xref: /openbmc/linux/net/wireless/scan.c (revision a97cbcd0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016	Intel Deutschland GmbH
8  * Copyright (C) 2018-2019 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <net/arp.h>
18 #include <net/cfg80211.h>
19 #include <net/cfg80211-wext.h>
20 #include <net/iw_handler.h>
21 #include "core.h"
22 #include "nl80211.h"
23 #include "wext-compat.h"
24 #include "rdev-ops.h"
25 
26 /**
27  * DOC: BSS tree/list structure
28  *
29  * At the top level, the BSS list is kept in both a list in each
30  * registered device (@bss_list) as well as an RB-tree for faster
31  * lookup. In the RB-tree, entries can be looked up using their
32  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
33  * for other BSSes.
34  *
35  * Due to the possibility of hidden SSIDs, there's a second level
36  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
37  * The hidden_list connects all BSSes belonging to a single AP
38  * that has a hidden SSID, and connects beacon and probe response
39  * entries. For a probe response entry for a hidden SSID, the
40  * hidden_beacon_bss pointer points to the BSS struct holding the
41  * beacon's information.
42  *
43  * Reference counting is done for all these references except for
44  * the hidden_list, so that a beacon BSS struct that is otherwise
45  * not referenced has one reference for being on the bss_list and
46  * one for each probe response entry that points to it using the
47  * hidden_beacon_bss pointer. When a BSS struct that has such a
48  * pointer is get/put, the refcount update is also propagated to
49  * the referenced struct, this ensure that it cannot get removed
50  * while somebody is using the probe response version.
51  *
52  * Note that the hidden_beacon_bss pointer never changes, due to
53  * the reference counting. Therefore, no locking is needed for
54  * it.
55  *
56  * Also note that the hidden_beacon_bss pointer is only relevant
57  * if the driver uses something other than the IEs, e.g. private
58  * data stored stored in the BSS struct, since the beacon IEs are
59  * also linked into the probe response struct.
60  */
61 
62 /*
63  * Limit the number of BSS entries stored in mac80211. Each one is
64  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
65  * If somebody wants to really attack this though, they'd likely
66  * use small beacons, and only one type of frame, limiting each of
67  * the entries to a much smaller size (in order to generate more
68  * entries in total, so overhead is bigger.)
69  */
70 static int bss_entries_limit = 1000;
71 module_param(bss_entries_limit, int, 0644);
72 MODULE_PARM_DESC(bss_entries_limit,
73                  "limit to number of scan BSS entries (per wiphy, default 1000)");
74 
75 #define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
76 
77 static void bss_free(struct cfg80211_internal_bss *bss)
78 {
79 	struct cfg80211_bss_ies *ies;
80 
81 	if (WARN_ON(atomic_read(&bss->hold)))
82 		return;
83 
84 	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
85 	if (ies && !bss->pub.hidden_beacon_bss)
86 		kfree_rcu(ies, rcu_head);
87 	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
88 	if (ies)
89 		kfree_rcu(ies, rcu_head);
90 
91 	/*
92 	 * This happens when the module is removed, it doesn't
93 	 * really matter any more save for completeness
94 	 */
95 	if (!list_empty(&bss->hidden_list))
96 		list_del(&bss->hidden_list);
97 
98 	kfree(bss);
99 }
100 
101 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
102 			       struct cfg80211_internal_bss *bss)
103 {
104 	lockdep_assert_held(&rdev->bss_lock);
105 
106 	bss->refcount++;
107 	if (bss->pub.hidden_beacon_bss) {
108 		bss = container_of(bss->pub.hidden_beacon_bss,
109 				   struct cfg80211_internal_bss,
110 				   pub);
111 		bss->refcount++;
112 	}
113 	if (bss->pub.transmitted_bss) {
114 		bss = container_of(bss->pub.transmitted_bss,
115 				   struct cfg80211_internal_bss,
116 				   pub);
117 		bss->refcount++;
118 	}
119 }
120 
121 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
122 			       struct cfg80211_internal_bss *bss)
123 {
124 	lockdep_assert_held(&rdev->bss_lock);
125 
126 	if (bss->pub.hidden_beacon_bss) {
127 		struct cfg80211_internal_bss *hbss;
128 		hbss = container_of(bss->pub.hidden_beacon_bss,
129 				    struct cfg80211_internal_bss,
130 				    pub);
131 		hbss->refcount--;
132 		if (hbss->refcount == 0)
133 			bss_free(hbss);
134 	}
135 
136 	if (bss->pub.transmitted_bss) {
137 		struct cfg80211_internal_bss *tbss;
138 
139 		tbss = container_of(bss->pub.transmitted_bss,
140 				    struct cfg80211_internal_bss,
141 				    pub);
142 		tbss->refcount--;
143 		if (tbss->refcount == 0)
144 			bss_free(tbss);
145 	}
146 
147 	bss->refcount--;
148 	if (bss->refcount == 0)
149 		bss_free(bss);
150 }
151 
152 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
153 				  struct cfg80211_internal_bss *bss)
154 {
155 	lockdep_assert_held(&rdev->bss_lock);
156 
157 	if (!list_empty(&bss->hidden_list)) {
158 		/*
159 		 * don't remove the beacon entry if it has
160 		 * probe responses associated with it
161 		 */
162 		if (!bss->pub.hidden_beacon_bss)
163 			return false;
164 		/*
165 		 * if it's a probe response entry break its
166 		 * link to the other entries in the group
167 		 */
168 		list_del_init(&bss->hidden_list);
169 	}
170 
171 	list_del_init(&bss->list);
172 	list_del_init(&bss->pub.nontrans_list);
173 	rb_erase(&bss->rbn, &rdev->bss_tree);
174 	rdev->bss_entries--;
175 	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
176 		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
177 		  rdev->bss_entries, list_empty(&rdev->bss_list));
178 	bss_ref_put(rdev, bss);
179 	return true;
180 }
181 
182 bool cfg80211_is_element_inherited(const struct element *elem,
183 				   const struct element *non_inherit_elem)
184 {
185 	u8 id_len, ext_id_len, i, loop_len, id;
186 	const u8 *list;
187 
188 	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
189 		return false;
190 
191 	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
192 		return true;
193 
194 	/*
195 	 * non inheritance element format is:
196 	 * ext ID (56) | IDs list len | list | extension IDs list len | list
197 	 * Both lists are optional. Both lengths are mandatory.
198 	 * This means valid length is:
199 	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
200 	 */
201 	id_len = non_inherit_elem->data[1];
202 	if (non_inherit_elem->datalen < 3 + id_len)
203 		return true;
204 
205 	ext_id_len = non_inherit_elem->data[2 + id_len];
206 	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
207 		return true;
208 
209 	if (elem->id == WLAN_EID_EXTENSION) {
210 		if (!ext_id_len)
211 			return true;
212 		loop_len = ext_id_len;
213 		list = &non_inherit_elem->data[3 + id_len];
214 		id = elem->data[0];
215 	} else {
216 		if (!id_len)
217 			return true;
218 		loop_len = id_len;
219 		list = &non_inherit_elem->data[2];
220 		id = elem->id;
221 	}
222 
223 	for (i = 0; i < loop_len; i++) {
224 		if (list[i] == id)
225 			return false;
226 	}
227 
228 	return true;
229 }
230 EXPORT_SYMBOL(cfg80211_is_element_inherited);
231 
232 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
233 				  const u8 *subelement, size_t subie_len,
234 				  u8 *new_ie, gfp_t gfp)
235 {
236 	u8 *pos, *tmp;
237 	const u8 *tmp_old, *tmp_new;
238 	const struct element *non_inherit_elem;
239 	u8 *sub_copy;
240 
241 	/* copy subelement as we need to change its content to
242 	 * mark an ie after it is processed.
243 	 */
244 	sub_copy = kmemdup(subelement, subie_len, gfp);
245 	if (!sub_copy)
246 		return 0;
247 
248 	pos = &new_ie[0];
249 
250 	/* set new ssid */
251 	tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
252 	if (tmp_new) {
253 		memcpy(pos, tmp_new, tmp_new[1] + 2);
254 		pos += (tmp_new[1] + 2);
255 	}
256 
257 	/* get non inheritance list if exists */
258 	non_inherit_elem =
259 		cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
260 				       sub_copy, subie_len);
261 
262 	/* go through IEs in ie (skip SSID) and subelement,
263 	 * merge them into new_ie
264 	 */
265 	tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
266 	tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
267 
268 	while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
269 		if (tmp_old[0] == 0) {
270 			tmp_old++;
271 			continue;
272 		}
273 
274 		if (tmp_old[0] == WLAN_EID_EXTENSION)
275 			tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
276 							 subie_len);
277 		else
278 			tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
279 						     subie_len);
280 
281 		if (!tmp) {
282 			const struct element *old_elem = (void *)tmp_old;
283 
284 			/* ie in old ie but not in subelement */
285 			if (cfg80211_is_element_inherited(old_elem,
286 							  non_inherit_elem)) {
287 				memcpy(pos, tmp_old, tmp_old[1] + 2);
288 				pos += tmp_old[1] + 2;
289 			}
290 		} else {
291 			/* ie in transmitting ie also in subelement,
292 			 * copy from subelement and flag the ie in subelement
293 			 * as copied (by setting eid field to WLAN_EID_SSID,
294 			 * which is skipped anyway).
295 			 * For vendor ie, compare OUI + type + subType to
296 			 * determine if they are the same ie.
297 			 */
298 			if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
299 				if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
300 					/* same vendor ie, copy from
301 					 * subelement
302 					 */
303 					memcpy(pos, tmp, tmp[1] + 2);
304 					pos += tmp[1] + 2;
305 					tmp[0] = WLAN_EID_SSID;
306 				} else {
307 					memcpy(pos, tmp_old, tmp_old[1] + 2);
308 					pos += tmp_old[1] + 2;
309 				}
310 			} else {
311 				/* copy ie from subelement into new ie */
312 				memcpy(pos, tmp, tmp[1] + 2);
313 				pos += tmp[1] + 2;
314 				tmp[0] = WLAN_EID_SSID;
315 			}
316 		}
317 
318 		if (tmp_old + tmp_old[1] + 2 - ie == ielen)
319 			break;
320 
321 		tmp_old += tmp_old[1] + 2;
322 	}
323 
324 	/* go through subelement again to check if there is any ie not
325 	 * copied to new ie, skip ssid, capability, bssid-index ie
326 	 */
327 	tmp_new = sub_copy;
328 	while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
329 		if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
330 		      tmp_new[0] == WLAN_EID_SSID)) {
331 			memcpy(pos, tmp_new, tmp_new[1] + 2);
332 			pos += tmp_new[1] + 2;
333 		}
334 		if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
335 			break;
336 		tmp_new += tmp_new[1] + 2;
337 	}
338 
339 	kfree(sub_copy);
340 	return pos - new_ie;
341 }
342 
343 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
344 		   const u8 *ssid, size_t ssid_len)
345 {
346 	const struct cfg80211_bss_ies *ies;
347 	const u8 *ssidie;
348 
349 	if (bssid && !ether_addr_equal(a->bssid, bssid))
350 		return false;
351 
352 	if (!ssid)
353 		return true;
354 
355 	ies = rcu_access_pointer(a->ies);
356 	if (!ies)
357 		return false;
358 	ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
359 	if (!ssidie)
360 		return false;
361 	if (ssidie[1] != ssid_len)
362 		return false;
363 	return memcmp(ssidie + 2, ssid, ssid_len) == 0;
364 }
365 
366 static int
367 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
368 			   struct cfg80211_bss *nontrans_bss)
369 {
370 	const u8 *ssid;
371 	size_t ssid_len;
372 	struct cfg80211_bss *bss = NULL;
373 
374 	rcu_read_lock();
375 	ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
376 	if (!ssid) {
377 		rcu_read_unlock();
378 		return -EINVAL;
379 	}
380 	ssid_len = ssid[1];
381 	ssid = ssid + 2;
382 	rcu_read_unlock();
383 
384 	/* check if nontrans_bss is in the list */
385 	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
386 		if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len))
387 			return 0;
388 	}
389 
390 	/* add to the list */
391 	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
392 	return 0;
393 }
394 
395 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
396 				  unsigned long expire_time)
397 {
398 	struct cfg80211_internal_bss *bss, *tmp;
399 	bool expired = false;
400 
401 	lockdep_assert_held(&rdev->bss_lock);
402 
403 	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
404 		if (atomic_read(&bss->hold))
405 			continue;
406 		if (!time_after(expire_time, bss->ts))
407 			continue;
408 
409 		if (__cfg80211_unlink_bss(rdev, bss))
410 			expired = true;
411 	}
412 
413 	if (expired)
414 		rdev->bss_generation++;
415 }
416 
417 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
418 {
419 	struct cfg80211_internal_bss *bss, *oldest = NULL;
420 	bool ret;
421 
422 	lockdep_assert_held(&rdev->bss_lock);
423 
424 	list_for_each_entry(bss, &rdev->bss_list, list) {
425 		if (atomic_read(&bss->hold))
426 			continue;
427 
428 		if (!list_empty(&bss->hidden_list) &&
429 		    !bss->pub.hidden_beacon_bss)
430 			continue;
431 
432 		if (oldest && time_before(oldest->ts, bss->ts))
433 			continue;
434 		oldest = bss;
435 	}
436 
437 	if (WARN_ON(!oldest))
438 		return false;
439 
440 	/*
441 	 * The callers make sure to increase rdev->bss_generation if anything
442 	 * gets removed (and a new entry added), so there's no need to also do
443 	 * it here.
444 	 */
445 
446 	ret = __cfg80211_unlink_bss(rdev, oldest);
447 	WARN_ON(!ret);
448 	return ret;
449 }
450 
451 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
452 			   bool send_message)
453 {
454 	struct cfg80211_scan_request *request;
455 	struct wireless_dev *wdev;
456 	struct sk_buff *msg;
457 #ifdef CONFIG_CFG80211_WEXT
458 	union iwreq_data wrqu;
459 #endif
460 
461 	ASSERT_RTNL();
462 
463 	if (rdev->scan_msg) {
464 		nl80211_send_scan_msg(rdev, rdev->scan_msg);
465 		rdev->scan_msg = NULL;
466 		return;
467 	}
468 
469 	request = rdev->scan_req;
470 	if (!request)
471 		return;
472 
473 	wdev = request->wdev;
474 
475 	/*
476 	 * This must be before sending the other events!
477 	 * Otherwise, wpa_supplicant gets completely confused with
478 	 * wext events.
479 	 */
480 	if (wdev->netdev)
481 		cfg80211_sme_scan_done(wdev->netdev);
482 
483 	if (!request->info.aborted &&
484 	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
485 		/* flush entries from previous scans */
486 		spin_lock_bh(&rdev->bss_lock);
487 		__cfg80211_bss_expire(rdev, request->scan_start);
488 		spin_unlock_bh(&rdev->bss_lock);
489 	}
490 
491 	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
492 
493 #ifdef CONFIG_CFG80211_WEXT
494 	if (wdev->netdev && !request->info.aborted) {
495 		memset(&wrqu, 0, sizeof(wrqu));
496 
497 		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
498 	}
499 #endif
500 
501 	if (wdev->netdev)
502 		dev_put(wdev->netdev);
503 
504 	rdev->scan_req = NULL;
505 	kfree(request);
506 
507 	if (!send_message)
508 		rdev->scan_msg = msg;
509 	else
510 		nl80211_send_scan_msg(rdev, msg);
511 }
512 
513 void __cfg80211_scan_done(struct work_struct *wk)
514 {
515 	struct cfg80211_registered_device *rdev;
516 
517 	rdev = container_of(wk, struct cfg80211_registered_device,
518 			    scan_done_wk);
519 
520 	rtnl_lock();
521 	___cfg80211_scan_done(rdev, true);
522 	rtnl_unlock();
523 }
524 
525 void cfg80211_scan_done(struct cfg80211_scan_request *request,
526 			struct cfg80211_scan_info *info)
527 {
528 	trace_cfg80211_scan_done(request, info);
529 	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req);
530 
531 	request->info = *info;
532 	request->notified = true;
533 	queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
534 }
535 EXPORT_SYMBOL(cfg80211_scan_done);
536 
537 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
538 				 struct cfg80211_sched_scan_request *req)
539 {
540 	ASSERT_RTNL();
541 
542 	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
543 }
544 
545 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
546 					struct cfg80211_sched_scan_request *req)
547 {
548 	ASSERT_RTNL();
549 
550 	list_del_rcu(&req->list);
551 	kfree_rcu(req, rcu_head);
552 }
553 
554 static struct cfg80211_sched_scan_request *
555 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
556 {
557 	struct cfg80211_sched_scan_request *pos;
558 
559 	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
560 				lockdep_rtnl_is_held()) {
561 		if (pos->reqid == reqid)
562 			return pos;
563 	}
564 	return NULL;
565 }
566 
567 /*
568  * Determines if a scheduled scan request can be handled. When a legacy
569  * scheduled scan is running no other scheduled scan is allowed regardless
570  * whether the request is for legacy or multi-support scan. When a multi-support
571  * scheduled scan is running a request for legacy scan is not allowed. In this
572  * case a request for multi-support scan can be handled if resources are
573  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
574  */
575 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
576 				     bool want_multi)
577 {
578 	struct cfg80211_sched_scan_request *pos;
579 	int i = 0;
580 
581 	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
582 		/* request id zero means legacy in progress */
583 		if (!i && !pos->reqid)
584 			return -EINPROGRESS;
585 		i++;
586 	}
587 
588 	if (i) {
589 		/* no legacy allowed when multi request(s) are active */
590 		if (!want_multi)
591 			return -EINPROGRESS;
592 
593 		/* resource limit reached */
594 		if (i == rdev->wiphy.max_sched_scan_reqs)
595 			return -ENOSPC;
596 	}
597 	return 0;
598 }
599 
600 void cfg80211_sched_scan_results_wk(struct work_struct *work)
601 {
602 	struct cfg80211_registered_device *rdev;
603 	struct cfg80211_sched_scan_request *req, *tmp;
604 
605 	rdev = container_of(work, struct cfg80211_registered_device,
606 			   sched_scan_res_wk);
607 
608 	rtnl_lock();
609 	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
610 		if (req->report_results) {
611 			req->report_results = false;
612 			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
613 				/* flush entries from previous scans */
614 				spin_lock_bh(&rdev->bss_lock);
615 				__cfg80211_bss_expire(rdev, req->scan_start);
616 				spin_unlock_bh(&rdev->bss_lock);
617 				req->scan_start = jiffies;
618 			}
619 			nl80211_send_sched_scan(req,
620 						NL80211_CMD_SCHED_SCAN_RESULTS);
621 		}
622 	}
623 	rtnl_unlock();
624 }
625 
626 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
627 {
628 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
629 	struct cfg80211_sched_scan_request *request;
630 
631 	trace_cfg80211_sched_scan_results(wiphy, reqid);
632 	/* ignore if we're not scanning */
633 
634 	rcu_read_lock();
635 	request = cfg80211_find_sched_scan_req(rdev, reqid);
636 	if (request) {
637 		request->report_results = true;
638 		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
639 	}
640 	rcu_read_unlock();
641 }
642 EXPORT_SYMBOL(cfg80211_sched_scan_results);
643 
644 void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy, u64 reqid)
645 {
646 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
647 
648 	ASSERT_RTNL();
649 
650 	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
651 
652 	__cfg80211_stop_sched_scan(rdev, reqid, true);
653 }
654 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_rtnl);
655 
656 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
657 {
658 	rtnl_lock();
659 	cfg80211_sched_scan_stopped_rtnl(wiphy, reqid);
660 	rtnl_unlock();
661 }
662 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
663 
664 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
665 				 struct cfg80211_sched_scan_request *req,
666 				 bool driver_initiated)
667 {
668 	ASSERT_RTNL();
669 
670 	if (!driver_initiated) {
671 		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
672 		if (err)
673 			return err;
674 	}
675 
676 	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
677 
678 	cfg80211_del_sched_scan_req(rdev, req);
679 
680 	return 0;
681 }
682 
683 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
684 			       u64 reqid, bool driver_initiated)
685 {
686 	struct cfg80211_sched_scan_request *sched_scan_req;
687 
688 	ASSERT_RTNL();
689 
690 	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
691 	if (!sched_scan_req)
692 		return -ENOENT;
693 
694 	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
695 					    driver_initiated);
696 }
697 
698 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
699                       unsigned long age_secs)
700 {
701 	struct cfg80211_internal_bss *bss;
702 	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
703 
704 	spin_lock_bh(&rdev->bss_lock);
705 	list_for_each_entry(bss, &rdev->bss_list, list)
706 		bss->ts -= age_jiffies;
707 	spin_unlock_bh(&rdev->bss_lock);
708 }
709 
710 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
711 {
712 	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
713 }
714 
715 void cfg80211_bss_flush(struct wiphy *wiphy)
716 {
717 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
718 
719 	spin_lock_bh(&rdev->bss_lock);
720 	__cfg80211_bss_expire(rdev, jiffies);
721 	spin_unlock_bh(&rdev->bss_lock);
722 }
723 EXPORT_SYMBOL(cfg80211_bss_flush);
724 
725 const struct element *
726 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
727 			 const u8 *match, unsigned int match_len,
728 			 unsigned int match_offset)
729 {
730 	const struct element *elem;
731 
732 	for_each_element_id(elem, eid, ies, len) {
733 		if (elem->datalen >= match_offset + match_len &&
734 		    !memcmp(elem->data + match_offset, match, match_len))
735 			return elem;
736 	}
737 
738 	return NULL;
739 }
740 EXPORT_SYMBOL(cfg80211_find_elem_match);
741 
742 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
743 						const u8 *ies,
744 						unsigned int len)
745 {
746 	const struct element *elem;
747 	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
748 	int match_len = (oui_type < 0) ? 3 : sizeof(match);
749 
750 	if (WARN_ON(oui_type > 0xff))
751 		return NULL;
752 
753 	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
754 					match, match_len, 0);
755 
756 	if (!elem || elem->datalen < 4)
757 		return NULL;
758 
759 	return elem;
760 }
761 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
762 
763 /**
764  * enum bss_compare_mode - BSS compare mode
765  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
766  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
767  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
768  */
769 enum bss_compare_mode {
770 	BSS_CMP_REGULAR,
771 	BSS_CMP_HIDE_ZLEN,
772 	BSS_CMP_HIDE_NUL,
773 };
774 
775 static int cmp_bss(struct cfg80211_bss *a,
776 		   struct cfg80211_bss *b,
777 		   enum bss_compare_mode mode)
778 {
779 	const struct cfg80211_bss_ies *a_ies, *b_ies;
780 	const u8 *ie1 = NULL;
781 	const u8 *ie2 = NULL;
782 	int i, r;
783 
784 	if (a->channel != b->channel)
785 		return b->channel->center_freq - a->channel->center_freq;
786 
787 	a_ies = rcu_access_pointer(a->ies);
788 	if (!a_ies)
789 		return -1;
790 	b_ies = rcu_access_pointer(b->ies);
791 	if (!b_ies)
792 		return 1;
793 
794 	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
795 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
796 				       a_ies->data, a_ies->len);
797 	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
798 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
799 				       b_ies->data, b_ies->len);
800 	if (ie1 && ie2) {
801 		int mesh_id_cmp;
802 
803 		if (ie1[1] == ie2[1])
804 			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
805 		else
806 			mesh_id_cmp = ie2[1] - ie1[1];
807 
808 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
809 				       a_ies->data, a_ies->len);
810 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
811 				       b_ies->data, b_ies->len);
812 		if (ie1 && ie2) {
813 			if (mesh_id_cmp)
814 				return mesh_id_cmp;
815 			if (ie1[1] != ie2[1])
816 				return ie2[1] - ie1[1];
817 			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
818 		}
819 	}
820 
821 	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
822 	if (r)
823 		return r;
824 
825 	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
826 	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
827 
828 	if (!ie1 && !ie2)
829 		return 0;
830 
831 	/*
832 	 * Note that with "hide_ssid", the function returns a match if
833 	 * the already-present BSS ("b") is a hidden SSID beacon for
834 	 * the new BSS ("a").
835 	 */
836 
837 	/* sort missing IE before (left of) present IE */
838 	if (!ie1)
839 		return -1;
840 	if (!ie2)
841 		return 1;
842 
843 	switch (mode) {
844 	case BSS_CMP_HIDE_ZLEN:
845 		/*
846 		 * In ZLEN mode we assume the BSS entry we're
847 		 * looking for has a zero-length SSID. So if
848 		 * the one we're looking at right now has that,
849 		 * return 0. Otherwise, return the difference
850 		 * in length, but since we're looking for the
851 		 * 0-length it's really equivalent to returning
852 		 * the length of the one we're looking at.
853 		 *
854 		 * No content comparison is needed as we assume
855 		 * the content length is zero.
856 		 */
857 		return ie2[1];
858 	case BSS_CMP_REGULAR:
859 	default:
860 		/* sort by length first, then by contents */
861 		if (ie1[1] != ie2[1])
862 			return ie2[1] - ie1[1];
863 		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
864 	case BSS_CMP_HIDE_NUL:
865 		if (ie1[1] != ie2[1])
866 			return ie2[1] - ie1[1];
867 		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
868 		for (i = 0; i < ie2[1]; i++)
869 			if (ie2[i + 2])
870 				return -1;
871 		return 0;
872 	}
873 }
874 
875 static bool cfg80211_bss_type_match(u16 capability,
876 				    enum nl80211_band band,
877 				    enum ieee80211_bss_type bss_type)
878 {
879 	bool ret = true;
880 	u16 mask, val;
881 
882 	if (bss_type == IEEE80211_BSS_TYPE_ANY)
883 		return ret;
884 
885 	if (band == NL80211_BAND_60GHZ) {
886 		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
887 		switch (bss_type) {
888 		case IEEE80211_BSS_TYPE_ESS:
889 			val = WLAN_CAPABILITY_DMG_TYPE_AP;
890 			break;
891 		case IEEE80211_BSS_TYPE_PBSS:
892 			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
893 			break;
894 		case IEEE80211_BSS_TYPE_IBSS:
895 			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
896 			break;
897 		default:
898 			return false;
899 		}
900 	} else {
901 		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
902 		switch (bss_type) {
903 		case IEEE80211_BSS_TYPE_ESS:
904 			val = WLAN_CAPABILITY_ESS;
905 			break;
906 		case IEEE80211_BSS_TYPE_IBSS:
907 			val = WLAN_CAPABILITY_IBSS;
908 			break;
909 		case IEEE80211_BSS_TYPE_MBSS:
910 			val = 0;
911 			break;
912 		default:
913 			return false;
914 		}
915 	}
916 
917 	ret = ((capability & mask) == val);
918 	return ret;
919 }
920 
921 /* Returned bss is reference counted and must be cleaned up appropriately. */
922 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
923 				      struct ieee80211_channel *channel,
924 				      const u8 *bssid,
925 				      const u8 *ssid, size_t ssid_len,
926 				      enum ieee80211_bss_type bss_type,
927 				      enum ieee80211_privacy privacy)
928 {
929 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
930 	struct cfg80211_internal_bss *bss, *res = NULL;
931 	unsigned long now = jiffies;
932 	int bss_privacy;
933 
934 	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
935 			       privacy);
936 
937 	spin_lock_bh(&rdev->bss_lock);
938 
939 	list_for_each_entry(bss, &rdev->bss_list, list) {
940 		if (!cfg80211_bss_type_match(bss->pub.capability,
941 					     bss->pub.channel->band, bss_type))
942 			continue;
943 
944 		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
945 		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
946 		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
947 			continue;
948 		if (channel && bss->pub.channel != channel)
949 			continue;
950 		if (!is_valid_ether_addr(bss->pub.bssid))
951 			continue;
952 		/* Don't get expired BSS structs */
953 		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
954 		    !atomic_read(&bss->hold))
955 			continue;
956 		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
957 			res = bss;
958 			bss_ref_get(rdev, res);
959 			break;
960 		}
961 	}
962 
963 	spin_unlock_bh(&rdev->bss_lock);
964 	if (!res)
965 		return NULL;
966 	trace_cfg80211_return_bss(&res->pub);
967 	return &res->pub;
968 }
969 EXPORT_SYMBOL(cfg80211_get_bss);
970 
971 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
972 			  struct cfg80211_internal_bss *bss)
973 {
974 	struct rb_node **p = &rdev->bss_tree.rb_node;
975 	struct rb_node *parent = NULL;
976 	struct cfg80211_internal_bss *tbss;
977 	int cmp;
978 
979 	while (*p) {
980 		parent = *p;
981 		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
982 
983 		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
984 
985 		if (WARN_ON(!cmp)) {
986 			/* will sort of leak this BSS */
987 			return;
988 		}
989 
990 		if (cmp < 0)
991 			p = &(*p)->rb_left;
992 		else
993 			p = &(*p)->rb_right;
994 	}
995 
996 	rb_link_node(&bss->rbn, parent, p);
997 	rb_insert_color(&bss->rbn, &rdev->bss_tree);
998 }
999 
1000 static struct cfg80211_internal_bss *
1001 rb_find_bss(struct cfg80211_registered_device *rdev,
1002 	    struct cfg80211_internal_bss *res,
1003 	    enum bss_compare_mode mode)
1004 {
1005 	struct rb_node *n = rdev->bss_tree.rb_node;
1006 	struct cfg80211_internal_bss *bss;
1007 	int r;
1008 
1009 	while (n) {
1010 		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1011 		r = cmp_bss(&res->pub, &bss->pub, mode);
1012 
1013 		if (r == 0)
1014 			return bss;
1015 		else if (r < 0)
1016 			n = n->rb_left;
1017 		else
1018 			n = n->rb_right;
1019 	}
1020 
1021 	return NULL;
1022 }
1023 
1024 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1025 				   struct cfg80211_internal_bss *new)
1026 {
1027 	const struct cfg80211_bss_ies *ies;
1028 	struct cfg80211_internal_bss *bss;
1029 	const u8 *ie;
1030 	int i, ssidlen;
1031 	u8 fold = 0;
1032 	u32 n_entries = 0;
1033 
1034 	ies = rcu_access_pointer(new->pub.beacon_ies);
1035 	if (WARN_ON(!ies))
1036 		return false;
1037 
1038 	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1039 	if (!ie) {
1040 		/* nothing to do */
1041 		return true;
1042 	}
1043 
1044 	ssidlen = ie[1];
1045 	for (i = 0; i < ssidlen; i++)
1046 		fold |= ie[2 + i];
1047 
1048 	if (fold) {
1049 		/* not a hidden SSID */
1050 		return true;
1051 	}
1052 
1053 	/* This is the bad part ... */
1054 
1055 	list_for_each_entry(bss, &rdev->bss_list, list) {
1056 		/*
1057 		 * we're iterating all the entries anyway, so take the
1058 		 * opportunity to validate the list length accounting
1059 		 */
1060 		n_entries++;
1061 
1062 		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1063 			continue;
1064 		if (bss->pub.channel != new->pub.channel)
1065 			continue;
1066 		if (bss->pub.scan_width != new->pub.scan_width)
1067 			continue;
1068 		if (rcu_access_pointer(bss->pub.beacon_ies))
1069 			continue;
1070 		ies = rcu_access_pointer(bss->pub.ies);
1071 		if (!ies)
1072 			continue;
1073 		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1074 		if (!ie)
1075 			continue;
1076 		if (ssidlen && ie[1] != ssidlen)
1077 			continue;
1078 		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1079 			continue;
1080 		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1081 			list_del(&bss->hidden_list);
1082 		/* combine them */
1083 		list_add(&bss->hidden_list, &new->hidden_list);
1084 		bss->pub.hidden_beacon_bss = &new->pub;
1085 		new->refcount += bss->refcount;
1086 		rcu_assign_pointer(bss->pub.beacon_ies,
1087 				   new->pub.beacon_ies);
1088 	}
1089 
1090 	WARN_ONCE(n_entries != rdev->bss_entries,
1091 		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1092 		  rdev->bss_entries, n_entries);
1093 
1094 	return true;
1095 }
1096 
1097 struct cfg80211_non_tx_bss {
1098 	struct cfg80211_bss *tx_bss;
1099 	u8 max_bssid_indicator;
1100 	u8 bssid_index;
1101 };
1102 
1103 static bool
1104 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1105 			  struct cfg80211_internal_bss *known,
1106 			  struct cfg80211_internal_bss *new,
1107 			  bool signal_valid)
1108 {
1109 	lockdep_assert_held(&rdev->bss_lock);
1110 
1111 	/* Update IEs */
1112 	if (rcu_access_pointer(new->pub.proberesp_ies)) {
1113 		const struct cfg80211_bss_ies *old;
1114 
1115 		old = rcu_access_pointer(known->pub.proberesp_ies);
1116 
1117 		rcu_assign_pointer(known->pub.proberesp_ies,
1118 				   new->pub.proberesp_ies);
1119 		/* Override possible earlier Beacon frame IEs */
1120 		rcu_assign_pointer(known->pub.ies,
1121 				   new->pub.proberesp_ies);
1122 		if (old)
1123 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1124 	} else if (rcu_access_pointer(new->pub.beacon_ies)) {
1125 		const struct cfg80211_bss_ies *old;
1126 		struct cfg80211_internal_bss *bss;
1127 
1128 		if (known->pub.hidden_beacon_bss &&
1129 		    !list_empty(&known->hidden_list)) {
1130 			const struct cfg80211_bss_ies *f;
1131 
1132 			/* The known BSS struct is one of the probe
1133 			 * response members of a group, but we're
1134 			 * receiving a beacon (beacon_ies in the new
1135 			 * bss is used). This can only mean that the
1136 			 * AP changed its beacon from not having an
1137 			 * SSID to showing it, which is confusing so
1138 			 * drop this information.
1139 			 */
1140 
1141 			f = rcu_access_pointer(new->pub.beacon_ies);
1142 			kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1143 			return false;
1144 		}
1145 
1146 		old = rcu_access_pointer(known->pub.beacon_ies);
1147 
1148 		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1149 
1150 		/* Override IEs if they were from a beacon before */
1151 		if (old == rcu_access_pointer(known->pub.ies))
1152 			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1153 
1154 		/* Assign beacon IEs to all sub entries */
1155 		list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1156 			const struct cfg80211_bss_ies *ies;
1157 
1158 			ies = rcu_access_pointer(bss->pub.beacon_ies);
1159 			WARN_ON(ies != old);
1160 
1161 			rcu_assign_pointer(bss->pub.beacon_ies,
1162 					   new->pub.beacon_ies);
1163 		}
1164 
1165 		if (old)
1166 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1167 	}
1168 
1169 	known->pub.beacon_interval = new->pub.beacon_interval;
1170 
1171 	/* don't update the signal if beacon was heard on
1172 	 * adjacent channel.
1173 	 */
1174 	if (signal_valid)
1175 		known->pub.signal = new->pub.signal;
1176 	known->pub.capability = new->pub.capability;
1177 	known->ts = new->ts;
1178 	known->ts_boottime = new->ts_boottime;
1179 	known->parent_tsf = new->parent_tsf;
1180 	known->pub.chains = new->pub.chains;
1181 	memcpy(known->pub.chain_signal, new->pub.chain_signal,
1182 	       IEEE80211_MAX_CHAINS);
1183 	ether_addr_copy(known->parent_bssid, new->parent_bssid);
1184 	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1185 	known->pub.bssid_index = new->pub.bssid_index;
1186 
1187 	return true;
1188 }
1189 
1190 /* Returned bss is reference counted and must be cleaned up appropriately. */
1191 struct cfg80211_internal_bss *
1192 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1193 		    struct cfg80211_internal_bss *tmp,
1194 		    bool signal_valid, unsigned long ts)
1195 {
1196 	struct cfg80211_internal_bss *found = NULL;
1197 
1198 	if (WARN_ON(!tmp->pub.channel))
1199 		return NULL;
1200 
1201 	tmp->ts = ts;
1202 
1203 	spin_lock_bh(&rdev->bss_lock);
1204 
1205 	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1206 		spin_unlock_bh(&rdev->bss_lock);
1207 		return NULL;
1208 	}
1209 
1210 	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1211 
1212 	if (found) {
1213 		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1214 			goto drop;
1215 	} else {
1216 		struct cfg80211_internal_bss *new;
1217 		struct cfg80211_internal_bss *hidden;
1218 		struct cfg80211_bss_ies *ies;
1219 
1220 		/*
1221 		 * create a copy -- the "res" variable that is passed in
1222 		 * is allocated on the stack since it's not needed in the
1223 		 * more common case of an update
1224 		 */
1225 		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1226 			      GFP_ATOMIC);
1227 		if (!new) {
1228 			ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1229 			if (ies)
1230 				kfree_rcu(ies, rcu_head);
1231 			ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1232 			if (ies)
1233 				kfree_rcu(ies, rcu_head);
1234 			goto drop;
1235 		}
1236 		memcpy(new, tmp, sizeof(*new));
1237 		new->refcount = 1;
1238 		INIT_LIST_HEAD(&new->hidden_list);
1239 		INIT_LIST_HEAD(&new->pub.nontrans_list);
1240 
1241 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1242 			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1243 			if (!hidden)
1244 				hidden = rb_find_bss(rdev, tmp,
1245 						     BSS_CMP_HIDE_NUL);
1246 			if (hidden) {
1247 				new->pub.hidden_beacon_bss = &hidden->pub;
1248 				list_add(&new->hidden_list,
1249 					 &hidden->hidden_list);
1250 				hidden->refcount++;
1251 				rcu_assign_pointer(new->pub.beacon_ies,
1252 						   hidden->pub.beacon_ies);
1253 			}
1254 		} else {
1255 			/*
1256 			 * Ok so we found a beacon, and don't have an entry. If
1257 			 * it's a beacon with hidden SSID, we might be in for an
1258 			 * expensive search for any probe responses that should
1259 			 * be grouped with this beacon for updates ...
1260 			 */
1261 			if (!cfg80211_combine_bsses(rdev, new)) {
1262 				kfree(new);
1263 				goto drop;
1264 			}
1265 		}
1266 
1267 		if (rdev->bss_entries >= bss_entries_limit &&
1268 		    !cfg80211_bss_expire_oldest(rdev)) {
1269 			kfree(new);
1270 			goto drop;
1271 		}
1272 
1273 		/* This must be before the call to bss_ref_get */
1274 		if (tmp->pub.transmitted_bss) {
1275 			struct cfg80211_internal_bss *pbss =
1276 				container_of(tmp->pub.transmitted_bss,
1277 					     struct cfg80211_internal_bss,
1278 					     pub);
1279 
1280 			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1281 			bss_ref_get(rdev, pbss);
1282 		}
1283 
1284 		list_add_tail(&new->list, &rdev->bss_list);
1285 		rdev->bss_entries++;
1286 		rb_insert_bss(rdev, new);
1287 		found = new;
1288 	}
1289 
1290 	rdev->bss_generation++;
1291 	bss_ref_get(rdev, found);
1292 	spin_unlock_bh(&rdev->bss_lock);
1293 
1294 	return found;
1295  drop:
1296 	spin_unlock_bh(&rdev->bss_lock);
1297 	return NULL;
1298 }
1299 
1300 /*
1301  * Update RX channel information based on the available frame payload
1302  * information. This is mainly for the 2.4 GHz band where frames can be received
1303  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1304  * element to indicate the current (transmitting) channel, but this might also
1305  * be needed on other bands if RX frequency does not match with the actual
1306  * operating channel of a BSS.
1307  */
1308 static struct ieee80211_channel *
1309 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1310 			 struct ieee80211_channel *channel,
1311 			 enum nl80211_bss_scan_width scan_width)
1312 {
1313 	const u8 *tmp;
1314 	u32 freq;
1315 	int channel_number = -1;
1316 	struct ieee80211_channel *alt_channel;
1317 
1318 	tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1319 	if (tmp && tmp[1] == 1) {
1320 		channel_number = tmp[2];
1321 	} else {
1322 		tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1323 		if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1324 			struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1325 
1326 			channel_number = htop->primary_chan;
1327 		}
1328 	}
1329 
1330 	if (channel_number < 0) {
1331 		/* No channel information in frame payload */
1332 		return channel;
1333 	}
1334 
1335 	freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1336 	alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1337 	if (!alt_channel) {
1338 		if (channel->band == NL80211_BAND_2GHZ) {
1339 			/*
1340 			 * Better not allow unexpected channels when that could
1341 			 * be going beyond the 1-11 range (e.g., discovering
1342 			 * BSS on channel 12 when radio is configured for
1343 			 * channel 11.
1344 			 */
1345 			return NULL;
1346 		}
1347 
1348 		/* No match for the payload channel number - ignore it */
1349 		return channel;
1350 	}
1351 
1352 	if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1353 	    scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1354 		/*
1355 		 * Ignore channel number in 5 and 10 MHz channels where there
1356 		 * may not be an n:1 or 1:n mapping between frequencies and
1357 		 * channel numbers.
1358 		 */
1359 		return channel;
1360 	}
1361 
1362 	/*
1363 	 * Use the channel determined through the payload channel number
1364 	 * instead of the RX channel reported by the driver.
1365 	 */
1366 	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1367 		return NULL;
1368 	return alt_channel;
1369 }
1370 
1371 /* Returned bss is reference counted and must be cleaned up appropriately. */
1372 static struct cfg80211_bss *
1373 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1374 				struct cfg80211_inform_bss *data,
1375 				enum cfg80211_bss_frame_type ftype,
1376 				const u8 *bssid, u64 tsf, u16 capability,
1377 				u16 beacon_interval, const u8 *ie, size_t ielen,
1378 				struct cfg80211_non_tx_bss *non_tx_data,
1379 				gfp_t gfp)
1380 {
1381 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1382 	struct cfg80211_bss_ies *ies;
1383 	struct ieee80211_channel *channel;
1384 	struct cfg80211_internal_bss tmp = {}, *res;
1385 	int bss_type;
1386 	bool signal_valid;
1387 	unsigned long ts;
1388 
1389 	if (WARN_ON(!wiphy))
1390 		return NULL;
1391 
1392 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1393 		    (data->signal < 0 || data->signal > 100)))
1394 		return NULL;
1395 
1396 	channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1397 					   data->scan_width);
1398 	if (!channel)
1399 		return NULL;
1400 
1401 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1402 	tmp.pub.channel = channel;
1403 	tmp.pub.scan_width = data->scan_width;
1404 	tmp.pub.signal = data->signal;
1405 	tmp.pub.beacon_interval = beacon_interval;
1406 	tmp.pub.capability = capability;
1407 	tmp.ts_boottime = data->boottime_ns;
1408 	if (non_tx_data) {
1409 		tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1410 		ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1411 		tmp.pub.bssid_index = non_tx_data->bssid_index;
1412 		tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1413 	} else {
1414 		ts = jiffies;
1415 	}
1416 
1417 	/*
1418 	 * If we do not know here whether the IEs are from a Beacon or Probe
1419 	 * Response frame, we need to pick one of the options and only use it
1420 	 * with the driver that does not provide the full Beacon/Probe Response
1421 	 * frame. Use Beacon frame pointer to avoid indicating that this should
1422 	 * override the IEs pointer should we have received an earlier
1423 	 * indication of Probe Response data.
1424 	 */
1425 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
1426 	if (!ies)
1427 		return NULL;
1428 	ies->len = ielen;
1429 	ies->tsf = tsf;
1430 	ies->from_beacon = false;
1431 	memcpy(ies->data, ie, ielen);
1432 
1433 	switch (ftype) {
1434 	case CFG80211_BSS_FTYPE_BEACON:
1435 		ies->from_beacon = true;
1436 		fallthrough;
1437 	case CFG80211_BSS_FTYPE_UNKNOWN:
1438 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1439 		break;
1440 	case CFG80211_BSS_FTYPE_PRESP:
1441 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1442 		break;
1443 	}
1444 	rcu_assign_pointer(tmp.pub.ies, ies);
1445 
1446 	signal_valid = data->chan == channel;
1447 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
1448 	if (!res)
1449 		return NULL;
1450 
1451 	if (channel->band == NL80211_BAND_60GHZ) {
1452 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1453 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1454 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1455 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1456 	} else {
1457 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
1458 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1459 	}
1460 
1461 	if (non_tx_data) {
1462 		/* this is a nontransmitting bss, we need to add it to
1463 		 * transmitting bss' list if it is not there
1464 		 */
1465 		if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
1466 					       &res->pub)) {
1467 			if (__cfg80211_unlink_bss(rdev, res))
1468 				rdev->bss_generation++;
1469 		}
1470 	}
1471 
1472 	trace_cfg80211_return_bss(&res->pub);
1473 	/* cfg80211_bss_update gives us a referenced result */
1474 	return &res->pub;
1475 }
1476 
1477 static const struct element
1478 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
1479 				   const struct element *mbssid_elem,
1480 				   const struct element *sub_elem)
1481 {
1482 	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
1483 	const struct element *next_mbssid;
1484 	const struct element *next_sub;
1485 
1486 	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
1487 					 mbssid_end,
1488 					 ielen - (mbssid_end - ie));
1489 
1490 	/*
1491 	 * If is is not the last subelement in current MBSSID IE or there isn't
1492 	 * a next MBSSID IE - profile is complete.
1493 	*/
1494 	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
1495 	    !next_mbssid)
1496 		return NULL;
1497 
1498 	/* For any length error, just return NULL */
1499 
1500 	if (next_mbssid->datalen < 4)
1501 		return NULL;
1502 
1503 	next_sub = (void *)&next_mbssid->data[1];
1504 
1505 	if (next_mbssid->data + next_mbssid->datalen <
1506 	    next_sub->data + next_sub->datalen)
1507 		return NULL;
1508 
1509 	if (next_sub->id != 0 || next_sub->datalen < 2)
1510 		return NULL;
1511 
1512 	/*
1513 	 * Check if the first element in the next sub element is a start
1514 	 * of a new profile
1515 	 */
1516 	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
1517 	       NULL : next_mbssid;
1518 }
1519 
1520 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
1521 			      const struct element *mbssid_elem,
1522 			      const struct element *sub_elem,
1523 			      u8 *merged_ie, size_t max_copy_len)
1524 {
1525 	size_t copied_len = sub_elem->datalen;
1526 	const struct element *next_mbssid;
1527 
1528 	if (sub_elem->datalen > max_copy_len)
1529 		return 0;
1530 
1531 	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
1532 
1533 	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
1534 								mbssid_elem,
1535 								sub_elem))) {
1536 		const struct element *next_sub = (void *)&next_mbssid->data[1];
1537 
1538 		if (copied_len + next_sub->datalen > max_copy_len)
1539 			break;
1540 		memcpy(merged_ie + copied_len, next_sub->data,
1541 		       next_sub->datalen);
1542 		copied_len += next_sub->datalen;
1543 	}
1544 
1545 	return copied_len;
1546 }
1547 EXPORT_SYMBOL(cfg80211_merge_profile);
1548 
1549 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
1550 				       struct cfg80211_inform_bss *data,
1551 				       enum cfg80211_bss_frame_type ftype,
1552 				       const u8 *bssid, u64 tsf,
1553 				       u16 beacon_interval, const u8 *ie,
1554 				       size_t ielen,
1555 				       struct cfg80211_non_tx_bss *non_tx_data,
1556 				       gfp_t gfp)
1557 {
1558 	const u8 *mbssid_index_ie;
1559 	const struct element *elem, *sub;
1560 	size_t new_ie_len;
1561 	u8 new_bssid[ETH_ALEN];
1562 	u8 *new_ie, *profile;
1563 	u64 seen_indices = 0;
1564 	u16 capability;
1565 	struct cfg80211_bss *bss;
1566 
1567 	if (!non_tx_data)
1568 		return;
1569 	if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
1570 		return;
1571 	if (!wiphy->support_mbssid)
1572 		return;
1573 	if (wiphy->support_only_he_mbssid &&
1574 	    !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
1575 		return;
1576 
1577 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
1578 	if (!new_ie)
1579 		return;
1580 
1581 	profile = kmalloc(ielen, gfp);
1582 	if (!profile)
1583 		goto out;
1584 
1585 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
1586 		if (elem->datalen < 4)
1587 			continue;
1588 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
1589 			u8 profile_len;
1590 
1591 			if (sub->id != 0 || sub->datalen < 4) {
1592 				/* not a valid BSS profile */
1593 				continue;
1594 			}
1595 
1596 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
1597 			    sub->data[1] != 2) {
1598 				/* The first element within the Nontransmitted
1599 				 * BSSID Profile is not the Nontransmitted
1600 				 * BSSID Capability element.
1601 				 */
1602 				continue;
1603 			}
1604 
1605 			memset(profile, 0, ielen);
1606 			profile_len = cfg80211_merge_profile(ie, ielen,
1607 							     elem,
1608 							     sub,
1609 							     profile,
1610 							     ielen);
1611 
1612 			/* found a Nontransmitted BSSID Profile */
1613 			mbssid_index_ie = cfg80211_find_ie
1614 				(WLAN_EID_MULTI_BSSID_IDX,
1615 				 profile, profile_len);
1616 			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
1617 			    mbssid_index_ie[2] == 0 ||
1618 			    mbssid_index_ie[2] > 46) {
1619 				/* No valid Multiple BSSID-Index element */
1620 				continue;
1621 			}
1622 
1623 			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
1624 				/* We don't support legacy split of a profile */
1625 				net_dbg_ratelimited("Partial info for BSSID index %d\n",
1626 						    mbssid_index_ie[2]);
1627 
1628 			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
1629 
1630 			non_tx_data->bssid_index = mbssid_index_ie[2];
1631 			non_tx_data->max_bssid_indicator = elem->data[0];
1632 
1633 			cfg80211_gen_new_bssid(bssid,
1634 					       non_tx_data->max_bssid_indicator,
1635 					       non_tx_data->bssid_index,
1636 					       new_bssid);
1637 			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
1638 			new_ie_len = cfg80211_gen_new_ie(ie, ielen,
1639 							 profile,
1640 							 profile_len, new_ie,
1641 							 gfp);
1642 			if (!new_ie_len)
1643 				continue;
1644 
1645 			capability = get_unaligned_le16(profile + 2);
1646 			bss = cfg80211_inform_single_bss_data(wiphy, data,
1647 							      ftype,
1648 							      new_bssid, tsf,
1649 							      capability,
1650 							      beacon_interval,
1651 							      new_ie,
1652 							      new_ie_len,
1653 							      non_tx_data,
1654 							      gfp);
1655 			if (!bss)
1656 				break;
1657 			cfg80211_put_bss(wiphy, bss);
1658 		}
1659 	}
1660 
1661 out:
1662 	kfree(new_ie);
1663 	kfree(profile);
1664 }
1665 
1666 struct cfg80211_bss *
1667 cfg80211_inform_bss_data(struct wiphy *wiphy,
1668 			 struct cfg80211_inform_bss *data,
1669 			 enum cfg80211_bss_frame_type ftype,
1670 			 const u8 *bssid, u64 tsf, u16 capability,
1671 			 u16 beacon_interval, const u8 *ie, size_t ielen,
1672 			 gfp_t gfp)
1673 {
1674 	struct cfg80211_bss *res;
1675 	struct cfg80211_non_tx_bss non_tx_data;
1676 
1677 	res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
1678 					      capability, beacon_interval, ie,
1679 					      ielen, NULL, gfp);
1680 	if (!res)
1681 		return NULL;
1682 	non_tx_data.tx_bss = res;
1683 	cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
1684 				   beacon_interval, ie, ielen, &non_tx_data,
1685 				   gfp);
1686 	return res;
1687 }
1688 EXPORT_SYMBOL(cfg80211_inform_bss_data);
1689 
1690 static void
1691 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
1692 				 struct cfg80211_inform_bss *data,
1693 				 struct ieee80211_mgmt *mgmt, size_t len,
1694 				 struct cfg80211_non_tx_bss *non_tx_data,
1695 				 gfp_t gfp)
1696 {
1697 	enum cfg80211_bss_frame_type ftype;
1698 	const u8 *ie = mgmt->u.probe_resp.variable;
1699 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
1700 				      u.probe_resp.variable);
1701 
1702 	ftype = ieee80211_is_beacon(mgmt->frame_control) ?
1703 		CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
1704 
1705 	cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
1706 				   le64_to_cpu(mgmt->u.probe_resp.timestamp),
1707 				   le16_to_cpu(mgmt->u.probe_resp.beacon_int),
1708 				   ie, ielen, non_tx_data, gfp);
1709 }
1710 
1711 static void
1712 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
1713 				   struct cfg80211_bss *nontrans_bss,
1714 				   struct ieee80211_mgmt *mgmt, size_t len)
1715 {
1716 	u8 *ie, *new_ie, *pos;
1717 	const u8 *nontrans_ssid, *trans_ssid, *mbssid;
1718 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
1719 				      u.probe_resp.variable);
1720 	size_t new_ie_len;
1721 	struct cfg80211_bss_ies *new_ies;
1722 	const struct cfg80211_bss_ies *old;
1723 	u8 cpy_len;
1724 
1725 	lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
1726 
1727 	ie = mgmt->u.probe_resp.variable;
1728 
1729 	new_ie_len = ielen;
1730 	trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
1731 	if (!trans_ssid)
1732 		return;
1733 	new_ie_len -= trans_ssid[1];
1734 	mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
1735 	/*
1736 	 * It's not valid to have the MBSSID element before SSID
1737 	 * ignore if that happens - the code below assumes it is
1738 	 * after (while copying things inbetween).
1739 	 */
1740 	if (!mbssid || mbssid < trans_ssid)
1741 		return;
1742 	new_ie_len -= mbssid[1];
1743 
1744 	nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
1745 	if (!nontrans_ssid)
1746 		return;
1747 
1748 	new_ie_len += nontrans_ssid[1];
1749 
1750 	/* generate new ie for nontrans BSS
1751 	 * 1. replace SSID with nontrans BSS' SSID
1752 	 * 2. skip MBSSID IE
1753 	 */
1754 	new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
1755 	if (!new_ie)
1756 		return;
1757 
1758 	new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
1759 	if (!new_ies)
1760 		goto out_free;
1761 
1762 	pos = new_ie;
1763 
1764 	/* copy the nontransmitted SSID */
1765 	cpy_len = nontrans_ssid[1] + 2;
1766 	memcpy(pos, nontrans_ssid, cpy_len);
1767 	pos += cpy_len;
1768 	/* copy the IEs between SSID and MBSSID */
1769 	cpy_len = trans_ssid[1] + 2;
1770 	memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
1771 	pos += (mbssid - (trans_ssid + cpy_len));
1772 	/* copy the IEs after MBSSID */
1773 	cpy_len = mbssid[1] + 2;
1774 	memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
1775 
1776 	/* update ie */
1777 	new_ies->len = new_ie_len;
1778 	new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
1779 	new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
1780 	memcpy(new_ies->data, new_ie, new_ie_len);
1781 	if (ieee80211_is_probe_resp(mgmt->frame_control)) {
1782 		old = rcu_access_pointer(nontrans_bss->proberesp_ies);
1783 		rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
1784 		rcu_assign_pointer(nontrans_bss->ies, new_ies);
1785 		if (old)
1786 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1787 	} else {
1788 		old = rcu_access_pointer(nontrans_bss->beacon_ies);
1789 		rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
1790 		rcu_assign_pointer(nontrans_bss->ies, new_ies);
1791 		if (old)
1792 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1793 	}
1794 
1795 out_free:
1796 	kfree(new_ie);
1797 }
1798 
1799 /* cfg80211_inform_bss_width_frame helper */
1800 static struct cfg80211_bss *
1801 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
1802 				      struct cfg80211_inform_bss *data,
1803 				      struct ieee80211_mgmt *mgmt, size_t len,
1804 				      gfp_t gfp)
1805 {
1806 	struct cfg80211_internal_bss tmp = {}, *res;
1807 	struct cfg80211_bss_ies *ies;
1808 	struct ieee80211_channel *channel;
1809 	bool signal_valid;
1810 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
1811 				      u.probe_resp.variable);
1812 	int bss_type;
1813 
1814 	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
1815 			offsetof(struct ieee80211_mgmt, u.beacon.variable));
1816 
1817 	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
1818 
1819 	if (WARN_ON(!mgmt))
1820 		return NULL;
1821 
1822 	if (WARN_ON(!wiphy))
1823 		return NULL;
1824 
1825 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1826 		    (data->signal < 0 || data->signal > 100)))
1827 		return NULL;
1828 
1829 	if (WARN_ON(len < offsetof(struct ieee80211_mgmt, u.probe_resp.variable)))
1830 		return NULL;
1831 
1832 	channel = cfg80211_get_bss_channel(wiphy, mgmt->u.beacon.variable,
1833 					   ielen, data->chan, data->scan_width);
1834 	if (!channel)
1835 		return NULL;
1836 
1837 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
1838 	if (!ies)
1839 		return NULL;
1840 	ies->len = ielen;
1841 	ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
1842 	ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
1843 	memcpy(ies->data, mgmt->u.probe_resp.variable, ielen);
1844 
1845 	if (ieee80211_is_probe_resp(mgmt->frame_control))
1846 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1847 	else
1848 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1849 	rcu_assign_pointer(tmp.pub.ies, ies);
1850 
1851 	memcpy(tmp.pub.bssid, mgmt->bssid, ETH_ALEN);
1852 	tmp.pub.channel = channel;
1853 	tmp.pub.scan_width = data->scan_width;
1854 	tmp.pub.signal = data->signal;
1855 	tmp.pub.beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
1856 	tmp.pub.capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
1857 	tmp.ts_boottime = data->boottime_ns;
1858 	tmp.parent_tsf = data->parent_tsf;
1859 	tmp.pub.chains = data->chains;
1860 	memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
1861 	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1862 
1863 	signal_valid = data->chan == channel;
1864 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
1865 				  jiffies);
1866 	if (!res)
1867 		return NULL;
1868 
1869 	if (channel->band == NL80211_BAND_60GHZ) {
1870 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1871 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1872 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1873 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1874 	} else {
1875 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
1876 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1877 	}
1878 
1879 	trace_cfg80211_return_bss(&res->pub);
1880 	/* cfg80211_bss_update gives us a referenced result */
1881 	return &res->pub;
1882 }
1883 
1884 struct cfg80211_bss *
1885 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
1886 			       struct cfg80211_inform_bss *data,
1887 			       struct ieee80211_mgmt *mgmt, size_t len,
1888 			       gfp_t gfp)
1889 {
1890 	struct cfg80211_bss *res, *tmp_bss;
1891 	const u8 *ie = mgmt->u.probe_resp.variable;
1892 	const struct cfg80211_bss_ies *ies1, *ies2;
1893 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
1894 				      u.probe_resp.variable);
1895 	struct cfg80211_non_tx_bss non_tx_data;
1896 
1897 	res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
1898 						    len, gfp);
1899 	if (!res || !wiphy->support_mbssid ||
1900 	    !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
1901 		return res;
1902 	if (wiphy->support_only_he_mbssid &&
1903 	    !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
1904 		return res;
1905 
1906 	non_tx_data.tx_bss = res;
1907 	/* process each non-transmitting bss */
1908 	cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
1909 					 &non_tx_data, gfp);
1910 
1911 	spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
1912 
1913 	/* check if the res has other nontransmitting bss which is not
1914 	 * in MBSSID IE
1915 	 */
1916 	ies1 = rcu_access_pointer(res->ies);
1917 
1918 	/* go through nontrans_list, if the timestamp of the BSS is
1919 	 * earlier than the timestamp of the transmitting BSS then
1920 	 * update it
1921 	 */
1922 	list_for_each_entry(tmp_bss, &res->nontrans_list,
1923 			    nontrans_list) {
1924 		ies2 = rcu_access_pointer(tmp_bss->ies);
1925 		if (ies2->tsf < ies1->tsf)
1926 			cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
1927 							   mgmt, len);
1928 	}
1929 	spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
1930 
1931 	return res;
1932 }
1933 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
1934 
1935 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1936 {
1937 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1938 	struct cfg80211_internal_bss *bss;
1939 
1940 	if (!pub)
1941 		return;
1942 
1943 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
1944 
1945 	spin_lock_bh(&rdev->bss_lock);
1946 	bss_ref_get(rdev, bss);
1947 	spin_unlock_bh(&rdev->bss_lock);
1948 }
1949 EXPORT_SYMBOL(cfg80211_ref_bss);
1950 
1951 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1952 {
1953 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1954 	struct cfg80211_internal_bss *bss;
1955 
1956 	if (!pub)
1957 		return;
1958 
1959 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
1960 
1961 	spin_lock_bh(&rdev->bss_lock);
1962 	bss_ref_put(rdev, bss);
1963 	spin_unlock_bh(&rdev->bss_lock);
1964 }
1965 EXPORT_SYMBOL(cfg80211_put_bss);
1966 
1967 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1968 {
1969 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1970 	struct cfg80211_internal_bss *bss, *tmp1;
1971 	struct cfg80211_bss *nontrans_bss, *tmp;
1972 
1973 	if (WARN_ON(!pub))
1974 		return;
1975 
1976 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
1977 
1978 	spin_lock_bh(&rdev->bss_lock);
1979 	if (list_empty(&bss->list))
1980 		goto out;
1981 
1982 	list_for_each_entry_safe(nontrans_bss, tmp,
1983 				 &pub->nontrans_list,
1984 				 nontrans_list) {
1985 		tmp1 = container_of(nontrans_bss,
1986 				    struct cfg80211_internal_bss, pub);
1987 		if (__cfg80211_unlink_bss(rdev, tmp1))
1988 			rdev->bss_generation++;
1989 	}
1990 
1991 	if (__cfg80211_unlink_bss(rdev, bss))
1992 		rdev->bss_generation++;
1993 out:
1994 	spin_unlock_bh(&rdev->bss_lock);
1995 }
1996 EXPORT_SYMBOL(cfg80211_unlink_bss);
1997 
1998 void cfg80211_bss_iter(struct wiphy *wiphy,
1999 		       struct cfg80211_chan_def *chandef,
2000 		       void (*iter)(struct wiphy *wiphy,
2001 				    struct cfg80211_bss *bss,
2002 				    void *data),
2003 		       void *iter_data)
2004 {
2005 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2006 	struct cfg80211_internal_bss *bss;
2007 
2008 	spin_lock_bh(&rdev->bss_lock);
2009 
2010 	list_for_each_entry(bss, &rdev->bss_list, list) {
2011 		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel))
2012 			iter(wiphy, &bss->pub, iter_data);
2013 	}
2014 
2015 	spin_unlock_bh(&rdev->bss_lock);
2016 }
2017 EXPORT_SYMBOL(cfg80211_bss_iter);
2018 
2019 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2020 				     struct ieee80211_channel *chan)
2021 {
2022 	struct wiphy *wiphy = wdev->wiphy;
2023 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2024 	struct cfg80211_internal_bss *cbss = wdev->current_bss;
2025 	struct cfg80211_internal_bss *new = NULL;
2026 	struct cfg80211_internal_bss *bss;
2027 	struct cfg80211_bss *nontrans_bss;
2028 	struct cfg80211_bss *tmp;
2029 
2030 	spin_lock_bh(&rdev->bss_lock);
2031 
2032 	/*
2033 	 * Some APs use CSA also for bandwidth changes, i.e., without actually
2034 	 * changing the control channel, so no need to update in such a case.
2035 	 */
2036 	if (cbss->pub.channel == chan)
2037 		goto done;
2038 
2039 	/* use transmitting bss */
2040 	if (cbss->pub.transmitted_bss)
2041 		cbss = container_of(cbss->pub.transmitted_bss,
2042 				    struct cfg80211_internal_bss,
2043 				    pub);
2044 
2045 	cbss->pub.channel = chan;
2046 
2047 	list_for_each_entry(bss, &rdev->bss_list, list) {
2048 		if (!cfg80211_bss_type_match(bss->pub.capability,
2049 					     bss->pub.channel->band,
2050 					     wdev->conn_bss_type))
2051 			continue;
2052 
2053 		if (bss == cbss)
2054 			continue;
2055 
2056 		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2057 			new = bss;
2058 			break;
2059 		}
2060 	}
2061 
2062 	if (new) {
2063 		/* to save time, update IEs for transmitting bss only */
2064 		if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2065 			new->pub.proberesp_ies = NULL;
2066 			new->pub.beacon_ies = NULL;
2067 		}
2068 
2069 		list_for_each_entry_safe(nontrans_bss, tmp,
2070 					 &new->pub.nontrans_list,
2071 					 nontrans_list) {
2072 			bss = container_of(nontrans_bss,
2073 					   struct cfg80211_internal_bss, pub);
2074 			if (__cfg80211_unlink_bss(rdev, bss))
2075 				rdev->bss_generation++;
2076 		}
2077 
2078 		WARN_ON(atomic_read(&new->hold));
2079 		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2080 			rdev->bss_generation++;
2081 	}
2082 
2083 	rb_erase(&cbss->rbn, &rdev->bss_tree);
2084 	rb_insert_bss(rdev, cbss);
2085 	rdev->bss_generation++;
2086 
2087 	list_for_each_entry_safe(nontrans_bss, tmp,
2088 				 &cbss->pub.nontrans_list,
2089 				 nontrans_list) {
2090 		bss = container_of(nontrans_bss,
2091 				   struct cfg80211_internal_bss, pub);
2092 		bss->pub.channel = chan;
2093 		rb_erase(&bss->rbn, &rdev->bss_tree);
2094 		rb_insert_bss(rdev, bss);
2095 		rdev->bss_generation++;
2096 	}
2097 
2098 done:
2099 	spin_unlock_bh(&rdev->bss_lock);
2100 }
2101 
2102 #ifdef CONFIG_CFG80211_WEXT
2103 static struct cfg80211_registered_device *
2104 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2105 {
2106 	struct cfg80211_registered_device *rdev;
2107 	struct net_device *dev;
2108 
2109 	ASSERT_RTNL();
2110 
2111 	dev = dev_get_by_index(net, ifindex);
2112 	if (!dev)
2113 		return ERR_PTR(-ENODEV);
2114 	if (dev->ieee80211_ptr)
2115 		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2116 	else
2117 		rdev = ERR_PTR(-ENODEV);
2118 	dev_put(dev);
2119 	return rdev;
2120 }
2121 
2122 int cfg80211_wext_siwscan(struct net_device *dev,
2123 			  struct iw_request_info *info,
2124 			  union iwreq_data *wrqu, char *extra)
2125 {
2126 	struct cfg80211_registered_device *rdev;
2127 	struct wiphy *wiphy;
2128 	struct iw_scan_req *wreq = NULL;
2129 	struct cfg80211_scan_request *creq = NULL;
2130 	int i, err, n_channels = 0;
2131 	enum nl80211_band band;
2132 
2133 	if (!netif_running(dev))
2134 		return -ENETDOWN;
2135 
2136 	if (wrqu->data.length == sizeof(struct iw_scan_req))
2137 		wreq = (struct iw_scan_req *)extra;
2138 
2139 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2140 
2141 	if (IS_ERR(rdev))
2142 		return PTR_ERR(rdev);
2143 
2144 	if (rdev->scan_req || rdev->scan_msg) {
2145 		err = -EBUSY;
2146 		goto out;
2147 	}
2148 
2149 	wiphy = &rdev->wiphy;
2150 
2151 	/* Determine number of channels, needed to allocate creq */
2152 	if (wreq && wreq->num_channels)
2153 		n_channels = wreq->num_channels;
2154 	else
2155 		n_channels = ieee80211_get_num_supported_channels(wiphy);
2156 
2157 	creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2158 		       n_channels * sizeof(void *),
2159 		       GFP_ATOMIC);
2160 	if (!creq) {
2161 		err = -ENOMEM;
2162 		goto out;
2163 	}
2164 
2165 	creq->wiphy = wiphy;
2166 	creq->wdev = dev->ieee80211_ptr;
2167 	/* SSIDs come after channels */
2168 	creq->ssids = (void *)&creq->channels[n_channels];
2169 	creq->n_channels = n_channels;
2170 	creq->n_ssids = 1;
2171 	creq->scan_start = jiffies;
2172 
2173 	/* translate "Scan on frequencies" request */
2174 	i = 0;
2175 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2176 		int j;
2177 
2178 		if (!wiphy->bands[band])
2179 			continue;
2180 
2181 		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2182 			/* ignore disabled channels */
2183 			if (wiphy->bands[band]->channels[j].flags &
2184 						IEEE80211_CHAN_DISABLED)
2185 				continue;
2186 
2187 			/* If we have a wireless request structure and the
2188 			 * wireless request specifies frequencies, then search
2189 			 * for the matching hardware channel.
2190 			 */
2191 			if (wreq && wreq->num_channels) {
2192 				int k;
2193 				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2194 				for (k = 0; k < wreq->num_channels; k++) {
2195 					struct iw_freq *freq =
2196 						&wreq->channel_list[k];
2197 					int wext_freq =
2198 						cfg80211_wext_freq(freq);
2199 
2200 					if (wext_freq == wiphy_freq)
2201 						goto wext_freq_found;
2202 				}
2203 				goto wext_freq_not_found;
2204 			}
2205 
2206 		wext_freq_found:
2207 			creq->channels[i] = &wiphy->bands[band]->channels[j];
2208 			i++;
2209 		wext_freq_not_found: ;
2210 		}
2211 	}
2212 	/* No channels found? */
2213 	if (!i) {
2214 		err = -EINVAL;
2215 		goto out;
2216 	}
2217 
2218 	/* Set real number of channels specified in creq->channels[] */
2219 	creq->n_channels = i;
2220 
2221 	/* translate "Scan for SSID" request */
2222 	if (wreq) {
2223 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2224 			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2225 				err = -EINVAL;
2226 				goto out;
2227 			}
2228 			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2229 			creq->ssids[0].ssid_len = wreq->essid_len;
2230 		}
2231 		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2232 			creq->n_ssids = 0;
2233 	}
2234 
2235 	for (i = 0; i < NUM_NL80211_BANDS; i++)
2236 		if (wiphy->bands[i])
2237 			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2238 
2239 	eth_broadcast_addr(creq->bssid);
2240 
2241 	rdev->scan_req = creq;
2242 	err = rdev_scan(rdev, creq);
2243 	if (err) {
2244 		rdev->scan_req = NULL;
2245 		/* creq will be freed below */
2246 	} else {
2247 		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2248 		/* creq now owned by driver */
2249 		creq = NULL;
2250 		dev_hold(dev);
2251 	}
2252  out:
2253 	kfree(creq);
2254 	return err;
2255 }
2256 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2257 
2258 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2259 				    const struct cfg80211_bss_ies *ies,
2260 				    char *current_ev, char *end_buf)
2261 {
2262 	const u8 *pos, *end, *next;
2263 	struct iw_event iwe;
2264 
2265 	if (!ies)
2266 		return current_ev;
2267 
2268 	/*
2269 	 * If needed, fragment the IEs buffer (at IE boundaries) into short
2270 	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2271 	 */
2272 	pos = ies->data;
2273 	end = pos + ies->len;
2274 
2275 	while (end - pos > IW_GENERIC_IE_MAX) {
2276 		next = pos + 2 + pos[1];
2277 		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2278 			next = next + 2 + next[1];
2279 
2280 		memset(&iwe, 0, sizeof(iwe));
2281 		iwe.cmd = IWEVGENIE;
2282 		iwe.u.data.length = next - pos;
2283 		current_ev = iwe_stream_add_point_check(info, current_ev,
2284 							end_buf, &iwe,
2285 							(void *)pos);
2286 		if (IS_ERR(current_ev))
2287 			return current_ev;
2288 		pos = next;
2289 	}
2290 
2291 	if (end > pos) {
2292 		memset(&iwe, 0, sizeof(iwe));
2293 		iwe.cmd = IWEVGENIE;
2294 		iwe.u.data.length = end - pos;
2295 		current_ev = iwe_stream_add_point_check(info, current_ev,
2296 							end_buf, &iwe,
2297 							(void *)pos);
2298 		if (IS_ERR(current_ev))
2299 			return current_ev;
2300 	}
2301 
2302 	return current_ev;
2303 }
2304 
2305 static char *
2306 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2307 	      struct cfg80211_internal_bss *bss, char *current_ev,
2308 	      char *end_buf)
2309 {
2310 	const struct cfg80211_bss_ies *ies;
2311 	struct iw_event iwe;
2312 	const u8 *ie;
2313 	u8 buf[50];
2314 	u8 *cfg, *p, *tmp;
2315 	int rem, i, sig;
2316 	bool ismesh = false;
2317 
2318 	memset(&iwe, 0, sizeof(iwe));
2319 	iwe.cmd = SIOCGIWAP;
2320 	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2321 	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2322 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2323 						IW_EV_ADDR_LEN);
2324 	if (IS_ERR(current_ev))
2325 		return current_ev;
2326 
2327 	memset(&iwe, 0, sizeof(iwe));
2328 	iwe.cmd = SIOCGIWFREQ;
2329 	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2330 	iwe.u.freq.e = 0;
2331 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2332 						IW_EV_FREQ_LEN);
2333 	if (IS_ERR(current_ev))
2334 		return current_ev;
2335 
2336 	memset(&iwe, 0, sizeof(iwe));
2337 	iwe.cmd = SIOCGIWFREQ;
2338 	iwe.u.freq.m = bss->pub.channel->center_freq;
2339 	iwe.u.freq.e = 6;
2340 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2341 						IW_EV_FREQ_LEN);
2342 	if (IS_ERR(current_ev))
2343 		return current_ev;
2344 
2345 	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2346 		memset(&iwe, 0, sizeof(iwe));
2347 		iwe.cmd = IWEVQUAL;
2348 		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2349 				     IW_QUAL_NOISE_INVALID |
2350 				     IW_QUAL_QUAL_UPDATED;
2351 		switch (wiphy->signal_type) {
2352 		case CFG80211_SIGNAL_TYPE_MBM:
2353 			sig = bss->pub.signal / 100;
2354 			iwe.u.qual.level = sig;
2355 			iwe.u.qual.updated |= IW_QUAL_DBM;
2356 			if (sig < -110)		/* rather bad */
2357 				sig = -110;
2358 			else if (sig > -40)	/* perfect */
2359 				sig = -40;
2360 			/* will give a range of 0 .. 70 */
2361 			iwe.u.qual.qual = sig + 110;
2362 			break;
2363 		case CFG80211_SIGNAL_TYPE_UNSPEC:
2364 			iwe.u.qual.level = bss->pub.signal;
2365 			/* will give range 0 .. 100 */
2366 			iwe.u.qual.qual = bss->pub.signal;
2367 			break;
2368 		default:
2369 			/* not reached */
2370 			break;
2371 		}
2372 		current_ev = iwe_stream_add_event_check(info, current_ev,
2373 							end_buf, &iwe,
2374 							IW_EV_QUAL_LEN);
2375 		if (IS_ERR(current_ev))
2376 			return current_ev;
2377 	}
2378 
2379 	memset(&iwe, 0, sizeof(iwe));
2380 	iwe.cmd = SIOCGIWENCODE;
2381 	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2382 		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2383 	else
2384 		iwe.u.data.flags = IW_ENCODE_DISABLED;
2385 	iwe.u.data.length = 0;
2386 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2387 						&iwe, "");
2388 	if (IS_ERR(current_ev))
2389 		return current_ev;
2390 
2391 	rcu_read_lock();
2392 	ies = rcu_dereference(bss->pub.ies);
2393 	rem = ies->len;
2394 	ie = ies->data;
2395 
2396 	while (rem >= 2) {
2397 		/* invalid data */
2398 		if (ie[1] > rem - 2)
2399 			break;
2400 
2401 		switch (ie[0]) {
2402 		case WLAN_EID_SSID:
2403 			memset(&iwe, 0, sizeof(iwe));
2404 			iwe.cmd = SIOCGIWESSID;
2405 			iwe.u.data.length = ie[1];
2406 			iwe.u.data.flags = 1;
2407 			current_ev = iwe_stream_add_point_check(info,
2408 								current_ev,
2409 								end_buf, &iwe,
2410 								(u8 *)ie + 2);
2411 			if (IS_ERR(current_ev))
2412 				goto unlock;
2413 			break;
2414 		case WLAN_EID_MESH_ID:
2415 			memset(&iwe, 0, sizeof(iwe));
2416 			iwe.cmd = SIOCGIWESSID;
2417 			iwe.u.data.length = ie[1];
2418 			iwe.u.data.flags = 1;
2419 			current_ev = iwe_stream_add_point_check(info,
2420 								current_ev,
2421 								end_buf, &iwe,
2422 								(u8 *)ie + 2);
2423 			if (IS_ERR(current_ev))
2424 				goto unlock;
2425 			break;
2426 		case WLAN_EID_MESH_CONFIG:
2427 			ismesh = true;
2428 			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
2429 				break;
2430 			cfg = (u8 *)ie + 2;
2431 			memset(&iwe, 0, sizeof(iwe));
2432 			iwe.cmd = IWEVCUSTOM;
2433 			sprintf(buf, "Mesh Network Path Selection Protocol ID: "
2434 				"0x%02X", cfg[0]);
2435 			iwe.u.data.length = strlen(buf);
2436 			current_ev = iwe_stream_add_point_check(info,
2437 								current_ev,
2438 								end_buf,
2439 								&iwe, buf);
2440 			if (IS_ERR(current_ev))
2441 				goto unlock;
2442 			sprintf(buf, "Path Selection Metric ID: 0x%02X",
2443 				cfg[1]);
2444 			iwe.u.data.length = strlen(buf);
2445 			current_ev = iwe_stream_add_point_check(info,
2446 								current_ev,
2447 								end_buf,
2448 								&iwe, buf);
2449 			if (IS_ERR(current_ev))
2450 				goto unlock;
2451 			sprintf(buf, "Congestion Control Mode ID: 0x%02X",
2452 				cfg[2]);
2453 			iwe.u.data.length = strlen(buf);
2454 			current_ev = iwe_stream_add_point_check(info,
2455 								current_ev,
2456 								end_buf,
2457 								&iwe, buf);
2458 			if (IS_ERR(current_ev))
2459 				goto unlock;
2460 			sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
2461 			iwe.u.data.length = strlen(buf);
2462 			current_ev = iwe_stream_add_point_check(info,
2463 								current_ev,
2464 								end_buf,
2465 								&iwe, buf);
2466 			if (IS_ERR(current_ev))
2467 				goto unlock;
2468 			sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
2469 			iwe.u.data.length = strlen(buf);
2470 			current_ev = iwe_stream_add_point_check(info,
2471 								current_ev,
2472 								end_buf,
2473 								&iwe, buf);
2474 			if (IS_ERR(current_ev))
2475 				goto unlock;
2476 			sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
2477 			iwe.u.data.length = strlen(buf);
2478 			current_ev = iwe_stream_add_point_check(info,
2479 								current_ev,
2480 								end_buf,
2481 								&iwe, buf);
2482 			if (IS_ERR(current_ev))
2483 				goto unlock;
2484 			sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
2485 			iwe.u.data.length = strlen(buf);
2486 			current_ev = iwe_stream_add_point_check(info,
2487 								current_ev,
2488 								end_buf,
2489 								&iwe, buf);
2490 			if (IS_ERR(current_ev))
2491 				goto unlock;
2492 			break;
2493 		case WLAN_EID_SUPP_RATES:
2494 		case WLAN_EID_EXT_SUPP_RATES:
2495 			/* display all supported rates in readable format */
2496 			p = current_ev + iwe_stream_lcp_len(info);
2497 
2498 			memset(&iwe, 0, sizeof(iwe));
2499 			iwe.cmd = SIOCGIWRATE;
2500 			/* Those two flags are ignored... */
2501 			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
2502 
2503 			for (i = 0; i < ie[1]; i++) {
2504 				iwe.u.bitrate.value =
2505 					((ie[i + 2] & 0x7f) * 500000);
2506 				tmp = p;
2507 				p = iwe_stream_add_value(info, current_ev, p,
2508 							 end_buf, &iwe,
2509 							 IW_EV_PARAM_LEN);
2510 				if (p == tmp) {
2511 					current_ev = ERR_PTR(-E2BIG);
2512 					goto unlock;
2513 				}
2514 			}
2515 			current_ev = p;
2516 			break;
2517 		}
2518 		rem -= ie[1] + 2;
2519 		ie += ie[1] + 2;
2520 	}
2521 
2522 	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
2523 	    ismesh) {
2524 		memset(&iwe, 0, sizeof(iwe));
2525 		iwe.cmd = SIOCGIWMODE;
2526 		if (ismesh)
2527 			iwe.u.mode = IW_MODE_MESH;
2528 		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
2529 			iwe.u.mode = IW_MODE_MASTER;
2530 		else
2531 			iwe.u.mode = IW_MODE_ADHOC;
2532 		current_ev = iwe_stream_add_event_check(info, current_ev,
2533 							end_buf, &iwe,
2534 							IW_EV_UINT_LEN);
2535 		if (IS_ERR(current_ev))
2536 			goto unlock;
2537 	}
2538 
2539 	memset(&iwe, 0, sizeof(iwe));
2540 	iwe.cmd = IWEVCUSTOM;
2541 	sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
2542 	iwe.u.data.length = strlen(buf);
2543 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2544 						&iwe, buf);
2545 	if (IS_ERR(current_ev))
2546 		goto unlock;
2547 	memset(&iwe, 0, sizeof(iwe));
2548 	iwe.cmd = IWEVCUSTOM;
2549 	sprintf(buf, " Last beacon: %ums ago",
2550 		elapsed_jiffies_msecs(bss->ts));
2551 	iwe.u.data.length = strlen(buf);
2552 	current_ev = iwe_stream_add_point_check(info, current_ev,
2553 						end_buf, &iwe, buf);
2554 	if (IS_ERR(current_ev))
2555 		goto unlock;
2556 
2557 	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
2558 
2559  unlock:
2560 	rcu_read_unlock();
2561 	return current_ev;
2562 }
2563 
2564 
2565 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
2566 				  struct iw_request_info *info,
2567 				  char *buf, size_t len)
2568 {
2569 	char *current_ev = buf;
2570 	char *end_buf = buf + len;
2571 	struct cfg80211_internal_bss *bss;
2572 	int err = 0;
2573 
2574 	spin_lock_bh(&rdev->bss_lock);
2575 	cfg80211_bss_expire(rdev);
2576 
2577 	list_for_each_entry(bss, &rdev->bss_list, list) {
2578 		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
2579 			err = -E2BIG;
2580 			break;
2581 		}
2582 		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
2583 					   current_ev, end_buf);
2584 		if (IS_ERR(current_ev)) {
2585 			err = PTR_ERR(current_ev);
2586 			break;
2587 		}
2588 	}
2589 	spin_unlock_bh(&rdev->bss_lock);
2590 
2591 	if (err)
2592 		return err;
2593 	return current_ev - buf;
2594 }
2595 
2596 
2597 int cfg80211_wext_giwscan(struct net_device *dev,
2598 			  struct iw_request_info *info,
2599 			  struct iw_point *data, char *extra)
2600 {
2601 	struct cfg80211_registered_device *rdev;
2602 	int res;
2603 
2604 	if (!netif_running(dev))
2605 		return -ENETDOWN;
2606 
2607 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2608 
2609 	if (IS_ERR(rdev))
2610 		return PTR_ERR(rdev);
2611 
2612 	if (rdev->scan_req || rdev->scan_msg)
2613 		return -EAGAIN;
2614 
2615 	res = ieee80211_scan_results(rdev, info, extra, data->length);
2616 	data->length = 0;
2617 	if (res >= 0) {
2618 		data->length = res;
2619 		res = 0;
2620 	}
2621 
2622 	return res;
2623 }
2624 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
2625 #endif
2626