1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * cfg80211 scan result handling 4 * 5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2016 Intel Deutschland GmbH 8 * Copyright (C) 2018-2019 Intel Corporation 9 */ 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/netdevice.h> 14 #include <linux/wireless.h> 15 #include <linux/nl80211.h> 16 #include <linux/etherdevice.h> 17 #include <net/arp.h> 18 #include <net/cfg80211.h> 19 #include <net/cfg80211-wext.h> 20 #include <net/iw_handler.h> 21 #include "core.h" 22 #include "nl80211.h" 23 #include "wext-compat.h" 24 #include "rdev-ops.h" 25 26 /** 27 * DOC: BSS tree/list structure 28 * 29 * At the top level, the BSS list is kept in both a list in each 30 * registered device (@bss_list) as well as an RB-tree for faster 31 * lookup. In the RB-tree, entries can be looked up using their 32 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID 33 * for other BSSes. 34 * 35 * Due to the possibility of hidden SSIDs, there's a second level 36 * structure, the "hidden_list" and "hidden_beacon_bss" pointer. 37 * The hidden_list connects all BSSes belonging to a single AP 38 * that has a hidden SSID, and connects beacon and probe response 39 * entries. For a probe response entry for a hidden SSID, the 40 * hidden_beacon_bss pointer points to the BSS struct holding the 41 * beacon's information. 42 * 43 * Reference counting is done for all these references except for 44 * the hidden_list, so that a beacon BSS struct that is otherwise 45 * not referenced has one reference for being on the bss_list and 46 * one for each probe response entry that points to it using the 47 * hidden_beacon_bss pointer. When a BSS struct that has such a 48 * pointer is get/put, the refcount update is also propagated to 49 * the referenced struct, this ensure that it cannot get removed 50 * while somebody is using the probe response version. 51 * 52 * Note that the hidden_beacon_bss pointer never changes, due to 53 * the reference counting. Therefore, no locking is needed for 54 * it. 55 * 56 * Also note that the hidden_beacon_bss pointer is only relevant 57 * if the driver uses something other than the IEs, e.g. private 58 * data stored stored in the BSS struct, since the beacon IEs are 59 * also linked into the probe response struct. 60 */ 61 62 /* 63 * Limit the number of BSS entries stored in mac80211. Each one is 64 * a bit over 4k at most, so this limits to roughly 4-5M of memory. 65 * If somebody wants to really attack this though, they'd likely 66 * use small beacons, and only one type of frame, limiting each of 67 * the entries to a much smaller size (in order to generate more 68 * entries in total, so overhead is bigger.) 69 */ 70 static int bss_entries_limit = 1000; 71 module_param(bss_entries_limit, int, 0644); 72 MODULE_PARM_DESC(bss_entries_limit, 73 "limit to number of scan BSS entries (per wiphy, default 1000)"); 74 75 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ) 76 77 static void bss_free(struct cfg80211_internal_bss *bss) 78 { 79 struct cfg80211_bss_ies *ies; 80 81 if (WARN_ON(atomic_read(&bss->hold))) 82 return; 83 84 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies); 85 if (ies && !bss->pub.hidden_beacon_bss) 86 kfree_rcu(ies, rcu_head); 87 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies); 88 if (ies) 89 kfree_rcu(ies, rcu_head); 90 91 /* 92 * This happens when the module is removed, it doesn't 93 * really matter any more save for completeness 94 */ 95 if (!list_empty(&bss->hidden_list)) 96 list_del(&bss->hidden_list); 97 98 kfree(bss); 99 } 100 101 static inline void bss_ref_get(struct cfg80211_registered_device *rdev, 102 struct cfg80211_internal_bss *bss) 103 { 104 lockdep_assert_held(&rdev->bss_lock); 105 106 bss->refcount++; 107 if (bss->pub.hidden_beacon_bss) { 108 bss = container_of(bss->pub.hidden_beacon_bss, 109 struct cfg80211_internal_bss, 110 pub); 111 bss->refcount++; 112 } 113 if (bss->pub.transmitted_bss) { 114 bss = container_of(bss->pub.transmitted_bss, 115 struct cfg80211_internal_bss, 116 pub); 117 bss->refcount++; 118 } 119 } 120 121 static inline void bss_ref_put(struct cfg80211_registered_device *rdev, 122 struct cfg80211_internal_bss *bss) 123 { 124 lockdep_assert_held(&rdev->bss_lock); 125 126 if (bss->pub.hidden_beacon_bss) { 127 struct cfg80211_internal_bss *hbss; 128 hbss = container_of(bss->pub.hidden_beacon_bss, 129 struct cfg80211_internal_bss, 130 pub); 131 hbss->refcount--; 132 if (hbss->refcount == 0) 133 bss_free(hbss); 134 } 135 136 if (bss->pub.transmitted_bss) { 137 struct cfg80211_internal_bss *tbss; 138 139 tbss = container_of(bss->pub.transmitted_bss, 140 struct cfg80211_internal_bss, 141 pub); 142 tbss->refcount--; 143 if (tbss->refcount == 0) 144 bss_free(tbss); 145 } 146 147 bss->refcount--; 148 if (bss->refcount == 0) 149 bss_free(bss); 150 } 151 152 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev, 153 struct cfg80211_internal_bss *bss) 154 { 155 lockdep_assert_held(&rdev->bss_lock); 156 157 if (!list_empty(&bss->hidden_list)) { 158 /* 159 * don't remove the beacon entry if it has 160 * probe responses associated with it 161 */ 162 if (!bss->pub.hidden_beacon_bss) 163 return false; 164 /* 165 * if it's a probe response entry break its 166 * link to the other entries in the group 167 */ 168 list_del_init(&bss->hidden_list); 169 } 170 171 list_del_init(&bss->list); 172 list_del_init(&bss->pub.nontrans_list); 173 rb_erase(&bss->rbn, &rdev->bss_tree); 174 rdev->bss_entries--; 175 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list), 176 "rdev bss entries[%d]/list[empty:%d] corruption\n", 177 rdev->bss_entries, list_empty(&rdev->bss_list)); 178 bss_ref_put(rdev, bss); 179 return true; 180 } 181 182 bool cfg80211_is_element_inherited(const struct element *elem, 183 const struct element *non_inherit_elem) 184 { 185 u8 id_len, ext_id_len, i, loop_len, id; 186 const u8 *list; 187 188 if (elem->id == WLAN_EID_MULTIPLE_BSSID) 189 return false; 190 191 if (!non_inherit_elem || non_inherit_elem->datalen < 2) 192 return true; 193 194 /* 195 * non inheritance element format is: 196 * ext ID (56) | IDs list len | list | extension IDs list len | list 197 * Both lists are optional. Both lengths are mandatory. 198 * This means valid length is: 199 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths 200 */ 201 id_len = non_inherit_elem->data[1]; 202 if (non_inherit_elem->datalen < 3 + id_len) 203 return true; 204 205 ext_id_len = non_inherit_elem->data[2 + id_len]; 206 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len) 207 return true; 208 209 if (elem->id == WLAN_EID_EXTENSION) { 210 if (!ext_id_len) 211 return true; 212 loop_len = ext_id_len; 213 list = &non_inherit_elem->data[3 + id_len]; 214 id = elem->data[0]; 215 } else { 216 if (!id_len) 217 return true; 218 loop_len = id_len; 219 list = &non_inherit_elem->data[2]; 220 id = elem->id; 221 } 222 223 for (i = 0; i < loop_len; i++) { 224 if (list[i] == id) 225 return false; 226 } 227 228 return true; 229 } 230 EXPORT_SYMBOL(cfg80211_is_element_inherited); 231 232 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen, 233 const u8 *subelement, size_t subie_len, 234 u8 *new_ie, gfp_t gfp) 235 { 236 u8 *pos, *tmp; 237 const u8 *tmp_old, *tmp_new; 238 const struct element *non_inherit_elem; 239 u8 *sub_copy; 240 241 /* copy subelement as we need to change its content to 242 * mark an ie after it is processed. 243 */ 244 sub_copy = kmemdup(subelement, subie_len, gfp); 245 if (!sub_copy) 246 return 0; 247 248 pos = &new_ie[0]; 249 250 /* set new ssid */ 251 tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len); 252 if (tmp_new) { 253 memcpy(pos, tmp_new, tmp_new[1] + 2); 254 pos += (tmp_new[1] + 2); 255 } 256 257 /* get non inheritance list if exists */ 258 non_inherit_elem = 259 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 260 sub_copy, subie_len); 261 262 /* go through IEs in ie (skip SSID) and subelement, 263 * merge them into new_ie 264 */ 265 tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen); 266 tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie; 267 268 while (tmp_old + tmp_old[1] + 2 - ie <= ielen) { 269 if (tmp_old[0] == 0) { 270 tmp_old++; 271 continue; 272 } 273 274 if (tmp_old[0] == WLAN_EID_EXTENSION) 275 tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy, 276 subie_len); 277 else 278 tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy, 279 subie_len); 280 281 if (!tmp) { 282 const struct element *old_elem = (void *)tmp_old; 283 284 /* ie in old ie but not in subelement */ 285 if (cfg80211_is_element_inherited(old_elem, 286 non_inherit_elem)) { 287 memcpy(pos, tmp_old, tmp_old[1] + 2); 288 pos += tmp_old[1] + 2; 289 } 290 } else { 291 /* ie in transmitting ie also in subelement, 292 * copy from subelement and flag the ie in subelement 293 * as copied (by setting eid field to WLAN_EID_SSID, 294 * which is skipped anyway). 295 * For vendor ie, compare OUI + type + subType to 296 * determine if they are the same ie. 297 */ 298 if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) { 299 if (!memcmp(tmp_old + 2, tmp + 2, 5)) { 300 /* same vendor ie, copy from 301 * subelement 302 */ 303 memcpy(pos, tmp, tmp[1] + 2); 304 pos += tmp[1] + 2; 305 tmp[0] = WLAN_EID_SSID; 306 } else { 307 memcpy(pos, tmp_old, tmp_old[1] + 2); 308 pos += tmp_old[1] + 2; 309 } 310 } else { 311 /* copy ie from subelement into new ie */ 312 memcpy(pos, tmp, tmp[1] + 2); 313 pos += tmp[1] + 2; 314 tmp[0] = WLAN_EID_SSID; 315 } 316 } 317 318 if (tmp_old + tmp_old[1] + 2 - ie == ielen) 319 break; 320 321 tmp_old += tmp_old[1] + 2; 322 } 323 324 /* go through subelement again to check if there is any ie not 325 * copied to new ie, skip ssid, capability, bssid-index ie 326 */ 327 tmp_new = sub_copy; 328 while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) { 329 if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP || 330 tmp_new[0] == WLAN_EID_SSID)) { 331 memcpy(pos, tmp_new, tmp_new[1] + 2); 332 pos += tmp_new[1] + 2; 333 } 334 if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len) 335 break; 336 tmp_new += tmp_new[1] + 2; 337 } 338 339 kfree(sub_copy); 340 return pos - new_ie; 341 } 342 343 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid, 344 const u8 *ssid, size_t ssid_len) 345 { 346 const struct cfg80211_bss_ies *ies; 347 const u8 *ssidie; 348 349 if (bssid && !ether_addr_equal(a->bssid, bssid)) 350 return false; 351 352 if (!ssid) 353 return true; 354 355 ies = rcu_access_pointer(a->ies); 356 if (!ies) 357 return false; 358 ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 359 if (!ssidie) 360 return false; 361 if (ssidie[1] != ssid_len) 362 return false; 363 return memcmp(ssidie + 2, ssid, ssid_len) == 0; 364 } 365 366 static int 367 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss, 368 struct cfg80211_bss *nontrans_bss) 369 { 370 const u8 *ssid; 371 size_t ssid_len; 372 struct cfg80211_bss *bss = NULL; 373 374 rcu_read_lock(); 375 ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID); 376 if (!ssid) { 377 rcu_read_unlock(); 378 return -EINVAL; 379 } 380 ssid_len = ssid[1]; 381 ssid = ssid + 2; 382 rcu_read_unlock(); 383 384 /* check if nontrans_bss is in the list */ 385 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) { 386 if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len)) 387 return 0; 388 } 389 390 /* add to the list */ 391 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list); 392 return 0; 393 } 394 395 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev, 396 unsigned long expire_time) 397 { 398 struct cfg80211_internal_bss *bss, *tmp; 399 bool expired = false; 400 401 lockdep_assert_held(&rdev->bss_lock); 402 403 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) { 404 if (atomic_read(&bss->hold)) 405 continue; 406 if (!time_after(expire_time, bss->ts)) 407 continue; 408 409 if (__cfg80211_unlink_bss(rdev, bss)) 410 expired = true; 411 } 412 413 if (expired) 414 rdev->bss_generation++; 415 } 416 417 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev) 418 { 419 struct cfg80211_internal_bss *bss, *oldest = NULL; 420 bool ret; 421 422 lockdep_assert_held(&rdev->bss_lock); 423 424 list_for_each_entry(bss, &rdev->bss_list, list) { 425 if (atomic_read(&bss->hold)) 426 continue; 427 428 if (!list_empty(&bss->hidden_list) && 429 !bss->pub.hidden_beacon_bss) 430 continue; 431 432 if (oldest && time_before(oldest->ts, bss->ts)) 433 continue; 434 oldest = bss; 435 } 436 437 if (WARN_ON(!oldest)) 438 return false; 439 440 /* 441 * The callers make sure to increase rdev->bss_generation if anything 442 * gets removed (and a new entry added), so there's no need to also do 443 * it here. 444 */ 445 446 ret = __cfg80211_unlink_bss(rdev, oldest); 447 WARN_ON(!ret); 448 return ret; 449 } 450 451 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, 452 bool send_message) 453 { 454 struct cfg80211_scan_request *request; 455 struct wireless_dev *wdev; 456 struct sk_buff *msg; 457 #ifdef CONFIG_CFG80211_WEXT 458 union iwreq_data wrqu; 459 #endif 460 461 ASSERT_RTNL(); 462 463 if (rdev->scan_msg) { 464 nl80211_send_scan_msg(rdev, rdev->scan_msg); 465 rdev->scan_msg = NULL; 466 return; 467 } 468 469 request = rdev->scan_req; 470 if (!request) 471 return; 472 473 wdev = request->wdev; 474 475 /* 476 * This must be before sending the other events! 477 * Otherwise, wpa_supplicant gets completely confused with 478 * wext events. 479 */ 480 if (wdev->netdev) 481 cfg80211_sme_scan_done(wdev->netdev); 482 483 if (!request->info.aborted && 484 request->flags & NL80211_SCAN_FLAG_FLUSH) { 485 /* flush entries from previous scans */ 486 spin_lock_bh(&rdev->bss_lock); 487 __cfg80211_bss_expire(rdev, request->scan_start); 488 spin_unlock_bh(&rdev->bss_lock); 489 } 490 491 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted); 492 493 #ifdef CONFIG_CFG80211_WEXT 494 if (wdev->netdev && !request->info.aborted) { 495 memset(&wrqu, 0, sizeof(wrqu)); 496 497 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL); 498 } 499 #endif 500 501 if (wdev->netdev) 502 dev_put(wdev->netdev); 503 504 rdev->scan_req = NULL; 505 kfree(request); 506 507 if (!send_message) 508 rdev->scan_msg = msg; 509 else 510 nl80211_send_scan_msg(rdev, msg); 511 } 512 513 void __cfg80211_scan_done(struct work_struct *wk) 514 { 515 struct cfg80211_registered_device *rdev; 516 517 rdev = container_of(wk, struct cfg80211_registered_device, 518 scan_done_wk); 519 520 rtnl_lock(); 521 ___cfg80211_scan_done(rdev, true); 522 rtnl_unlock(); 523 } 524 525 void cfg80211_scan_done(struct cfg80211_scan_request *request, 526 struct cfg80211_scan_info *info) 527 { 528 trace_cfg80211_scan_done(request, info); 529 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req); 530 531 request->info = *info; 532 request->notified = true; 533 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk); 534 } 535 EXPORT_SYMBOL(cfg80211_scan_done); 536 537 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, 538 struct cfg80211_sched_scan_request *req) 539 { 540 ASSERT_RTNL(); 541 542 list_add_rcu(&req->list, &rdev->sched_scan_req_list); 543 } 544 545 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev, 546 struct cfg80211_sched_scan_request *req) 547 { 548 ASSERT_RTNL(); 549 550 list_del_rcu(&req->list); 551 kfree_rcu(req, rcu_head); 552 } 553 554 static struct cfg80211_sched_scan_request * 555 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid) 556 { 557 struct cfg80211_sched_scan_request *pos; 558 559 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list, 560 lockdep_rtnl_is_held()) { 561 if (pos->reqid == reqid) 562 return pos; 563 } 564 return NULL; 565 } 566 567 /* 568 * Determines if a scheduled scan request can be handled. When a legacy 569 * scheduled scan is running no other scheduled scan is allowed regardless 570 * whether the request is for legacy or multi-support scan. When a multi-support 571 * scheduled scan is running a request for legacy scan is not allowed. In this 572 * case a request for multi-support scan can be handled if resources are 573 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached. 574 */ 575 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, 576 bool want_multi) 577 { 578 struct cfg80211_sched_scan_request *pos; 579 int i = 0; 580 581 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) { 582 /* request id zero means legacy in progress */ 583 if (!i && !pos->reqid) 584 return -EINPROGRESS; 585 i++; 586 } 587 588 if (i) { 589 /* no legacy allowed when multi request(s) are active */ 590 if (!want_multi) 591 return -EINPROGRESS; 592 593 /* resource limit reached */ 594 if (i == rdev->wiphy.max_sched_scan_reqs) 595 return -ENOSPC; 596 } 597 return 0; 598 } 599 600 void cfg80211_sched_scan_results_wk(struct work_struct *work) 601 { 602 struct cfg80211_registered_device *rdev; 603 struct cfg80211_sched_scan_request *req, *tmp; 604 605 rdev = container_of(work, struct cfg80211_registered_device, 606 sched_scan_res_wk); 607 608 rtnl_lock(); 609 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) { 610 if (req->report_results) { 611 req->report_results = false; 612 if (req->flags & NL80211_SCAN_FLAG_FLUSH) { 613 /* flush entries from previous scans */ 614 spin_lock_bh(&rdev->bss_lock); 615 __cfg80211_bss_expire(rdev, req->scan_start); 616 spin_unlock_bh(&rdev->bss_lock); 617 req->scan_start = jiffies; 618 } 619 nl80211_send_sched_scan(req, 620 NL80211_CMD_SCHED_SCAN_RESULTS); 621 } 622 } 623 rtnl_unlock(); 624 } 625 626 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid) 627 { 628 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 629 struct cfg80211_sched_scan_request *request; 630 631 trace_cfg80211_sched_scan_results(wiphy, reqid); 632 /* ignore if we're not scanning */ 633 634 rcu_read_lock(); 635 request = cfg80211_find_sched_scan_req(rdev, reqid); 636 if (request) { 637 request->report_results = true; 638 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk); 639 } 640 rcu_read_unlock(); 641 } 642 EXPORT_SYMBOL(cfg80211_sched_scan_results); 643 644 void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy, u64 reqid) 645 { 646 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 647 648 ASSERT_RTNL(); 649 650 trace_cfg80211_sched_scan_stopped(wiphy, reqid); 651 652 __cfg80211_stop_sched_scan(rdev, reqid, true); 653 } 654 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_rtnl); 655 656 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid) 657 { 658 rtnl_lock(); 659 cfg80211_sched_scan_stopped_rtnl(wiphy, reqid); 660 rtnl_unlock(); 661 } 662 EXPORT_SYMBOL(cfg80211_sched_scan_stopped); 663 664 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, 665 struct cfg80211_sched_scan_request *req, 666 bool driver_initiated) 667 { 668 ASSERT_RTNL(); 669 670 if (!driver_initiated) { 671 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid); 672 if (err) 673 return err; 674 } 675 676 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED); 677 678 cfg80211_del_sched_scan_req(rdev, req); 679 680 return 0; 681 } 682 683 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, 684 u64 reqid, bool driver_initiated) 685 { 686 struct cfg80211_sched_scan_request *sched_scan_req; 687 688 ASSERT_RTNL(); 689 690 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid); 691 if (!sched_scan_req) 692 return -ENOENT; 693 694 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req, 695 driver_initiated); 696 } 697 698 void cfg80211_bss_age(struct cfg80211_registered_device *rdev, 699 unsigned long age_secs) 700 { 701 struct cfg80211_internal_bss *bss; 702 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC); 703 704 spin_lock_bh(&rdev->bss_lock); 705 list_for_each_entry(bss, &rdev->bss_list, list) 706 bss->ts -= age_jiffies; 707 spin_unlock_bh(&rdev->bss_lock); 708 } 709 710 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev) 711 { 712 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE); 713 } 714 715 void cfg80211_bss_flush(struct wiphy *wiphy) 716 { 717 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 718 719 spin_lock_bh(&rdev->bss_lock); 720 __cfg80211_bss_expire(rdev, jiffies); 721 spin_unlock_bh(&rdev->bss_lock); 722 } 723 EXPORT_SYMBOL(cfg80211_bss_flush); 724 725 const struct element * 726 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len, 727 const u8 *match, unsigned int match_len, 728 unsigned int match_offset) 729 { 730 const struct element *elem; 731 732 for_each_element_id(elem, eid, ies, len) { 733 if (elem->datalen >= match_offset + match_len && 734 !memcmp(elem->data + match_offset, match, match_len)) 735 return elem; 736 } 737 738 return NULL; 739 } 740 EXPORT_SYMBOL(cfg80211_find_elem_match); 741 742 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type, 743 const u8 *ies, 744 unsigned int len) 745 { 746 const struct element *elem; 747 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type }; 748 int match_len = (oui_type < 0) ? 3 : sizeof(match); 749 750 if (WARN_ON(oui_type > 0xff)) 751 return NULL; 752 753 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len, 754 match, match_len, 0); 755 756 if (!elem || elem->datalen < 4) 757 return NULL; 758 759 return elem; 760 } 761 EXPORT_SYMBOL(cfg80211_find_vendor_elem); 762 763 /** 764 * enum bss_compare_mode - BSS compare mode 765 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find) 766 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode 767 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode 768 */ 769 enum bss_compare_mode { 770 BSS_CMP_REGULAR, 771 BSS_CMP_HIDE_ZLEN, 772 BSS_CMP_HIDE_NUL, 773 }; 774 775 static int cmp_bss(struct cfg80211_bss *a, 776 struct cfg80211_bss *b, 777 enum bss_compare_mode mode) 778 { 779 const struct cfg80211_bss_ies *a_ies, *b_ies; 780 const u8 *ie1 = NULL; 781 const u8 *ie2 = NULL; 782 int i, r; 783 784 if (a->channel != b->channel) 785 return b->channel->center_freq - a->channel->center_freq; 786 787 a_ies = rcu_access_pointer(a->ies); 788 if (!a_ies) 789 return -1; 790 b_ies = rcu_access_pointer(b->ies); 791 if (!b_ies) 792 return 1; 793 794 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability)) 795 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID, 796 a_ies->data, a_ies->len); 797 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability)) 798 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID, 799 b_ies->data, b_ies->len); 800 if (ie1 && ie2) { 801 int mesh_id_cmp; 802 803 if (ie1[1] == ie2[1]) 804 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]); 805 else 806 mesh_id_cmp = ie2[1] - ie1[1]; 807 808 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 809 a_ies->data, a_ies->len); 810 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 811 b_ies->data, b_ies->len); 812 if (ie1 && ie2) { 813 if (mesh_id_cmp) 814 return mesh_id_cmp; 815 if (ie1[1] != ie2[1]) 816 return ie2[1] - ie1[1]; 817 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 818 } 819 } 820 821 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid)); 822 if (r) 823 return r; 824 825 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len); 826 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len); 827 828 if (!ie1 && !ie2) 829 return 0; 830 831 /* 832 * Note that with "hide_ssid", the function returns a match if 833 * the already-present BSS ("b") is a hidden SSID beacon for 834 * the new BSS ("a"). 835 */ 836 837 /* sort missing IE before (left of) present IE */ 838 if (!ie1) 839 return -1; 840 if (!ie2) 841 return 1; 842 843 switch (mode) { 844 case BSS_CMP_HIDE_ZLEN: 845 /* 846 * In ZLEN mode we assume the BSS entry we're 847 * looking for has a zero-length SSID. So if 848 * the one we're looking at right now has that, 849 * return 0. Otherwise, return the difference 850 * in length, but since we're looking for the 851 * 0-length it's really equivalent to returning 852 * the length of the one we're looking at. 853 * 854 * No content comparison is needed as we assume 855 * the content length is zero. 856 */ 857 return ie2[1]; 858 case BSS_CMP_REGULAR: 859 default: 860 /* sort by length first, then by contents */ 861 if (ie1[1] != ie2[1]) 862 return ie2[1] - ie1[1]; 863 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 864 case BSS_CMP_HIDE_NUL: 865 if (ie1[1] != ie2[1]) 866 return ie2[1] - ie1[1]; 867 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */ 868 for (i = 0; i < ie2[1]; i++) 869 if (ie2[i + 2]) 870 return -1; 871 return 0; 872 } 873 } 874 875 static bool cfg80211_bss_type_match(u16 capability, 876 enum nl80211_band band, 877 enum ieee80211_bss_type bss_type) 878 { 879 bool ret = true; 880 u16 mask, val; 881 882 if (bss_type == IEEE80211_BSS_TYPE_ANY) 883 return ret; 884 885 if (band == NL80211_BAND_60GHZ) { 886 mask = WLAN_CAPABILITY_DMG_TYPE_MASK; 887 switch (bss_type) { 888 case IEEE80211_BSS_TYPE_ESS: 889 val = WLAN_CAPABILITY_DMG_TYPE_AP; 890 break; 891 case IEEE80211_BSS_TYPE_PBSS: 892 val = WLAN_CAPABILITY_DMG_TYPE_PBSS; 893 break; 894 case IEEE80211_BSS_TYPE_IBSS: 895 val = WLAN_CAPABILITY_DMG_TYPE_IBSS; 896 break; 897 default: 898 return false; 899 } 900 } else { 901 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS; 902 switch (bss_type) { 903 case IEEE80211_BSS_TYPE_ESS: 904 val = WLAN_CAPABILITY_ESS; 905 break; 906 case IEEE80211_BSS_TYPE_IBSS: 907 val = WLAN_CAPABILITY_IBSS; 908 break; 909 case IEEE80211_BSS_TYPE_MBSS: 910 val = 0; 911 break; 912 default: 913 return false; 914 } 915 } 916 917 ret = ((capability & mask) == val); 918 return ret; 919 } 920 921 /* Returned bss is reference counted and must be cleaned up appropriately. */ 922 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy, 923 struct ieee80211_channel *channel, 924 const u8 *bssid, 925 const u8 *ssid, size_t ssid_len, 926 enum ieee80211_bss_type bss_type, 927 enum ieee80211_privacy privacy) 928 { 929 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 930 struct cfg80211_internal_bss *bss, *res = NULL; 931 unsigned long now = jiffies; 932 int bss_privacy; 933 934 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type, 935 privacy); 936 937 spin_lock_bh(&rdev->bss_lock); 938 939 list_for_each_entry(bss, &rdev->bss_list, list) { 940 if (!cfg80211_bss_type_match(bss->pub.capability, 941 bss->pub.channel->band, bss_type)) 942 continue; 943 944 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY); 945 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) || 946 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy)) 947 continue; 948 if (channel && bss->pub.channel != channel) 949 continue; 950 if (!is_valid_ether_addr(bss->pub.bssid)) 951 continue; 952 /* Don't get expired BSS structs */ 953 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) && 954 !atomic_read(&bss->hold)) 955 continue; 956 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) { 957 res = bss; 958 bss_ref_get(rdev, res); 959 break; 960 } 961 } 962 963 spin_unlock_bh(&rdev->bss_lock); 964 if (!res) 965 return NULL; 966 trace_cfg80211_return_bss(&res->pub); 967 return &res->pub; 968 } 969 EXPORT_SYMBOL(cfg80211_get_bss); 970 971 static void rb_insert_bss(struct cfg80211_registered_device *rdev, 972 struct cfg80211_internal_bss *bss) 973 { 974 struct rb_node **p = &rdev->bss_tree.rb_node; 975 struct rb_node *parent = NULL; 976 struct cfg80211_internal_bss *tbss; 977 int cmp; 978 979 while (*p) { 980 parent = *p; 981 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn); 982 983 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR); 984 985 if (WARN_ON(!cmp)) { 986 /* will sort of leak this BSS */ 987 return; 988 } 989 990 if (cmp < 0) 991 p = &(*p)->rb_left; 992 else 993 p = &(*p)->rb_right; 994 } 995 996 rb_link_node(&bss->rbn, parent, p); 997 rb_insert_color(&bss->rbn, &rdev->bss_tree); 998 } 999 1000 static struct cfg80211_internal_bss * 1001 rb_find_bss(struct cfg80211_registered_device *rdev, 1002 struct cfg80211_internal_bss *res, 1003 enum bss_compare_mode mode) 1004 { 1005 struct rb_node *n = rdev->bss_tree.rb_node; 1006 struct cfg80211_internal_bss *bss; 1007 int r; 1008 1009 while (n) { 1010 bss = rb_entry(n, struct cfg80211_internal_bss, rbn); 1011 r = cmp_bss(&res->pub, &bss->pub, mode); 1012 1013 if (r == 0) 1014 return bss; 1015 else if (r < 0) 1016 n = n->rb_left; 1017 else 1018 n = n->rb_right; 1019 } 1020 1021 return NULL; 1022 } 1023 1024 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev, 1025 struct cfg80211_internal_bss *new) 1026 { 1027 const struct cfg80211_bss_ies *ies; 1028 struct cfg80211_internal_bss *bss; 1029 const u8 *ie; 1030 int i, ssidlen; 1031 u8 fold = 0; 1032 u32 n_entries = 0; 1033 1034 ies = rcu_access_pointer(new->pub.beacon_ies); 1035 if (WARN_ON(!ies)) 1036 return false; 1037 1038 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1039 if (!ie) { 1040 /* nothing to do */ 1041 return true; 1042 } 1043 1044 ssidlen = ie[1]; 1045 for (i = 0; i < ssidlen; i++) 1046 fold |= ie[2 + i]; 1047 1048 if (fold) { 1049 /* not a hidden SSID */ 1050 return true; 1051 } 1052 1053 /* This is the bad part ... */ 1054 1055 list_for_each_entry(bss, &rdev->bss_list, list) { 1056 /* 1057 * we're iterating all the entries anyway, so take the 1058 * opportunity to validate the list length accounting 1059 */ 1060 n_entries++; 1061 1062 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid)) 1063 continue; 1064 if (bss->pub.channel != new->pub.channel) 1065 continue; 1066 if (bss->pub.scan_width != new->pub.scan_width) 1067 continue; 1068 if (rcu_access_pointer(bss->pub.beacon_ies)) 1069 continue; 1070 ies = rcu_access_pointer(bss->pub.ies); 1071 if (!ies) 1072 continue; 1073 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1074 if (!ie) 1075 continue; 1076 if (ssidlen && ie[1] != ssidlen) 1077 continue; 1078 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss)) 1079 continue; 1080 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list))) 1081 list_del(&bss->hidden_list); 1082 /* combine them */ 1083 list_add(&bss->hidden_list, &new->hidden_list); 1084 bss->pub.hidden_beacon_bss = &new->pub; 1085 new->refcount += bss->refcount; 1086 rcu_assign_pointer(bss->pub.beacon_ies, 1087 new->pub.beacon_ies); 1088 } 1089 1090 WARN_ONCE(n_entries != rdev->bss_entries, 1091 "rdev bss entries[%d]/list[len:%d] corruption\n", 1092 rdev->bss_entries, n_entries); 1093 1094 return true; 1095 } 1096 1097 struct cfg80211_non_tx_bss { 1098 struct cfg80211_bss *tx_bss; 1099 u8 max_bssid_indicator; 1100 u8 bssid_index; 1101 }; 1102 1103 static bool 1104 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev, 1105 struct cfg80211_internal_bss *known, 1106 struct cfg80211_internal_bss *new, 1107 bool signal_valid) 1108 { 1109 lockdep_assert_held(&rdev->bss_lock); 1110 1111 /* Update IEs */ 1112 if (rcu_access_pointer(new->pub.proberesp_ies)) { 1113 const struct cfg80211_bss_ies *old; 1114 1115 old = rcu_access_pointer(known->pub.proberesp_ies); 1116 1117 rcu_assign_pointer(known->pub.proberesp_ies, 1118 new->pub.proberesp_ies); 1119 /* Override possible earlier Beacon frame IEs */ 1120 rcu_assign_pointer(known->pub.ies, 1121 new->pub.proberesp_ies); 1122 if (old) 1123 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1124 } else if (rcu_access_pointer(new->pub.beacon_ies)) { 1125 const struct cfg80211_bss_ies *old; 1126 struct cfg80211_internal_bss *bss; 1127 1128 if (known->pub.hidden_beacon_bss && 1129 !list_empty(&known->hidden_list)) { 1130 const struct cfg80211_bss_ies *f; 1131 1132 /* The known BSS struct is one of the probe 1133 * response members of a group, but we're 1134 * receiving a beacon (beacon_ies in the new 1135 * bss is used). This can only mean that the 1136 * AP changed its beacon from not having an 1137 * SSID to showing it, which is confusing so 1138 * drop this information. 1139 */ 1140 1141 f = rcu_access_pointer(new->pub.beacon_ies); 1142 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head); 1143 return false; 1144 } 1145 1146 old = rcu_access_pointer(known->pub.beacon_ies); 1147 1148 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies); 1149 1150 /* Override IEs if they were from a beacon before */ 1151 if (old == rcu_access_pointer(known->pub.ies)) 1152 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies); 1153 1154 /* Assign beacon IEs to all sub entries */ 1155 list_for_each_entry(bss, &known->hidden_list, hidden_list) { 1156 const struct cfg80211_bss_ies *ies; 1157 1158 ies = rcu_access_pointer(bss->pub.beacon_ies); 1159 WARN_ON(ies != old); 1160 1161 rcu_assign_pointer(bss->pub.beacon_ies, 1162 new->pub.beacon_ies); 1163 } 1164 1165 if (old) 1166 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1167 } 1168 1169 known->pub.beacon_interval = new->pub.beacon_interval; 1170 1171 /* don't update the signal if beacon was heard on 1172 * adjacent channel. 1173 */ 1174 if (signal_valid) 1175 known->pub.signal = new->pub.signal; 1176 known->pub.capability = new->pub.capability; 1177 known->ts = new->ts; 1178 known->ts_boottime = new->ts_boottime; 1179 known->parent_tsf = new->parent_tsf; 1180 known->pub.chains = new->pub.chains; 1181 memcpy(known->pub.chain_signal, new->pub.chain_signal, 1182 IEEE80211_MAX_CHAINS); 1183 ether_addr_copy(known->parent_bssid, new->parent_bssid); 1184 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator; 1185 known->pub.bssid_index = new->pub.bssid_index; 1186 1187 return true; 1188 } 1189 1190 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1191 struct cfg80211_internal_bss * 1192 cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1193 struct cfg80211_internal_bss *tmp, 1194 bool signal_valid, unsigned long ts) 1195 { 1196 struct cfg80211_internal_bss *found = NULL; 1197 1198 if (WARN_ON(!tmp->pub.channel)) 1199 return NULL; 1200 1201 tmp->ts = ts; 1202 1203 spin_lock_bh(&rdev->bss_lock); 1204 1205 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) { 1206 spin_unlock_bh(&rdev->bss_lock); 1207 return NULL; 1208 } 1209 1210 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR); 1211 1212 if (found) { 1213 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid)) 1214 goto drop; 1215 } else { 1216 struct cfg80211_internal_bss *new; 1217 struct cfg80211_internal_bss *hidden; 1218 struct cfg80211_bss_ies *ies; 1219 1220 /* 1221 * create a copy -- the "res" variable that is passed in 1222 * is allocated on the stack since it's not needed in the 1223 * more common case of an update 1224 */ 1225 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size, 1226 GFP_ATOMIC); 1227 if (!new) { 1228 ies = (void *)rcu_dereference(tmp->pub.beacon_ies); 1229 if (ies) 1230 kfree_rcu(ies, rcu_head); 1231 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies); 1232 if (ies) 1233 kfree_rcu(ies, rcu_head); 1234 goto drop; 1235 } 1236 memcpy(new, tmp, sizeof(*new)); 1237 new->refcount = 1; 1238 INIT_LIST_HEAD(&new->hidden_list); 1239 INIT_LIST_HEAD(&new->pub.nontrans_list); 1240 1241 if (rcu_access_pointer(tmp->pub.proberesp_ies)) { 1242 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN); 1243 if (!hidden) 1244 hidden = rb_find_bss(rdev, tmp, 1245 BSS_CMP_HIDE_NUL); 1246 if (hidden) { 1247 new->pub.hidden_beacon_bss = &hidden->pub; 1248 list_add(&new->hidden_list, 1249 &hidden->hidden_list); 1250 hidden->refcount++; 1251 rcu_assign_pointer(new->pub.beacon_ies, 1252 hidden->pub.beacon_ies); 1253 } 1254 } else { 1255 /* 1256 * Ok so we found a beacon, and don't have an entry. If 1257 * it's a beacon with hidden SSID, we might be in for an 1258 * expensive search for any probe responses that should 1259 * be grouped with this beacon for updates ... 1260 */ 1261 if (!cfg80211_combine_bsses(rdev, new)) { 1262 kfree(new); 1263 goto drop; 1264 } 1265 } 1266 1267 if (rdev->bss_entries >= bss_entries_limit && 1268 !cfg80211_bss_expire_oldest(rdev)) { 1269 kfree(new); 1270 goto drop; 1271 } 1272 1273 /* This must be before the call to bss_ref_get */ 1274 if (tmp->pub.transmitted_bss) { 1275 struct cfg80211_internal_bss *pbss = 1276 container_of(tmp->pub.transmitted_bss, 1277 struct cfg80211_internal_bss, 1278 pub); 1279 1280 new->pub.transmitted_bss = tmp->pub.transmitted_bss; 1281 bss_ref_get(rdev, pbss); 1282 } 1283 1284 list_add_tail(&new->list, &rdev->bss_list); 1285 rdev->bss_entries++; 1286 rb_insert_bss(rdev, new); 1287 found = new; 1288 } 1289 1290 rdev->bss_generation++; 1291 bss_ref_get(rdev, found); 1292 spin_unlock_bh(&rdev->bss_lock); 1293 1294 return found; 1295 drop: 1296 spin_unlock_bh(&rdev->bss_lock); 1297 return NULL; 1298 } 1299 1300 /* 1301 * Update RX channel information based on the available frame payload 1302 * information. This is mainly for the 2.4 GHz band where frames can be received 1303 * from neighboring channels and the Beacon frames use the DSSS Parameter Set 1304 * element to indicate the current (transmitting) channel, but this might also 1305 * be needed on other bands if RX frequency does not match with the actual 1306 * operating channel of a BSS. 1307 */ 1308 static struct ieee80211_channel * 1309 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen, 1310 struct ieee80211_channel *channel, 1311 enum nl80211_bss_scan_width scan_width) 1312 { 1313 const u8 *tmp; 1314 u32 freq; 1315 int channel_number = -1; 1316 struct ieee80211_channel *alt_channel; 1317 1318 tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen); 1319 if (tmp && tmp[1] == 1) { 1320 channel_number = tmp[2]; 1321 } else { 1322 tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen); 1323 if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) { 1324 struct ieee80211_ht_operation *htop = (void *)(tmp + 2); 1325 1326 channel_number = htop->primary_chan; 1327 } 1328 } 1329 1330 if (channel_number < 0) { 1331 /* No channel information in frame payload */ 1332 return channel; 1333 } 1334 1335 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band); 1336 alt_channel = ieee80211_get_channel_khz(wiphy, freq); 1337 if (!alt_channel) { 1338 if (channel->band == NL80211_BAND_2GHZ) { 1339 /* 1340 * Better not allow unexpected channels when that could 1341 * be going beyond the 1-11 range (e.g., discovering 1342 * BSS on channel 12 when radio is configured for 1343 * channel 11. 1344 */ 1345 return NULL; 1346 } 1347 1348 /* No match for the payload channel number - ignore it */ 1349 return channel; 1350 } 1351 1352 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 || 1353 scan_width == NL80211_BSS_CHAN_WIDTH_5) { 1354 /* 1355 * Ignore channel number in 5 and 10 MHz channels where there 1356 * may not be an n:1 or 1:n mapping between frequencies and 1357 * channel numbers. 1358 */ 1359 return channel; 1360 } 1361 1362 /* 1363 * Use the channel determined through the payload channel number 1364 * instead of the RX channel reported by the driver. 1365 */ 1366 if (alt_channel->flags & IEEE80211_CHAN_DISABLED) 1367 return NULL; 1368 return alt_channel; 1369 } 1370 1371 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1372 static struct cfg80211_bss * 1373 cfg80211_inform_single_bss_data(struct wiphy *wiphy, 1374 struct cfg80211_inform_bss *data, 1375 enum cfg80211_bss_frame_type ftype, 1376 const u8 *bssid, u64 tsf, u16 capability, 1377 u16 beacon_interval, const u8 *ie, size_t ielen, 1378 struct cfg80211_non_tx_bss *non_tx_data, 1379 gfp_t gfp) 1380 { 1381 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1382 struct cfg80211_bss_ies *ies; 1383 struct ieee80211_channel *channel; 1384 struct cfg80211_internal_bss tmp = {}, *res; 1385 int bss_type; 1386 bool signal_valid; 1387 unsigned long ts; 1388 1389 if (WARN_ON(!wiphy)) 1390 return NULL; 1391 1392 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 1393 (data->signal < 0 || data->signal > 100))) 1394 return NULL; 1395 1396 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan, 1397 data->scan_width); 1398 if (!channel) 1399 return NULL; 1400 1401 memcpy(tmp.pub.bssid, bssid, ETH_ALEN); 1402 tmp.pub.channel = channel; 1403 tmp.pub.scan_width = data->scan_width; 1404 tmp.pub.signal = data->signal; 1405 tmp.pub.beacon_interval = beacon_interval; 1406 tmp.pub.capability = capability; 1407 tmp.ts_boottime = data->boottime_ns; 1408 if (non_tx_data) { 1409 tmp.pub.transmitted_bss = non_tx_data->tx_bss; 1410 ts = bss_from_pub(non_tx_data->tx_bss)->ts; 1411 tmp.pub.bssid_index = non_tx_data->bssid_index; 1412 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator; 1413 } else { 1414 ts = jiffies; 1415 } 1416 1417 /* 1418 * If we do not know here whether the IEs are from a Beacon or Probe 1419 * Response frame, we need to pick one of the options and only use it 1420 * with the driver that does not provide the full Beacon/Probe Response 1421 * frame. Use Beacon frame pointer to avoid indicating that this should 1422 * override the IEs pointer should we have received an earlier 1423 * indication of Probe Response data. 1424 */ 1425 ies = kzalloc(sizeof(*ies) + ielen, gfp); 1426 if (!ies) 1427 return NULL; 1428 ies->len = ielen; 1429 ies->tsf = tsf; 1430 ies->from_beacon = false; 1431 memcpy(ies->data, ie, ielen); 1432 1433 switch (ftype) { 1434 case CFG80211_BSS_FTYPE_BEACON: 1435 ies->from_beacon = true; 1436 fallthrough; 1437 case CFG80211_BSS_FTYPE_UNKNOWN: 1438 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 1439 break; 1440 case CFG80211_BSS_FTYPE_PRESP: 1441 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 1442 break; 1443 } 1444 rcu_assign_pointer(tmp.pub.ies, ies); 1445 1446 signal_valid = data->chan == channel; 1447 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts); 1448 if (!res) 1449 return NULL; 1450 1451 if (channel->band == NL80211_BAND_60GHZ) { 1452 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 1453 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 1454 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 1455 regulatory_hint_found_beacon(wiphy, channel, gfp); 1456 } else { 1457 if (res->pub.capability & WLAN_CAPABILITY_ESS) 1458 regulatory_hint_found_beacon(wiphy, channel, gfp); 1459 } 1460 1461 if (non_tx_data) { 1462 /* this is a nontransmitting bss, we need to add it to 1463 * transmitting bss' list if it is not there 1464 */ 1465 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss, 1466 &res->pub)) { 1467 if (__cfg80211_unlink_bss(rdev, res)) 1468 rdev->bss_generation++; 1469 } 1470 } 1471 1472 trace_cfg80211_return_bss(&res->pub); 1473 /* cfg80211_bss_update gives us a referenced result */ 1474 return &res->pub; 1475 } 1476 1477 static const struct element 1478 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen, 1479 const struct element *mbssid_elem, 1480 const struct element *sub_elem) 1481 { 1482 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen; 1483 const struct element *next_mbssid; 1484 const struct element *next_sub; 1485 1486 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 1487 mbssid_end, 1488 ielen - (mbssid_end - ie)); 1489 1490 /* 1491 * If is is not the last subelement in current MBSSID IE or there isn't 1492 * a next MBSSID IE - profile is complete. 1493 */ 1494 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) || 1495 !next_mbssid) 1496 return NULL; 1497 1498 /* For any length error, just return NULL */ 1499 1500 if (next_mbssid->datalen < 4) 1501 return NULL; 1502 1503 next_sub = (void *)&next_mbssid->data[1]; 1504 1505 if (next_mbssid->data + next_mbssid->datalen < 1506 next_sub->data + next_sub->datalen) 1507 return NULL; 1508 1509 if (next_sub->id != 0 || next_sub->datalen < 2) 1510 return NULL; 1511 1512 /* 1513 * Check if the first element in the next sub element is a start 1514 * of a new profile 1515 */ 1516 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ? 1517 NULL : next_mbssid; 1518 } 1519 1520 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen, 1521 const struct element *mbssid_elem, 1522 const struct element *sub_elem, 1523 u8 *merged_ie, size_t max_copy_len) 1524 { 1525 size_t copied_len = sub_elem->datalen; 1526 const struct element *next_mbssid; 1527 1528 if (sub_elem->datalen > max_copy_len) 1529 return 0; 1530 1531 memcpy(merged_ie, sub_elem->data, sub_elem->datalen); 1532 1533 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen, 1534 mbssid_elem, 1535 sub_elem))) { 1536 const struct element *next_sub = (void *)&next_mbssid->data[1]; 1537 1538 if (copied_len + next_sub->datalen > max_copy_len) 1539 break; 1540 memcpy(merged_ie + copied_len, next_sub->data, 1541 next_sub->datalen); 1542 copied_len += next_sub->datalen; 1543 } 1544 1545 return copied_len; 1546 } 1547 EXPORT_SYMBOL(cfg80211_merge_profile); 1548 1549 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy, 1550 struct cfg80211_inform_bss *data, 1551 enum cfg80211_bss_frame_type ftype, 1552 const u8 *bssid, u64 tsf, 1553 u16 beacon_interval, const u8 *ie, 1554 size_t ielen, 1555 struct cfg80211_non_tx_bss *non_tx_data, 1556 gfp_t gfp) 1557 { 1558 const u8 *mbssid_index_ie; 1559 const struct element *elem, *sub; 1560 size_t new_ie_len; 1561 u8 new_bssid[ETH_ALEN]; 1562 u8 *new_ie, *profile; 1563 u64 seen_indices = 0; 1564 u16 capability; 1565 struct cfg80211_bss *bss; 1566 1567 if (!non_tx_data) 1568 return; 1569 if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen)) 1570 return; 1571 if (!wiphy->support_mbssid) 1572 return; 1573 if (wiphy->support_only_he_mbssid && 1574 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen)) 1575 return; 1576 1577 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 1578 if (!new_ie) 1579 return; 1580 1581 profile = kmalloc(ielen, gfp); 1582 if (!profile) 1583 goto out; 1584 1585 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) { 1586 if (elem->datalen < 4) 1587 continue; 1588 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 1589 u8 profile_len; 1590 1591 if (sub->id != 0 || sub->datalen < 4) { 1592 /* not a valid BSS profile */ 1593 continue; 1594 } 1595 1596 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 1597 sub->data[1] != 2) { 1598 /* The first element within the Nontransmitted 1599 * BSSID Profile is not the Nontransmitted 1600 * BSSID Capability element. 1601 */ 1602 continue; 1603 } 1604 1605 memset(profile, 0, ielen); 1606 profile_len = cfg80211_merge_profile(ie, ielen, 1607 elem, 1608 sub, 1609 profile, 1610 ielen); 1611 1612 /* found a Nontransmitted BSSID Profile */ 1613 mbssid_index_ie = cfg80211_find_ie 1614 (WLAN_EID_MULTI_BSSID_IDX, 1615 profile, profile_len); 1616 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 || 1617 mbssid_index_ie[2] == 0 || 1618 mbssid_index_ie[2] > 46) { 1619 /* No valid Multiple BSSID-Index element */ 1620 continue; 1621 } 1622 1623 if (seen_indices & BIT_ULL(mbssid_index_ie[2])) 1624 /* We don't support legacy split of a profile */ 1625 net_dbg_ratelimited("Partial info for BSSID index %d\n", 1626 mbssid_index_ie[2]); 1627 1628 seen_indices |= BIT_ULL(mbssid_index_ie[2]); 1629 1630 non_tx_data->bssid_index = mbssid_index_ie[2]; 1631 non_tx_data->max_bssid_indicator = elem->data[0]; 1632 1633 cfg80211_gen_new_bssid(bssid, 1634 non_tx_data->max_bssid_indicator, 1635 non_tx_data->bssid_index, 1636 new_bssid); 1637 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 1638 new_ie_len = cfg80211_gen_new_ie(ie, ielen, 1639 profile, 1640 profile_len, new_ie, 1641 gfp); 1642 if (!new_ie_len) 1643 continue; 1644 1645 capability = get_unaligned_le16(profile + 2); 1646 bss = cfg80211_inform_single_bss_data(wiphy, data, 1647 ftype, 1648 new_bssid, tsf, 1649 capability, 1650 beacon_interval, 1651 new_ie, 1652 new_ie_len, 1653 non_tx_data, 1654 gfp); 1655 if (!bss) 1656 break; 1657 cfg80211_put_bss(wiphy, bss); 1658 } 1659 } 1660 1661 out: 1662 kfree(new_ie); 1663 kfree(profile); 1664 } 1665 1666 struct cfg80211_bss * 1667 cfg80211_inform_bss_data(struct wiphy *wiphy, 1668 struct cfg80211_inform_bss *data, 1669 enum cfg80211_bss_frame_type ftype, 1670 const u8 *bssid, u64 tsf, u16 capability, 1671 u16 beacon_interval, const u8 *ie, size_t ielen, 1672 gfp_t gfp) 1673 { 1674 struct cfg80211_bss *res; 1675 struct cfg80211_non_tx_bss non_tx_data; 1676 1677 res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf, 1678 capability, beacon_interval, ie, 1679 ielen, NULL, gfp); 1680 if (!res) 1681 return NULL; 1682 non_tx_data.tx_bss = res; 1683 cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf, 1684 beacon_interval, ie, ielen, &non_tx_data, 1685 gfp); 1686 return res; 1687 } 1688 EXPORT_SYMBOL(cfg80211_inform_bss_data); 1689 1690 static void 1691 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy, 1692 struct cfg80211_inform_bss *data, 1693 struct ieee80211_mgmt *mgmt, size_t len, 1694 struct cfg80211_non_tx_bss *non_tx_data, 1695 gfp_t gfp) 1696 { 1697 enum cfg80211_bss_frame_type ftype; 1698 const u8 *ie = mgmt->u.probe_resp.variable; 1699 size_t ielen = len - offsetof(struct ieee80211_mgmt, 1700 u.probe_resp.variable); 1701 1702 ftype = ieee80211_is_beacon(mgmt->frame_control) ? 1703 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP; 1704 1705 cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid, 1706 le64_to_cpu(mgmt->u.probe_resp.timestamp), 1707 le16_to_cpu(mgmt->u.probe_resp.beacon_int), 1708 ie, ielen, non_tx_data, gfp); 1709 } 1710 1711 static void 1712 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy, 1713 struct cfg80211_bss *nontrans_bss, 1714 struct ieee80211_mgmt *mgmt, size_t len) 1715 { 1716 u8 *ie, *new_ie, *pos; 1717 const u8 *nontrans_ssid, *trans_ssid, *mbssid; 1718 size_t ielen = len - offsetof(struct ieee80211_mgmt, 1719 u.probe_resp.variable); 1720 size_t new_ie_len; 1721 struct cfg80211_bss_ies *new_ies; 1722 const struct cfg80211_bss_ies *old; 1723 u8 cpy_len; 1724 1725 lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock); 1726 1727 ie = mgmt->u.probe_resp.variable; 1728 1729 new_ie_len = ielen; 1730 trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen); 1731 if (!trans_ssid) 1732 return; 1733 new_ie_len -= trans_ssid[1]; 1734 mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen); 1735 /* 1736 * It's not valid to have the MBSSID element before SSID 1737 * ignore if that happens - the code below assumes it is 1738 * after (while copying things inbetween). 1739 */ 1740 if (!mbssid || mbssid < trans_ssid) 1741 return; 1742 new_ie_len -= mbssid[1]; 1743 1744 nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID); 1745 if (!nontrans_ssid) 1746 return; 1747 1748 new_ie_len += nontrans_ssid[1]; 1749 1750 /* generate new ie for nontrans BSS 1751 * 1. replace SSID with nontrans BSS' SSID 1752 * 2. skip MBSSID IE 1753 */ 1754 new_ie = kzalloc(new_ie_len, GFP_ATOMIC); 1755 if (!new_ie) 1756 return; 1757 1758 new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC); 1759 if (!new_ies) 1760 goto out_free; 1761 1762 pos = new_ie; 1763 1764 /* copy the nontransmitted SSID */ 1765 cpy_len = nontrans_ssid[1] + 2; 1766 memcpy(pos, nontrans_ssid, cpy_len); 1767 pos += cpy_len; 1768 /* copy the IEs between SSID and MBSSID */ 1769 cpy_len = trans_ssid[1] + 2; 1770 memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len))); 1771 pos += (mbssid - (trans_ssid + cpy_len)); 1772 /* copy the IEs after MBSSID */ 1773 cpy_len = mbssid[1] + 2; 1774 memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len))); 1775 1776 /* update ie */ 1777 new_ies->len = new_ie_len; 1778 new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 1779 new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control); 1780 memcpy(new_ies->data, new_ie, new_ie_len); 1781 if (ieee80211_is_probe_resp(mgmt->frame_control)) { 1782 old = rcu_access_pointer(nontrans_bss->proberesp_ies); 1783 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies); 1784 rcu_assign_pointer(nontrans_bss->ies, new_ies); 1785 if (old) 1786 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1787 } else { 1788 old = rcu_access_pointer(nontrans_bss->beacon_ies); 1789 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies); 1790 rcu_assign_pointer(nontrans_bss->ies, new_ies); 1791 if (old) 1792 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1793 } 1794 1795 out_free: 1796 kfree(new_ie); 1797 } 1798 1799 /* cfg80211_inform_bss_width_frame helper */ 1800 static struct cfg80211_bss * 1801 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy, 1802 struct cfg80211_inform_bss *data, 1803 struct ieee80211_mgmt *mgmt, size_t len, 1804 gfp_t gfp) 1805 { 1806 struct cfg80211_internal_bss tmp = {}, *res; 1807 struct cfg80211_bss_ies *ies; 1808 struct ieee80211_channel *channel; 1809 bool signal_valid; 1810 size_t ielen = len - offsetof(struct ieee80211_mgmt, 1811 u.probe_resp.variable); 1812 int bss_type; 1813 1814 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) != 1815 offsetof(struct ieee80211_mgmt, u.beacon.variable)); 1816 1817 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len); 1818 1819 if (WARN_ON(!mgmt)) 1820 return NULL; 1821 1822 if (WARN_ON(!wiphy)) 1823 return NULL; 1824 1825 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 1826 (data->signal < 0 || data->signal > 100))) 1827 return NULL; 1828 1829 if (WARN_ON(len < offsetof(struct ieee80211_mgmt, u.probe_resp.variable))) 1830 return NULL; 1831 1832 channel = cfg80211_get_bss_channel(wiphy, mgmt->u.beacon.variable, 1833 ielen, data->chan, data->scan_width); 1834 if (!channel) 1835 return NULL; 1836 1837 ies = kzalloc(sizeof(*ies) + ielen, gfp); 1838 if (!ies) 1839 return NULL; 1840 ies->len = ielen; 1841 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 1842 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control); 1843 memcpy(ies->data, mgmt->u.probe_resp.variable, ielen); 1844 1845 if (ieee80211_is_probe_resp(mgmt->frame_control)) 1846 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 1847 else 1848 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 1849 rcu_assign_pointer(tmp.pub.ies, ies); 1850 1851 memcpy(tmp.pub.bssid, mgmt->bssid, ETH_ALEN); 1852 tmp.pub.channel = channel; 1853 tmp.pub.scan_width = data->scan_width; 1854 tmp.pub.signal = data->signal; 1855 tmp.pub.beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int); 1856 tmp.pub.capability = le16_to_cpu(mgmt->u.probe_resp.capab_info); 1857 tmp.ts_boottime = data->boottime_ns; 1858 tmp.parent_tsf = data->parent_tsf; 1859 tmp.pub.chains = data->chains; 1860 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS); 1861 ether_addr_copy(tmp.parent_bssid, data->parent_bssid); 1862 1863 signal_valid = data->chan == channel; 1864 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, 1865 jiffies); 1866 if (!res) 1867 return NULL; 1868 1869 if (channel->band == NL80211_BAND_60GHZ) { 1870 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 1871 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 1872 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 1873 regulatory_hint_found_beacon(wiphy, channel, gfp); 1874 } else { 1875 if (res->pub.capability & WLAN_CAPABILITY_ESS) 1876 regulatory_hint_found_beacon(wiphy, channel, gfp); 1877 } 1878 1879 trace_cfg80211_return_bss(&res->pub); 1880 /* cfg80211_bss_update gives us a referenced result */ 1881 return &res->pub; 1882 } 1883 1884 struct cfg80211_bss * 1885 cfg80211_inform_bss_frame_data(struct wiphy *wiphy, 1886 struct cfg80211_inform_bss *data, 1887 struct ieee80211_mgmt *mgmt, size_t len, 1888 gfp_t gfp) 1889 { 1890 struct cfg80211_bss *res, *tmp_bss; 1891 const u8 *ie = mgmt->u.probe_resp.variable; 1892 const struct cfg80211_bss_ies *ies1, *ies2; 1893 size_t ielen = len - offsetof(struct ieee80211_mgmt, 1894 u.probe_resp.variable); 1895 struct cfg80211_non_tx_bss non_tx_data; 1896 1897 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt, 1898 len, gfp); 1899 if (!res || !wiphy->support_mbssid || 1900 !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen)) 1901 return res; 1902 if (wiphy->support_only_he_mbssid && 1903 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen)) 1904 return res; 1905 1906 non_tx_data.tx_bss = res; 1907 /* process each non-transmitting bss */ 1908 cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len, 1909 &non_tx_data, gfp); 1910 1911 spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock); 1912 1913 /* check if the res has other nontransmitting bss which is not 1914 * in MBSSID IE 1915 */ 1916 ies1 = rcu_access_pointer(res->ies); 1917 1918 /* go through nontrans_list, if the timestamp of the BSS is 1919 * earlier than the timestamp of the transmitting BSS then 1920 * update it 1921 */ 1922 list_for_each_entry(tmp_bss, &res->nontrans_list, 1923 nontrans_list) { 1924 ies2 = rcu_access_pointer(tmp_bss->ies); 1925 if (ies2->tsf < ies1->tsf) 1926 cfg80211_update_notlisted_nontrans(wiphy, tmp_bss, 1927 mgmt, len); 1928 } 1929 spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock); 1930 1931 return res; 1932 } 1933 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data); 1934 1935 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 1936 { 1937 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1938 struct cfg80211_internal_bss *bss; 1939 1940 if (!pub) 1941 return; 1942 1943 bss = container_of(pub, struct cfg80211_internal_bss, pub); 1944 1945 spin_lock_bh(&rdev->bss_lock); 1946 bss_ref_get(rdev, bss); 1947 spin_unlock_bh(&rdev->bss_lock); 1948 } 1949 EXPORT_SYMBOL(cfg80211_ref_bss); 1950 1951 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 1952 { 1953 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1954 struct cfg80211_internal_bss *bss; 1955 1956 if (!pub) 1957 return; 1958 1959 bss = container_of(pub, struct cfg80211_internal_bss, pub); 1960 1961 spin_lock_bh(&rdev->bss_lock); 1962 bss_ref_put(rdev, bss); 1963 spin_unlock_bh(&rdev->bss_lock); 1964 } 1965 EXPORT_SYMBOL(cfg80211_put_bss); 1966 1967 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 1968 { 1969 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1970 struct cfg80211_internal_bss *bss, *tmp1; 1971 struct cfg80211_bss *nontrans_bss, *tmp; 1972 1973 if (WARN_ON(!pub)) 1974 return; 1975 1976 bss = container_of(pub, struct cfg80211_internal_bss, pub); 1977 1978 spin_lock_bh(&rdev->bss_lock); 1979 if (list_empty(&bss->list)) 1980 goto out; 1981 1982 list_for_each_entry_safe(nontrans_bss, tmp, 1983 &pub->nontrans_list, 1984 nontrans_list) { 1985 tmp1 = container_of(nontrans_bss, 1986 struct cfg80211_internal_bss, pub); 1987 if (__cfg80211_unlink_bss(rdev, tmp1)) 1988 rdev->bss_generation++; 1989 } 1990 1991 if (__cfg80211_unlink_bss(rdev, bss)) 1992 rdev->bss_generation++; 1993 out: 1994 spin_unlock_bh(&rdev->bss_lock); 1995 } 1996 EXPORT_SYMBOL(cfg80211_unlink_bss); 1997 1998 void cfg80211_bss_iter(struct wiphy *wiphy, 1999 struct cfg80211_chan_def *chandef, 2000 void (*iter)(struct wiphy *wiphy, 2001 struct cfg80211_bss *bss, 2002 void *data), 2003 void *iter_data) 2004 { 2005 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2006 struct cfg80211_internal_bss *bss; 2007 2008 spin_lock_bh(&rdev->bss_lock); 2009 2010 list_for_each_entry(bss, &rdev->bss_list, list) { 2011 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel)) 2012 iter(wiphy, &bss->pub, iter_data); 2013 } 2014 2015 spin_unlock_bh(&rdev->bss_lock); 2016 } 2017 EXPORT_SYMBOL(cfg80211_bss_iter); 2018 2019 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, 2020 struct ieee80211_channel *chan) 2021 { 2022 struct wiphy *wiphy = wdev->wiphy; 2023 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2024 struct cfg80211_internal_bss *cbss = wdev->current_bss; 2025 struct cfg80211_internal_bss *new = NULL; 2026 struct cfg80211_internal_bss *bss; 2027 struct cfg80211_bss *nontrans_bss; 2028 struct cfg80211_bss *tmp; 2029 2030 spin_lock_bh(&rdev->bss_lock); 2031 2032 /* 2033 * Some APs use CSA also for bandwidth changes, i.e., without actually 2034 * changing the control channel, so no need to update in such a case. 2035 */ 2036 if (cbss->pub.channel == chan) 2037 goto done; 2038 2039 /* use transmitting bss */ 2040 if (cbss->pub.transmitted_bss) 2041 cbss = container_of(cbss->pub.transmitted_bss, 2042 struct cfg80211_internal_bss, 2043 pub); 2044 2045 cbss->pub.channel = chan; 2046 2047 list_for_each_entry(bss, &rdev->bss_list, list) { 2048 if (!cfg80211_bss_type_match(bss->pub.capability, 2049 bss->pub.channel->band, 2050 wdev->conn_bss_type)) 2051 continue; 2052 2053 if (bss == cbss) 2054 continue; 2055 2056 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) { 2057 new = bss; 2058 break; 2059 } 2060 } 2061 2062 if (new) { 2063 /* to save time, update IEs for transmitting bss only */ 2064 if (cfg80211_update_known_bss(rdev, cbss, new, false)) { 2065 new->pub.proberesp_ies = NULL; 2066 new->pub.beacon_ies = NULL; 2067 } 2068 2069 list_for_each_entry_safe(nontrans_bss, tmp, 2070 &new->pub.nontrans_list, 2071 nontrans_list) { 2072 bss = container_of(nontrans_bss, 2073 struct cfg80211_internal_bss, pub); 2074 if (__cfg80211_unlink_bss(rdev, bss)) 2075 rdev->bss_generation++; 2076 } 2077 2078 WARN_ON(atomic_read(&new->hold)); 2079 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new))) 2080 rdev->bss_generation++; 2081 } 2082 2083 rb_erase(&cbss->rbn, &rdev->bss_tree); 2084 rb_insert_bss(rdev, cbss); 2085 rdev->bss_generation++; 2086 2087 list_for_each_entry_safe(nontrans_bss, tmp, 2088 &cbss->pub.nontrans_list, 2089 nontrans_list) { 2090 bss = container_of(nontrans_bss, 2091 struct cfg80211_internal_bss, pub); 2092 bss->pub.channel = chan; 2093 rb_erase(&bss->rbn, &rdev->bss_tree); 2094 rb_insert_bss(rdev, bss); 2095 rdev->bss_generation++; 2096 } 2097 2098 done: 2099 spin_unlock_bh(&rdev->bss_lock); 2100 } 2101 2102 #ifdef CONFIG_CFG80211_WEXT 2103 static struct cfg80211_registered_device * 2104 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex) 2105 { 2106 struct cfg80211_registered_device *rdev; 2107 struct net_device *dev; 2108 2109 ASSERT_RTNL(); 2110 2111 dev = dev_get_by_index(net, ifindex); 2112 if (!dev) 2113 return ERR_PTR(-ENODEV); 2114 if (dev->ieee80211_ptr) 2115 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy); 2116 else 2117 rdev = ERR_PTR(-ENODEV); 2118 dev_put(dev); 2119 return rdev; 2120 } 2121 2122 int cfg80211_wext_siwscan(struct net_device *dev, 2123 struct iw_request_info *info, 2124 union iwreq_data *wrqu, char *extra) 2125 { 2126 struct cfg80211_registered_device *rdev; 2127 struct wiphy *wiphy; 2128 struct iw_scan_req *wreq = NULL; 2129 struct cfg80211_scan_request *creq = NULL; 2130 int i, err, n_channels = 0; 2131 enum nl80211_band band; 2132 2133 if (!netif_running(dev)) 2134 return -ENETDOWN; 2135 2136 if (wrqu->data.length == sizeof(struct iw_scan_req)) 2137 wreq = (struct iw_scan_req *)extra; 2138 2139 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 2140 2141 if (IS_ERR(rdev)) 2142 return PTR_ERR(rdev); 2143 2144 if (rdev->scan_req || rdev->scan_msg) { 2145 err = -EBUSY; 2146 goto out; 2147 } 2148 2149 wiphy = &rdev->wiphy; 2150 2151 /* Determine number of channels, needed to allocate creq */ 2152 if (wreq && wreq->num_channels) 2153 n_channels = wreq->num_channels; 2154 else 2155 n_channels = ieee80211_get_num_supported_channels(wiphy); 2156 2157 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) + 2158 n_channels * sizeof(void *), 2159 GFP_ATOMIC); 2160 if (!creq) { 2161 err = -ENOMEM; 2162 goto out; 2163 } 2164 2165 creq->wiphy = wiphy; 2166 creq->wdev = dev->ieee80211_ptr; 2167 /* SSIDs come after channels */ 2168 creq->ssids = (void *)&creq->channels[n_channels]; 2169 creq->n_channels = n_channels; 2170 creq->n_ssids = 1; 2171 creq->scan_start = jiffies; 2172 2173 /* translate "Scan on frequencies" request */ 2174 i = 0; 2175 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2176 int j; 2177 2178 if (!wiphy->bands[band]) 2179 continue; 2180 2181 for (j = 0; j < wiphy->bands[band]->n_channels; j++) { 2182 /* ignore disabled channels */ 2183 if (wiphy->bands[band]->channels[j].flags & 2184 IEEE80211_CHAN_DISABLED) 2185 continue; 2186 2187 /* If we have a wireless request structure and the 2188 * wireless request specifies frequencies, then search 2189 * for the matching hardware channel. 2190 */ 2191 if (wreq && wreq->num_channels) { 2192 int k; 2193 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq; 2194 for (k = 0; k < wreq->num_channels; k++) { 2195 struct iw_freq *freq = 2196 &wreq->channel_list[k]; 2197 int wext_freq = 2198 cfg80211_wext_freq(freq); 2199 2200 if (wext_freq == wiphy_freq) 2201 goto wext_freq_found; 2202 } 2203 goto wext_freq_not_found; 2204 } 2205 2206 wext_freq_found: 2207 creq->channels[i] = &wiphy->bands[band]->channels[j]; 2208 i++; 2209 wext_freq_not_found: ; 2210 } 2211 } 2212 /* No channels found? */ 2213 if (!i) { 2214 err = -EINVAL; 2215 goto out; 2216 } 2217 2218 /* Set real number of channels specified in creq->channels[] */ 2219 creq->n_channels = i; 2220 2221 /* translate "Scan for SSID" request */ 2222 if (wreq) { 2223 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { 2224 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) { 2225 err = -EINVAL; 2226 goto out; 2227 } 2228 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len); 2229 creq->ssids[0].ssid_len = wreq->essid_len; 2230 } 2231 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) 2232 creq->n_ssids = 0; 2233 } 2234 2235 for (i = 0; i < NUM_NL80211_BANDS; i++) 2236 if (wiphy->bands[i]) 2237 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1; 2238 2239 eth_broadcast_addr(creq->bssid); 2240 2241 rdev->scan_req = creq; 2242 err = rdev_scan(rdev, creq); 2243 if (err) { 2244 rdev->scan_req = NULL; 2245 /* creq will be freed below */ 2246 } else { 2247 nl80211_send_scan_start(rdev, dev->ieee80211_ptr); 2248 /* creq now owned by driver */ 2249 creq = NULL; 2250 dev_hold(dev); 2251 } 2252 out: 2253 kfree(creq); 2254 return err; 2255 } 2256 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan); 2257 2258 static char *ieee80211_scan_add_ies(struct iw_request_info *info, 2259 const struct cfg80211_bss_ies *ies, 2260 char *current_ev, char *end_buf) 2261 { 2262 const u8 *pos, *end, *next; 2263 struct iw_event iwe; 2264 2265 if (!ies) 2266 return current_ev; 2267 2268 /* 2269 * If needed, fragment the IEs buffer (at IE boundaries) into short 2270 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages. 2271 */ 2272 pos = ies->data; 2273 end = pos + ies->len; 2274 2275 while (end - pos > IW_GENERIC_IE_MAX) { 2276 next = pos + 2 + pos[1]; 2277 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX) 2278 next = next + 2 + next[1]; 2279 2280 memset(&iwe, 0, sizeof(iwe)); 2281 iwe.cmd = IWEVGENIE; 2282 iwe.u.data.length = next - pos; 2283 current_ev = iwe_stream_add_point_check(info, current_ev, 2284 end_buf, &iwe, 2285 (void *)pos); 2286 if (IS_ERR(current_ev)) 2287 return current_ev; 2288 pos = next; 2289 } 2290 2291 if (end > pos) { 2292 memset(&iwe, 0, sizeof(iwe)); 2293 iwe.cmd = IWEVGENIE; 2294 iwe.u.data.length = end - pos; 2295 current_ev = iwe_stream_add_point_check(info, current_ev, 2296 end_buf, &iwe, 2297 (void *)pos); 2298 if (IS_ERR(current_ev)) 2299 return current_ev; 2300 } 2301 2302 return current_ev; 2303 } 2304 2305 static char * 2306 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info, 2307 struct cfg80211_internal_bss *bss, char *current_ev, 2308 char *end_buf) 2309 { 2310 const struct cfg80211_bss_ies *ies; 2311 struct iw_event iwe; 2312 const u8 *ie; 2313 u8 buf[50]; 2314 u8 *cfg, *p, *tmp; 2315 int rem, i, sig; 2316 bool ismesh = false; 2317 2318 memset(&iwe, 0, sizeof(iwe)); 2319 iwe.cmd = SIOCGIWAP; 2320 iwe.u.ap_addr.sa_family = ARPHRD_ETHER; 2321 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN); 2322 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 2323 IW_EV_ADDR_LEN); 2324 if (IS_ERR(current_ev)) 2325 return current_ev; 2326 2327 memset(&iwe, 0, sizeof(iwe)); 2328 iwe.cmd = SIOCGIWFREQ; 2329 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq); 2330 iwe.u.freq.e = 0; 2331 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 2332 IW_EV_FREQ_LEN); 2333 if (IS_ERR(current_ev)) 2334 return current_ev; 2335 2336 memset(&iwe, 0, sizeof(iwe)); 2337 iwe.cmd = SIOCGIWFREQ; 2338 iwe.u.freq.m = bss->pub.channel->center_freq; 2339 iwe.u.freq.e = 6; 2340 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 2341 IW_EV_FREQ_LEN); 2342 if (IS_ERR(current_ev)) 2343 return current_ev; 2344 2345 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) { 2346 memset(&iwe, 0, sizeof(iwe)); 2347 iwe.cmd = IWEVQUAL; 2348 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED | 2349 IW_QUAL_NOISE_INVALID | 2350 IW_QUAL_QUAL_UPDATED; 2351 switch (wiphy->signal_type) { 2352 case CFG80211_SIGNAL_TYPE_MBM: 2353 sig = bss->pub.signal / 100; 2354 iwe.u.qual.level = sig; 2355 iwe.u.qual.updated |= IW_QUAL_DBM; 2356 if (sig < -110) /* rather bad */ 2357 sig = -110; 2358 else if (sig > -40) /* perfect */ 2359 sig = -40; 2360 /* will give a range of 0 .. 70 */ 2361 iwe.u.qual.qual = sig + 110; 2362 break; 2363 case CFG80211_SIGNAL_TYPE_UNSPEC: 2364 iwe.u.qual.level = bss->pub.signal; 2365 /* will give range 0 .. 100 */ 2366 iwe.u.qual.qual = bss->pub.signal; 2367 break; 2368 default: 2369 /* not reached */ 2370 break; 2371 } 2372 current_ev = iwe_stream_add_event_check(info, current_ev, 2373 end_buf, &iwe, 2374 IW_EV_QUAL_LEN); 2375 if (IS_ERR(current_ev)) 2376 return current_ev; 2377 } 2378 2379 memset(&iwe, 0, sizeof(iwe)); 2380 iwe.cmd = SIOCGIWENCODE; 2381 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY) 2382 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY; 2383 else 2384 iwe.u.data.flags = IW_ENCODE_DISABLED; 2385 iwe.u.data.length = 0; 2386 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 2387 &iwe, ""); 2388 if (IS_ERR(current_ev)) 2389 return current_ev; 2390 2391 rcu_read_lock(); 2392 ies = rcu_dereference(bss->pub.ies); 2393 rem = ies->len; 2394 ie = ies->data; 2395 2396 while (rem >= 2) { 2397 /* invalid data */ 2398 if (ie[1] > rem - 2) 2399 break; 2400 2401 switch (ie[0]) { 2402 case WLAN_EID_SSID: 2403 memset(&iwe, 0, sizeof(iwe)); 2404 iwe.cmd = SIOCGIWESSID; 2405 iwe.u.data.length = ie[1]; 2406 iwe.u.data.flags = 1; 2407 current_ev = iwe_stream_add_point_check(info, 2408 current_ev, 2409 end_buf, &iwe, 2410 (u8 *)ie + 2); 2411 if (IS_ERR(current_ev)) 2412 goto unlock; 2413 break; 2414 case WLAN_EID_MESH_ID: 2415 memset(&iwe, 0, sizeof(iwe)); 2416 iwe.cmd = SIOCGIWESSID; 2417 iwe.u.data.length = ie[1]; 2418 iwe.u.data.flags = 1; 2419 current_ev = iwe_stream_add_point_check(info, 2420 current_ev, 2421 end_buf, &iwe, 2422 (u8 *)ie + 2); 2423 if (IS_ERR(current_ev)) 2424 goto unlock; 2425 break; 2426 case WLAN_EID_MESH_CONFIG: 2427 ismesh = true; 2428 if (ie[1] != sizeof(struct ieee80211_meshconf_ie)) 2429 break; 2430 cfg = (u8 *)ie + 2; 2431 memset(&iwe, 0, sizeof(iwe)); 2432 iwe.cmd = IWEVCUSTOM; 2433 sprintf(buf, "Mesh Network Path Selection Protocol ID: " 2434 "0x%02X", cfg[0]); 2435 iwe.u.data.length = strlen(buf); 2436 current_ev = iwe_stream_add_point_check(info, 2437 current_ev, 2438 end_buf, 2439 &iwe, buf); 2440 if (IS_ERR(current_ev)) 2441 goto unlock; 2442 sprintf(buf, "Path Selection Metric ID: 0x%02X", 2443 cfg[1]); 2444 iwe.u.data.length = strlen(buf); 2445 current_ev = iwe_stream_add_point_check(info, 2446 current_ev, 2447 end_buf, 2448 &iwe, buf); 2449 if (IS_ERR(current_ev)) 2450 goto unlock; 2451 sprintf(buf, "Congestion Control Mode ID: 0x%02X", 2452 cfg[2]); 2453 iwe.u.data.length = strlen(buf); 2454 current_ev = iwe_stream_add_point_check(info, 2455 current_ev, 2456 end_buf, 2457 &iwe, buf); 2458 if (IS_ERR(current_ev)) 2459 goto unlock; 2460 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]); 2461 iwe.u.data.length = strlen(buf); 2462 current_ev = iwe_stream_add_point_check(info, 2463 current_ev, 2464 end_buf, 2465 &iwe, buf); 2466 if (IS_ERR(current_ev)) 2467 goto unlock; 2468 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]); 2469 iwe.u.data.length = strlen(buf); 2470 current_ev = iwe_stream_add_point_check(info, 2471 current_ev, 2472 end_buf, 2473 &iwe, buf); 2474 if (IS_ERR(current_ev)) 2475 goto unlock; 2476 sprintf(buf, "Formation Info: 0x%02X", cfg[5]); 2477 iwe.u.data.length = strlen(buf); 2478 current_ev = iwe_stream_add_point_check(info, 2479 current_ev, 2480 end_buf, 2481 &iwe, buf); 2482 if (IS_ERR(current_ev)) 2483 goto unlock; 2484 sprintf(buf, "Capabilities: 0x%02X", cfg[6]); 2485 iwe.u.data.length = strlen(buf); 2486 current_ev = iwe_stream_add_point_check(info, 2487 current_ev, 2488 end_buf, 2489 &iwe, buf); 2490 if (IS_ERR(current_ev)) 2491 goto unlock; 2492 break; 2493 case WLAN_EID_SUPP_RATES: 2494 case WLAN_EID_EXT_SUPP_RATES: 2495 /* display all supported rates in readable format */ 2496 p = current_ev + iwe_stream_lcp_len(info); 2497 2498 memset(&iwe, 0, sizeof(iwe)); 2499 iwe.cmd = SIOCGIWRATE; 2500 /* Those two flags are ignored... */ 2501 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0; 2502 2503 for (i = 0; i < ie[1]; i++) { 2504 iwe.u.bitrate.value = 2505 ((ie[i + 2] & 0x7f) * 500000); 2506 tmp = p; 2507 p = iwe_stream_add_value(info, current_ev, p, 2508 end_buf, &iwe, 2509 IW_EV_PARAM_LEN); 2510 if (p == tmp) { 2511 current_ev = ERR_PTR(-E2BIG); 2512 goto unlock; 2513 } 2514 } 2515 current_ev = p; 2516 break; 2517 } 2518 rem -= ie[1] + 2; 2519 ie += ie[1] + 2; 2520 } 2521 2522 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) || 2523 ismesh) { 2524 memset(&iwe, 0, sizeof(iwe)); 2525 iwe.cmd = SIOCGIWMODE; 2526 if (ismesh) 2527 iwe.u.mode = IW_MODE_MESH; 2528 else if (bss->pub.capability & WLAN_CAPABILITY_ESS) 2529 iwe.u.mode = IW_MODE_MASTER; 2530 else 2531 iwe.u.mode = IW_MODE_ADHOC; 2532 current_ev = iwe_stream_add_event_check(info, current_ev, 2533 end_buf, &iwe, 2534 IW_EV_UINT_LEN); 2535 if (IS_ERR(current_ev)) 2536 goto unlock; 2537 } 2538 2539 memset(&iwe, 0, sizeof(iwe)); 2540 iwe.cmd = IWEVCUSTOM; 2541 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf)); 2542 iwe.u.data.length = strlen(buf); 2543 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 2544 &iwe, buf); 2545 if (IS_ERR(current_ev)) 2546 goto unlock; 2547 memset(&iwe, 0, sizeof(iwe)); 2548 iwe.cmd = IWEVCUSTOM; 2549 sprintf(buf, " Last beacon: %ums ago", 2550 elapsed_jiffies_msecs(bss->ts)); 2551 iwe.u.data.length = strlen(buf); 2552 current_ev = iwe_stream_add_point_check(info, current_ev, 2553 end_buf, &iwe, buf); 2554 if (IS_ERR(current_ev)) 2555 goto unlock; 2556 2557 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf); 2558 2559 unlock: 2560 rcu_read_unlock(); 2561 return current_ev; 2562 } 2563 2564 2565 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev, 2566 struct iw_request_info *info, 2567 char *buf, size_t len) 2568 { 2569 char *current_ev = buf; 2570 char *end_buf = buf + len; 2571 struct cfg80211_internal_bss *bss; 2572 int err = 0; 2573 2574 spin_lock_bh(&rdev->bss_lock); 2575 cfg80211_bss_expire(rdev); 2576 2577 list_for_each_entry(bss, &rdev->bss_list, list) { 2578 if (buf + len - current_ev <= IW_EV_ADDR_LEN) { 2579 err = -E2BIG; 2580 break; 2581 } 2582 current_ev = ieee80211_bss(&rdev->wiphy, info, bss, 2583 current_ev, end_buf); 2584 if (IS_ERR(current_ev)) { 2585 err = PTR_ERR(current_ev); 2586 break; 2587 } 2588 } 2589 spin_unlock_bh(&rdev->bss_lock); 2590 2591 if (err) 2592 return err; 2593 return current_ev - buf; 2594 } 2595 2596 2597 int cfg80211_wext_giwscan(struct net_device *dev, 2598 struct iw_request_info *info, 2599 struct iw_point *data, char *extra) 2600 { 2601 struct cfg80211_registered_device *rdev; 2602 int res; 2603 2604 if (!netif_running(dev)) 2605 return -ENETDOWN; 2606 2607 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 2608 2609 if (IS_ERR(rdev)) 2610 return PTR_ERR(rdev); 2611 2612 if (rdev->scan_req || rdev->scan_msg) 2613 return -EAGAIN; 2614 2615 res = ieee80211_scan_results(rdev, info, extra, data->length); 2616 data->length = 0; 2617 if (res >= 0) { 2618 data->length = res; 2619 res = 0; 2620 } 2621 2622 return res; 2623 } 2624 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan); 2625 #endif 2626