = NULL; 1471 struct cfg80211_internal_bss *tbss; 1472 int cmp; 1473 1474 while (*p) { 1475 parent = *p; 1476 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn); 1477 1478 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR); 1479 1480 if (WARN_ON(!cmp)) { 1481 /* will sort of leak this BSS */ 1482 return; 1483 } 1484 1485 if (cmp < 0) 1486 p = &(*p)->rb_left; 1487 else 1488 p = &(*p)->rb_right; 1489 } 1490 1491 rb_link_node(&bss->rbn, parent, p); 1492 rb_insert_color(&bss->rbn, &rdev->bss_tree); 1493 } 1494 1495 static struct cfg80211_internal_bss * 1496 rb_find_bss(struct cfg80211_registered_device *rdev, 1497 struct cfg80211_internal_bss *res, 1498 enum bss_compare_mode mode) 1499 { 1500 struct rb_node *n = rdev->bss_tree.rb_node; 1501 struct cfg80211_internal_bss *bss; 1502 int r; 1503 1504 while (n) { 1505 bss = rb_entry(n, struct cfg80211_internal_bss, rbn); 1506 r = cmp_bss(&res->pub, &bss->pub, mode); 1507 1508 if (r == 0) 1509 return bss; 1510 else if (r < 0) 1511 n = n->rb_left; 1512 else 1513 n = n->rb_right; 1514 } 1515 1516 return NULL; 1517 } 1518 1519 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev, 1520 struct cfg80211_internal_bss *new) 1521 { 1522 const struct cfg80211_bss_ies *ies; 1523 struct cfg80211_internal_bss *bss; 1524 const u8 *ie; 1525 int i, ssidlen; 1526 u8 fold = 0; 1527 u32 n_entries = 0; 1528 1529 ies = rcu_access_pointer(new->pub.beacon_ies); 1530 if (WARN_ON(!ies)) 1531 return false; 1532 1533 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1534 if (!ie) { 1535 /* nothing to do */ 1536 return true; 1537 } 1538 1539 ssidlen = ie[1]; 1540 for (i = 0; i < ssidlen; i++) 1541 fold |= ie[2 + i]; 1542 1543 if (fold) { 1544 /* not a hidden SSID */ 1545 return true; 1546 } 1547 1548 /* This is the bad part ... */ 1549 1550 list_for_each_entry(bss, &rdev->bss_list, list) { 1551 /* 1552 * we're iterating all the entries anyway, so take the 1553 * opportunity to validate the list length accounting 1554 */ 1555 n_entries++; 1556 1557 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid)) 1558 continue; 1559 if (bss->pub.channel != new->pub.channel) 1560 continue; 1561 if (bss->pub.scan_width != new->pub.scan_width) 1562 continue; 1563 if (rcu_access_pointer(bss->pub.beacon_ies)) 1564 continue; 1565 ies = rcu_access_pointer(bss->pub.ies); 1566 if (!ies) 1567 continue; 1568 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1569 if (!ie) 1570 continue; 1571 if (ssidlen && ie[1] != ssidlen) 1572 continue; 1573 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss)) 1574 continue; 1575 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list))) 1576 list_del(&bss->hidden_list); 1577 /* combine them */ 1578 list_add(&bss->hidden_list, &new->hidden_list); 1579 bss->pub.hidden_beacon_bss = &new->pub; 1580 new->refcount += bss->refcount; 1581 rcu_assign_pointer(bss->pub.beacon_ies, 1582 new->pub.beacon_ies); 1583 } 1584 1585 WARN_ONCE(n_entries != rdev->bss_entries, 1586 "rdev bss entries[%d]/list[len:%d] corruption\n", 1587 rdev->bss_entries, n_entries); 1588 1589 return true; 1590 } 1591 1592 struct cfg80211_non_tx_bss { 1593 struct cfg80211_bss *tx_bss; 1594 u8 max_bssid_indicator; 1595 u8 bssid_index; 1596 }; 1597 1598 static bool 1599 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev, 1600 struct cfg80211_internal_bss *known, 1601 struct cfg80211_internal_bss *new, 1602 bool signal_valid) 1603 { 1604 lockdep_assert_held(&rdev->bss_lock); 1605 1606 /* Update IEs */ 1607 if (rcu_access_pointer(new->pub.proberesp_ies)) { 1608 const struct cfg80211_bss_ies *old; 1609 1610 old = rcu_access_pointer(known->pub.proberesp_ies); 1611 1612 rcu_assign_pointer(known->pub.proberesp_ies, 1613 new->pub.proberesp_ies); 1614 /* Override possible earlier Beacon frame IEs */ 1615 rcu_assign_pointer(known->pub.ies, 1616 new->pub.proberesp_ies); 1617 if (old) 1618 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1619 } else if (rcu_access_pointer(new->pub.beacon_ies)) { 1620 const struct cfg80211_bss_ies *old; 1621 struct cfg80211_internal_bss *bss; 1622 1623 if (known->pub.hidden_beacon_bss && 1624 !list_empty(&known->hidden_list)) { 1625 const struct cfg80211_bss_ies *f; 1626 1627 /* The known BSS struct is one of the probe 1628 * response members of a group, but we're 1629 * receiving a beacon (beacon_ies in the new 1630 * bss is used). This can only mean that the 1631 * AP changed its beacon from not having an 1632 * SSID to showing it, which is confusing so 1633 * drop this information. 1634 */ 1635 1636 f = rcu_access_pointer(new->pub.beacon_ies); 1637 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head); 1638 return false; 1639 } 1640 1641 old = rcu_access_pointer(known->pub.beacon_ies); 1642 1643 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies); 1644 1645 /* Override IEs if they were from a beacon before */ 1646 if (old == rcu_access_pointer(known->pub.ies)) 1647 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies); 1648 1649 /* Assign beacon IEs to all sub entries */ 1650 list_for_each_entry(bss, &known->hidden_list, hidden_list) { 1651 const struct cfg80211_bss_ies *ies; 1652 1653 ies = rcu_access_pointer(bss->pub.beacon_ies); 1654 WARN_ON(ies != old); 1655 1656 rcu_assign_pointer(bss->pub.beacon_ies, 1657 new->pub.beacon_ies); 1658 } 1659 1660 if (old) 1661 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1662 } 1663 1664 known->pub.beacon_interval = new->pub.beacon_interval; 1665 1666 /* don't update the signal if beacon was heard on 1667 * adjacent channel. 1668 */ 1669 if (signal_valid) 1670 known->pub.signal = new->pub.signal; 1671 known->pub.capability = new->pub.capability; 1672 known->ts = new->ts; 1673 known->ts_boottime = new->ts_boottime; 1674 known->parent_tsf = new->parent_tsf; 1675 known->pub.chains = new->pub.chains; 1676 memcpy(known->pub.chain_signal, new->pub.chain_signal, 1677 IEEE80211_MAX_CHAINS); 1678 ether_addr_copy(known->parent_bssid, new->parent_bssid); 1679 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator; 1680 known->pub.bssid_index = new->pub.bssid_index; 1681 1682 return true; 1683 } 1684 1685 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1686 struct cfg80211_internal_bss * 1687 cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1688 struct cfg80211_internal_bss *tmp, 1689 bool signal_valid, unsigned long ts) 1690 { 1691 struct cfg80211_internal_bss *found = NULL; 1692 1693 if (WARN_ON(!tmp->pub.channel)) 1694 return NULL; 1695 1696 tmp->ts = ts; 1697 1698 spin_lock_bh(&rdev->bss_lock); 1699 1700 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) { 1701 spin_unlock_bh(&rdev->bss_lock); 1702 return NULL; 1703 } 1704 1705 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR); 1706 1707 if (found) { 1708 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid)) 1709 goto drop; 1710 } else { 1711 struct cfg80211_internal_bss *new; 1712 struct cfg80211_internal_bss *hidden; 1713 struct cfg80211_bss_ies *ies; 1714 1715 /* 1716 * create a copy -- the "res" variable that is passed in 1717 * is allocated on the stack since it's not needed in the 1718 * more common case of an update 1719 */ 1720 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size, 1721 GFP_ATOMIC); 1722 if (!new) { 1723 ies = (void *)rcu_dereference(tmp->pub.beacon_ies); 1724 if (ies) 1725 kfree_rcu(ies, rcu_head); 1726 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies); 1727 if (ies) 1728 kfree_rcu(ies, rcu_head); 1729 goto drop; 1730 } 1731 memcpy(new, tmp, sizeof(*new)); 1732 new->refcount = 1; 1733 INIT_LIST_HEAD(&new->hidden_list); 1734 INIT_LIST_HEAD(&new->pub.nontrans_list); 1735 1736 if (rcu_access_pointer(tmp->pub.proberesp_ies)) { 1737 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN); 1738 if (!hidden) 1739 hidden = rb_find_bss(rdev, tmp, 1740 BSS_CMP_HIDE_NUL); 1741 if (hidden) { 1742 new->pub.hidden_beacon_bss = &hidden->pub; 1743 list_add(&new->hidden_list, 1744 &hidden->hidden_list); 1745 hidden->refcount++; 1746 rcu_assign_pointer(new->pub.beacon_ies, 1747 hidden->pub.beacon_ies); 1748 } 1749 } else { 1750 /* 1751 * Ok so we found a beacon, and don't have an entry. If 1752 * it's a beacon with hidden SSID, we might be in for an 1753 * expensive search for any probe responses that should 1754 * be grouped with this beacon for updates ... 1755 */ 1756 if (!cfg80211_combine_bsses(rdev, new)) { 1757 kfree(new); 1758 goto drop; 1759 } 1760 } 1761 1762 if (rdev->bss_entries >= bss_entries_limit && 1763 !cfg80211_bss_expire_oldest(rdev)) { 1764 if (!list_empty(&new->hidden_list)) 1765 list_del(&new->hidden_list); 1766 kfree(new); 1767 goto drop; 1768 } 1769 1770 /* This must be before the call to bss_ref_get */ 1771 if (tmp->pub.transmitted_bss) { 1772 struct cfg80211_internal_bss *pbss = 1773 container_of(tmp->pub.transmitted_bss, 1774 struct cfg80211_internal_bss, 1775 pub); 1776 1777 new->pub.transmitted_bss = tmp->pub.transmitted_bss; 1778 bss_ref_get(rdev, pbss); 1779 } 1780 1781 list_add_tail(&new->list, &rdev->bss_list); 1782 rdev->bss_entries++; 1783 rb_insert_bss(rdev, new); 1784 found = new; 1785 } 1786 1787 rdev->bss_generation++; 1788 bss_ref_get(rdev, found); 1789 spin_unlock_bh(&rdev->bss_lock); 1790 1791 return found; 1792 drop: 1793 spin_unlock_bh(&rdev->bss_lock); 1794 return NULL; 1795 } 1796 1797 /* 1798 * Update RX channel information based on the available frame payload 1799 * information. This is mainly for the 2.4 GHz band where frames can be received 1800 * from neighboring channels and the Beacon frames use the DSSS Parameter Set 1801 * element to indicate the current (transmitting) channel, but this might also 1802 * be needed on other bands if RX frequency does not match with the actual 1803 * operating channel of a BSS. 1804 */ 1805 static struct ieee80211_channel * 1806 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen, 1807 struct ieee80211_channel *channel, 1808 enum nl80211_bss_scan_width scan_width) 1809 { 1810 const u8 *tmp; 1811 u32 freq; 1812 int channel_number = -1; 1813 struct ieee80211_channel *alt_channel; 1814 1815 if (channel->band == NL80211_BAND_S1GHZ) { 1816 tmp = cfg80211_find_ie(WLAN_EID_S1G_OPERATION, ie, ielen); 1817 if (tmp && tmp[1] >= sizeof(struct ieee80211_s1g_oper_ie)) { 1818 struct ieee80211_s1g_oper_ie *s1gop = (void *)(tmp + 2); 1819 1820 channel_number = s1gop->primary_ch; 1821 } 1822 } else { 1823 tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen); 1824 if (tmp && tmp[1] == 1) { 1825 channel_number = tmp[2]; 1826 } else { 1827 tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen); 1828 if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) { 1829 struct ieee80211_ht_operation *htop = (void *)(tmp + 2); 1830 1831 channel_number = htop->primary_chan; 1832 } 1833 } 1834 } 1835 1836 if (channel_number < 0) { 1837 /* No channel information in frame payload */ 1838 return channel; 1839 } 1840 1841 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band); 1842 alt_channel = ieee80211_get_channel_khz(wiphy, freq); 1843 if (!alt_channel) { 1844 if (channel->band == NL80211_BAND_2GHZ) { 1845 /* 1846 * Better not allow unexpected channels when that could 1847 * be going beyond the 1-11 range (e.g., discovering 1848 * BSS on channel 12 when radio is configured for 1849 * channel 11. 1850 */ 1851 return NULL; 1852 } 1853 1854 /* No match for the payload channel number - ignore it */ 1855 return channel; 1856 } 1857 1858 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 || 1859 scan_width == NL80211_BSS_CHAN_WIDTH_5) { 1860 /* 1861 * Ignore channel number in 5 and 10 MHz channels where there 1862 * may not be an n:1 or 1:n mapping between frequencies and 1863 * channel numbers. 1864 */ 1865 return channel; 1866 } 1867 1868 /* 1869 * Use the channel determined through the payload channel number 1870 * instead of the RX channel reported by the driver. 1871 */ 1872 if (alt_channel->flags & IEEE80211_CHAN_DISABLED) 1873 return NULL; 1874 return alt_channel; 1875 } 1876 1877 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1878 static struct cfg80211_bss * 1879 cfg80211_inform_single_bss_data(struct wiphy *wiphy, 1880 struct cfg80211_inform_bss *data, 1881 enum cfg80211_bss_frame_type ftype, 1882 const u8 *bssid, u64 tsf, u16 capability, 1883 u16 beacon_interval, const u8 *ie, size_t ielen, 1884 struct cfg80211_non_tx_bss *non_tx_data, 1885 gfp_t gfp) 1886 { 1887 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1888 struct cfg80211_bss_ies *ies; 1889 struct ieee80211_channel *channel; 1890 struct cfg80211_internal_bss tmp = {}, *res; 1891 int bss_type; 1892 bool signal_valid; 1893 unsigned long ts; 1894 1895 if (WARN_ON(!wiphy)) 1896 return NULL; 1897 1898 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 1899 (data->signal < 0 || data->signal > 100))) 1900 return NULL; 1901 1902 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan, 1903 data->scan_width); 1904 if (!channel) 1905 return NULL; 1906 1907 memcpy(tmp.pub.bssid, bssid, ETH_ALEN); 1908 tmp.pub.channel = channel; 1909 tmp.pub.scan_width = data->scan_width; 1910 tmp.pub.signal = data->signal; 1911 tmp.pub.beacon_interval = beacon_interval; 1912 tmp.pub.capability = capability; 1913 tmp.ts_boottime = data->boottime_ns; 1914 tmp.parent_tsf = data->parent_tsf; 1915 ether_addr_copy(tmp.parent_bssid, data->parent_bssid); 1916 1917 if (non_tx_data) { 1918 tmp.pub.transmitted_bss = non_tx_data->tx_bss; 1919 ts = bss_from_pub(non_tx_data->tx_bss)->ts; 1920 tmp.pub.bssid_index = non_tx_data->bssid_index; 1921 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator; 1922 } else { 1923 ts = jiffies; 1924 } 1925 1926 /* 1927 * If we do not know here whether the IEs are from a Beacon or Probe 1928 * Response frame, we need to pick one of the options and only use it 1929 * with the driver that does not provide the full Beacon/Probe Response 1930 * frame. Use Beacon frame pointer to avoid indicating that this should 1931 * override the IEs pointer should we have received an earlier 1932 * indication of Probe Response data. 1933 */ 1934 ies = kzalloc(sizeof(*ies) + ielen, gfp); 1935 if (!ies) 1936 return NULL; 1937 ies->len = ielen; 1938 ies->tsf = tsf; 1939 ies->from_beacon = false; 1940 memcpy(ies->data, ie, ielen); 1941 1942 switch (ftype) { 1943 case CFG80211_BSS_FTYPE_BEACON: 1944 ies->from_beacon = true; 1945 fallthrough; 1946 case CFG80211_BSS_FTYPE_UNKNOWN: 1947 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 1948 break; 1949 case CFG80211_BSS_FTYPE_PRESP: 1950 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 1951 break; 1952 } 1953 rcu_assign_pointer(tmp.pub.ies, ies); 1954 1955 signal_valid = data->chan == channel; 1956 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts); 1957 if (!res) 1958 return NULL; 1959 1960 if (channel->band == NL80211_BAND_60GHZ) { 1961 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 1962 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 1963 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 1964 regulatory_hint_found_beacon(wiphy, channel, gfp); 1965 } else { 1966 if (res->pub.capability & WLAN_CAPABILITY_ESS) 1967 regulatory_hint_found_beacon(wiphy, channel, gfp); 1968 } 1969 1970 if (non_tx_data) { 1971 /* this is a nontransmitting bss, we need to add it to 1972 * transmitting bss' list if it is not there 1973 */ 1974 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss, 1975 &res->pub)) { 1976 if (__cfg80211_unlink_bss(rdev, res)) 1977 rdev->bss_generation++; 1978 } 1979 } 1980 1981 trace_cfg80211_return_bss(&res->pub); 1982 /* cfg80211_bss_update gives us a referenced result */ 1983 return &res->pub; 1984 } 1985 1986 static const struct element 1987 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen, 1988 const struct element *mbssid_elem, 1989 const struct element *sub_elem) 1990 { 1991 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen; 1992 const struct element *next_mbssid; 1993 const struct element *next_sub; 1994 1995 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 1996 mbssid_end, 1997 ielen - (mbssid_end - ie)); 1998 1999 /* 2000 * If it is not the last subelement in current MBSSID IE or there isn't 2001 * a next MBSSID IE - profile is complete. 2002 */ 2003 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) || 2004 !next_mbssid) 2005 return NULL; 2006 2007 /* For any length error, just return NULL */ 2008 2009 if (next_mbssid->datalen < 4) 2010 return NULL; 2011 2012 next_sub = (void *)&next_mbssid->data[1]; 2013 2014 if (next_mbssid->data + next_mbssid->datalen < 2015 next_sub->data + next_sub->datalen) 2016 return NULL; 2017 2018 if (next_sub->id != 0 || next_sub->datalen < 2) 2019 return NULL; 2020 2021 /* 2022 * Check if the first element in the next sub element is a start 2023 * of a new profile 2024 */ 2025 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ? 2026 NULL : next_mbssid; 2027 } 2028 2029 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen, 2030 const struct element *mbssid_elem, 2031 const struct element *sub_elem, 2032 u8 *merged_ie, size_t max_copy_len) 2033 { 2034 size_t copied_len = sub_elem->datalen; 2035 const struct element *next_mbssid; 2036 2037 if (sub_elem->datalen > max_copy_len) 2038 return 0; 2039 2040 memcpy(merged_ie, sub_elem->data, sub_elem->datalen); 2041 2042 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen, 2043 mbssid_elem, 2044 sub_elem))) { 2045 const struct element *next_sub = (void *)&next_mbssid->data[1]; 2046 2047 if (copied_len + next_sub->datalen > max_copy_len) 2048 break; 2049 memcpy(merged_ie + copied_len, next_sub->data, 2050 next_sub->datalen); 2051 copied_len += next_sub->datalen; 2052 } 2053 2054 return copied_len; 2055 } 2056 EXPORT_SYMBOL(cfg80211_merge_profile); 2057 2058 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy, 2059 struct cfg80211_inform_bss *data, 2060 enum cfg80211_bss_frame_type ftype, 2061 const u8 *bssid, u64 tsf, 2062 u16 beacon_interval, const u8 *ie, 2063 size_t ielen, 2064 struct cfg80211_non_tx_bss *non_tx_data, 2065 gfp_t gfp) 2066 { 2067 const u8 *mbssid_index_ie; 2068 const struct element *elem, *sub; 2069 size_t new_ie_len; 2070 u8 new_bssid[ETH_ALEN]; 2071 u8 *new_ie, *profile; 2072 u64 seen_indices = 0; 2073 u16 capability; 2074 struct cfg80211_bss *bss; 2075 2076 if (!non_tx_data) 2077 return; 2078 if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen)) 2079 return; 2080 if (!wiphy->support_mbssid) 2081 return; 2082 if (wiphy->support_only_he_mbssid && 2083 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen)) 2084 return; 2085 2086 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2087 if (!new_ie) 2088 return; 2089 2090 profile = kmalloc(ielen, gfp); 2091 if (!profile) 2092 goto out; 2093 2094 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) { 2095 if (elem->datalen < 4) 2096 continue; 2097 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 2098 u8 profile_len; 2099 2100 if (sub->id != 0 || sub->datalen < 4) { 2101 /* not a valid BSS profile */ 2102 continue; 2103 } 2104 2105 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 2106 sub->data[1] != 2) { 2107 /* The first element within the Nontransmitted 2108 * BSSID Profile is not the Nontransmitted 2109 * BSSID Capability element. 2110 */ 2111 continue; 2112 } 2113 2114 memset(profile, 0, ielen); 2115 profile_len = cfg80211_merge_profile(ie, ielen, 2116 elem, 2117 sub, 2118 profile, 2119 ielen); 2120 2121 /* found a Nontransmitted BSSID Profile */ 2122 mbssid_index_ie = cfg80211_find_ie 2123 (WLAN_EID_MULTI_BSSID_IDX, 2124 profile, profile_len); 2125 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 || 2126 mbssid_index_ie[2] == 0 || 2127 mbssid_index_ie[2] > 46) { 2128 /* No valid Multiple BSSID-Index element */ 2129 continue; 2130 } 2131 2132 if (seen_indices & BIT_ULL(mbssid_index_ie[2])) 2133 /* We don't support legacy split of a profile */ 2134 net_dbg_ratelimited("Partial info for BSSID index %d\n", 2135 mbssid_index_ie[2]); 2136 2137 seen_indices |= BIT_ULL(mbssid_index_ie[2]); 2138 2139 non_tx_data->bssid_index = mbssid_index_ie[2]; 2140 non_tx_data->max_bssid_indicator = elem->data[0]; 2141 2142 cfg80211_gen_new_bssid(bssid, 2143 non_tx_data->max_bssid_indicator, 2144 non_tx_data->bssid_index, 2145 new_bssid); 2146 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 2147 new_ie_len = cfg80211_gen_new_ie(ie, ielen, 2148 profile, 2149 profile_len, new_ie, 2150 gfp); 2151 if (!new_ie_len) 2152 continue; 2153 2154 capability = get_unaligned_le16(profile + 2); 2155 bss = cfg80211_inform_single_bss_data(wiphy, data, 2156 ftype, 2157 new_bssid, tsf, 2158 capability, 2159 beacon_interval, 2160 new_ie, 2161 new_ie_len, 2162 non_tx_data, 2163 gfp); 2164 if (!bss) 2165 break; 2166 cfg80211_put_bss(wiphy, bss); 2167 } 2168 } 2169 2170 out: 2171 kfree(new_ie); 2172 kfree(profile); 2173 } 2174 2175 struct cfg80211_bss * 2176 cfg80211_inform_bss_data(struct wiphy *wiphy, 2177 struct cfg80211_inform_bss *data, 2178 enum cfg80211_bss_frame_type ftype, 2179 const u8 *bssid, u64 tsf, u16 capability, 2180 u16 beacon_interval, const u8 *ie, size_t ielen, 2181 gfp_t gfp) 2182 { 2183 struct cfg80211_bss *res; 2184 struct cfg80211_non_tx_bss non_tx_data; 2185 2186 res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf, 2187 capability, beacon_interval, ie, 2188 ielen, NULL, gfp); 2189 if (!res) 2190 return NULL; 2191 non_tx_data.tx_bss = res; 2192 cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf, 2193 beacon_interval, ie, ielen, &non_tx_data, 2194 gfp); 2195 return res; 2196 } 2197 EXPORT_SYMBOL(cfg80211_inform_bss_data); 2198 2199 static void 2200 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy, 2201 struct cfg80211_inform_bss *data, 2202 struct ieee80211_mgmt *mgmt, size_t len, 2203 struct cfg80211_non_tx_bss *non_tx_data, 2204 gfp_t gfp) 2205 { 2206 enum cfg80211_bss_frame_type ftype; 2207 const u8 *ie = mgmt->u.probe_resp.variable; 2208 size_t ielen = len - offsetof(struct ieee80211_mgmt, 2209 u.probe_resp.variable); 2210 2211 ftype = ieee80211_is_beacon(mgmt->frame_control) ? 2212 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP; 2213 2214 cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid, 2215 le64_to_cpu(mgmt->u.probe_resp.timestamp), 2216 le16_to_cpu(mgmt->u.probe_resp.beacon_int), 2217 ie, ielen, non_tx_data, gfp); 2218 } 2219 2220 static void 2221 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy, 2222 struct cfg80211_bss *nontrans_bss, 2223 struct ieee80211_mgmt *mgmt, size_t len) 2224 { 2225 u8 *ie, *new_ie, *pos; 2226 const u8 *nontrans_ssid, *trans_ssid, *mbssid; 2227 size_t ielen = len - offsetof(struct ieee80211_mgmt, 2228 u.probe_resp.variable); 2229 size_t new_ie_len; 2230 struct cfg80211_bss_ies *new_ies; 2231 const struct cfg80211_bss_ies *old; 2232 u8 cpy_len; 2233 2234 lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock); 2235 2236 ie = mgmt->u.probe_resp.variable; 2237 2238 new_ie_len = ielen; 2239 trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen); 2240 if (!trans_ssid) 2241 return; 2242 new_ie_len -= trans_ssid[1]; 2243 mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen); 2244 /* 2245 * It's not valid to have the MBSSID element before SSID 2246 * ignore if that happens - the code below assumes it is 2247 * after (while copying things inbetween). 2248 */ 2249 if (!mbssid || mbssid < trans_ssid) 2250 return; 2251 new_ie_len -= mbssid[1]; 2252 2253 nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID); 2254 if (!nontrans_ssid) 2255 return; 2256 2257 new_ie_len += nontrans_ssid[1]; 2258 2259 /* generate new ie for nontrans BSS 2260 * 1. replace SSID with nontrans BSS' SSID 2261 * 2. skip MBSSID IE 2262 */ 2263 new_ie = kzalloc(new_ie_len, GFP_ATOMIC); 2264 if (!new_ie) 2265 return; 2266 2267 new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC); 2268 if (!new_ies) 2269 goto out_free; 2270 2271 pos = new_ie; 2272 2273 /* copy the nontransmitted SSID */ 2274 cpy_len = nontrans_ssid[1] + 2; 2275 memcpy(pos, nontrans_ssid, cpy_len); 2276 pos += cpy_len; 2277 /* copy the IEs between SSID and MBSSID */ 2278 cpy_len = trans_ssid[1] + 2; 2279 memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len))); 2280 pos += (mbssid - (trans_ssid + cpy_len)); 2281 /* copy the IEs after MBSSID */ 2282 cpy_len = mbssid[1] + 2; 2283 memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len))); 2284 2285 /* update ie */ 2286 new_ies->len = new_ie_len; 2287 new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 2288 new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control); 2289 memcpy(new_ies->data, new_ie, new_ie_len); 2290 if (ieee80211_is_probe_resp(mgmt->frame_control)) { 2291 old = rcu_access_pointer(nontrans_bss->proberesp_ies); 2292 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies); 2293 rcu_assign_pointer(nontrans_bss->ies, new_ies); 2294 if (old) 2295 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 2296 } else { 2297 old = rcu_access_pointer(nontrans_bss->beacon_ies); 2298 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies); 2299 rcu_assign_pointer(nontrans_bss->ies, new_ies); 2300 if (old) 2301 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 2302 } 2303 2304 out_free: 2305 kfree(new_ie); 2306 } 2307 2308 /* cfg80211_inform_bss_width_frame helper */ 2309 static struct cfg80211_bss * 2310 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy, 2311 struct cfg80211_inform_bss *data, 2312 struct ieee80211_mgmt *mgmt, size_t len, 2313 gfp_t gfp) 2314 { 2315 struct cfg80211_internal_bss tmp = {}, *res; 2316 struct cfg80211_bss_ies *ies; 2317 struct ieee80211_channel *channel; 2318 bool signal_valid; 2319 struct ieee80211_ext *ext = NULL; 2320 u8 *bssid, *variable; 2321 u16 capability, beacon_int; 2322 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt, 2323 u.probe_resp.variable); 2324 int bss_type; 2325 2326 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) != 2327 offsetof(struct ieee80211_mgmt, u.beacon.variable)); 2328 2329 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len); 2330 2331 if (WARN_ON(!mgmt)) 2332 return NULL; 2333 2334 if (WARN_ON(!wiphy)) 2335 return NULL; 2336 2337 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 2338 (data->signal < 0 || data->signal > 100))) 2339 return NULL; 2340 2341 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) { 2342 ext = (void *) mgmt; 2343 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon); 2344 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 2345 min_hdr_len = offsetof(struct ieee80211_ext, 2346 u.s1g_short_beacon.variable); 2347 } 2348 2349 if (WARN_ON(len < min_hdr_len)) 2350 return NULL; 2351 2352 ielen = len - min_hdr_len; 2353 variable = mgmt->u.probe_resp.variable; 2354 if (ext) { 2355 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 2356 variable = ext->u.s1g_short_beacon.variable; 2357 else 2358 variable = ext->u.s1g_beacon.variable; 2359 } 2360 2361 channel = cfg80211_get_bss_channel(wiphy, variable, 2362 ielen, data->chan, data->scan_width); 2363 if (!channel) 2364 return NULL; 2365 2366 if (ext) { 2367 const struct ieee80211_s1g_bcn_compat_ie *compat; 2368 const struct element *elem; 2369 2370 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, 2371 variable, ielen); 2372 if (!elem) 2373 return NULL; 2374 if (elem->datalen < sizeof(*compat)) 2375 return NULL; 2376 compat = (void *)elem->data; 2377 bssid = ext->u.s1g_beacon.sa; 2378 capability = le16_to_cpu(compat->compat_info); 2379 beacon_int = le16_to_cpu(compat->beacon_int); 2380 } else { 2381 bssid = mgmt->bssid; 2382 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int); 2383 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info); 2384 } 2385 2386 ies = kzalloc(sizeof(*ies) + ielen, gfp); 2387 if (!ies) 2388 return NULL; 2389 ies->len = ielen; 2390 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 2391 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) || 2392 ieee80211_is_s1g_beacon(mgmt->frame_control); 2393 memcpy(ies->data, variable, ielen); 2394 2395 if (ieee80211_is_probe_resp(mgmt->frame_control)) 2396 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 2397 else 2398 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 2399 rcu_assign_pointer(tmp.pub.ies, ies); 2400 2401 memcpy(tmp.pub.bssid, bssid, ETH_ALEN); 2402 tmp.pub.beacon_interval = beacon_int; 2403 tmp.pub.capability = capability; 2404 tmp.pub.channel = channel; 2405 tmp.pub.scan_width = data->scan_width; 2406 tmp.pub.signal = data->signal; 2407 tmp.ts_boottime = data->boottime_ns; 2408 tmp.parent_tsf = data->parent_tsf; 2409 tmp.pub.chains = data->chains; 2410 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS); 2411 ether_addr_copy(tmp.parent_bssid, data->parent_bssid); 2412 2413 signal_valid = data->chan == channel; 2414 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, 2415 jiffies); 2416 if (!res) 2417 return NULL; 2418 2419 if (channel->band == NL80211_BAND_60GHZ) { 2420 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 2421 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2422 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2423 regulatory_hint_found_beacon(wiphy, channel, gfp); 2424 } else { 2425 if (res->pub.capability & WLAN_CAPABILITY_ESS) 2426 regulatory_hint_found_beacon(wiphy, channel, gfp); 2427 } 2428 2429 trace_cfg80211_return_bss(&res->pub); 2430 /* cfg80211_bss_update gives us a referenced result */ 2431 return &res->pub; 2432 } 2433 2434 struct cfg80211_bss * 2435 cfg80211_inform_bss_frame_data(struct wiphy *wiphy, 2436 struct cfg80211_inform_bss *data, 2437 struct ieee80211_mgmt *mgmt, size_t len, 2438 gfp_t gfp) 2439 { 2440 struct cfg80211_bss *res, *tmp_bss; 2441 const u8 *ie = mgmt->u.probe_resp.variable; 2442 const struct cfg80211_bss_ies *ies1, *ies2; 2443 size_t ielen = len - offsetof(struct ieee80211_mgmt, 2444 u.probe_resp.variable); 2445 struct cfg80211_non_tx_bss non_tx_data; 2446 2447 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt, 2448 len, gfp); 2449 if (!res || !wiphy->support_mbssid || 2450 !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen)) 2451 return res; 2452 if (wiphy->support_only_he_mbssid && 2453 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen)) 2454 return res; 2455 2456 non_tx_data.tx_bss = res; 2457 /* process each non-transmitting bss */ 2458 cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len, 2459 &non_tx_data, gfp); 2460 2461 spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock); 2462 2463 /* check if the res has other nontransmitting bss which is not 2464 * in MBSSID IE 2465 */ 2466 ies1 = rcu_access_pointer(res->ies); 2467 2468 /* go through nontrans_list, if the timestamp of the BSS is 2469 * earlier than the timestamp of the transmitting BSS then 2470 * update it 2471 */ 2472 list_for_each_entry(tmp_bss, &res->nontrans_list, 2473 nontrans_list) { 2474 ies2 = rcu_access_pointer(tmp_bss->ies); 2475 if (ies2->tsf < ies1->tsf) 2476 cfg80211_update_notlisted_nontrans(wiphy, tmp_bss, 2477 mgmt, len); 2478 } 2479 spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock); 2480 2481 return res; 2482 } 2483 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data); 2484 2485 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2486 { 2487 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2488 struct cfg80211_internal_bss *bss; 2489 2490 if (!pub) 2491 return; 2492 2493 bss = container_of(pub, struct cfg80211_internal_bss, pub); 2494 2495 spin_lock_bh(&rdev->bss_lock); 2496 bss_ref_get(rdev, bss); 2497 spin_unlock_bh(&rdev->bss_lock); 2498 } 2499 EXPORT_SYMBOL(cfg80211_ref_bss); 2500 2501 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2502 { 2503 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2504 struct cfg80211_internal_bss *bss; 2505 2506 if (!pub) 2507 return; 2508 2509 bss = container_of(pub, struct cfg80211_internal_bss, pub); 2510 2511 spin_lock_bh(&rdev->bss_lock); 2512 bss_ref_put(rdev, bss); 2513 spin_unlock_bh(&rdev->bss_lock); 2514 } 2515 EXPORT_SYMBOL(cfg80211_put_bss); 2516 2517 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2518 { 2519 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2520 struct cfg80211_internal_bss *bss, *tmp1; 2521 struct cfg80211_bss *nontrans_bss, *tmp; 2522 2523 if (WARN_ON(!pub)) 2524 return; 2525 2526 bss = container_of(pub, struct cfg80211_internal_bss, pub); 2527 2528 spin_lock_bh(&rdev->bss_lock); 2529 if (list_empty(&bss->list)) 2530 goto out; 2531 2532 list_for_each_entry_safe(nontrans_bss, tmp, 2533 &pub->nontrans_list, 2534 nontrans_list) { 2535 tmp1 = container_of(nontrans_bss, 2536 struct cfg80211_internal_bss, pub); 2537 if (__cfg80211_unlink_bss(rdev, tmp1)) 2538 rdev->bss_generation++; 2539 } 2540 2541 if (__cfg80211_unlink_bss(rdev, bss)) 2542 rdev->bss_generation++; 2543 out: 2544 spin_unlock_bh(&rdev->bss_lock); 2545 } 2546 EXPORT_SYMBOL(cfg80211_unlink_bss); 2547 2548 void cfg80211_bss_iter(struct wiphy *wiphy, 2549 struct cfg80211_chan_def *chandef, 2550 void (*iter)(struct wiphy *wiphy, 2551 struct cfg80211_bss *bss, 2552 void *data), 2553 void *iter_data) 2554 { 2555 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2556 struct cfg80211_internal_bss *bss; 2557 2558 spin_lock_bh(&rdev->bss_lock); 2559 2560 list_for_each_entry(bss, &rdev->bss_list, list) { 2561 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel)) 2562 iter(wiphy, &bss->pub, iter_data); 2563 } 2564 2565 spin_unlock_bh(&rdev->bss_lock); 2566 } 2567 EXPORT_SYMBOL(cfg80211_bss_iter); 2568 2569 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, 2570 struct ieee80211_channel *chan) 2571 { 2572 struct wiphy *wiphy = wdev->wiphy; 2573 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2574 struct cfg80211_internal_bss *cbss = wdev->current_bss; 2575 struct cfg80211_internal_bss *new = NULL; 2576 struct cfg80211_internal_bss *bss; 2577 struct cfg80211_bss *nontrans_bss; 2578 struct cfg80211_bss *tmp; 2579 2580 spin_lock_bh(&rdev->bss_lock); 2581 2582 /* 2583 * Some APs use CSA also for bandwidth changes, i.e., without actually 2584 * changing the control channel, so no need to update in such a case. 2585 */ 2586 if (cbss->pub.channel == chan) 2587 goto done; 2588 2589 /* use transmitting bss */ 2590 if (cbss->pub.transmitted_bss) 2591 cbss = container_of(cbss->pub.transmitted_bss, 2592 struct cfg80211_internal_bss, 2593 pub); 2594 2595 cbss->pub.channel = chan; 2596 2597 list_for_each_entry(bss, &rdev->bss_list, list) { 2598 if (!cfg80211_bss_type_match(bss->pub.capability, 2599 bss->pub.channel->band, 2600 wdev->conn_bss_type)) 2601 continue; 2602 2603 if (bss == cbss) 2604 continue; 2605 2606 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) { 2607 new = bss; 2608 break; 2609 } 2610 } 2611 2612 if (new) { 2613 /* to save time, update IEs for transmitting bss only */ 2614 if (cfg80211_update_known_bss(rdev, cbss, new, false)) { 2615 new->pub.proberesp_ies = NULL; 2616 new->pub.beacon_ies = NULL; 2617 } 2618 2619 list_for_each_entry_safe(nontrans_bss, tmp, 2620 &new->pub.nontrans_list, 2621 nontrans_list) { 2622 bss = container_of(nontrans_bss, 2623 struct cfg80211_internal_bss, pub); 2624 if (__cfg80211_unlink_bss(rdev, bss)) 2625 rdev->bss_generation++; 2626 } 2627 2628 WARN_ON(atomic_read(&new->hold)); 2629 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new))) 2630 rdev->bss_generation++; 2631 } 2632 2633 rb_erase(&cbss->rbn, &rdev->bss_tree); 2634 rb_insert_bss(rdev, cbss); 2635 rdev->bss_generation++; 2636 2637 list_for_each_entry_safe(nontrans_bss, tmp, 2638 &cbss->pub.nontrans_list, 2639 nontrans_list) { 2640 bss = container_of(nontrans_bss, 2641 struct cfg80211_internal_bss, pub); 2642 bss->pub.channel = chan; 2643 rb_erase(&bss->rbn, &rdev->bss_tree); 2644 rb_insert_bss(rdev, bss); 2645 rdev->bss_generation++; 2646 } 2647 2648 done: 2649 spin_unlock_bh(&rdev->bss_lock); 2650 } 2651 2652 #ifdef CONFIG_CFG80211_WEXT 2653 static struct cfg80211_registered_device * 2654 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex) 2655 { 2656 struct cfg80211_registered_device *rdev; 2657 struct net_device *dev; 2658 2659 ASSERT_RTNL(); 2660 2661 dev = dev_get_by_index(net, ifindex); 2662 if (!dev) 2663 return ERR_PTR(-ENODEV); 2664 if (dev->ieee80211_ptr) 2665 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy); 2666 else 2667 rdev = ERR_PTR(-ENODEV); 2668 dev_put(dev); 2669 return rdev; 2670 } 2671 2672 int cfg80211_wext_siwscan(struct net_device *dev, 2673 struct iw_request_info *info, 2674 union iwreq_data *wrqu, char *extra) 2675 { 2676 struct cfg80211_registered_device *rdev; 2677 struct wiphy *wiphy; 2678 struct iw_scan_req *wreq = NULL; 2679 struct cfg80211_scan_request *creq = NULL; 2680 int i, err, n_channels = 0; 2681 enum nl80211_band band; 2682 2683 if (!netif_running(dev)) 2684 return -ENETDOWN; 2685 2686 if (wrqu->data.length == sizeof(struct iw_scan_req)) 2687 wreq = (struct iw_scan_req *)extra; 2688 2689 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 2690 2691 if (IS_ERR(rdev)) 2692 return PTR_ERR(rdev); 2693 2694 if (rdev->scan_req || rdev->scan_msg) { 2695 err = -EBUSY; 2696 goto out; 2697 } 2698 2699 wiphy = &rdev->wiphy; 2700 2701 /* Determine number of channels, needed to allocate creq */ 2702 if (wreq && wreq->num_channels) 2703 n_channels = wreq->num_channels; 2704 else 2705 n_channels = ieee80211_get_num_supported_channels(wiphy); 2706 2707 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) + 2708 n_channels * sizeof(void *), 2709 GFP_ATOMIC); 2710 if (!creq) { 2711 err = -ENOMEM; 2712 goto out; 2713 } 2714 2715 creq->wiphy = wiphy; 2716 creq->wdev = dev->ieee80211_ptr; 2717 /* SSIDs come after channels */ 2718 creq->ssids = (void *)&creq->channels[n_channels]; 2719 creq->n_channels = n_channels; 2720 creq->n_ssids = 1; 2721 creq->scan_start = jiffies; 2722 2723 /* translate "Scan on frequencies" request */ 2724 i = 0; 2725 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2726 int j; 2727 2728 if (!wiphy->bands[band]) 2729 continue; 2730 2731 for (j = 0; j < wiphy->bands[band]->n_channels; j++) { 2732 /* ignore disabled channels */ 2733 if (wiphy->bands[band]->channels[j].flags & 2734 IEEE80211_CHAN_DISABLED) 2735 continue; 2736 2737 /* If we have a wireless request structure and the 2738 * wireless request specifies frequencies, then search 2739 * for the matching hardware channel. 2740 */ 2741 if (wreq && wreq->num_channels) { 2742 int k; 2743 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq; 2744 for (k = 0; k < wreq->num_channels; k++) { 2745 struct iw_freq *freq = 2746 &wreq->channel_list[k]; 2747 int wext_freq = 2748 cfg80211_wext_freq(freq); 2749 2750 if (wext_freq == wiphy_freq) 2751 goto wext_freq_found; 2752 } 2753 goto wext_freq_not_found; 2754 } 2755 2756 wext_freq_found: 2757 creq->channels[i] = &wiphy->bands[band]->channels[j]; 2758 i++; 2759 wext_freq_not_found: ; 2760 } 2761 } 2762 /* No channels found? */ 2763 if (!i) { 2764 err = -EINVAL; 2765 goto out; 2766 } 2767 2768 /* Set real number of channels specified in creq->channels[] */ 2769 creq->n_channels = i; 2770 2771 /* translate "Scan for SSID" request */ 2772 if (wreq) { 2773 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { 2774 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) { 2775 err = -EINVAL; 2776 goto out; 2777 } 2778 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len); 2779 creq->ssids[0].ssid_len = wreq->essid_len; 2780 } 2781 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) 2782 creq->n_ssids = 0; 2783 } 2784 2785 for (i = 0; i < NUM_NL80211_BANDS; i++) 2786 if (wiphy->bands[i]) 2787 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1; 2788 2789 eth_broadcast_addr(creq->bssid); 2790 2791 wiphy_lock(&rdev->wiphy); 2792 2793 rdev->scan_req = creq; 2794 err = rdev_scan(rdev, creq); 2795 if (err) { 2796 rdev->scan_req = NULL; 2797 /* creq will be freed below */ 2798 } else { 2799 nl80211_send_scan_start(rdev, dev->ieee80211_ptr); 2800 /* creq now owned by driver */ 2801 creq = NULL; 2802 dev_hold(dev); 2803 } 2804 wiphy_unlock(&rdev->wiphy); 2805 out: 2806 kfree(creq); 2807 return err; 2808 } 2809 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan); 2810 2811 static char *ieee80211_scan_add_ies(struct iw_request_info *info, 2812 const struct cfg80211_bss_ies *ies, 2813 char *current_ev, char *end_buf) 2814 { 2815 const u8 *pos, *end, *next; 2816 struct iw_event iwe; 2817 2818 if (!ies) 2819 return current_ev; 2820 2821 /* 2822 * If needed, fragment the IEs buffer (at IE boundaries) into short 2823 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages. 2824 */ 2825 pos = ies->data; 2826 end = pos + ies->len; 2827 2828 while (end - pos > IW_GENERIC_IE_MAX) { 2829 next = pos + 2 + pos[1]; 2830 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX) 2831 next = next + 2 + next[1]; 2832 2833 memset(&iwe, 0, sizeof(iwe)); 2834 iwe.cmd = IWEVGENIE; 2835 iwe.u.data.length = next - pos; 2836 current_ev = iwe_stream_add_point_check(info, current_ev, 2837 end_buf, &iwe, 2838 (void *)pos); 2839 if (IS_ERR(current_ev)) 2840 return current_ev; 2841 pos = next; 2842 } 2843 2844 if (end > pos) { 2845 memset(&iwe, 0, sizeof(iwe)); 2846 iwe.cmd = IWEVGENIE; 2847 iwe.u.data.length = end - pos; 2848 current_ev = iwe_stream_add_point_check(info, current_ev, 2849 end_buf, &iwe, 2850 (void *)pos); 2851 if (IS_ERR(current_ev)) 2852 return current_ev; 2853 } 2854 2855 return current_ev; 2856 } 2857 2858 static char * 2859 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info, 2860 struct cfg80211_internal_bss *bss, char *current_ev, 2861 char *end_buf) 2862 { 2863 const struct cfg80211_bss_ies *ies; 2864 struct iw_event iwe; 2865 const u8 *ie; 2866 u8 buf[50]; 2867 u8 *cfg, *p, *tmp; 2868 int rem, i, sig; 2869 bool ismesh = false; 2870 2871 memset(&iwe, 0, sizeof(iwe)); 2872 iwe.cmd = SIOCGIWAP; 2873 iwe.u.ap_addr.sa_family = ARPHRD_ETHER; 2874 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN); 2875 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 2876 IW_EV_ADDR_LEN); 2877 if (IS_ERR(current_ev)) 2878 return current_ev; 2879 2880 memset(&iwe, 0, sizeof(iwe)); 2881 iwe.cmd = SIOCGIWFREQ; 2882 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq); 2883 iwe.u.freq.e = 0; 2884 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 2885 IW_EV_FREQ_LEN); 2886 if (IS_ERR(current_ev)) 2887 return current_ev; 2888 2889 memset(&iwe, 0, sizeof(iwe)); 2890 iwe.cmd = SIOCGIWFREQ; 2891 iwe.u.freq.m = bss->pub.channel->center_freq; 2892 iwe.u.freq.e = 6; 2893 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 2894 IW_EV_FREQ_LEN); 2895 if (IS_ERR(current_ev)) 2896 return current_ev; 2897 2898 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) { 2899 memset(&iwe, 0, sizeof(iwe)); 2900 iwe.cmd = IWEVQUAL; 2901 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED | 2902 IW_QUAL_NOISE_INVALID | 2903 IW_QUAL_QUAL_UPDATED; 2904 switch (wiphy->signal_type) { 2905 case CFG80211_SIGNAL_TYPE_MBM: 2906 sig = bss->pub.signal / 100; 2907 iwe.u.qual.level = sig; 2908 iwe.u.qual.updated |= IW_QUAL_DBM; 2909 if (sig < -110) /* rather bad */ 2910 sig = -110; 2911 else if (sig > -40) /* perfect */ 2912 sig = -40; 2913 /* will give a range of 0 .. 70 */ 2914 iwe.u.qual.qual = sig + 110; 2915 break; 2916 case CFG80211_SIGNAL_TYPE_UNSPEC: 2917 iwe.u.qual.level = bss->pub.signal; 2918 /* will give range 0 .. 100 */ 2919 iwe.u.qual.qual = bss->pub.signal; 2920 break; 2921 default: 2922 /* not reached */ 2923 break; 2924 } 2925 current_ev = iwe_stream_add_event_check(info, current_ev, 2926 end_buf, &iwe, 2927 IW_EV_QUAL_LEN); 2928 if (IS_ERR(current_ev)) 2929 return current_ev; 2930 } 2931 2932 memset(&iwe, 0, sizeof(iwe)); 2933 iwe.cmd = SIOCGIWENCODE; 2934 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY) 2935 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY; 2936 else 2937 iwe.u.data.flags = IW_ENCODE_DISABLED; 2938 iwe.u.data.length = 0; 2939 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 2940 &iwe, ""); 2941 if (IS_ERR(current_ev)) 2942 return current_ev; 2943 2944 rcu_read_lock(); 2945 ies = rcu_dereference(bss->pub.ies); 2946 rem = ies->len; 2947 ie = ies->data; 2948 2949 while (rem >= 2) { 2950 /* invalid data */ 2951 if (ie[1] > rem - 2) 2952 break; 2953 2954 switch (ie[0]) { 2955 case WLAN_EID_SSID: 2956 memset(&iwe, 0, sizeof(iwe)); 2957 iwe.cmd = SIOCGIWESSID; 2958 iwe.u.data.length = ie[1]; 2959 iwe.u.data.flags = 1; 2960 current_ev = iwe_stream_add_point_check(info, 2961 current_ev, 2962 end_buf, &iwe, 2963 (u8 *)ie + 2); 2964 if (IS_ERR(current_ev)) 2965 goto unlock; 2966 break; 2967 case WLAN_EID_MESH_ID: 2968 memset(&iwe, 0, sizeof(iwe)); 2969 iwe.cmd = SIOCGIWESSID; 2970 iwe.u.data.length = ie[1]; 2971 iwe.u.data.flags = 1; 2972 current_ev = iwe_stream_add_point_check(info, 2973 current_ev, 2974 end_buf, &iwe, 2975 (u8 *)ie + 2); 2976 if (IS_ERR(current_ev)) 2977 goto unlock; 2978 break; 2979 case WLAN_EID_MESH_CONFIG: 2980 ismesh = true; 2981 if (ie[1] != sizeof(struct ieee80211_meshconf_ie)) 2982 break; 2983 cfg = (u8 *)ie + 2; 2984 memset(&iwe, 0, sizeof(iwe)); 2985 iwe.cmd = IWEVCUSTOM; 2986 sprintf(buf, "Mesh Network Path Selection Protocol ID: " 2987 "0x%02X", cfg[0]); 2988 iwe.u.data.length = strlen(buf); 2989 current_ev = iwe_stream_add_point_check(info, 2990 current_ev, 2991 end_buf, 2992 &iwe, buf); 2993 if (IS_ERR(current_ev)) 2994 goto unlock; 2995 sprintf(buf, "Path Selection Metric ID: 0x%02X", 2996 cfg[1]); 2997 iwe.u.data.length = strlen(buf); 2998 current_ev = iwe_stream_add_point_check(info, 2999 current_ev, 3000 end_buf, 3001 &iwe, buf); 3002 if (IS_ERR(current_ev)) 3003 goto unlock; 3004 sprintf(buf, "Congestion Control Mode ID: 0x%02X", 3005 cfg[2]); 3006 iwe.u.data.length = strlen(buf); 3007 current_ev = iwe_stream_add_point_check(info, 3008 current_ev, 3009 end_buf, 3010 &iwe, buf); 3011 if (IS_ERR(current_ev)) 3012 goto unlock; 3013 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]); 3014 iwe.u.data.length = strlen(buf); 3015 current_ev = iwe_stream_add_point_check(info, 3016 current_ev, 3017 end_buf, 3018 &iwe, buf); 3019 if (IS_ERR(current_ev)) 3020 goto unlock; 3021 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]); 3022 iwe.u.data.length = strlen(buf); 3023 current_ev = iwe_stream_add_point_check(info, 3024 current_ev, 3025 end_buf, 3026 &iwe, buf); 3027 if (IS_ERR(current_ev)) 3028 goto unlock; 3029 sprintf(buf, "Formation Info: 0x%02X", cfg[5]); 3030 iwe.u.data.length = strlen(buf); 3031 current_ev = iwe_stream_add_point_check(info, 3032 current_ev, 3033 end_buf, 3034 &iwe, buf); 3035 if (IS_ERR(current_ev)) 3036 goto unlock; 3037 sprintf(buf, "Capabilities: 0x%02X", cfg[6]); 3038 iwe.u.data.length = strlen(buf); 3039 current_ev = iwe_stream_add_point_check(info, 3040 current_ev, 3041 end_buf, 3042 &iwe, buf); 3043 if (IS_ERR(current_ev)) 3044 goto unlock; 3045 break; 3046 case WLAN_EID_SUPP_RATES: 3047 case WLAN_EID_EXT_SUPP_RATES: 3048 /* display all supported rates in readable format */ 3049 p = current_ev + iwe_stream_lcp_len(info); 3050 3051 memset(&iwe, 0, sizeof(iwe)); 3052 iwe.cmd = SIOCGIWRATE; 3053 /* Those two flags are ignored... */ 3054 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0; 3055 3056 for (i = 0; i < ie[1]; i++) { 3057 iwe.u.bitrate.value = 3058 ((ie[i + 2] & 0x7f) * 500000); 3059 tmp = p; 3060 p = iwe_stream_add_value(info, current_ev, p, 3061 end_buf, &iwe, 3062 IW_EV_PARAM_LEN); 3063 if (p == tmp) { 3064 current_ev = ERR_PTR(-E2BIG); 3065 goto unlock; 3066 } 3067 } 3068 current_ev = p; 3069 break; 3070 } 3071 rem -= ie[1] + 2; 3072 ie += ie[1] + 2; 3073 } 3074 3075 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) || 3076 ismesh) { 3077 memset(&iwe, 0, sizeof(iwe)); 3078 iwe.cmd = SIOCGIWMODE; 3079 if (ismesh) 3080 iwe.u.mode = IW_MODE_MESH; 3081 else if (bss->pub.capability & WLAN_CAPABILITY_ESS) 3082 iwe.u.mode = IW_MODE_MASTER; 3083 else 3084 iwe.u.mode = IW_MODE_ADHOC; 3085 current_ev = iwe_stream_add_event_check(info, current_ev, 3086 end_buf, &iwe, 3087 IW_EV_UINT_LEN); 3088 if (IS_ERR(current_ev)) 3089 goto unlock; 3090 } 3091 3092 memset(&iwe, 0, sizeof(iwe)); 3093 iwe.cmd = IWEVCUSTOM; 3094 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf)); 3095 iwe.u.data.length = strlen(buf); 3096 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3097 &iwe, buf); 3098 if (IS_ERR(current_ev)) 3099 goto unlock; 3100 memset(&iwe, 0, sizeof(iwe)); 3101 iwe.cmd = IWEVCUSTOM; 3102 sprintf(buf, " Last beacon: %ums ago", 3103 elapsed_jiffies_msecs(bss->ts)); 3104 iwe.u.data.length = strlen(buf); 3105 current_ev = iwe_stream_add_point_check(info, current_ev, 3106 end_buf, &iwe, buf); 3107 if (IS_ERR(current_ev)) 3108 goto unlock; 3109 3110 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf); 3111 3112 unlock: 3113 rcu_read_unlock(); 3114 return current_ev; 3115 } 3116 3117 3118 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev, 3119 struct iw_request_info *info, 3120 char *buf, size_t len) 3121 { 3122 char *current_ev = buf; 3123 char *end_buf = buf + len; 3124 struct cfg80211_internal_bss *bss; 3125 int err = 0; 3126 3127 spin_lock_bh(&rdev->bss_lock); 3128 cfg80211_bss_expire(rdev); 3129 3130 list_for_each_entry(bss, &rdev->bss_list, list) { 3131 if (buf + len - current_ev <= IW_EV_ADDR_LEN) { 3132 err = -E2BIG; 3133 break; 3134 } 3135 current_ev = ieee80211_bss(&rdev->wiphy, info, bss, 3136 current_ev, end_buf); 3137 if (IS_ERR(current_ev)) { 3138 err = PTR_ERR(current_ev); 3139 break; 3140 } 3141 } 3142 spin_unlock_bh(&rdev->bss_lock); 3143 3144 if (err) 3145 return err; 3146 return current_ev - buf; 3147 } 3148 3149 3150 int cfg80211_wext_giwscan(struct net_device *dev, 3151 struct iw_request_info *info, 3152 struct iw_point *data, char *extra) 3153 { 3154 struct cfg80211_registered_device *rdev; 3155 int res; 3156 3157 if (!netif_running(dev)) 3158 return -ENETDOWN; 3159 3160 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3161 3162 if (IS_ERR(rdev)) 3163 return PTR_ERR(rdev); 3164 3165 if (rdev->scan_req || rdev->scan_msg) 3166 return -EAGAIN; 3167 3168 res = ieee80211_scan_results(rdev, info, extra, data->length); 3169 data->length = 0; 3170 if (res >= 0) { 3171 data->length = res; 3172 res = 0; 3173 } 3174 3175 return res; 3176 } 3177 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan); 3178 #endif 3179