xref: /openbmc/linux/net/wireless/scan.c (revision 835fd614)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016	Intel Deutschland GmbH
8  * Copyright (C) 2018-2020 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include "core.h"
24 #include "nl80211.h"
25 #include "wext-compat.h"
26 #include "rdev-ops.h"
27 
28 /**
29  * DOC: BSS tree/list structure
30  *
31  * At the top level, the BSS list is kept in both a list in each
32  * registered device (@bss_list) as well as an RB-tree for faster
33  * lookup. In the RB-tree, entries can be looked up using their
34  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35  * for other BSSes.
36  *
37  * Due to the possibility of hidden SSIDs, there's a second level
38  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39  * The hidden_list connects all BSSes belonging to a single AP
40  * that has a hidden SSID, and connects beacon and probe response
41  * entries. For a probe response entry for a hidden SSID, the
42  * hidden_beacon_bss pointer points to the BSS struct holding the
43  * beacon's information.
44  *
45  * Reference counting is done for all these references except for
46  * the hidden_list, so that a beacon BSS struct that is otherwise
47  * not referenced has one reference for being on the bss_list and
48  * one for each probe response entry that points to it using the
49  * hidden_beacon_bss pointer. When a BSS struct that has such a
50  * pointer is get/put, the refcount update is also propagated to
51  * the referenced struct, this ensure that it cannot get removed
52  * while somebody is using the probe response version.
53  *
54  * Note that the hidden_beacon_bss pointer never changes, due to
55  * the reference counting. Therefore, no locking is needed for
56  * it.
57  *
58  * Also note that the hidden_beacon_bss pointer is only relevant
59  * if the driver uses something other than the IEs, e.g. private
60  * data stored in the BSS struct, since the beacon IEs are
61  * also linked into the probe response struct.
62  */
63 
64 /*
65  * Limit the number of BSS entries stored in mac80211. Each one is
66  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67  * If somebody wants to really attack this though, they'd likely
68  * use small beacons, and only one type of frame, limiting each of
69  * the entries to a much smaller size (in order to generate more
70  * entries in total, so overhead is bigger.)
71  */
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75                  "limit to number of scan BSS entries (per wiphy, default 1000)");
76 
77 #define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
78 
79 /**
80  * struct cfg80211_colocated_ap - colocated AP information
81  *
82  * @list: linked list to all colocated aPS
83  * @bssid: BSSID of the reported AP
84  * @ssid: SSID of the reported AP
85  * @ssid_len: length of the ssid
86  * @center_freq: frequency the reported AP is on
87  * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88  *	that operate in the same channel as the reported AP and that might be
89  *	detected by a STA receiving this frame, are transmitting unsolicited
90  *	Probe Response frames every 20 TUs
91  * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92  * @same_ssid: the reported AP has the same SSID as the reporting AP
93  * @multi_bss: the reported AP is part of a multiple BSSID set
94  * @transmitted_bssid: the reported AP is the transmitting BSSID
95  * @colocated_ess: all the APs that share the same ESS as the reported AP are
96  *	colocated and can be discovered via legacy bands.
97  * @short_ssid_valid: short_ssid is valid and can be used
98  * @short_ssid: the short SSID for this SSID
99  */
100 struct cfg80211_colocated_ap {
101 	struct list_head list;
102 	u8 bssid[ETH_ALEN];
103 	u8 ssid[IEEE80211_MAX_SSID_LEN];
104 	size_t ssid_len;
105 	u32 short_ssid;
106 	u32 center_freq;
107 	u8 unsolicited_probe:1,
108 	   oct_recommended:1,
109 	   same_ssid:1,
110 	   multi_bss:1,
111 	   transmitted_bssid:1,
112 	   colocated_ess:1,
113 	   short_ssid_valid:1;
114 };
115 
116 static void bss_free(struct cfg80211_internal_bss *bss)
117 {
118 	struct cfg80211_bss_ies *ies;
119 
120 	if (WARN_ON(atomic_read(&bss->hold)))
121 		return;
122 
123 	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124 	if (ies && !bss->pub.hidden_beacon_bss)
125 		kfree_rcu(ies, rcu_head);
126 	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
127 	if (ies)
128 		kfree_rcu(ies, rcu_head);
129 
130 	/*
131 	 * This happens when the module is removed, it doesn't
132 	 * really matter any more save for completeness
133 	 */
134 	if (!list_empty(&bss->hidden_list))
135 		list_del(&bss->hidden_list);
136 
137 	kfree(bss);
138 }
139 
140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141 			       struct cfg80211_internal_bss *bss)
142 {
143 	lockdep_assert_held(&rdev->bss_lock);
144 
145 	bss->refcount++;
146 	if (bss->pub.hidden_beacon_bss) {
147 		bss = container_of(bss->pub.hidden_beacon_bss,
148 				   struct cfg80211_internal_bss,
149 				   pub);
150 		bss->refcount++;
151 	}
152 	if (bss->pub.transmitted_bss) {
153 		bss = container_of(bss->pub.transmitted_bss,
154 				   struct cfg80211_internal_bss,
155 				   pub);
156 		bss->refcount++;
157 	}
158 }
159 
160 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
161 			       struct cfg80211_internal_bss *bss)
162 {
163 	lockdep_assert_held(&rdev->bss_lock);
164 
165 	if (bss->pub.hidden_beacon_bss) {
166 		struct cfg80211_internal_bss *hbss;
167 		hbss = container_of(bss->pub.hidden_beacon_bss,
168 				    struct cfg80211_internal_bss,
169 				    pub);
170 		hbss->refcount--;
171 		if (hbss->refcount == 0)
172 			bss_free(hbss);
173 	}
174 
175 	if (bss->pub.transmitted_bss) {
176 		struct cfg80211_internal_bss *tbss;
177 
178 		tbss = container_of(bss->pub.transmitted_bss,
179 				    struct cfg80211_internal_bss,
180 				    pub);
181 		tbss->refcount--;
182 		if (tbss->refcount == 0)
183 			bss_free(tbss);
184 	}
185 
186 	bss->refcount--;
187 	if (bss->refcount == 0)
188 		bss_free(bss);
189 }
190 
191 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
192 				  struct cfg80211_internal_bss *bss)
193 {
194 	lockdep_assert_held(&rdev->bss_lock);
195 
196 	if (!list_empty(&bss->hidden_list)) {
197 		/*
198 		 * don't remove the beacon entry if it has
199 		 * probe responses associated with it
200 		 */
201 		if (!bss->pub.hidden_beacon_bss)
202 			return false;
203 		/*
204 		 * if it's a probe response entry break its
205 		 * link to the other entries in the group
206 		 */
207 		list_del_init(&bss->hidden_list);
208 	}
209 
210 	list_del_init(&bss->list);
211 	list_del_init(&bss->pub.nontrans_list);
212 	rb_erase(&bss->rbn, &rdev->bss_tree);
213 	rdev->bss_entries--;
214 	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
215 		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
216 		  rdev->bss_entries, list_empty(&rdev->bss_list));
217 	bss_ref_put(rdev, bss);
218 	return true;
219 }
220 
221 bool cfg80211_is_element_inherited(const struct element *elem,
222 				   const struct element *non_inherit_elem)
223 {
224 	u8 id_len, ext_id_len, i, loop_len, id;
225 	const u8 *list;
226 
227 	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
228 		return false;
229 
230 	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
231 		return true;
232 
233 	/*
234 	 * non inheritance element format is:
235 	 * ext ID (56) | IDs list len | list | extension IDs list len | list
236 	 * Both lists are optional. Both lengths are mandatory.
237 	 * This means valid length is:
238 	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
239 	 */
240 	id_len = non_inherit_elem->data[1];
241 	if (non_inherit_elem->datalen < 3 + id_len)
242 		return true;
243 
244 	ext_id_len = non_inherit_elem->data[2 + id_len];
245 	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
246 		return true;
247 
248 	if (elem->id == WLAN_EID_EXTENSION) {
249 		if (!ext_id_len)
250 			return true;
251 		loop_len = ext_id_len;
252 		list = &non_inherit_elem->data[3 + id_len];
253 		id = elem->data[0];
254 	} else {
255 		if (!id_len)
256 			return true;
257 		loop_len = id_len;
258 		list = &non_inherit_elem->data[2];
259 		id = elem->id;
260 	}
261 
262 	for (i = 0; i < loop_len; i++) {
263 		if (list[i] == id)
264 			return false;
265 	}
266 
267 	return true;
268 }
269 EXPORT_SYMBOL(cfg80211_is_element_inherited);
270 
271 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
272 				  const u8 *subelement, size_t subie_len,
273 				  u8 *new_ie, gfp_t gfp)
274 {
275 	u8 *pos, *tmp;
276 	const u8 *tmp_old, *tmp_new;
277 	const struct element *non_inherit_elem;
278 	u8 *sub_copy;
279 
280 	/* copy subelement as we need to change its content to
281 	 * mark an ie after it is processed.
282 	 */
283 	sub_copy = kmemdup(subelement, subie_len, gfp);
284 	if (!sub_copy)
285 		return 0;
286 
287 	pos = &new_ie[0];
288 
289 	/* set new ssid */
290 	tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
291 	if (tmp_new) {
292 		memcpy(pos, tmp_new, tmp_new[1] + 2);
293 		pos += (tmp_new[1] + 2);
294 	}
295 
296 	/* get non inheritance list if exists */
297 	non_inherit_elem =
298 		cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
299 				       sub_copy, subie_len);
300 
301 	/* go through IEs in ie (skip SSID) and subelement,
302 	 * merge them into new_ie
303 	 */
304 	tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
305 	tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
306 
307 	while (tmp_old + tmp_old[1] + 2 - ie <= ielen) {
308 		if (tmp_old[0] == 0) {
309 			tmp_old++;
310 			continue;
311 		}
312 
313 		if (tmp_old[0] == WLAN_EID_EXTENSION)
314 			tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
315 							 subie_len);
316 		else
317 			tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
318 						     subie_len);
319 
320 		if (!tmp) {
321 			const struct element *old_elem = (void *)tmp_old;
322 
323 			/* ie in old ie but not in subelement */
324 			if (cfg80211_is_element_inherited(old_elem,
325 							  non_inherit_elem)) {
326 				memcpy(pos, tmp_old, tmp_old[1] + 2);
327 				pos += tmp_old[1] + 2;
328 			}
329 		} else {
330 			/* ie in transmitting ie also in subelement,
331 			 * copy from subelement and flag the ie in subelement
332 			 * as copied (by setting eid field to WLAN_EID_SSID,
333 			 * which is skipped anyway).
334 			 * For vendor ie, compare OUI + type + subType to
335 			 * determine if they are the same ie.
336 			 */
337 			if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
338 				if (!memcmp(tmp_old + 2, tmp + 2, 5)) {
339 					/* same vendor ie, copy from
340 					 * subelement
341 					 */
342 					memcpy(pos, tmp, tmp[1] + 2);
343 					pos += tmp[1] + 2;
344 					tmp[0] = WLAN_EID_SSID;
345 				} else {
346 					memcpy(pos, tmp_old, tmp_old[1] + 2);
347 					pos += tmp_old[1] + 2;
348 				}
349 			} else {
350 				/* copy ie from subelement into new ie */
351 				memcpy(pos, tmp, tmp[1] + 2);
352 				pos += tmp[1] + 2;
353 				tmp[0] = WLAN_EID_SSID;
354 			}
355 		}
356 
357 		if (tmp_old + tmp_old[1] + 2 - ie == ielen)
358 			break;
359 
360 		tmp_old += tmp_old[1] + 2;
361 	}
362 
363 	/* go through subelement again to check if there is any ie not
364 	 * copied to new ie, skip ssid, capability, bssid-index ie
365 	 */
366 	tmp_new = sub_copy;
367 	while (tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
368 		if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
369 		      tmp_new[0] == WLAN_EID_SSID)) {
370 			memcpy(pos, tmp_new, tmp_new[1] + 2);
371 			pos += tmp_new[1] + 2;
372 		}
373 		if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
374 			break;
375 		tmp_new += tmp_new[1] + 2;
376 	}
377 
378 	kfree(sub_copy);
379 	return pos - new_ie;
380 }
381 
382 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
383 		   const u8 *ssid, size_t ssid_len)
384 {
385 	const struct cfg80211_bss_ies *ies;
386 	const u8 *ssidie;
387 
388 	if (bssid && !ether_addr_equal(a->bssid, bssid))
389 		return false;
390 
391 	if (!ssid)
392 		return true;
393 
394 	ies = rcu_access_pointer(a->ies);
395 	if (!ies)
396 		return false;
397 	ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
398 	if (!ssidie)
399 		return false;
400 	if (ssidie[1] != ssid_len)
401 		return false;
402 	return memcmp(ssidie + 2, ssid, ssid_len) == 0;
403 }
404 
405 static int
406 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
407 			   struct cfg80211_bss *nontrans_bss)
408 {
409 	const u8 *ssid;
410 	size_t ssid_len;
411 	struct cfg80211_bss *bss = NULL;
412 
413 	rcu_read_lock();
414 	ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
415 	if (!ssid) {
416 		rcu_read_unlock();
417 		return -EINVAL;
418 	}
419 	ssid_len = ssid[1];
420 	ssid = ssid + 2;
421 	rcu_read_unlock();
422 
423 	/* check if nontrans_bss is in the list */
424 	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
425 		if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len))
426 			return 0;
427 	}
428 
429 	/* add to the list */
430 	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
431 	return 0;
432 }
433 
434 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
435 				  unsigned long expire_time)
436 {
437 	struct cfg80211_internal_bss *bss, *tmp;
438 	bool expired = false;
439 
440 	lockdep_assert_held(&rdev->bss_lock);
441 
442 	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
443 		if (atomic_read(&bss->hold))
444 			continue;
445 		if (!time_after(expire_time, bss->ts))
446 			continue;
447 
448 		if (__cfg80211_unlink_bss(rdev, bss))
449 			expired = true;
450 	}
451 
452 	if (expired)
453 		rdev->bss_generation++;
454 }
455 
456 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
457 {
458 	struct cfg80211_internal_bss *bss, *oldest = NULL;
459 	bool ret;
460 
461 	lockdep_assert_held(&rdev->bss_lock);
462 
463 	list_for_each_entry(bss, &rdev->bss_list, list) {
464 		if (atomic_read(&bss->hold))
465 			continue;
466 
467 		if (!list_empty(&bss->hidden_list) &&
468 		    !bss->pub.hidden_beacon_bss)
469 			continue;
470 
471 		if (oldest && time_before(oldest->ts, bss->ts))
472 			continue;
473 		oldest = bss;
474 	}
475 
476 	if (WARN_ON(!oldest))
477 		return false;
478 
479 	/*
480 	 * The callers make sure to increase rdev->bss_generation if anything
481 	 * gets removed (and a new entry added), so there's no need to also do
482 	 * it here.
483 	 */
484 
485 	ret = __cfg80211_unlink_bss(rdev, oldest);
486 	WARN_ON(!ret);
487 	return ret;
488 }
489 
490 static u8 cfg80211_parse_bss_param(u8 data,
491 				   struct cfg80211_colocated_ap *coloc_ap)
492 {
493 	coloc_ap->oct_recommended =
494 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
495 	coloc_ap->same_ssid =
496 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
497 	coloc_ap->multi_bss =
498 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
499 	coloc_ap->transmitted_bssid =
500 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
501 	coloc_ap->unsolicited_probe =
502 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
503 	coloc_ap->colocated_ess =
504 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
505 
506 	return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
507 }
508 
509 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
510 				    const struct element **elem, u32 *s_ssid)
511 {
512 
513 	*elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
514 	if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
515 		return -EINVAL;
516 
517 	*s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
518 	return 0;
519 }
520 
521 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
522 {
523 	struct cfg80211_colocated_ap *ap, *tmp_ap;
524 
525 	list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
526 		list_del(&ap->list);
527 		kfree(ap);
528 	}
529 }
530 
531 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
532 				  const u8 *pos, u8 length,
533 				  const struct element *ssid_elem,
534 				  int s_ssid_tmp)
535 {
536 	/* skip the TBTT offset */
537 	pos++;
538 
539 	memcpy(entry->bssid, pos, ETH_ALEN);
540 	pos += ETH_ALEN;
541 
542 	if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
543 		memcpy(&entry->short_ssid, pos,
544 		       sizeof(entry->short_ssid));
545 		entry->short_ssid_valid = true;
546 		pos += 4;
547 	}
548 
549 	/* skip non colocated APs */
550 	if (!cfg80211_parse_bss_param(*pos, entry))
551 		return -EINVAL;
552 	pos++;
553 
554 	if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
555 		/*
556 		 * no information about the short ssid. Consider the entry valid
557 		 * for now. It would later be dropped in case there are explicit
558 		 * SSIDs that need to be matched
559 		 */
560 		if (!entry->same_ssid)
561 			return 0;
562 	}
563 
564 	if (entry->same_ssid) {
565 		entry->short_ssid = s_ssid_tmp;
566 		entry->short_ssid_valid = true;
567 
568 		/*
569 		 * This is safe because we validate datalen in
570 		 * cfg80211_parse_colocated_ap(), before calling this
571 		 * function.
572 		 */
573 		memcpy(&entry->ssid, &ssid_elem->data,
574 		       ssid_elem->datalen);
575 		entry->ssid_len = ssid_elem->datalen;
576 	}
577 	return 0;
578 }
579 
580 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
581 				       struct list_head *list)
582 {
583 	struct ieee80211_neighbor_ap_info *ap_info;
584 	const struct element *elem, *ssid_elem;
585 	const u8 *pos, *end;
586 	u32 s_ssid_tmp;
587 	int n_coloc = 0, ret;
588 	LIST_HEAD(ap_list);
589 
590 	elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
591 				  ies->len);
592 	if (!elem || elem->datalen > IEEE80211_MAX_SSID_LEN)
593 		return 0;
594 
595 	pos = elem->data;
596 	end = pos + elem->datalen;
597 
598 	ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
599 	if (ret)
600 		return ret;
601 
602 	/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
603 	while (pos + sizeof(*ap_info) <= end) {
604 		enum nl80211_band band;
605 		int freq;
606 		u8 length, i, count;
607 
608 		ap_info = (void *)pos;
609 		count = u8_get_bits(ap_info->tbtt_info_hdr,
610 				    IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
611 		length = ap_info->tbtt_info_len;
612 
613 		pos += sizeof(*ap_info);
614 
615 		if (!ieee80211_operating_class_to_band(ap_info->op_class,
616 						       &band))
617 			break;
618 
619 		freq = ieee80211_channel_to_frequency(ap_info->channel, band);
620 
621 		if (end - pos < count * ap_info->tbtt_info_len)
622 			break;
623 
624 		/*
625 		 * TBTT info must include bss param + BSSID +
626 		 * (short SSID or same_ssid bit to be set).
627 		 * ignore other options, and move to the
628 		 * next AP info
629 		 */
630 		if (band != NL80211_BAND_6GHZ ||
631 		    (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
632 		     length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
633 			pos += count * ap_info->tbtt_info_len;
634 			continue;
635 		}
636 
637 		for (i = 0; i < count; i++) {
638 			struct cfg80211_colocated_ap *entry;
639 
640 			entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
641 					GFP_ATOMIC);
642 
643 			if (!entry)
644 				break;
645 
646 			entry->center_freq = freq;
647 
648 			if (!cfg80211_parse_ap_info(entry, pos, length,
649 						    ssid_elem, s_ssid_tmp)) {
650 				n_coloc++;
651 				list_add_tail(&entry->list, &ap_list);
652 			} else {
653 				kfree(entry);
654 			}
655 
656 			pos += ap_info->tbtt_info_len;
657 		}
658 	}
659 
660 	if (pos != end) {
661 		cfg80211_free_coloc_ap_list(&ap_list);
662 		return 0;
663 	}
664 
665 	list_splice_tail(&ap_list, list);
666 	return n_coloc;
667 }
668 
669 static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
670 					struct ieee80211_channel *chan,
671 					bool add_to_6ghz)
672 {
673 	int i;
674 	u32 n_channels = request->n_channels;
675 	struct cfg80211_scan_6ghz_params *params =
676 		&request->scan_6ghz_params[request->n_6ghz_params];
677 
678 	for (i = 0; i < n_channels; i++) {
679 		if (request->channels[i] == chan) {
680 			if (add_to_6ghz)
681 				params->channel_idx = i;
682 			return;
683 		}
684 	}
685 
686 	request->channels[n_channels] = chan;
687 	if (add_to_6ghz)
688 		request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
689 			n_channels;
690 
691 	request->n_channels++;
692 }
693 
694 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
695 				     struct cfg80211_scan_request *request)
696 {
697 	u8 i;
698 	u32 s_ssid;
699 
700 	for (i = 0; i < request->n_ssids; i++) {
701 		/* wildcard ssid in the scan request */
702 		if (!request->ssids[i].ssid_len)
703 			return true;
704 
705 		if (ap->ssid_len &&
706 		    ap->ssid_len == request->ssids[i].ssid_len) {
707 			if (!memcmp(request->ssids[i].ssid, ap->ssid,
708 				    ap->ssid_len))
709 				return true;
710 		} else if (ap->short_ssid_valid) {
711 			s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
712 					   request->ssids[i].ssid_len);
713 
714 			if (ap->short_ssid == s_ssid)
715 				return true;
716 		}
717 	}
718 
719 	return false;
720 }
721 
722 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
723 {
724 	u8 i;
725 	struct cfg80211_colocated_ap *ap;
726 	int n_channels, count = 0, err;
727 	struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
728 	LIST_HEAD(coloc_ap_list);
729 	bool need_scan_psc;
730 	const struct ieee80211_sband_iftype_data *iftd;
731 
732 	rdev_req->scan_6ghz = true;
733 
734 	if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
735 		return -EOPNOTSUPP;
736 
737 	iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
738 					       rdev_req->wdev->iftype);
739 	if (!iftd || !iftd->he_cap.has_he)
740 		return -EOPNOTSUPP;
741 
742 	n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
743 
744 	if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
745 		struct cfg80211_internal_bss *intbss;
746 
747 		spin_lock_bh(&rdev->bss_lock);
748 		list_for_each_entry(intbss, &rdev->bss_list, list) {
749 			struct cfg80211_bss *res = &intbss->pub;
750 			const struct cfg80211_bss_ies *ies;
751 
752 			ies = rcu_access_pointer(res->ies);
753 			count += cfg80211_parse_colocated_ap(ies,
754 							     &coloc_ap_list);
755 		}
756 		spin_unlock_bh(&rdev->bss_lock);
757 	}
758 
759 	request = kzalloc(struct_size(request, channels, n_channels) +
760 			  sizeof(*request->scan_6ghz_params) * count,
761 			  GFP_KERNEL);
762 	if (!request) {
763 		cfg80211_free_coloc_ap_list(&coloc_ap_list);
764 		return -ENOMEM;
765 	}
766 
767 	*request = *rdev_req;
768 	request->n_channels = 0;
769 	request->scan_6ghz_params =
770 		(void *)&request->channels[n_channels];
771 
772 	/*
773 	 * PSC channels should not be scanned if all the reported co-located APs
774 	 * are indicating that all APs in the same ESS are co-located
775 	 */
776 	if (count) {
777 		need_scan_psc = false;
778 
779 		list_for_each_entry(ap, &coloc_ap_list, list) {
780 			if (!ap->colocated_ess) {
781 				need_scan_psc = true;
782 				break;
783 			}
784 		}
785 	} else {
786 		need_scan_psc = true;
787 	}
788 
789 	/*
790 	 * add to the scan request the channels that need to be scanned
791 	 * regardless of the collocated APs (PSC channels or all channels
792 	 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
793 	 */
794 	for (i = 0; i < rdev_req->n_channels; i++) {
795 		if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
796 		    ((need_scan_psc &&
797 		      cfg80211_channel_is_psc(rdev_req->channels[i])) ||
798 		     !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
799 			cfg80211_scan_req_add_chan(request,
800 						   rdev_req->channels[i],
801 						   false);
802 		}
803 	}
804 
805 	if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
806 		goto skip;
807 
808 	list_for_each_entry(ap, &coloc_ap_list, list) {
809 		bool found = false;
810 		struct cfg80211_scan_6ghz_params *scan_6ghz_params =
811 			&request->scan_6ghz_params[request->n_6ghz_params];
812 		struct ieee80211_channel *chan =
813 			ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
814 
815 		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
816 			continue;
817 
818 		for (i = 0; i < rdev_req->n_channels; i++) {
819 			if (rdev_req->channels[i] == chan)
820 				found = true;
821 		}
822 
823 		if (!found)
824 			continue;
825 
826 		if (request->n_ssids > 0 &&
827 		    !cfg80211_find_ssid_match(ap, request))
828 			continue;
829 
830 		cfg80211_scan_req_add_chan(request, chan, true);
831 		memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
832 		scan_6ghz_params->short_ssid = ap->short_ssid;
833 		scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
834 		scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
835 
836 		/*
837 		 * If a PSC channel is added to the scan and 'need_scan_psc' is
838 		 * set to false, then all the APs that the scan logic is
839 		 * interested with on the channel are collocated and thus there
840 		 * is no need to perform the initial PSC channel listen.
841 		 */
842 		if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
843 			scan_6ghz_params->psc_no_listen = true;
844 
845 		request->n_6ghz_params++;
846 	}
847 
848 skip:
849 	cfg80211_free_coloc_ap_list(&coloc_ap_list);
850 
851 	if (request->n_channels) {
852 		struct cfg80211_scan_request *old = rdev->int_scan_req;
853 
854 		rdev->int_scan_req = request;
855 
856 		/*
857 		 * If this scan follows a previous scan, save the scan start
858 		 * info from the first part of the scan
859 		 */
860 		if (old)
861 			rdev->int_scan_req->info = old->info;
862 
863 		err = rdev_scan(rdev, request);
864 		if (err) {
865 			rdev->int_scan_req = old;
866 			kfree(request);
867 		} else {
868 			kfree(old);
869 		}
870 
871 		return err;
872 	}
873 
874 	kfree(request);
875 	return -EINVAL;
876 }
877 
878 int cfg80211_scan(struct cfg80211_registered_device *rdev)
879 {
880 	struct cfg80211_scan_request *request;
881 	struct cfg80211_scan_request *rdev_req = rdev->scan_req;
882 	u32 n_channels = 0, idx, i;
883 
884 	if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
885 		return rdev_scan(rdev, rdev_req);
886 
887 	for (i = 0; i < rdev_req->n_channels; i++) {
888 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
889 			n_channels++;
890 	}
891 
892 	if (!n_channels)
893 		return cfg80211_scan_6ghz(rdev);
894 
895 	request = kzalloc(struct_size(request, channels, n_channels),
896 			  GFP_KERNEL);
897 	if (!request)
898 		return -ENOMEM;
899 
900 	*request = *rdev_req;
901 	request->n_channels = n_channels;
902 
903 	for (i = idx = 0; i < rdev_req->n_channels; i++) {
904 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
905 			request->channels[idx++] = rdev_req->channels[i];
906 	}
907 
908 	rdev_req->scan_6ghz = false;
909 	rdev->int_scan_req = request;
910 	return rdev_scan(rdev, request);
911 }
912 
913 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
914 			   bool send_message)
915 {
916 	struct cfg80211_scan_request *request, *rdev_req;
917 	struct wireless_dev *wdev;
918 	struct sk_buff *msg;
919 #ifdef CONFIG_CFG80211_WEXT
920 	union iwreq_data wrqu;
921 #endif
922 
923 	ASSERT_RTNL();
924 
925 	if (rdev->scan_msg) {
926 		nl80211_send_scan_msg(rdev, rdev->scan_msg);
927 		rdev->scan_msg = NULL;
928 		return;
929 	}
930 
931 	rdev_req = rdev->scan_req;
932 	if (!rdev_req)
933 		return;
934 
935 	wdev = rdev_req->wdev;
936 	request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
937 
938 	if (wdev_running(wdev) &&
939 	    (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
940 	    !rdev_req->scan_6ghz && !request->info.aborted &&
941 	    !cfg80211_scan_6ghz(rdev))
942 		return;
943 
944 	/*
945 	 * This must be before sending the other events!
946 	 * Otherwise, wpa_supplicant gets completely confused with
947 	 * wext events.
948 	 */
949 	if (wdev->netdev)
950 		cfg80211_sme_scan_done(wdev->netdev);
951 
952 	if (!request->info.aborted &&
953 	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
954 		/* flush entries from previous scans */
955 		spin_lock_bh(&rdev->bss_lock);
956 		__cfg80211_bss_expire(rdev, request->scan_start);
957 		spin_unlock_bh(&rdev->bss_lock);
958 	}
959 
960 	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
961 
962 #ifdef CONFIG_CFG80211_WEXT
963 	if (wdev->netdev && !request->info.aborted) {
964 		memset(&wrqu, 0, sizeof(wrqu));
965 
966 		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
967 	}
968 #endif
969 
970 	if (wdev->netdev)
971 		dev_put(wdev->netdev);
972 
973 	kfree(rdev->int_scan_req);
974 	rdev->int_scan_req = NULL;
975 
976 	kfree(rdev->scan_req);
977 	rdev->scan_req = NULL;
978 
979 	if (!send_message)
980 		rdev->scan_msg = msg;
981 	else
982 		nl80211_send_scan_msg(rdev, msg);
983 }
984 
985 void __cfg80211_scan_done(struct work_struct *wk)
986 {
987 	struct cfg80211_registered_device *rdev;
988 
989 	rdev = container_of(wk, struct cfg80211_registered_device,
990 			    scan_done_wk);
991 
992 	rtnl_lock();
993 	___cfg80211_scan_done(rdev, true);
994 	rtnl_unlock();
995 }
996 
997 void cfg80211_scan_done(struct cfg80211_scan_request *request,
998 			struct cfg80211_scan_info *info)
999 {
1000 	struct cfg80211_scan_info old_info = request->info;
1001 
1002 	trace_cfg80211_scan_done(request, info);
1003 	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1004 		request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1005 
1006 	request->info = *info;
1007 
1008 	/*
1009 	 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1010 	 * be of the first part. In such a case old_info.scan_start_tsf should
1011 	 * be non zero.
1012 	 */
1013 	if (request->scan_6ghz && old_info.scan_start_tsf) {
1014 		request->info.scan_start_tsf = old_info.scan_start_tsf;
1015 		memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1016 		       sizeof(request->info.tsf_bssid));
1017 	}
1018 
1019 	request->notified = true;
1020 	queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1021 }
1022 EXPORT_SYMBOL(cfg80211_scan_done);
1023 
1024 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1025 				 struct cfg80211_sched_scan_request *req)
1026 {
1027 	ASSERT_RTNL();
1028 
1029 	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1030 }
1031 
1032 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1033 					struct cfg80211_sched_scan_request *req)
1034 {
1035 	ASSERT_RTNL();
1036 
1037 	list_del_rcu(&req->list);
1038 	kfree_rcu(req, rcu_head);
1039 }
1040 
1041 static struct cfg80211_sched_scan_request *
1042 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1043 {
1044 	struct cfg80211_sched_scan_request *pos;
1045 
1046 	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1047 				lockdep_rtnl_is_held()) {
1048 		if (pos->reqid == reqid)
1049 			return pos;
1050 	}
1051 	return NULL;
1052 }
1053 
1054 /*
1055  * Determines if a scheduled scan request can be handled. When a legacy
1056  * scheduled scan is running no other scheduled scan is allowed regardless
1057  * whether the request is for legacy or multi-support scan. When a multi-support
1058  * scheduled scan is running a request for legacy scan is not allowed. In this
1059  * case a request for multi-support scan can be handled if resources are
1060  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1061  */
1062 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1063 				     bool want_multi)
1064 {
1065 	struct cfg80211_sched_scan_request *pos;
1066 	int i = 0;
1067 
1068 	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1069 		/* request id zero means legacy in progress */
1070 		if (!i && !pos->reqid)
1071 			return -EINPROGRESS;
1072 		i++;
1073 	}
1074 
1075 	if (i) {
1076 		/* no legacy allowed when multi request(s) are active */
1077 		if (!want_multi)
1078 			return -EINPROGRESS;
1079 
1080 		/* resource limit reached */
1081 		if (i == rdev->wiphy.max_sched_scan_reqs)
1082 			return -ENOSPC;
1083 	}
1084 	return 0;
1085 }
1086 
1087 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1088 {
1089 	struct cfg80211_registered_device *rdev;
1090 	struct cfg80211_sched_scan_request *req, *tmp;
1091 
1092 	rdev = container_of(work, struct cfg80211_registered_device,
1093 			   sched_scan_res_wk);
1094 
1095 	rtnl_lock();
1096 	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1097 		if (req->report_results) {
1098 			req->report_results = false;
1099 			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1100 				/* flush entries from previous scans */
1101 				spin_lock_bh(&rdev->bss_lock);
1102 				__cfg80211_bss_expire(rdev, req->scan_start);
1103 				spin_unlock_bh(&rdev->bss_lock);
1104 				req->scan_start = jiffies;
1105 			}
1106 			nl80211_send_sched_scan(req,
1107 						NL80211_CMD_SCHED_SCAN_RESULTS);
1108 		}
1109 	}
1110 	rtnl_unlock();
1111 }
1112 
1113 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1114 {
1115 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1116 	struct cfg80211_sched_scan_request *request;
1117 
1118 	trace_cfg80211_sched_scan_results(wiphy, reqid);
1119 	/* ignore if we're not scanning */
1120 
1121 	rcu_read_lock();
1122 	request = cfg80211_find_sched_scan_req(rdev, reqid);
1123 	if (request) {
1124 		request->report_results = true;
1125 		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1126 	}
1127 	rcu_read_unlock();
1128 }
1129 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1130 
1131 void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy, u64 reqid)
1132 {
1133 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1134 
1135 	ASSERT_RTNL();
1136 
1137 	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1138 
1139 	__cfg80211_stop_sched_scan(rdev, reqid, true);
1140 }
1141 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_rtnl);
1142 
1143 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1144 {
1145 	rtnl_lock();
1146 	cfg80211_sched_scan_stopped_rtnl(wiphy, reqid);
1147 	rtnl_unlock();
1148 }
1149 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1150 
1151 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1152 				 struct cfg80211_sched_scan_request *req,
1153 				 bool driver_initiated)
1154 {
1155 	ASSERT_RTNL();
1156 
1157 	if (!driver_initiated) {
1158 		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1159 		if (err)
1160 			return err;
1161 	}
1162 
1163 	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1164 
1165 	cfg80211_del_sched_scan_req(rdev, req);
1166 
1167 	return 0;
1168 }
1169 
1170 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1171 			       u64 reqid, bool driver_initiated)
1172 {
1173 	struct cfg80211_sched_scan_request *sched_scan_req;
1174 
1175 	ASSERT_RTNL();
1176 
1177 	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1178 	if (!sched_scan_req)
1179 		return -ENOENT;
1180 
1181 	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1182 					    driver_initiated);
1183 }
1184 
1185 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1186                       unsigned long age_secs)
1187 {
1188 	struct cfg80211_internal_bss *bss;
1189 	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1190 
1191 	spin_lock_bh(&rdev->bss_lock);
1192 	list_for_each_entry(bss, &rdev->bss_list, list)
1193 		bss->ts -= age_jiffies;
1194 	spin_unlock_bh(&rdev->bss_lock);
1195 }
1196 
1197 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1198 {
1199 	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1200 }
1201 
1202 void cfg80211_bss_flush(struct wiphy *wiphy)
1203 {
1204 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1205 
1206 	spin_lock_bh(&rdev->bss_lock);
1207 	__cfg80211_bss_expire(rdev, jiffies);
1208 	spin_unlock_bh(&rdev->bss_lock);
1209 }
1210 EXPORT_SYMBOL(cfg80211_bss_flush);
1211 
1212 const struct element *
1213 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1214 			 const u8 *match, unsigned int match_len,
1215 			 unsigned int match_offset)
1216 {
1217 	const struct element *elem;
1218 
1219 	for_each_element_id(elem, eid, ies, len) {
1220 		if (elem->datalen >= match_offset + match_len &&
1221 		    !memcmp(elem->data + match_offset, match, match_len))
1222 			return elem;
1223 	}
1224 
1225 	return NULL;
1226 }
1227 EXPORT_SYMBOL(cfg80211_find_elem_match);
1228 
1229 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1230 						const u8 *ies,
1231 						unsigned int len)
1232 {
1233 	const struct element *elem;
1234 	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1235 	int match_len = (oui_type < 0) ? 3 : sizeof(match);
1236 
1237 	if (WARN_ON(oui_type > 0xff))
1238 		return NULL;
1239 
1240 	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1241 					match, match_len, 0);
1242 
1243 	if (!elem || elem->datalen < 4)
1244 		return NULL;
1245 
1246 	return elem;
1247 }
1248 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1249 
1250 /**
1251  * enum bss_compare_mode - BSS compare mode
1252  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1253  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1254  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1255  */
1256 enum bss_compare_mode {
1257 	BSS_CMP_REGULAR,
1258 	BSS_CMP_HIDE_ZLEN,
1259 	BSS_CMP_HIDE_NUL,
1260 };
1261 
1262 static int cmp_bss(struct cfg80211_bss *a,
1263 		   struct cfg80211_bss *b,
1264 		   enum bss_compare_mode mode)
1265 {
1266 	const struct cfg80211_bss_ies *a_ies, *b_ies;
1267 	const u8 *ie1 = NULL;
1268 	const u8 *ie2 = NULL;
1269 	int i, r;
1270 
1271 	if (a->channel != b->channel)
1272 		return b->channel->center_freq - a->channel->center_freq;
1273 
1274 	a_ies = rcu_access_pointer(a->ies);
1275 	if (!a_ies)
1276 		return -1;
1277 	b_ies = rcu_access_pointer(b->ies);
1278 	if (!b_ies)
1279 		return 1;
1280 
1281 	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1282 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1283 				       a_ies->data, a_ies->len);
1284 	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1285 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1286 				       b_ies->data, b_ies->len);
1287 	if (ie1 && ie2) {
1288 		int mesh_id_cmp;
1289 
1290 		if (ie1[1] == ie2[1])
1291 			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1292 		else
1293 			mesh_id_cmp = ie2[1] - ie1[1];
1294 
1295 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1296 				       a_ies->data, a_ies->len);
1297 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1298 				       b_ies->data, b_ies->len);
1299 		if (ie1 && ie2) {
1300 			if (mesh_id_cmp)
1301 				return mesh_id_cmp;
1302 			if (ie1[1] != ie2[1])
1303 				return ie2[1] - ie1[1];
1304 			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1305 		}
1306 	}
1307 
1308 	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1309 	if (r)
1310 		return r;
1311 
1312 	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1313 	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1314 
1315 	if (!ie1 && !ie2)
1316 		return 0;
1317 
1318 	/*
1319 	 * Note that with "hide_ssid", the function returns a match if
1320 	 * the already-present BSS ("b") is a hidden SSID beacon for
1321 	 * the new BSS ("a").
1322 	 */
1323 
1324 	/* sort missing IE before (left of) present IE */
1325 	if (!ie1)
1326 		return -1;
1327 	if (!ie2)
1328 		return 1;
1329 
1330 	switch (mode) {
1331 	case BSS_CMP_HIDE_ZLEN:
1332 		/*
1333 		 * In ZLEN mode we assume the BSS entry we're
1334 		 * looking for has a zero-length SSID. So if
1335 		 * the one we're looking at right now has that,
1336 		 * return 0. Otherwise, return the difference
1337 		 * in length, but since we're looking for the
1338 		 * 0-length it's really equivalent to returning
1339 		 * the length of the one we're looking at.
1340 		 *
1341 		 * No content comparison is needed as we assume
1342 		 * the content length is zero.
1343 		 */
1344 		return ie2[1];
1345 	case BSS_CMP_REGULAR:
1346 	default:
1347 		/* sort by length first, then by contents */
1348 		if (ie1[1] != ie2[1])
1349 			return ie2[1] - ie1[1];
1350 		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1351 	case BSS_CMP_HIDE_NUL:
1352 		if (ie1[1] != ie2[1])
1353 			return ie2[1] - ie1[1];
1354 		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1355 		for (i = 0; i < ie2[1]; i++)
1356 			if (ie2[i + 2])
1357 				return -1;
1358 		return 0;
1359 	}
1360 }
1361 
1362 static bool cfg80211_bss_type_match(u16 capability,
1363 				    enum nl80211_band band,
1364 				    enum ieee80211_bss_type bss_type)
1365 {
1366 	bool ret = true;
1367 	u16 mask, val;
1368 
1369 	if (bss_type == IEEE80211_BSS_TYPE_ANY)
1370 		return ret;
1371 
1372 	if (band == NL80211_BAND_60GHZ) {
1373 		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1374 		switch (bss_type) {
1375 		case IEEE80211_BSS_TYPE_ESS:
1376 			val = WLAN_CAPABILITY_DMG_TYPE_AP;
1377 			break;
1378 		case IEEE80211_BSS_TYPE_PBSS:
1379 			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1380 			break;
1381 		case IEEE80211_BSS_TYPE_IBSS:
1382 			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1383 			break;
1384 		default:
1385 			return false;
1386 		}
1387 	} else {
1388 		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1389 		switch (bss_type) {
1390 		case IEEE80211_BSS_TYPE_ESS:
1391 			val = WLAN_CAPABILITY_ESS;
1392 			break;
1393 		case IEEE80211_BSS_TYPE_IBSS:
1394 			val = WLAN_CAPABILITY_IBSS;
1395 			break;
1396 		case IEEE80211_BSS_TYPE_MBSS:
1397 			val = 0;
1398 			break;
1399 		default:
1400 			return false;
1401 		}
1402 	}
1403 
1404 	ret = ((capability & mask) == val);
1405 	return ret;
1406 }
1407 
1408 /* Returned bss is reference counted and must be cleaned up appropriately. */
1409 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1410 				      struct ieee80211_channel *channel,
1411 				      const u8 *bssid,
1412 				      const u8 *ssid, size_t ssid_len,
1413 				      enum ieee80211_bss_type bss_type,
1414 				      enum ieee80211_privacy privacy)
1415 {
1416 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1417 	struct cfg80211_internal_bss *bss, *res = NULL;
1418 	unsigned long now = jiffies;
1419 	int bss_privacy;
1420 
1421 	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1422 			       privacy);
1423 
1424 	spin_lock_bh(&rdev->bss_lock);
1425 
1426 	list_for_each_entry(bss, &rdev->bss_list, list) {
1427 		if (!cfg80211_bss_type_match(bss->pub.capability,
1428 					     bss->pub.channel->band, bss_type))
1429 			continue;
1430 
1431 		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1432 		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1433 		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1434 			continue;
1435 		if (channel && bss->pub.channel != channel)
1436 			continue;
1437 		if (!is_valid_ether_addr(bss->pub.bssid))
1438 			continue;
1439 		/* Don't get expired BSS structs */
1440 		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1441 		    !atomic_read(&bss->hold))
1442 			continue;
1443 		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1444 			res = bss;
1445 			bss_ref_get(rdev, res);
1446 			break;
1447 		}
1448 	}
1449 
1450 	spin_unlock_bh(&rdev->bss_lock);
1451 	if (!res)
1452 		return NULL;
1453 	trace_cfg80211_return_bss(&res->pub);
1454 	return &res->pub;
1455 }
1456 EXPORT_SYMBOL(cfg80211_get_bss);
1457 
1458 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1459 			  struct cfg80211_internal_bss *bss)
1460 {
1461 	struct rb_node **p = &rdev->bss_tree.rb_node;
1462 	struct rb_node *parent = NULL;
1463 	struct cfg80211_internal_bss *tbss;
1464 	int cmp;
1465 
1466 	while (*p) {
1467 		parent = *p;
1468 		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1469 
1470 		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1471 
1472 		if (WARN_ON(!cmp)) {
1473 			/* will sort of leak this BSS */
1474 			return;
1475 		}
1476 
1477 		if (cmp < 0)
1478 			p = &(*p)->rb_left;
1479 		else
1480 			p = &(*p)->rb_right;
1481 	}
1482 
1483 	rb_link_node(&bss->rbn, parent, p);
1484 	rb_insert_color(&bss->rbn, &rdev->bss_tree);
1485 }
1486 
1487 static struct cfg80211_internal_bss *
1488 rb_find_bss(struct cfg80211_registered_device *rdev,
1489 	    struct cfg80211_internal_bss *res,
1490 	    enum bss_compare_mode mode)
1491 {
1492 	struct rb_node *n = rdev->bss_tree.rb_node;
1493 	struct cfg80211_internal_bss *bss;
1494 	int r;
1495 
1496 	while (n) {
1497 		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1498 		r = cmp_bss(&res->pub, &bss->pub, mode);
1499 
1500 		if (r == 0)
1501 			return bss;
1502 		else if (r < 0)
1503 			n = n->rb_left;
1504 		else
1505 			n = n->rb_right;
1506 	}
1507 
1508 	return NULL;
1509 }
1510 
1511 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1512 				   struct cfg80211_internal_bss *new)
1513 {
1514 	const struct cfg80211_bss_ies *ies;
1515 	struct cfg80211_internal_bss *bss;
1516 	const u8 *ie;
1517 	int i, ssidlen;
1518 	u8 fold = 0;
1519 	u32 n_entries = 0;
1520 
1521 	ies = rcu_access_pointer(new->pub.beacon_ies);
1522 	if (WARN_ON(!ies))
1523 		return false;
1524 
1525 	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1526 	if (!ie) {
1527 		/* nothing to do */
1528 		return true;
1529 	}
1530 
1531 	ssidlen = ie[1];
1532 	for (i = 0; i < ssidlen; i++)
1533 		fold |= ie[2 + i];
1534 
1535 	if (fold) {
1536 		/* not a hidden SSID */
1537 		return true;
1538 	}
1539 
1540 	/* This is the bad part ... */
1541 
1542 	list_for_each_entry(bss, &rdev->bss_list, list) {
1543 		/*
1544 		 * we're iterating all the entries anyway, so take the
1545 		 * opportunity to validate the list length accounting
1546 		 */
1547 		n_entries++;
1548 
1549 		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1550 			continue;
1551 		if (bss->pub.channel != new->pub.channel)
1552 			continue;
1553 		if (bss->pub.scan_width != new->pub.scan_width)
1554 			continue;
1555 		if (rcu_access_pointer(bss->pub.beacon_ies))
1556 			continue;
1557 		ies = rcu_access_pointer(bss->pub.ies);
1558 		if (!ies)
1559 			continue;
1560 		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1561 		if (!ie)
1562 			continue;
1563 		if (ssidlen && ie[1] != ssidlen)
1564 			continue;
1565 		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1566 			continue;
1567 		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1568 			list_del(&bss->hidden_list);
1569 		/* combine them */
1570 		list_add(&bss->hidden_list, &new->hidden_list);
1571 		bss->pub.hidden_beacon_bss = &new->pub;
1572 		new->refcount += bss->refcount;
1573 		rcu_assign_pointer(bss->pub.beacon_ies,
1574 				   new->pub.beacon_ies);
1575 	}
1576 
1577 	WARN_ONCE(n_entries != rdev->bss_entries,
1578 		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1579 		  rdev->bss_entries, n_entries);
1580 
1581 	return true;
1582 }
1583 
1584 struct cfg80211_non_tx_bss {
1585 	struct cfg80211_bss *tx_bss;
1586 	u8 max_bssid_indicator;
1587 	u8 bssid_index;
1588 };
1589 
1590 static bool
1591 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1592 			  struct cfg80211_internal_bss *known,
1593 			  struct cfg80211_internal_bss *new,
1594 			  bool signal_valid)
1595 {
1596 	lockdep_assert_held(&rdev->bss_lock);
1597 
1598 	/* Update IEs */
1599 	if (rcu_access_pointer(new->pub.proberesp_ies)) {
1600 		const struct cfg80211_bss_ies *old;
1601 
1602 		old = rcu_access_pointer(known->pub.proberesp_ies);
1603 
1604 		rcu_assign_pointer(known->pub.proberesp_ies,
1605 				   new->pub.proberesp_ies);
1606 		/* Override possible earlier Beacon frame IEs */
1607 		rcu_assign_pointer(known->pub.ies,
1608 				   new->pub.proberesp_ies);
1609 		if (old)
1610 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1611 	} else if (rcu_access_pointer(new->pub.beacon_ies)) {
1612 		const struct cfg80211_bss_ies *old;
1613 		struct cfg80211_internal_bss *bss;
1614 
1615 		if (known->pub.hidden_beacon_bss &&
1616 		    !list_empty(&known->hidden_list)) {
1617 			const struct cfg80211_bss_ies *f;
1618 
1619 			/* The known BSS struct is one of the probe
1620 			 * response members of a group, but we're
1621 			 * receiving a beacon (beacon_ies in the new
1622 			 * bss is used). This can only mean that the
1623 			 * AP changed its beacon from not having an
1624 			 * SSID to showing it, which is confusing so
1625 			 * drop this information.
1626 			 */
1627 
1628 			f = rcu_access_pointer(new->pub.beacon_ies);
1629 			kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1630 			return false;
1631 		}
1632 
1633 		old = rcu_access_pointer(known->pub.beacon_ies);
1634 
1635 		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1636 
1637 		/* Override IEs if they were from a beacon before */
1638 		if (old == rcu_access_pointer(known->pub.ies))
1639 			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1640 
1641 		/* Assign beacon IEs to all sub entries */
1642 		list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1643 			const struct cfg80211_bss_ies *ies;
1644 
1645 			ies = rcu_access_pointer(bss->pub.beacon_ies);
1646 			WARN_ON(ies != old);
1647 
1648 			rcu_assign_pointer(bss->pub.beacon_ies,
1649 					   new->pub.beacon_ies);
1650 		}
1651 
1652 		if (old)
1653 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1654 	}
1655 
1656 	known->pub.beacon_interval = new->pub.beacon_interval;
1657 
1658 	/* don't update the signal if beacon was heard on
1659 	 * adjacent channel.
1660 	 */
1661 	if (signal_valid)
1662 		known->pub.signal = new->pub.signal;
1663 	known->pub.capability = new->pub.capability;
1664 	known->ts = new->ts;
1665 	known->ts_boottime = new->ts_boottime;
1666 	known->parent_tsf = new->parent_tsf;
1667 	known->pub.chains = new->pub.chains;
1668 	memcpy(known->pub.chain_signal, new->pub.chain_signal,
1669 	       IEEE80211_MAX_CHAINS);
1670 	ether_addr_copy(known->parent_bssid, new->parent_bssid);
1671 	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1672 	known->pub.bssid_index = new->pub.bssid_index;
1673 
1674 	return true;
1675 }
1676 
1677 /* Returned bss is reference counted and must be cleaned up appropriately. */
1678 struct cfg80211_internal_bss *
1679 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1680 		    struct cfg80211_internal_bss *tmp,
1681 		    bool signal_valid, unsigned long ts)
1682 {
1683 	struct cfg80211_internal_bss *found = NULL;
1684 
1685 	if (WARN_ON(!tmp->pub.channel))
1686 		return NULL;
1687 
1688 	tmp->ts = ts;
1689 
1690 	spin_lock_bh(&rdev->bss_lock);
1691 
1692 	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1693 		spin_unlock_bh(&rdev->bss_lock);
1694 		return NULL;
1695 	}
1696 
1697 	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1698 
1699 	if (found) {
1700 		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1701 			goto drop;
1702 	} else {
1703 		struct cfg80211_internal_bss *new;
1704 		struct cfg80211_internal_bss *hidden;
1705 		struct cfg80211_bss_ies *ies;
1706 
1707 		/*
1708 		 * create a copy -- the "res" variable that is passed in
1709 		 * is allocated on the stack since it's not needed in the
1710 		 * more common case of an update
1711 		 */
1712 		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1713 			      GFP_ATOMIC);
1714 		if (!new) {
1715 			ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1716 			if (ies)
1717 				kfree_rcu(ies, rcu_head);
1718 			ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1719 			if (ies)
1720 				kfree_rcu(ies, rcu_head);
1721 			goto drop;
1722 		}
1723 		memcpy(new, tmp, sizeof(*new));
1724 		new->refcount = 1;
1725 		INIT_LIST_HEAD(&new->hidden_list);
1726 		INIT_LIST_HEAD(&new->pub.nontrans_list);
1727 
1728 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1729 			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1730 			if (!hidden)
1731 				hidden = rb_find_bss(rdev, tmp,
1732 						     BSS_CMP_HIDE_NUL);
1733 			if (hidden) {
1734 				new->pub.hidden_beacon_bss = &hidden->pub;
1735 				list_add(&new->hidden_list,
1736 					 &hidden->hidden_list);
1737 				hidden->refcount++;
1738 				rcu_assign_pointer(new->pub.beacon_ies,
1739 						   hidden->pub.beacon_ies);
1740 			}
1741 		} else {
1742 			/*
1743 			 * Ok so we found a beacon, and don't have an entry. If
1744 			 * it's a beacon with hidden SSID, we might be in for an
1745 			 * expensive search for any probe responses that should
1746 			 * be grouped with this beacon for updates ...
1747 			 */
1748 			if (!cfg80211_combine_bsses(rdev, new)) {
1749 				kfree(new);
1750 				goto drop;
1751 			}
1752 		}
1753 
1754 		if (rdev->bss_entries >= bss_entries_limit &&
1755 		    !cfg80211_bss_expire_oldest(rdev)) {
1756 			kfree(new);
1757 			goto drop;
1758 		}
1759 
1760 		/* This must be before the call to bss_ref_get */
1761 		if (tmp->pub.transmitted_bss) {
1762 			struct cfg80211_internal_bss *pbss =
1763 				container_of(tmp->pub.transmitted_bss,
1764 					     struct cfg80211_internal_bss,
1765 					     pub);
1766 
1767 			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1768 			bss_ref_get(rdev, pbss);
1769 		}
1770 
1771 		list_add_tail(&new->list, &rdev->bss_list);
1772 		rdev->bss_entries++;
1773 		rb_insert_bss(rdev, new);
1774 		found = new;
1775 	}
1776 
1777 	rdev->bss_generation++;
1778 	bss_ref_get(rdev, found);
1779 	spin_unlock_bh(&rdev->bss_lock);
1780 
1781 	return found;
1782  drop:
1783 	spin_unlock_bh(&rdev->bss_lock);
1784 	return NULL;
1785 }
1786 
1787 /*
1788  * Update RX channel information based on the available frame payload
1789  * information. This is mainly for the 2.4 GHz band where frames can be received
1790  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1791  * element to indicate the current (transmitting) channel, but this might also
1792  * be needed on other bands if RX frequency does not match with the actual
1793  * operating channel of a BSS.
1794  */
1795 static struct ieee80211_channel *
1796 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1797 			 struct ieee80211_channel *channel,
1798 			 enum nl80211_bss_scan_width scan_width)
1799 {
1800 	const u8 *tmp;
1801 	u32 freq;
1802 	int channel_number = -1;
1803 	struct ieee80211_channel *alt_channel;
1804 
1805 	if (channel->band == NL80211_BAND_S1GHZ) {
1806 		tmp = cfg80211_find_ie(WLAN_EID_S1G_OPERATION, ie, ielen);
1807 		if (tmp && tmp[1] >= sizeof(struct ieee80211_s1g_oper_ie)) {
1808 			struct ieee80211_s1g_oper_ie *s1gop = (void *)(tmp + 2);
1809 
1810 			channel_number = s1gop->primary_ch;
1811 		}
1812 	} else {
1813 		tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1814 		if (tmp && tmp[1] == 1) {
1815 			channel_number = tmp[2];
1816 		} else {
1817 			tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1818 			if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1819 				struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1820 
1821 				channel_number = htop->primary_chan;
1822 			}
1823 		}
1824 	}
1825 
1826 	if (channel_number < 0) {
1827 		/* No channel information in frame payload */
1828 		return channel;
1829 	}
1830 
1831 	freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1832 	alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1833 	if (!alt_channel) {
1834 		if (channel->band == NL80211_BAND_2GHZ) {
1835 			/*
1836 			 * Better not allow unexpected channels when that could
1837 			 * be going beyond the 1-11 range (e.g., discovering
1838 			 * BSS on channel 12 when radio is configured for
1839 			 * channel 11.
1840 			 */
1841 			return NULL;
1842 		}
1843 
1844 		/* No match for the payload channel number - ignore it */
1845 		return channel;
1846 	}
1847 
1848 	if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1849 	    scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1850 		/*
1851 		 * Ignore channel number in 5 and 10 MHz channels where there
1852 		 * may not be an n:1 or 1:n mapping between frequencies and
1853 		 * channel numbers.
1854 		 */
1855 		return channel;
1856 	}
1857 
1858 	/*
1859 	 * Use the channel determined through the payload channel number
1860 	 * instead of the RX channel reported by the driver.
1861 	 */
1862 	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1863 		return NULL;
1864 	return alt_channel;
1865 }
1866 
1867 /* Returned bss is reference counted and must be cleaned up appropriately. */
1868 static struct cfg80211_bss *
1869 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1870 				struct cfg80211_inform_bss *data,
1871 				enum cfg80211_bss_frame_type ftype,
1872 				const u8 *bssid, u64 tsf, u16 capability,
1873 				u16 beacon_interval, const u8 *ie, size_t ielen,
1874 				struct cfg80211_non_tx_bss *non_tx_data,
1875 				gfp_t gfp)
1876 {
1877 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1878 	struct cfg80211_bss_ies *ies;
1879 	struct ieee80211_channel *channel;
1880 	struct cfg80211_internal_bss tmp = {}, *res;
1881 	int bss_type;
1882 	bool signal_valid;
1883 	unsigned long ts;
1884 
1885 	if (WARN_ON(!wiphy))
1886 		return NULL;
1887 
1888 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1889 		    (data->signal < 0 || data->signal > 100)))
1890 		return NULL;
1891 
1892 	channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1893 					   data->scan_width);
1894 	if (!channel)
1895 		return NULL;
1896 
1897 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1898 	tmp.pub.channel = channel;
1899 	tmp.pub.scan_width = data->scan_width;
1900 	tmp.pub.signal = data->signal;
1901 	tmp.pub.beacon_interval = beacon_interval;
1902 	tmp.pub.capability = capability;
1903 	tmp.ts_boottime = data->boottime_ns;
1904 	if (non_tx_data) {
1905 		tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1906 		ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1907 		tmp.pub.bssid_index = non_tx_data->bssid_index;
1908 		tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1909 	} else {
1910 		ts = jiffies;
1911 	}
1912 
1913 	/*
1914 	 * If we do not know here whether the IEs are from a Beacon or Probe
1915 	 * Response frame, we need to pick one of the options and only use it
1916 	 * with the driver that does not provide the full Beacon/Probe Response
1917 	 * frame. Use Beacon frame pointer to avoid indicating that this should
1918 	 * override the IEs pointer should we have received an earlier
1919 	 * indication of Probe Response data.
1920 	 */
1921 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
1922 	if (!ies)
1923 		return NULL;
1924 	ies->len = ielen;
1925 	ies->tsf = tsf;
1926 	ies->from_beacon = false;
1927 	memcpy(ies->data, ie, ielen);
1928 
1929 	switch (ftype) {
1930 	case CFG80211_BSS_FTYPE_BEACON:
1931 		ies->from_beacon = true;
1932 		fallthrough;
1933 	case CFG80211_BSS_FTYPE_UNKNOWN:
1934 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1935 		break;
1936 	case CFG80211_BSS_FTYPE_PRESP:
1937 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1938 		break;
1939 	}
1940 	rcu_assign_pointer(tmp.pub.ies, ies);
1941 
1942 	signal_valid = data->chan == channel;
1943 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
1944 	if (!res)
1945 		return NULL;
1946 
1947 	if (channel->band == NL80211_BAND_60GHZ) {
1948 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1949 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1950 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1951 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1952 	} else {
1953 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
1954 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1955 	}
1956 
1957 	if (non_tx_data) {
1958 		/* this is a nontransmitting bss, we need to add it to
1959 		 * transmitting bss' list if it is not there
1960 		 */
1961 		if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
1962 					       &res->pub)) {
1963 			if (__cfg80211_unlink_bss(rdev, res))
1964 				rdev->bss_generation++;
1965 		}
1966 	}
1967 
1968 	trace_cfg80211_return_bss(&res->pub);
1969 	/* cfg80211_bss_update gives us a referenced result */
1970 	return &res->pub;
1971 }
1972 
1973 static const struct element
1974 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
1975 				   const struct element *mbssid_elem,
1976 				   const struct element *sub_elem)
1977 {
1978 	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
1979 	const struct element *next_mbssid;
1980 	const struct element *next_sub;
1981 
1982 	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
1983 					 mbssid_end,
1984 					 ielen - (mbssid_end - ie));
1985 
1986 	/*
1987 	 * If it is not the last subelement in current MBSSID IE or there isn't
1988 	 * a next MBSSID IE - profile is complete.
1989 	*/
1990 	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
1991 	    !next_mbssid)
1992 		return NULL;
1993 
1994 	/* For any length error, just return NULL */
1995 
1996 	if (next_mbssid->datalen < 4)
1997 		return NULL;
1998 
1999 	next_sub = (void *)&next_mbssid->data[1];
2000 
2001 	if (next_mbssid->data + next_mbssid->datalen <
2002 	    next_sub->data + next_sub->datalen)
2003 		return NULL;
2004 
2005 	if (next_sub->id != 0 || next_sub->datalen < 2)
2006 		return NULL;
2007 
2008 	/*
2009 	 * Check if the first element in the next sub element is a start
2010 	 * of a new profile
2011 	 */
2012 	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2013 	       NULL : next_mbssid;
2014 }
2015 
2016 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2017 			      const struct element *mbssid_elem,
2018 			      const struct element *sub_elem,
2019 			      u8 *merged_ie, size_t max_copy_len)
2020 {
2021 	size_t copied_len = sub_elem->datalen;
2022 	const struct element *next_mbssid;
2023 
2024 	if (sub_elem->datalen > max_copy_len)
2025 		return 0;
2026 
2027 	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2028 
2029 	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2030 								mbssid_elem,
2031 								sub_elem))) {
2032 		const struct element *next_sub = (void *)&next_mbssid->data[1];
2033 
2034 		if (copied_len + next_sub->datalen > max_copy_len)
2035 			break;
2036 		memcpy(merged_ie + copied_len, next_sub->data,
2037 		       next_sub->datalen);
2038 		copied_len += next_sub->datalen;
2039 	}
2040 
2041 	return copied_len;
2042 }
2043 EXPORT_SYMBOL(cfg80211_merge_profile);
2044 
2045 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2046 				       struct cfg80211_inform_bss *data,
2047 				       enum cfg80211_bss_frame_type ftype,
2048 				       const u8 *bssid, u64 tsf,
2049 				       u16 beacon_interval, const u8 *ie,
2050 				       size_t ielen,
2051 				       struct cfg80211_non_tx_bss *non_tx_data,
2052 				       gfp_t gfp)
2053 {
2054 	const u8 *mbssid_index_ie;
2055 	const struct element *elem, *sub;
2056 	size_t new_ie_len;
2057 	u8 new_bssid[ETH_ALEN];
2058 	u8 *new_ie, *profile;
2059 	u64 seen_indices = 0;
2060 	u16 capability;
2061 	struct cfg80211_bss *bss;
2062 
2063 	if (!non_tx_data)
2064 		return;
2065 	if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2066 		return;
2067 	if (!wiphy->support_mbssid)
2068 		return;
2069 	if (wiphy->support_only_he_mbssid &&
2070 	    !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2071 		return;
2072 
2073 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2074 	if (!new_ie)
2075 		return;
2076 
2077 	profile = kmalloc(ielen, gfp);
2078 	if (!profile)
2079 		goto out;
2080 
2081 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2082 		if (elem->datalen < 4)
2083 			continue;
2084 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2085 			u8 profile_len;
2086 
2087 			if (sub->id != 0 || sub->datalen < 4) {
2088 				/* not a valid BSS profile */
2089 				continue;
2090 			}
2091 
2092 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2093 			    sub->data[1] != 2) {
2094 				/* The first element within the Nontransmitted
2095 				 * BSSID Profile is not the Nontransmitted
2096 				 * BSSID Capability element.
2097 				 */
2098 				continue;
2099 			}
2100 
2101 			memset(profile, 0, ielen);
2102 			profile_len = cfg80211_merge_profile(ie, ielen,
2103 							     elem,
2104 							     sub,
2105 							     profile,
2106 							     ielen);
2107 
2108 			/* found a Nontransmitted BSSID Profile */
2109 			mbssid_index_ie = cfg80211_find_ie
2110 				(WLAN_EID_MULTI_BSSID_IDX,
2111 				 profile, profile_len);
2112 			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2113 			    mbssid_index_ie[2] == 0 ||
2114 			    mbssid_index_ie[2] > 46) {
2115 				/* No valid Multiple BSSID-Index element */
2116 				continue;
2117 			}
2118 
2119 			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2120 				/* We don't support legacy split of a profile */
2121 				net_dbg_ratelimited("Partial info for BSSID index %d\n",
2122 						    mbssid_index_ie[2]);
2123 
2124 			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2125 
2126 			non_tx_data->bssid_index = mbssid_index_ie[2];
2127 			non_tx_data->max_bssid_indicator = elem->data[0];
2128 
2129 			cfg80211_gen_new_bssid(bssid,
2130 					       non_tx_data->max_bssid_indicator,
2131 					       non_tx_data->bssid_index,
2132 					       new_bssid);
2133 			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2134 			new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2135 							 profile,
2136 							 profile_len, new_ie,
2137 							 gfp);
2138 			if (!new_ie_len)
2139 				continue;
2140 
2141 			capability = get_unaligned_le16(profile + 2);
2142 			bss = cfg80211_inform_single_bss_data(wiphy, data,
2143 							      ftype,
2144 							      new_bssid, tsf,
2145 							      capability,
2146 							      beacon_interval,
2147 							      new_ie,
2148 							      new_ie_len,
2149 							      non_tx_data,
2150 							      gfp);
2151 			if (!bss)
2152 				break;
2153 			cfg80211_put_bss(wiphy, bss);
2154 		}
2155 	}
2156 
2157 out:
2158 	kfree(new_ie);
2159 	kfree(profile);
2160 }
2161 
2162 struct cfg80211_bss *
2163 cfg80211_inform_bss_data(struct wiphy *wiphy,
2164 			 struct cfg80211_inform_bss *data,
2165 			 enum cfg80211_bss_frame_type ftype,
2166 			 const u8 *bssid, u64 tsf, u16 capability,
2167 			 u16 beacon_interval, const u8 *ie, size_t ielen,
2168 			 gfp_t gfp)
2169 {
2170 	struct cfg80211_bss *res;
2171 	struct cfg80211_non_tx_bss non_tx_data;
2172 
2173 	res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2174 					      capability, beacon_interval, ie,
2175 					      ielen, NULL, gfp);
2176 	if (!res)
2177 		return NULL;
2178 	non_tx_data.tx_bss = res;
2179 	cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2180 				   beacon_interval, ie, ielen, &non_tx_data,
2181 				   gfp);
2182 	return res;
2183 }
2184 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2185 
2186 static void
2187 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2188 				 struct cfg80211_inform_bss *data,
2189 				 struct ieee80211_mgmt *mgmt, size_t len,
2190 				 struct cfg80211_non_tx_bss *non_tx_data,
2191 				 gfp_t gfp)
2192 {
2193 	enum cfg80211_bss_frame_type ftype;
2194 	const u8 *ie = mgmt->u.probe_resp.variable;
2195 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2196 				      u.probe_resp.variable);
2197 
2198 	ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2199 		CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2200 
2201 	cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2202 				   le64_to_cpu(mgmt->u.probe_resp.timestamp),
2203 				   le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2204 				   ie, ielen, non_tx_data, gfp);
2205 }
2206 
2207 static void
2208 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2209 				   struct cfg80211_bss *nontrans_bss,
2210 				   struct ieee80211_mgmt *mgmt, size_t len)
2211 {
2212 	u8 *ie, *new_ie, *pos;
2213 	const u8 *nontrans_ssid, *trans_ssid, *mbssid;
2214 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2215 				      u.probe_resp.variable);
2216 	size_t new_ie_len;
2217 	struct cfg80211_bss_ies *new_ies;
2218 	const struct cfg80211_bss_ies *old;
2219 	u8 cpy_len;
2220 
2221 	lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2222 
2223 	ie = mgmt->u.probe_resp.variable;
2224 
2225 	new_ie_len = ielen;
2226 	trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2227 	if (!trans_ssid)
2228 		return;
2229 	new_ie_len -= trans_ssid[1];
2230 	mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2231 	/*
2232 	 * It's not valid to have the MBSSID element before SSID
2233 	 * ignore if that happens - the code below assumes it is
2234 	 * after (while copying things inbetween).
2235 	 */
2236 	if (!mbssid || mbssid < trans_ssid)
2237 		return;
2238 	new_ie_len -= mbssid[1];
2239 
2240 	nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
2241 	if (!nontrans_ssid)
2242 		return;
2243 
2244 	new_ie_len += nontrans_ssid[1];
2245 
2246 	/* generate new ie for nontrans BSS
2247 	 * 1. replace SSID with nontrans BSS' SSID
2248 	 * 2. skip MBSSID IE
2249 	 */
2250 	new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2251 	if (!new_ie)
2252 		return;
2253 
2254 	new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2255 	if (!new_ies)
2256 		goto out_free;
2257 
2258 	pos = new_ie;
2259 
2260 	/* copy the nontransmitted SSID */
2261 	cpy_len = nontrans_ssid[1] + 2;
2262 	memcpy(pos, nontrans_ssid, cpy_len);
2263 	pos += cpy_len;
2264 	/* copy the IEs between SSID and MBSSID */
2265 	cpy_len = trans_ssid[1] + 2;
2266 	memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2267 	pos += (mbssid - (trans_ssid + cpy_len));
2268 	/* copy the IEs after MBSSID */
2269 	cpy_len = mbssid[1] + 2;
2270 	memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2271 
2272 	/* update ie */
2273 	new_ies->len = new_ie_len;
2274 	new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2275 	new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2276 	memcpy(new_ies->data, new_ie, new_ie_len);
2277 	if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2278 		old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2279 		rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2280 		rcu_assign_pointer(nontrans_bss->ies, new_ies);
2281 		if (old)
2282 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2283 	} else {
2284 		old = rcu_access_pointer(nontrans_bss->beacon_ies);
2285 		rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2286 		rcu_assign_pointer(nontrans_bss->ies, new_ies);
2287 		if (old)
2288 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2289 	}
2290 
2291 out_free:
2292 	kfree(new_ie);
2293 }
2294 
2295 /* cfg80211_inform_bss_width_frame helper */
2296 static struct cfg80211_bss *
2297 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2298 				      struct cfg80211_inform_bss *data,
2299 				      struct ieee80211_mgmt *mgmt, size_t len,
2300 				      gfp_t gfp)
2301 {
2302 	struct cfg80211_internal_bss tmp = {}, *res;
2303 	struct cfg80211_bss_ies *ies;
2304 	struct ieee80211_channel *channel;
2305 	bool signal_valid;
2306 	struct ieee80211_ext *ext = NULL;
2307 	u8 *bssid, *variable;
2308 	u16 capability, beacon_int;
2309 	size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2310 					     u.probe_resp.variable);
2311 	int bss_type;
2312 
2313 	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2314 			offsetof(struct ieee80211_mgmt, u.beacon.variable));
2315 
2316 	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2317 
2318 	if (WARN_ON(!mgmt))
2319 		return NULL;
2320 
2321 	if (WARN_ON(!wiphy))
2322 		return NULL;
2323 
2324 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2325 		    (data->signal < 0 || data->signal > 100)))
2326 		return NULL;
2327 
2328 	if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2329 		ext = (void *) mgmt;
2330 		min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2331 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2332 			min_hdr_len = offsetof(struct ieee80211_ext,
2333 					       u.s1g_short_beacon.variable);
2334 	}
2335 
2336 	if (WARN_ON(len < min_hdr_len))
2337 		return NULL;
2338 
2339 	ielen = len - min_hdr_len;
2340 	variable = mgmt->u.probe_resp.variable;
2341 	if (ext) {
2342 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2343 			variable = ext->u.s1g_short_beacon.variable;
2344 		else
2345 			variable = ext->u.s1g_beacon.variable;
2346 	}
2347 
2348 	channel = cfg80211_get_bss_channel(wiphy, variable,
2349 					   ielen, data->chan, data->scan_width);
2350 	if (!channel)
2351 		return NULL;
2352 
2353 	if (ext) {
2354 		struct ieee80211_s1g_bcn_compat_ie *compat;
2355 		u8 *ie;
2356 
2357 		ie = (void *)cfg80211_find_ie(WLAN_EID_S1G_BCN_COMPAT,
2358 					      variable, ielen);
2359 		if (!ie)
2360 			return NULL;
2361 		compat = (void *)(ie + 2);
2362 		bssid = ext->u.s1g_beacon.sa;
2363 		capability = le16_to_cpu(compat->compat_info);
2364 		beacon_int = le16_to_cpu(compat->beacon_int);
2365 	} else {
2366 		bssid = mgmt->bssid;
2367 		beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2368 		capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2369 	}
2370 
2371 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
2372 	if (!ies)
2373 		return NULL;
2374 	ies->len = ielen;
2375 	ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2376 	ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2377 			   ieee80211_is_s1g_beacon(mgmt->frame_control);
2378 	memcpy(ies->data, variable, ielen);
2379 
2380 	if (ieee80211_is_probe_resp(mgmt->frame_control))
2381 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2382 	else
2383 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2384 	rcu_assign_pointer(tmp.pub.ies, ies);
2385 
2386 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2387 	tmp.pub.beacon_interval = beacon_int;
2388 	tmp.pub.capability = capability;
2389 	tmp.pub.channel = channel;
2390 	tmp.pub.scan_width = data->scan_width;
2391 	tmp.pub.signal = data->signal;
2392 	tmp.ts_boottime = data->boottime_ns;
2393 	tmp.parent_tsf = data->parent_tsf;
2394 	tmp.pub.chains = data->chains;
2395 	memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2396 	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2397 
2398 	signal_valid = data->chan == channel;
2399 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2400 				  jiffies);
2401 	if (!res)
2402 		return NULL;
2403 
2404 	if (channel->band == NL80211_BAND_60GHZ) {
2405 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2406 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2407 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2408 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2409 	} else {
2410 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
2411 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2412 	}
2413 
2414 	trace_cfg80211_return_bss(&res->pub);
2415 	/* cfg80211_bss_update gives us a referenced result */
2416 	return &res->pub;
2417 }
2418 
2419 struct cfg80211_bss *
2420 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2421 			       struct cfg80211_inform_bss *data,
2422 			       struct ieee80211_mgmt *mgmt, size_t len,
2423 			       gfp_t gfp)
2424 {
2425 	struct cfg80211_bss *res, *tmp_bss;
2426 	const u8 *ie = mgmt->u.probe_resp.variable;
2427 	const struct cfg80211_bss_ies *ies1, *ies2;
2428 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2429 				      u.probe_resp.variable);
2430 	struct cfg80211_non_tx_bss non_tx_data;
2431 
2432 	res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2433 						    len, gfp);
2434 	if (!res || !wiphy->support_mbssid ||
2435 	    !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2436 		return res;
2437 	if (wiphy->support_only_he_mbssid &&
2438 	    !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2439 		return res;
2440 
2441 	non_tx_data.tx_bss = res;
2442 	/* process each non-transmitting bss */
2443 	cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2444 					 &non_tx_data, gfp);
2445 
2446 	spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2447 
2448 	/* check if the res has other nontransmitting bss which is not
2449 	 * in MBSSID IE
2450 	 */
2451 	ies1 = rcu_access_pointer(res->ies);
2452 
2453 	/* go through nontrans_list, if the timestamp of the BSS is
2454 	 * earlier than the timestamp of the transmitting BSS then
2455 	 * update it
2456 	 */
2457 	list_for_each_entry(tmp_bss, &res->nontrans_list,
2458 			    nontrans_list) {
2459 		ies2 = rcu_access_pointer(tmp_bss->ies);
2460 		if (ies2->tsf < ies1->tsf)
2461 			cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2462 							   mgmt, len);
2463 	}
2464 	spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2465 
2466 	return res;
2467 }
2468 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2469 
2470 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2471 {
2472 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2473 	struct cfg80211_internal_bss *bss;
2474 
2475 	if (!pub)
2476 		return;
2477 
2478 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2479 
2480 	spin_lock_bh(&rdev->bss_lock);
2481 	bss_ref_get(rdev, bss);
2482 	spin_unlock_bh(&rdev->bss_lock);
2483 }
2484 EXPORT_SYMBOL(cfg80211_ref_bss);
2485 
2486 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2487 {
2488 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2489 	struct cfg80211_internal_bss *bss;
2490 
2491 	if (!pub)
2492 		return;
2493 
2494 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2495 
2496 	spin_lock_bh(&rdev->bss_lock);
2497 	bss_ref_put(rdev, bss);
2498 	spin_unlock_bh(&rdev->bss_lock);
2499 }
2500 EXPORT_SYMBOL(cfg80211_put_bss);
2501 
2502 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2503 {
2504 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2505 	struct cfg80211_internal_bss *bss, *tmp1;
2506 	struct cfg80211_bss *nontrans_bss, *tmp;
2507 
2508 	if (WARN_ON(!pub))
2509 		return;
2510 
2511 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2512 
2513 	spin_lock_bh(&rdev->bss_lock);
2514 	if (list_empty(&bss->list))
2515 		goto out;
2516 
2517 	list_for_each_entry_safe(nontrans_bss, tmp,
2518 				 &pub->nontrans_list,
2519 				 nontrans_list) {
2520 		tmp1 = container_of(nontrans_bss,
2521 				    struct cfg80211_internal_bss, pub);
2522 		if (__cfg80211_unlink_bss(rdev, tmp1))
2523 			rdev->bss_generation++;
2524 	}
2525 
2526 	if (__cfg80211_unlink_bss(rdev, bss))
2527 		rdev->bss_generation++;
2528 out:
2529 	spin_unlock_bh(&rdev->bss_lock);
2530 }
2531 EXPORT_SYMBOL(cfg80211_unlink_bss);
2532 
2533 void cfg80211_bss_iter(struct wiphy *wiphy,
2534 		       struct cfg80211_chan_def *chandef,
2535 		       void (*iter)(struct wiphy *wiphy,
2536 				    struct cfg80211_bss *bss,
2537 				    void *data),
2538 		       void *iter_data)
2539 {
2540 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2541 	struct cfg80211_internal_bss *bss;
2542 
2543 	spin_lock_bh(&rdev->bss_lock);
2544 
2545 	list_for_each_entry(bss, &rdev->bss_list, list) {
2546 		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel))
2547 			iter(wiphy, &bss->pub, iter_data);
2548 	}
2549 
2550 	spin_unlock_bh(&rdev->bss_lock);
2551 }
2552 EXPORT_SYMBOL(cfg80211_bss_iter);
2553 
2554 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2555 				     struct ieee80211_channel *chan)
2556 {
2557 	struct wiphy *wiphy = wdev->wiphy;
2558 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2559 	struct cfg80211_internal_bss *cbss = wdev->current_bss;
2560 	struct cfg80211_internal_bss *new = NULL;
2561 	struct cfg80211_internal_bss *bss;
2562 	struct cfg80211_bss *nontrans_bss;
2563 	struct cfg80211_bss *tmp;
2564 
2565 	spin_lock_bh(&rdev->bss_lock);
2566 
2567 	/*
2568 	 * Some APs use CSA also for bandwidth changes, i.e., without actually
2569 	 * changing the control channel, so no need to update in such a case.
2570 	 */
2571 	if (cbss->pub.channel == chan)
2572 		goto done;
2573 
2574 	/* use transmitting bss */
2575 	if (cbss->pub.transmitted_bss)
2576 		cbss = container_of(cbss->pub.transmitted_bss,
2577 				    struct cfg80211_internal_bss,
2578 				    pub);
2579 
2580 	cbss->pub.channel = chan;
2581 
2582 	list_for_each_entry(bss, &rdev->bss_list, list) {
2583 		if (!cfg80211_bss_type_match(bss->pub.capability,
2584 					     bss->pub.channel->band,
2585 					     wdev->conn_bss_type))
2586 			continue;
2587 
2588 		if (bss == cbss)
2589 			continue;
2590 
2591 		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2592 			new = bss;
2593 			break;
2594 		}
2595 	}
2596 
2597 	if (new) {
2598 		/* to save time, update IEs for transmitting bss only */
2599 		if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2600 			new->pub.proberesp_ies = NULL;
2601 			new->pub.beacon_ies = NULL;
2602 		}
2603 
2604 		list_for_each_entry_safe(nontrans_bss, tmp,
2605 					 &new->pub.nontrans_list,
2606 					 nontrans_list) {
2607 			bss = container_of(nontrans_bss,
2608 					   struct cfg80211_internal_bss, pub);
2609 			if (__cfg80211_unlink_bss(rdev, bss))
2610 				rdev->bss_generation++;
2611 		}
2612 
2613 		WARN_ON(atomic_read(&new->hold));
2614 		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2615 			rdev->bss_generation++;
2616 	}
2617 
2618 	rb_erase(&cbss->rbn, &rdev->bss_tree);
2619 	rb_insert_bss(rdev, cbss);
2620 	rdev->bss_generation++;
2621 
2622 	list_for_each_entry_safe(nontrans_bss, tmp,
2623 				 &cbss->pub.nontrans_list,
2624 				 nontrans_list) {
2625 		bss = container_of(nontrans_bss,
2626 				   struct cfg80211_internal_bss, pub);
2627 		bss->pub.channel = chan;
2628 		rb_erase(&bss->rbn, &rdev->bss_tree);
2629 		rb_insert_bss(rdev, bss);
2630 		rdev->bss_generation++;
2631 	}
2632 
2633 done:
2634 	spin_unlock_bh(&rdev->bss_lock);
2635 }
2636 
2637 #ifdef CONFIG_CFG80211_WEXT
2638 static struct cfg80211_registered_device *
2639 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2640 {
2641 	struct cfg80211_registered_device *rdev;
2642 	struct net_device *dev;
2643 
2644 	ASSERT_RTNL();
2645 
2646 	dev = dev_get_by_index(net, ifindex);
2647 	if (!dev)
2648 		return ERR_PTR(-ENODEV);
2649 	if (dev->ieee80211_ptr)
2650 		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2651 	else
2652 		rdev = ERR_PTR(-ENODEV);
2653 	dev_put(dev);
2654 	return rdev;
2655 }
2656 
2657 int cfg80211_wext_siwscan(struct net_device *dev,
2658 			  struct iw_request_info *info,
2659 			  union iwreq_data *wrqu, char *extra)
2660 {
2661 	struct cfg80211_registered_device *rdev;
2662 	struct wiphy *wiphy;
2663 	struct iw_scan_req *wreq = NULL;
2664 	struct cfg80211_scan_request *creq = NULL;
2665 	int i, err, n_channels = 0;
2666 	enum nl80211_band band;
2667 
2668 	if (!netif_running(dev))
2669 		return -ENETDOWN;
2670 
2671 	if (wrqu->data.length == sizeof(struct iw_scan_req))
2672 		wreq = (struct iw_scan_req *)extra;
2673 
2674 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2675 
2676 	if (IS_ERR(rdev))
2677 		return PTR_ERR(rdev);
2678 
2679 	if (rdev->scan_req || rdev->scan_msg) {
2680 		err = -EBUSY;
2681 		goto out;
2682 	}
2683 
2684 	wiphy = &rdev->wiphy;
2685 
2686 	/* Determine number of channels, needed to allocate creq */
2687 	if (wreq && wreq->num_channels)
2688 		n_channels = wreq->num_channels;
2689 	else
2690 		n_channels = ieee80211_get_num_supported_channels(wiphy);
2691 
2692 	creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2693 		       n_channels * sizeof(void *),
2694 		       GFP_ATOMIC);
2695 	if (!creq) {
2696 		err = -ENOMEM;
2697 		goto out;
2698 	}
2699 
2700 	creq->wiphy = wiphy;
2701 	creq->wdev = dev->ieee80211_ptr;
2702 	/* SSIDs come after channels */
2703 	creq->ssids = (void *)&creq->channels[n_channels];
2704 	creq->n_channels = n_channels;
2705 	creq->n_ssids = 1;
2706 	creq->scan_start = jiffies;
2707 
2708 	/* translate "Scan on frequencies" request */
2709 	i = 0;
2710 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2711 		int j;
2712 
2713 		if (!wiphy->bands[band])
2714 			continue;
2715 
2716 		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2717 			/* ignore disabled channels */
2718 			if (wiphy->bands[band]->channels[j].flags &
2719 						IEEE80211_CHAN_DISABLED)
2720 				continue;
2721 
2722 			/* If we have a wireless request structure and the
2723 			 * wireless request specifies frequencies, then search
2724 			 * for the matching hardware channel.
2725 			 */
2726 			if (wreq && wreq->num_channels) {
2727 				int k;
2728 				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2729 				for (k = 0; k < wreq->num_channels; k++) {
2730 					struct iw_freq *freq =
2731 						&wreq->channel_list[k];
2732 					int wext_freq =
2733 						cfg80211_wext_freq(freq);
2734 
2735 					if (wext_freq == wiphy_freq)
2736 						goto wext_freq_found;
2737 				}
2738 				goto wext_freq_not_found;
2739 			}
2740 
2741 		wext_freq_found:
2742 			creq->channels[i] = &wiphy->bands[band]->channels[j];
2743 			i++;
2744 		wext_freq_not_found: ;
2745 		}
2746 	}
2747 	/* No channels found? */
2748 	if (!i) {
2749 		err = -EINVAL;
2750 		goto out;
2751 	}
2752 
2753 	/* Set real number of channels specified in creq->channels[] */
2754 	creq->n_channels = i;
2755 
2756 	/* translate "Scan for SSID" request */
2757 	if (wreq) {
2758 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2759 			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2760 				err = -EINVAL;
2761 				goto out;
2762 			}
2763 			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2764 			creq->ssids[0].ssid_len = wreq->essid_len;
2765 		}
2766 		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2767 			creq->n_ssids = 0;
2768 	}
2769 
2770 	for (i = 0; i < NUM_NL80211_BANDS; i++)
2771 		if (wiphy->bands[i])
2772 			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2773 
2774 	eth_broadcast_addr(creq->bssid);
2775 
2776 	rdev->scan_req = creq;
2777 	err = rdev_scan(rdev, creq);
2778 	if (err) {
2779 		rdev->scan_req = NULL;
2780 		/* creq will be freed below */
2781 	} else {
2782 		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2783 		/* creq now owned by driver */
2784 		creq = NULL;
2785 		dev_hold(dev);
2786 	}
2787  out:
2788 	kfree(creq);
2789 	return err;
2790 }
2791 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2792 
2793 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2794 				    const struct cfg80211_bss_ies *ies,
2795 				    char *current_ev, char *end_buf)
2796 {
2797 	const u8 *pos, *end, *next;
2798 	struct iw_event iwe;
2799 
2800 	if (!ies)
2801 		return current_ev;
2802 
2803 	/*
2804 	 * If needed, fragment the IEs buffer (at IE boundaries) into short
2805 	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2806 	 */
2807 	pos = ies->data;
2808 	end = pos + ies->len;
2809 
2810 	while (end - pos > IW_GENERIC_IE_MAX) {
2811 		next = pos + 2 + pos[1];
2812 		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2813 			next = next + 2 + next[1];
2814 
2815 		memset(&iwe, 0, sizeof(iwe));
2816 		iwe.cmd = IWEVGENIE;
2817 		iwe.u.data.length = next - pos;
2818 		current_ev = iwe_stream_add_point_check(info, current_ev,
2819 							end_buf, &iwe,
2820 							(void *)pos);
2821 		if (IS_ERR(current_ev))
2822 			return current_ev;
2823 		pos = next;
2824 	}
2825 
2826 	if (end > pos) {
2827 		memset(&iwe, 0, sizeof(iwe));
2828 		iwe.cmd = IWEVGENIE;
2829 		iwe.u.data.length = end - pos;
2830 		current_ev = iwe_stream_add_point_check(info, current_ev,
2831 							end_buf, &iwe,
2832 							(void *)pos);
2833 		if (IS_ERR(current_ev))
2834 			return current_ev;
2835 	}
2836 
2837 	return current_ev;
2838 }
2839 
2840 static char *
2841 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2842 	      struct cfg80211_internal_bss *bss, char *current_ev,
2843 	      char *end_buf)
2844 {
2845 	const struct cfg80211_bss_ies *ies;
2846 	struct iw_event iwe;
2847 	const u8 *ie;
2848 	u8 buf[50];
2849 	u8 *cfg, *p, *tmp;
2850 	int rem, i, sig;
2851 	bool ismesh = false;
2852 
2853 	memset(&iwe, 0, sizeof(iwe));
2854 	iwe.cmd = SIOCGIWAP;
2855 	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2856 	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2857 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2858 						IW_EV_ADDR_LEN);
2859 	if (IS_ERR(current_ev))
2860 		return current_ev;
2861 
2862 	memset(&iwe, 0, sizeof(iwe));
2863 	iwe.cmd = SIOCGIWFREQ;
2864 	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2865 	iwe.u.freq.e = 0;
2866 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2867 						IW_EV_FREQ_LEN);
2868 	if (IS_ERR(current_ev))
2869 		return current_ev;
2870 
2871 	memset(&iwe, 0, sizeof(iwe));
2872 	iwe.cmd = SIOCGIWFREQ;
2873 	iwe.u.freq.m = bss->pub.channel->center_freq;
2874 	iwe.u.freq.e = 6;
2875 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2876 						IW_EV_FREQ_LEN);
2877 	if (IS_ERR(current_ev))
2878 		return current_ev;
2879 
2880 	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2881 		memset(&iwe, 0, sizeof(iwe));
2882 		iwe.cmd = IWEVQUAL;
2883 		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2884 				     IW_QUAL_NOISE_INVALID |
2885 				     IW_QUAL_QUAL_UPDATED;
2886 		switch (wiphy->signal_type) {
2887 		case CFG80211_SIGNAL_TYPE_MBM:
2888 			sig = bss->pub.signal / 100;
2889 			iwe.u.qual.level = sig;
2890 			iwe.u.qual.updated |= IW_QUAL_DBM;
2891 			if (sig < -110)		/* rather bad */
2892 				sig = -110;
2893 			else if (sig > -40)	/* perfect */
2894 				sig = -40;
2895 			/* will give a range of 0 .. 70 */
2896 			iwe.u.qual.qual = sig + 110;
2897 			break;
2898 		case CFG80211_SIGNAL_TYPE_UNSPEC:
2899 			iwe.u.qual.level = bss->pub.signal;
2900 			/* will give range 0 .. 100 */
2901 			iwe.u.qual.qual = bss->pub.signal;
2902 			break;
2903 		default:
2904 			/* not reached */
2905 			break;
2906 		}
2907 		current_ev = iwe_stream_add_event_check(info, current_ev,
2908 							end_buf, &iwe,
2909 							IW_EV_QUAL_LEN);
2910 		if (IS_ERR(current_ev))
2911 			return current_ev;
2912 	}
2913 
2914 	memset(&iwe, 0, sizeof(iwe));
2915 	iwe.cmd = SIOCGIWENCODE;
2916 	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2917 		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2918 	else
2919 		iwe.u.data.flags = IW_ENCODE_DISABLED;
2920 	iwe.u.data.length = 0;
2921 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2922 						&iwe, "");
2923 	if (IS_ERR(current_ev))
2924 		return current_ev;
2925 
2926 	rcu_read_lock();
2927 	ies = rcu_dereference(bss->pub.ies);
2928 	rem = ies->len;
2929 	ie = ies->data;
2930 
2931 	while (rem >= 2) {
2932 		/* invalid data */
2933 		if (ie[1] > rem - 2)
2934 			break;
2935 
2936 		switch (ie[0]) {
2937 		case WLAN_EID_SSID:
2938 			memset(&iwe, 0, sizeof(iwe));
2939 			iwe.cmd = SIOCGIWESSID;
2940 			iwe.u.data.length = ie[1];
2941 			iwe.u.data.flags = 1;
2942 			current_ev = iwe_stream_add_point_check(info,
2943 								current_ev,
2944 								end_buf, &iwe,
2945 								(u8 *)ie + 2);
2946 			if (IS_ERR(current_ev))
2947 				goto unlock;
2948 			break;
2949 		case WLAN_EID_MESH_ID:
2950 			memset(&iwe, 0, sizeof(iwe));
2951 			iwe.cmd = SIOCGIWESSID;
2952 			iwe.u.data.length = ie[1];
2953 			iwe.u.data.flags = 1;
2954 			current_ev = iwe_stream_add_point_check(info,
2955 								current_ev,
2956 								end_buf, &iwe,
2957 								(u8 *)ie + 2);
2958 			if (IS_ERR(current_ev))
2959 				goto unlock;
2960 			break;
2961 		case WLAN_EID_MESH_CONFIG:
2962 			ismesh = true;
2963 			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
2964 				break;
2965 			cfg = (u8 *)ie + 2;
2966 			memset(&iwe, 0, sizeof(iwe));
2967 			iwe.cmd = IWEVCUSTOM;
2968 			sprintf(buf, "Mesh Network Path Selection Protocol ID: "
2969 				"0x%02X", cfg[0]);
2970 			iwe.u.data.length = strlen(buf);
2971 			current_ev = iwe_stream_add_point_check(info,
2972 								current_ev,
2973 								end_buf,
2974 								&iwe, buf);
2975 			if (IS_ERR(current_ev))
2976 				goto unlock;
2977 			sprintf(buf, "Path Selection Metric ID: 0x%02X",
2978 				cfg[1]);
2979 			iwe.u.data.length = strlen(buf);
2980 			current_ev = iwe_stream_add_point_check(info,
2981 								current_ev,
2982 								end_buf,
2983 								&iwe, buf);
2984 			if (IS_ERR(current_ev))
2985 				goto unlock;
2986 			sprintf(buf, "Congestion Control Mode ID: 0x%02X",
2987 				cfg[2]);
2988 			iwe.u.data.length = strlen(buf);
2989 			current_ev = iwe_stream_add_point_check(info,
2990 								current_ev,
2991 								end_buf,
2992 								&iwe, buf);
2993 			if (IS_ERR(current_ev))
2994 				goto unlock;
2995 			sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
2996 			iwe.u.data.length = strlen(buf);
2997 			current_ev = iwe_stream_add_point_check(info,
2998 								current_ev,
2999 								end_buf,
3000 								&iwe, buf);
3001 			if (IS_ERR(current_ev))
3002 				goto unlock;
3003 			sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3004 			iwe.u.data.length = strlen(buf);
3005 			current_ev = iwe_stream_add_point_check(info,
3006 								current_ev,
3007 								end_buf,
3008 								&iwe, buf);
3009 			if (IS_ERR(current_ev))
3010 				goto unlock;
3011 			sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3012 			iwe.u.data.length = strlen(buf);
3013 			current_ev = iwe_stream_add_point_check(info,
3014 								current_ev,
3015 								end_buf,
3016 								&iwe, buf);
3017 			if (IS_ERR(current_ev))
3018 				goto unlock;
3019 			sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3020 			iwe.u.data.length = strlen(buf);
3021 			current_ev = iwe_stream_add_point_check(info,
3022 								current_ev,
3023 								end_buf,
3024 								&iwe, buf);
3025 			if (IS_ERR(current_ev))
3026 				goto unlock;
3027 			break;
3028 		case WLAN_EID_SUPP_RATES:
3029 		case WLAN_EID_EXT_SUPP_RATES:
3030 			/* display all supported rates in readable format */
3031 			p = current_ev + iwe_stream_lcp_len(info);
3032 
3033 			memset(&iwe, 0, sizeof(iwe));
3034 			iwe.cmd = SIOCGIWRATE;
3035 			/* Those two flags are ignored... */
3036 			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3037 
3038 			for (i = 0; i < ie[1]; i++) {
3039 				iwe.u.bitrate.value =
3040 					((ie[i + 2] & 0x7f) * 500000);
3041 				tmp = p;
3042 				p = iwe_stream_add_value(info, current_ev, p,
3043 							 end_buf, &iwe,
3044 							 IW_EV_PARAM_LEN);
3045 				if (p == tmp) {
3046 					current_ev = ERR_PTR(-E2BIG);
3047 					goto unlock;
3048 				}
3049 			}
3050 			current_ev = p;
3051 			break;
3052 		}
3053 		rem -= ie[1] + 2;
3054 		ie += ie[1] + 2;
3055 	}
3056 
3057 	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3058 	    ismesh) {
3059 		memset(&iwe, 0, sizeof(iwe));
3060 		iwe.cmd = SIOCGIWMODE;
3061 		if (ismesh)
3062 			iwe.u.mode = IW_MODE_MESH;
3063 		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3064 			iwe.u.mode = IW_MODE_MASTER;
3065 		else
3066 			iwe.u.mode = IW_MODE_ADHOC;
3067 		current_ev = iwe_stream_add_event_check(info, current_ev,
3068 							end_buf, &iwe,
3069 							IW_EV_UINT_LEN);
3070 		if (IS_ERR(current_ev))
3071 			goto unlock;
3072 	}
3073 
3074 	memset(&iwe, 0, sizeof(iwe));
3075 	iwe.cmd = IWEVCUSTOM;
3076 	sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3077 	iwe.u.data.length = strlen(buf);
3078 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3079 						&iwe, buf);
3080 	if (IS_ERR(current_ev))
3081 		goto unlock;
3082 	memset(&iwe, 0, sizeof(iwe));
3083 	iwe.cmd = IWEVCUSTOM;
3084 	sprintf(buf, " Last beacon: %ums ago",
3085 		elapsed_jiffies_msecs(bss->ts));
3086 	iwe.u.data.length = strlen(buf);
3087 	current_ev = iwe_stream_add_point_check(info, current_ev,
3088 						end_buf, &iwe, buf);
3089 	if (IS_ERR(current_ev))
3090 		goto unlock;
3091 
3092 	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3093 
3094  unlock:
3095 	rcu_read_unlock();
3096 	return current_ev;
3097 }
3098 
3099 
3100 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3101 				  struct iw_request_info *info,
3102 				  char *buf, size_t len)
3103 {
3104 	char *current_ev = buf;
3105 	char *end_buf = buf + len;
3106 	struct cfg80211_internal_bss *bss;
3107 	int err = 0;
3108 
3109 	spin_lock_bh(&rdev->bss_lock);
3110 	cfg80211_bss_expire(rdev);
3111 
3112 	list_for_each_entry(bss, &rdev->bss_list, list) {
3113 		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3114 			err = -E2BIG;
3115 			break;
3116 		}
3117 		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3118 					   current_ev, end_buf);
3119 		if (IS_ERR(current_ev)) {
3120 			err = PTR_ERR(current_ev);
3121 			break;
3122 		}
3123 	}
3124 	spin_unlock_bh(&rdev->bss_lock);
3125 
3126 	if (err)
3127 		return err;
3128 	return current_ev - buf;
3129 }
3130 
3131 
3132 int cfg80211_wext_giwscan(struct net_device *dev,
3133 			  struct iw_request_info *info,
3134 			  struct iw_point *data, char *extra)
3135 {
3136 	struct cfg80211_registered_device *rdev;
3137 	int res;
3138 
3139 	if (!netif_running(dev))
3140 		return -ENETDOWN;
3141 
3142 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3143 
3144 	if (IS_ERR(rdev))
3145 		return PTR_ERR(rdev);
3146 
3147 	if (rdev->scan_req || rdev->scan_msg)
3148 		return -EAGAIN;
3149 
3150 	res = ieee80211_scan_results(rdev, info, extra, data->length);
3151 	data->length = 0;
3152 	if (res >= 0) {
3153 		data->length = res;
3154 		res = 0;
3155 	}
3156 
3157 	return res;
3158 }
3159 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3160 #endif
3161