xref: /openbmc/linux/net/wireless/scan.c (revision a1b2f04ea527397fcacacd09e0d690927feef429)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016	Intel Deutschland GmbH
8  * Copyright (C) 2018-2019 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <net/arp.h>
18 #include <net/cfg80211.h>
19 #include <net/cfg80211-wext.h>
20 #include <net/iw_handler.h>
21 #include "core.h"
22 #include "nl80211.h"
23 #include "wext-compat.h"
24 #include "rdev-ops.h"
25 
26 /**
27  * DOC: BSS tree/list structure
28  *
29  * At the top level, the BSS list is kept in both a list in each
30  * registered device (@bss_list) as well as an RB-tree for faster
31  * lookup. In the RB-tree, entries can be looked up using their
32  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
33  * for other BSSes.
34  *
35  * Due to the possibility of hidden SSIDs, there's a second level
36  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
37  * The hidden_list connects all BSSes belonging to a single AP
38  * that has a hidden SSID, and connects beacon and probe response
39  * entries. For a probe response entry for a hidden SSID, the
40  * hidden_beacon_bss pointer points to the BSS struct holding the
41  * beacon's information.
42  *
43  * Reference counting is done for all these references except for
44  * the hidden_list, so that a beacon BSS struct that is otherwise
45  * not referenced has one reference for being on the bss_list and
46  * one for each probe response entry that points to it using the
47  * hidden_beacon_bss pointer. When a BSS struct that has such a
48  * pointer is get/put, the refcount update is also propagated to
49  * the referenced struct, this ensure that it cannot get removed
50  * while somebody is using the probe response version.
51  *
52  * Note that the hidden_beacon_bss pointer never changes, due to
53  * the reference counting. Therefore, no locking is needed for
54  * it.
55  *
56  * Also note that the hidden_beacon_bss pointer is only relevant
57  * if the driver uses something other than the IEs, e.g. private
58  * data stored stored in the BSS struct, since the beacon IEs are
59  * also linked into the probe response struct.
60  */
61 
62 /*
63  * Limit the number of BSS entries stored in mac80211. Each one is
64  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
65  * If somebody wants to really attack this though, they'd likely
66  * use small beacons, and only one type of frame, limiting each of
67  * the entries to a much smaller size (in order to generate more
68  * entries in total, so overhead is bigger.)
69  */
70 static int bss_entries_limit = 1000;
71 module_param(bss_entries_limit, int, 0644);
72 MODULE_PARM_DESC(bss_entries_limit,
73                  "limit to number of scan BSS entries (per wiphy, default 1000)");
74 
75 #define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
76 
77 static void bss_free(struct cfg80211_internal_bss *bss)
78 {
79 	struct cfg80211_bss_ies *ies;
80 
81 	if (WARN_ON(atomic_read(&bss->hold)))
82 		return;
83 
84 	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
85 	if (ies && !bss->pub.hidden_beacon_bss)
86 		kfree_rcu(ies, rcu_head);
87 	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
88 	if (ies)
89 		kfree_rcu(ies, rcu_head);
90 
91 	/*
92 	 * This happens when the module is removed, it doesn't
93 	 * really matter any more save for completeness
94 	 */
95 	if (!list_empty(&bss->hidden_list))
96 		list_del(&bss->hidden_list);
97 
98 	kfree(bss);
99 }
100 
101 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
102 			       struct cfg80211_internal_bss *bss)
103 {
104 	lockdep_assert_held(&rdev->bss_lock);
105 
106 	bss->refcount++;
107 	if (bss->pub.hidden_beacon_bss) {
108 		bss = container_of(bss->pub.hidden_beacon_bss,
109 				   struct cfg80211_internal_bss,
110 				   pub);
111 		bss->refcount++;
112 	}
113 	if (bss->pub.transmitted_bss) {
114 		bss = container_of(bss->pub.transmitted_bss,
115 				   struct cfg80211_internal_bss,
116 				   pub);
117 		bss->refcount++;
118 	}
119 }
120 
121 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
122 			       struct cfg80211_internal_bss *bss)
123 {
124 	lockdep_assert_held(&rdev->bss_lock);
125 
126 	if (bss->pub.hidden_beacon_bss) {
127 		struct cfg80211_internal_bss *hbss;
128 		hbss = container_of(bss->pub.hidden_beacon_bss,
129 				    struct cfg80211_internal_bss,
130 				    pub);
131 		hbss->refcount--;
132 		if (hbss->refcount == 0)
133 			bss_free(hbss);
134 	}
135 
136 	if (bss->pub.transmitted_bss) {
137 		struct cfg80211_internal_bss *tbss;
138 
139 		tbss = container_of(bss->pub.transmitted_bss,
140 				    struct cfg80211_internal_bss,
141 				    pub);
142 		tbss->refcount--;
143 		if (tbss->refcount == 0)
144 			bss_free(tbss);
145 	}
146 
147 	bss->refcount--;
148 	if (bss->refcount == 0)
149 		bss_free(bss);
150 }
151 
152 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
153 				  struct cfg80211_internal_bss *bss)
154 {
155 	lockdep_assert_held(&rdev->bss_lock);
156 
157 	if (!list_empty(&bss->hidden_list)) {
158 		/*
159 		 * don't remove the beacon entry if it has
160 		 * probe responses associated with it
161 		 */
162 		if (!bss->pub.hidden_beacon_bss)
163 			return false;
164 		/*
165 		 * if it's a probe response entry break its
166 		 * link to the other entries in the group
167 		 */
168 		list_del_init(&bss->hidden_list);
169 	}
170 
171 	list_del_init(&bss->list);
172 	list_del_init(&bss->pub.nontrans_list);
173 	rb_erase(&bss->rbn, &rdev->bss_tree);
174 	rdev->bss_entries--;
175 	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
176 		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
177 		  rdev->bss_entries, list_empty(&rdev->bss_list));
178 	bss_ref_put(rdev, bss);
179 	return true;
180 }
181 
182 bool cfg80211_is_element_inherited(const struct element *elem,
183 				   const struct element *non_inherit_elem)
184 {
185 	u8 id_len, ext_id_len, i, loop_len, id;
186 	const u8 *list;
187 
188 	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
189 		return false;
190 
191 	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
192 		return true;
193 
194 	/*
195 	 * non inheritance element format is:
196 	 * ext ID (56) | IDs list len | list | extension IDs list len | list
197 	 * Both lists are optional. Both lengths are mandatory.
198 	 * This means valid length is:
199 	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
200 	 */
201 	id_len = non_inherit_elem->data[1];
202 	if (non_inherit_elem->datalen < 3 + id_len)
203 		return true;
204 
205 	ext_id_len = non_inherit_elem->data[2 + id_len];
206 	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
207 		return true;
208 
209 	if (elem->id == WLAN_EID_EXTENSION) {
210 		if (!ext_id_len)
211 			return true;
212 		loop_len = ext_id_len;
213 		list = &non_inherit_elem->data[3 + id_len];
214 		id = elem->data[0];
215 	} else {
216 		if (!id_len)
217 			return true;
218 		loop_len = id_len;
219 		list = &non_inherit_elem->data[2];
220 		id = elem->id;
221 	}
222 
223 	for (i = 0; i < loop_len; i++) {
224 		if (list[i] == id)
225 			return false;
226 	}
227 
228 	return true;
229 }
230 EXPORT_SYMBOL(cfg80211_is_element_inherited);
231 
232 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
233 				  const u8 *subelement, size_t subie_len,
234 				  u8 *new_ie, gfp_t gfp)
235 {
236 	u8 *pos, *tmp;
237 	const u8 *tmp_old, *tmp_new;
238 	const struct element *non_inherit_elem;
239 	u8 *sub_copy;
240 
241 	/* copy subelement as we need to change its content to
242 	 * mark an ie after it is processed.
243 	 */
244 	sub_copy = kmemdup(subelement, subie_len, gfp);
245 	if (!sub_copy)
246 		return 0;
247 
248 	pos = &new_ie[0];
249 
250 	/* set new ssid */
251 	tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
252 	if (tmp_new) {
253 		memcpy(pos, tmp_new, tmp_new[1] + 2);
254 		pos += (tmp_new[1] + 2);
255 	}
256 
257 	/* get non inheritance list if exists */
258 	non_inherit_elem =
259 		cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
260 				       sub_copy, subie_len);
261 
262 	/* go through IEs in ie (skip SSID) and subelement,
263 	 * merge them into new_ie
264 	 */
265 	tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
266 	tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
267 
268 	while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
269 		if (tmp_old[0] == 0) {
270 			tmp_old++;
271 			continue;
272 		}
273 
274 		if (tmp_old[0] == WLAN_EID_EXTENSION)
275 			tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
276 							 subie_len);
277 		else
278 			tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
279 						     subie_len);
280 
281 		if (!tmp) {
282 			const struct element *old_elem = (void *)tmp_old;
283 
284 			/* ie in old ie but not in subelement */
285 			if (cfg80211_is_element_inherited(old_elem,
286 							  non_inherit_elem)) {
287 				memcpy(pos, tmp_old, tmp_old[1] + 2);
288 				pos += tmp_old[1] + 2;
289 			}
290 		} else {
291 			/* ie in transmitting ie also in subelement,
292 			 * copy from subelement and flag the ie in subelement
293 			 * as copied (by setting eid field to WLAN_EID_SSID,
294 			 * which is skipped anyway).
295 			 * For vendor ie, compare OUI + type + subType to
296 			 * determine if they are the same ie.
297 			 */
298 			if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
299 				if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
300 					/* same vendor ie, copy from
301 					 * subelement
302 					 */
303 					memcpy(pos, tmp, tmp[1] + 2);
304 					pos += tmp[1] + 2;
305 					tmp[0] = WLAN_EID_SSID;
306 				} else {
307 					memcpy(pos, tmp_old, tmp_old[1] + 2);
308 					pos += tmp_old[1] + 2;
309 				}
310 			} else {
311 				/* copy ie from subelement into new ie */
312 				memcpy(pos, tmp, tmp[1] + 2);
313 				pos += tmp[1] + 2;
314 				tmp[0] = WLAN_EID_SSID;
315 			}
316 		}
317 
318 		if (tmp_old + tmp_old[1] + 2 - ie == ielen)
319 			break;
320 
321 		tmp_old += tmp_old[1] + 2;
322 	}
323 
324 	/* go through subelement again to check if there is any ie not
325 	 * copied to new ie, skip ssid, capability, bssid-index ie
326 	 */
327 	tmp_new = sub_copy;
328 	while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
329 		if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
330 		      tmp_new[0] == WLAN_EID_SSID)) {
331 			memcpy(pos, tmp_new, tmp_new[1] + 2);
332 			pos += tmp_new[1] + 2;
333 		}
334 		if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
335 			break;
336 		tmp_new += tmp_new[1] + 2;
337 	}
338 
339 	kfree(sub_copy);
340 	return pos - new_ie;
341 }
342 
343 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
344 		   const u8 *ssid, size_t ssid_len)
345 {
346 	const struct cfg80211_bss_ies *ies;
347 	const u8 *ssidie;
348 
349 	if (bssid && !ether_addr_equal(a->bssid, bssid))
350 		return false;
351 
352 	if (!ssid)
353 		return true;
354 
355 	ies = rcu_access_pointer(a->ies);
356 	if (!ies)
357 		return false;
358 	ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
359 	if (!ssidie)
360 		return false;
361 	if (ssidie[1] != ssid_len)
362 		return false;
363 	return memcmp(ssidie + 2, ssid, ssid_len) == 0;
364 }
365 
366 static int
367 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
368 			   struct cfg80211_bss *nontrans_bss)
369 {
370 	const u8 *ssid;
371 	size_t ssid_len;
372 	struct cfg80211_bss *bss = NULL;
373 
374 	rcu_read_lock();
375 	ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
376 	if (!ssid) {
377 		rcu_read_unlock();
378 		return -EINVAL;
379 	}
380 	ssid_len = ssid[1];
381 	ssid = ssid + 2;
382 	rcu_read_unlock();
383 
384 	/* check if nontrans_bss is in the list */
385 	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
386 		if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len))
387 			return 0;
388 	}
389 
390 	/* add to the list */
391 	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
392 	return 0;
393 }
394 
395 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
396 				  unsigned long expire_time)
397 {
398 	struct cfg80211_internal_bss *bss, *tmp;
399 	bool expired = false;
400 
401 	lockdep_assert_held(&rdev->bss_lock);
402 
403 	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
404 		if (atomic_read(&bss->hold))
405 			continue;
406 		if (!time_after(expire_time, bss->ts))
407 			continue;
408 
409 		if (__cfg80211_unlink_bss(rdev, bss))
410 			expired = true;
411 	}
412 
413 	if (expired)
414 		rdev->bss_generation++;
415 }
416 
417 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
418 {
419 	struct cfg80211_internal_bss *bss, *oldest = NULL;
420 	bool ret;
421 
422 	lockdep_assert_held(&rdev->bss_lock);
423 
424 	list_for_each_entry(bss, &rdev->bss_list, list) {
425 		if (atomic_read(&bss->hold))
426 			continue;
427 
428 		if (!list_empty(&bss->hidden_list) &&
429 		    !bss->pub.hidden_beacon_bss)
430 			continue;
431 
432 		if (oldest && time_before(oldest->ts, bss->ts))
433 			continue;
434 		oldest = bss;
435 	}
436 
437 	if (WARN_ON(!oldest))
438 		return false;
439 
440 	/*
441 	 * The callers make sure to increase rdev->bss_generation if anything
442 	 * gets removed (and a new entry added), so there's no need to also do
443 	 * it here.
444 	 */
445 
446 	ret = __cfg80211_unlink_bss(rdev, oldest);
447 	WARN_ON(!ret);
448 	return ret;
449 }
450 
451 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
452 			   bool send_message)
453 {
454 	struct cfg80211_scan_request *request;
455 	struct wireless_dev *wdev;
456 	struct sk_buff *msg;
457 #ifdef CONFIG_CFG80211_WEXT
458 	union iwreq_data wrqu;
459 #endif
460 
461 	ASSERT_RTNL();
462 
463 	if (rdev->scan_msg) {
464 		nl80211_send_scan_msg(rdev, rdev->scan_msg);
465 		rdev->scan_msg = NULL;
466 		return;
467 	}
468 
469 	request = rdev->scan_req;
470 	if (!request)
471 		return;
472 
473 	wdev = request->wdev;
474 
475 	/*
476 	 * This must be before sending the other events!
477 	 * Otherwise, wpa_supplicant gets completely confused with
478 	 * wext events.
479 	 */
480 	if (wdev->netdev)
481 		cfg80211_sme_scan_done(wdev->netdev);
482 
483 	if (!request->info.aborted &&
484 	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
485 		/* flush entries from previous scans */
486 		spin_lock_bh(&rdev->bss_lock);
487 		__cfg80211_bss_expire(rdev, request->scan_start);
488 		spin_unlock_bh(&rdev->bss_lock);
489 	}
490 
491 	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
492 
493 #ifdef CONFIG_CFG80211_WEXT
494 	if (wdev->netdev && !request->info.aborted) {
495 		memset(&wrqu, 0, sizeof(wrqu));
496 
497 		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
498 	}
499 #endif
500 
501 	if (wdev->netdev)
502 		dev_put(wdev->netdev);
503 
504 	rdev->scan_req = NULL;
505 	kfree(request);
506 
507 	if (!send_message)
508 		rdev->scan_msg = msg;
509 	else
510 		nl80211_send_scan_msg(rdev, msg);
511 }
512 
513 void __cfg80211_scan_done(struct work_struct *wk)
514 {
515 	struct cfg80211_registered_device *rdev;
516 
517 	rdev = container_of(wk, struct cfg80211_registered_device,
518 			    scan_done_wk);
519 
520 	rtnl_lock();
521 	___cfg80211_scan_done(rdev, true);
522 	rtnl_unlock();
523 }
524 
525 void cfg80211_scan_done(struct cfg80211_scan_request *request,
526 			struct cfg80211_scan_info *info)
527 {
528 	trace_cfg80211_scan_done(request, info);
529 	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req);
530 
531 	request->info = *info;
532 	request->notified = true;
533 	queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
534 }
535 EXPORT_SYMBOL(cfg80211_scan_done);
536 
537 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
538 				 struct cfg80211_sched_scan_request *req)
539 {
540 	ASSERT_RTNL();
541 
542 	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
543 }
544 
545 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
546 					struct cfg80211_sched_scan_request *req)
547 {
548 	ASSERT_RTNL();
549 
550 	list_del_rcu(&req->list);
551 	kfree_rcu(req, rcu_head);
552 }
553 
554 static struct cfg80211_sched_scan_request *
555 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
556 {
557 	struct cfg80211_sched_scan_request *pos;
558 
559 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
560 
561 	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list) {
562 		if (pos->reqid == reqid)
563 			return pos;
564 	}
565 	return NULL;
566 }
567 
568 /*
569  * Determines if a scheduled scan request can be handled. When a legacy
570  * scheduled scan is running no other scheduled scan is allowed regardless
571  * whether the request is for legacy or multi-support scan. When a multi-support
572  * scheduled scan is running a request for legacy scan is not allowed. In this
573  * case a request for multi-support scan can be handled if resources are
574  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
575  */
576 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
577 				     bool want_multi)
578 {
579 	struct cfg80211_sched_scan_request *pos;
580 	int i = 0;
581 
582 	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
583 		/* request id zero means legacy in progress */
584 		if (!i && !pos->reqid)
585 			return -EINPROGRESS;
586 		i++;
587 	}
588 
589 	if (i) {
590 		/* no legacy allowed when multi request(s) are active */
591 		if (!want_multi)
592 			return -EINPROGRESS;
593 
594 		/* resource limit reached */
595 		if (i == rdev->wiphy.max_sched_scan_reqs)
596 			return -ENOSPC;
597 	}
598 	return 0;
599 }
600 
601 void cfg80211_sched_scan_results_wk(struct work_struct *work)
602 {
603 	struct cfg80211_registered_device *rdev;
604 	struct cfg80211_sched_scan_request *req, *tmp;
605 
606 	rdev = container_of(work, struct cfg80211_registered_device,
607 			   sched_scan_res_wk);
608 
609 	rtnl_lock();
610 	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
611 		if (req->report_results) {
612 			req->report_results = false;
613 			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
614 				/* flush entries from previous scans */
615 				spin_lock_bh(&rdev->bss_lock);
616 				__cfg80211_bss_expire(rdev, req->scan_start);
617 				spin_unlock_bh(&rdev->bss_lock);
618 				req->scan_start = jiffies;
619 			}
620 			nl80211_send_sched_scan(req,
621 						NL80211_CMD_SCHED_SCAN_RESULTS);
622 		}
623 	}
624 	rtnl_unlock();
625 }
626 
627 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
628 {
629 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
630 	struct cfg80211_sched_scan_request *request;
631 
632 	trace_cfg80211_sched_scan_results(wiphy, reqid);
633 	/* ignore if we're not scanning */
634 
635 	rcu_read_lock();
636 	request = cfg80211_find_sched_scan_req(rdev, reqid);
637 	if (request) {
638 		request->report_results = true;
639 		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
640 	}
641 	rcu_read_unlock();
642 }
643 EXPORT_SYMBOL(cfg80211_sched_scan_results);
644 
645 void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy, u64 reqid)
646 {
647 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
648 
649 	ASSERT_RTNL();
650 
651 	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
652 
653 	__cfg80211_stop_sched_scan(rdev, reqid, true);
654 }
655 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_rtnl);
656 
657 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
658 {
659 	rtnl_lock();
660 	cfg80211_sched_scan_stopped_rtnl(wiphy, reqid);
661 	rtnl_unlock();
662 }
663 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
664 
665 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
666 				 struct cfg80211_sched_scan_request *req,
667 				 bool driver_initiated)
668 {
669 	ASSERT_RTNL();
670 
671 	if (!driver_initiated) {
672 		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
673 		if (err)
674 			return err;
675 	}
676 
677 	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
678 
679 	cfg80211_del_sched_scan_req(rdev, req);
680 
681 	return 0;
682 }
683 
684 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
685 			       u64 reqid, bool driver_initiated)
686 {
687 	struct cfg80211_sched_scan_request *sched_scan_req;
688 
689 	ASSERT_RTNL();
690 
691 	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
692 	if (!sched_scan_req)
693 		return -ENOENT;
694 
695 	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
696 					    driver_initiated);
697 }
698 
699 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
700                       unsigned long age_secs)
701 {
702 	struct cfg80211_internal_bss *bss;
703 	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
704 
705 	spin_lock_bh(&rdev->bss_lock);
706 	list_for_each_entry(bss, &rdev->bss_list, list)
707 		bss->ts -= age_jiffies;
708 	spin_unlock_bh(&rdev->bss_lock);
709 }
710 
711 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
712 {
713 	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
714 }
715 
716 const struct element *
717 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
718 			 const u8 *match, unsigned int match_len,
719 			 unsigned int match_offset)
720 {
721 	const struct element *elem;
722 
723 	for_each_element_id(elem, eid, ies, len) {
724 		if (elem->datalen >= match_offset + match_len &&
725 		    !memcmp(elem->data + match_offset, match, match_len))
726 			return elem;
727 	}
728 
729 	return NULL;
730 }
731 EXPORT_SYMBOL(cfg80211_find_elem_match);
732 
733 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
734 						const u8 *ies,
735 						unsigned int len)
736 {
737 	const struct element *elem;
738 	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
739 	int match_len = (oui_type < 0) ? 3 : sizeof(match);
740 
741 	if (WARN_ON(oui_type > 0xff))
742 		return NULL;
743 
744 	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
745 					match, match_len, 0);
746 
747 	if (!elem || elem->datalen < 4)
748 		return NULL;
749 
750 	return elem;
751 }
752 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
753 
754 /**
755  * enum bss_compare_mode - BSS compare mode
756  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
757  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
758  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
759  */
760 enum bss_compare_mode {
761 	BSS_CMP_REGULAR,
762 	BSS_CMP_HIDE_ZLEN,
763 	BSS_CMP_HIDE_NUL,
764 };
765 
766 static int cmp_bss(struct cfg80211_bss *a,
767 		   struct cfg80211_bss *b,
768 		   enum bss_compare_mode mode)
769 {
770 	const struct cfg80211_bss_ies *a_ies, *b_ies;
771 	const u8 *ie1 = NULL;
772 	const u8 *ie2 = NULL;
773 	int i, r;
774 
775 	if (a->channel != b->channel)
776 		return b->channel->center_freq - a->channel->center_freq;
777 
778 	a_ies = rcu_access_pointer(a->ies);
779 	if (!a_ies)
780 		return -1;
781 	b_ies = rcu_access_pointer(b->ies);
782 	if (!b_ies)
783 		return 1;
784 
785 	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
786 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
787 				       a_ies->data, a_ies->len);
788 	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
789 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
790 				       b_ies->data, b_ies->len);
791 	if (ie1 && ie2) {
792 		int mesh_id_cmp;
793 
794 		if (ie1[1] == ie2[1])
795 			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
796 		else
797 			mesh_id_cmp = ie2[1] - ie1[1];
798 
799 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
800 				       a_ies->data, a_ies->len);
801 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
802 				       b_ies->data, b_ies->len);
803 		if (ie1 && ie2) {
804 			if (mesh_id_cmp)
805 				return mesh_id_cmp;
806 			if (ie1[1] != ie2[1])
807 				return ie2[1] - ie1[1];
808 			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
809 		}
810 	}
811 
812 	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
813 	if (r)
814 		return r;
815 
816 	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
817 	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
818 
819 	if (!ie1 && !ie2)
820 		return 0;
821 
822 	/*
823 	 * Note that with "hide_ssid", the function returns a match if
824 	 * the already-present BSS ("b") is a hidden SSID beacon for
825 	 * the new BSS ("a").
826 	 */
827 
828 	/* sort missing IE before (left of) present IE */
829 	if (!ie1)
830 		return -1;
831 	if (!ie2)
832 		return 1;
833 
834 	switch (mode) {
835 	case BSS_CMP_HIDE_ZLEN:
836 		/*
837 		 * In ZLEN mode we assume the BSS entry we're
838 		 * looking for has a zero-length SSID. So if
839 		 * the one we're looking at right now has that,
840 		 * return 0. Otherwise, return the difference
841 		 * in length, but since we're looking for the
842 		 * 0-length it's really equivalent to returning
843 		 * the length of the one we're looking at.
844 		 *
845 		 * No content comparison is needed as we assume
846 		 * the content length is zero.
847 		 */
848 		return ie2[1];
849 	case BSS_CMP_REGULAR:
850 	default:
851 		/* sort by length first, then by contents */
852 		if (ie1[1] != ie2[1])
853 			return ie2[1] - ie1[1];
854 		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
855 	case BSS_CMP_HIDE_NUL:
856 		if (ie1[1] != ie2[1])
857 			return ie2[1] - ie1[1];
858 		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
859 		for (i = 0; i < ie2[1]; i++)
860 			if (ie2[i + 2])
861 				return -1;
862 		return 0;
863 	}
864 }
865 
866 static bool cfg80211_bss_type_match(u16 capability,
867 				    enum nl80211_band band,
868 				    enum ieee80211_bss_type bss_type)
869 {
870 	bool ret = true;
871 	u16 mask, val;
872 
873 	if (bss_type == IEEE80211_BSS_TYPE_ANY)
874 		return ret;
875 
876 	if (band == NL80211_BAND_60GHZ) {
877 		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
878 		switch (bss_type) {
879 		case IEEE80211_BSS_TYPE_ESS:
880 			val = WLAN_CAPABILITY_DMG_TYPE_AP;
881 			break;
882 		case IEEE80211_BSS_TYPE_PBSS:
883 			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
884 			break;
885 		case IEEE80211_BSS_TYPE_IBSS:
886 			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
887 			break;
888 		default:
889 			return false;
890 		}
891 	} else {
892 		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
893 		switch (bss_type) {
894 		case IEEE80211_BSS_TYPE_ESS:
895 			val = WLAN_CAPABILITY_ESS;
896 			break;
897 		case IEEE80211_BSS_TYPE_IBSS:
898 			val = WLAN_CAPABILITY_IBSS;
899 			break;
900 		case IEEE80211_BSS_TYPE_MBSS:
901 			val = 0;
902 			break;
903 		default:
904 			return false;
905 		}
906 	}
907 
908 	ret = ((capability & mask) == val);
909 	return ret;
910 }
911 
912 /* Returned bss is reference counted and must be cleaned up appropriately. */
913 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
914 				      struct ieee80211_channel *channel,
915 				      const u8 *bssid,
916 				      const u8 *ssid, size_t ssid_len,
917 				      enum ieee80211_bss_type bss_type,
918 				      enum ieee80211_privacy privacy)
919 {
920 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
921 	struct cfg80211_internal_bss *bss, *res = NULL;
922 	unsigned long now = jiffies;
923 	int bss_privacy;
924 
925 	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
926 			       privacy);
927 
928 	spin_lock_bh(&rdev->bss_lock);
929 
930 	list_for_each_entry(bss, &rdev->bss_list, list) {
931 		if (!cfg80211_bss_type_match(bss->pub.capability,
932 					     bss->pub.channel->band, bss_type))
933 			continue;
934 
935 		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
936 		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
937 		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
938 			continue;
939 		if (channel && bss->pub.channel != channel)
940 			continue;
941 		if (!is_valid_ether_addr(bss->pub.bssid))
942 			continue;
943 		/* Don't get expired BSS structs */
944 		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
945 		    !atomic_read(&bss->hold))
946 			continue;
947 		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
948 			res = bss;
949 			bss_ref_get(rdev, res);
950 			break;
951 		}
952 	}
953 
954 	spin_unlock_bh(&rdev->bss_lock);
955 	if (!res)
956 		return NULL;
957 	trace_cfg80211_return_bss(&res->pub);
958 	return &res->pub;
959 }
960 EXPORT_SYMBOL(cfg80211_get_bss);
961 
962 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
963 			  struct cfg80211_internal_bss *bss)
964 {
965 	struct rb_node **p = &rdev->bss_tree.rb_node;
966 	struct rb_node *parent = NULL;
967 	struct cfg80211_internal_bss *tbss;
968 	int cmp;
969 
970 	while (*p) {
971 		parent = *p;
972 		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
973 
974 		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
975 
976 		if (WARN_ON(!cmp)) {
977 			/* will sort of leak this BSS */
978 			return;
979 		}
980 
981 		if (cmp < 0)
982 			p = &(*p)->rb_left;
983 		else
984 			p = &(*p)->rb_right;
985 	}
986 
987 	rb_link_node(&bss->rbn, parent, p);
988 	rb_insert_color(&bss->rbn, &rdev->bss_tree);
989 }
990 
991 static struct cfg80211_internal_bss *
992 rb_find_bss(struct cfg80211_registered_device *rdev,
993 	    struct cfg80211_internal_bss *res,
994 	    enum bss_compare_mode mode)
995 {
996 	struct rb_node *n = rdev->bss_tree.rb_node;
997 	struct cfg80211_internal_bss *bss;
998 	int r;
999 
1000 	while (n) {
1001 		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1002 		r = cmp_bss(&res->pub, &bss->pub, mode);
1003 
1004 		if (r == 0)
1005 			return bss;
1006 		else if (r < 0)
1007 			n = n->rb_left;
1008 		else
1009 			n = n->rb_right;
1010 	}
1011 
1012 	return NULL;
1013 }
1014 
1015 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1016 				   struct cfg80211_internal_bss *new)
1017 {
1018 	const struct cfg80211_bss_ies *ies;
1019 	struct cfg80211_internal_bss *bss;
1020 	const u8 *ie;
1021 	int i, ssidlen;
1022 	u8 fold = 0;
1023 	u32 n_entries = 0;
1024 
1025 	ies = rcu_access_pointer(new->pub.beacon_ies);
1026 	if (WARN_ON(!ies))
1027 		return false;
1028 
1029 	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1030 	if (!ie) {
1031 		/* nothing to do */
1032 		return true;
1033 	}
1034 
1035 	ssidlen = ie[1];
1036 	for (i = 0; i < ssidlen; i++)
1037 		fold |= ie[2 + i];
1038 
1039 	if (fold) {
1040 		/* not a hidden SSID */
1041 		return true;
1042 	}
1043 
1044 	/* This is the bad part ... */
1045 
1046 	list_for_each_entry(bss, &rdev->bss_list, list) {
1047 		/*
1048 		 * we're iterating all the entries anyway, so take the
1049 		 * opportunity to validate the list length accounting
1050 		 */
1051 		n_entries++;
1052 
1053 		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1054 			continue;
1055 		if (bss->pub.channel != new->pub.channel)
1056 			continue;
1057 		if (bss->pub.scan_width != new->pub.scan_width)
1058 			continue;
1059 		if (rcu_access_pointer(bss->pub.beacon_ies))
1060 			continue;
1061 		ies = rcu_access_pointer(bss->pub.ies);
1062 		if (!ies)
1063 			continue;
1064 		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1065 		if (!ie)
1066 			continue;
1067 		if (ssidlen && ie[1] != ssidlen)
1068 			continue;
1069 		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1070 			continue;
1071 		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1072 			list_del(&bss->hidden_list);
1073 		/* combine them */
1074 		list_add(&bss->hidden_list, &new->hidden_list);
1075 		bss->pub.hidden_beacon_bss = &new->pub;
1076 		new->refcount += bss->refcount;
1077 		rcu_assign_pointer(bss->pub.beacon_ies,
1078 				   new->pub.beacon_ies);
1079 	}
1080 
1081 	WARN_ONCE(n_entries != rdev->bss_entries,
1082 		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1083 		  rdev->bss_entries, n_entries);
1084 
1085 	return true;
1086 }
1087 
1088 struct cfg80211_non_tx_bss {
1089 	struct cfg80211_bss *tx_bss;
1090 	u8 max_bssid_indicator;
1091 	u8 bssid_index;
1092 };
1093 
1094 static bool
1095 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1096 			  struct cfg80211_internal_bss *known,
1097 			  struct cfg80211_internal_bss *new,
1098 			  bool signal_valid)
1099 {
1100 	lockdep_assert_held(&rdev->bss_lock);
1101 
1102 	/* Update IEs */
1103 	if (rcu_access_pointer(new->pub.proberesp_ies)) {
1104 		const struct cfg80211_bss_ies *old;
1105 
1106 		old = rcu_access_pointer(known->pub.proberesp_ies);
1107 
1108 		rcu_assign_pointer(known->pub.proberesp_ies,
1109 				   new->pub.proberesp_ies);
1110 		/* Override possible earlier Beacon frame IEs */
1111 		rcu_assign_pointer(known->pub.ies,
1112 				   new->pub.proberesp_ies);
1113 		if (old)
1114 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1115 	} else if (rcu_access_pointer(new->pub.beacon_ies)) {
1116 		const struct cfg80211_bss_ies *old;
1117 		struct cfg80211_internal_bss *bss;
1118 
1119 		if (known->pub.hidden_beacon_bss &&
1120 		    !list_empty(&known->hidden_list)) {
1121 			const struct cfg80211_bss_ies *f;
1122 
1123 			/* The known BSS struct is one of the probe
1124 			 * response members of a group, but we're
1125 			 * receiving a beacon (beacon_ies in the new
1126 			 * bss is used). This can only mean that the
1127 			 * AP changed its beacon from not having an
1128 			 * SSID to showing it, which is confusing so
1129 			 * drop this information.
1130 			 */
1131 
1132 			f = rcu_access_pointer(new->pub.beacon_ies);
1133 			kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1134 			return false;
1135 		}
1136 
1137 		old = rcu_access_pointer(known->pub.beacon_ies);
1138 
1139 		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1140 
1141 		/* Override IEs if they were from a beacon before */
1142 		if (old == rcu_access_pointer(known->pub.ies))
1143 			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1144 
1145 		/* Assign beacon IEs to all sub entries */
1146 		list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1147 			const struct cfg80211_bss_ies *ies;
1148 
1149 			ies = rcu_access_pointer(bss->pub.beacon_ies);
1150 			WARN_ON(ies != old);
1151 
1152 			rcu_assign_pointer(bss->pub.beacon_ies,
1153 					   new->pub.beacon_ies);
1154 		}
1155 
1156 		if (old)
1157 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1158 	}
1159 
1160 	known->pub.beacon_interval = new->pub.beacon_interval;
1161 
1162 	/* don't update the signal if beacon was heard on
1163 	 * adjacent channel.
1164 	 */
1165 	if (signal_valid)
1166 		known->pub.signal = new->pub.signal;
1167 	known->pub.capability = new->pub.capability;
1168 	known->ts = new->ts;
1169 	known->ts_boottime = new->ts_boottime;
1170 	known->parent_tsf = new->parent_tsf;
1171 	known->pub.chains = new->pub.chains;
1172 	memcpy(known->pub.chain_signal, new->pub.chain_signal,
1173 	       IEEE80211_MAX_CHAINS);
1174 	ether_addr_copy(known->parent_bssid, new->parent_bssid);
1175 	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1176 	known->pub.bssid_index = new->pub.bssid_index;
1177 
1178 	return true;
1179 }
1180 
1181 /* Returned bss is reference counted and must be cleaned up appropriately. */
1182 struct cfg80211_internal_bss *
1183 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1184 		    struct cfg80211_internal_bss *tmp,
1185 		    bool signal_valid, unsigned long ts)
1186 {
1187 	struct cfg80211_internal_bss *found = NULL;
1188 
1189 	if (WARN_ON(!tmp->pub.channel))
1190 		return NULL;
1191 
1192 	tmp->ts = ts;
1193 
1194 	spin_lock_bh(&rdev->bss_lock);
1195 
1196 	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1197 		spin_unlock_bh(&rdev->bss_lock);
1198 		return NULL;
1199 	}
1200 
1201 	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1202 
1203 	if (found) {
1204 		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1205 			goto drop;
1206 	} else {
1207 		struct cfg80211_internal_bss *new;
1208 		struct cfg80211_internal_bss *hidden;
1209 		struct cfg80211_bss_ies *ies;
1210 
1211 		/*
1212 		 * create a copy -- the "res" variable that is passed in
1213 		 * is allocated on the stack since it's not needed in the
1214 		 * more common case of an update
1215 		 */
1216 		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1217 			      GFP_ATOMIC);
1218 		if (!new) {
1219 			ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1220 			if (ies)
1221 				kfree_rcu(ies, rcu_head);
1222 			ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1223 			if (ies)
1224 				kfree_rcu(ies, rcu_head);
1225 			goto drop;
1226 		}
1227 		memcpy(new, tmp, sizeof(*new));
1228 		new->refcount = 1;
1229 		INIT_LIST_HEAD(&new->hidden_list);
1230 		INIT_LIST_HEAD(&new->pub.nontrans_list);
1231 
1232 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1233 			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1234 			if (!hidden)
1235 				hidden = rb_find_bss(rdev, tmp,
1236 						     BSS_CMP_HIDE_NUL);
1237 			if (hidden) {
1238 				new->pub.hidden_beacon_bss = &hidden->pub;
1239 				list_add(&new->hidden_list,
1240 					 &hidden->hidden_list);
1241 				hidden->refcount++;
1242 				rcu_assign_pointer(new->pub.beacon_ies,
1243 						   hidden->pub.beacon_ies);
1244 			}
1245 		} else {
1246 			/*
1247 			 * Ok so we found a beacon, and don't have an entry. If
1248 			 * it's a beacon with hidden SSID, we might be in for an
1249 			 * expensive search for any probe responses that should
1250 			 * be grouped with this beacon for updates ...
1251 			 */
1252 			if (!cfg80211_combine_bsses(rdev, new)) {
1253 				kfree(new);
1254 				goto drop;
1255 			}
1256 		}
1257 
1258 		if (rdev->bss_entries >= bss_entries_limit &&
1259 		    !cfg80211_bss_expire_oldest(rdev)) {
1260 			kfree(new);
1261 			goto drop;
1262 		}
1263 
1264 		/* This must be before the call to bss_ref_get */
1265 		if (tmp->pub.transmitted_bss) {
1266 			struct cfg80211_internal_bss *pbss =
1267 				container_of(tmp->pub.transmitted_bss,
1268 					     struct cfg80211_internal_bss,
1269 					     pub);
1270 
1271 			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1272 			bss_ref_get(rdev, pbss);
1273 		}
1274 
1275 		list_add_tail(&new->list, &rdev->bss_list);
1276 		rdev->bss_entries++;
1277 		rb_insert_bss(rdev, new);
1278 		found = new;
1279 	}
1280 
1281 	rdev->bss_generation++;
1282 	bss_ref_get(rdev, found);
1283 	spin_unlock_bh(&rdev->bss_lock);
1284 
1285 	return found;
1286  drop:
1287 	spin_unlock_bh(&rdev->bss_lock);
1288 	return NULL;
1289 }
1290 
1291 /*
1292  * Update RX channel information based on the available frame payload
1293  * information. This is mainly for the 2.4 GHz band where frames can be received
1294  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1295  * element to indicate the current (transmitting) channel, but this might also
1296  * be needed on other bands if RX frequency does not match with the actual
1297  * operating channel of a BSS.
1298  */
1299 static struct ieee80211_channel *
1300 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1301 			 struct ieee80211_channel *channel,
1302 			 enum nl80211_bss_scan_width scan_width)
1303 {
1304 	const u8 *tmp;
1305 	u32 freq;
1306 	int channel_number = -1;
1307 	struct ieee80211_channel *alt_channel;
1308 
1309 	tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1310 	if (tmp && tmp[1] == 1) {
1311 		channel_number = tmp[2];
1312 	} else {
1313 		tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1314 		if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1315 			struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1316 
1317 			channel_number = htop->primary_chan;
1318 		}
1319 	}
1320 
1321 	if (channel_number < 0) {
1322 		/* No channel information in frame payload */
1323 		return channel;
1324 	}
1325 
1326 	freq = ieee80211_channel_to_frequency(channel_number, channel->band);
1327 	alt_channel = ieee80211_get_channel(wiphy, freq);
1328 	if (!alt_channel) {
1329 		if (channel->band == NL80211_BAND_2GHZ) {
1330 			/*
1331 			 * Better not allow unexpected channels when that could
1332 			 * be going beyond the 1-11 range (e.g., discovering
1333 			 * BSS on channel 12 when radio is configured for
1334 			 * channel 11.
1335 			 */
1336 			return NULL;
1337 		}
1338 
1339 		/* No match for the payload channel number - ignore it */
1340 		return channel;
1341 	}
1342 
1343 	if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1344 	    scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1345 		/*
1346 		 * Ignore channel number in 5 and 10 MHz channels where there
1347 		 * may not be an n:1 or 1:n mapping between frequencies and
1348 		 * channel numbers.
1349 		 */
1350 		return channel;
1351 	}
1352 
1353 	/*
1354 	 * Use the channel determined through the payload channel number
1355 	 * instead of the RX channel reported by the driver.
1356 	 */
1357 	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1358 		return NULL;
1359 	return alt_channel;
1360 }
1361 
1362 /* Returned bss is reference counted and must be cleaned up appropriately. */
1363 static struct cfg80211_bss *
1364 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1365 				struct cfg80211_inform_bss *data,
1366 				enum cfg80211_bss_frame_type ftype,
1367 				const u8 *bssid, u64 tsf, u16 capability,
1368 				u16 beacon_interval, const u8 *ie, size_t ielen,
1369 				struct cfg80211_non_tx_bss *non_tx_data,
1370 				gfp_t gfp)
1371 {
1372 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1373 	struct cfg80211_bss_ies *ies;
1374 	struct ieee80211_channel *channel;
1375 	struct cfg80211_internal_bss tmp = {}, *res;
1376 	int bss_type;
1377 	bool signal_valid;
1378 	unsigned long ts;
1379 
1380 	if (WARN_ON(!wiphy))
1381 		return NULL;
1382 
1383 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1384 		    (data->signal < 0 || data->signal > 100)))
1385 		return NULL;
1386 
1387 	channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1388 					   data->scan_width);
1389 	if (!channel)
1390 		return NULL;
1391 
1392 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1393 	tmp.pub.channel = channel;
1394 	tmp.pub.scan_width = data->scan_width;
1395 	tmp.pub.signal = data->signal;
1396 	tmp.pub.beacon_interval = beacon_interval;
1397 	tmp.pub.capability = capability;
1398 	tmp.ts_boottime = data->boottime_ns;
1399 	if (non_tx_data) {
1400 		tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1401 		ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1402 		tmp.pub.bssid_index = non_tx_data->bssid_index;
1403 		tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1404 	} else {
1405 		ts = jiffies;
1406 	}
1407 
1408 	/*
1409 	 * If we do not know here whether the IEs are from a Beacon or Probe
1410 	 * Response frame, we need to pick one of the options and only use it
1411 	 * with the driver that does not provide the full Beacon/Probe Response
1412 	 * frame. Use Beacon frame pointer to avoid indicating that this should
1413 	 * override the IEs pointer should we have received an earlier
1414 	 * indication of Probe Response data.
1415 	 */
1416 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
1417 	if (!ies)
1418 		return NULL;
1419 	ies->len = ielen;
1420 	ies->tsf = tsf;
1421 	ies->from_beacon = false;
1422 	memcpy(ies->data, ie, ielen);
1423 
1424 	switch (ftype) {
1425 	case CFG80211_BSS_FTYPE_BEACON:
1426 		ies->from_beacon = true;
1427 		/* fall through */
1428 	case CFG80211_BSS_FTYPE_UNKNOWN:
1429 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1430 		break;
1431 	case CFG80211_BSS_FTYPE_PRESP:
1432 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1433 		break;
1434 	}
1435 	rcu_assign_pointer(tmp.pub.ies, ies);
1436 
1437 	signal_valid = abs(data->chan->center_freq - channel->center_freq) <=
1438 		wiphy->max_adj_channel_rssi_comp;
1439 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
1440 	if (!res)
1441 		return NULL;
1442 
1443 	if (channel->band == NL80211_BAND_60GHZ) {
1444 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1445 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1446 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1447 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1448 	} else {
1449 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
1450 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1451 	}
1452 
1453 	if (non_tx_data) {
1454 		/* this is a nontransmitting bss, we need to add it to
1455 		 * transmitting bss' list if it is not there
1456 		 */
1457 		if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
1458 					       &res->pub)) {
1459 			if (__cfg80211_unlink_bss(rdev, res))
1460 				rdev->bss_generation++;
1461 		}
1462 	}
1463 
1464 	trace_cfg80211_return_bss(&res->pub);
1465 	/* cfg80211_bss_update gives us a referenced result */
1466 	return &res->pub;
1467 }
1468 
1469 static const struct element
1470 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
1471 				   const struct element *mbssid_elem,
1472 				   const struct element *sub_elem)
1473 {
1474 	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
1475 	const struct element *next_mbssid;
1476 	const struct element *next_sub;
1477 
1478 	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
1479 					 mbssid_end,
1480 					 ielen - (mbssid_end - ie));
1481 
1482 	/*
1483 	 * If is is not the last subelement in current MBSSID IE or there isn't
1484 	 * a next MBSSID IE - profile is complete.
1485 	*/
1486 	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
1487 	    !next_mbssid)
1488 		return NULL;
1489 
1490 	/* For any length error, just return NULL */
1491 
1492 	if (next_mbssid->datalen < 4)
1493 		return NULL;
1494 
1495 	next_sub = (void *)&next_mbssid->data[1];
1496 
1497 	if (next_mbssid->data + next_mbssid->datalen <
1498 	    next_sub->data + next_sub->datalen)
1499 		return NULL;
1500 
1501 	if (next_sub->id != 0 || next_sub->datalen < 2)
1502 		return NULL;
1503 
1504 	/*
1505 	 * Check if the first element in the next sub element is a start
1506 	 * of a new profile
1507 	 */
1508 	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
1509 	       NULL : next_mbssid;
1510 }
1511 
1512 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
1513 			      const struct element *mbssid_elem,
1514 			      const struct element *sub_elem,
1515 			      u8 *merged_ie, size_t max_copy_len)
1516 {
1517 	size_t copied_len = sub_elem->datalen;
1518 	const struct element *next_mbssid;
1519 
1520 	if (sub_elem->datalen > max_copy_len)
1521 		return 0;
1522 
1523 	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
1524 
1525 	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
1526 								mbssid_elem,
1527 								sub_elem))) {
1528 		const struct element *next_sub = (void *)&next_mbssid->data[1];
1529 
1530 		if (copied_len + next_sub->datalen > max_copy_len)
1531 			break;
1532 		memcpy(merged_ie + copied_len, next_sub->data,
1533 		       next_sub->datalen);
1534 		copied_len += next_sub->datalen;
1535 	}
1536 
1537 	return copied_len;
1538 }
1539 EXPORT_SYMBOL(cfg80211_merge_profile);
1540 
1541 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
1542 				       struct cfg80211_inform_bss *data,
1543 				       enum cfg80211_bss_frame_type ftype,
1544 				       const u8 *bssid, u64 tsf,
1545 				       u16 beacon_interval, const u8 *ie,
1546 				       size_t ielen,
1547 				       struct cfg80211_non_tx_bss *non_tx_data,
1548 				       gfp_t gfp)
1549 {
1550 	const u8 *mbssid_index_ie;
1551 	const struct element *elem, *sub;
1552 	size_t new_ie_len;
1553 	u8 new_bssid[ETH_ALEN];
1554 	u8 *new_ie, *profile;
1555 	u64 seen_indices = 0;
1556 	u16 capability;
1557 	struct cfg80211_bss *bss;
1558 
1559 	if (!non_tx_data)
1560 		return;
1561 	if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
1562 		return;
1563 	if (!wiphy->support_mbssid)
1564 		return;
1565 	if (wiphy->support_only_he_mbssid &&
1566 	    !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
1567 		return;
1568 
1569 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
1570 	if (!new_ie)
1571 		return;
1572 
1573 	profile = kmalloc(ielen, gfp);
1574 	if (!profile)
1575 		goto out;
1576 
1577 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
1578 		if (elem->datalen < 4)
1579 			continue;
1580 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
1581 			u8 profile_len;
1582 
1583 			if (sub->id != 0 || sub->datalen < 4) {
1584 				/* not a valid BSS profile */
1585 				continue;
1586 			}
1587 
1588 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
1589 			    sub->data[1] != 2) {
1590 				/* The first element within the Nontransmitted
1591 				 * BSSID Profile is not the Nontransmitted
1592 				 * BSSID Capability element.
1593 				 */
1594 				continue;
1595 			}
1596 
1597 			memset(profile, 0, ielen);
1598 			profile_len = cfg80211_merge_profile(ie, ielen,
1599 							     elem,
1600 							     sub,
1601 							     profile,
1602 							     ielen);
1603 
1604 			/* found a Nontransmitted BSSID Profile */
1605 			mbssid_index_ie = cfg80211_find_ie
1606 				(WLAN_EID_MULTI_BSSID_IDX,
1607 				 profile, profile_len);
1608 			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
1609 			    mbssid_index_ie[2] == 0 ||
1610 			    mbssid_index_ie[2] > 46) {
1611 				/* No valid Multiple BSSID-Index element */
1612 				continue;
1613 			}
1614 
1615 			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
1616 				/* We don't support legacy split of a profile */
1617 				net_dbg_ratelimited("Partial info for BSSID index %d\n",
1618 						    mbssid_index_ie[2]);
1619 
1620 			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
1621 
1622 			non_tx_data->bssid_index = mbssid_index_ie[2];
1623 			non_tx_data->max_bssid_indicator = elem->data[0];
1624 
1625 			cfg80211_gen_new_bssid(bssid,
1626 					       non_tx_data->max_bssid_indicator,
1627 					       non_tx_data->bssid_index,
1628 					       new_bssid);
1629 			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
1630 			new_ie_len = cfg80211_gen_new_ie(ie, ielen,
1631 							 profile,
1632 							 profile_len, new_ie,
1633 							 gfp);
1634 			if (!new_ie_len)
1635 				continue;
1636 
1637 			capability = get_unaligned_le16(profile + 2);
1638 			bss = cfg80211_inform_single_bss_data(wiphy, data,
1639 							      ftype,
1640 							      new_bssid, tsf,
1641 							      capability,
1642 							      beacon_interval,
1643 							      new_ie,
1644 							      new_ie_len,
1645 							      non_tx_data,
1646 							      gfp);
1647 			if (!bss)
1648 				break;
1649 			cfg80211_put_bss(wiphy, bss);
1650 		}
1651 	}
1652 
1653 out:
1654 	kfree(new_ie);
1655 	kfree(profile);
1656 }
1657 
1658 struct cfg80211_bss *
1659 cfg80211_inform_bss_data(struct wiphy *wiphy,
1660 			 struct cfg80211_inform_bss *data,
1661 			 enum cfg80211_bss_frame_type ftype,
1662 			 const u8 *bssid, u64 tsf, u16 capability,
1663 			 u16 beacon_interval, const u8 *ie, size_t ielen,
1664 			 gfp_t gfp)
1665 {
1666 	struct cfg80211_bss *res;
1667 	struct cfg80211_non_tx_bss non_tx_data;
1668 
1669 	res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
1670 					      capability, beacon_interval, ie,
1671 					      ielen, NULL, gfp);
1672 	if (!res)
1673 		return NULL;
1674 	non_tx_data.tx_bss = res;
1675 	cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
1676 				   beacon_interval, ie, ielen, &non_tx_data,
1677 				   gfp);
1678 	return res;
1679 }
1680 EXPORT_SYMBOL(cfg80211_inform_bss_data);
1681 
1682 static void
1683 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
1684 				 struct cfg80211_inform_bss *data,
1685 				 struct ieee80211_mgmt *mgmt, size_t len,
1686 				 struct cfg80211_non_tx_bss *non_tx_data,
1687 				 gfp_t gfp)
1688 {
1689 	enum cfg80211_bss_frame_type ftype;
1690 	const u8 *ie = mgmt->u.probe_resp.variable;
1691 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
1692 				      u.probe_resp.variable);
1693 
1694 	ftype = ieee80211_is_beacon(mgmt->frame_control) ?
1695 		CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
1696 
1697 	cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
1698 				   le64_to_cpu(mgmt->u.probe_resp.timestamp),
1699 				   le16_to_cpu(mgmt->u.probe_resp.beacon_int),
1700 				   ie, ielen, non_tx_data, gfp);
1701 }
1702 
1703 static void
1704 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
1705 				   struct cfg80211_bss *nontrans_bss,
1706 				   struct ieee80211_mgmt *mgmt, size_t len,
1707 				   gfp_t gfp)
1708 {
1709 	u8 *ie, *new_ie, *pos;
1710 	const u8 *nontrans_ssid, *trans_ssid, *mbssid;
1711 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
1712 				      u.probe_resp.variable);
1713 	size_t new_ie_len;
1714 	struct cfg80211_bss_ies *new_ies;
1715 	const struct cfg80211_bss_ies *old;
1716 	u8 cpy_len;
1717 
1718 	ie = mgmt->u.probe_resp.variable;
1719 
1720 	new_ie_len = ielen;
1721 	trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
1722 	if (!trans_ssid)
1723 		return;
1724 	new_ie_len -= trans_ssid[1];
1725 	mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
1726 	if (!mbssid)
1727 		return;
1728 	new_ie_len -= mbssid[1];
1729 	rcu_read_lock();
1730 	nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
1731 	if (!nontrans_ssid) {
1732 		rcu_read_unlock();
1733 		return;
1734 	}
1735 	new_ie_len += nontrans_ssid[1];
1736 	rcu_read_unlock();
1737 
1738 	/* generate new ie for nontrans BSS
1739 	 * 1. replace SSID with nontrans BSS' SSID
1740 	 * 2. skip MBSSID IE
1741 	 */
1742 	new_ie = kzalloc(new_ie_len, gfp);
1743 	if (!new_ie)
1744 		return;
1745 	new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, gfp);
1746 	if (!new_ies)
1747 		goto out_free;
1748 
1749 	pos = new_ie;
1750 
1751 	/* copy the nontransmitted SSID */
1752 	cpy_len = nontrans_ssid[1] + 2;
1753 	memcpy(pos, nontrans_ssid, cpy_len);
1754 	pos += cpy_len;
1755 	/* copy the IEs between SSID and MBSSID */
1756 	cpy_len = trans_ssid[1] + 2;
1757 	memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
1758 	pos += (mbssid - (trans_ssid + cpy_len));
1759 	/* copy the IEs after MBSSID */
1760 	cpy_len = mbssid[1] + 2;
1761 	memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
1762 
1763 	/* update ie */
1764 	new_ies->len = new_ie_len;
1765 	new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
1766 	new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
1767 	memcpy(new_ies->data, new_ie, new_ie_len);
1768 	if (ieee80211_is_probe_resp(mgmt->frame_control)) {
1769 		old = rcu_access_pointer(nontrans_bss->proberesp_ies);
1770 		rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
1771 		rcu_assign_pointer(nontrans_bss->ies, new_ies);
1772 		if (old)
1773 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1774 	} else {
1775 		old = rcu_access_pointer(nontrans_bss->beacon_ies);
1776 		rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
1777 		rcu_assign_pointer(nontrans_bss->ies, new_ies);
1778 		if (old)
1779 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1780 	}
1781 
1782 out_free:
1783 	kfree(new_ie);
1784 }
1785 
1786 /* cfg80211_inform_bss_width_frame helper */
1787 static struct cfg80211_bss *
1788 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
1789 				      struct cfg80211_inform_bss *data,
1790 				      struct ieee80211_mgmt *mgmt, size_t len,
1791 				      gfp_t gfp)
1792 {
1793 	struct cfg80211_internal_bss tmp = {}, *res;
1794 	struct cfg80211_bss_ies *ies;
1795 	struct ieee80211_channel *channel;
1796 	bool signal_valid;
1797 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
1798 				      u.probe_resp.variable);
1799 	int bss_type;
1800 
1801 	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
1802 			offsetof(struct ieee80211_mgmt, u.beacon.variable));
1803 
1804 	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
1805 
1806 	if (WARN_ON(!mgmt))
1807 		return NULL;
1808 
1809 	if (WARN_ON(!wiphy))
1810 		return NULL;
1811 
1812 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1813 		    (data->signal < 0 || data->signal > 100)))
1814 		return NULL;
1815 
1816 	if (WARN_ON(len < offsetof(struct ieee80211_mgmt, u.probe_resp.variable)))
1817 		return NULL;
1818 
1819 	channel = cfg80211_get_bss_channel(wiphy, mgmt->u.beacon.variable,
1820 					   ielen, data->chan, data->scan_width);
1821 	if (!channel)
1822 		return NULL;
1823 
1824 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
1825 	if (!ies)
1826 		return NULL;
1827 	ies->len = ielen;
1828 	ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
1829 	ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
1830 	memcpy(ies->data, mgmt->u.probe_resp.variable, ielen);
1831 
1832 	if (ieee80211_is_probe_resp(mgmt->frame_control))
1833 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1834 	else
1835 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1836 	rcu_assign_pointer(tmp.pub.ies, ies);
1837 
1838 	memcpy(tmp.pub.bssid, mgmt->bssid, ETH_ALEN);
1839 	tmp.pub.channel = channel;
1840 	tmp.pub.scan_width = data->scan_width;
1841 	tmp.pub.signal = data->signal;
1842 	tmp.pub.beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
1843 	tmp.pub.capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
1844 	tmp.ts_boottime = data->boottime_ns;
1845 	tmp.parent_tsf = data->parent_tsf;
1846 	tmp.pub.chains = data->chains;
1847 	memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
1848 	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1849 
1850 	signal_valid = abs(data->chan->center_freq - channel->center_freq) <=
1851 		wiphy->max_adj_channel_rssi_comp;
1852 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
1853 				  jiffies);
1854 	if (!res)
1855 		return NULL;
1856 
1857 	if (channel->band == NL80211_BAND_60GHZ) {
1858 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1859 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1860 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1861 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1862 	} else {
1863 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
1864 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1865 	}
1866 
1867 	trace_cfg80211_return_bss(&res->pub);
1868 	/* cfg80211_bss_update gives us a referenced result */
1869 	return &res->pub;
1870 }
1871 
1872 struct cfg80211_bss *
1873 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
1874 			       struct cfg80211_inform_bss *data,
1875 			       struct ieee80211_mgmt *mgmt, size_t len,
1876 			       gfp_t gfp)
1877 {
1878 	struct cfg80211_bss *res, *tmp_bss;
1879 	const u8 *ie = mgmt->u.probe_resp.variable;
1880 	const struct cfg80211_bss_ies *ies1, *ies2;
1881 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
1882 				      u.probe_resp.variable);
1883 	struct cfg80211_non_tx_bss non_tx_data;
1884 
1885 	res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
1886 						    len, gfp);
1887 	if (!res || !wiphy->support_mbssid ||
1888 	    !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
1889 		return res;
1890 	if (wiphy->support_only_he_mbssid &&
1891 	    !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
1892 		return res;
1893 
1894 	non_tx_data.tx_bss = res;
1895 	/* process each non-transmitting bss */
1896 	cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
1897 					 &non_tx_data, gfp);
1898 
1899 	/* check if the res has other nontransmitting bss which is not
1900 	 * in MBSSID IE
1901 	 */
1902 	ies1 = rcu_access_pointer(res->ies);
1903 
1904 	/* go through nontrans_list, if the timestamp of the BSS is
1905 	 * earlier than the timestamp of the transmitting BSS then
1906 	 * update it
1907 	 */
1908 	list_for_each_entry(tmp_bss, &res->nontrans_list,
1909 			    nontrans_list) {
1910 		ies2 = rcu_access_pointer(tmp_bss->ies);
1911 		if (ies2->tsf < ies1->tsf)
1912 			cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
1913 							   mgmt, len, gfp);
1914 	}
1915 
1916 	return res;
1917 }
1918 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
1919 
1920 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1921 {
1922 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1923 	struct cfg80211_internal_bss *bss;
1924 
1925 	if (!pub)
1926 		return;
1927 
1928 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
1929 
1930 	spin_lock_bh(&rdev->bss_lock);
1931 	bss_ref_get(rdev, bss);
1932 	spin_unlock_bh(&rdev->bss_lock);
1933 }
1934 EXPORT_SYMBOL(cfg80211_ref_bss);
1935 
1936 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1937 {
1938 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1939 	struct cfg80211_internal_bss *bss;
1940 
1941 	if (!pub)
1942 		return;
1943 
1944 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
1945 
1946 	spin_lock_bh(&rdev->bss_lock);
1947 	bss_ref_put(rdev, bss);
1948 	spin_unlock_bh(&rdev->bss_lock);
1949 }
1950 EXPORT_SYMBOL(cfg80211_put_bss);
1951 
1952 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1953 {
1954 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1955 	struct cfg80211_internal_bss *bss, *tmp1;
1956 	struct cfg80211_bss *nontrans_bss, *tmp;
1957 
1958 	if (WARN_ON(!pub))
1959 		return;
1960 
1961 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
1962 
1963 	spin_lock_bh(&rdev->bss_lock);
1964 	if (list_empty(&bss->list))
1965 		goto out;
1966 
1967 	list_for_each_entry_safe(nontrans_bss, tmp,
1968 				 &pub->nontrans_list,
1969 				 nontrans_list) {
1970 		tmp1 = container_of(nontrans_bss,
1971 				    struct cfg80211_internal_bss, pub);
1972 		if (__cfg80211_unlink_bss(rdev, tmp1))
1973 			rdev->bss_generation++;
1974 	}
1975 
1976 	if (__cfg80211_unlink_bss(rdev, bss))
1977 		rdev->bss_generation++;
1978 out:
1979 	spin_unlock_bh(&rdev->bss_lock);
1980 }
1981 EXPORT_SYMBOL(cfg80211_unlink_bss);
1982 
1983 void cfg80211_bss_iter(struct wiphy *wiphy,
1984 		       struct cfg80211_chan_def *chandef,
1985 		       void (*iter)(struct wiphy *wiphy,
1986 				    struct cfg80211_bss *bss,
1987 				    void *data),
1988 		       void *iter_data)
1989 {
1990 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1991 	struct cfg80211_internal_bss *bss;
1992 
1993 	spin_lock_bh(&rdev->bss_lock);
1994 
1995 	list_for_each_entry(bss, &rdev->bss_list, list) {
1996 		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel))
1997 			iter(wiphy, &bss->pub, iter_data);
1998 	}
1999 
2000 	spin_unlock_bh(&rdev->bss_lock);
2001 }
2002 EXPORT_SYMBOL(cfg80211_bss_iter);
2003 
2004 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2005 				     struct ieee80211_channel *chan)
2006 {
2007 	struct wiphy *wiphy = wdev->wiphy;
2008 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2009 	struct cfg80211_internal_bss *cbss = wdev->current_bss;
2010 	struct cfg80211_internal_bss *new = NULL;
2011 	struct cfg80211_internal_bss *bss;
2012 	struct cfg80211_bss *nontrans_bss;
2013 	struct cfg80211_bss *tmp;
2014 
2015 	spin_lock_bh(&rdev->bss_lock);
2016 
2017 	if (WARN_ON(cbss->pub.channel == chan))
2018 		goto done;
2019 
2020 	/* use transmitting bss */
2021 	if (cbss->pub.transmitted_bss)
2022 		cbss = container_of(cbss->pub.transmitted_bss,
2023 				    struct cfg80211_internal_bss,
2024 				    pub);
2025 
2026 	cbss->pub.channel = chan;
2027 
2028 	list_for_each_entry(bss, &rdev->bss_list, list) {
2029 		if (!cfg80211_bss_type_match(bss->pub.capability,
2030 					     bss->pub.channel->band,
2031 					     wdev->conn_bss_type))
2032 			continue;
2033 
2034 		if (bss == cbss)
2035 			continue;
2036 
2037 		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2038 			new = bss;
2039 			break;
2040 		}
2041 	}
2042 
2043 	if (new) {
2044 		/* to save time, update IEs for transmitting bss only */
2045 		if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2046 			new->pub.proberesp_ies = NULL;
2047 			new->pub.beacon_ies = NULL;
2048 		}
2049 
2050 		list_for_each_entry_safe(nontrans_bss, tmp,
2051 					 &new->pub.nontrans_list,
2052 					 nontrans_list) {
2053 			bss = container_of(nontrans_bss,
2054 					   struct cfg80211_internal_bss, pub);
2055 			if (__cfg80211_unlink_bss(rdev, bss))
2056 				rdev->bss_generation++;
2057 		}
2058 
2059 		WARN_ON(atomic_read(&new->hold));
2060 		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2061 			rdev->bss_generation++;
2062 	}
2063 
2064 	rb_erase(&cbss->rbn, &rdev->bss_tree);
2065 	rb_insert_bss(rdev, cbss);
2066 	rdev->bss_generation++;
2067 
2068 	list_for_each_entry_safe(nontrans_bss, tmp,
2069 				 &cbss->pub.nontrans_list,
2070 				 nontrans_list) {
2071 		bss = container_of(nontrans_bss,
2072 				   struct cfg80211_internal_bss, pub);
2073 		bss->pub.channel = chan;
2074 		rb_erase(&bss->rbn, &rdev->bss_tree);
2075 		rb_insert_bss(rdev, bss);
2076 		rdev->bss_generation++;
2077 	}
2078 
2079 done:
2080 	spin_unlock_bh(&rdev->bss_lock);
2081 }
2082 
2083 #ifdef CONFIG_CFG80211_WEXT
2084 static struct cfg80211_registered_device *
2085 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2086 {
2087 	struct cfg80211_registered_device *rdev;
2088 	struct net_device *dev;
2089 
2090 	ASSERT_RTNL();
2091 
2092 	dev = dev_get_by_index(net, ifindex);
2093 	if (!dev)
2094 		return ERR_PTR(-ENODEV);
2095 	if (dev->ieee80211_ptr)
2096 		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2097 	else
2098 		rdev = ERR_PTR(-ENODEV);
2099 	dev_put(dev);
2100 	return rdev;
2101 }
2102 
2103 int cfg80211_wext_siwscan(struct net_device *dev,
2104 			  struct iw_request_info *info,
2105 			  union iwreq_data *wrqu, char *extra)
2106 {
2107 	struct cfg80211_registered_device *rdev;
2108 	struct wiphy *wiphy;
2109 	struct iw_scan_req *wreq = NULL;
2110 	struct cfg80211_scan_request *creq = NULL;
2111 	int i, err, n_channels = 0;
2112 	enum nl80211_band band;
2113 
2114 	if (!netif_running(dev))
2115 		return -ENETDOWN;
2116 
2117 	if (wrqu->data.length == sizeof(struct iw_scan_req))
2118 		wreq = (struct iw_scan_req *)extra;
2119 
2120 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2121 
2122 	if (IS_ERR(rdev))
2123 		return PTR_ERR(rdev);
2124 
2125 	if (rdev->scan_req || rdev->scan_msg) {
2126 		err = -EBUSY;
2127 		goto out;
2128 	}
2129 
2130 	wiphy = &rdev->wiphy;
2131 
2132 	/* Determine number of channels, needed to allocate creq */
2133 	if (wreq && wreq->num_channels)
2134 		n_channels = wreq->num_channels;
2135 	else
2136 		n_channels = ieee80211_get_num_supported_channels(wiphy);
2137 
2138 	creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2139 		       n_channels * sizeof(void *),
2140 		       GFP_ATOMIC);
2141 	if (!creq) {
2142 		err = -ENOMEM;
2143 		goto out;
2144 	}
2145 
2146 	creq->wiphy = wiphy;
2147 	creq->wdev = dev->ieee80211_ptr;
2148 	/* SSIDs come after channels */
2149 	creq->ssids = (void *)&creq->channels[n_channels];
2150 	creq->n_channels = n_channels;
2151 	creq->n_ssids = 1;
2152 	creq->scan_start = jiffies;
2153 
2154 	/* translate "Scan on frequencies" request */
2155 	i = 0;
2156 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2157 		int j;
2158 
2159 		if (!wiphy->bands[band])
2160 			continue;
2161 
2162 		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2163 			/* ignore disabled channels */
2164 			if (wiphy->bands[band]->channels[j].flags &
2165 						IEEE80211_CHAN_DISABLED)
2166 				continue;
2167 
2168 			/* If we have a wireless request structure and the
2169 			 * wireless request specifies frequencies, then search
2170 			 * for the matching hardware channel.
2171 			 */
2172 			if (wreq && wreq->num_channels) {
2173 				int k;
2174 				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2175 				for (k = 0; k < wreq->num_channels; k++) {
2176 					struct iw_freq *freq =
2177 						&wreq->channel_list[k];
2178 					int wext_freq =
2179 						cfg80211_wext_freq(freq);
2180 
2181 					if (wext_freq == wiphy_freq)
2182 						goto wext_freq_found;
2183 				}
2184 				goto wext_freq_not_found;
2185 			}
2186 
2187 		wext_freq_found:
2188 			creq->channels[i] = &wiphy->bands[band]->channels[j];
2189 			i++;
2190 		wext_freq_not_found: ;
2191 		}
2192 	}
2193 	/* No channels found? */
2194 	if (!i) {
2195 		err = -EINVAL;
2196 		goto out;
2197 	}
2198 
2199 	/* Set real number of channels specified in creq->channels[] */
2200 	creq->n_channels = i;
2201 
2202 	/* translate "Scan for SSID" request */
2203 	if (wreq) {
2204 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2205 			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2206 				err = -EINVAL;
2207 				goto out;
2208 			}
2209 			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2210 			creq->ssids[0].ssid_len = wreq->essid_len;
2211 		}
2212 		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2213 			creq->n_ssids = 0;
2214 	}
2215 
2216 	for (i = 0; i < NUM_NL80211_BANDS; i++)
2217 		if (wiphy->bands[i])
2218 			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2219 
2220 	eth_broadcast_addr(creq->bssid);
2221 
2222 	rdev->scan_req = creq;
2223 	err = rdev_scan(rdev, creq);
2224 	if (err) {
2225 		rdev->scan_req = NULL;
2226 		/* creq will be freed below */
2227 	} else {
2228 		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2229 		/* creq now owned by driver */
2230 		creq = NULL;
2231 		dev_hold(dev);
2232 	}
2233  out:
2234 	kfree(creq);
2235 	return err;
2236 }
2237 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2238 
2239 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2240 				    const struct cfg80211_bss_ies *ies,
2241 				    char *current_ev, char *end_buf)
2242 {
2243 	const u8 *pos, *end, *next;
2244 	struct iw_event iwe;
2245 
2246 	if (!ies)
2247 		return current_ev;
2248 
2249 	/*
2250 	 * If needed, fragment the IEs buffer (at IE boundaries) into short
2251 	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2252 	 */
2253 	pos = ies->data;
2254 	end = pos + ies->len;
2255 
2256 	while (end - pos > IW_GENERIC_IE_MAX) {
2257 		next = pos + 2 + pos[1];
2258 		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2259 			next = next + 2 + next[1];
2260 
2261 		memset(&iwe, 0, sizeof(iwe));
2262 		iwe.cmd = IWEVGENIE;
2263 		iwe.u.data.length = next - pos;
2264 		current_ev = iwe_stream_add_point_check(info, current_ev,
2265 							end_buf, &iwe,
2266 							(void *)pos);
2267 		if (IS_ERR(current_ev))
2268 			return current_ev;
2269 		pos = next;
2270 	}
2271 
2272 	if (end > pos) {
2273 		memset(&iwe, 0, sizeof(iwe));
2274 		iwe.cmd = IWEVGENIE;
2275 		iwe.u.data.length = end - pos;
2276 		current_ev = iwe_stream_add_point_check(info, current_ev,
2277 							end_buf, &iwe,
2278 							(void *)pos);
2279 		if (IS_ERR(current_ev))
2280 			return current_ev;
2281 	}
2282 
2283 	return current_ev;
2284 }
2285 
2286 static char *
2287 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2288 	      struct cfg80211_internal_bss *bss, char *current_ev,
2289 	      char *end_buf)
2290 {
2291 	const struct cfg80211_bss_ies *ies;
2292 	struct iw_event iwe;
2293 	const u8 *ie;
2294 	u8 buf[50];
2295 	u8 *cfg, *p, *tmp;
2296 	int rem, i, sig;
2297 	bool ismesh = false;
2298 
2299 	memset(&iwe, 0, sizeof(iwe));
2300 	iwe.cmd = SIOCGIWAP;
2301 	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2302 	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2303 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2304 						IW_EV_ADDR_LEN);
2305 	if (IS_ERR(current_ev))
2306 		return current_ev;
2307 
2308 	memset(&iwe, 0, sizeof(iwe));
2309 	iwe.cmd = SIOCGIWFREQ;
2310 	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2311 	iwe.u.freq.e = 0;
2312 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2313 						IW_EV_FREQ_LEN);
2314 	if (IS_ERR(current_ev))
2315 		return current_ev;
2316 
2317 	memset(&iwe, 0, sizeof(iwe));
2318 	iwe.cmd = SIOCGIWFREQ;
2319 	iwe.u.freq.m = bss->pub.channel->center_freq;
2320 	iwe.u.freq.e = 6;
2321 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2322 						IW_EV_FREQ_LEN);
2323 	if (IS_ERR(current_ev))
2324 		return current_ev;
2325 
2326 	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2327 		memset(&iwe, 0, sizeof(iwe));
2328 		iwe.cmd = IWEVQUAL;
2329 		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2330 				     IW_QUAL_NOISE_INVALID |
2331 				     IW_QUAL_QUAL_UPDATED;
2332 		switch (wiphy->signal_type) {
2333 		case CFG80211_SIGNAL_TYPE_MBM:
2334 			sig = bss->pub.signal / 100;
2335 			iwe.u.qual.level = sig;
2336 			iwe.u.qual.updated |= IW_QUAL_DBM;
2337 			if (sig < -110)		/* rather bad */
2338 				sig = -110;
2339 			else if (sig > -40)	/* perfect */
2340 				sig = -40;
2341 			/* will give a range of 0 .. 70 */
2342 			iwe.u.qual.qual = sig + 110;
2343 			break;
2344 		case CFG80211_SIGNAL_TYPE_UNSPEC:
2345 			iwe.u.qual.level = bss->pub.signal;
2346 			/* will give range 0 .. 100 */
2347 			iwe.u.qual.qual = bss->pub.signal;
2348 			break;
2349 		default:
2350 			/* not reached */
2351 			break;
2352 		}
2353 		current_ev = iwe_stream_add_event_check(info, current_ev,
2354 							end_buf, &iwe,
2355 							IW_EV_QUAL_LEN);
2356 		if (IS_ERR(current_ev))
2357 			return current_ev;
2358 	}
2359 
2360 	memset(&iwe, 0, sizeof(iwe));
2361 	iwe.cmd = SIOCGIWENCODE;
2362 	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2363 		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2364 	else
2365 		iwe.u.data.flags = IW_ENCODE_DISABLED;
2366 	iwe.u.data.length = 0;
2367 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2368 						&iwe, "");
2369 	if (IS_ERR(current_ev))
2370 		return current_ev;
2371 
2372 	rcu_read_lock();
2373 	ies = rcu_dereference(bss->pub.ies);
2374 	rem = ies->len;
2375 	ie = ies->data;
2376 
2377 	while (rem >= 2) {
2378 		/* invalid data */
2379 		if (ie[1] > rem - 2)
2380 			break;
2381 
2382 		switch (ie[0]) {
2383 		case WLAN_EID_SSID:
2384 			memset(&iwe, 0, sizeof(iwe));
2385 			iwe.cmd = SIOCGIWESSID;
2386 			iwe.u.data.length = ie[1];
2387 			iwe.u.data.flags = 1;
2388 			current_ev = iwe_stream_add_point_check(info,
2389 								current_ev,
2390 								end_buf, &iwe,
2391 								(u8 *)ie + 2);
2392 			if (IS_ERR(current_ev))
2393 				goto unlock;
2394 			break;
2395 		case WLAN_EID_MESH_ID:
2396 			memset(&iwe, 0, sizeof(iwe));
2397 			iwe.cmd = SIOCGIWESSID;
2398 			iwe.u.data.length = ie[1];
2399 			iwe.u.data.flags = 1;
2400 			current_ev = iwe_stream_add_point_check(info,
2401 								current_ev,
2402 								end_buf, &iwe,
2403 								(u8 *)ie + 2);
2404 			if (IS_ERR(current_ev))
2405 				goto unlock;
2406 			break;
2407 		case WLAN_EID_MESH_CONFIG:
2408 			ismesh = true;
2409 			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
2410 				break;
2411 			cfg = (u8 *)ie + 2;
2412 			memset(&iwe, 0, sizeof(iwe));
2413 			iwe.cmd = IWEVCUSTOM;
2414 			sprintf(buf, "Mesh Network Path Selection Protocol ID: "
2415 				"0x%02X", cfg[0]);
2416 			iwe.u.data.length = strlen(buf);
2417 			current_ev = iwe_stream_add_point_check(info,
2418 								current_ev,
2419 								end_buf,
2420 								&iwe, buf);
2421 			if (IS_ERR(current_ev))
2422 				goto unlock;
2423 			sprintf(buf, "Path Selection Metric ID: 0x%02X",
2424 				cfg[1]);
2425 			iwe.u.data.length = strlen(buf);
2426 			current_ev = iwe_stream_add_point_check(info,
2427 								current_ev,
2428 								end_buf,
2429 								&iwe, buf);
2430 			if (IS_ERR(current_ev))
2431 				goto unlock;
2432 			sprintf(buf, "Congestion Control Mode ID: 0x%02X",
2433 				cfg[2]);
2434 			iwe.u.data.length = strlen(buf);
2435 			current_ev = iwe_stream_add_point_check(info,
2436 								current_ev,
2437 								end_buf,
2438 								&iwe, buf);
2439 			if (IS_ERR(current_ev))
2440 				goto unlock;
2441 			sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
2442 			iwe.u.data.length = strlen(buf);
2443 			current_ev = iwe_stream_add_point_check(info,
2444 								current_ev,
2445 								end_buf,
2446 								&iwe, buf);
2447 			if (IS_ERR(current_ev))
2448 				goto unlock;
2449 			sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
2450 			iwe.u.data.length = strlen(buf);
2451 			current_ev = iwe_stream_add_point_check(info,
2452 								current_ev,
2453 								end_buf,
2454 								&iwe, buf);
2455 			if (IS_ERR(current_ev))
2456 				goto unlock;
2457 			sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
2458 			iwe.u.data.length = strlen(buf);
2459 			current_ev = iwe_stream_add_point_check(info,
2460 								current_ev,
2461 								end_buf,
2462 								&iwe, buf);
2463 			if (IS_ERR(current_ev))
2464 				goto unlock;
2465 			sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
2466 			iwe.u.data.length = strlen(buf);
2467 			current_ev = iwe_stream_add_point_check(info,
2468 								current_ev,
2469 								end_buf,
2470 								&iwe, buf);
2471 			if (IS_ERR(current_ev))
2472 				goto unlock;
2473 			break;
2474 		case WLAN_EID_SUPP_RATES:
2475 		case WLAN_EID_EXT_SUPP_RATES:
2476 			/* display all supported rates in readable format */
2477 			p = current_ev + iwe_stream_lcp_len(info);
2478 
2479 			memset(&iwe, 0, sizeof(iwe));
2480 			iwe.cmd = SIOCGIWRATE;
2481 			/* Those two flags are ignored... */
2482 			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
2483 
2484 			for (i = 0; i < ie[1]; i++) {
2485 				iwe.u.bitrate.value =
2486 					((ie[i + 2] & 0x7f) * 500000);
2487 				tmp = p;
2488 				p = iwe_stream_add_value(info, current_ev, p,
2489 							 end_buf, &iwe,
2490 							 IW_EV_PARAM_LEN);
2491 				if (p == tmp) {
2492 					current_ev = ERR_PTR(-E2BIG);
2493 					goto unlock;
2494 				}
2495 			}
2496 			current_ev = p;
2497 			break;
2498 		}
2499 		rem -= ie[1] + 2;
2500 		ie += ie[1] + 2;
2501 	}
2502 
2503 	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
2504 	    ismesh) {
2505 		memset(&iwe, 0, sizeof(iwe));
2506 		iwe.cmd = SIOCGIWMODE;
2507 		if (ismesh)
2508 			iwe.u.mode = IW_MODE_MESH;
2509 		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
2510 			iwe.u.mode = IW_MODE_MASTER;
2511 		else
2512 			iwe.u.mode = IW_MODE_ADHOC;
2513 		current_ev = iwe_stream_add_event_check(info, current_ev,
2514 							end_buf, &iwe,
2515 							IW_EV_UINT_LEN);
2516 		if (IS_ERR(current_ev))
2517 			goto unlock;
2518 	}
2519 
2520 	memset(&iwe, 0, sizeof(iwe));
2521 	iwe.cmd = IWEVCUSTOM;
2522 	sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
2523 	iwe.u.data.length = strlen(buf);
2524 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2525 						&iwe, buf);
2526 	if (IS_ERR(current_ev))
2527 		goto unlock;
2528 	memset(&iwe, 0, sizeof(iwe));
2529 	iwe.cmd = IWEVCUSTOM;
2530 	sprintf(buf, " Last beacon: %ums ago",
2531 		elapsed_jiffies_msecs(bss->ts));
2532 	iwe.u.data.length = strlen(buf);
2533 	current_ev = iwe_stream_add_point_check(info, current_ev,
2534 						end_buf, &iwe, buf);
2535 	if (IS_ERR(current_ev))
2536 		goto unlock;
2537 
2538 	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
2539 
2540  unlock:
2541 	rcu_read_unlock();
2542 	return current_ev;
2543 }
2544 
2545 
2546 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
2547 				  struct iw_request_info *info,
2548 				  char *buf, size_t len)
2549 {
2550 	char *current_ev = buf;
2551 	char *end_buf = buf + len;
2552 	struct cfg80211_internal_bss *bss;
2553 	int err = 0;
2554 
2555 	spin_lock_bh(&rdev->bss_lock);
2556 	cfg80211_bss_expire(rdev);
2557 
2558 	list_for_each_entry(bss, &rdev->bss_list, list) {
2559 		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
2560 			err = -E2BIG;
2561 			break;
2562 		}
2563 		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
2564 					   current_ev, end_buf);
2565 		if (IS_ERR(current_ev)) {
2566 			err = PTR_ERR(current_ev);
2567 			break;
2568 		}
2569 	}
2570 	spin_unlock_bh(&rdev->bss_lock);
2571 
2572 	if (err)
2573 		return err;
2574 	return current_ev - buf;
2575 }
2576 
2577 
2578 int cfg80211_wext_giwscan(struct net_device *dev,
2579 			  struct iw_request_info *info,
2580 			  struct iw_point *data, char *extra)
2581 {
2582 	struct cfg80211_registered_device *rdev;
2583 	int res;
2584 
2585 	if (!netif_running(dev))
2586 		return -ENETDOWN;
2587 
2588 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2589 
2590 	if (IS_ERR(rdev))
2591 		return PTR_ERR(rdev);
2592 
2593 	if (rdev->scan_req || rdev->scan_msg)
2594 		return -EAGAIN;
2595 
2596 	res = ieee80211_scan_results(rdev, info, extra, data->length);
2597 	data->length = 0;
2598 	if (res >= 0) {
2599 		data->length = res;
2600 		res = 0;
2601 	}
2602 
2603 	return res;
2604 }
2605 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
2606 #endif
2607