1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * cfg80211 scan result handling 4 * 5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2016 Intel Deutschland GmbH 8 * Copyright (C) 2018-2020 Intel Corporation 9 */ 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/netdevice.h> 14 #include <linux/wireless.h> 15 #include <linux/nl80211.h> 16 #include <linux/etherdevice.h> 17 #include <linux/crc32.h> 18 #include <linux/bitfield.h> 19 #include <net/arp.h> 20 #include <net/cfg80211.h> 21 #include <net/cfg80211-wext.h> 22 #include <net/iw_handler.h> 23 #include "core.h" 24 #include "nl80211.h" 25 #include "wext-compat.h" 26 #include "rdev-ops.h" 27 28 /** 29 * DOC: BSS tree/list structure 30 * 31 * At the top level, the BSS list is kept in both a list in each 32 * registered device (@bss_list) as well as an RB-tree for faster 33 * lookup. In the RB-tree, entries can be looked up using their 34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID 35 * for other BSSes. 36 * 37 * Due to the possibility of hidden SSIDs, there's a second level 38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer. 39 * The hidden_list connects all BSSes belonging to a single AP 40 * that has a hidden SSID, and connects beacon and probe response 41 * entries. For a probe response entry for a hidden SSID, the 42 * hidden_beacon_bss pointer points to the BSS struct holding the 43 * beacon's information. 44 * 45 * Reference counting is done for all these references except for 46 * the hidden_list, so that a beacon BSS struct that is otherwise 47 * not referenced has one reference for being on the bss_list and 48 * one for each probe response entry that points to it using the 49 * hidden_beacon_bss pointer. When a BSS struct that has such a 50 * pointer is get/put, the refcount update is also propagated to 51 * the referenced struct, this ensure that it cannot get removed 52 * while somebody is using the probe response version. 53 * 54 * Note that the hidden_beacon_bss pointer never changes, due to 55 * the reference counting. Therefore, no locking is needed for 56 * it. 57 * 58 * Also note that the hidden_beacon_bss pointer is only relevant 59 * if the driver uses something other than the IEs, e.g. private 60 * data stored in the BSS struct, since the beacon IEs are 61 * also linked into the probe response struct. 62 */ 63 64 /* 65 * Limit the number of BSS entries stored in mac80211. Each one is 66 * a bit over 4k at most, so this limits to roughly 4-5M of memory. 67 * If somebody wants to really attack this though, they'd likely 68 * use small beacons, and only one type of frame, limiting each of 69 * the entries to a much smaller size (in order to generate more 70 * entries in total, so overhead is bigger.) 71 */ 72 static int bss_entries_limit = 1000; 73 module_param(bss_entries_limit, int, 0644); 74 MODULE_PARM_DESC(bss_entries_limit, 75 "limit to number of scan BSS entries (per wiphy, default 1000)"); 76 77 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ) 78 79 /** 80 * struct cfg80211_colocated_ap - colocated AP information 81 * 82 * @list: linked list to all colocated aPS 83 * @bssid: BSSID of the reported AP 84 * @ssid: SSID of the reported AP 85 * @ssid_len: length of the ssid 86 * @center_freq: frequency the reported AP is on 87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs 88 * that operate in the same channel as the reported AP and that might be 89 * detected by a STA receiving this frame, are transmitting unsolicited 90 * Probe Response frames every 20 TUs 91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP 92 * @same_ssid: the reported AP has the same SSID as the reporting AP 93 * @multi_bss: the reported AP is part of a multiple BSSID set 94 * @transmitted_bssid: the reported AP is the transmitting BSSID 95 * @colocated_ess: all the APs that share the same ESS as the reported AP are 96 * colocated and can be discovered via legacy bands. 97 * @short_ssid_valid: short_ssid is valid and can be used 98 * @short_ssid: the short SSID for this SSID 99 */ 100 struct cfg80211_colocated_ap { 101 struct list_head list; 102 u8 bssid[ETH_ALEN]; 103 u8 ssid[IEEE80211_MAX_SSID_LEN]; 104 size_t ssid_len; 105 u32 short_ssid; 106 u32 center_freq; 107 u8 unsolicited_probe:1, 108 oct_recommended:1, 109 same_ssid:1, 110 multi_bss:1, 111 transmitted_bssid:1, 112 colocated_ess:1, 113 short_ssid_valid:1; 114 }; 115 116 static void bss_free(struct cfg80211_internal_bss *bss) 117 { 118 struct cfg80211_bss_ies *ies; 119 120 if (WARN_ON(atomic_read(&bss->hold))) 121 return; 122 123 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies); 124 if (ies && !bss->pub.hidden_beacon_bss) 125 kfree_rcu(ies, rcu_head); 126 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies); 127 if (ies) 128 kfree_rcu(ies, rcu_head); 129 130 /* 131 * This happens when the module is removed, it doesn't 132 * really matter any more save for completeness 133 */ 134 if (!list_empty(&bss->hidden_list)) 135 list_del(&bss->hidden_list); 136 137 kfree(bss); 138 } 139 140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev, 141 struct cfg80211_internal_bss *bss) 142 { 143 lockdep_assert_held(&rdev->bss_lock); 144 145 bss->refcount++; 146 if (bss->pub.hidden_beacon_bss) { 147 bss = container_of(bss->pub.hidden_beacon_bss, 148 struct cfg80211_internal_bss, 149 pub); 150 bss->refcount++; 151 } 152 if (bss->pub.transmitted_bss) { 153 bss = container_of(bss->pub.transmitted_bss, 154 struct cfg80211_internal_bss, 155 pub); 156 bss->refcount++; 157 } 158 } 159 160 static inline void bss_ref_put(struct cfg80211_registered_device *rdev, 161 struct cfg80211_internal_bss *bss) 162 { 163 lockdep_assert_held(&rdev->bss_lock); 164 165 if (bss->pub.hidden_beacon_bss) { 166 struct cfg80211_internal_bss *hbss; 167 hbss = container_of(bss->pub.hidden_beacon_bss, 168 struct cfg80211_internal_bss, 169 pub); 170 hbss->refcount--; 171 if (hbss->refcount == 0) 172 bss_free(hbss); 173 } 174 175 if (bss->pub.transmitted_bss) { 176 struct cfg80211_internal_bss *tbss; 177 178 tbss = container_of(bss->pub.transmitted_bss, 179 struct cfg80211_internal_bss, 180 pub); 181 tbss->refcount--; 182 if (tbss->refcount == 0) 183 bss_free(tbss); 184 } 185 186 bss->refcount--; 187 if (bss->refcount == 0) 188 bss_free(bss); 189 } 190 191 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev, 192 struct cfg80211_internal_bss *bss) 193 { 194 lockdep_assert_held(&rdev->bss_lock); 195 196 if (!list_empty(&bss->hidden_list)) { 197 /* 198 * don't remove the beacon entry if it has 199 * probe responses associated with it 200 */ 201 if (!bss->pub.hidden_beacon_bss) 202 return false; 203 /* 204 * if it's a probe response entry break its 205 * link to the other entries in the group 206 */ 207 list_del_init(&bss->hidden_list); 208 } 209 210 list_del_init(&bss->list); 211 list_del_init(&bss->pub.nontrans_list); 212 rb_erase(&bss->rbn, &rdev->bss_tree); 213 rdev->bss_entries--; 214 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list), 215 "rdev bss entries[%d]/list[empty:%d] corruption\n", 216 rdev->bss_entries, list_empty(&rdev->bss_list)); 217 bss_ref_put(rdev, bss); 218 return true; 219 } 220 221 bool cfg80211_is_element_inherited(const struct element *elem, 222 const struct element *non_inherit_elem) 223 { 224 u8 id_len, ext_id_len, i, loop_len, id; 225 const u8 *list; 226 227 if (elem->id == WLAN_EID_MULTIPLE_BSSID) 228 return false; 229 230 if (!non_inherit_elem || non_inherit_elem->datalen < 2) 231 return true; 232 233 /* 234 * non inheritance element format is: 235 * ext ID (56) | IDs list len | list | extension IDs list len | list 236 * Both lists are optional. Both lengths are mandatory. 237 * This means valid length is: 238 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths 239 */ 240 id_len = non_inherit_elem->data[1]; 241 if (non_inherit_elem->datalen < 3 + id_len) 242 return true; 243 244 ext_id_len = non_inherit_elem->data[2 + id_len]; 245 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len) 246 return true; 247 248 if (elem->id == WLAN_EID_EXTENSION) { 249 if (!ext_id_len) 250 return true; 251 loop_len = ext_id_len; 252 list = &non_inherit_elem->data[3 + id_len]; 253 id = elem->data[0]; 254 } else { 255 if (!id_len) 256 return true; 257 loop_len = id_len; 258 list = &non_inherit_elem->data[2]; 259 id = elem->id; 260 } 261 262 for (i = 0; i < loop_len; i++) { 263 if (list[i] == id) 264 return false; 265 } 266 267 return true; 268 } 269 EXPORT_SYMBOL(cfg80211_is_element_inherited); 270 271 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen, 272 const u8 *subelement, size_t subie_len, 273 u8 *new_ie, gfp_t gfp) 274 { 275 u8 *pos, *tmp; 276 const u8 *tmp_old, *tmp_new; 277 const struct element *non_inherit_elem; 278 u8 *sub_copy; 279 280 /* copy subelement as we need to change its content to 281 * mark an ie after it is processed. 282 */ 283 sub_copy = kmemdup(subelement, subie_len, gfp); 284 if (!sub_copy) 285 return 0; 286 287 pos = &new_ie[0]; 288 289 /* set new ssid */ 290 tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len); 291 if (tmp_new) { 292 memcpy(pos, tmp_new, tmp_new[1] + 2); 293 pos += (tmp_new[1] + 2); 294 } 295 296 /* get non inheritance list if exists */ 297 non_inherit_elem = 298 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 299 sub_copy, subie_len); 300 301 /* go through IEs in ie (skip SSID) and subelement, 302 * merge them into new_ie 303 */ 304 tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen); 305 tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie; 306 307 while (tmp_old + tmp_old[1] + 2 - ie <= ielen) { 308 if (tmp_old[0] == 0) { 309 tmp_old++; 310 continue; 311 } 312 313 if (tmp_old[0] == WLAN_EID_EXTENSION) 314 tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy, 315 subie_len); 316 else 317 tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy, 318 subie_len); 319 320 if (!tmp) { 321 const struct element *old_elem = (void *)tmp_old; 322 323 /* ie in old ie but not in subelement */ 324 if (cfg80211_is_element_inherited(old_elem, 325 non_inherit_elem)) { 326 memcpy(pos, tmp_old, tmp_old[1] + 2); 327 pos += tmp_old[1] + 2; 328 } 329 } else { 330 /* ie in transmitting ie also in subelement, 331 * copy from subelement and flag the ie in subelement 332 * as copied (by setting eid field to WLAN_EID_SSID, 333 * which is skipped anyway). 334 * For vendor ie, compare OUI + type + subType to 335 * determine if they are the same ie. 336 */ 337 if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) { 338 if (!memcmp(tmp_old + 2, tmp + 2, 5)) { 339 /* same vendor ie, copy from 340 * subelement 341 */ 342 memcpy(pos, tmp, tmp[1] + 2); 343 pos += tmp[1] + 2; 344 tmp[0] = WLAN_EID_SSID; 345 } else { 346 memcpy(pos, tmp_old, tmp_old[1] + 2); 347 pos += tmp_old[1] + 2; 348 } 349 } else { 350 /* copy ie from subelement into new ie */ 351 memcpy(pos, tmp, tmp[1] + 2); 352 pos += tmp[1] + 2; 353 tmp[0] = WLAN_EID_SSID; 354 } 355 } 356 357 if (tmp_old + tmp_old[1] + 2 - ie == ielen) 358 break; 359 360 tmp_old += tmp_old[1] + 2; 361 } 362 363 /* go through subelement again to check if there is any ie not 364 * copied to new ie, skip ssid, capability, bssid-index ie 365 */ 366 tmp_new = sub_copy; 367 while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) { 368 if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP || 369 tmp_new[0] == WLAN_EID_SSID)) { 370 memcpy(pos, tmp_new, tmp_new[1] + 2); 371 pos += tmp_new[1] + 2; 372 } 373 if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len) 374 break; 375 tmp_new += tmp_new[1] + 2; 376 } 377 378 kfree(sub_copy); 379 return pos - new_ie; 380 } 381 382 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid, 383 const u8 *ssid, size_t ssid_len) 384 { 385 const struct cfg80211_bss_ies *ies; 386 const u8 *ssidie; 387 388 if (bssid && !ether_addr_equal(a->bssid, bssid)) 389 return false; 390 391 if (!ssid) 392 return true; 393 394 ies = rcu_access_pointer(a->ies); 395 if (!ies) 396 return false; 397 ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 398 if (!ssidie) 399 return false; 400 if (ssidie[1] != ssid_len) 401 return false; 402 return memcmp(ssidie + 2, ssid, ssid_len) == 0; 403 } 404 405 static int 406 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss, 407 struct cfg80211_bss *nontrans_bss) 408 { 409 const u8 *ssid; 410 size_t ssid_len; 411 struct cfg80211_bss *bss = NULL; 412 413 rcu_read_lock(); 414 ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID); 415 if (!ssid) { 416 rcu_read_unlock(); 417 return -EINVAL; 418 } 419 ssid_len = ssid[1]; 420 ssid = ssid + 2; 421 rcu_read_unlock(); 422 423 /* check if nontrans_bss is in the list */ 424 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) { 425 if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len)) 426 return 0; 427 } 428 429 /* add to the list */ 430 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list); 431 return 0; 432 } 433 434 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev, 435 unsigned long expire_time) 436 { 437 struct cfg80211_internal_bss *bss, *tmp; 438 bool expired = false; 439 440 lockdep_assert_held(&rdev->bss_lock); 441 442 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) { 443 if (atomic_read(&bss->hold)) 444 continue; 445 if (!time_after(expire_time, bss->ts)) 446 continue; 447 448 if (__cfg80211_unlink_bss(rdev, bss)) 449 expired = true; 450 } 451 452 if (expired) 453 rdev->bss_generation++; 454 } 455 456 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev) 457 { 458 struct cfg80211_internal_bss *bss, *oldest = NULL; 459 bool ret; 460 461 lockdep_assert_held(&rdev->bss_lock); 462 463 list_for_each_entry(bss, &rdev->bss_list, list) { 464 if (atomic_read(&bss->hold)) 465 continue; 466 467 if (!list_empty(&bss->hidden_list) && 468 !bss->pub.hidden_beacon_bss) 469 continue; 470 471 if (oldest && time_before(oldest->ts, bss->ts)) 472 continue; 473 oldest = bss; 474 } 475 476 if (WARN_ON(!oldest)) 477 return false; 478 479 /* 480 * The callers make sure to increase rdev->bss_generation if anything 481 * gets removed (and a new entry added), so there's no need to also do 482 * it here. 483 */ 484 485 ret = __cfg80211_unlink_bss(rdev, oldest); 486 WARN_ON(!ret); 487 return ret; 488 } 489 490 static u8 cfg80211_parse_bss_param(u8 data, 491 struct cfg80211_colocated_ap *coloc_ap) 492 { 493 coloc_ap->oct_recommended = 494 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED); 495 coloc_ap->same_ssid = 496 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID); 497 coloc_ap->multi_bss = 498 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID); 499 coloc_ap->transmitted_bssid = 500 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID); 501 coloc_ap->unsolicited_probe = 502 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE); 503 coloc_ap->colocated_ess = 504 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS); 505 506 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP); 507 } 508 509 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies, 510 const struct element **elem, u32 *s_ssid) 511 { 512 513 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 514 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN) 515 return -EINVAL; 516 517 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen); 518 return 0; 519 } 520 521 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list) 522 { 523 struct cfg80211_colocated_ap *ap, *tmp_ap; 524 525 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) { 526 list_del(&ap->list); 527 kfree(ap); 528 } 529 } 530 531 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry, 532 const u8 *pos, u8 length, 533 const struct element *ssid_elem, 534 int s_ssid_tmp) 535 { 536 /* skip the TBTT offset */ 537 pos++; 538 539 memcpy(entry->bssid, pos, ETH_ALEN); 540 pos += ETH_ALEN; 541 542 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) { 543 memcpy(&entry->short_ssid, pos, 544 sizeof(entry->short_ssid)); 545 entry->short_ssid_valid = true; 546 pos += 4; 547 } 548 549 /* skip non colocated APs */ 550 if (!cfg80211_parse_bss_param(*pos, entry)) 551 return -EINVAL; 552 pos++; 553 554 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) { 555 /* 556 * no information about the short ssid. Consider the entry valid 557 * for now. It would later be dropped in case there are explicit 558 * SSIDs that need to be matched 559 */ 560 if (!entry->same_ssid) 561 return 0; 562 } 563 564 if (entry->same_ssid) { 565 entry->short_ssid = s_ssid_tmp; 566 entry->short_ssid_valid = true; 567 568 /* 569 * This is safe because we validate datalen in 570 * cfg80211_parse_colocated_ap(), before calling this 571 * function. 572 */ 573 memcpy(&entry->ssid, &ssid_elem->data, 574 ssid_elem->datalen); 575 entry->ssid_len = ssid_elem->datalen; 576 } 577 return 0; 578 } 579 580 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies, 581 struct list_head *list) 582 { 583 struct ieee80211_neighbor_ap_info *ap_info; 584 const struct element *elem, *ssid_elem; 585 const u8 *pos, *end; 586 u32 s_ssid_tmp; 587 int n_coloc = 0, ret; 588 LIST_HEAD(ap_list); 589 590 elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data, 591 ies->len); 592 if (!elem || elem->datalen > IEEE80211_MAX_SSID_LEN) 593 return 0; 594 595 pos = elem->data; 596 end = pos + elem->datalen; 597 598 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp); 599 if (ret) 600 return ret; 601 602 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ 603 while (pos + sizeof(*ap_info) <= end) { 604 enum nl80211_band band; 605 int freq; 606 u8 length, i, count; 607 608 ap_info = (void *)pos; 609 count = u8_get_bits(ap_info->tbtt_info_hdr, 610 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1; 611 length = ap_info->tbtt_info_len; 612 613 pos += sizeof(*ap_info); 614 615 if (!ieee80211_operating_class_to_band(ap_info->op_class, 616 &band)) 617 break; 618 619 freq = ieee80211_channel_to_frequency(ap_info->channel, band); 620 621 if (end - pos < count * ap_info->tbtt_info_len) 622 break; 623 624 /* 625 * TBTT info must include bss param + BSSID + 626 * (short SSID or same_ssid bit to be set). 627 * ignore other options, and move to the 628 * next AP info 629 */ 630 if (band != NL80211_BAND_6GHZ || 631 (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM && 632 length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) { 633 pos += count * ap_info->tbtt_info_len; 634 continue; 635 } 636 637 for (i = 0; i < count; i++) { 638 struct cfg80211_colocated_ap *entry; 639 640 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, 641 GFP_ATOMIC); 642 643 if (!entry) 644 break; 645 646 entry->center_freq = freq; 647 648 if (!cfg80211_parse_ap_info(entry, pos, length, 649 ssid_elem, s_ssid_tmp)) { 650 n_coloc++; 651 list_add_tail(&entry->list, &ap_list); 652 } else { 653 kfree(entry); 654 } 655 656 pos += ap_info->tbtt_info_len; 657 } 658 } 659 660 if (pos != end) { 661 cfg80211_free_coloc_ap_list(&ap_list); 662 return 0; 663 } 664 665 list_splice_tail(&ap_list, list); 666 return n_coloc; 667 } 668 669 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request, 670 struct ieee80211_channel *chan, 671 bool add_to_6ghz) 672 { 673 int i; 674 u32 n_channels = request->n_channels; 675 struct cfg80211_scan_6ghz_params *params = 676 &request->scan_6ghz_params[request->n_6ghz_params]; 677 678 for (i = 0; i < n_channels; i++) { 679 if (request->channels[i] == chan) { 680 if (add_to_6ghz) 681 params->channel_idx = i; 682 return; 683 } 684 } 685 686 request->channels[n_channels] = chan; 687 if (add_to_6ghz) 688 request->scan_6ghz_params[request->n_6ghz_params].channel_idx = 689 n_channels; 690 691 request->n_channels++; 692 } 693 694 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap, 695 struct cfg80211_scan_request *request) 696 { 697 u8 i; 698 u32 s_ssid; 699 700 for (i = 0; i < request->n_ssids; i++) { 701 /* wildcard ssid in the scan request */ 702 if (!request->ssids[i].ssid_len) 703 return true; 704 705 if (ap->ssid_len && 706 ap->ssid_len == request->ssids[i].ssid_len) { 707 if (!memcmp(request->ssids[i].ssid, ap->ssid, 708 ap->ssid_len)) 709 return true; 710 } else if (ap->short_ssid_valid) { 711 s_ssid = ~crc32_le(~0, request->ssids[i].ssid, 712 request->ssids[i].ssid_len); 713 714 if (ap->short_ssid == s_ssid) 715 return true; 716 } 717 } 718 719 return false; 720 } 721 722 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev) 723 { 724 u8 i; 725 struct cfg80211_colocated_ap *ap; 726 int n_channels, count = 0, err; 727 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req; 728 LIST_HEAD(coloc_ap_list); 729 bool need_scan_psc; 730 const struct ieee80211_sband_iftype_data *iftd; 731 732 rdev_req->scan_6ghz = true; 733 734 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ]) 735 return -EOPNOTSUPP; 736 737 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ], 738 rdev_req->wdev->iftype); 739 if (!iftd || !iftd->he_cap.has_he) 740 return -EOPNOTSUPP; 741 742 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels; 743 744 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) { 745 struct cfg80211_internal_bss *intbss; 746 747 spin_lock_bh(&rdev->bss_lock); 748 list_for_each_entry(intbss, &rdev->bss_list, list) { 749 struct cfg80211_bss *res = &intbss->pub; 750 const struct cfg80211_bss_ies *ies; 751 752 ies = rcu_access_pointer(res->ies); 753 count += cfg80211_parse_colocated_ap(ies, 754 &coloc_ap_list); 755 } 756 spin_unlock_bh(&rdev->bss_lock); 757 } 758 759 request = kzalloc(struct_size(request, channels, n_channels) + 760 sizeof(*request->scan_6ghz_params) * count, 761 GFP_KERNEL); 762 if (!request) { 763 cfg80211_free_coloc_ap_list(&coloc_ap_list); 764 return -ENOMEM; 765 } 766 767 *request = *rdev_req; 768 request->n_channels = 0; 769 request->scan_6ghz_params = 770 (void *)&request->channels[n_channels]; 771 772 /* 773 * PSC channels should not be scanned if all the reported co-located APs 774 * are indicating that all APs in the same ESS are co-located 775 */ 776 if (count) { 777 need_scan_psc = false; 778 779 list_for_each_entry(ap, &coloc_ap_list, list) { 780 if (!ap->colocated_ess) { 781 need_scan_psc = true; 782 break; 783 } 784 } 785 } else { 786 need_scan_psc = true; 787 } 788 789 /* 790 * add to the scan request the channels that need to be scanned 791 * regardless of the collocated APs (PSC channels or all channels 792 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set) 793 */ 794 for (i = 0; i < rdev_req->n_channels; i++) { 795 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ && 796 ((need_scan_psc && 797 cfg80211_channel_is_psc(rdev_req->channels[i])) || 798 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) { 799 cfg80211_scan_req_add_chan(request, 800 rdev_req->channels[i], 801 false); 802 } 803 } 804 805 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ)) 806 goto skip; 807 808 list_for_each_entry(ap, &coloc_ap_list, list) { 809 bool found = false; 810 struct cfg80211_scan_6ghz_params *scan_6ghz_params = 811 &request->scan_6ghz_params[request->n_6ghz_params]; 812 struct ieee80211_channel *chan = 813 ieee80211_get_channel(&rdev->wiphy, ap->center_freq); 814 815 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED) 816 continue; 817 818 for (i = 0; i < rdev_req->n_channels; i++) { 819 if (rdev_req->channels[i] == chan) 820 found = true; 821 } 822 823 if (!found) 824 continue; 825 826 if (request->n_ssids > 0 && 827 !cfg80211_find_ssid_match(ap, request)) 828 continue; 829 830 cfg80211_scan_req_add_chan(request, chan, true); 831 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN); 832 scan_6ghz_params->short_ssid = ap->short_ssid; 833 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid; 834 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe; 835 836 /* 837 * If a PSC channel is added to the scan and 'need_scan_psc' is 838 * set to false, then all the APs that the scan logic is 839 * interested with on the channel are collocated and thus there 840 * is no need to perform the initial PSC channel listen. 841 */ 842 if (cfg80211_channel_is_psc(chan) && !need_scan_psc) 843 scan_6ghz_params->psc_no_listen = true; 844 845 request->n_6ghz_params++; 846 } 847 848 skip: 849 cfg80211_free_coloc_ap_list(&coloc_ap_list); 850 851 if (request->n_channels) { 852 struct cfg80211_scan_request *old = rdev->int_scan_req; 853 854 rdev->int_scan_req = request; 855 856 /* 857 * If this scan follows a previous scan, save the scan start 858 * info from the first part of the scan 859 */ 860 if (old) 861 rdev->int_scan_req->info = old->info; 862 863 err = rdev_scan(rdev, request); 864 if (err) { 865 rdev->int_scan_req = old; 866 kfree(request); 867 } else { 868 kfree(old); 869 } 870 871 return err; 872 } 873 874 kfree(request); 875 return -EINVAL; 876 } 877 878 int cfg80211_scan(struct cfg80211_registered_device *rdev) 879 { 880 struct cfg80211_scan_request *request; 881 struct cfg80211_scan_request *rdev_req = rdev->scan_req; 882 u32 n_channels = 0, idx, i; 883 884 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ)) 885 return rdev_scan(rdev, rdev_req); 886 887 for (i = 0; i < rdev_req->n_channels; i++) { 888 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 889 n_channels++; 890 } 891 892 if (!n_channels) 893 return cfg80211_scan_6ghz(rdev); 894 895 request = kzalloc(struct_size(request, channels, n_channels), 896 GFP_KERNEL); 897 if (!request) 898 return -ENOMEM; 899 900 *request = *rdev_req; 901 request->n_channels = n_channels; 902 903 for (i = idx = 0; i < rdev_req->n_channels; i++) { 904 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 905 request->channels[idx++] = rdev_req->channels[i]; 906 } 907 908 rdev_req->scan_6ghz = false; 909 rdev->int_scan_req = request; 910 return rdev_scan(rdev, request); 911 } 912 913 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, 914 bool send_message) 915 { 916 struct cfg80211_scan_request *request, *rdev_req; 917 struct wireless_dev *wdev; 918 struct sk_buff *msg; 919 #ifdef CONFIG_CFG80211_WEXT 920 union iwreq_data wrqu; 921 #endif 922 923 ASSERT_RTNL(); 924 925 if (rdev->scan_msg) { 926 nl80211_send_scan_msg(rdev, rdev->scan_msg); 927 rdev->scan_msg = NULL; 928 return; 929 } 930 931 rdev_req = rdev->scan_req; 932 if (!rdev_req) 933 return; 934 935 wdev = rdev_req->wdev; 936 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req; 937 938 if (wdev_running(wdev) && 939 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) && 940 !rdev_req->scan_6ghz && !request->info.aborted && 941 !cfg80211_scan_6ghz(rdev)) 942 return; 943 944 /* 945 * This must be before sending the other events! 946 * Otherwise, wpa_supplicant gets completely confused with 947 * wext events. 948 */ 949 if (wdev->netdev) 950 cfg80211_sme_scan_done(wdev->netdev); 951 952 if (!request->info.aborted && 953 request->flags & NL80211_SCAN_FLAG_FLUSH) { 954 /* flush entries from previous scans */ 955 spin_lock_bh(&rdev->bss_lock); 956 __cfg80211_bss_expire(rdev, request->scan_start); 957 spin_unlock_bh(&rdev->bss_lock); 958 } 959 960 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted); 961 962 #ifdef CONFIG_CFG80211_WEXT 963 if (wdev->netdev && !request->info.aborted) { 964 memset(&wrqu, 0, sizeof(wrqu)); 965 966 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL); 967 } 968 #endif 969 970 if (wdev->netdev) 971 dev_put(wdev->netdev); 972 973 kfree(rdev->int_scan_req); 974 rdev->int_scan_req = NULL; 975 976 kfree(rdev->scan_req); 977 rdev->scan_req = NULL; 978 979 if (!send_message) 980 rdev->scan_msg = msg; 981 else 982 nl80211_send_scan_msg(rdev, msg); 983 } 984 985 void __cfg80211_scan_done(struct work_struct *wk) 986 { 987 struct cfg80211_registered_device *rdev; 988 989 rdev = container_of(wk, struct cfg80211_registered_device, 990 scan_done_wk); 991 992 rtnl_lock(); 993 ___cfg80211_scan_done(rdev, true); 994 rtnl_unlock(); 995 } 996 997 void cfg80211_scan_done(struct cfg80211_scan_request *request, 998 struct cfg80211_scan_info *info) 999 { 1000 struct cfg80211_scan_info old_info = request->info; 1001 1002 trace_cfg80211_scan_done(request, info); 1003 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req && 1004 request != wiphy_to_rdev(request->wiphy)->int_scan_req); 1005 1006 request->info = *info; 1007 1008 /* 1009 * In case the scan is split, the scan_start_tsf and tsf_bssid should 1010 * be of the first part. In such a case old_info.scan_start_tsf should 1011 * be non zero. 1012 */ 1013 if (request->scan_6ghz && old_info.scan_start_tsf) { 1014 request->info.scan_start_tsf = old_info.scan_start_tsf; 1015 memcpy(request->info.tsf_bssid, old_info.tsf_bssid, 1016 sizeof(request->info.tsf_bssid)); 1017 } 1018 1019 request->notified = true; 1020 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk); 1021 } 1022 EXPORT_SYMBOL(cfg80211_scan_done); 1023 1024 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, 1025 struct cfg80211_sched_scan_request *req) 1026 { 1027 ASSERT_RTNL(); 1028 1029 list_add_rcu(&req->list, &rdev->sched_scan_req_list); 1030 } 1031 1032 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev, 1033 struct cfg80211_sched_scan_request *req) 1034 { 1035 ASSERT_RTNL(); 1036 1037 list_del_rcu(&req->list); 1038 kfree_rcu(req, rcu_head); 1039 } 1040 1041 static struct cfg80211_sched_scan_request * 1042 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid) 1043 { 1044 struct cfg80211_sched_scan_request *pos; 1045 1046 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list, 1047 lockdep_rtnl_is_held()) { 1048 if (pos->reqid == reqid) 1049 return pos; 1050 } 1051 return NULL; 1052 } 1053 1054 /* 1055 * Determines if a scheduled scan request can be handled. When a legacy 1056 * scheduled scan is running no other scheduled scan is allowed regardless 1057 * whether the request is for legacy or multi-support scan. When a multi-support 1058 * scheduled scan is running a request for legacy scan is not allowed. In this 1059 * case a request for multi-support scan can be handled if resources are 1060 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached. 1061 */ 1062 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, 1063 bool want_multi) 1064 { 1065 struct cfg80211_sched_scan_request *pos; 1066 int i = 0; 1067 1068 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) { 1069 /* request id zero means legacy in progress */ 1070 if (!i && !pos->reqid) 1071 return -EINPROGRESS; 1072 i++; 1073 } 1074 1075 if (i) { 1076 /* no legacy allowed when multi request(s) are active */ 1077 if (!want_multi) 1078 return -EINPROGRESS; 1079 1080 /* resource limit reached */ 1081 if (i == rdev->wiphy.max_sched_scan_reqs) 1082 return -ENOSPC; 1083 } 1084 return 0; 1085 } 1086 1087 void cfg80211_sched_scan_results_wk(struct work_struct *work) 1088 { 1089 struct cfg80211_registered_device *rdev; 1090 struct cfg80211_sched_scan_request *req, *tmp; 1091 1092 rdev = container_of(work, struct cfg80211_registered_device, 1093 sched_scan_res_wk); 1094 1095 rtnl_lock(); 1096 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) { 1097 if (req->report_results) { 1098 req->report_results = false; 1099 if (req->flags & NL80211_SCAN_FLAG_FLUSH) { 1100 /* flush entries from previous scans */ 1101 spin_lock_bh(&rdev->bss_lock); 1102 __cfg80211_bss_expire(rdev, req->scan_start); 1103 spin_unlock_bh(&rdev->bss_lock); 1104 req->scan_start = jiffies; 1105 } 1106 nl80211_send_sched_scan(req, 1107 NL80211_CMD_SCHED_SCAN_RESULTS); 1108 } 1109 } 1110 rtnl_unlock(); 1111 } 1112 1113 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid) 1114 { 1115 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1116 struct cfg80211_sched_scan_request *request; 1117 1118 trace_cfg80211_sched_scan_results(wiphy, reqid); 1119 /* ignore if we're not scanning */ 1120 1121 rcu_read_lock(); 1122 request = cfg80211_find_sched_scan_req(rdev, reqid); 1123 if (request) { 1124 request->report_results = true; 1125 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk); 1126 } 1127 rcu_read_unlock(); 1128 } 1129 EXPORT_SYMBOL(cfg80211_sched_scan_results); 1130 1131 void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy, u64 reqid) 1132 { 1133 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1134 1135 ASSERT_RTNL(); 1136 1137 trace_cfg80211_sched_scan_stopped(wiphy, reqid); 1138 1139 __cfg80211_stop_sched_scan(rdev, reqid, true); 1140 } 1141 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_rtnl); 1142 1143 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid) 1144 { 1145 rtnl_lock(); 1146 cfg80211_sched_scan_stopped_rtnl(wiphy, reqid); 1147 rtnl_unlock(); 1148 } 1149 EXPORT_SYMBOL(cfg80211_sched_scan_stopped); 1150 1151 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, 1152 struct cfg80211_sched_scan_request *req, 1153 bool driver_initiated) 1154 { 1155 ASSERT_RTNL(); 1156 1157 if (!driver_initiated) { 1158 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid); 1159 if (err) 1160 return err; 1161 } 1162 1163 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED); 1164 1165 cfg80211_del_sched_scan_req(rdev, req); 1166 1167 return 0; 1168 } 1169 1170 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, 1171 u64 reqid, bool driver_initiated) 1172 { 1173 struct cfg80211_sched_scan_request *sched_scan_req; 1174 1175 ASSERT_RTNL(); 1176 1177 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid); 1178 if (!sched_scan_req) 1179 return -ENOENT; 1180 1181 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req, 1182 driver_initiated); 1183 } 1184 1185 void cfg80211_bss_age(struct cfg80211_registered_device *rdev, 1186 unsigned long age_secs) 1187 { 1188 struct cfg80211_internal_bss *bss; 1189 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC); 1190 1191 spin_lock_bh(&rdev->bss_lock); 1192 list_for_each_entry(bss, &rdev->bss_list, list) 1193 bss->ts -= age_jiffies; 1194 spin_unlock_bh(&rdev->bss_lock); 1195 } 1196 1197 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev) 1198 { 1199 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE); 1200 } 1201 1202 void cfg80211_bss_flush(struct wiphy *wiphy) 1203 { 1204 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1205 1206 spin_lock_bh(&rdev->bss_lock); 1207 __cfg80211_bss_expire(rdev, jiffies); 1208 spin_unlock_bh(&rdev->bss_lock); 1209 } 1210 EXPORT_SYMBOL(cfg80211_bss_flush); 1211 1212 const struct element * 1213 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len, 1214 const u8 *match, unsigned int match_len, 1215 unsigned int match_offset) 1216 { 1217 const struct element *elem; 1218 1219 for_each_element_id(elem, eid, ies, len) { 1220 if (elem->datalen >= match_offset + match_len && 1221 !memcmp(elem->data + match_offset, match, match_len)) 1222 return elem; 1223 } 1224 1225 return NULL; 1226 } 1227 EXPORT_SYMBOL(cfg80211_find_elem_match); 1228 1229 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type, 1230 const u8 *ies, 1231 unsigned int len) 1232 { 1233 const struct element *elem; 1234 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type }; 1235 int match_len = (oui_type < 0) ? 3 : sizeof(match); 1236 1237 if (WARN_ON(oui_type > 0xff)) 1238 return NULL; 1239 1240 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len, 1241 match, match_len, 0); 1242 1243 if (!elem || elem->datalen < 4) 1244 return NULL; 1245 1246 return elem; 1247 } 1248 EXPORT_SYMBOL(cfg80211_find_vendor_elem); 1249 1250 /** 1251 * enum bss_compare_mode - BSS compare mode 1252 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find) 1253 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode 1254 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode 1255 */ 1256 enum bss_compare_mode { 1257 BSS_CMP_REGULAR, 1258 BSS_CMP_HIDE_ZLEN, 1259 BSS_CMP_HIDE_NUL, 1260 }; 1261 1262 static int cmp_bss(struct cfg80211_bss *a, 1263 struct cfg80211_bss *b, 1264 enum bss_compare_mode mode) 1265 { 1266 const struct cfg80211_bss_ies *a_ies, *b_ies; 1267 const u8 *ie1 = NULL; 1268 const u8 *ie2 = NULL; 1269 int i, r; 1270 1271 if (a->channel != b->channel) 1272 return b->channel->center_freq - a->channel->center_freq; 1273 1274 a_ies = rcu_access_pointer(a->ies); 1275 if (!a_ies) 1276 return -1; 1277 b_ies = rcu_access_pointer(b->ies); 1278 if (!b_ies) 1279 return 1; 1280 1281 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability)) 1282 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1283 a_ies->data, a_ies->len); 1284 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability)) 1285 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1286 b_ies->data, b_ies->len); 1287 if (ie1 && ie2) { 1288 int mesh_id_cmp; 1289 1290 if (ie1[1] == ie2[1]) 1291 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1292 else 1293 mesh_id_cmp = ie2[1] - ie1[1]; 1294 1295 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1296 a_ies->data, a_ies->len); 1297 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1298 b_ies->data, b_ies->len); 1299 if (ie1 && ie2) { 1300 if (mesh_id_cmp) 1301 return mesh_id_cmp; 1302 if (ie1[1] != ie2[1]) 1303 return ie2[1] - ie1[1]; 1304 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1305 } 1306 } 1307 1308 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid)); 1309 if (r) 1310 return r; 1311 1312 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len); 1313 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len); 1314 1315 if (!ie1 && !ie2) 1316 return 0; 1317 1318 /* 1319 * Note that with "hide_ssid", the function returns a match if 1320 * the already-present BSS ("b") is a hidden SSID beacon for 1321 * the new BSS ("a"). 1322 */ 1323 1324 /* sort missing IE before (left of) present IE */ 1325 if (!ie1) 1326 return -1; 1327 if (!ie2) 1328 return 1; 1329 1330 switch (mode) { 1331 case BSS_CMP_HIDE_ZLEN: 1332 /* 1333 * In ZLEN mode we assume the BSS entry we're 1334 * looking for has a zero-length SSID. So if 1335 * the one we're looking at right now has that, 1336 * return 0. Otherwise, return the difference 1337 * in length, but since we're looking for the 1338 * 0-length it's really equivalent to returning 1339 * the length of the one we're looking at. 1340 * 1341 * No content comparison is needed as we assume 1342 * the content length is zero. 1343 */ 1344 return ie2[1]; 1345 case BSS_CMP_REGULAR: 1346 default: 1347 /* sort by length first, then by contents */ 1348 if (ie1[1] != ie2[1]) 1349 return ie2[1] - ie1[1]; 1350 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1351 case BSS_CMP_HIDE_NUL: 1352 if (ie1[1] != ie2[1]) 1353 return ie2[1] - ie1[1]; 1354 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */ 1355 for (i = 0; i < ie2[1]; i++) 1356 if (ie2[i + 2]) 1357 return -1; 1358 return 0; 1359 } 1360 } 1361 1362 static bool cfg80211_bss_type_match(u16 capability, 1363 enum nl80211_band band, 1364 enum ieee80211_bss_type bss_type) 1365 { 1366 bool ret = true; 1367 u16 mask, val; 1368 1369 if (bss_type == IEEE80211_BSS_TYPE_ANY) 1370 return ret; 1371 1372 if (band == NL80211_BAND_60GHZ) { 1373 mask = WLAN_CAPABILITY_DMG_TYPE_MASK; 1374 switch (bss_type) { 1375 case IEEE80211_BSS_TYPE_ESS: 1376 val = WLAN_CAPABILITY_DMG_TYPE_AP; 1377 break; 1378 case IEEE80211_BSS_TYPE_PBSS: 1379 val = WLAN_CAPABILITY_DMG_TYPE_PBSS; 1380 break; 1381 case IEEE80211_BSS_TYPE_IBSS: 1382 val = WLAN_CAPABILITY_DMG_TYPE_IBSS; 1383 break; 1384 default: 1385 return false; 1386 } 1387 } else { 1388 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS; 1389 switch (bss_type) { 1390 case IEEE80211_BSS_TYPE_ESS: 1391 val = WLAN_CAPABILITY_ESS; 1392 break; 1393 case IEEE80211_BSS_TYPE_IBSS: 1394 val = WLAN_CAPABILITY_IBSS; 1395 break; 1396 case IEEE80211_BSS_TYPE_MBSS: 1397 val = 0; 1398 break; 1399 default: 1400 return false; 1401 } 1402 } 1403 1404 ret = ((capability & mask) == val); 1405 return ret; 1406 } 1407 1408 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1409 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy, 1410 struct ieee80211_channel *channel, 1411 const u8 *bssid, 1412 const u8 *ssid, size_t ssid_len, 1413 enum ieee80211_bss_type bss_type, 1414 enum ieee80211_privacy privacy) 1415 { 1416 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1417 struct cfg80211_internal_bss *bss, *res = NULL; 1418 unsigned long now = jiffies; 1419 int bss_privacy; 1420 1421 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type, 1422 privacy); 1423 1424 spin_lock_bh(&rdev->bss_lock); 1425 1426 list_for_each_entry(bss, &rdev->bss_list, list) { 1427 if (!cfg80211_bss_type_match(bss->pub.capability, 1428 bss->pub.channel->band, bss_type)) 1429 continue; 1430 1431 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY); 1432 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) || 1433 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy)) 1434 continue; 1435 if (channel && bss->pub.channel != channel) 1436 continue; 1437 if (!is_valid_ether_addr(bss->pub.bssid)) 1438 continue; 1439 /* Don't get expired BSS structs */ 1440 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) && 1441 !atomic_read(&bss->hold)) 1442 continue; 1443 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) { 1444 res = bss; 1445 bss_ref_get(rdev, res); 1446 break; 1447 } 1448 } 1449 1450 spin_unlock_bh(&rdev->bss_lock); 1451 if (!res) 1452 return NULL; 1453 trace_cfg80211_return_bss(&res->pub); 1454 return &res->pub; 1455 } 1456 EXPORT_SYMBOL(cfg80211_get_bss); 1457 1458 static void rb_insert_bss(struct cfg80211_registered_device *rdev, 1459 struct cfg80211_internal_bss *bss) 1460 { 1461 struct rb_node **p = &rdev->bss_tree.rb_node; 1462 struct rb_node *parent = NULL; 1463 struct cfg80211_internal_bss *tbss; 1464 int cmp; 1465 1466 while (*p) { 1467 parent = *p; 1468 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn); 1469 1470 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR); 1471 1472 if (WARN_ON(!cmp)) { 1473 /* will sort of leak this BSS */ 1474 return; 1475 } 1476 1477 if (cmp < 0) 1478 p = &(*p)->rb_left; 1479 else 1480 p = &(*p)->rb_right; 1481 } 1482 1483 rb_link_node(&bss->rbn, parent, p); 1484 rb_insert_color(&bss->rbn, &rdev->bss_tree); 1485 } 1486 1487 static struct cfg80211_internal_bss * 1488 rb_find_bss(struct cfg80211_registered_device *rdev, 1489 struct cfg80211_internal_bss *res, 1490 enum bss_compare_mode mode) 1491 { 1492 struct rb_node *n = rdev->bss_tree.rb_node; 1493 struct cfg80211_internal_bss *bss; 1494 int r; 1495 1496 while (n) { 1497 bss = rb_entry(n, struct cfg80211_internal_bss, rbn); 1498 r = cmp_bss(&res->pub, &bss->pub, mode); 1499 1500 if (r == 0) 1501 return bss; 1502 else if (r < 0) 1503 n = n->rb_left; 1504 else 1505 n = n->rb_right; 1506 } 1507 1508 return NULL; 1509 } 1510 1511 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev, 1512 struct cfg80211_internal_bss *new) 1513 { 1514 const struct cfg80211_bss_ies *ies; 1515 struct cfg80211_internal_bss *bss; 1516 const u8 *ie; 1517 int i, ssidlen; 1518 u8 fold = 0; 1519 u32 n_entries = 0; 1520 1521 ies = rcu_access_pointer(new->pub.beacon_ies); 1522 if (WARN_ON(!ies)) 1523 return false; 1524 1525 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1526 if (!ie) { 1527 /* nothing to do */ 1528 return true; 1529 } 1530 1531 ssidlen = ie[1]; 1532 for (i = 0; i < ssidlen; i++) 1533 fold |= ie[2 + i]; 1534 1535 if (fold) { 1536 /* not a hidden SSID */ 1537 return true; 1538 } 1539 1540 /* This is the bad part ... */ 1541 1542 list_for_each_entry(bss, &rdev->bss_list, list) { 1543 /* 1544 * we're iterating all the entries anyway, so take the 1545 * opportunity to validate the list length accounting 1546 */ 1547 n_entries++; 1548 1549 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid)) 1550 continue; 1551 if (bss->pub.channel != new->pub.channel) 1552 continue; 1553 if (bss->pub.scan_width != new->pub.scan_width) 1554 continue; 1555 if (rcu_access_pointer(bss->pub.beacon_ies)) 1556 continue; 1557 ies = rcu_access_pointer(bss->pub.ies); 1558 if (!ies) 1559 continue; 1560 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1561 if (!ie) 1562 continue; 1563 if (ssidlen && ie[1] != ssidlen) 1564 continue; 1565 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss)) 1566 continue; 1567 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list))) 1568 list_del(&bss->hidden_list); 1569 /* combine them */ 1570 list_add(&bss->hidden_list, &new->hidden_list); 1571 bss->pub.hidden_beacon_bss = &new->pub; 1572 new->refcount += bss->refcount; 1573 rcu_assign_pointer(bss->pub.beacon_ies, 1574 new->pub.beacon_ies); 1575 } 1576 1577 WARN_ONCE(n_entries != rdev->bss_entries, 1578 "rdev bss entries[%d]/list[len:%d] corruption\n", 1579 rdev->bss_entries, n_entries); 1580 1581 return true; 1582 } 1583 1584 struct cfg80211_non_tx_bss { 1585 struct cfg80211_bss *tx_bss; 1586 u8 max_bssid_indicator; 1587 u8 bssid_index; 1588 }; 1589 1590 static bool 1591 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev, 1592 struct cfg80211_internal_bss *known, 1593 struct cfg80211_internal_bss *new, 1594 bool signal_valid) 1595 { 1596 lockdep_assert_held(&rdev->bss_lock); 1597 1598 /* Update IEs */ 1599 if (rcu_access_pointer(new->pub.proberesp_ies)) { 1600 const struct cfg80211_bss_ies *old; 1601 1602 old = rcu_access_pointer(known->pub.proberesp_ies); 1603 1604 rcu_assign_pointer(known->pub.proberesp_ies, 1605 new->pub.proberesp_ies); 1606 /* Override possible earlier Beacon frame IEs */ 1607 rcu_assign_pointer(known->pub.ies, 1608 new->pub.proberesp_ies); 1609 if (old) 1610 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1611 } else if (rcu_access_pointer(new->pub.beacon_ies)) { 1612 const struct cfg80211_bss_ies *old; 1613 struct cfg80211_internal_bss *bss; 1614 1615 if (known->pub.hidden_beacon_bss && 1616 !list_empty(&known->hidden_list)) { 1617 const struct cfg80211_bss_ies *f; 1618 1619 /* The known BSS struct is one of the probe 1620 * response members of a group, but we're 1621 * receiving a beacon (beacon_ies in the new 1622 * bss is used). This can only mean that the 1623 * AP changed its beacon from not having an 1624 * SSID to showing it, which is confusing so 1625 * drop this information. 1626 */ 1627 1628 f = rcu_access_pointer(new->pub.beacon_ies); 1629 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head); 1630 return false; 1631 } 1632 1633 old = rcu_access_pointer(known->pub.beacon_ies); 1634 1635 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies); 1636 1637 /* Override IEs if they were from a beacon before */ 1638 if (old == rcu_access_pointer(known->pub.ies)) 1639 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies); 1640 1641 /* Assign beacon IEs to all sub entries */ 1642 list_for_each_entry(bss, &known->hidden_list, hidden_list) { 1643 const struct cfg80211_bss_ies *ies; 1644 1645 ies = rcu_access_pointer(bss->pub.beacon_ies); 1646 WARN_ON(ies != old); 1647 1648 rcu_assign_pointer(bss->pub.beacon_ies, 1649 new->pub.beacon_ies); 1650 } 1651 1652 if (old) 1653 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1654 } 1655 1656 known->pub.beacon_interval = new->pub.beacon_interval; 1657 1658 /* don't update the signal if beacon was heard on 1659 * adjacent channel. 1660 */ 1661 if (signal_valid) 1662 known->pub.signal = new->pub.signal; 1663 known->pub.capability = new->pub.capability; 1664 known->ts = new->ts; 1665 known->ts_boottime = new->ts_boottime; 1666 known->parent_tsf = new->parent_tsf; 1667 known->pub.chains = new->pub.chains; 1668 memcpy(known->pub.chain_signal, new->pub.chain_signal, 1669 IEEE80211_MAX_CHAINS); 1670 ether_addr_copy(known->parent_bssid, new->parent_bssid); 1671 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator; 1672 known->pub.bssid_index = new->pub.bssid_index; 1673 1674 return true; 1675 } 1676 1677 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1678 struct cfg80211_internal_bss * 1679 cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1680 struct cfg80211_internal_bss *tmp, 1681 bool signal_valid, unsigned long ts) 1682 { 1683 struct cfg80211_internal_bss *found = NULL; 1684 1685 if (WARN_ON(!tmp->pub.channel)) 1686 return NULL; 1687 1688 tmp->ts = ts; 1689 1690 spin_lock_bh(&rdev->bss_lock); 1691 1692 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) { 1693 spin_unlock_bh(&rdev->bss_lock); 1694 return NULL; 1695 } 1696 1697 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR); 1698 1699 if (found) { 1700 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid)) 1701 goto drop; 1702 } else { 1703 struct cfg80211_internal_bss *new; 1704 struct cfg80211_internal_bss *hidden; 1705 struct cfg80211_bss_ies *ies; 1706 1707 /* 1708 * create a copy -- the "res" variable that is passed in 1709 * is allocated on the stack since it's not needed in the 1710 * more common case of an update 1711 */ 1712 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size, 1713 GFP_ATOMIC); 1714 if (!new) { 1715 ies = (void *)rcu_dereference(tmp->pub.beacon_ies); 1716 if (ies) 1717 kfree_rcu(ies, rcu_head); 1718 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies); 1719 if (ies) 1720 kfree_rcu(ies, rcu_head); 1721 goto drop; 1722 } 1723 memcpy(new, tmp, sizeof(*new)); 1724 new->refcount = 1; 1725 INIT_LIST_HEAD(&new->hidden_list); 1726 INIT_LIST_HEAD(&new->pub.nontrans_list); 1727 1728 if (rcu_access_pointer(tmp->pub.proberesp_ies)) { 1729 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN); 1730 if (!hidden) 1731 hidden = rb_find_bss(rdev, tmp, 1732 BSS_CMP_HIDE_NUL); 1733 if (hidden) { 1734 new->pub.hidden_beacon_bss = &hidden->pub; 1735 list_add(&new->hidden_list, 1736 &hidden->hidden_list); 1737 hidden->refcount++; 1738 rcu_assign_pointer(new->pub.beacon_ies, 1739 hidden->pub.beacon_ies); 1740 } 1741 } else { 1742 /* 1743 * Ok so we found a beacon, and don't have an entry. If 1744 * it's a beacon with hidden SSID, we might be in for an 1745 * expensive search for any probe responses that should 1746 * be grouped with this beacon for updates ... 1747 */ 1748 if (!cfg80211_combine_bsses(rdev, new)) { 1749 kfree(new); 1750 goto drop; 1751 } 1752 } 1753 1754 if (rdev->bss_entries >= bss_entries_limit && 1755 !cfg80211_bss_expire_oldest(rdev)) { 1756 kfree(new); 1757 goto drop; 1758 } 1759 1760 /* This must be before the call to bss_ref_get */ 1761 if (tmp->pub.transmitted_bss) { 1762 struct cfg80211_internal_bss *pbss = 1763 container_of(tmp->pub.transmitted_bss, 1764 struct cfg80211_internal_bss, 1765 pub); 1766 1767 new->pub.transmitted_bss = tmp->pub.transmitted_bss; 1768 bss_ref_get(rdev, pbss); 1769 } 1770 1771 list_add_tail(&new->list, &rdev->bss_list); 1772 rdev->bss_entries++; 1773 rb_insert_bss(rdev, new); 1774 found = new; 1775 } 1776 1777 rdev->bss_generation++; 1778 bss_ref_get(rdev, found); 1779 spin_unlock_bh(&rdev->bss_lock); 1780 1781 return found; 1782 drop: 1783 spin_unlock_bh(&rdev->bss_lock); 1784 return NULL; 1785 } 1786 1787 /* 1788 * Update RX channel information based on the available frame payload 1789 * information. This is mainly for the 2.4 GHz band where frames can be received 1790 * from neighboring channels and the Beacon frames use the DSSS Parameter Set 1791 * element to indicate the current (transmitting) channel, but this might also 1792 * be needed on other bands if RX frequency does not match with the actual 1793 * operating channel of a BSS. 1794 */ 1795 static struct ieee80211_channel * 1796 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen, 1797 struct ieee80211_channel *channel, 1798 enum nl80211_bss_scan_width scan_width) 1799 { 1800 const u8 *tmp; 1801 u32 freq; 1802 int channel_number = -1; 1803 struct ieee80211_channel *alt_channel; 1804 1805 if (channel->band == NL80211_BAND_S1GHZ) { 1806 tmp = cfg80211_find_ie(WLAN_EID_S1G_OPERATION, ie, ielen); 1807 if (tmp && tmp[1] >= sizeof(struct ieee80211_s1g_oper_ie)) { 1808 struct ieee80211_s1g_oper_ie *s1gop = (void *)(tmp + 2); 1809 1810 channel_number = s1gop->primary_ch; 1811 } 1812 } else { 1813 tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen); 1814 if (tmp && tmp[1] == 1) { 1815 channel_number = tmp[2]; 1816 } else { 1817 tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen); 1818 if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) { 1819 struct ieee80211_ht_operation *htop = (void *)(tmp + 2); 1820 1821 channel_number = htop->primary_chan; 1822 } 1823 } 1824 } 1825 1826 if (channel_number < 0) { 1827 /* No channel information in frame payload */ 1828 return channel; 1829 } 1830 1831 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band); 1832 alt_channel = ieee80211_get_channel_khz(wiphy, freq); 1833 if (!alt_channel) { 1834 if (channel->band == NL80211_BAND_2GHZ) { 1835 /* 1836 * Better not allow unexpected channels when that could 1837 * be going beyond the 1-11 range (e.g., discovering 1838 * BSS on channel 12 when radio is configured for 1839 * channel 11. 1840 */ 1841 return NULL; 1842 } 1843 1844 /* No match for the payload channel number - ignore it */ 1845 return channel; 1846 } 1847 1848 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 || 1849 scan_width == NL80211_BSS_CHAN_WIDTH_5) { 1850 /* 1851 * Ignore channel number in 5 and 10 MHz channels where there 1852 * may not be an n:1 or 1:n mapping between frequencies and 1853 * channel numbers. 1854 */ 1855 return channel; 1856 } 1857 1858 /* 1859 * Use the channel determined through the payload channel number 1860 * instead of the RX channel reported by the driver. 1861 */ 1862 if (alt_channel->flags & IEEE80211_CHAN_DISABLED) 1863 return NULL; 1864 return alt_channel; 1865 } 1866 1867 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1868 static struct cfg80211_bss * 1869 cfg80211_inform_single_bss_data(struct wiphy *wiphy, 1870 struct cfg80211_inform_bss *data, 1871 enum cfg80211_bss_frame_type ftype, 1872 const u8 *bssid, u64 tsf, u16 capability, 1873 u16 beacon_interval, const u8 *ie, size_t ielen, 1874 struct cfg80211_non_tx_bss *non_tx_data, 1875 gfp_t gfp) 1876 { 1877 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1878 struct cfg80211_bss_ies *ies; 1879 struct ieee80211_channel *channel; 1880 struct cfg80211_internal_bss tmp = {}, *res; 1881 int bss_type; 1882 bool signal_valid; 1883 unsigned long ts; 1884 1885 if (WARN_ON(!wiphy)) 1886 return NULL; 1887 1888 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 1889 (data->signal < 0 || data->signal > 100))) 1890 return NULL; 1891 1892 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan, 1893 data->scan_width); 1894 if (!channel) 1895 return NULL; 1896 1897 memcpy(tmp.pub.bssid, bssid, ETH_ALEN); 1898 tmp.pub.channel = channel; 1899 tmp.pub.scan_width = data->scan_width; 1900 tmp.pub.signal = data->signal; 1901 tmp.pub.beacon_interval = beacon_interval; 1902 tmp.pub.capability = capability; 1903 tmp.ts_boottime = data->boottime_ns; 1904 if (non_tx_data) { 1905 tmp.pub.transmitted_bss = non_tx_data->tx_bss; 1906 ts = bss_from_pub(non_tx_data->tx_bss)->ts; 1907 tmp.pub.bssid_index = non_tx_data->bssid_index; 1908 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator; 1909 } else { 1910 ts = jiffies; 1911 } 1912 1913 /* 1914 * If we do not know here whether the IEs are from a Beacon or Probe 1915 * Response frame, we need to pick one of the options and only use it 1916 * with the driver that does not provide the full Beacon/Probe Response 1917 * frame. Use Beacon frame pointer to avoid indicating that this should 1918 * override the IEs pointer should we have received an earlier 1919 * indication of Probe Response data. 1920 */ 1921 ies = kzalloc(sizeof(*ies) + ielen, gfp); 1922 if (!ies) 1923 return NULL; 1924 ies->len = ielen; 1925 ies->tsf = tsf; 1926 ies->from_beacon = false; 1927 memcpy(ies->data, ie, ielen); 1928 1929 switch (ftype) { 1930 case CFG80211_BSS_FTYPE_BEACON: 1931 ies->from_beacon = true; 1932 fallthrough; 1933 case CFG80211_BSS_FTYPE_UNKNOWN: 1934 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 1935 break; 1936 case CFG80211_BSS_FTYPE_PRESP: 1937 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 1938 break; 1939 } 1940 rcu_assign_pointer(tmp.pub.ies, ies); 1941 1942 signal_valid = data->chan == channel; 1943 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts); 1944 if (!res) 1945 return NULL; 1946 1947 if (channel->band == NL80211_BAND_60GHZ) { 1948 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 1949 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 1950 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 1951 regulatory_hint_found_beacon(wiphy, channel, gfp); 1952 } else { 1953 if (res->pub.capability & WLAN_CAPABILITY_ESS) 1954 regulatory_hint_found_beacon(wiphy, channel, gfp); 1955 } 1956 1957 if (non_tx_data) { 1958 /* this is a nontransmitting bss, we need to add it to 1959 * transmitting bss' list if it is not there 1960 */ 1961 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss, 1962 &res->pub)) { 1963 if (__cfg80211_unlink_bss(rdev, res)) 1964 rdev->bss_generation++; 1965 } 1966 } 1967 1968 trace_cfg80211_return_bss(&res->pub); 1969 /* cfg80211_bss_update gives us a referenced result */ 1970 return &res->pub; 1971 } 1972 1973 static const struct element 1974 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen, 1975 const struct element *mbssid_elem, 1976 const struct element *sub_elem) 1977 { 1978 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen; 1979 const struct element *next_mbssid; 1980 const struct element *next_sub; 1981 1982 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 1983 mbssid_end, 1984 ielen - (mbssid_end - ie)); 1985 1986 /* 1987 * If it is not the last subelement in current MBSSID IE or there isn't 1988 * a next MBSSID IE - profile is complete. 1989 */ 1990 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) || 1991 !next_mbssid) 1992 return NULL; 1993 1994 /* For any length error, just return NULL */ 1995 1996 if (next_mbssid->datalen < 4) 1997 return NULL; 1998 1999 next_sub = (void *)&next_mbssid->data[1]; 2000 2001 if (next_mbssid->data + next_mbssid->datalen < 2002 next_sub->data + next_sub->datalen) 2003 return NULL; 2004 2005 if (next_sub->id != 0 || next_sub->datalen < 2) 2006 return NULL; 2007 2008 /* 2009 * Check if the first element in the next sub element is a start 2010 * of a new profile 2011 */ 2012 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ? 2013 NULL : next_mbssid; 2014 } 2015 2016 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen, 2017 const struct element *mbssid_elem, 2018 const struct element *sub_elem, 2019 u8 *merged_ie, size_t max_copy_len) 2020 { 2021 size_t copied_len = sub_elem->datalen; 2022 const struct element *next_mbssid; 2023 2024 if (sub_elem->datalen > max_copy_len) 2025 return 0; 2026 2027 memcpy(merged_ie, sub_elem->data, sub_elem->datalen); 2028 2029 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen, 2030 mbssid_elem, 2031 sub_elem))) { 2032 const struct element *next_sub = (void *)&next_mbssid->data[1]; 2033 2034 if (copied_len + next_sub->datalen > max_copy_len) 2035 break; 2036 memcpy(merged_ie + copied_len, next_sub->data, 2037 next_sub->datalen); 2038 copied_len += next_sub->datalen; 2039 } 2040 2041 return copied_len; 2042 } 2043 EXPORT_SYMBOL(cfg80211_merge_profile); 2044 2045 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy, 2046 struct cfg80211_inform_bss *data, 2047 enum cfg80211_bss_frame_type ftype, 2048 const u8 *bssid, u64 tsf, 2049 u16 beacon_interval, const u8 *ie, 2050 size_t ielen, 2051 struct cfg80211_non_tx_bss *non_tx_data, 2052 gfp_t gfp) 2053 { 2054 const u8 *mbssid_index_ie; 2055 const struct element *elem, *sub; 2056 size_t new_ie_len; 2057 u8 new_bssid[ETH_ALEN]; 2058 u8 *new_ie, *profile; 2059 u64 seen_indices = 0; 2060 u16 capability; 2061 struct cfg80211_bss *bss; 2062 2063 if (!non_tx_data) 2064 return; 2065 if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen)) 2066 return; 2067 if (!wiphy->support_mbssid) 2068 return; 2069 if (wiphy->support_only_he_mbssid && 2070 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen)) 2071 return; 2072 2073 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2074 if (!new_ie) 2075 return; 2076 2077 profile = kmalloc(ielen, gfp); 2078 if (!profile) 2079 goto out; 2080 2081 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) { 2082 if (elem->datalen < 4) 2083 continue; 2084 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 2085 u8 profile_len; 2086 2087 if (sub->id != 0 || sub->datalen < 4) { 2088 /* not a valid BSS profile */ 2089 continue; 2090 } 2091 2092 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 2093 sub->data[1] != 2) { 2094 /* The first element within the Nontransmitted 2095 * BSSID Profile is not the Nontransmitted 2096 * BSSID Capability element. 2097 */ 2098 continue; 2099 } 2100 2101 memset(profile, 0, ielen); 2102 profile_len = cfg80211_merge_profile(ie, ielen, 2103 elem, 2104 sub, 2105 profile, 2106 ielen); 2107 2108 /* found a Nontransmitted BSSID Profile */ 2109 mbssid_index_ie = cfg80211_find_ie 2110 (WLAN_EID_MULTI_BSSID_IDX, 2111 profile, profile_len); 2112 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 || 2113 mbssid_index_ie[2] == 0 || 2114 mbssid_index_ie[2] > 46) { 2115 /* No valid Multiple BSSID-Index element */ 2116 continue; 2117 } 2118 2119 if (seen_indices & BIT_ULL(mbssid_index_ie[2])) 2120 /* We don't support legacy split of a profile */ 2121 net_dbg_ratelimited("Partial info for BSSID index %d\n", 2122 mbssid_index_ie[2]); 2123 2124 seen_indices |= BIT_ULL(mbssid_index_ie[2]); 2125 2126 non_tx_data->bssid_index = mbssid_index_ie[2]; 2127 non_tx_data->max_bssid_indicator = elem->data[0]; 2128 2129 cfg80211_gen_new_bssid(bssid, 2130 non_tx_data->max_bssid_indicator, 2131 non_tx_data->bssid_index, 2132 new_bssid); 2133 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 2134 new_ie_len = cfg80211_gen_new_ie(ie, ielen, 2135 profile, 2136 profile_len, new_ie, 2137 gfp); 2138 if (!new_ie_len) 2139 continue; 2140 2141 capability = get_unaligned_le16(profile + 2); 2142 bss = cfg80211_inform_single_bss_data(wiphy, data, 2143 ftype, 2144 new_bssid, tsf, 2145 capability, 2146 beacon_interval, 2147 new_ie, 2148 new_ie_len, 2149 non_tx_data, 2150 gfp); 2151 if (!bss) 2152 break; 2153 cfg80211_put_bss(wiphy, bss); 2154 } 2155 } 2156 2157 out: 2158 kfree(new_ie); 2159 kfree(profile); 2160 } 2161 2162 struct cfg80211_bss * 2163 cfg80211_inform_bss_data(struct wiphy *wiphy, 2164 struct cfg80211_inform_bss *data, 2165 enum cfg80211_bss_frame_type ftype, 2166 const u8 *bssid, u64 tsf, u16 capability, 2167 u16 beacon_interval, const u8 *ie, size_t ielen, 2168 gfp_t gfp) 2169 { 2170 struct cfg80211_bss *res; 2171 struct cfg80211_non_tx_bss non_tx_data; 2172 2173 res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf, 2174 capability, beacon_interval, ie, 2175 ielen, NULL, gfp); 2176 if (!res) 2177 return NULL; 2178 non_tx_data.tx_bss = res; 2179 cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf, 2180 beacon_interval, ie, ielen, &non_tx_data, 2181 gfp); 2182 return res; 2183 } 2184 EXPORT_SYMBOL(cfg80211_inform_bss_data); 2185 2186 static void 2187 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy, 2188 struct cfg80211_inform_bss *data, 2189 struct ieee80211_mgmt *mgmt, size_t len, 2190 struct cfg80211_non_tx_bss *non_tx_data, 2191 gfp_t gfp) 2192 { 2193 enum cfg80211_bss_frame_type ftype; 2194 const u8 *ie = mgmt->u.probe_resp.variable; 2195 size_t ielen = len - offsetof(struct ieee80211_mgmt, 2196 u.probe_resp.variable); 2197 2198 ftype = ieee80211_is_beacon(mgmt->frame_control) ? 2199 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP; 2200 2201 cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid, 2202 le64_to_cpu(mgmt->u.probe_resp.timestamp), 2203 le16_to_cpu(mgmt->u.probe_resp.beacon_int), 2204 ie, ielen, non_tx_data, gfp); 2205 } 2206 2207 static void 2208 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy, 2209 struct cfg80211_bss *nontrans_bss, 2210 struct ieee80211_mgmt *mgmt, size_t len) 2211 { 2212 u8 *ie, *new_ie, *pos; 2213 const u8 *nontrans_ssid, *trans_ssid, *mbssid; 2214 size_t ielen = len - offsetof(struct ieee80211_mgmt, 2215 u.probe_resp.variable); 2216 size_t new_ie_len; 2217 struct cfg80211_bss_ies *new_ies; 2218 const struct cfg80211_bss_ies *old; 2219 u8 cpy_len; 2220 2221 lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock); 2222 2223 ie = mgmt->u.probe_resp.variable; 2224 2225 new_ie_len = ielen; 2226 trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen); 2227 if (!trans_ssid) 2228 return; 2229 new_ie_len -= trans_ssid[1]; 2230 mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen); 2231 /* 2232 * It's not valid to have the MBSSID element before SSID 2233 * ignore if that happens - the code below assumes it is 2234 * after (while copying things inbetween). 2235 */ 2236 if (!mbssid || mbssid < trans_ssid) 2237 return; 2238 new_ie_len -= mbssid[1]; 2239 2240 nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID); 2241 if (!nontrans_ssid) 2242 return; 2243 2244 new_ie_len += nontrans_ssid[1]; 2245 2246 /* generate new ie for nontrans BSS 2247 * 1. replace SSID with nontrans BSS' SSID 2248 * 2. skip MBSSID IE 2249 */ 2250 new_ie = kzalloc(new_ie_len, GFP_ATOMIC); 2251 if (!new_ie) 2252 return; 2253 2254 new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC); 2255 if (!new_ies) 2256 goto out_free; 2257 2258 pos = new_ie; 2259 2260 /* copy the nontransmitted SSID */ 2261 cpy_len = nontrans_ssid[1] + 2; 2262 memcpy(pos, nontrans_ssid, cpy_len); 2263 pos += cpy_len; 2264 /* copy the IEs between SSID and MBSSID */ 2265 cpy_len = trans_ssid[1] + 2; 2266 memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len))); 2267 pos += (mbssid - (trans_ssid + cpy_len)); 2268 /* copy the IEs after MBSSID */ 2269 cpy_len = mbssid[1] + 2; 2270 memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len))); 2271 2272 /* update ie */ 2273 new_ies->len = new_ie_len; 2274 new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 2275 new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control); 2276 memcpy(new_ies->data, new_ie, new_ie_len); 2277 if (ieee80211_is_probe_resp(mgmt->frame_control)) { 2278 old = rcu_access_pointer(nontrans_bss->proberesp_ies); 2279 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies); 2280 rcu_assign_pointer(nontrans_bss->ies, new_ies); 2281 if (old) 2282 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 2283 } else { 2284 old = rcu_access_pointer(nontrans_bss->beacon_ies); 2285 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies); 2286 rcu_assign_pointer(nontrans_bss->ies, new_ies); 2287 if (old) 2288 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 2289 } 2290 2291 out_free: 2292 kfree(new_ie); 2293 } 2294 2295 /* cfg80211_inform_bss_width_frame helper */ 2296 static struct cfg80211_bss * 2297 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy, 2298 struct cfg80211_inform_bss *data, 2299 struct ieee80211_mgmt *mgmt, size_t len, 2300 gfp_t gfp) 2301 { 2302 struct cfg80211_internal_bss tmp = {}, *res; 2303 struct cfg80211_bss_ies *ies; 2304 struct ieee80211_channel *channel; 2305 bool signal_valid; 2306 struct ieee80211_ext *ext = NULL; 2307 u8 *bssid, *variable; 2308 u16 capability, beacon_int; 2309 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt, 2310 u.probe_resp.variable); 2311 int bss_type; 2312 2313 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) != 2314 offsetof(struct ieee80211_mgmt, u.beacon.variable)); 2315 2316 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len); 2317 2318 if (WARN_ON(!mgmt)) 2319 return NULL; 2320 2321 if (WARN_ON(!wiphy)) 2322 return NULL; 2323 2324 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 2325 (data->signal < 0 || data->signal > 100))) 2326 return NULL; 2327 2328 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) { 2329 ext = (void *) mgmt; 2330 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon); 2331 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 2332 min_hdr_len = offsetof(struct ieee80211_ext, 2333 u.s1g_short_beacon.variable); 2334 } 2335 2336 if (WARN_ON(len < min_hdr_len)) 2337 return NULL; 2338 2339 ielen = len - min_hdr_len; 2340 variable = mgmt->u.probe_resp.variable; 2341 if (ext) { 2342 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 2343 variable = ext->u.s1g_short_beacon.variable; 2344 else 2345 variable = ext->u.s1g_beacon.variable; 2346 } 2347 2348 channel = cfg80211_get_bss_channel(wiphy, variable, 2349 ielen, data->chan, data->scan_width); 2350 if (!channel) 2351 return NULL; 2352 2353 if (ext) { 2354 struct ieee80211_s1g_bcn_compat_ie *compat; 2355 u8 *ie; 2356 2357 ie = (void *)cfg80211_find_ie(WLAN_EID_S1G_BCN_COMPAT, 2358 variable, ielen); 2359 if (!ie) 2360 return NULL; 2361 compat = (void *)(ie + 2); 2362 bssid = ext->u.s1g_beacon.sa; 2363 capability = le16_to_cpu(compat->compat_info); 2364 beacon_int = le16_to_cpu(compat->beacon_int); 2365 } else { 2366 bssid = mgmt->bssid; 2367 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int); 2368 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info); 2369 } 2370 2371 ies = kzalloc(sizeof(*ies) + ielen, gfp); 2372 if (!ies) 2373 return NULL; 2374 ies->len = ielen; 2375 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 2376 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) || 2377 ieee80211_is_s1g_beacon(mgmt->frame_control); 2378 memcpy(ies->data, variable, ielen); 2379 2380 if (ieee80211_is_probe_resp(mgmt->frame_control)) 2381 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 2382 else 2383 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 2384 rcu_assign_pointer(tmp.pub.ies, ies); 2385 2386 memcpy(tmp.pub.bssid, bssid, ETH_ALEN); 2387 tmp.pub.beacon_interval = beacon_int; 2388 tmp.pub.capability = capability; 2389 tmp.pub.channel = channel; 2390 tmp.pub.scan_width = data->scan_width; 2391 tmp.pub.signal = data->signal; 2392 tmp.ts_boottime = data->boottime_ns; 2393 tmp.parent_tsf = data->parent_tsf; 2394 tmp.pub.chains = data->chains; 2395 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS); 2396 ether_addr_copy(tmp.parent_bssid, data->parent_bssid); 2397 2398 signal_valid = data->chan == channel; 2399 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, 2400 jiffies); 2401 if (!res) 2402 return NULL; 2403 2404 if (channel->band == NL80211_BAND_60GHZ) { 2405 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 2406 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2407 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2408 regulatory_hint_found_beacon(wiphy, channel, gfp); 2409 } else { 2410 if (res->pub.capability & WLAN_CAPABILITY_ESS) 2411 regulatory_hint_found_beacon(wiphy, channel, gfp); 2412 } 2413 2414 trace_cfg80211_return_bss(&res->pub); 2415 /* cfg80211_bss_update gives us a referenced result */ 2416 return &res->pub; 2417 } 2418 2419 struct cfg80211_bss * 2420 cfg80211_inform_bss_frame_data(struct wiphy *wiphy, 2421 struct cfg80211_inform_bss *data, 2422 struct ieee80211_mgmt *mgmt, size_t len, 2423 gfp_t gfp) 2424 { 2425 struct cfg80211_bss *res, *tmp_bss; 2426 const u8 *ie = mgmt->u.probe_resp.variable; 2427 const struct cfg80211_bss_ies *ies1, *ies2; 2428 size_t ielen = len - offsetof(struct ieee80211_mgmt, 2429 u.probe_resp.variable); 2430 struct cfg80211_non_tx_bss non_tx_data; 2431 2432 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt, 2433 len, gfp); 2434 if (!res || !wiphy->support_mbssid || 2435 !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen)) 2436 return res; 2437 if (wiphy->support_only_he_mbssid && 2438 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen)) 2439 return res; 2440 2441 non_tx_data.tx_bss = res; 2442 /* process each non-transmitting bss */ 2443 cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len, 2444 &non_tx_data, gfp); 2445 2446 spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock); 2447 2448 /* check if the res has other nontransmitting bss which is not 2449 * in MBSSID IE 2450 */ 2451 ies1 = rcu_access_pointer(res->ies); 2452 2453 /* go through nontrans_list, if the timestamp of the BSS is 2454 * earlier than the timestamp of the transmitting BSS then 2455 * update it 2456 */ 2457 list_for_each_entry(tmp_bss, &res->nontrans_list, 2458 nontrans_list) { 2459 ies2 = rcu_access_pointer(tmp_bss->ies); 2460 if (ies2->tsf < ies1->tsf) 2461 cfg80211_update_notlisted_nontrans(wiphy, tmp_bss, 2462 mgmt, len); 2463 } 2464 spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock); 2465 2466 return res; 2467 } 2468 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data); 2469 2470 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2471 { 2472 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2473 struct cfg80211_internal_bss *bss; 2474 2475 if (!pub) 2476 return; 2477 2478 bss = container_of(pub, struct cfg80211_internal_bss, pub); 2479 2480 spin_lock_bh(&rdev->bss_lock); 2481 bss_ref_get(rdev, bss); 2482 spin_unlock_bh(&rdev->bss_lock); 2483 } 2484 EXPORT_SYMBOL(cfg80211_ref_bss); 2485 2486 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2487 { 2488 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2489 struct cfg80211_internal_bss *bss; 2490 2491 if (!pub) 2492 return; 2493 2494 bss = container_of(pub, struct cfg80211_internal_bss, pub); 2495 2496 spin_lock_bh(&rdev->bss_lock); 2497 bss_ref_put(rdev, bss); 2498 spin_unlock_bh(&rdev->bss_lock); 2499 } 2500 EXPORT_SYMBOL(cfg80211_put_bss); 2501 2502 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 2503 { 2504 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2505 struct cfg80211_internal_bss *bss, *tmp1; 2506 struct cfg80211_bss *nontrans_bss, *tmp; 2507 2508 if (WARN_ON(!pub)) 2509 return; 2510 2511 bss = container_of(pub, struct cfg80211_internal_bss, pub); 2512 2513 spin_lock_bh(&rdev->bss_lock); 2514 if (list_empty(&bss->list)) 2515 goto out; 2516 2517 list_for_each_entry_safe(nontrans_bss, tmp, 2518 &pub->nontrans_list, 2519 nontrans_list) { 2520 tmp1 = container_of(nontrans_bss, 2521 struct cfg80211_internal_bss, pub); 2522 if (__cfg80211_unlink_bss(rdev, tmp1)) 2523 rdev->bss_generation++; 2524 } 2525 2526 if (__cfg80211_unlink_bss(rdev, bss)) 2527 rdev->bss_generation++; 2528 out: 2529 spin_unlock_bh(&rdev->bss_lock); 2530 } 2531 EXPORT_SYMBOL(cfg80211_unlink_bss); 2532 2533 void cfg80211_bss_iter(struct wiphy *wiphy, 2534 struct cfg80211_chan_def *chandef, 2535 void (*iter)(struct wiphy *wiphy, 2536 struct cfg80211_bss *bss, 2537 void *data), 2538 void *iter_data) 2539 { 2540 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2541 struct cfg80211_internal_bss *bss; 2542 2543 spin_lock_bh(&rdev->bss_lock); 2544 2545 list_for_each_entry(bss, &rdev->bss_list, list) { 2546 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel)) 2547 iter(wiphy, &bss->pub, iter_data); 2548 } 2549 2550 spin_unlock_bh(&rdev->bss_lock); 2551 } 2552 EXPORT_SYMBOL(cfg80211_bss_iter); 2553 2554 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, 2555 struct ieee80211_channel *chan) 2556 { 2557 struct wiphy *wiphy = wdev->wiphy; 2558 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2559 struct cfg80211_internal_bss *cbss = wdev->current_bss; 2560 struct cfg80211_internal_bss *new = NULL; 2561 struct cfg80211_internal_bss *bss; 2562 struct cfg80211_bss *nontrans_bss; 2563 struct cfg80211_bss *tmp; 2564 2565 spin_lock_bh(&rdev->bss_lock); 2566 2567 /* 2568 * Some APs use CSA also for bandwidth changes, i.e., without actually 2569 * changing the control channel, so no need to update in such a case. 2570 */ 2571 if (cbss->pub.channel == chan) 2572 goto done; 2573 2574 /* use transmitting bss */ 2575 if (cbss->pub.transmitted_bss) 2576 cbss = container_of(cbss->pub.transmitted_bss, 2577 struct cfg80211_internal_bss, 2578 pub); 2579 2580 cbss->pub.channel = chan; 2581 2582 list_for_each_entry(bss, &rdev->bss_list, list) { 2583 if (!cfg80211_bss_type_match(bss->pub.capability, 2584 bss->pub.channel->band, 2585 wdev->conn_bss_type)) 2586 continue; 2587 2588 if (bss == cbss) 2589 continue; 2590 2591 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) { 2592 new = bss; 2593 break; 2594 } 2595 } 2596 2597 if (new) { 2598 /* to save time, update IEs for transmitting bss only */ 2599 if (cfg80211_update_known_bss(rdev, cbss, new, false)) { 2600 new->pub.proberesp_ies = NULL; 2601 new->pub.beacon_ies = NULL; 2602 } 2603 2604 list_for_each_entry_safe(nontrans_bss, tmp, 2605 &new->pub.nontrans_list, 2606 nontrans_list) { 2607 bss = container_of(nontrans_bss, 2608 struct cfg80211_internal_bss, pub); 2609 if (__cfg80211_unlink_bss(rdev, bss)) 2610 rdev->bss_generation++; 2611 } 2612 2613 WARN_ON(atomic_read(&new->hold)); 2614 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new))) 2615 rdev->bss_generation++; 2616 } 2617 2618 rb_erase(&cbss->rbn, &rdev->bss_tree); 2619 rb_insert_bss(rdev, cbss); 2620 rdev->bss_generation++; 2621 2622 list_for_each_entry_safe(nontrans_bss, tmp, 2623 &cbss->pub.nontrans_list, 2624 nontrans_list) { 2625 bss = container_of(nontrans_bss, 2626 struct cfg80211_internal_bss, pub); 2627 bss->pub.channel = chan; 2628 rb_erase(&bss->rbn, &rdev->bss_tree); 2629 rb_insert_bss(rdev, bss); 2630 rdev->bss_generation++; 2631 } 2632 2633 done: 2634 spin_unlock_bh(&rdev->bss_lock); 2635 } 2636 2637 #ifdef CONFIG_CFG80211_WEXT 2638 static struct cfg80211_registered_device * 2639 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex) 2640 { 2641 struct cfg80211_registered_device *rdev; 2642 struct net_device *dev; 2643 2644 ASSERT_RTNL(); 2645 2646 dev = dev_get_by_index(net, ifindex); 2647 if (!dev) 2648 return ERR_PTR(-ENODEV); 2649 if (dev->ieee80211_ptr) 2650 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy); 2651 else 2652 rdev = ERR_PTR(-ENODEV); 2653 dev_put(dev); 2654 return rdev; 2655 } 2656 2657 int cfg80211_wext_siwscan(struct net_device *dev, 2658 struct iw_request_info *info, 2659 union iwreq_data *wrqu, char *extra) 2660 { 2661 struct cfg80211_registered_device *rdev; 2662 struct wiphy *wiphy; 2663 struct iw_scan_req *wreq = NULL; 2664 struct cfg80211_scan_request *creq = NULL; 2665 int i, err, n_channels = 0; 2666 enum nl80211_band band; 2667 2668 if (!netif_running(dev)) 2669 return -ENETDOWN; 2670 2671 if (wrqu->data.length == sizeof(struct iw_scan_req)) 2672 wreq = (struct iw_scan_req *)extra; 2673 2674 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 2675 2676 if (IS_ERR(rdev)) 2677 return PTR_ERR(rdev); 2678 2679 if (rdev->scan_req || rdev->scan_msg) { 2680 err = -EBUSY; 2681 goto out; 2682 } 2683 2684 wiphy = &rdev->wiphy; 2685 2686 /* Determine number of channels, needed to allocate creq */ 2687 if (wreq && wreq->num_channels) 2688 n_channels = wreq->num_channels; 2689 else 2690 n_channels = ieee80211_get_num_supported_channels(wiphy); 2691 2692 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) + 2693 n_channels * sizeof(void *), 2694 GFP_ATOMIC); 2695 if (!creq) { 2696 err = -ENOMEM; 2697 goto out; 2698 } 2699 2700 creq->wiphy = wiphy; 2701 creq->wdev = dev->ieee80211_ptr; 2702 /* SSIDs come after channels */ 2703 creq->ssids = (void *)&creq->channels[n_channels]; 2704 creq->n_channels = n_channels; 2705 creq->n_ssids = 1; 2706 creq->scan_start = jiffies; 2707 2708 /* translate "Scan on frequencies" request */ 2709 i = 0; 2710 for (band = 0; band < NUM_NL80211_BANDS; band++) { 2711 int j; 2712 2713 if (!wiphy->bands[band]) 2714 continue; 2715 2716 for (j = 0; j < wiphy->bands[band]->n_channels; j++) { 2717 /* ignore disabled channels */ 2718 if (wiphy->bands[band]->channels[j].flags & 2719 IEEE80211_CHAN_DISABLED) 2720 continue; 2721 2722 /* If we have a wireless request structure and the 2723 * wireless request specifies frequencies, then search 2724 * for the matching hardware channel. 2725 */ 2726 if (wreq && wreq->num_channels) { 2727 int k; 2728 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq; 2729 for (k = 0; k < wreq->num_channels; k++) { 2730 struct iw_freq *freq = 2731 &wreq->channel_list[k]; 2732 int wext_freq = 2733 cfg80211_wext_freq(freq); 2734 2735 if (wext_freq == wiphy_freq) 2736 goto wext_freq_found; 2737 } 2738 goto wext_freq_not_found; 2739 } 2740 2741 wext_freq_found: 2742 creq->channels[i] = &wiphy->bands[band]->channels[j]; 2743 i++; 2744 wext_freq_not_found: ; 2745 } 2746 } 2747 /* No channels found? */ 2748 if (!i) { 2749 err = -EINVAL; 2750 goto out; 2751 } 2752 2753 /* Set real number of channels specified in creq->channels[] */ 2754 creq->n_channels = i; 2755 2756 /* translate "Scan for SSID" request */ 2757 if (wreq) { 2758 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { 2759 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) { 2760 err = -EINVAL; 2761 goto out; 2762 } 2763 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len); 2764 creq->ssids[0].ssid_len = wreq->essid_len; 2765 } 2766 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) 2767 creq->n_ssids = 0; 2768 } 2769 2770 for (i = 0; i < NUM_NL80211_BANDS; i++) 2771 if (wiphy->bands[i]) 2772 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1; 2773 2774 eth_broadcast_addr(creq->bssid); 2775 2776 rdev->scan_req = creq; 2777 err = rdev_scan(rdev, creq); 2778 if (err) { 2779 rdev->scan_req = NULL; 2780 /* creq will be freed below */ 2781 } else { 2782 nl80211_send_scan_start(rdev, dev->ieee80211_ptr); 2783 /* creq now owned by driver */ 2784 creq = NULL; 2785 dev_hold(dev); 2786 } 2787 out: 2788 kfree(creq); 2789 return err; 2790 } 2791 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan); 2792 2793 static char *ieee80211_scan_add_ies(struct iw_request_info *info, 2794 const struct cfg80211_bss_ies *ies, 2795 char *current_ev, char *end_buf) 2796 { 2797 const u8 *pos, *end, *next; 2798 struct iw_event iwe; 2799 2800 if (!ies) 2801 return current_ev; 2802 2803 /* 2804 * If needed, fragment the IEs buffer (at IE boundaries) into short 2805 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages. 2806 */ 2807 pos = ies->data; 2808 end = pos + ies->len; 2809 2810 while (end - pos > IW_GENERIC_IE_MAX) { 2811 next = pos + 2 + pos[1]; 2812 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX) 2813 next = next + 2 + next[1]; 2814 2815 memset(&iwe, 0, sizeof(iwe)); 2816 iwe.cmd = IWEVGENIE; 2817 iwe.u.data.length = next - pos; 2818 current_ev = iwe_stream_add_point_check(info, current_ev, 2819 end_buf, &iwe, 2820 (void *)pos); 2821 if (IS_ERR(current_ev)) 2822 return current_ev; 2823 pos = next; 2824 } 2825 2826 if (end > pos) { 2827 memset(&iwe, 0, sizeof(iwe)); 2828 iwe.cmd = IWEVGENIE; 2829 iwe.u.data.length = end - pos; 2830 current_ev = iwe_stream_add_point_check(info, current_ev, 2831 end_buf, &iwe, 2832 (void *)pos); 2833 if (IS_ERR(current_ev)) 2834 return current_ev; 2835 } 2836 2837 return current_ev; 2838 } 2839 2840 static char * 2841 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info, 2842 struct cfg80211_internal_bss *bss, char *current_ev, 2843 char *end_buf) 2844 { 2845 const struct cfg80211_bss_ies *ies; 2846 struct iw_event iwe; 2847 const u8 *ie; 2848 u8 buf[50]; 2849 u8 *cfg, *p, *tmp; 2850 int rem, i, sig; 2851 bool ismesh = false; 2852 2853 memset(&iwe, 0, sizeof(iwe)); 2854 iwe.cmd = SIOCGIWAP; 2855 iwe.u.ap_addr.sa_family = ARPHRD_ETHER; 2856 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN); 2857 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 2858 IW_EV_ADDR_LEN); 2859 if (IS_ERR(current_ev)) 2860 return current_ev; 2861 2862 memset(&iwe, 0, sizeof(iwe)); 2863 iwe.cmd = SIOCGIWFREQ; 2864 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq); 2865 iwe.u.freq.e = 0; 2866 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 2867 IW_EV_FREQ_LEN); 2868 if (IS_ERR(current_ev)) 2869 return current_ev; 2870 2871 memset(&iwe, 0, sizeof(iwe)); 2872 iwe.cmd = SIOCGIWFREQ; 2873 iwe.u.freq.m = bss->pub.channel->center_freq; 2874 iwe.u.freq.e = 6; 2875 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 2876 IW_EV_FREQ_LEN); 2877 if (IS_ERR(current_ev)) 2878 return current_ev; 2879 2880 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) { 2881 memset(&iwe, 0, sizeof(iwe)); 2882 iwe.cmd = IWEVQUAL; 2883 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED | 2884 IW_QUAL_NOISE_INVALID | 2885 IW_QUAL_QUAL_UPDATED; 2886 switch (wiphy->signal_type) { 2887 case CFG80211_SIGNAL_TYPE_MBM: 2888 sig = bss->pub.signal / 100; 2889 iwe.u.qual.level = sig; 2890 iwe.u.qual.updated |= IW_QUAL_DBM; 2891 if (sig < -110) /* rather bad */ 2892 sig = -110; 2893 else if (sig > -40) /* perfect */ 2894 sig = -40; 2895 /* will give a range of 0 .. 70 */ 2896 iwe.u.qual.qual = sig + 110; 2897 break; 2898 case CFG80211_SIGNAL_TYPE_UNSPEC: 2899 iwe.u.qual.level = bss->pub.signal; 2900 /* will give range 0 .. 100 */ 2901 iwe.u.qual.qual = bss->pub.signal; 2902 break; 2903 default: 2904 /* not reached */ 2905 break; 2906 } 2907 current_ev = iwe_stream_add_event_check(info, current_ev, 2908 end_buf, &iwe, 2909 IW_EV_QUAL_LEN); 2910 if (IS_ERR(current_ev)) 2911 return current_ev; 2912 } 2913 2914 memset(&iwe, 0, sizeof(iwe)); 2915 iwe.cmd = SIOCGIWENCODE; 2916 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY) 2917 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY; 2918 else 2919 iwe.u.data.flags = IW_ENCODE_DISABLED; 2920 iwe.u.data.length = 0; 2921 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 2922 &iwe, ""); 2923 if (IS_ERR(current_ev)) 2924 return current_ev; 2925 2926 rcu_read_lock(); 2927 ies = rcu_dereference(bss->pub.ies); 2928 rem = ies->len; 2929 ie = ies->data; 2930 2931 while (rem >= 2) { 2932 /* invalid data */ 2933 if (ie[1] > rem - 2) 2934 break; 2935 2936 switch (ie[0]) { 2937 case WLAN_EID_SSID: 2938 memset(&iwe, 0, sizeof(iwe)); 2939 iwe.cmd = SIOCGIWESSID; 2940 iwe.u.data.length = ie[1]; 2941 iwe.u.data.flags = 1; 2942 current_ev = iwe_stream_add_point_check(info, 2943 current_ev, 2944 end_buf, &iwe, 2945 (u8 *)ie + 2); 2946 if (IS_ERR(current_ev)) 2947 goto unlock; 2948 break; 2949 case WLAN_EID_MESH_ID: 2950 memset(&iwe, 0, sizeof(iwe)); 2951 iwe.cmd = SIOCGIWESSID; 2952 iwe.u.data.length = ie[1]; 2953 iwe.u.data.flags = 1; 2954 current_ev = iwe_stream_add_point_check(info, 2955 current_ev, 2956 end_buf, &iwe, 2957 (u8 *)ie + 2); 2958 if (IS_ERR(current_ev)) 2959 goto unlock; 2960 break; 2961 case WLAN_EID_MESH_CONFIG: 2962 ismesh = true; 2963 if (ie[1] != sizeof(struct ieee80211_meshconf_ie)) 2964 break; 2965 cfg = (u8 *)ie + 2; 2966 memset(&iwe, 0, sizeof(iwe)); 2967 iwe.cmd = IWEVCUSTOM; 2968 sprintf(buf, "Mesh Network Path Selection Protocol ID: " 2969 "0x%02X", cfg[0]); 2970 iwe.u.data.length = strlen(buf); 2971 current_ev = iwe_stream_add_point_check(info, 2972 current_ev, 2973 end_buf, 2974 &iwe, buf); 2975 if (IS_ERR(current_ev)) 2976 goto unlock; 2977 sprintf(buf, "Path Selection Metric ID: 0x%02X", 2978 cfg[1]); 2979 iwe.u.data.length = strlen(buf); 2980 current_ev = iwe_stream_add_point_check(info, 2981 current_ev, 2982 end_buf, 2983 &iwe, buf); 2984 if (IS_ERR(current_ev)) 2985 goto unlock; 2986 sprintf(buf, "Congestion Control Mode ID: 0x%02X", 2987 cfg[2]); 2988 iwe.u.data.length = strlen(buf); 2989 current_ev = iwe_stream_add_point_check(info, 2990 current_ev, 2991 end_buf, 2992 &iwe, buf); 2993 if (IS_ERR(current_ev)) 2994 goto unlock; 2995 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]); 2996 iwe.u.data.length = strlen(buf); 2997 current_ev = iwe_stream_add_point_check(info, 2998 current_ev, 2999 end_buf, 3000 &iwe, buf); 3001 if (IS_ERR(current_ev)) 3002 goto unlock; 3003 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]); 3004 iwe.u.data.length = strlen(buf); 3005 current_ev = iwe_stream_add_point_check(info, 3006 current_ev, 3007 end_buf, 3008 &iwe, buf); 3009 if (IS_ERR(current_ev)) 3010 goto unlock; 3011 sprintf(buf, "Formation Info: 0x%02X", cfg[5]); 3012 iwe.u.data.length = strlen(buf); 3013 current_ev = iwe_stream_add_point_check(info, 3014 current_ev, 3015 end_buf, 3016 &iwe, buf); 3017 if (IS_ERR(current_ev)) 3018 goto unlock; 3019 sprintf(buf, "Capabilities: 0x%02X", cfg[6]); 3020 iwe.u.data.length = strlen(buf); 3021 current_ev = iwe_stream_add_point_check(info, 3022 current_ev, 3023 end_buf, 3024 &iwe, buf); 3025 if (IS_ERR(current_ev)) 3026 goto unlock; 3027 break; 3028 case WLAN_EID_SUPP_RATES: 3029 case WLAN_EID_EXT_SUPP_RATES: 3030 /* display all supported rates in readable format */ 3031 p = current_ev + iwe_stream_lcp_len(info); 3032 3033 memset(&iwe, 0, sizeof(iwe)); 3034 iwe.cmd = SIOCGIWRATE; 3035 /* Those two flags are ignored... */ 3036 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0; 3037 3038 for (i = 0; i < ie[1]; i++) { 3039 iwe.u.bitrate.value = 3040 ((ie[i + 2] & 0x7f) * 500000); 3041 tmp = p; 3042 p = iwe_stream_add_value(info, current_ev, p, 3043 end_buf, &iwe, 3044 IW_EV_PARAM_LEN); 3045 if (p == tmp) { 3046 current_ev = ERR_PTR(-E2BIG); 3047 goto unlock; 3048 } 3049 } 3050 current_ev = p; 3051 break; 3052 } 3053 rem -= ie[1] + 2; 3054 ie += ie[1] + 2; 3055 } 3056 3057 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) || 3058 ismesh) { 3059 memset(&iwe, 0, sizeof(iwe)); 3060 iwe.cmd = SIOCGIWMODE; 3061 if (ismesh) 3062 iwe.u.mode = IW_MODE_MESH; 3063 else if (bss->pub.capability & WLAN_CAPABILITY_ESS) 3064 iwe.u.mode = IW_MODE_MASTER; 3065 else 3066 iwe.u.mode = IW_MODE_ADHOC; 3067 current_ev = iwe_stream_add_event_check(info, current_ev, 3068 end_buf, &iwe, 3069 IW_EV_UINT_LEN); 3070 if (IS_ERR(current_ev)) 3071 goto unlock; 3072 } 3073 3074 memset(&iwe, 0, sizeof(iwe)); 3075 iwe.cmd = IWEVCUSTOM; 3076 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf)); 3077 iwe.u.data.length = strlen(buf); 3078 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3079 &iwe, buf); 3080 if (IS_ERR(current_ev)) 3081 goto unlock; 3082 memset(&iwe, 0, sizeof(iwe)); 3083 iwe.cmd = IWEVCUSTOM; 3084 sprintf(buf, " Last beacon: %ums ago", 3085 elapsed_jiffies_msecs(bss->ts)); 3086 iwe.u.data.length = strlen(buf); 3087 current_ev = iwe_stream_add_point_check(info, current_ev, 3088 end_buf, &iwe, buf); 3089 if (IS_ERR(current_ev)) 3090 goto unlock; 3091 3092 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf); 3093 3094 unlock: 3095 rcu_read_unlock(); 3096 return current_ev; 3097 } 3098 3099 3100 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev, 3101 struct iw_request_info *info, 3102 char *buf, size_t len) 3103 { 3104 char *current_ev = buf; 3105 char *end_buf = buf + len; 3106 struct cfg80211_internal_bss *bss; 3107 int err = 0; 3108 3109 spin_lock_bh(&rdev->bss_lock); 3110 cfg80211_bss_expire(rdev); 3111 3112 list_for_each_entry(bss, &rdev->bss_list, list) { 3113 if (buf + len - current_ev <= IW_EV_ADDR_LEN) { 3114 err = -E2BIG; 3115 break; 3116 } 3117 current_ev = ieee80211_bss(&rdev->wiphy, info, bss, 3118 current_ev, end_buf); 3119 if (IS_ERR(current_ev)) { 3120 err = PTR_ERR(current_ev); 3121 break; 3122 } 3123 } 3124 spin_unlock_bh(&rdev->bss_lock); 3125 3126 if (err) 3127 return err; 3128 return current_ev - buf; 3129 } 3130 3131 3132 int cfg80211_wext_giwscan(struct net_device *dev, 3133 struct iw_request_info *info, 3134 struct iw_point *data, char *extra) 3135 { 3136 struct cfg80211_registered_device *rdev; 3137 int res; 3138 3139 if (!netif_running(dev)) 3140 return -ENETDOWN; 3141 3142 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3143 3144 if (IS_ERR(rdev)) 3145 return PTR_ERR(rdev); 3146 3147 if (rdev->scan_req || rdev->scan_msg) 3148 return -EAGAIN; 3149 3150 res = ieee80211_scan_results(rdev, info, extra, data->length); 3151 data->length = 0; 3152 if (res >= 0) { 3153 data->length = res; 3154 res = 0; 3155 } 3156 3157 return res; 3158 } 3159 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan); 3160 #endif 3161