xref: /openbmc/linux/net/wireless/scan.c (revision 7fc38225363dd8f19e667ad7c77b63bc4a5c065d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016	Intel Deutschland GmbH
8  */
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/wireless.h>
14 #include <linux/nl80211.h>
15 #include <linux/etherdevice.h>
16 #include <net/arp.h>
17 #include <net/cfg80211.h>
18 #include <net/cfg80211-wext.h>
19 #include <net/iw_handler.h>
20 #include "core.h"
21 #include "nl80211.h"
22 #include "wext-compat.h"
23 #include "rdev-ops.h"
24 
25 /**
26  * DOC: BSS tree/list structure
27  *
28  * At the top level, the BSS list is kept in both a list in each
29  * registered device (@bss_list) as well as an RB-tree for faster
30  * lookup. In the RB-tree, entries can be looked up using their
31  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
32  * for other BSSes.
33  *
34  * Due to the possibility of hidden SSIDs, there's a second level
35  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
36  * The hidden_list connects all BSSes belonging to a single AP
37  * that has a hidden SSID, and connects beacon and probe response
38  * entries. For a probe response entry for a hidden SSID, the
39  * hidden_beacon_bss pointer points to the BSS struct holding the
40  * beacon's information.
41  *
42  * Reference counting is done for all these references except for
43  * the hidden_list, so that a beacon BSS struct that is otherwise
44  * not referenced has one reference for being on the bss_list and
45  * one for each probe response entry that points to it using the
46  * hidden_beacon_bss pointer. When a BSS struct that has such a
47  * pointer is get/put, the refcount update is also propagated to
48  * the referenced struct, this ensure that it cannot get removed
49  * while somebody is using the probe response version.
50  *
51  * Note that the hidden_beacon_bss pointer never changes, due to
52  * the reference counting. Therefore, no locking is needed for
53  * it.
54  *
55  * Also note that the hidden_beacon_bss pointer is only relevant
56  * if the driver uses something other than the IEs, e.g. private
57  * data stored stored in the BSS struct, since the beacon IEs are
58  * also linked into the probe response struct.
59  */
60 
61 /*
62  * Limit the number of BSS entries stored in mac80211. Each one is
63  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
64  * If somebody wants to really attack this though, they'd likely
65  * use small beacons, and only one type of frame, limiting each of
66  * the entries to a much smaller size (in order to generate more
67  * entries in total, so overhead is bigger.)
68  */
69 static int bss_entries_limit = 1000;
70 module_param(bss_entries_limit, int, 0644);
71 MODULE_PARM_DESC(bss_entries_limit,
72                  "limit to number of scan BSS entries (per wiphy, default 1000)");
73 
74 #define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
75 
76 static void bss_free(struct cfg80211_internal_bss *bss)
77 {
78 	struct cfg80211_bss_ies *ies;
79 
80 	if (WARN_ON(atomic_read(&bss->hold)))
81 		return;
82 
83 	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
84 	if (ies && !bss->pub.hidden_beacon_bss)
85 		kfree_rcu(ies, rcu_head);
86 	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
87 	if (ies)
88 		kfree_rcu(ies, rcu_head);
89 
90 	/*
91 	 * This happens when the module is removed, it doesn't
92 	 * really matter any more save for completeness
93 	 */
94 	if (!list_empty(&bss->hidden_list))
95 		list_del(&bss->hidden_list);
96 
97 	kfree(bss);
98 }
99 
100 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
101 			       struct cfg80211_internal_bss *bss)
102 {
103 	lockdep_assert_held(&rdev->bss_lock);
104 
105 	bss->refcount++;
106 	if (bss->pub.hidden_beacon_bss) {
107 		bss = container_of(bss->pub.hidden_beacon_bss,
108 				   struct cfg80211_internal_bss,
109 				   pub);
110 		bss->refcount++;
111 	}
112 }
113 
114 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
115 			       struct cfg80211_internal_bss *bss)
116 {
117 	lockdep_assert_held(&rdev->bss_lock);
118 
119 	if (bss->pub.hidden_beacon_bss) {
120 		struct cfg80211_internal_bss *hbss;
121 		hbss = container_of(bss->pub.hidden_beacon_bss,
122 				    struct cfg80211_internal_bss,
123 				    pub);
124 		hbss->refcount--;
125 		if (hbss->refcount == 0)
126 			bss_free(hbss);
127 	}
128 	bss->refcount--;
129 	if (bss->refcount == 0)
130 		bss_free(bss);
131 }
132 
133 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
134 				  struct cfg80211_internal_bss *bss)
135 {
136 	lockdep_assert_held(&rdev->bss_lock);
137 
138 	if (!list_empty(&bss->hidden_list)) {
139 		/*
140 		 * don't remove the beacon entry if it has
141 		 * probe responses associated with it
142 		 */
143 		if (!bss->pub.hidden_beacon_bss)
144 			return false;
145 		/*
146 		 * if it's a probe response entry break its
147 		 * link to the other entries in the group
148 		 */
149 		list_del_init(&bss->hidden_list);
150 	}
151 
152 	list_del_init(&bss->list);
153 	rb_erase(&bss->rbn, &rdev->bss_tree);
154 	rdev->bss_entries--;
155 	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
156 		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
157 		  rdev->bss_entries, list_empty(&rdev->bss_list));
158 	bss_ref_put(rdev, bss);
159 	return true;
160 }
161 
162 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
163 				  unsigned long expire_time)
164 {
165 	struct cfg80211_internal_bss *bss, *tmp;
166 	bool expired = false;
167 
168 	lockdep_assert_held(&rdev->bss_lock);
169 
170 	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
171 		if (atomic_read(&bss->hold))
172 			continue;
173 		if (!time_after(expire_time, bss->ts))
174 			continue;
175 
176 		if (__cfg80211_unlink_bss(rdev, bss))
177 			expired = true;
178 	}
179 
180 	if (expired)
181 		rdev->bss_generation++;
182 }
183 
184 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
185 {
186 	struct cfg80211_internal_bss *bss, *oldest = NULL;
187 	bool ret;
188 
189 	lockdep_assert_held(&rdev->bss_lock);
190 
191 	list_for_each_entry(bss, &rdev->bss_list, list) {
192 		if (atomic_read(&bss->hold))
193 			continue;
194 
195 		if (!list_empty(&bss->hidden_list) &&
196 		    !bss->pub.hidden_beacon_bss)
197 			continue;
198 
199 		if (oldest && time_before(oldest->ts, bss->ts))
200 			continue;
201 		oldest = bss;
202 	}
203 
204 	if (WARN_ON(!oldest))
205 		return false;
206 
207 	/*
208 	 * The callers make sure to increase rdev->bss_generation if anything
209 	 * gets removed (and a new entry added), so there's no need to also do
210 	 * it here.
211 	 */
212 
213 	ret = __cfg80211_unlink_bss(rdev, oldest);
214 	WARN_ON(!ret);
215 	return ret;
216 }
217 
218 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
219 			   bool send_message)
220 {
221 	struct cfg80211_scan_request *request;
222 	struct wireless_dev *wdev;
223 	struct sk_buff *msg;
224 #ifdef CONFIG_CFG80211_WEXT
225 	union iwreq_data wrqu;
226 #endif
227 
228 	ASSERT_RTNL();
229 
230 	if (rdev->scan_msg) {
231 		nl80211_send_scan_msg(rdev, rdev->scan_msg);
232 		rdev->scan_msg = NULL;
233 		return;
234 	}
235 
236 	request = rdev->scan_req;
237 	if (!request)
238 		return;
239 
240 	wdev = request->wdev;
241 
242 	/*
243 	 * This must be before sending the other events!
244 	 * Otherwise, wpa_supplicant gets completely confused with
245 	 * wext events.
246 	 */
247 	if (wdev->netdev)
248 		cfg80211_sme_scan_done(wdev->netdev);
249 
250 	if (!request->info.aborted &&
251 	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
252 		/* flush entries from previous scans */
253 		spin_lock_bh(&rdev->bss_lock);
254 		__cfg80211_bss_expire(rdev, request->scan_start);
255 		spin_unlock_bh(&rdev->bss_lock);
256 	}
257 
258 	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
259 
260 #ifdef CONFIG_CFG80211_WEXT
261 	if (wdev->netdev && !request->info.aborted) {
262 		memset(&wrqu, 0, sizeof(wrqu));
263 
264 		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
265 	}
266 #endif
267 
268 	if (wdev->netdev)
269 		dev_put(wdev->netdev);
270 
271 	rdev->scan_req = NULL;
272 	kfree(request);
273 
274 	if (!send_message)
275 		rdev->scan_msg = msg;
276 	else
277 		nl80211_send_scan_msg(rdev, msg);
278 }
279 
280 void __cfg80211_scan_done(struct work_struct *wk)
281 {
282 	struct cfg80211_registered_device *rdev;
283 
284 	rdev = container_of(wk, struct cfg80211_registered_device,
285 			    scan_done_wk);
286 
287 	rtnl_lock();
288 	___cfg80211_scan_done(rdev, true);
289 	rtnl_unlock();
290 }
291 
292 void cfg80211_scan_done(struct cfg80211_scan_request *request,
293 			struct cfg80211_scan_info *info)
294 {
295 	trace_cfg80211_scan_done(request, info);
296 	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req);
297 
298 	request->info = *info;
299 	request->notified = true;
300 	queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
301 }
302 EXPORT_SYMBOL(cfg80211_scan_done);
303 
304 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
305 				 struct cfg80211_sched_scan_request *req)
306 {
307 	ASSERT_RTNL();
308 
309 	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
310 }
311 
312 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
313 					struct cfg80211_sched_scan_request *req)
314 {
315 	ASSERT_RTNL();
316 
317 	list_del_rcu(&req->list);
318 	kfree_rcu(req, rcu_head);
319 }
320 
321 static struct cfg80211_sched_scan_request *
322 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
323 {
324 	struct cfg80211_sched_scan_request *pos;
325 
326 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
327 
328 	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list) {
329 		if (pos->reqid == reqid)
330 			return pos;
331 	}
332 	return NULL;
333 }
334 
335 /*
336  * Determines if a scheduled scan request can be handled. When a legacy
337  * scheduled scan is running no other scheduled scan is allowed regardless
338  * whether the request is for legacy or multi-support scan. When a multi-support
339  * scheduled scan is running a request for legacy scan is not allowed. In this
340  * case a request for multi-support scan can be handled if resources are
341  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
342  */
343 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
344 				     bool want_multi)
345 {
346 	struct cfg80211_sched_scan_request *pos;
347 	int i = 0;
348 
349 	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
350 		/* request id zero means legacy in progress */
351 		if (!i && !pos->reqid)
352 			return -EINPROGRESS;
353 		i++;
354 	}
355 
356 	if (i) {
357 		/* no legacy allowed when multi request(s) are active */
358 		if (!want_multi)
359 			return -EINPROGRESS;
360 
361 		/* resource limit reached */
362 		if (i == rdev->wiphy.max_sched_scan_reqs)
363 			return -ENOSPC;
364 	}
365 	return 0;
366 }
367 
368 void cfg80211_sched_scan_results_wk(struct work_struct *work)
369 {
370 	struct cfg80211_registered_device *rdev;
371 	struct cfg80211_sched_scan_request *req, *tmp;
372 
373 	rdev = container_of(work, struct cfg80211_registered_device,
374 			   sched_scan_res_wk);
375 
376 	rtnl_lock();
377 	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
378 		if (req->report_results) {
379 			req->report_results = false;
380 			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
381 				/* flush entries from previous scans */
382 				spin_lock_bh(&rdev->bss_lock);
383 				__cfg80211_bss_expire(rdev, req->scan_start);
384 				spin_unlock_bh(&rdev->bss_lock);
385 				req->scan_start = jiffies;
386 			}
387 			nl80211_send_sched_scan(req,
388 						NL80211_CMD_SCHED_SCAN_RESULTS);
389 		}
390 	}
391 	rtnl_unlock();
392 }
393 
394 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
395 {
396 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
397 	struct cfg80211_sched_scan_request *request;
398 
399 	trace_cfg80211_sched_scan_results(wiphy, reqid);
400 	/* ignore if we're not scanning */
401 
402 	rcu_read_lock();
403 	request = cfg80211_find_sched_scan_req(rdev, reqid);
404 	if (request) {
405 		request->report_results = true;
406 		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
407 	}
408 	rcu_read_unlock();
409 }
410 EXPORT_SYMBOL(cfg80211_sched_scan_results);
411 
412 void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy, u64 reqid)
413 {
414 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
415 
416 	ASSERT_RTNL();
417 
418 	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
419 
420 	__cfg80211_stop_sched_scan(rdev, reqid, true);
421 }
422 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_rtnl);
423 
424 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
425 {
426 	rtnl_lock();
427 	cfg80211_sched_scan_stopped_rtnl(wiphy, reqid);
428 	rtnl_unlock();
429 }
430 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
431 
432 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
433 				 struct cfg80211_sched_scan_request *req,
434 				 bool driver_initiated)
435 {
436 	ASSERT_RTNL();
437 
438 	if (!driver_initiated) {
439 		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
440 		if (err)
441 			return err;
442 	}
443 
444 	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
445 
446 	cfg80211_del_sched_scan_req(rdev, req);
447 
448 	return 0;
449 }
450 
451 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
452 			       u64 reqid, bool driver_initiated)
453 {
454 	struct cfg80211_sched_scan_request *sched_scan_req;
455 
456 	ASSERT_RTNL();
457 
458 	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
459 	if (!sched_scan_req)
460 		return -ENOENT;
461 
462 	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
463 					    driver_initiated);
464 }
465 
466 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
467                       unsigned long age_secs)
468 {
469 	struct cfg80211_internal_bss *bss;
470 	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
471 
472 	spin_lock_bh(&rdev->bss_lock);
473 	list_for_each_entry(bss, &rdev->bss_list, list)
474 		bss->ts -= age_jiffies;
475 	spin_unlock_bh(&rdev->bss_lock);
476 }
477 
478 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
479 {
480 	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
481 }
482 
483 const u8 *cfg80211_find_ie_match(u8 eid, const u8 *ies, int len,
484 				 const u8 *match, int match_len,
485 				 int match_offset)
486 {
487 	/* match_offset can't be smaller than 2, unless match_len is
488 	 * zero, in which case match_offset must be zero as well.
489 	 */
490 	if (WARN_ON((match_len && match_offset < 2) ||
491 		    (!match_len && match_offset)))
492 		return NULL;
493 
494 	while (len >= 2 && len >= ies[1] + 2) {
495 		if ((ies[0] == eid) &&
496 		    (ies[1] + 2 >= match_offset + match_len) &&
497 		    !memcmp(ies + match_offset, match, match_len))
498 			return ies;
499 
500 		len -= ies[1] + 2;
501 		ies += ies[1] + 2;
502 	}
503 
504 	return NULL;
505 }
506 EXPORT_SYMBOL(cfg80211_find_ie_match);
507 
508 const u8 *cfg80211_find_vendor_ie(unsigned int oui, int oui_type,
509 				  const u8 *ies, int len)
510 {
511 	const u8 *ie;
512 	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
513 	int match_len = (oui_type < 0) ? 3 : sizeof(match);
514 
515 	if (WARN_ON(oui_type > 0xff))
516 		return NULL;
517 
518 	ie = cfg80211_find_ie_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
519 				    match, match_len, 2);
520 
521 	if (ie && (ie[1] < 4))
522 		return NULL;
523 
524 	return ie;
525 }
526 EXPORT_SYMBOL(cfg80211_find_vendor_ie);
527 
528 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
529 		   const u8 *ssid, size_t ssid_len)
530 {
531 	const struct cfg80211_bss_ies *ies;
532 	const u8 *ssidie;
533 
534 	if (bssid && !ether_addr_equal(a->bssid, bssid))
535 		return false;
536 
537 	if (!ssid)
538 		return true;
539 
540 	ies = rcu_access_pointer(a->ies);
541 	if (!ies)
542 		return false;
543 	ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
544 	if (!ssidie)
545 		return false;
546 	if (ssidie[1] != ssid_len)
547 		return false;
548 	return memcmp(ssidie + 2, ssid, ssid_len) == 0;
549 }
550 
551 /**
552  * enum bss_compare_mode - BSS compare mode
553  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
554  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
555  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
556  */
557 enum bss_compare_mode {
558 	BSS_CMP_REGULAR,
559 	BSS_CMP_HIDE_ZLEN,
560 	BSS_CMP_HIDE_NUL,
561 };
562 
563 static int cmp_bss(struct cfg80211_bss *a,
564 		   struct cfg80211_bss *b,
565 		   enum bss_compare_mode mode)
566 {
567 	const struct cfg80211_bss_ies *a_ies, *b_ies;
568 	const u8 *ie1 = NULL;
569 	const u8 *ie2 = NULL;
570 	int i, r;
571 
572 	if (a->channel != b->channel)
573 		return b->channel->center_freq - a->channel->center_freq;
574 
575 	a_ies = rcu_access_pointer(a->ies);
576 	if (!a_ies)
577 		return -1;
578 	b_ies = rcu_access_pointer(b->ies);
579 	if (!b_ies)
580 		return 1;
581 
582 	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
583 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
584 				       a_ies->data, a_ies->len);
585 	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
586 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
587 				       b_ies->data, b_ies->len);
588 	if (ie1 && ie2) {
589 		int mesh_id_cmp;
590 
591 		if (ie1[1] == ie2[1])
592 			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
593 		else
594 			mesh_id_cmp = ie2[1] - ie1[1];
595 
596 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
597 				       a_ies->data, a_ies->len);
598 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
599 				       b_ies->data, b_ies->len);
600 		if (ie1 && ie2) {
601 			if (mesh_id_cmp)
602 				return mesh_id_cmp;
603 			if (ie1[1] != ie2[1])
604 				return ie2[1] - ie1[1];
605 			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
606 		}
607 	}
608 
609 	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
610 	if (r)
611 		return r;
612 
613 	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
614 	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
615 
616 	if (!ie1 && !ie2)
617 		return 0;
618 
619 	/*
620 	 * Note that with "hide_ssid", the function returns a match if
621 	 * the already-present BSS ("b") is a hidden SSID beacon for
622 	 * the new BSS ("a").
623 	 */
624 
625 	/* sort missing IE before (left of) present IE */
626 	if (!ie1)
627 		return -1;
628 	if (!ie2)
629 		return 1;
630 
631 	switch (mode) {
632 	case BSS_CMP_HIDE_ZLEN:
633 		/*
634 		 * In ZLEN mode we assume the BSS entry we're
635 		 * looking for has a zero-length SSID. So if
636 		 * the one we're looking at right now has that,
637 		 * return 0. Otherwise, return the difference
638 		 * in length, but since we're looking for the
639 		 * 0-length it's really equivalent to returning
640 		 * the length of the one we're looking at.
641 		 *
642 		 * No content comparison is needed as we assume
643 		 * the content length is zero.
644 		 */
645 		return ie2[1];
646 	case BSS_CMP_REGULAR:
647 	default:
648 		/* sort by length first, then by contents */
649 		if (ie1[1] != ie2[1])
650 			return ie2[1] - ie1[1];
651 		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
652 	case BSS_CMP_HIDE_NUL:
653 		if (ie1[1] != ie2[1])
654 			return ie2[1] - ie1[1];
655 		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
656 		for (i = 0; i < ie2[1]; i++)
657 			if (ie2[i + 2])
658 				return -1;
659 		return 0;
660 	}
661 }
662 
663 static bool cfg80211_bss_type_match(u16 capability,
664 				    enum nl80211_band band,
665 				    enum ieee80211_bss_type bss_type)
666 {
667 	bool ret = true;
668 	u16 mask, val;
669 
670 	if (bss_type == IEEE80211_BSS_TYPE_ANY)
671 		return ret;
672 
673 	if (band == NL80211_BAND_60GHZ) {
674 		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
675 		switch (bss_type) {
676 		case IEEE80211_BSS_TYPE_ESS:
677 			val = WLAN_CAPABILITY_DMG_TYPE_AP;
678 			break;
679 		case IEEE80211_BSS_TYPE_PBSS:
680 			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
681 			break;
682 		case IEEE80211_BSS_TYPE_IBSS:
683 			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
684 			break;
685 		default:
686 			return false;
687 		}
688 	} else {
689 		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
690 		switch (bss_type) {
691 		case IEEE80211_BSS_TYPE_ESS:
692 			val = WLAN_CAPABILITY_ESS;
693 			break;
694 		case IEEE80211_BSS_TYPE_IBSS:
695 			val = WLAN_CAPABILITY_IBSS;
696 			break;
697 		case IEEE80211_BSS_TYPE_MBSS:
698 			val = 0;
699 			break;
700 		default:
701 			return false;
702 		}
703 	}
704 
705 	ret = ((capability & mask) == val);
706 	return ret;
707 }
708 
709 /* Returned bss is reference counted and must be cleaned up appropriately. */
710 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
711 				      struct ieee80211_channel *channel,
712 				      const u8 *bssid,
713 				      const u8 *ssid, size_t ssid_len,
714 				      enum ieee80211_bss_type bss_type,
715 				      enum ieee80211_privacy privacy)
716 {
717 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
718 	struct cfg80211_internal_bss *bss, *res = NULL;
719 	unsigned long now = jiffies;
720 	int bss_privacy;
721 
722 	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
723 			       privacy);
724 
725 	spin_lock_bh(&rdev->bss_lock);
726 
727 	list_for_each_entry(bss, &rdev->bss_list, list) {
728 		if (!cfg80211_bss_type_match(bss->pub.capability,
729 					     bss->pub.channel->band, bss_type))
730 			continue;
731 
732 		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
733 		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
734 		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
735 			continue;
736 		if (channel && bss->pub.channel != channel)
737 			continue;
738 		if (!is_valid_ether_addr(bss->pub.bssid))
739 			continue;
740 		/* Don't get expired BSS structs */
741 		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
742 		    !atomic_read(&bss->hold))
743 			continue;
744 		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
745 			res = bss;
746 			bss_ref_get(rdev, res);
747 			break;
748 		}
749 	}
750 
751 	spin_unlock_bh(&rdev->bss_lock);
752 	if (!res)
753 		return NULL;
754 	trace_cfg80211_return_bss(&res->pub);
755 	return &res->pub;
756 }
757 EXPORT_SYMBOL(cfg80211_get_bss);
758 
759 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
760 			  struct cfg80211_internal_bss *bss)
761 {
762 	struct rb_node **p = &rdev->bss_tree.rb_node;
763 	struct rb_node *parent = NULL;
764 	struct cfg80211_internal_bss *tbss;
765 	int cmp;
766 
767 	while (*p) {
768 		parent = *p;
769 		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
770 
771 		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
772 
773 		if (WARN_ON(!cmp)) {
774 			/* will sort of leak this BSS */
775 			return;
776 		}
777 
778 		if (cmp < 0)
779 			p = &(*p)->rb_left;
780 		else
781 			p = &(*p)->rb_right;
782 	}
783 
784 	rb_link_node(&bss->rbn, parent, p);
785 	rb_insert_color(&bss->rbn, &rdev->bss_tree);
786 }
787 
788 static struct cfg80211_internal_bss *
789 rb_find_bss(struct cfg80211_registered_device *rdev,
790 	    struct cfg80211_internal_bss *res,
791 	    enum bss_compare_mode mode)
792 {
793 	struct rb_node *n = rdev->bss_tree.rb_node;
794 	struct cfg80211_internal_bss *bss;
795 	int r;
796 
797 	while (n) {
798 		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
799 		r = cmp_bss(&res->pub, &bss->pub, mode);
800 
801 		if (r == 0)
802 			return bss;
803 		else if (r < 0)
804 			n = n->rb_left;
805 		else
806 			n = n->rb_right;
807 	}
808 
809 	return NULL;
810 }
811 
812 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
813 				   struct cfg80211_internal_bss *new)
814 {
815 	const struct cfg80211_bss_ies *ies;
816 	struct cfg80211_internal_bss *bss;
817 	const u8 *ie;
818 	int i, ssidlen;
819 	u8 fold = 0;
820 	u32 n_entries = 0;
821 
822 	ies = rcu_access_pointer(new->pub.beacon_ies);
823 	if (WARN_ON(!ies))
824 		return false;
825 
826 	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
827 	if (!ie) {
828 		/* nothing to do */
829 		return true;
830 	}
831 
832 	ssidlen = ie[1];
833 	for (i = 0; i < ssidlen; i++)
834 		fold |= ie[2 + i];
835 
836 	if (fold) {
837 		/* not a hidden SSID */
838 		return true;
839 	}
840 
841 	/* This is the bad part ... */
842 
843 	list_for_each_entry(bss, &rdev->bss_list, list) {
844 		/*
845 		 * we're iterating all the entries anyway, so take the
846 		 * opportunity to validate the list length accounting
847 		 */
848 		n_entries++;
849 
850 		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
851 			continue;
852 		if (bss->pub.channel != new->pub.channel)
853 			continue;
854 		if (bss->pub.scan_width != new->pub.scan_width)
855 			continue;
856 		if (rcu_access_pointer(bss->pub.beacon_ies))
857 			continue;
858 		ies = rcu_access_pointer(bss->pub.ies);
859 		if (!ies)
860 			continue;
861 		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
862 		if (!ie)
863 			continue;
864 		if (ssidlen && ie[1] != ssidlen)
865 			continue;
866 		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
867 			continue;
868 		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
869 			list_del(&bss->hidden_list);
870 		/* combine them */
871 		list_add(&bss->hidden_list, &new->hidden_list);
872 		bss->pub.hidden_beacon_bss = &new->pub;
873 		new->refcount += bss->refcount;
874 		rcu_assign_pointer(bss->pub.beacon_ies,
875 				   new->pub.beacon_ies);
876 	}
877 
878 	WARN_ONCE(n_entries != rdev->bss_entries,
879 		  "rdev bss entries[%d]/list[len:%d] corruption\n",
880 		  rdev->bss_entries, n_entries);
881 
882 	return true;
883 }
884 
885 /* Returned bss is reference counted and must be cleaned up appropriately. */
886 static struct cfg80211_internal_bss *
887 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
888 		    struct cfg80211_internal_bss *tmp,
889 		    bool signal_valid)
890 {
891 	struct cfg80211_internal_bss *found = NULL;
892 
893 	if (WARN_ON(!tmp->pub.channel))
894 		return NULL;
895 
896 	tmp->ts = jiffies;
897 
898 	spin_lock_bh(&rdev->bss_lock);
899 
900 	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
901 		spin_unlock_bh(&rdev->bss_lock);
902 		return NULL;
903 	}
904 
905 	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
906 
907 	if (found) {
908 		/* Update IEs */
909 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
910 			const struct cfg80211_bss_ies *old;
911 
912 			old = rcu_access_pointer(found->pub.proberesp_ies);
913 
914 			rcu_assign_pointer(found->pub.proberesp_ies,
915 					   tmp->pub.proberesp_ies);
916 			/* Override possible earlier Beacon frame IEs */
917 			rcu_assign_pointer(found->pub.ies,
918 					   tmp->pub.proberesp_ies);
919 			if (old)
920 				kfree_rcu((struct cfg80211_bss_ies *)old,
921 					  rcu_head);
922 		} else if (rcu_access_pointer(tmp->pub.beacon_ies)) {
923 			const struct cfg80211_bss_ies *old;
924 			struct cfg80211_internal_bss *bss;
925 
926 			if (found->pub.hidden_beacon_bss &&
927 			    !list_empty(&found->hidden_list)) {
928 				const struct cfg80211_bss_ies *f;
929 
930 				/*
931 				 * The found BSS struct is one of the probe
932 				 * response members of a group, but we're
933 				 * receiving a beacon (beacon_ies in the tmp
934 				 * bss is used). This can only mean that the
935 				 * AP changed its beacon from not having an
936 				 * SSID to showing it, which is confusing so
937 				 * drop this information.
938 				 */
939 
940 				f = rcu_access_pointer(tmp->pub.beacon_ies);
941 				kfree_rcu((struct cfg80211_bss_ies *)f,
942 					  rcu_head);
943 				goto drop;
944 			}
945 
946 			old = rcu_access_pointer(found->pub.beacon_ies);
947 
948 			rcu_assign_pointer(found->pub.beacon_ies,
949 					   tmp->pub.beacon_ies);
950 
951 			/* Override IEs if they were from a beacon before */
952 			if (old == rcu_access_pointer(found->pub.ies))
953 				rcu_assign_pointer(found->pub.ies,
954 						   tmp->pub.beacon_ies);
955 
956 			/* Assign beacon IEs to all sub entries */
957 			list_for_each_entry(bss, &found->hidden_list,
958 					    hidden_list) {
959 				const struct cfg80211_bss_ies *ies;
960 
961 				ies = rcu_access_pointer(bss->pub.beacon_ies);
962 				WARN_ON(ies != old);
963 
964 				rcu_assign_pointer(bss->pub.beacon_ies,
965 						   tmp->pub.beacon_ies);
966 			}
967 
968 			if (old)
969 				kfree_rcu((struct cfg80211_bss_ies *)old,
970 					  rcu_head);
971 		}
972 
973 		found->pub.beacon_interval = tmp->pub.beacon_interval;
974 		/*
975 		 * don't update the signal if beacon was heard on
976 		 * adjacent channel.
977 		 */
978 		if (signal_valid)
979 			found->pub.signal = tmp->pub.signal;
980 		found->pub.capability = tmp->pub.capability;
981 		found->ts = tmp->ts;
982 		found->ts_boottime = tmp->ts_boottime;
983 		found->parent_tsf = tmp->parent_tsf;
984 		found->pub.chains = tmp->pub.chains;
985 		memcpy(found->pub.chain_signal, tmp->pub.chain_signal,
986 		       IEEE80211_MAX_CHAINS);
987 		ether_addr_copy(found->parent_bssid, tmp->parent_bssid);
988 	} else {
989 		struct cfg80211_internal_bss *new;
990 		struct cfg80211_internal_bss *hidden;
991 		struct cfg80211_bss_ies *ies;
992 
993 		/*
994 		 * create a copy -- the "res" variable that is passed in
995 		 * is allocated on the stack since it's not needed in the
996 		 * more common case of an update
997 		 */
998 		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
999 			      GFP_ATOMIC);
1000 		if (!new) {
1001 			ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1002 			if (ies)
1003 				kfree_rcu(ies, rcu_head);
1004 			ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1005 			if (ies)
1006 				kfree_rcu(ies, rcu_head);
1007 			goto drop;
1008 		}
1009 		memcpy(new, tmp, sizeof(*new));
1010 		new->refcount = 1;
1011 		INIT_LIST_HEAD(&new->hidden_list);
1012 
1013 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1014 			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1015 			if (!hidden)
1016 				hidden = rb_find_bss(rdev, tmp,
1017 						     BSS_CMP_HIDE_NUL);
1018 			if (hidden) {
1019 				new->pub.hidden_beacon_bss = &hidden->pub;
1020 				list_add(&new->hidden_list,
1021 					 &hidden->hidden_list);
1022 				hidden->refcount++;
1023 				rcu_assign_pointer(new->pub.beacon_ies,
1024 						   hidden->pub.beacon_ies);
1025 			}
1026 		} else {
1027 			/*
1028 			 * Ok so we found a beacon, and don't have an entry. If
1029 			 * it's a beacon with hidden SSID, we might be in for an
1030 			 * expensive search for any probe responses that should
1031 			 * be grouped with this beacon for updates ...
1032 			 */
1033 			if (!cfg80211_combine_bsses(rdev, new)) {
1034 				kfree(new);
1035 				goto drop;
1036 			}
1037 		}
1038 
1039 		if (rdev->bss_entries >= bss_entries_limit &&
1040 		    !cfg80211_bss_expire_oldest(rdev)) {
1041 			kfree(new);
1042 			goto drop;
1043 		}
1044 
1045 		list_add_tail(&new->list, &rdev->bss_list);
1046 		rdev->bss_entries++;
1047 		rb_insert_bss(rdev, new);
1048 		found = new;
1049 	}
1050 
1051 	rdev->bss_generation++;
1052 	bss_ref_get(rdev, found);
1053 	spin_unlock_bh(&rdev->bss_lock);
1054 
1055 	return found;
1056  drop:
1057 	spin_unlock_bh(&rdev->bss_lock);
1058 	return NULL;
1059 }
1060 
1061 /*
1062  * Update RX channel information based on the available frame payload
1063  * information. This is mainly for the 2.4 GHz band where frames can be received
1064  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1065  * element to indicate the current (transmitting) channel, but this might also
1066  * be needed on other bands if RX frequency does not match with the actual
1067  * operating channel of a BSS.
1068  */
1069 static struct ieee80211_channel *
1070 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1071 			 struct ieee80211_channel *channel,
1072 			 enum nl80211_bss_scan_width scan_width)
1073 {
1074 	const u8 *tmp;
1075 	u32 freq;
1076 	int channel_number = -1;
1077 	struct ieee80211_channel *alt_channel;
1078 
1079 	tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1080 	if (tmp && tmp[1] == 1) {
1081 		channel_number = tmp[2];
1082 	} else {
1083 		tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1084 		if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1085 			struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1086 
1087 			channel_number = htop->primary_chan;
1088 		}
1089 	}
1090 
1091 	if (channel_number < 0) {
1092 		/* No channel information in frame payload */
1093 		return channel;
1094 	}
1095 
1096 	freq = ieee80211_channel_to_frequency(channel_number, channel->band);
1097 	alt_channel = ieee80211_get_channel(wiphy, freq);
1098 	if (!alt_channel) {
1099 		if (channel->band == NL80211_BAND_2GHZ) {
1100 			/*
1101 			 * Better not allow unexpected channels when that could
1102 			 * be going beyond the 1-11 range (e.g., discovering
1103 			 * BSS on channel 12 when radio is configured for
1104 			 * channel 11.
1105 			 */
1106 			return NULL;
1107 		}
1108 
1109 		/* No match for the payload channel number - ignore it */
1110 		return channel;
1111 	}
1112 
1113 	if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1114 	    scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1115 		/*
1116 		 * Ignore channel number in 5 and 10 MHz channels where there
1117 		 * may not be an n:1 or 1:n mapping between frequencies and
1118 		 * channel numbers.
1119 		 */
1120 		return channel;
1121 	}
1122 
1123 	/*
1124 	 * Use the channel determined through the payload channel number
1125 	 * instead of the RX channel reported by the driver.
1126 	 */
1127 	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1128 		return NULL;
1129 	return alt_channel;
1130 }
1131 
1132 /* Returned bss is reference counted and must be cleaned up appropriately. */
1133 struct cfg80211_bss *
1134 cfg80211_inform_bss_data(struct wiphy *wiphy,
1135 			 struct cfg80211_inform_bss *data,
1136 			 enum cfg80211_bss_frame_type ftype,
1137 			 const u8 *bssid, u64 tsf, u16 capability,
1138 			 u16 beacon_interval, const u8 *ie, size_t ielen,
1139 			 gfp_t gfp)
1140 {
1141 	struct cfg80211_bss_ies *ies;
1142 	struct ieee80211_channel *channel;
1143 	struct cfg80211_internal_bss tmp = {}, *res;
1144 	int bss_type;
1145 	bool signal_valid;
1146 
1147 	if (WARN_ON(!wiphy))
1148 		return NULL;
1149 
1150 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1151 		    (data->signal < 0 || data->signal > 100)))
1152 		return NULL;
1153 
1154 	channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1155 					   data->scan_width);
1156 	if (!channel)
1157 		return NULL;
1158 
1159 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1160 	tmp.pub.channel = channel;
1161 	tmp.pub.scan_width = data->scan_width;
1162 	tmp.pub.signal = data->signal;
1163 	tmp.pub.beacon_interval = beacon_interval;
1164 	tmp.pub.capability = capability;
1165 	tmp.ts_boottime = data->boottime_ns;
1166 
1167 	/*
1168 	 * If we do not know here whether the IEs are from a Beacon or Probe
1169 	 * Response frame, we need to pick one of the options and only use it
1170 	 * with the driver that does not provide the full Beacon/Probe Response
1171 	 * frame. Use Beacon frame pointer to avoid indicating that this should
1172 	 * override the IEs pointer should we have received an earlier
1173 	 * indication of Probe Response data.
1174 	 */
1175 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
1176 	if (!ies)
1177 		return NULL;
1178 	ies->len = ielen;
1179 	ies->tsf = tsf;
1180 	ies->from_beacon = false;
1181 	memcpy(ies->data, ie, ielen);
1182 
1183 	switch (ftype) {
1184 	case CFG80211_BSS_FTYPE_BEACON:
1185 		ies->from_beacon = true;
1186 		/* fall through */
1187 	case CFG80211_BSS_FTYPE_UNKNOWN:
1188 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1189 		break;
1190 	case CFG80211_BSS_FTYPE_PRESP:
1191 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1192 		break;
1193 	}
1194 	rcu_assign_pointer(tmp.pub.ies, ies);
1195 
1196 	signal_valid = abs(data->chan->center_freq - channel->center_freq) <=
1197 		wiphy->max_adj_channel_rssi_comp;
1198 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid);
1199 	if (!res)
1200 		return NULL;
1201 
1202 	if (channel->band == NL80211_BAND_60GHZ) {
1203 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1204 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1205 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1206 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1207 	} else {
1208 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
1209 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1210 	}
1211 
1212 	trace_cfg80211_return_bss(&res->pub);
1213 	/* cfg80211_bss_update gives us a referenced result */
1214 	return &res->pub;
1215 }
1216 EXPORT_SYMBOL(cfg80211_inform_bss_data);
1217 
1218 /* cfg80211_inform_bss_width_frame helper */
1219 struct cfg80211_bss *
1220 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
1221 			       struct cfg80211_inform_bss *data,
1222 			       struct ieee80211_mgmt *mgmt, size_t len,
1223 			       gfp_t gfp)
1224 
1225 {
1226 	struct cfg80211_internal_bss tmp = {}, *res;
1227 	struct cfg80211_bss_ies *ies;
1228 	struct ieee80211_channel *channel;
1229 	bool signal_valid;
1230 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
1231 				      u.probe_resp.variable);
1232 	int bss_type;
1233 
1234 	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
1235 			offsetof(struct ieee80211_mgmt, u.beacon.variable));
1236 
1237 	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
1238 
1239 	if (WARN_ON(!mgmt))
1240 		return NULL;
1241 
1242 	if (WARN_ON(!wiphy))
1243 		return NULL;
1244 
1245 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1246 		    (data->signal < 0 || data->signal > 100)))
1247 		return NULL;
1248 
1249 	if (WARN_ON(len < offsetof(struct ieee80211_mgmt, u.probe_resp.variable)))
1250 		return NULL;
1251 
1252 	channel = cfg80211_get_bss_channel(wiphy, mgmt->u.beacon.variable,
1253 					   ielen, data->chan, data->scan_width);
1254 	if (!channel)
1255 		return NULL;
1256 
1257 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
1258 	if (!ies)
1259 		return NULL;
1260 	ies->len = ielen;
1261 	ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
1262 	ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
1263 	memcpy(ies->data, mgmt->u.probe_resp.variable, ielen);
1264 
1265 	if (ieee80211_is_probe_resp(mgmt->frame_control))
1266 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1267 	else
1268 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1269 	rcu_assign_pointer(tmp.pub.ies, ies);
1270 
1271 	memcpy(tmp.pub.bssid, mgmt->bssid, ETH_ALEN);
1272 	tmp.pub.channel = channel;
1273 	tmp.pub.scan_width = data->scan_width;
1274 	tmp.pub.signal = data->signal;
1275 	tmp.pub.beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
1276 	tmp.pub.capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
1277 	tmp.ts_boottime = data->boottime_ns;
1278 	tmp.parent_tsf = data->parent_tsf;
1279 	tmp.pub.chains = data->chains;
1280 	memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
1281 	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1282 
1283 	signal_valid = abs(data->chan->center_freq - channel->center_freq) <=
1284 		wiphy->max_adj_channel_rssi_comp;
1285 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid);
1286 	if (!res)
1287 		return NULL;
1288 
1289 	if (channel->band == NL80211_BAND_60GHZ) {
1290 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1291 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1292 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1293 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1294 	} else {
1295 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
1296 			regulatory_hint_found_beacon(wiphy, channel, gfp);
1297 	}
1298 
1299 	trace_cfg80211_return_bss(&res->pub);
1300 	/* cfg80211_bss_update gives us a referenced result */
1301 	return &res->pub;
1302 }
1303 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
1304 
1305 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1306 {
1307 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1308 	struct cfg80211_internal_bss *bss;
1309 
1310 	if (!pub)
1311 		return;
1312 
1313 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
1314 
1315 	spin_lock_bh(&rdev->bss_lock);
1316 	bss_ref_get(rdev, bss);
1317 	spin_unlock_bh(&rdev->bss_lock);
1318 }
1319 EXPORT_SYMBOL(cfg80211_ref_bss);
1320 
1321 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1322 {
1323 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1324 	struct cfg80211_internal_bss *bss;
1325 
1326 	if (!pub)
1327 		return;
1328 
1329 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
1330 
1331 	spin_lock_bh(&rdev->bss_lock);
1332 	bss_ref_put(rdev, bss);
1333 	spin_unlock_bh(&rdev->bss_lock);
1334 }
1335 EXPORT_SYMBOL(cfg80211_put_bss);
1336 
1337 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1338 {
1339 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1340 	struct cfg80211_internal_bss *bss;
1341 
1342 	if (WARN_ON(!pub))
1343 		return;
1344 
1345 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
1346 
1347 	spin_lock_bh(&rdev->bss_lock);
1348 	if (!list_empty(&bss->list)) {
1349 		if (__cfg80211_unlink_bss(rdev, bss))
1350 			rdev->bss_generation++;
1351 	}
1352 	spin_unlock_bh(&rdev->bss_lock);
1353 }
1354 EXPORT_SYMBOL(cfg80211_unlink_bss);
1355 
1356 #ifdef CONFIG_CFG80211_WEXT
1357 static struct cfg80211_registered_device *
1358 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
1359 {
1360 	struct cfg80211_registered_device *rdev;
1361 	struct net_device *dev;
1362 
1363 	ASSERT_RTNL();
1364 
1365 	dev = dev_get_by_index(net, ifindex);
1366 	if (!dev)
1367 		return ERR_PTR(-ENODEV);
1368 	if (dev->ieee80211_ptr)
1369 		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
1370 	else
1371 		rdev = ERR_PTR(-ENODEV);
1372 	dev_put(dev);
1373 	return rdev;
1374 }
1375 
1376 int cfg80211_wext_siwscan(struct net_device *dev,
1377 			  struct iw_request_info *info,
1378 			  union iwreq_data *wrqu, char *extra)
1379 {
1380 	struct cfg80211_registered_device *rdev;
1381 	struct wiphy *wiphy;
1382 	struct iw_scan_req *wreq = NULL;
1383 	struct cfg80211_scan_request *creq = NULL;
1384 	int i, err, n_channels = 0;
1385 	enum nl80211_band band;
1386 
1387 	if (!netif_running(dev))
1388 		return -ENETDOWN;
1389 
1390 	if (wrqu->data.length == sizeof(struct iw_scan_req))
1391 		wreq = (struct iw_scan_req *)extra;
1392 
1393 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
1394 
1395 	if (IS_ERR(rdev))
1396 		return PTR_ERR(rdev);
1397 
1398 	if (rdev->scan_req || rdev->scan_msg) {
1399 		err = -EBUSY;
1400 		goto out;
1401 	}
1402 
1403 	wiphy = &rdev->wiphy;
1404 
1405 	/* Determine number of channels, needed to allocate creq */
1406 	if (wreq && wreq->num_channels)
1407 		n_channels = wreq->num_channels;
1408 	else
1409 		n_channels = ieee80211_get_num_supported_channels(wiphy);
1410 
1411 	creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
1412 		       n_channels * sizeof(void *),
1413 		       GFP_ATOMIC);
1414 	if (!creq) {
1415 		err = -ENOMEM;
1416 		goto out;
1417 	}
1418 
1419 	creq->wiphy = wiphy;
1420 	creq->wdev = dev->ieee80211_ptr;
1421 	/* SSIDs come after channels */
1422 	creq->ssids = (void *)&creq->channels[n_channels];
1423 	creq->n_channels = n_channels;
1424 	creq->n_ssids = 1;
1425 	creq->scan_start = jiffies;
1426 
1427 	/* translate "Scan on frequencies" request */
1428 	i = 0;
1429 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
1430 		int j;
1431 
1432 		if (!wiphy->bands[band])
1433 			continue;
1434 
1435 		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
1436 			/* ignore disabled channels */
1437 			if (wiphy->bands[band]->channels[j].flags &
1438 						IEEE80211_CHAN_DISABLED)
1439 				continue;
1440 
1441 			/* If we have a wireless request structure and the
1442 			 * wireless request specifies frequencies, then search
1443 			 * for the matching hardware channel.
1444 			 */
1445 			if (wreq && wreq->num_channels) {
1446 				int k;
1447 				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
1448 				for (k = 0; k < wreq->num_channels; k++) {
1449 					struct iw_freq *freq =
1450 						&wreq->channel_list[k];
1451 					int wext_freq =
1452 						cfg80211_wext_freq(freq);
1453 
1454 					if (wext_freq == wiphy_freq)
1455 						goto wext_freq_found;
1456 				}
1457 				goto wext_freq_not_found;
1458 			}
1459 
1460 		wext_freq_found:
1461 			creq->channels[i] = &wiphy->bands[band]->channels[j];
1462 			i++;
1463 		wext_freq_not_found: ;
1464 		}
1465 	}
1466 	/* No channels found? */
1467 	if (!i) {
1468 		err = -EINVAL;
1469 		goto out;
1470 	}
1471 
1472 	/* Set real number of channels specified in creq->channels[] */
1473 	creq->n_channels = i;
1474 
1475 	/* translate "Scan for SSID" request */
1476 	if (wreq) {
1477 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
1478 			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
1479 				err = -EINVAL;
1480 				goto out;
1481 			}
1482 			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
1483 			creq->ssids[0].ssid_len = wreq->essid_len;
1484 		}
1485 		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
1486 			creq->n_ssids = 0;
1487 	}
1488 
1489 	for (i = 0; i < NUM_NL80211_BANDS; i++)
1490 		if (wiphy->bands[i])
1491 			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
1492 
1493 	eth_broadcast_addr(creq->bssid);
1494 
1495 	rdev->scan_req = creq;
1496 	err = rdev_scan(rdev, creq);
1497 	if (err) {
1498 		rdev->scan_req = NULL;
1499 		/* creq will be freed below */
1500 	} else {
1501 		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
1502 		/* creq now owned by driver */
1503 		creq = NULL;
1504 		dev_hold(dev);
1505 	}
1506  out:
1507 	kfree(creq);
1508 	return err;
1509 }
1510 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
1511 
1512 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
1513 				    const struct cfg80211_bss_ies *ies,
1514 				    char *current_ev, char *end_buf)
1515 {
1516 	const u8 *pos, *end, *next;
1517 	struct iw_event iwe;
1518 
1519 	if (!ies)
1520 		return current_ev;
1521 
1522 	/*
1523 	 * If needed, fragment the IEs buffer (at IE boundaries) into short
1524 	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
1525 	 */
1526 	pos = ies->data;
1527 	end = pos + ies->len;
1528 
1529 	while (end - pos > IW_GENERIC_IE_MAX) {
1530 		next = pos + 2 + pos[1];
1531 		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
1532 			next = next + 2 + next[1];
1533 
1534 		memset(&iwe, 0, sizeof(iwe));
1535 		iwe.cmd = IWEVGENIE;
1536 		iwe.u.data.length = next - pos;
1537 		current_ev = iwe_stream_add_point_check(info, current_ev,
1538 							end_buf, &iwe,
1539 							(void *)pos);
1540 		if (IS_ERR(current_ev))
1541 			return current_ev;
1542 		pos = next;
1543 	}
1544 
1545 	if (end > pos) {
1546 		memset(&iwe, 0, sizeof(iwe));
1547 		iwe.cmd = IWEVGENIE;
1548 		iwe.u.data.length = end - pos;
1549 		current_ev = iwe_stream_add_point_check(info, current_ev,
1550 							end_buf, &iwe,
1551 							(void *)pos);
1552 		if (IS_ERR(current_ev))
1553 			return current_ev;
1554 	}
1555 
1556 	return current_ev;
1557 }
1558 
1559 static char *
1560 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
1561 	      struct cfg80211_internal_bss *bss, char *current_ev,
1562 	      char *end_buf)
1563 {
1564 	const struct cfg80211_bss_ies *ies;
1565 	struct iw_event iwe;
1566 	const u8 *ie;
1567 	u8 buf[50];
1568 	u8 *cfg, *p, *tmp;
1569 	int rem, i, sig;
1570 	bool ismesh = false;
1571 
1572 	memset(&iwe, 0, sizeof(iwe));
1573 	iwe.cmd = SIOCGIWAP;
1574 	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
1575 	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
1576 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
1577 						IW_EV_ADDR_LEN);
1578 	if (IS_ERR(current_ev))
1579 		return current_ev;
1580 
1581 	memset(&iwe, 0, sizeof(iwe));
1582 	iwe.cmd = SIOCGIWFREQ;
1583 	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
1584 	iwe.u.freq.e = 0;
1585 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
1586 						IW_EV_FREQ_LEN);
1587 	if (IS_ERR(current_ev))
1588 		return current_ev;
1589 
1590 	memset(&iwe, 0, sizeof(iwe));
1591 	iwe.cmd = SIOCGIWFREQ;
1592 	iwe.u.freq.m = bss->pub.channel->center_freq;
1593 	iwe.u.freq.e = 6;
1594 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
1595 						IW_EV_FREQ_LEN);
1596 	if (IS_ERR(current_ev))
1597 		return current_ev;
1598 
1599 	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
1600 		memset(&iwe, 0, sizeof(iwe));
1601 		iwe.cmd = IWEVQUAL;
1602 		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
1603 				     IW_QUAL_NOISE_INVALID |
1604 				     IW_QUAL_QUAL_UPDATED;
1605 		switch (wiphy->signal_type) {
1606 		case CFG80211_SIGNAL_TYPE_MBM:
1607 			sig = bss->pub.signal / 100;
1608 			iwe.u.qual.level = sig;
1609 			iwe.u.qual.updated |= IW_QUAL_DBM;
1610 			if (sig < -110)		/* rather bad */
1611 				sig = -110;
1612 			else if (sig > -40)	/* perfect */
1613 				sig = -40;
1614 			/* will give a range of 0 .. 70 */
1615 			iwe.u.qual.qual = sig + 110;
1616 			break;
1617 		case CFG80211_SIGNAL_TYPE_UNSPEC:
1618 			iwe.u.qual.level = bss->pub.signal;
1619 			/* will give range 0 .. 100 */
1620 			iwe.u.qual.qual = bss->pub.signal;
1621 			break;
1622 		default:
1623 			/* not reached */
1624 			break;
1625 		}
1626 		current_ev = iwe_stream_add_event_check(info, current_ev,
1627 							end_buf, &iwe,
1628 							IW_EV_QUAL_LEN);
1629 		if (IS_ERR(current_ev))
1630 			return current_ev;
1631 	}
1632 
1633 	memset(&iwe, 0, sizeof(iwe));
1634 	iwe.cmd = SIOCGIWENCODE;
1635 	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
1636 		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
1637 	else
1638 		iwe.u.data.flags = IW_ENCODE_DISABLED;
1639 	iwe.u.data.length = 0;
1640 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
1641 						&iwe, "");
1642 	if (IS_ERR(current_ev))
1643 		return current_ev;
1644 
1645 	rcu_read_lock();
1646 	ies = rcu_dereference(bss->pub.ies);
1647 	rem = ies->len;
1648 	ie = ies->data;
1649 
1650 	while (rem >= 2) {
1651 		/* invalid data */
1652 		if (ie[1] > rem - 2)
1653 			break;
1654 
1655 		switch (ie[0]) {
1656 		case WLAN_EID_SSID:
1657 			memset(&iwe, 0, sizeof(iwe));
1658 			iwe.cmd = SIOCGIWESSID;
1659 			iwe.u.data.length = ie[1];
1660 			iwe.u.data.flags = 1;
1661 			current_ev = iwe_stream_add_point_check(info,
1662 								current_ev,
1663 								end_buf, &iwe,
1664 								(u8 *)ie + 2);
1665 			if (IS_ERR(current_ev))
1666 				goto unlock;
1667 			break;
1668 		case WLAN_EID_MESH_ID:
1669 			memset(&iwe, 0, sizeof(iwe));
1670 			iwe.cmd = SIOCGIWESSID;
1671 			iwe.u.data.length = ie[1];
1672 			iwe.u.data.flags = 1;
1673 			current_ev = iwe_stream_add_point_check(info,
1674 								current_ev,
1675 								end_buf, &iwe,
1676 								(u8 *)ie + 2);
1677 			if (IS_ERR(current_ev))
1678 				goto unlock;
1679 			break;
1680 		case WLAN_EID_MESH_CONFIG:
1681 			ismesh = true;
1682 			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
1683 				break;
1684 			cfg = (u8 *)ie + 2;
1685 			memset(&iwe, 0, sizeof(iwe));
1686 			iwe.cmd = IWEVCUSTOM;
1687 			sprintf(buf, "Mesh Network Path Selection Protocol ID: "
1688 				"0x%02X", cfg[0]);
1689 			iwe.u.data.length = strlen(buf);
1690 			current_ev = iwe_stream_add_point_check(info,
1691 								current_ev,
1692 								end_buf,
1693 								&iwe, buf);
1694 			if (IS_ERR(current_ev))
1695 				goto unlock;
1696 			sprintf(buf, "Path Selection Metric ID: 0x%02X",
1697 				cfg[1]);
1698 			iwe.u.data.length = strlen(buf);
1699 			current_ev = iwe_stream_add_point_check(info,
1700 								current_ev,
1701 								end_buf,
1702 								&iwe, buf);
1703 			if (IS_ERR(current_ev))
1704 				goto unlock;
1705 			sprintf(buf, "Congestion Control Mode ID: 0x%02X",
1706 				cfg[2]);
1707 			iwe.u.data.length = strlen(buf);
1708 			current_ev = iwe_stream_add_point_check(info,
1709 								current_ev,
1710 								end_buf,
1711 								&iwe, buf);
1712 			if (IS_ERR(current_ev))
1713 				goto unlock;
1714 			sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
1715 			iwe.u.data.length = strlen(buf);
1716 			current_ev = iwe_stream_add_point_check(info,
1717 								current_ev,
1718 								end_buf,
1719 								&iwe, buf);
1720 			if (IS_ERR(current_ev))
1721 				goto unlock;
1722 			sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
1723 			iwe.u.data.length = strlen(buf);
1724 			current_ev = iwe_stream_add_point_check(info,
1725 								current_ev,
1726 								end_buf,
1727 								&iwe, buf);
1728 			if (IS_ERR(current_ev))
1729 				goto unlock;
1730 			sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
1731 			iwe.u.data.length = strlen(buf);
1732 			current_ev = iwe_stream_add_point_check(info,
1733 								current_ev,
1734 								end_buf,
1735 								&iwe, buf);
1736 			if (IS_ERR(current_ev))
1737 				goto unlock;
1738 			sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
1739 			iwe.u.data.length = strlen(buf);
1740 			current_ev = iwe_stream_add_point_check(info,
1741 								current_ev,
1742 								end_buf,
1743 								&iwe, buf);
1744 			if (IS_ERR(current_ev))
1745 				goto unlock;
1746 			break;
1747 		case WLAN_EID_SUPP_RATES:
1748 		case WLAN_EID_EXT_SUPP_RATES:
1749 			/* display all supported rates in readable format */
1750 			p = current_ev + iwe_stream_lcp_len(info);
1751 
1752 			memset(&iwe, 0, sizeof(iwe));
1753 			iwe.cmd = SIOCGIWRATE;
1754 			/* Those two flags are ignored... */
1755 			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
1756 
1757 			for (i = 0; i < ie[1]; i++) {
1758 				iwe.u.bitrate.value =
1759 					((ie[i + 2] & 0x7f) * 500000);
1760 				tmp = p;
1761 				p = iwe_stream_add_value(info, current_ev, p,
1762 							 end_buf, &iwe,
1763 							 IW_EV_PARAM_LEN);
1764 				if (p == tmp) {
1765 					current_ev = ERR_PTR(-E2BIG);
1766 					goto unlock;
1767 				}
1768 			}
1769 			current_ev = p;
1770 			break;
1771 		}
1772 		rem -= ie[1] + 2;
1773 		ie += ie[1] + 2;
1774 	}
1775 
1776 	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
1777 	    ismesh) {
1778 		memset(&iwe, 0, sizeof(iwe));
1779 		iwe.cmd = SIOCGIWMODE;
1780 		if (ismesh)
1781 			iwe.u.mode = IW_MODE_MESH;
1782 		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
1783 			iwe.u.mode = IW_MODE_MASTER;
1784 		else
1785 			iwe.u.mode = IW_MODE_ADHOC;
1786 		current_ev = iwe_stream_add_event_check(info, current_ev,
1787 							end_buf, &iwe,
1788 							IW_EV_UINT_LEN);
1789 		if (IS_ERR(current_ev))
1790 			goto unlock;
1791 	}
1792 
1793 	memset(&iwe, 0, sizeof(iwe));
1794 	iwe.cmd = IWEVCUSTOM;
1795 	sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
1796 	iwe.u.data.length = strlen(buf);
1797 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
1798 						&iwe, buf);
1799 	if (IS_ERR(current_ev))
1800 		goto unlock;
1801 	memset(&iwe, 0, sizeof(iwe));
1802 	iwe.cmd = IWEVCUSTOM;
1803 	sprintf(buf, " Last beacon: %ums ago",
1804 		elapsed_jiffies_msecs(bss->ts));
1805 	iwe.u.data.length = strlen(buf);
1806 	current_ev = iwe_stream_add_point_check(info, current_ev,
1807 						end_buf, &iwe, buf);
1808 	if (IS_ERR(current_ev))
1809 		goto unlock;
1810 
1811 	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
1812 
1813  unlock:
1814 	rcu_read_unlock();
1815 	return current_ev;
1816 }
1817 
1818 
1819 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
1820 				  struct iw_request_info *info,
1821 				  char *buf, size_t len)
1822 {
1823 	char *current_ev = buf;
1824 	char *end_buf = buf + len;
1825 	struct cfg80211_internal_bss *bss;
1826 	int err = 0;
1827 
1828 	spin_lock_bh(&rdev->bss_lock);
1829 	cfg80211_bss_expire(rdev);
1830 
1831 	list_for_each_entry(bss, &rdev->bss_list, list) {
1832 		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
1833 			err = -E2BIG;
1834 			break;
1835 		}
1836 		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
1837 					   current_ev, end_buf);
1838 		if (IS_ERR(current_ev)) {
1839 			err = PTR_ERR(current_ev);
1840 			break;
1841 		}
1842 	}
1843 	spin_unlock_bh(&rdev->bss_lock);
1844 
1845 	if (err)
1846 		return err;
1847 	return current_ev - buf;
1848 }
1849 
1850 
1851 int cfg80211_wext_giwscan(struct net_device *dev,
1852 			  struct iw_request_info *info,
1853 			  struct iw_point *data, char *extra)
1854 {
1855 	struct cfg80211_registered_device *rdev;
1856 	int res;
1857 
1858 	if (!netif_running(dev))
1859 		return -ENETDOWN;
1860 
1861 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
1862 
1863 	if (IS_ERR(rdev))
1864 		return PTR_ERR(rdev);
1865 
1866 	if (rdev->scan_req || rdev->scan_msg)
1867 		return -EAGAIN;
1868 
1869 	res = ieee80211_scan_results(rdev, info, extra, data->length);
1870 	data->length = 0;
1871 	if (res >= 0) {
1872 		data->length = res;
1873 		res = 0;
1874 	}
1875 
1876 	return res;
1877 }
1878 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
1879 #endif
1880