1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * cfg80211 scan result handling 4 * 5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2016 Intel Deutschland GmbH 8 * Copyright (C) 2018-2023 Intel Corporation 9 */ 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/netdevice.h> 14 #include <linux/wireless.h> 15 #include <linux/nl80211.h> 16 #include <linux/etherdevice.h> 17 #include <linux/crc32.h> 18 #include <linux/bitfield.h> 19 #include <net/arp.h> 20 #include <net/cfg80211.h> 21 #include <net/cfg80211-wext.h> 22 #include <net/iw_handler.h> 23 #include "core.h" 24 #include "nl80211.h" 25 #include "wext-compat.h" 26 #include "rdev-ops.h" 27 28 /** 29 * DOC: BSS tree/list structure 30 * 31 * At the top level, the BSS list is kept in both a list in each 32 * registered device (@bss_list) as well as an RB-tree for faster 33 * lookup. In the RB-tree, entries can be looked up using their 34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID 35 * for other BSSes. 36 * 37 * Due to the possibility of hidden SSIDs, there's a second level 38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer. 39 * The hidden_list connects all BSSes belonging to a single AP 40 * that has a hidden SSID, and connects beacon and probe response 41 * entries. For a probe response entry for a hidden SSID, the 42 * hidden_beacon_bss pointer points to the BSS struct holding the 43 * beacon's information. 44 * 45 * Reference counting is done for all these references except for 46 * the hidden_list, so that a beacon BSS struct that is otherwise 47 * not referenced has one reference for being on the bss_list and 48 * one for each probe response entry that points to it using the 49 * hidden_beacon_bss pointer. When a BSS struct that has such a 50 * pointer is get/put, the refcount update is also propagated to 51 * the referenced struct, this ensure that it cannot get removed 52 * while somebody is using the probe response version. 53 * 54 * Note that the hidden_beacon_bss pointer never changes, due to 55 * the reference counting. Therefore, no locking is needed for 56 * it. 57 * 58 * Also note that the hidden_beacon_bss pointer is only relevant 59 * if the driver uses something other than the IEs, e.g. private 60 * data stored in the BSS struct, since the beacon IEs are 61 * also linked into the probe response struct. 62 */ 63 64 /* 65 * Limit the number of BSS entries stored in mac80211. Each one is 66 * a bit over 4k at most, so this limits to roughly 4-5M of memory. 67 * If somebody wants to really attack this though, they'd likely 68 * use small beacons, and only one type of frame, limiting each of 69 * the entries to a much smaller size (in order to generate more 70 * entries in total, so overhead is bigger.) 71 */ 72 static int bss_entries_limit = 1000; 73 module_param(bss_entries_limit, int, 0644); 74 MODULE_PARM_DESC(bss_entries_limit, 75 "limit to number of scan BSS entries (per wiphy, default 1000)"); 76 77 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ) 78 79 /** 80 * struct cfg80211_colocated_ap - colocated AP information 81 * 82 * @list: linked list to all colocated aPS 83 * @bssid: BSSID of the reported AP 84 * @ssid: SSID of the reported AP 85 * @ssid_len: length of the ssid 86 * @center_freq: frequency the reported AP is on 87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs 88 * that operate in the same channel as the reported AP and that might be 89 * detected by a STA receiving this frame, are transmitting unsolicited 90 * Probe Response frames every 20 TUs 91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP 92 * @same_ssid: the reported AP has the same SSID as the reporting AP 93 * @multi_bss: the reported AP is part of a multiple BSSID set 94 * @transmitted_bssid: the reported AP is the transmitting BSSID 95 * @colocated_ess: all the APs that share the same ESS as the reported AP are 96 * colocated and can be discovered via legacy bands. 97 * @short_ssid_valid: short_ssid is valid and can be used 98 * @short_ssid: the short SSID for this SSID 99 */ 100 struct cfg80211_colocated_ap { 101 struct list_head list; 102 u8 bssid[ETH_ALEN]; 103 u8 ssid[IEEE80211_MAX_SSID_LEN]; 104 size_t ssid_len; 105 u32 short_ssid; 106 u32 center_freq; 107 u8 unsolicited_probe:1, 108 oct_recommended:1, 109 same_ssid:1, 110 multi_bss:1, 111 transmitted_bssid:1, 112 colocated_ess:1, 113 short_ssid_valid:1; 114 }; 115 116 static void bss_free(struct cfg80211_internal_bss *bss) 117 { 118 struct cfg80211_bss_ies *ies; 119 120 if (WARN_ON(atomic_read(&bss->hold))) 121 return; 122 123 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies); 124 if (ies && !bss->pub.hidden_beacon_bss) 125 kfree_rcu(ies, rcu_head); 126 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies); 127 if (ies) 128 kfree_rcu(ies, rcu_head); 129 130 /* 131 * This happens when the module is removed, it doesn't 132 * really matter any more save for completeness 133 */ 134 if (!list_empty(&bss->hidden_list)) 135 list_del(&bss->hidden_list); 136 137 kfree(bss); 138 } 139 140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev, 141 struct cfg80211_internal_bss *bss) 142 { 143 lockdep_assert_held(&rdev->bss_lock); 144 145 bss->refcount++; 146 147 if (bss->pub.hidden_beacon_bss) 148 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++; 149 150 if (bss->pub.transmitted_bss) 151 bss_from_pub(bss->pub.transmitted_bss)->refcount++; 152 } 153 154 static inline void bss_ref_put(struct cfg80211_registered_device *rdev, 155 struct cfg80211_internal_bss *bss) 156 { 157 lockdep_assert_held(&rdev->bss_lock); 158 159 if (bss->pub.hidden_beacon_bss) { 160 struct cfg80211_internal_bss *hbss; 161 162 hbss = bss_from_pub(bss->pub.hidden_beacon_bss); 163 hbss->refcount--; 164 if (hbss->refcount == 0) 165 bss_free(hbss); 166 } 167 168 if (bss->pub.transmitted_bss) { 169 struct cfg80211_internal_bss *tbss; 170 171 tbss = bss_from_pub(bss->pub.transmitted_bss); 172 tbss->refcount--; 173 if (tbss->refcount == 0) 174 bss_free(tbss); 175 } 176 177 bss->refcount--; 178 if (bss->refcount == 0) 179 bss_free(bss); 180 } 181 182 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev, 183 struct cfg80211_internal_bss *bss) 184 { 185 lockdep_assert_held(&rdev->bss_lock); 186 187 if (!list_empty(&bss->hidden_list)) { 188 /* 189 * don't remove the beacon entry if it has 190 * probe responses associated with it 191 */ 192 if (!bss->pub.hidden_beacon_bss) 193 return false; 194 /* 195 * if it's a probe response entry break its 196 * link to the other entries in the group 197 */ 198 list_del_init(&bss->hidden_list); 199 } 200 201 list_del_init(&bss->list); 202 list_del_init(&bss->pub.nontrans_list); 203 rb_erase(&bss->rbn, &rdev->bss_tree); 204 rdev->bss_entries--; 205 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list), 206 "rdev bss entries[%d]/list[empty:%d] corruption\n", 207 rdev->bss_entries, list_empty(&rdev->bss_list)); 208 bss_ref_put(rdev, bss); 209 return true; 210 } 211 212 bool cfg80211_is_element_inherited(const struct element *elem, 213 const struct element *non_inherit_elem) 214 { 215 u8 id_len, ext_id_len, i, loop_len, id; 216 const u8 *list; 217 218 if (elem->id == WLAN_EID_MULTIPLE_BSSID) 219 return false; 220 221 if (!non_inherit_elem || non_inherit_elem->datalen < 2) 222 return true; 223 224 /* 225 * non inheritance element format is: 226 * ext ID (56) | IDs list len | list | extension IDs list len | list 227 * Both lists are optional. Both lengths are mandatory. 228 * This means valid length is: 229 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths 230 */ 231 id_len = non_inherit_elem->data[1]; 232 if (non_inherit_elem->datalen < 3 + id_len) 233 return true; 234 235 ext_id_len = non_inherit_elem->data[2 + id_len]; 236 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len) 237 return true; 238 239 if (elem->id == WLAN_EID_EXTENSION) { 240 if (!ext_id_len) 241 return true; 242 loop_len = ext_id_len; 243 list = &non_inherit_elem->data[3 + id_len]; 244 id = elem->data[0]; 245 } else { 246 if (!id_len) 247 return true; 248 loop_len = id_len; 249 list = &non_inherit_elem->data[2]; 250 id = elem->id; 251 } 252 253 for (i = 0; i < loop_len; i++) { 254 if (list[i] == id) 255 return false; 256 } 257 258 return true; 259 } 260 EXPORT_SYMBOL(cfg80211_is_element_inherited); 261 262 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen, 263 const u8 *subelement, size_t subie_len, 264 u8 *new_ie, gfp_t gfp) 265 { 266 u8 *pos, *tmp; 267 const u8 *tmp_old, *tmp_new; 268 const struct element *non_inherit_elem; 269 u8 *sub_copy; 270 271 /* copy subelement as we need to change its content to 272 * mark an ie after it is processed. 273 */ 274 sub_copy = kmemdup(subelement, subie_len, gfp); 275 if (!sub_copy) 276 return 0; 277 278 pos = &new_ie[0]; 279 280 /* set new ssid */ 281 tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len); 282 if (tmp_new) { 283 memcpy(pos, tmp_new, tmp_new[1] + 2); 284 pos += (tmp_new[1] + 2); 285 } 286 287 /* get non inheritance list if exists */ 288 non_inherit_elem = 289 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 290 sub_copy, subie_len); 291 292 /* go through IEs in ie (skip SSID) and subelement, 293 * merge them into new_ie 294 */ 295 tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen); 296 tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie; 297 298 while (tmp_old + 2 - ie <= ielen && 299 tmp_old + tmp_old[1] + 2 - ie <= ielen) { 300 if (tmp_old[0] == 0) { 301 tmp_old++; 302 continue; 303 } 304 305 if (tmp_old[0] == WLAN_EID_EXTENSION) 306 tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy, 307 subie_len); 308 else 309 tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy, 310 subie_len); 311 312 if (!tmp) { 313 const struct element *old_elem = (void *)tmp_old; 314 315 /* ie in old ie but not in subelement */ 316 if (cfg80211_is_element_inherited(old_elem, 317 non_inherit_elem)) { 318 memcpy(pos, tmp_old, tmp_old[1] + 2); 319 pos += tmp_old[1] + 2; 320 } 321 } else { 322 /* ie in transmitting ie also in subelement, 323 * copy from subelement and flag the ie in subelement 324 * as copied (by setting eid field to WLAN_EID_SSID, 325 * which is skipped anyway). 326 * For vendor ie, compare OUI + type + subType to 327 * determine if they are the same ie. 328 */ 329 if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) { 330 if (tmp_old[1] >= 5 && tmp[1] >= 5 && 331 !memcmp(tmp_old + 2, tmp + 2, 5)) { 332 /* same vendor ie, copy from 333 * subelement 334 */ 335 memcpy(pos, tmp, tmp[1] + 2); 336 pos += tmp[1] + 2; 337 tmp[0] = WLAN_EID_SSID; 338 } else { 339 memcpy(pos, tmp_old, tmp_old[1] + 2); 340 pos += tmp_old[1] + 2; 341 } 342 } else { 343 /* copy ie from subelement into new ie */ 344 memcpy(pos, tmp, tmp[1] + 2); 345 pos += tmp[1] + 2; 346 tmp[0] = WLAN_EID_SSID; 347 } 348 } 349 350 if (tmp_old + tmp_old[1] + 2 - ie == ielen) 351 break; 352 353 tmp_old += tmp_old[1] + 2; 354 } 355 356 /* go through subelement again to check if there is any ie not 357 * copied to new ie, skip ssid, capability, bssid-index ie 358 */ 359 tmp_new = sub_copy; 360 while (tmp_new + 2 - sub_copy <= subie_len && 361 tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) { 362 if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP || 363 tmp_new[0] == WLAN_EID_SSID)) { 364 memcpy(pos, tmp_new, tmp_new[1] + 2); 365 pos += tmp_new[1] + 2; 366 } 367 if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len) 368 break; 369 tmp_new += tmp_new[1] + 2; 370 } 371 372 kfree(sub_copy); 373 return pos - new_ie; 374 } 375 376 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid, 377 const u8 *ssid, size_t ssid_len) 378 { 379 const struct cfg80211_bss_ies *ies; 380 const struct element *ssid_elem; 381 382 if (bssid && !ether_addr_equal(a->bssid, bssid)) 383 return false; 384 385 if (!ssid) 386 return true; 387 388 ies = rcu_access_pointer(a->ies); 389 if (!ies) 390 return false; 391 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 392 if (!ssid_elem) 393 return false; 394 if (ssid_elem->datalen != ssid_len) 395 return false; 396 return memcmp(ssid_elem->data, ssid, ssid_len) == 0; 397 } 398 399 static int 400 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss, 401 struct cfg80211_bss *nontrans_bss) 402 { 403 const struct element *ssid_elem; 404 struct cfg80211_bss *bss = NULL; 405 406 rcu_read_lock(); 407 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID); 408 if (!ssid_elem) { 409 rcu_read_unlock(); 410 return -EINVAL; 411 } 412 413 /* check if nontrans_bss is in the list */ 414 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) { 415 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data, 416 ssid_elem->datalen)) { 417 rcu_read_unlock(); 418 return 0; 419 } 420 } 421 422 rcu_read_unlock(); 423 424 /* 425 * This is a bit weird - it's not on the list, but already on another 426 * one! The only way that could happen is if there's some BSSID/SSID 427 * shared by multiple APs in their multi-BSSID profiles, potentially 428 * with hidden SSID mixed in ... ignore it. 429 */ 430 if (!list_empty(&nontrans_bss->nontrans_list)) 431 return -EINVAL; 432 433 /* add to the list */ 434 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list); 435 return 0; 436 } 437 438 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev, 439 unsigned long expire_time) 440 { 441 struct cfg80211_internal_bss *bss, *tmp; 442 bool expired = false; 443 444 lockdep_assert_held(&rdev->bss_lock); 445 446 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) { 447 if (atomic_read(&bss->hold)) 448 continue; 449 if (!time_after(expire_time, bss->ts)) 450 continue; 451 452 if (__cfg80211_unlink_bss(rdev, bss)) 453 expired = true; 454 } 455 456 if (expired) 457 rdev->bss_generation++; 458 } 459 460 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev) 461 { 462 struct cfg80211_internal_bss *bss, *oldest = NULL; 463 bool ret; 464 465 lockdep_assert_held(&rdev->bss_lock); 466 467 list_for_each_entry(bss, &rdev->bss_list, list) { 468 if (atomic_read(&bss->hold)) 469 continue; 470 471 if (!list_empty(&bss->hidden_list) && 472 !bss->pub.hidden_beacon_bss) 473 continue; 474 475 if (oldest && time_before(oldest->ts, bss->ts)) 476 continue; 477 oldest = bss; 478 } 479 480 if (WARN_ON(!oldest)) 481 return false; 482 483 /* 484 * The callers make sure to increase rdev->bss_generation if anything 485 * gets removed (and a new entry added), so there's no need to also do 486 * it here. 487 */ 488 489 ret = __cfg80211_unlink_bss(rdev, oldest); 490 WARN_ON(!ret); 491 return ret; 492 } 493 494 static u8 cfg80211_parse_bss_param(u8 data, 495 struct cfg80211_colocated_ap *coloc_ap) 496 { 497 coloc_ap->oct_recommended = 498 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED); 499 coloc_ap->same_ssid = 500 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID); 501 coloc_ap->multi_bss = 502 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID); 503 coloc_ap->transmitted_bssid = 504 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID); 505 coloc_ap->unsolicited_probe = 506 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE); 507 coloc_ap->colocated_ess = 508 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS); 509 510 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP); 511 } 512 513 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies, 514 const struct element **elem, u32 *s_ssid) 515 { 516 517 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 518 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN) 519 return -EINVAL; 520 521 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen); 522 return 0; 523 } 524 525 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list) 526 { 527 struct cfg80211_colocated_ap *ap, *tmp_ap; 528 529 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) { 530 list_del(&ap->list); 531 kfree(ap); 532 } 533 } 534 535 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry, 536 const u8 *pos, u8 length, 537 const struct element *ssid_elem, 538 int s_ssid_tmp) 539 { 540 /* skip the TBTT offset */ 541 pos++; 542 543 /* ignore entries with invalid BSSID */ 544 if (!is_valid_ether_addr(pos)) 545 return -EINVAL; 546 547 memcpy(entry->bssid, pos, ETH_ALEN); 548 pos += ETH_ALEN; 549 550 if (length >= IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) { 551 memcpy(&entry->short_ssid, pos, 552 sizeof(entry->short_ssid)); 553 entry->short_ssid_valid = true; 554 pos += 4; 555 } 556 557 /* skip non colocated APs */ 558 if (!cfg80211_parse_bss_param(*pos, entry)) 559 return -EINVAL; 560 pos++; 561 562 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) { 563 /* 564 * no information about the short ssid. Consider the entry valid 565 * for now. It would later be dropped in case there are explicit 566 * SSIDs that need to be matched 567 */ 568 if (!entry->same_ssid) 569 return 0; 570 } 571 572 if (entry->same_ssid) { 573 entry->short_ssid = s_ssid_tmp; 574 entry->short_ssid_valid = true; 575 576 /* 577 * This is safe because we validate datalen in 578 * cfg80211_parse_colocated_ap(), before calling this 579 * function. 580 */ 581 memcpy(&entry->ssid, &ssid_elem->data, 582 ssid_elem->datalen); 583 entry->ssid_len = ssid_elem->datalen; 584 } 585 return 0; 586 } 587 588 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies, 589 struct list_head *list) 590 { 591 struct ieee80211_neighbor_ap_info *ap_info; 592 const struct element *elem, *ssid_elem; 593 const u8 *pos, *end; 594 u32 s_ssid_tmp; 595 int n_coloc = 0, ret; 596 LIST_HEAD(ap_list); 597 598 elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data, 599 ies->len); 600 if (!elem) 601 return 0; 602 603 pos = elem->data; 604 end = pos + elem->datalen; 605 606 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp); 607 if (ret) 608 return ret; 609 610 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ 611 while (pos + sizeof(*ap_info) <= end) { 612 enum nl80211_band band; 613 int freq; 614 u8 length, i, count; 615 616 ap_info = (void *)pos; 617 count = u8_get_bits(ap_info->tbtt_info_hdr, 618 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1; 619 length = ap_info->tbtt_info_len; 620 621 pos += sizeof(*ap_info); 622 623 if (!ieee80211_operating_class_to_band(ap_info->op_class, 624 &band)) 625 break; 626 627 freq = ieee80211_channel_to_frequency(ap_info->channel, band); 628 629 if (end - pos < count * length) 630 break; 631 632 /* 633 * TBTT info must include bss param + BSSID + 634 * (short SSID or same_ssid bit to be set). 635 * ignore other options, and move to the 636 * next AP info 637 */ 638 if (band != NL80211_BAND_6GHZ || 639 (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM && 640 length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) { 641 pos += count * length; 642 continue; 643 } 644 645 for (i = 0; i < count; i++) { 646 struct cfg80211_colocated_ap *entry; 647 648 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, 649 GFP_ATOMIC); 650 651 if (!entry) 652 break; 653 654 entry->center_freq = freq; 655 656 if (!cfg80211_parse_ap_info(entry, pos, length, 657 ssid_elem, s_ssid_tmp)) { 658 n_coloc++; 659 list_add_tail(&entry->list, &ap_list); 660 } else { 661 kfree(entry); 662 } 663 664 pos += length; 665 } 666 } 667 668 if (pos != end) { 669 cfg80211_free_coloc_ap_list(&ap_list); 670 return 0; 671 } 672 673 list_splice_tail(&ap_list, list); 674 return n_coloc; 675 } 676 677 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request, 678 struct ieee80211_channel *chan, 679 bool add_to_6ghz) 680 { 681 int i; 682 u32 n_channels = request->n_channels; 683 struct cfg80211_scan_6ghz_params *params = 684 &request->scan_6ghz_params[request->n_6ghz_params]; 685 686 for (i = 0; i < n_channels; i++) { 687 if (request->channels[i] == chan) { 688 if (add_to_6ghz) 689 params->channel_idx = i; 690 return; 691 } 692 } 693 694 request->channels[n_channels] = chan; 695 if (add_to_6ghz) 696 request->scan_6ghz_params[request->n_6ghz_params].channel_idx = 697 n_channels; 698 699 request->n_channels++; 700 } 701 702 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap, 703 struct cfg80211_scan_request *request) 704 { 705 int i; 706 u32 s_ssid; 707 708 for (i = 0; i < request->n_ssids; i++) { 709 /* wildcard ssid in the scan request */ 710 if (!request->ssids[i].ssid_len) { 711 if (ap->multi_bss && !ap->transmitted_bssid) 712 continue; 713 714 return true; 715 } 716 717 if (ap->ssid_len && 718 ap->ssid_len == request->ssids[i].ssid_len) { 719 if (!memcmp(request->ssids[i].ssid, ap->ssid, 720 ap->ssid_len)) 721 return true; 722 } else if (ap->short_ssid_valid) { 723 s_ssid = ~crc32_le(~0, request->ssids[i].ssid, 724 request->ssids[i].ssid_len); 725 726 if (ap->short_ssid == s_ssid) 727 return true; 728 } 729 } 730 731 return false; 732 } 733 734 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev) 735 { 736 u8 i; 737 struct cfg80211_colocated_ap *ap; 738 int n_channels, count = 0, err; 739 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req; 740 LIST_HEAD(coloc_ap_list); 741 bool need_scan_psc = true; 742 const struct ieee80211_sband_iftype_data *iftd; 743 744 rdev_req->scan_6ghz = true; 745 746 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ]) 747 return -EOPNOTSUPP; 748 749 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ], 750 rdev_req->wdev->iftype); 751 if (!iftd || !iftd->he_cap.has_he) 752 return -EOPNOTSUPP; 753 754 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels; 755 756 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) { 757 struct cfg80211_internal_bss *intbss; 758 759 spin_lock_bh(&rdev->bss_lock); 760 list_for_each_entry(intbss, &rdev->bss_list, list) { 761 struct cfg80211_bss *res = &intbss->pub; 762 const struct cfg80211_bss_ies *ies; 763 764 ies = rcu_access_pointer(res->ies); 765 count += cfg80211_parse_colocated_ap(ies, 766 &coloc_ap_list); 767 } 768 spin_unlock_bh(&rdev->bss_lock); 769 } 770 771 request = kzalloc(struct_size(request, channels, n_channels) + 772 sizeof(*request->scan_6ghz_params) * count + 773 sizeof(*request->ssids) * rdev_req->n_ssids, 774 GFP_KERNEL); 775 if (!request) { 776 cfg80211_free_coloc_ap_list(&coloc_ap_list); 777 return -ENOMEM; 778 } 779 780 *request = *rdev_req; 781 request->n_channels = 0; 782 request->scan_6ghz_params = 783 (void *)&request->channels[n_channels]; 784 785 /* 786 * PSC channels should not be scanned in case of direct scan with 1 SSID 787 * and at least one of the reported co-located APs with same SSID 788 * indicating that all APs in the same ESS are co-located 789 */ 790 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) { 791 list_for_each_entry(ap, &coloc_ap_list, list) { 792 if (ap->colocated_ess && 793 cfg80211_find_ssid_match(ap, request)) { 794 need_scan_psc = false; 795 break; 796 } 797 } 798 } 799 800 /* 801 * add to the scan request the channels that need to be scanned 802 * regardless of the collocated APs (PSC channels or all channels 803 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set) 804 */ 805 for (i = 0; i < rdev_req->n_channels; i++) { 806 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ && 807 ((need_scan_psc && 808 cfg80211_channel_is_psc(rdev_req->channels[i])) || 809 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) { 810 cfg80211_scan_req_add_chan(request, 811 rdev_req->channels[i], 812 false); 813 } 814 } 815 816 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ)) 817 goto skip; 818 819 list_for_each_entry(ap, &coloc_ap_list, list) { 820 bool found = false; 821 struct cfg80211_scan_6ghz_params *scan_6ghz_params = 822 &request->scan_6ghz_params[request->n_6ghz_params]; 823 struct ieee80211_channel *chan = 824 ieee80211_get_channel(&rdev->wiphy, ap->center_freq); 825 826 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED) 827 continue; 828 829 for (i = 0; i < rdev_req->n_channels; i++) { 830 if (rdev_req->channels[i] == chan) 831 found = true; 832 } 833 834 if (!found) 835 continue; 836 837 if (request->n_ssids > 0 && 838 !cfg80211_find_ssid_match(ap, request)) 839 continue; 840 841 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid) 842 continue; 843 844 cfg80211_scan_req_add_chan(request, chan, true); 845 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN); 846 scan_6ghz_params->short_ssid = ap->short_ssid; 847 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid; 848 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe; 849 850 /* 851 * If a PSC channel is added to the scan and 'need_scan_psc' is 852 * set to false, then all the APs that the scan logic is 853 * interested with on the channel are collocated and thus there 854 * is no need to perform the initial PSC channel listen. 855 */ 856 if (cfg80211_channel_is_psc(chan) && !need_scan_psc) 857 scan_6ghz_params->psc_no_listen = true; 858 859 request->n_6ghz_params++; 860 } 861 862 skip: 863 cfg80211_free_coloc_ap_list(&coloc_ap_list); 864 865 if (request->n_channels) { 866 struct cfg80211_scan_request *old = rdev->int_scan_req; 867 rdev->int_scan_req = request; 868 869 /* 870 * Add the ssids from the parent scan request to the new scan 871 * request, so the driver would be able to use them in its 872 * probe requests to discover hidden APs on PSC channels. 873 */ 874 request->ssids = (void *)&request->channels[request->n_channels]; 875 request->n_ssids = rdev_req->n_ssids; 876 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) * 877 request->n_ssids); 878 879 /* 880 * If this scan follows a previous scan, save the scan start 881 * info from the first part of the scan 882 */ 883 if (old) 884 rdev->int_scan_req->info = old->info; 885 886 err = rdev_scan(rdev, request); 887 if (err) { 888 rdev->int_scan_req = old; 889 kfree(request); 890 } else { 891 kfree(old); 892 } 893 894 return err; 895 } 896 897 kfree(request); 898 return -EINVAL; 899 } 900 901 int cfg80211_scan(struct cfg80211_registered_device *rdev) 902 { 903 struct cfg80211_scan_request *request; 904 struct cfg80211_scan_request *rdev_req = rdev->scan_req; 905 u32 n_channels = 0, idx, i; 906 907 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ)) 908 return rdev_scan(rdev, rdev_req); 909 910 for (i = 0; i < rdev_req->n_channels; i++) { 911 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 912 n_channels++; 913 } 914 915 if (!n_channels) 916 return cfg80211_scan_6ghz(rdev); 917 918 request = kzalloc(struct_size(request, channels, n_channels), 919 GFP_KERNEL); 920 if (!request) 921 return -ENOMEM; 922 923 *request = *rdev_req; 924 request->n_channels = n_channels; 925 926 for (i = idx = 0; i < rdev_req->n_channels; i++) { 927 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 928 request->channels[idx++] = rdev_req->channels[i]; 929 } 930 931 rdev_req->scan_6ghz = false; 932 rdev->int_scan_req = request; 933 return rdev_scan(rdev, request); 934 } 935 936 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, 937 bool send_message) 938 { 939 struct cfg80211_scan_request *request, *rdev_req; 940 struct wireless_dev *wdev; 941 struct sk_buff *msg; 942 #ifdef CONFIG_CFG80211_WEXT 943 union iwreq_data wrqu; 944 #endif 945 946 lockdep_assert_held(&rdev->wiphy.mtx); 947 948 if (rdev->scan_msg) { 949 nl80211_send_scan_msg(rdev, rdev->scan_msg); 950 rdev->scan_msg = NULL; 951 return; 952 } 953 954 rdev_req = rdev->scan_req; 955 if (!rdev_req) 956 return; 957 958 wdev = rdev_req->wdev; 959 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req; 960 961 if (wdev_running(wdev) && 962 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) && 963 !rdev_req->scan_6ghz && !request->info.aborted && 964 !cfg80211_scan_6ghz(rdev)) 965 return; 966 967 /* 968 * This must be before sending the other events! 969 * Otherwise, wpa_supplicant gets completely confused with 970 * wext events. 971 */ 972 if (wdev->netdev) 973 cfg80211_sme_scan_done(wdev->netdev); 974 975 if (!request->info.aborted && 976 request->flags & NL80211_SCAN_FLAG_FLUSH) { 977 /* flush entries from previous scans */ 978 spin_lock_bh(&rdev->bss_lock); 979 __cfg80211_bss_expire(rdev, request->scan_start); 980 spin_unlock_bh(&rdev->bss_lock); 981 } 982 983 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted); 984 985 #ifdef CONFIG_CFG80211_WEXT 986 if (wdev->netdev && !request->info.aborted) { 987 memset(&wrqu, 0, sizeof(wrqu)); 988 989 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL); 990 } 991 #endif 992 993 dev_put(wdev->netdev); 994 995 kfree(rdev->int_scan_req); 996 rdev->int_scan_req = NULL; 997 998 kfree(rdev->scan_req); 999 rdev->scan_req = NULL; 1000 1001 if (!send_message) 1002 rdev->scan_msg = msg; 1003 else 1004 nl80211_send_scan_msg(rdev, msg); 1005 } 1006 1007 void __cfg80211_scan_done(struct work_struct *wk) 1008 { 1009 struct cfg80211_registered_device *rdev; 1010 1011 rdev = container_of(wk, struct cfg80211_registered_device, 1012 scan_done_wk); 1013 1014 wiphy_lock(&rdev->wiphy); 1015 ___cfg80211_scan_done(rdev, true); 1016 wiphy_unlock(&rdev->wiphy); 1017 } 1018 1019 void cfg80211_scan_done(struct cfg80211_scan_request *request, 1020 struct cfg80211_scan_info *info) 1021 { 1022 struct cfg80211_scan_info old_info = request->info; 1023 1024 trace_cfg80211_scan_done(request, info); 1025 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req && 1026 request != wiphy_to_rdev(request->wiphy)->int_scan_req); 1027 1028 request->info = *info; 1029 1030 /* 1031 * In case the scan is split, the scan_start_tsf and tsf_bssid should 1032 * be of the first part. In such a case old_info.scan_start_tsf should 1033 * be non zero. 1034 */ 1035 if (request->scan_6ghz && old_info.scan_start_tsf) { 1036 request->info.scan_start_tsf = old_info.scan_start_tsf; 1037 memcpy(request->info.tsf_bssid, old_info.tsf_bssid, 1038 sizeof(request->info.tsf_bssid)); 1039 } 1040 1041 request->notified = true; 1042 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk); 1043 } 1044 EXPORT_SYMBOL(cfg80211_scan_done); 1045 1046 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, 1047 struct cfg80211_sched_scan_request *req) 1048 { 1049 lockdep_assert_held(&rdev->wiphy.mtx); 1050 1051 list_add_rcu(&req->list, &rdev->sched_scan_req_list); 1052 } 1053 1054 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev, 1055 struct cfg80211_sched_scan_request *req) 1056 { 1057 lockdep_assert_held(&rdev->wiphy.mtx); 1058 1059 list_del_rcu(&req->list); 1060 kfree_rcu(req, rcu_head); 1061 } 1062 1063 static struct cfg80211_sched_scan_request * 1064 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid) 1065 { 1066 struct cfg80211_sched_scan_request *pos; 1067 1068 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list, 1069 lockdep_is_held(&rdev->wiphy.mtx)) { 1070 if (pos->reqid == reqid) 1071 return pos; 1072 } 1073 return NULL; 1074 } 1075 1076 /* 1077 * Determines if a scheduled scan request can be handled. When a legacy 1078 * scheduled scan is running no other scheduled scan is allowed regardless 1079 * whether the request is for legacy or multi-support scan. When a multi-support 1080 * scheduled scan is running a request for legacy scan is not allowed. In this 1081 * case a request for multi-support scan can be handled if resources are 1082 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached. 1083 */ 1084 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, 1085 bool want_multi) 1086 { 1087 struct cfg80211_sched_scan_request *pos; 1088 int i = 0; 1089 1090 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) { 1091 /* request id zero means legacy in progress */ 1092 if (!i && !pos->reqid) 1093 return -EINPROGRESS; 1094 i++; 1095 } 1096 1097 if (i) { 1098 /* no legacy allowed when multi request(s) are active */ 1099 if (!want_multi) 1100 return -EINPROGRESS; 1101 1102 /* resource limit reached */ 1103 if (i == rdev->wiphy.max_sched_scan_reqs) 1104 return -ENOSPC; 1105 } 1106 return 0; 1107 } 1108 1109 void cfg80211_sched_scan_results_wk(struct work_struct *work) 1110 { 1111 struct cfg80211_registered_device *rdev; 1112 struct cfg80211_sched_scan_request *req, *tmp; 1113 1114 rdev = container_of(work, struct cfg80211_registered_device, 1115 sched_scan_res_wk); 1116 1117 wiphy_lock(&rdev->wiphy); 1118 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) { 1119 if (req->report_results) { 1120 req->report_results = false; 1121 if (req->flags & NL80211_SCAN_FLAG_FLUSH) { 1122 /* flush entries from previous scans */ 1123 spin_lock_bh(&rdev->bss_lock); 1124 __cfg80211_bss_expire(rdev, req->scan_start); 1125 spin_unlock_bh(&rdev->bss_lock); 1126 req->scan_start = jiffies; 1127 } 1128 nl80211_send_sched_scan(req, 1129 NL80211_CMD_SCHED_SCAN_RESULTS); 1130 } 1131 } 1132 wiphy_unlock(&rdev->wiphy); 1133 } 1134 1135 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid) 1136 { 1137 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1138 struct cfg80211_sched_scan_request *request; 1139 1140 trace_cfg80211_sched_scan_results(wiphy, reqid); 1141 /* ignore if we're not scanning */ 1142 1143 rcu_read_lock(); 1144 request = cfg80211_find_sched_scan_req(rdev, reqid); 1145 if (request) { 1146 request->report_results = true; 1147 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk); 1148 } 1149 rcu_read_unlock(); 1150 } 1151 EXPORT_SYMBOL(cfg80211_sched_scan_results); 1152 1153 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid) 1154 { 1155 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1156 1157 lockdep_assert_held(&wiphy->mtx); 1158 1159 trace_cfg80211_sched_scan_stopped(wiphy, reqid); 1160 1161 __cfg80211_stop_sched_scan(rdev, reqid, true); 1162 } 1163 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked); 1164 1165 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid) 1166 { 1167 wiphy_lock(wiphy); 1168 cfg80211_sched_scan_stopped_locked(wiphy, reqid); 1169 wiphy_unlock(wiphy); 1170 } 1171 EXPORT_SYMBOL(cfg80211_sched_scan_stopped); 1172 1173 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, 1174 struct cfg80211_sched_scan_request *req, 1175 bool driver_initiated) 1176 { 1177 lockdep_assert_held(&rdev->wiphy.mtx); 1178 1179 if (!driver_initiated) { 1180 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid); 1181 if (err) 1182 return err; 1183 } 1184 1185 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED); 1186 1187 cfg80211_del_sched_scan_req(rdev, req); 1188 1189 return 0; 1190 } 1191 1192 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, 1193 u64 reqid, bool driver_initiated) 1194 { 1195 struct cfg80211_sched_scan_request *sched_scan_req; 1196 1197 lockdep_assert_held(&rdev->wiphy.mtx); 1198 1199 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid); 1200 if (!sched_scan_req) 1201 return -ENOENT; 1202 1203 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req, 1204 driver_initiated); 1205 } 1206 1207 void cfg80211_bss_age(struct cfg80211_registered_device *rdev, 1208 unsigned long age_secs) 1209 { 1210 struct cfg80211_internal_bss *bss; 1211 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC); 1212 1213 spin_lock_bh(&rdev->bss_lock); 1214 list_for_each_entry(bss, &rdev->bss_list, list) 1215 bss->ts -= age_jiffies; 1216 spin_unlock_bh(&rdev->bss_lock); 1217 } 1218 1219 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev) 1220 { 1221 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE); 1222 } 1223 1224 void cfg80211_bss_flush(struct wiphy *wiphy) 1225 { 1226 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1227 1228 spin_lock_bh(&rdev->bss_lock); 1229 __cfg80211_bss_expire(rdev, jiffies); 1230 spin_unlock_bh(&rdev->bss_lock); 1231 } 1232 EXPORT_SYMBOL(cfg80211_bss_flush); 1233 1234 const struct element * 1235 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len, 1236 const u8 *match, unsigned int match_len, 1237 unsigned int match_offset) 1238 { 1239 const struct element *elem; 1240 1241 for_each_element_id(elem, eid, ies, len) { 1242 if (elem->datalen >= match_offset + match_len && 1243 !memcmp(elem->data + match_offset, match, match_len)) 1244 return elem; 1245 } 1246 1247 return NULL; 1248 } 1249 EXPORT_SYMBOL(cfg80211_find_elem_match); 1250 1251 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type, 1252 const u8 *ies, 1253 unsigned int len) 1254 { 1255 const struct element *elem; 1256 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type }; 1257 int match_len = (oui_type < 0) ? 3 : sizeof(match); 1258 1259 if (WARN_ON(oui_type > 0xff)) 1260 return NULL; 1261 1262 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len, 1263 match, match_len, 0); 1264 1265 if (!elem || elem->datalen < 4) 1266 return NULL; 1267 1268 return elem; 1269 } 1270 EXPORT_SYMBOL(cfg80211_find_vendor_elem); 1271 1272 /** 1273 * enum bss_compare_mode - BSS compare mode 1274 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find) 1275 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode 1276 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode 1277 */ 1278 enum bss_compare_mode { 1279 BSS_CMP_REGULAR, 1280 BSS_CMP_HIDE_ZLEN, 1281 BSS_CMP_HIDE_NUL, 1282 }; 1283 1284 static int cmp_bss(struct cfg80211_bss *a, 1285 struct cfg80211_bss *b, 1286 enum bss_compare_mode mode) 1287 { 1288 const struct cfg80211_bss_ies *a_ies, *b_ies; 1289 const u8 *ie1 = NULL; 1290 const u8 *ie2 = NULL; 1291 int i, r; 1292 1293 if (a->channel != b->channel) 1294 return (b->channel->center_freq * 1000 + b->channel->freq_offset) - 1295 (a->channel->center_freq * 1000 + a->channel->freq_offset); 1296 1297 a_ies = rcu_access_pointer(a->ies); 1298 if (!a_ies) 1299 return -1; 1300 b_ies = rcu_access_pointer(b->ies); 1301 if (!b_ies) 1302 return 1; 1303 1304 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability)) 1305 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1306 a_ies->data, a_ies->len); 1307 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability)) 1308 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1309 b_ies->data, b_ies->len); 1310 if (ie1 && ie2) { 1311 int mesh_id_cmp; 1312 1313 if (ie1[1] == ie2[1]) 1314 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1315 else 1316 mesh_id_cmp = ie2[1] - ie1[1]; 1317 1318 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1319 a_ies->data, a_ies->len); 1320 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1321 b_ies->data, b_ies->len); 1322 if (ie1 && ie2) { 1323 if (mesh_id_cmp) 1324 return mesh_id_cmp; 1325 if (ie1[1] != ie2[1]) 1326 return ie2[1] - ie1[1]; 1327 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1328 } 1329 } 1330 1331 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid)); 1332 if (r) 1333 return r; 1334 1335 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len); 1336 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len); 1337 1338 if (!ie1 && !ie2) 1339 return 0; 1340 1341 /* 1342 * Note that with "hide_ssid", the function returns a match if 1343 * the already-present BSS ("b") is a hidden SSID beacon for 1344 * the new BSS ("a"). 1345 */ 1346 1347 /* sort missing IE before (left of) present IE */ 1348 if (!ie1) 1349 return -1; 1350 if (!ie2) 1351 return 1; 1352 1353 switch (mode) { 1354 case BSS_CMP_HIDE_ZLEN: 1355 /* 1356 * In ZLEN mode we assume the BSS entry we're 1357 * looking for has a zero-length SSID. So if 1358 * the one we're looking at right now has that, 1359 * return 0. Otherwise, return the difference 1360 * in length, but since we're looking for the 1361 * 0-length it's really equivalent to returning 1362 * the length of the one we're looking at. 1363 * 1364 * No content comparison is needed as we assume 1365 * the content length is zero. 1366 */ 1367 return ie2[1]; 1368 case BSS_CMP_REGULAR: 1369 default: 1370 /* sort by length first, then by contents */ 1371 if (ie1[1] != ie2[1]) 1372 return ie2[1] - ie1[1]; 1373 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1374 case BSS_CMP_HIDE_NUL: 1375 if (ie1[1] != ie2[1]) 1376 return ie2[1] - ie1[1]; 1377 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */ 1378 for (i = 0; i < ie2[1]; i++) 1379 if (ie2[i + 2]) 1380 return -1; 1381 return 0; 1382 } 1383 } 1384 1385 static bool cfg80211_bss_type_match(u16 capability, 1386 enum nl80211_band band, 1387 enum ieee80211_bss_type bss_type) 1388 { 1389 bool ret = true; 1390 u16 mask, val; 1391 1392 if (bss_type == IEEE80211_BSS_TYPE_ANY) 1393 return ret; 1394 1395 if (band == NL80211_BAND_60GHZ) { 1396 mask = WLAN_CAPABILITY_DMG_TYPE_MASK; 1397 switch (bss_type) { 1398 case IEEE80211_BSS_TYPE_ESS: 1399 val = WLAN_CAPABILITY_DMG_TYPE_AP; 1400 break; 1401 case IEEE80211_BSS_TYPE_PBSS: 1402 val = WLAN_CAPABILITY_DMG_TYPE_PBSS; 1403 break; 1404 case IEEE80211_BSS_TYPE_IBSS: 1405 val = WLAN_CAPABILITY_DMG_TYPE_IBSS; 1406 break; 1407 default: 1408 return false; 1409 } 1410 } else { 1411 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS; 1412 switch (bss_type) { 1413 case IEEE80211_BSS_TYPE_ESS: 1414 val = WLAN_CAPABILITY_ESS; 1415 break; 1416 case IEEE80211_BSS_TYPE_IBSS: 1417 val = WLAN_CAPABILITY_IBSS; 1418 break; 1419 case IEEE80211_BSS_TYPE_MBSS: 1420 val = 0; 1421 break; 1422 default: 1423 return false; 1424 } 1425 } 1426 1427 ret = ((capability & mask) == val); 1428 return ret; 1429 } 1430 1431 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1432 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy, 1433 struct ieee80211_channel *channel, 1434 const u8 *bssid, 1435 const u8 *ssid, size_t ssid_len, 1436 enum ieee80211_bss_type bss_type, 1437 enum ieee80211_privacy privacy) 1438 { 1439 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1440 struct cfg80211_internal_bss *bss, *res = NULL; 1441 unsigned long now = jiffies; 1442 int bss_privacy; 1443 1444 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type, 1445 privacy); 1446 1447 spin_lock_bh(&rdev->bss_lock); 1448 1449 list_for_each_entry(bss, &rdev->bss_list, list) { 1450 if (!cfg80211_bss_type_match(bss->pub.capability, 1451 bss->pub.channel->band, bss_type)) 1452 continue; 1453 1454 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY); 1455 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) || 1456 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy)) 1457 continue; 1458 if (channel && bss->pub.channel != channel) 1459 continue; 1460 if (!is_valid_ether_addr(bss->pub.bssid)) 1461 continue; 1462 /* Don't get expired BSS structs */ 1463 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) && 1464 !atomic_read(&bss->hold)) 1465 continue; 1466 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) { 1467 res = bss; 1468 bss_ref_get(rdev, res); 1469 break; 1470 } 1471 } 1472 1473 spin_unlock_bh(&rdev->bss_lock); 1474 if (!res) 1475 return NULL; 1476 trace_cfg80211_return_bss(&res->pub); 1477 return &res->pub; 1478 } 1479 EXPORT_SYMBOL(cfg80211_get_bss); 1480 1481 static void rb_insert_bss(struct cfg80211_registered_device *rdev, 1482 struct cfg80211_internal_bss *bss) 1483 { 1484 struct rb_node **p = &rdev->bss_tree.rb_node; 1485 struct rb_node *parent = NULL; 1486 struct cfg80211_internal_bss *tbss; 1487 int cmp; 1488 1489 while (*p) { 1490 parent = *p; 1491 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn); 1492 1493 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR); 1494 1495 if (WARN_ON(!cmp)) { 1496 /* will sort of leak this BSS */ 1497 return; 1498 } 1499 1500 if (cmp < 0) 1501 p = &(*p)->rb_left; 1502 else 1503 p = &(*p)->rb_right; 1504 } 1505 1506 rb_link_node(&bss->rbn, parent, p); 1507 rb_insert_color(&bss->rbn, &rdev->bss_tree); 1508 } 1509 1510 static struct cfg80211_internal_bss * 1511 rb_find_bss(struct cfg80211_registered_device *rdev, 1512 struct cfg80211_internal_bss *res, 1513 enum bss_compare_mode mode) 1514 { 1515 struct rb_node *n = rdev->bss_tree.rb_node; 1516 struct cfg80211_internal_bss *bss; 1517 int r; 1518 1519 while (n) { 1520 bss = rb_entry(n, struct cfg80211_internal_bss, rbn); 1521 r = cmp_bss(&res->pub, &bss->pub, mode); 1522 1523 if (r == 0) 1524 return bss; 1525 else if (r < 0) 1526 n = n->rb_left; 1527 else 1528 n = n->rb_right; 1529 } 1530 1531 return NULL; 1532 } 1533 1534 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev, 1535 struct cfg80211_internal_bss *new) 1536 { 1537 const struct cfg80211_bss_ies *ies; 1538 struct cfg80211_internal_bss *bss; 1539 const u8 *ie; 1540 int i, ssidlen; 1541 u8 fold = 0; 1542 u32 n_entries = 0; 1543 1544 ies = rcu_access_pointer(new->pub.beacon_ies); 1545 if (WARN_ON(!ies)) 1546 return false; 1547 1548 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1549 if (!ie) { 1550 /* nothing to do */ 1551 return true; 1552 } 1553 1554 ssidlen = ie[1]; 1555 for (i = 0; i < ssidlen; i++) 1556 fold |= ie[2 + i]; 1557 1558 if (fold) { 1559 /* not a hidden SSID */ 1560 return true; 1561 } 1562 1563 /* This is the bad part ... */ 1564 1565 list_for_each_entry(bss, &rdev->bss_list, list) { 1566 /* 1567 * we're iterating all the entries anyway, so take the 1568 * opportunity to validate the list length accounting 1569 */ 1570 n_entries++; 1571 1572 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid)) 1573 continue; 1574 if (bss->pub.channel != new->pub.channel) 1575 continue; 1576 if (bss->pub.scan_width != new->pub.scan_width) 1577 continue; 1578 if (rcu_access_pointer(bss->pub.beacon_ies)) 1579 continue; 1580 ies = rcu_access_pointer(bss->pub.ies); 1581 if (!ies) 1582 continue; 1583 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1584 if (!ie) 1585 continue; 1586 if (ssidlen && ie[1] != ssidlen) 1587 continue; 1588 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss)) 1589 continue; 1590 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list))) 1591 list_del(&bss->hidden_list); 1592 /* combine them */ 1593 list_add(&bss->hidden_list, &new->hidden_list); 1594 bss->pub.hidden_beacon_bss = &new->pub; 1595 new->refcount += bss->refcount; 1596 rcu_assign_pointer(bss->pub.beacon_ies, 1597 new->pub.beacon_ies); 1598 } 1599 1600 WARN_ONCE(n_entries != rdev->bss_entries, 1601 "rdev bss entries[%d]/list[len:%d] corruption\n", 1602 rdev->bss_entries, n_entries); 1603 1604 return true; 1605 } 1606 1607 struct cfg80211_non_tx_bss { 1608 struct cfg80211_bss *tx_bss; 1609 u8 max_bssid_indicator; 1610 u8 bssid_index; 1611 }; 1612 1613 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known, 1614 const struct cfg80211_bss_ies *new_ies, 1615 const struct cfg80211_bss_ies *old_ies) 1616 { 1617 struct cfg80211_internal_bss *bss; 1618 1619 /* Assign beacon IEs to all sub entries */ 1620 list_for_each_entry(bss, &known->hidden_list, hidden_list) { 1621 const struct cfg80211_bss_ies *ies; 1622 1623 ies = rcu_access_pointer(bss->pub.beacon_ies); 1624 WARN_ON(ies != old_ies); 1625 1626 rcu_assign_pointer(bss->pub.beacon_ies, new_ies); 1627 } 1628 } 1629 1630 static bool 1631 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev, 1632 struct cfg80211_internal_bss *known, 1633 struct cfg80211_internal_bss *new, 1634 bool signal_valid) 1635 { 1636 lockdep_assert_held(&rdev->bss_lock); 1637 1638 /* Update IEs */ 1639 if (rcu_access_pointer(new->pub.proberesp_ies)) { 1640 const struct cfg80211_bss_ies *old; 1641 1642 old = rcu_access_pointer(known->pub.proberesp_ies); 1643 1644 rcu_assign_pointer(known->pub.proberesp_ies, 1645 new->pub.proberesp_ies); 1646 /* Override possible earlier Beacon frame IEs */ 1647 rcu_assign_pointer(known->pub.ies, 1648 new->pub.proberesp_ies); 1649 if (old) 1650 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1651 } else if (rcu_access_pointer(new->pub.beacon_ies)) { 1652 const struct cfg80211_bss_ies *old; 1653 1654 if (known->pub.hidden_beacon_bss && 1655 !list_empty(&known->hidden_list)) { 1656 const struct cfg80211_bss_ies *f; 1657 1658 /* The known BSS struct is one of the probe 1659 * response members of a group, but we're 1660 * receiving a beacon (beacon_ies in the new 1661 * bss is used). This can only mean that the 1662 * AP changed its beacon from not having an 1663 * SSID to showing it, which is confusing so 1664 * drop this information. 1665 */ 1666 1667 f = rcu_access_pointer(new->pub.beacon_ies); 1668 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head); 1669 return false; 1670 } 1671 1672 old = rcu_access_pointer(known->pub.beacon_ies); 1673 1674 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies); 1675 1676 /* Override IEs if they were from a beacon before */ 1677 if (old == rcu_access_pointer(known->pub.ies)) 1678 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies); 1679 1680 cfg80211_update_hidden_bsses(known, 1681 rcu_access_pointer(new->pub.beacon_ies), 1682 old); 1683 1684 if (old) 1685 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1686 } 1687 1688 known->pub.beacon_interval = new->pub.beacon_interval; 1689 1690 /* don't update the signal if beacon was heard on 1691 * adjacent channel. 1692 */ 1693 if (signal_valid) 1694 known->pub.signal = new->pub.signal; 1695 known->pub.capability = new->pub.capability; 1696 known->ts = new->ts; 1697 known->ts_boottime = new->ts_boottime; 1698 known->parent_tsf = new->parent_tsf; 1699 known->pub.chains = new->pub.chains; 1700 memcpy(known->pub.chain_signal, new->pub.chain_signal, 1701 IEEE80211_MAX_CHAINS); 1702 ether_addr_copy(known->parent_bssid, new->parent_bssid); 1703 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator; 1704 known->pub.bssid_index = new->pub.bssid_index; 1705 1706 return true; 1707 } 1708 1709 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1710 struct cfg80211_internal_bss * 1711 cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1712 struct cfg80211_internal_bss *tmp, 1713 bool signal_valid, unsigned long ts) 1714 { 1715 struct cfg80211_internal_bss *found = NULL; 1716 1717 if (WARN_ON(!tmp->pub.channel)) 1718 return NULL; 1719 1720 tmp->ts = ts; 1721 1722 spin_lock_bh(&rdev->bss_lock); 1723 1724 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) { 1725 spin_unlock_bh(&rdev->bss_lock); 1726 return NULL; 1727 } 1728 1729 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR); 1730 1731 if (found) { 1732 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid)) 1733 goto drop; 1734 } else { 1735 struct cfg80211_internal_bss *new; 1736 struct cfg80211_internal_bss *hidden; 1737 struct cfg80211_bss_ies *ies; 1738 1739 /* 1740 * create a copy -- the "res" variable that is passed in 1741 * is allocated on the stack since it's not needed in the 1742 * more common case of an update 1743 */ 1744 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size, 1745 GFP_ATOMIC); 1746 if (!new) { 1747 ies = (void *)rcu_dereference(tmp->pub.beacon_ies); 1748 if (ies) 1749 kfree_rcu(ies, rcu_head); 1750 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies); 1751 if (ies) 1752 kfree_rcu(ies, rcu_head); 1753 goto drop; 1754 } 1755 memcpy(new, tmp, sizeof(*new)); 1756 new->refcount = 1; 1757 INIT_LIST_HEAD(&new->hidden_list); 1758 INIT_LIST_HEAD(&new->pub.nontrans_list); 1759 /* we'll set this later if it was non-NULL */ 1760 new->pub.transmitted_bss = NULL; 1761 1762 if (rcu_access_pointer(tmp->pub.proberesp_ies)) { 1763 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN); 1764 if (!hidden) 1765 hidden = rb_find_bss(rdev, tmp, 1766 BSS_CMP_HIDE_NUL); 1767 if (hidden) { 1768 new->pub.hidden_beacon_bss = &hidden->pub; 1769 list_add(&new->hidden_list, 1770 &hidden->hidden_list); 1771 hidden->refcount++; 1772 rcu_assign_pointer(new->pub.beacon_ies, 1773 hidden->pub.beacon_ies); 1774 } 1775 } else { 1776 /* 1777 * Ok so we found a beacon, and don't have an entry. If 1778 * it's a beacon with hidden SSID, we might be in for an 1779 * expensive search for any probe responses that should 1780 * be grouped with this beacon for updates ... 1781 */ 1782 if (!cfg80211_combine_bsses(rdev, new)) { 1783 bss_ref_put(rdev, new); 1784 goto drop; 1785 } 1786 } 1787 1788 if (rdev->bss_entries >= bss_entries_limit && 1789 !cfg80211_bss_expire_oldest(rdev)) { 1790 bss_ref_put(rdev, new); 1791 goto drop; 1792 } 1793 1794 /* This must be before the call to bss_ref_get */ 1795 if (tmp->pub.transmitted_bss) { 1796 new->pub.transmitted_bss = tmp->pub.transmitted_bss; 1797 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss)); 1798 } 1799 1800 list_add_tail(&new->list, &rdev->bss_list); 1801 rdev->bss_entries++; 1802 rb_insert_bss(rdev, new); 1803 found = new; 1804 } 1805 1806 rdev->bss_generation++; 1807 bss_ref_get(rdev, found); 1808 spin_unlock_bh(&rdev->bss_lock); 1809 1810 return found; 1811 drop: 1812 spin_unlock_bh(&rdev->bss_lock); 1813 return NULL; 1814 } 1815 1816 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen, 1817 enum nl80211_band band) 1818 { 1819 const struct element *tmp; 1820 1821 if (band == NL80211_BAND_6GHZ) { 1822 struct ieee80211_he_operation *he_oper; 1823 1824 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, 1825 ielen); 1826 if (tmp && tmp->datalen >= sizeof(*he_oper) && 1827 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) { 1828 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 1829 1830 he_oper = (void *)&tmp->data[1]; 1831 1832 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 1833 if (!he_6ghz_oper) 1834 return -1; 1835 1836 return he_6ghz_oper->primary; 1837 } 1838 } else if (band == NL80211_BAND_S1GHZ) { 1839 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen); 1840 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) { 1841 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data; 1842 1843 return s1gop->oper_ch; 1844 } 1845 } else { 1846 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen); 1847 if (tmp && tmp->datalen == 1) 1848 return tmp->data[0]; 1849 1850 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen); 1851 if (tmp && 1852 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) { 1853 struct ieee80211_ht_operation *htop = (void *)tmp->data; 1854 1855 return htop->primary_chan; 1856 } 1857 } 1858 1859 return -1; 1860 } 1861 EXPORT_SYMBOL(cfg80211_get_ies_channel_number); 1862 1863 /* 1864 * Update RX channel information based on the available frame payload 1865 * information. This is mainly for the 2.4 GHz band where frames can be received 1866 * from neighboring channels and the Beacon frames use the DSSS Parameter Set 1867 * element to indicate the current (transmitting) channel, but this might also 1868 * be needed on other bands if RX frequency does not match with the actual 1869 * operating channel of a BSS, or if the AP reports a different primary channel. 1870 */ 1871 static struct ieee80211_channel * 1872 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen, 1873 struct ieee80211_channel *channel, 1874 enum nl80211_bss_scan_width scan_width) 1875 { 1876 u32 freq; 1877 int channel_number; 1878 struct ieee80211_channel *alt_channel; 1879 1880 channel_number = cfg80211_get_ies_channel_number(ie, ielen, 1881 channel->band); 1882 1883 if (channel_number < 0) { 1884 /* No channel information in frame payload */ 1885 return channel; 1886 } 1887 1888 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band); 1889 1890 /* 1891 * Frame info (beacon/prob res) is the same as received channel, 1892 * no need for further processing. 1893 */ 1894 if (freq == ieee80211_channel_to_khz(channel)) 1895 return channel; 1896 1897 alt_channel = ieee80211_get_channel_khz(wiphy, freq); 1898 if (!alt_channel) { 1899 if (channel->band == NL80211_BAND_2GHZ || 1900 channel->band == NL80211_BAND_6GHZ) { 1901 /* 1902 * Better not allow unexpected channels when that could 1903 * be going beyond the 1-11 range (e.g., discovering 1904 * BSS on channel 12 when radio is configured for 1905 * channel 11) or beyond the 6 GHz channel range. 1906 */ 1907 return NULL; 1908 } 1909 1910 /* No match for the payload channel number - ignore it */ 1911 return channel; 1912 } 1913 1914 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 || 1915 scan_width == NL80211_BSS_CHAN_WIDTH_5) { 1916 /* 1917 * Ignore channel number in 5 and 10 MHz channels where there 1918 * may not be an n:1 or 1:n mapping between frequencies and 1919 * channel numbers. 1920 */ 1921 return channel; 1922 } 1923 1924 /* 1925 * Use the channel determined through the payload channel number 1926 * instead of the RX channel reported by the driver. 1927 */ 1928 if (alt_channel->flags & IEEE80211_CHAN_DISABLED) 1929 return NULL; 1930 return alt_channel; 1931 } 1932 1933 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1934 static struct cfg80211_bss * 1935 cfg80211_inform_single_bss_data(struct wiphy *wiphy, 1936 struct cfg80211_inform_bss *data, 1937 enum cfg80211_bss_frame_type ftype, 1938 const u8 *bssid, u64 tsf, u16 capability, 1939 u16 beacon_interval, const u8 *ie, size_t ielen, 1940 struct cfg80211_non_tx_bss *non_tx_data, 1941 gfp_t gfp) 1942 { 1943 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1944 struct cfg80211_bss_ies *ies; 1945 struct ieee80211_channel *channel; 1946 struct cfg80211_internal_bss tmp = {}, *res; 1947 int bss_type; 1948 bool signal_valid; 1949 unsigned long ts; 1950 1951 if (WARN_ON(!wiphy)) 1952 return NULL; 1953 1954 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 1955 (data->signal < 0 || data->signal > 100))) 1956 return NULL; 1957 1958 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan, 1959 data->scan_width); 1960 if (!channel) 1961 return NULL; 1962 1963 memcpy(tmp.pub.bssid, bssid, ETH_ALEN); 1964 tmp.pub.channel = channel; 1965 tmp.pub.scan_width = data->scan_width; 1966 tmp.pub.signal = data->signal; 1967 tmp.pub.beacon_interval = beacon_interval; 1968 tmp.pub.capability = capability; 1969 tmp.ts_boottime = data->boottime_ns; 1970 tmp.parent_tsf = data->parent_tsf; 1971 ether_addr_copy(tmp.parent_bssid, data->parent_bssid); 1972 1973 if (non_tx_data) { 1974 tmp.pub.transmitted_bss = non_tx_data->tx_bss; 1975 ts = bss_from_pub(non_tx_data->tx_bss)->ts; 1976 tmp.pub.bssid_index = non_tx_data->bssid_index; 1977 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator; 1978 } else { 1979 ts = jiffies; 1980 } 1981 1982 /* 1983 * If we do not know here whether the IEs are from a Beacon or Probe 1984 * Response frame, we need to pick one of the options and only use it 1985 * with the driver that does not provide the full Beacon/Probe Response 1986 * frame. Use Beacon frame pointer to avoid indicating that this should 1987 * override the IEs pointer should we have received an earlier 1988 * indication of Probe Response data. 1989 */ 1990 ies = kzalloc(sizeof(*ies) + ielen, gfp); 1991 if (!ies) 1992 return NULL; 1993 ies->len = ielen; 1994 ies->tsf = tsf; 1995 ies->from_beacon = false; 1996 memcpy(ies->data, ie, ielen); 1997 1998 switch (ftype) { 1999 case CFG80211_BSS_FTYPE_BEACON: 2000 ies->from_beacon = true; 2001 fallthrough; 2002 case CFG80211_BSS_FTYPE_UNKNOWN: 2003 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 2004 break; 2005 case CFG80211_BSS_FTYPE_PRESP: 2006 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 2007 break; 2008 } 2009 rcu_assign_pointer(tmp.pub.ies, ies); 2010 2011 signal_valid = data->chan == channel; 2012 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts); 2013 if (!res) 2014 return NULL; 2015 2016 if (channel->band == NL80211_BAND_60GHZ) { 2017 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 2018 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2019 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2020 regulatory_hint_found_beacon(wiphy, channel, gfp); 2021 } else { 2022 if (res->pub.capability & WLAN_CAPABILITY_ESS) 2023 regulatory_hint_found_beacon(wiphy, channel, gfp); 2024 } 2025 2026 if (non_tx_data) { 2027 /* this is a nontransmitting bss, we need to add it to 2028 * transmitting bss' list if it is not there 2029 */ 2030 spin_lock_bh(&rdev->bss_lock); 2031 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss, 2032 &res->pub)) { 2033 if (__cfg80211_unlink_bss(rdev, res)) { 2034 rdev->bss_generation++; 2035 res = NULL; 2036 } 2037 } 2038 spin_unlock_bh(&rdev->bss_lock); 2039 2040 if (!res) 2041 return NULL; 2042 } 2043 2044 trace_cfg80211_return_bss(&res->pub); 2045 /* cfg80211_bss_update gives us a referenced result */ 2046 return &res->pub; 2047 } 2048 2049 static const struct element 2050 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen, 2051 const struct element *mbssid_elem, 2052 const struct element *sub_elem) 2053 { 2054 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen; 2055 const struct element *next_mbssid; 2056 const struct element *next_sub; 2057 2058 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2059 mbssid_end, 2060 ielen - (mbssid_end - ie)); 2061 2062 /* 2063 * If it is not the last subelement in current MBSSID IE or there isn't 2064 * a next MBSSID IE - profile is complete. 2065 */ 2066 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) || 2067 !next_mbssid) 2068 return NULL; 2069 2070 /* For any length error, just return NULL */ 2071 2072 if (next_mbssid->datalen < 4) 2073 return NULL; 2074 2075 next_sub = (void *)&next_mbssid->data[1]; 2076 2077 if (next_mbssid->data + next_mbssid->datalen < 2078 next_sub->data + next_sub->datalen) 2079 return NULL; 2080 2081 if (next_sub->id != 0 || next_sub->datalen < 2) 2082 return NULL; 2083 2084 /* 2085 * Check if the first element in the next sub element is a start 2086 * of a new profile 2087 */ 2088 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ? 2089 NULL : next_mbssid; 2090 } 2091 2092 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen, 2093 const struct element *mbssid_elem, 2094 const struct element *sub_elem, 2095 u8 *merged_ie, size_t max_copy_len) 2096 { 2097 size_t copied_len = sub_elem->datalen; 2098 const struct element *next_mbssid; 2099 2100 if (sub_elem->datalen > max_copy_len) 2101 return 0; 2102 2103 memcpy(merged_ie, sub_elem->data, sub_elem->datalen); 2104 2105 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen, 2106 mbssid_elem, 2107 sub_elem))) { 2108 const struct element *next_sub = (void *)&next_mbssid->data[1]; 2109 2110 if (copied_len + next_sub->datalen > max_copy_len) 2111 break; 2112 memcpy(merged_ie + copied_len, next_sub->data, 2113 next_sub->datalen); 2114 copied_len += next_sub->datalen; 2115 } 2116 2117 return copied_len; 2118 } 2119 EXPORT_SYMBOL(cfg80211_merge_profile); 2120 2121 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy, 2122 struct cfg80211_inform_bss *data, 2123 enum cfg80211_bss_frame_type ftype, 2124 const u8 *bssid, u64 tsf, 2125 u16 beacon_interval, const u8 *ie, 2126 size_t ielen, 2127 struct cfg80211_non_tx_bss *non_tx_data, 2128 gfp_t gfp) 2129 { 2130 const u8 *mbssid_index_ie; 2131 const struct element *elem, *sub; 2132 size_t new_ie_len; 2133 u8 new_bssid[ETH_ALEN]; 2134 u8 *new_ie, *profile; 2135 u64 seen_indices = 0; 2136 u16 capability; 2137 struct cfg80211_bss *bss; 2138 2139 if (!non_tx_data) 2140 return; 2141 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen)) 2142 return; 2143 if (!wiphy->support_mbssid) 2144 return; 2145 if (wiphy->support_only_he_mbssid && 2146 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen)) 2147 return; 2148 2149 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2150 if (!new_ie) 2151 return; 2152 2153 profile = kmalloc(ielen, gfp); 2154 if (!profile) 2155 goto out; 2156 2157 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) { 2158 if (elem->datalen < 4) 2159 continue; 2160 if (elem->data[0] < 1 || (int)elem->data[0] > 8) 2161 continue; 2162 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 2163 u8 profile_len; 2164 2165 if (sub->id != 0 || sub->datalen < 4) { 2166 /* not a valid BSS profile */ 2167 continue; 2168 } 2169 2170 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 2171 sub->data[1] != 2) { 2172 /* The first element within the Nontransmitted 2173 * BSSID Profile is not the Nontransmitted 2174 * BSSID Capability element. 2175 */ 2176 continue; 2177 } 2178 2179 memset(profile, 0, ielen); 2180 profile_len = cfg80211_merge_profile(ie, ielen, 2181 elem, 2182 sub, 2183 profile, 2184 ielen); 2185 2186 /* found a Nontransmitted BSSID Profile */ 2187 mbssid_index_ie = cfg80211_find_ie 2188 (WLAN_EID_MULTI_BSSID_IDX, 2189 profile, profile_len); 2190 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 || 2191 mbssid_index_ie[2] == 0 || 2192 mbssid_index_ie[2] > 46) { 2193 /* No valid Multiple BSSID-Index element */ 2194 continue; 2195 } 2196 2197 if (seen_indices & BIT_ULL(mbssid_index_ie[2])) 2198 /* We don't support legacy split of a profile */ 2199 net_dbg_ratelimited("Partial info for BSSID index %d\n", 2200 mbssid_index_ie[2]); 2201 2202 seen_indices |= BIT_ULL(mbssid_index_ie[2]); 2203 2204 non_tx_data->bssid_index = mbssid_index_ie[2]; 2205 non_tx_data->max_bssid_indicator = elem->data[0]; 2206 2207 cfg80211_gen_new_bssid(bssid, 2208 non_tx_data->max_bssid_indicator, 2209 non_tx_data->bssid_index, 2210 new_bssid); 2211 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 2212 new_ie_len = cfg80211_gen_new_ie(ie, ielen, 2213 profile, 2214 profile_len, new_ie, 2215 gfp); 2216 if (!new_ie_len) 2217 continue; 2218 2219 capability = get_unaligned_le16(profile + 2); 2220 bss = cfg80211_inform_single_bss_data(wiphy, data, 2221 ftype, 2222 new_bssid, tsf, 2223 capability, 2224 beacon_interval, 2225 new_ie, 2226 new_ie_len, 2227 non_tx_data, 2228 gfp); 2229 if (!bss) 2230 break; 2231 cfg80211_put_bss(wiphy, bss); 2232 } 2233 } 2234 2235 out: 2236 kfree(new_ie); 2237 kfree(profile); 2238 } 2239 2240 struct cfg80211_bss * 2241 cfg80211_inform_bss_data(struct wiphy *wiphy, 2242 struct cfg80211_inform_bss *data, 2243 enum cfg80211_bss_frame_type ftype, 2244 const u8 *bssid, u64 tsf, u16 capability, 2245 u16 beacon_interval, const u8 *ie, size_t ielen, 2246 gfp_t gfp) 2247 { 2248 struct cfg80211_bss *res; 2249 struct cfg80211_non_tx_bss non_tx_data; 2250 2251 res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf, 2252 capability, beacon_interval, ie, 2253 ielen, NULL, gfp); 2254 if (!res) 2255 return NULL; 2256 non_tx_data.tx_bss = res; 2257 cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf, 2258 beacon_interval, ie, ielen, &non_tx_data, 2259 gfp); 2260 return res; 2261 } 2262 EXPORT_SYMBOL(cfg80211_inform_bss_data); 2263 2264 static void 2265 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy, 2266 struct cfg80211_inform_bss *data, 2267 struct ieee80211_mgmt *mgmt, size_t len, 2268 struct cfg80211_non_tx_bss *non_tx_data, 2269 gfp_t gfp) 2270 { 2271 enum cfg80211_bss_frame_type ftype; 2272 const u8 *ie = mgmt->u.probe_resp.variable; 2273 size_t ielen = len - offsetof(struct ieee80211_mgmt, 2274 u.probe_resp.variable); 2275 2276 ftype = ieee80211_is_beacon(mgmt->frame_control) ? 2277 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP; 2278 2279 cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid, 2280 le64_to_cpu(mgmt->u.probe_resp.timestamp), 2281 le16_to_cpu(mgmt->u.probe_resp.beacon_int), 2282 ie, ielen, non_tx_data, gfp); 2283 } 2284 2285 static void 2286 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy, 2287 struct cfg80211_bss *nontrans_bss, 2288 struct ieee80211_mgmt *mgmt, size_t len) 2289 { 2290 u8 *ie, *new_ie, *pos; 2291 const struct element *nontrans_ssid; 2292 const u8 *trans_ssid, *mbssid; 2293 size_t ielen = len - offsetof(struct ieee80211_mgmt, 2294 u.probe_resp.variable); 2295 size_t new_ie_len; 2296 struct cfg80211_bss_ies *new_ies; 2297 const struct cfg80211_bss_ies *old; 2298 size_t cpy_len; 2299 2300 lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock); 2301 2302 ie = mgmt->u.probe_resp.variable; 2303 2304 new_ie_len = ielen; 2305 trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen); 2306 if (!trans_ssid) 2307 return; 2308 new_ie_len -= trans_ssid[1]; 2309 mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen); 2310 /* 2311 * It's not valid to have the MBSSID element before SSID 2312 * ignore if that happens - the code below assumes it is 2313 * after (while copying things inbetween). 2314 */ 2315 if (!mbssid || mbssid < trans_ssid) 2316 return; 2317 new_ie_len -= mbssid[1]; 2318 2319 nontrans_ssid = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID); 2320 if (!nontrans_ssid) 2321 return; 2322 2323 new_ie_len += nontrans_ssid->datalen; 2324 2325 /* generate new ie for nontrans BSS 2326 * 1. replace SSID with nontrans BSS' SSID 2327 * 2. skip MBSSID IE 2328 */ 2329 new_ie = kzalloc(new_ie_len, GFP_ATOMIC); 2330 if (!new_ie) 2331 return; 2332 2333 new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC); 2334 if (!new_ies) 2335 goto out_free; 2336 2337 pos = new_ie; 2338 2339 /* copy the nontransmitted SSID */ 2340 cpy_len = nontrans_ssid->datalen + 2; 2341 memcpy(pos, nontrans_ssid, cpy_len); 2342 pos += cpy_len; 2343 /* copy the IEs between SSID and MBSSID */ 2344 cpy_len = trans_ssid[1] + 2; 2345 memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len))); 2346 pos += (mbssid - (trans_ssid + cpy_len)); 2347 /* copy the IEs after MBSSID */ 2348 cpy_len = mbssid[1] + 2; 2349 memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len))); 2350 2351 /* update ie */ 2352 new_ies->len = new_ie_len; 2353 new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 2354 new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control); 2355 memcpy(new_ies->data, new_ie, new_ie_len); 2356 if (ieee80211_is_probe_resp(mgmt->frame_control)) { 2357 old = rcu_access_pointer(nontrans_bss->proberesp_ies); 2358 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies); 2359 rcu_assign_pointer(nontrans_bss->ies, new_ies); 2360 if (old) 2361 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 2362 } else { 2363 old = rcu_access_pointer(nontrans_bss->beacon_ies); 2364 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies); 2365 cfg80211_update_hidden_bsses(bss_from_pub(nontrans_bss), 2366 new_ies, old); 2367 rcu_assign_pointer(nontrans_bss->ies, new_ies); 2368 if (old) 2369 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 2370 } 2371 2372 out_free: 2373 kfree(new_ie); 2374 } 2375 2376 /* cfg80211_inform_bss_width_frame helper */ 2377 static struct cfg80211_bss * 2378 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy, 2379 struct cfg80211_inform_bss *data, 2380 struct ieee80211_mgmt *mgmt, size_t len, 2381 gfp_t gfp) 2382 { 2383 struct cfg80211_internal_bss tmp = {}, *res; 2384 struct cfg80211_bss_ies *ies; 2385 struct ieee80211_channel *channel; 2386 bool signal_valid; 2387 struct ieee80211_ext *ext = NULL; 2388 u8 *bssid, *variable; 2389 u16 capability, beacon_int; 2390 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt, 2391 u.probe_resp.variable); 2392 int bss_type; 2393 2394 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) != 2395 offsetof(struct ieee80211_mgmt, u.beacon.variable)); 2396 2397 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len); 2398 2399 if (WARN_ON(!mgmt)) 2400 return NULL; 2401 2402 if (WARN_ON(!wiphy)) 2403 return NULL; 2404 2405 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 2406 (data->signal < 0 || data->signal > 100))) 2407 return NULL; 2408 2409 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) { 2410 ext = (void *) mgmt; 2411 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon); 2412 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 2413 min_hdr_len = offsetof(struct ieee80211_ext, 2414 u.s1g_short_beacon.variable); 2415 } 2416 2417 if (WARN_ON(len < min_hdr_len)) 2418 return NULL; 2419 2420 ielen = len - min_hdr_len; 2421 variable = mgmt->u.probe_resp.variable; 2422 if (ext) { 2423 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 2424 variable = ext->u.s1g_short_beacon.variable; 2425 else 2426 variable = ext->u.s1g_beacon.variable; 2427 } 2428 2429 channel = cfg80211_get_bss_channel(wiphy, variable, 2430 ielen, data->chan, data->scan_width); 2431 if (!channel) 2432 return NULL; 2433 2434 if (ext) { 2435 const struct ieee80211_s1g_bcn_compat_ie *compat; 2436 const struct element *elem; 2437 2438 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, 2439 variable, ielen); 2440 if (!elem) 2441 return NULL; 2442 if (elem->datalen < sizeof(*compat)) 2443 return NULL; 2444 compat = (void *)elem->data; 2445 bssid = ext->u.s1g_beacon.sa; 2446 capability = le16_to_cpu(compat->compat_info); 2447 beacon_int = le16_to_cpu(compat->beacon_int); 2448 } else { 2449 bssid = mgmt->bssid; 2450 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int); 2451 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info); 2452 } 2453 2454 ies = kzalloc(sizeof(*ies) + ielen, gfp); 2455 if (!ies) 2456 return NULL; 2457 ies->len = ielen; 2458 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 2459 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) || 2460 ieee80211_is_s1g_beacon(mgmt->frame_control); 2461 memcpy(ies->data, variable, ielen); 2462 2463 if (ieee80211_is_probe_resp(mgmt->frame_control)) 2464 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 2465 else 2466 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 2467 rcu_assign_pointer(tmp.pub.ies, ies); 2468 2469 memcpy(tmp.pub.bssid, bssid, ETH_ALEN); 2470 tmp.pub.beacon_interval = beacon_int; 2471 tmp.pub.capability = capability; 2472 tmp.pub.channel = channel; 2473 tmp.pub.scan_width = data->scan_width; 2474 tmp.pub.signal = data->signal; 2475 tmp.ts_boottime = data->boottime_ns; 2476 tmp.parent_tsf = data->parent_tsf; 2477 tmp.pub.chains = data->chains; 2478 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS); 2479 ether_addr_copy(tmp.parent_bssid, data->parent_bssid); 2480 2481 signal_valid = data->chan == channel; 2482 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, 2483 jiffies); 2484 if (!res) 2485 return NULL; 2486 2487 if (channel->band == NL80211_BAND_60GHZ) { 2488 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 2489 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2490 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2491 regulatory_hint_found_beacon(wiphy, channel, gfp); 2492 } else { 2493 if (res->pub.capability & WLAN_CAPABILITY_ESS) 2494 regulatory_hint_found_beacon(wiphy, channel, gfp); 2495 } 2496 2497 trace_cfg80211_return_bss(&res->pub); 2498 /* cfg80211_bss_update gives us a referenced result */ 2499 return &res->pub; 2500 } 2501 2502 struct cfg80211_bss * 2503 cfg80211_inform_bss_frame_data(struct wiphy *wiphy, 2504 struct cfg80211_inform_bss *data, 2505 struct ieee80211_mgmt *mgmt, size_t len, 2506 gfp_t gfp) 2507 { 2508 struct cfg80211_bss *res, *tmp_bss; 2509 const u8 *ie = mgmt->u.probe_resp.variable; 2510 const struct cfg80211_bss_ies *ies1, *ies2; 2511 size_t ielen = len - offsetof(struct ieee80211_mgmt, 2512 u.probe_resp.variable); 2513 struct cfg80211_non_tx_bss non_tx_data = {}; 2514 2515 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt, 2516 len, gfp); 2517 2518 /* don't do any further MBSSID handling for S1G */ 2519 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 2520 return res; 2521 2522 if (!res || !wiphy->support_mbssid || 2523 !cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen)) 2524 return res; 2525 if (wiphy->support_only_he_mbssid && 2526 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen)) 2527 return res; 2528 2529 non_tx_data.tx_bss = res; 2530 /* process each non-transmitting bss */ 2531 cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len, 2532 &non_tx_data, gfp); 2533 2534 spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock); 2535 2536 /* check if the res has other nontransmitting bss which is not 2537 * in MBSSID IE 2538 */ 2539 ies1 = rcu_access_pointer(res->ies); 2540 2541 /* go through nontrans_list, if the timestamp of the BSS is 2542 * earlier than the timestamp of the transmitting BSS then 2543 * update it 2544 */ 2545 list_for_each_entry(tmp_bss, &res->nontrans_list, 2546 nontrans_list) { 2547 ies2 = rcu_access_pointer(tmp_bss->ies); 2548 if (ies2->tsf < ies1->tsf) 2549 cfg80211_update_notlisted_nontrans(wiphy, tmp_bss, 2550 mgmt, len); 2551 } 2552 spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock); 2553 2554 return res; 2555 } 2556 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data); 2557 2558 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2559 { 2560 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2561 2562 if (!pub) 2563 return; 2564 2565 spin_lock_bh(&rdev->bss_lock); 2566 bss_ref_get(rdev, bss_from_pub(pub)); 2567 spin_unlock_bh(&rdev->bss_lock); 2568 } 2569 EXPORT_SYMBOL(cfg80211_ref_bss); 2570 2571 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2572 { 2573 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2574 2575 if (!pub) 2576 return; 2577 2578 spin_lock_bh(&rdev->bss_lock); 2579 bss_ref_put(rdev, bss_from_pub(pub)); 2580 spin_unlock_bh(&rdev->bss_lock); 2581 } 2582 EXPORT_SYMBOL(cfg80211_put_bss); 2583 2584 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2585 { 2586 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2587 struct cfg80211_internal_bss *bss, *tmp1; 2588 struct cfg80211_bss *nontrans_bss, *tmp; 2589 2590 if (WARN_ON(!pub)) 2591 return; 2592 2593 bss = bss_from_pub(pub); 2594 2595 spin_lock_bh(&rdev->bss_lock); 2596 if (list_empty(&bss->list)) 2597 goto out; 2598 2599 list_for_each_entry_safe(nontrans_bss, tmp, 2600 &pub->nontrans_list, 2601 nontrans_list) { 2602 tmp1 = bss_from_pub(nontrans_bss); 2603 if (__cfg80211_unlink_bss(rdev, tmp1)) 2604 rdev->bss_generation++; 2605 } 2606 2607 if (__cfg80211_unlink_bss(rdev, bss)) 2608 rdev->bss_generation++; 2609 out: 2610 spin_unlock_bh(&rdev->bss_lock); 2611 } 2612 EXPORT_SYMBOL(cfg80211_unlink_bss); 2613 2614 void cfg80211_bss_iter(struct wiphy *wiphy, 2615 struct cfg80211_chan_def *chandef, 2616 void (*iter)(struct wiphy *wiphy, 2617 struct cfg80211_bss *bss, 2618 void *data), 2619 void *iter_data) 2620 { 2621 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2622 struct cfg80211_internal_bss *bss; 2623 2624 spin_lock_bh(&rdev->bss_lock); 2625 2626 list_for_each_entry(bss, &rdev->bss_list, list) { 2627 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel, 2628 false)) 2629 iter(wiphy, &bss->pub, iter_data); 2630 } 2631 2632 spin_unlock_bh(&rdev->bss_lock); 2633 } 2634 EXPORT_SYMBOL(cfg80211_bss_iter); 2635 2636 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, 2637 unsigned int link_id, 2638 struct ieee80211_channel *chan) 2639 { 2640 struct wiphy *wiphy = wdev->wiphy; 2641 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2642 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss; 2643 struct cfg80211_internal_bss *new = NULL; 2644 struct cfg80211_internal_bss *bss; 2645 struct cfg80211_bss *nontrans_bss; 2646 struct cfg80211_bss *tmp; 2647 2648 spin_lock_bh(&rdev->bss_lock); 2649 2650 /* 2651 * Some APs use CSA also for bandwidth changes, i.e., without actually 2652 * changing the control channel, so no need to update in such a case. 2653 */ 2654 if (cbss->pub.channel == chan) 2655 goto done; 2656 2657 /* use transmitting bss */ 2658 if (cbss->pub.transmitted_bss) 2659 cbss = bss_from_pub(cbss->pub.transmitted_bss); 2660 2661 cbss->pub.channel = chan; 2662 2663 list_for_each_entry(bss, &rdev->bss_list, list) { 2664 if (!cfg80211_bss_type_match(bss->pub.capability, 2665 bss->pub.channel->band, 2666 wdev->conn_bss_type)) 2667 continue; 2668 2669 if (bss == cbss) 2670 continue; 2671 2672 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) { 2673 new = bss; 2674 break; 2675 } 2676 } 2677 2678 if (new) { 2679 /* to save time, update IEs for transmitting bss only */ 2680 if (cfg80211_update_known_bss(rdev, cbss, new, false)) { 2681 new->pub.proberesp_ies = NULL; 2682 new->pub.beacon_ies = NULL; 2683 } 2684 2685 list_for_each_entry_safe(nontrans_bss, tmp, 2686 &new->pub.nontrans_list, 2687 nontrans_list) { 2688 bss = bss_from_pub(nontrans_bss); 2689 if (__cfg80211_unlink_bss(rdev, bss)) 2690 rdev->bss_generation++; 2691 } 2692 2693 WARN_ON(atomic_read(&new->hold)); 2694 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new))) 2695 rdev->bss_generation++; 2696 } 2697 2698 rb_erase(&cbss->rbn, &rdev->bss_tree); 2699 rb_insert_bss(rdev, cbss); 2700 rdev->bss_generation++; 2701 2702 list_for_each_entry_safe(nontrans_bss, tmp, 2703 &cbss->pub.nontrans_list, 2704 nontrans_list) { 2705 bss = bss_from_pub(nontrans_bss); 2706 bss->pub.channel = chan; 2707 rb_erase(&bss->rbn, &rdev->bss_tree); 2708 rb_insert_bss(rdev, bss); 2709 rdev->bss_generation++; 2710 } 2711 2712 done: 2713 spin_unlock_bh(&rdev->bss_lock); 2714 } 2715 2716 #ifdef CONFIG_CFG80211_WEXT 2717 static struct cfg80211_registered_device * 2718 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex) 2719 { 2720 struct cfg80211_registered_device *rdev; 2721 struct net_device *dev; 2722 2723 ASSERT_RTNL(); 2724 2725 dev = dev_get_by_index(net, ifindex); 2726 if (!dev) 2727 return ERR_PTR(-ENODEV); 2728 if (dev->ieee80211_ptr) 2729 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy); 2730 else 2731 rdev = ERR_PTR(-ENODEV); 2732 dev_put(dev); 2733 return rdev; 2734 } 2735 2736 int cfg80211_wext_siwscan(struct net_device *dev, 2737 struct iw_request_info *info, 2738 union iwreq_data *wrqu, char *extra) 2739 { 2740 struct cfg80211_registered_device *rdev; 2741 struct wiphy *wiphy; 2742 struct iw_scan_req *wreq = NULL; 2743 struct cfg80211_scan_request *creq; 2744 int i, err, n_channels = 0; 2745 enum nl80211_band band; 2746 2747 if (!netif_running(dev)) 2748 return -ENETDOWN; 2749 2750 if (wrqu->data.length == sizeof(struct iw_scan_req)) 2751 wreq = (struct iw_scan_req *)extra; 2752 2753 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 2754 2755 if (IS_ERR(rdev)) 2756 return PTR_ERR(rdev); 2757 2758 if (rdev->scan_req || rdev->scan_msg) 2759 return -EBUSY; 2760 2761 wiphy = &rdev->wiphy; 2762 2763 /* Determine number of channels, needed to allocate creq */ 2764 if (wreq && wreq->num_channels) 2765 n_channels = wreq->num_channels; 2766 else 2767 n_channels = ieee80211_get_num_supported_channels(wiphy); 2768 2769 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) + 2770 n_channels * sizeof(void *), 2771 GFP_ATOMIC); 2772 if (!creq) 2773 return -ENOMEM; 2774 2775 creq->wiphy = wiphy; 2776 creq->wdev = dev->ieee80211_ptr; 2777 /* SSIDs come after channels */ 2778 creq->ssids = (void *)&creq->channels[n_channels]; 2779 creq->n_channels = n_channels; 2780 creq->n_ssids = 1; 2781 creq->scan_start = jiffies; 2782 2783 /* translate "Scan on frequencies" request */ 2784 i = 0; 2785 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2786 int j; 2787 2788 if (!wiphy->bands[band]) 2789 continue; 2790 2791 for (j = 0; j < wiphy->bands[band]->n_channels; j++) { 2792 /* ignore disabled channels */ 2793 if (wiphy->bands[band]->channels[j].flags & 2794 IEEE80211_CHAN_DISABLED) 2795 continue; 2796 2797 /* If we have a wireless request structure and the 2798 * wireless request specifies frequencies, then search 2799 * for the matching hardware channel. 2800 */ 2801 if (wreq && wreq->num_channels) { 2802 int k; 2803 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq; 2804 for (k = 0; k < wreq->num_channels; k++) { 2805 struct iw_freq *freq = 2806 &wreq->channel_list[k]; 2807 int wext_freq = 2808 cfg80211_wext_freq(freq); 2809 2810 if (wext_freq == wiphy_freq) 2811 goto wext_freq_found; 2812 } 2813 goto wext_freq_not_found; 2814 } 2815 2816 wext_freq_found: 2817 creq->channels[i] = &wiphy->bands[band]->channels[j]; 2818 i++; 2819 wext_freq_not_found: ; 2820 } 2821 } 2822 /* No channels found? */ 2823 if (!i) { 2824 err = -EINVAL; 2825 goto out; 2826 } 2827 2828 /* Set real number of channels specified in creq->channels[] */ 2829 creq->n_channels = i; 2830 2831 /* translate "Scan for SSID" request */ 2832 if (wreq) { 2833 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { 2834 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) { 2835 err = -EINVAL; 2836 goto out; 2837 } 2838 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len); 2839 creq->ssids[0].ssid_len = wreq->essid_len; 2840 } 2841 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) 2842 creq->n_ssids = 0; 2843 } 2844 2845 for (i = 0; i < NUM_NL80211_BANDS; i++) 2846 if (wiphy->bands[i]) 2847 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1; 2848 2849 eth_broadcast_addr(creq->bssid); 2850 2851 wiphy_lock(&rdev->wiphy); 2852 2853 rdev->scan_req = creq; 2854 err = rdev_scan(rdev, creq); 2855 if (err) { 2856 rdev->scan_req = NULL; 2857 /* creq will be freed below */ 2858 } else { 2859 nl80211_send_scan_start(rdev, dev->ieee80211_ptr); 2860 /* creq now owned by driver */ 2861 creq = NULL; 2862 dev_hold(dev); 2863 } 2864 wiphy_unlock(&rdev->wiphy); 2865 out: 2866 kfree(creq); 2867 return err; 2868 } 2869 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan); 2870 2871 static char *ieee80211_scan_add_ies(struct iw_request_info *info, 2872 const struct cfg80211_bss_ies *ies, 2873 char *current_ev, char *end_buf) 2874 { 2875 const u8 *pos, *end, *next; 2876 struct iw_event iwe; 2877 2878 if (!ies) 2879 return current_ev; 2880 2881 /* 2882 * If needed, fragment the IEs buffer (at IE boundaries) into short 2883 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages. 2884 */ 2885 pos = ies->data; 2886 end = pos + ies->len; 2887 2888 while (end - pos > IW_GENERIC_IE_MAX) { 2889 next = pos + 2 + pos[1]; 2890 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX) 2891 next = next + 2 + next[1]; 2892 2893 memset(&iwe, 0, sizeof(iwe)); 2894 iwe.cmd = IWEVGENIE; 2895 iwe.u.data.length = next - pos; 2896 current_ev = iwe_stream_add_point_check(info, current_ev, 2897 end_buf, &iwe, 2898 (void *)pos); 2899 if (IS_ERR(current_ev)) 2900 return current_ev; 2901 pos = next; 2902 } 2903 2904 if (end > pos) { 2905 memset(&iwe, 0, sizeof(iwe)); 2906 iwe.cmd = IWEVGENIE; 2907 iwe.u.data.length = end - pos; 2908 current_ev = iwe_stream_add_point_check(info, current_ev, 2909 end_buf, &iwe, 2910 (void *)pos); 2911 if (IS_ERR(current_ev)) 2912 return current_ev; 2913 } 2914 2915 return current_ev; 2916 } 2917 2918 static char * 2919 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info, 2920 struct cfg80211_internal_bss *bss, char *current_ev, 2921 char *end_buf) 2922 { 2923 const struct cfg80211_bss_ies *ies; 2924 struct iw_event iwe; 2925 const u8 *ie; 2926 u8 buf[50]; 2927 u8 *cfg, *p, *tmp; 2928 int rem, i, sig; 2929 bool ismesh = false; 2930 2931 memset(&iwe, 0, sizeof(iwe)); 2932 iwe.cmd = SIOCGIWAP; 2933 iwe.u.ap_addr.sa_family = ARPHRD_ETHER; 2934 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN); 2935 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 2936 IW_EV_ADDR_LEN); 2937 if (IS_ERR(current_ev)) 2938 return current_ev; 2939 2940 memset(&iwe, 0, sizeof(iwe)); 2941 iwe.cmd = SIOCGIWFREQ; 2942 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq); 2943 iwe.u.freq.e = 0; 2944 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 2945 IW_EV_FREQ_LEN); 2946 if (IS_ERR(current_ev)) 2947 return current_ev; 2948 2949 memset(&iwe, 0, sizeof(iwe)); 2950 iwe.cmd = SIOCGIWFREQ; 2951 iwe.u.freq.m = bss->pub.channel->center_freq; 2952 iwe.u.freq.e = 6; 2953 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 2954 IW_EV_FREQ_LEN); 2955 if (IS_ERR(current_ev)) 2956 return current_ev; 2957 2958 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) { 2959 memset(&iwe, 0, sizeof(iwe)); 2960 iwe.cmd = IWEVQUAL; 2961 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED | 2962 IW_QUAL_NOISE_INVALID | 2963 IW_QUAL_QUAL_UPDATED; 2964 switch (wiphy->signal_type) { 2965 case CFG80211_SIGNAL_TYPE_MBM: 2966 sig = bss->pub.signal / 100; 2967 iwe.u.qual.level = sig; 2968 iwe.u.qual.updated |= IW_QUAL_DBM; 2969 if (sig < -110) /* rather bad */ 2970 sig = -110; 2971 else if (sig > -40) /* perfect */ 2972 sig = -40; 2973 /* will give a range of 0 .. 70 */ 2974 iwe.u.qual.qual = sig + 110; 2975 break; 2976 case CFG80211_SIGNAL_TYPE_UNSPEC: 2977 iwe.u.qual.level = bss->pub.signal; 2978 /* will give range 0 .. 100 */ 2979 iwe.u.qual.qual = bss->pub.signal; 2980 break; 2981 default: 2982 /* not reached */ 2983 break; 2984 } 2985 current_ev = iwe_stream_add_event_check(info, current_ev, 2986 end_buf, &iwe, 2987 IW_EV_QUAL_LEN); 2988 if (IS_ERR(current_ev)) 2989 return current_ev; 2990 } 2991 2992 memset(&iwe, 0, sizeof(iwe)); 2993 iwe.cmd = SIOCGIWENCODE; 2994 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY) 2995 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY; 2996 else 2997 iwe.u.data.flags = IW_ENCODE_DISABLED; 2998 iwe.u.data.length = 0; 2999 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3000 &iwe, ""); 3001 if (IS_ERR(current_ev)) 3002 return current_ev; 3003 3004 rcu_read_lock(); 3005 ies = rcu_dereference(bss->pub.ies); 3006 rem = ies->len; 3007 ie = ies->data; 3008 3009 while (rem >= 2) { 3010 /* invalid data */ 3011 if (ie[1] > rem - 2) 3012 break; 3013 3014 switch (ie[0]) { 3015 case WLAN_EID_SSID: 3016 memset(&iwe, 0, sizeof(iwe)); 3017 iwe.cmd = SIOCGIWESSID; 3018 iwe.u.data.length = ie[1]; 3019 iwe.u.data.flags = 1; 3020 current_ev = iwe_stream_add_point_check(info, 3021 current_ev, 3022 end_buf, &iwe, 3023 (u8 *)ie + 2); 3024 if (IS_ERR(current_ev)) 3025 goto unlock; 3026 break; 3027 case WLAN_EID_MESH_ID: 3028 memset(&iwe, 0, sizeof(iwe)); 3029 iwe.cmd = SIOCGIWESSID; 3030 iwe.u.data.length = ie[1]; 3031 iwe.u.data.flags = 1; 3032 current_ev = iwe_stream_add_point_check(info, 3033 current_ev, 3034 end_buf, &iwe, 3035 (u8 *)ie + 2); 3036 if (IS_ERR(current_ev)) 3037 goto unlock; 3038 break; 3039 case WLAN_EID_MESH_CONFIG: 3040 ismesh = true; 3041 if (ie[1] != sizeof(struct ieee80211_meshconf_ie)) 3042 break; 3043 cfg = (u8 *)ie + 2; 3044 memset(&iwe, 0, sizeof(iwe)); 3045 iwe.cmd = IWEVCUSTOM; 3046 sprintf(buf, "Mesh Network Path Selection Protocol ID: " 3047 "0x%02X", cfg[0]); 3048 iwe.u.data.length = strlen(buf); 3049 current_ev = iwe_stream_add_point_check(info, 3050 current_ev, 3051 end_buf, 3052 &iwe, buf); 3053 if (IS_ERR(current_ev)) 3054 goto unlock; 3055 sprintf(buf, "Path Selection Metric ID: 0x%02X", 3056 cfg[1]); 3057 iwe.u.data.length = strlen(buf); 3058 current_ev = iwe_stream_add_point_check(info, 3059 current_ev, 3060 end_buf, 3061 &iwe, buf); 3062 if (IS_ERR(current_ev)) 3063 goto unlock; 3064 sprintf(buf, "Congestion Control Mode ID: 0x%02X", 3065 cfg[2]); 3066 iwe.u.data.length = strlen(buf); 3067 current_ev = iwe_stream_add_point_check(info, 3068 current_ev, 3069 end_buf, 3070 &iwe, buf); 3071 if (IS_ERR(current_ev)) 3072 goto unlock; 3073 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]); 3074 iwe.u.data.length = strlen(buf); 3075 current_ev = iwe_stream_add_point_check(info, 3076 current_ev, 3077 end_buf, 3078 &iwe, buf); 3079 if (IS_ERR(current_ev)) 3080 goto unlock; 3081 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]); 3082 iwe.u.data.length = strlen(buf); 3083 current_ev = iwe_stream_add_point_check(info, 3084 current_ev, 3085 end_buf, 3086 &iwe, buf); 3087 if (IS_ERR(current_ev)) 3088 goto unlock; 3089 sprintf(buf, "Formation Info: 0x%02X", cfg[5]); 3090 iwe.u.data.length = strlen(buf); 3091 current_ev = iwe_stream_add_point_check(info, 3092 current_ev, 3093 end_buf, 3094 &iwe, buf); 3095 if (IS_ERR(current_ev)) 3096 goto unlock; 3097 sprintf(buf, "Capabilities: 0x%02X", cfg[6]); 3098 iwe.u.data.length = strlen(buf); 3099 current_ev = iwe_stream_add_point_check(info, 3100 current_ev, 3101 end_buf, 3102 &iwe, buf); 3103 if (IS_ERR(current_ev)) 3104 goto unlock; 3105 break; 3106 case WLAN_EID_SUPP_RATES: 3107 case WLAN_EID_EXT_SUPP_RATES: 3108 /* display all supported rates in readable format */ 3109 p = current_ev + iwe_stream_lcp_len(info); 3110 3111 memset(&iwe, 0, sizeof(iwe)); 3112 iwe.cmd = SIOCGIWRATE; 3113 /* Those two flags are ignored... */ 3114 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0; 3115 3116 for (i = 0; i < ie[1]; i++) { 3117 iwe.u.bitrate.value = 3118 ((ie[i + 2] & 0x7f) * 500000); 3119 tmp = p; 3120 p = iwe_stream_add_value(info, current_ev, p, 3121 end_buf, &iwe, 3122 IW_EV_PARAM_LEN); 3123 if (p == tmp) { 3124 current_ev = ERR_PTR(-E2BIG); 3125 goto unlock; 3126 } 3127 } 3128 current_ev = p; 3129 break; 3130 } 3131 rem -= ie[1] + 2; 3132 ie += ie[1] + 2; 3133 } 3134 3135 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) || 3136 ismesh) { 3137 memset(&iwe, 0, sizeof(iwe)); 3138 iwe.cmd = SIOCGIWMODE; 3139 if (ismesh) 3140 iwe.u.mode = IW_MODE_MESH; 3141 else if (bss->pub.capability & WLAN_CAPABILITY_ESS) 3142 iwe.u.mode = IW_MODE_MASTER; 3143 else 3144 iwe.u.mode = IW_MODE_ADHOC; 3145 current_ev = iwe_stream_add_event_check(info, current_ev, 3146 end_buf, &iwe, 3147 IW_EV_UINT_LEN); 3148 if (IS_ERR(current_ev)) 3149 goto unlock; 3150 } 3151 3152 memset(&iwe, 0, sizeof(iwe)); 3153 iwe.cmd = IWEVCUSTOM; 3154 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf)); 3155 iwe.u.data.length = strlen(buf); 3156 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3157 &iwe, buf); 3158 if (IS_ERR(current_ev)) 3159 goto unlock; 3160 memset(&iwe, 0, sizeof(iwe)); 3161 iwe.cmd = IWEVCUSTOM; 3162 sprintf(buf, " Last beacon: %ums ago", 3163 elapsed_jiffies_msecs(bss->ts)); 3164 iwe.u.data.length = strlen(buf); 3165 current_ev = iwe_stream_add_point_check(info, current_ev, 3166 end_buf, &iwe, buf); 3167 if (IS_ERR(current_ev)) 3168 goto unlock; 3169 3170 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf); 3171 3172 unlock: 3173 rcu_read_unlock(); 3174 return current_ev; 3175 } 3176 3177 3178 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev, 3179 struct iw_request_info *info, 3180 char *buf, size_t len) 3181 { 3182 char *current_ev = buf; 3183 char *end_buf = buf + len; 3184 struct cfg80211_internal_bss *bss; 3185 int err = 0; 3186 3187 spin_lock_bh(&rdev->bss_lock); 3188 cfg80211_bss_expire(rdev); 3189 3190 list_for_each_entry(bss, &rdev->bss_list, list) { 3191 if (buf + len - current_ev <= IW_EV_ADDR_LEN) { 3192 err = -E2BIG; 3193 break; 3194 } 3195 current_ev = ieee80211_bss(&rdev->wiphy, info, bss, 3196 current_ev, end_buf); 3197 if (IS_ERR(current_ev)) { 3198 err = PTR_ERR(current_ev); 3199 break; 3200 } 3201 } 3202 spin_unlock_bh(&rdev->bss_lock); 3203 3204 if (err) 3205 return err; 3206 return current_ev - buf; 3207 } 3208 3209 3210 int cfg80211_wext_giwscan(struct net_device *dev, 3211 struct iw_request_info *info, 3212 union iwreq_data *wrqu, char *extra) 3213 { 3214 struct iw_point *data = &wrqu->data; 3215 struct cfg80211_registered_device *rdev; 3216 int res; 3217 3218 if (!netif_running(dev)) 3219 return -ENETDOWN; 3220 3221 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3222 3223 if (IS_ERR(rdev)) 3224 return PTR_ERR(rdev); 3225 3226 if (rdev->scan_req || rdev->scan_msg) 3227 return -EAGAIN; 3228 3229 res = ieee80211_scan_results(rdev, info, extra, data->length); 3230 data->length = 0; 3231 if (res >= 0) { 3232 data->length = res; 3233 res = 0; 3234 } 3235 3236 return res; 3237 } 3238 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan); 3239 #endif 3240