xref: /openbmc/linux/net/wireless/scan.c (revision 7288dd2f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016	Intel Deutschland GmbH
8  * Copyright (C) 2018-2023 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include "core.h"
24 #include "nl80211.h"
25 #include "wext-compat.h"
26 #include "rdev-ops.h"
27 
28 /**
29  * DOC: BSS tree/list structure
30  *
31  * At the top level, the BSS list is kept in both a list in each
32  * registered device (@bss_list) as well as an RB-tree for faster
33  * lookup. In the RB-tree, entries can be looked up using their
34  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35  * for other BSSes.
36  *
37  * Due to the possibility of hidden SSIDs, there's a second level
38  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39  * The hidden_list connects all BSSes belonging to a single AP
40  * that has a hidden SSID, and connects beacon and probe response
41  * entries. For a probe response entry for a hidden SSID, the
42  * hidden_beacon_bss pointer points to the BSS struct holding the
43  * beacon's information.
44  *
45  * Reference counting is done for all these references except for
46  * the hidden_list, so that a beacon BSS struct that is otherwise
47  * not referenced has one reference for being on the bss_list and
48  * one for each probe response entry that points to it using the
49  * hidden_beacon_bss pointer. When a BSS struct that has such a
50  * pointer is get/put, the refcount update is also propagated to
51  * the referenced struct, this ensure that it cannot get removed
52  * while somebody is using the probe response version.
53  *
54  * Note that the hidden_beacon_bss pointer never changes, due to
55  * the reference counting. Therefore, no locking is needed for
56  * it.
57  *
58  * Also note that the hidden_beacon_bss pointer is only relevant
59  * if the driver uses something other than the IEs, e.g. private
60  * data stored in the BSS struct, since the beacon IEs are
61  * also linked into the probe response struct.
62  */
63 
64 /*
65  * Limit the number of BSS entries stored in mac80211. Each one is
66  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67  * If somebody wants to really attack this though, they'd likely
68  * use small beacons, and only one type of frame, limiting each of
69  * the entries to a much smaller size (in order to generate more
70  * entries in total, so overhead is bigger.)
71  */
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75                  "limit to number of scan BSS entries (per wiphy, default 1000)");
76 
77 #define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
78 
79 /**
80  * struct cfg80211_colocated_ap - colocated AP information
81  *
82  * @list: linked list to all colocated aPS
83  * @bssid: BSSID of the reported AP
84  * @ssid: SSID of the reported AP
85  * @ssid_len: length of the ssid
86  * @center_freq: frequency the reported AP is on
87  * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88  *	that operate in the same channel as the reported AP and that might be
89  *	detected by a STA receiving this frame, are transmitting unsolicited
90  *	Probe Response frames every 20 TUs
91  * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92  * @same_ssid: the reported AP has the same SSID as the reporting AP
93  * @multi_bss: the reported AP is part of a multiple BSSID set
94  * @transmitted_bssid: the reported AP is the transmitting BSSID
95  * @colocated_ess: all the APs that share the same ESS as the reported AP are
96  *	colocated and can be discovered via legacy bands.
97  * @short_ssid_valid: short_ssid is valid and can be used
98  * @short_ssid: the short SSID for this SSID
99  * @psd_20: The 20MHz PSD EIRP of the primary 20MHz channel for the reported AP
100  */
101 struct cfg80211_colocated_ap {
102 	struct list_head list;
103 	u8 bssid[ETH_ALEN];
104 	u8 ssid[IEEE80211_MAX_SSID_LEN];
105 	size_t ssid_len;
106 	u32 short_ssid;
107 	u32 center_freq;
108 	u8 unsolicited_probe:1,
109 	   oct_recommended:1,
110 	   same_ssid:1,
111 	   multi_bss:1,
112 	   transmitted_bssid:1,
113 	   colocated_ess:1,
114 	   short_ssid_valid:1;
115 	s8 psd_20;
116 };
117 
118 static void bss_free(struct cfg80211_internal_bss *bss)
119 {
120 	struct cfg80211_bss_ies *ies;
121 
122 	if (WARN_ON(atomic_read(&bss->hold)))
123 		return;
124 
125 	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
126 	if (ies && !bss->pub.hidden_beacon_bss)
127 		kfree_rcu(ies, rcu_head);
128 	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
129 	if (ies)
130 		kfree_rcu(ies, rcu_head);
131 
132 	/*
133 	 * This happens when the module is removed, it doesn't
134 	 * really matter any more save for completeness
135 	 */
136 	if (!list_empty(&bss->hidden_list))
137 		list_del(&bss->hidden_list);
138 
139 	kfree(bss);
140 }
141 
142 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
143 			       struct cfg80211_internal_bss *bss)
144 {
145 	lockdep_assert_held(&rdev->bss_lock);
146 
147 	bss->refcount++;
148 
149 	if (bss->pub.hidden_beacon_bss)
150 		bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
151 
152 	if (bss->pub.transmitted_bss)
153 		bss_from_pub(bss->pub.transmitted_bss)->refcount++;
154 }
155 
156 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
157 			       struct cfg80211_internal_bss *bss)
158 {
159 	lockdep_assert_held(&rdev->bss_lock);
160 
161 	if (bss->pub.hidden_beacon_bss) {
162 		struct cfg80211_internal_bss *hbss;
163 
164 		hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
165 		hbss->refcount--;
166 		if (hbss->refcount == 0)
167 			bss_free(hbss);
168 	}
169 
170 	if (bss->pub.transmitted_bss) {
171 		struct cfg80211_internal_bss *tbss;
172 
173 		tbss = bss_from_pub(bss->pub.transmitted_bss);
174 		tbss->refcount--;
175 		if (tbss->refcount == 0)
176 			bss_free(tbss);
177 	}
178 
179 	bss->refcount--;
180 	if (bss->refcount == 0)
181 		bss_free(bss);
182 }
183 
184 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
185 				  struct cfg80211_internal_bss *bss)
186 {
187 	lockdep_assert_held(&rdev->bss_lock);
188 
189 	if (!list_empty(&bss->hidden_list)) {
190 		/*
191 		 * don't remove the beacon entry if it has
192 		 * probe responses associated with it
193 		 */
194 		if (!bss->pub.hidden_beacon_bss)
195 			return false;
196 		/*
197 		 * if it's a probe response entry break its
198 		 * link to the other entries in the group
199 		 */
200 		list_del_init(&bss->hidden_list);
201 	}
202 
203 	list_del_init(&bss->list);
204 	list_del_init(&bss->pub.nontrans_list);
205 	rb_erase(&bss->rbn, &rdev->bss_tree);
206 	rdev->bss_entries--;
207 	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
208 		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
209 		  rdev->bss_entries, list_empty(&rdev->bss_list));
210 	bss_ref_put(rdev, bss);
211 	return true;
212 }
213 
214 bool cfg80211_is_element_inherited(const struct element *elem,
215 				   const struct element *non_inherit_elem)
216 {
217 	u8 id_len, ext_id_len, i, loop_len, id;
218 	const u8 *list;
219 
220 	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
221 		return false;
222 
223 	if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
224 	    elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
225 		return false;
226 
227 	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
228 		return true;
229 
230 	/*
231 	 * non inheritance element format is:
232 	 * ext ID (56) | IDs list len | list | extension IDs list len | list
233 	 * Both lists are optional. Both lengths are mandatory.
234 	 * This means valid length is:
235 	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
236 	 */
237 	id_len = non_inherit_elem->data[1];
238 	if (non_inherit_elem->datalen < 3 + id_len)
239 		return true;
240 
241 	ext_id_len = non_inherit_elem->data[2 + id_len];
242 	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
243 		return true;
244 
245 	if (elem->id == WLAN_EID_EXTENSION) {
246 		if (!ext_id_len)
247 			return true;
248 		loop_len = ext_id_len;
249 		list = &non_inherit_elem->data[3 + id_len];
250 		id = elem->data[0];
251 	} else {
252 		if (!id_len)
253 			return true;
254 		loop_len = id_len;
255 		list = &non_inherit_elem->data[2];
256 		id = elem->id;
257 	}
258 
259 	for (i = 0; i < loop_len; i++) {
260 		if (list[i] == id)
261 			return false;
262 	}
263 
264 	return true;
265 }
266 EXPORT_SYMBOL(cfg80211_is_element_inherited);
267 
268 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
269 					    const u8 *ie, size_t ie_len,
270 					    u8 **pos, u8 *buf, size_t buf_len)
271 {
272 	if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
273 		    elem->data + elem->datalen > ie + ie_len))
274 		return 0;
275 
276 	if (elem->datalen + 2 > buf + buf_len - *pos)
277 		return 0;
278 
279 	memcpy(*pos, elem, elem->datalen + 2);
280 	*pos += elem->datalen + 2;
281 
282 	/* Finish if it is not fragmented  */
283 	if (elem->datalen != 255)
284 		return *pos - buf;
285 
286 	ie_len = ie + ie_len - elem->data - elem->datalen;
287 	ie = (const u8 *)elem->data + elem->datalen;
288 
289 	for_each_element(elem, ie, ie_len) {
290 		if (elem->id != WLAN_EID_FRAGMENT)
291 			break;
292 
293 		if (elem->datalen + 2 > buf + buf_len - *pos)
294 			return 0;
295 
296 		memcpy(*pos, elem, elem->datalen + 2);
297 		*pos += elem->datalen + 2;
298 
299 		if (elem->datalen != 255)
300 			break;
301 	}
302 
303 	return *pos - buf;
304 }
305 
306 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
307 				  const u8 *subie, size_t subie_len,
308 				  u8 *new_ie, size_t new_ie_len)
309 {
310 	const struct element *non_inherit_elem, *parent, *sub;
311 	u8 *pos = new_ie;
312 	u8 id, ext_id;
313 	unsigned int match_len;
314 
315 	non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
316 						  subie, subie_len);
317 
318 	/* We copy the elements one by one from the parent to the generated
319 	 * elements.
320 	 * If they are not inherited (included in subie or in the non
321 	 * inheritance element), then we copy all occurrences the first time
322 	 * we see this element type.
323 	 */
324 	for_each_element(parent, ie, ielen) {
325 		if (parent->id == WLAN_EID_FRAGMENT)
326 			continue;
327 
328 		if (parent->id == WLAN_EID_EXTENSION) {
329 			if (parent->datalen < 1)
330 				continue;
331 
332 			id = WLAN_EID_EXTENSION;
333 			ext_id = parent->data[0];
334 			match_len = 1;
335 		} else {
336 			id = parent->id;
337 			match_len = 0;
338 		}
339 
340 		/* Find first occurrence in subie */
341 		sub = cfg80211_find_elem_match(id, subie, subie_len,
342 					       &ext_id, match_len, 0);
343 
344 		/* Copy from parent if not in subie and inherited */
345 		if (!sub &&
346 		    cfg80211_is_element_inherited(parent, non_inherit_elem)) {
347 			if (!cfg80211_copy_elem_with_frags(parent,
348 							   ie, ielen,
349 							   &pos, new_ie,
350 							   new_ie_len))
351 				return 0;
352 
353 			continue;
354 		}
355 
356 		/* Already copied if an earlier element had the same type */
357 		if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
358 					     &ext_id, match_len, 0))
359 			continue;
360 
361 		/* Not inheriting, copy all similar elements from subie */
362 		while (sub) {
363 			if (!cfg80211_copy_elem_with_frags(sub,
364 							   subie, subie_len,
365 							   &pos, new_ie,
366 							   new_ie_len))
367 				return 0;
368 
369 			sub = cfg80211_find_elem_match(id,
370 						       sub->data + sub->datalen,
371 						       subie_len + subie -
372 						       (sub->data +
373 							sub->datalen),
374 						       &ext_id, match_len, 0);
375 		}
376 	}
377 
378 	/* The above misses elements that are included in subie but not in the
379 	 * parent, so do a pass over subie and append those.
380 	 * Skip the non-tx BSSID caps and non-inheritance element.
381 	 */
382 	for_each_element(sub, subie, subie_len) {
383 		if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
384 			continue;
385 
386 		if (sub->id == WLAN_EID_FRAGMENT)
387 			continue;
388 
389 		if (sub->id == WLAN_EID_EXTENSION) {
390 			if (sub->datalen < 1)
391 				continue;
392 
393 			id = WLAN_EID_EXTENSION;
394 			ext_id = sub->data[0];
395 			match_len = 1;
396 
397 			if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
398 				continue;
399 		} else {
400 			id = sub->id;
401 			match_len = 0;
402 		}
403 
404 		/* Processed if one was included in the parent */
405 		if (cfg80211_find_elem_match(id, ie, ielen,
406 					     &ext_id, match_len, 0))
407 			continue;
408 
409 		if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
410 						   &pos, new_ie, new_ie_len))
411 			return 0;
412 	}
413 
414 	return pos - new_ie;
415 }
416 
417 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
418 		   const u8 *ssid, size_t ssid_len)
419 {
420 	const struct cfg80211_bss_ies *ies;
421 	const struct element *ssid_elem;
422 
423 	if (bssid && !ether_addr_equal(a->bssid, bssid))
424 		return false;
425 
426 	if (!ssid)
427 		return true;
428 
429 	ies = rcu_access_pointer(a->ies);
430 	if (!ies)
431 		return false;
432 	ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
433 	if (!ssid_elem)
434 		return false;
435 	if (ssid_elem->datalen != ssid_len)
436 		return false;
437 	return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
438 }
439 
440 static int
441 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
442 			   struct cfg80211_bss *nontrans_bss)
443 {
444 	const struct element *ssid_elem;
445 	struct cfg80211_bss *bss = NULL;
446 
447 	rcu_read_lock();
448 	ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
449 	if (!ssid_elem) {
450 		rcu_read_unlock();
451 		return -EINVAL;
452 	}
453 
454 	/* check if nontrans_bss is in the list */
455 	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
456 		if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
457 			   ssid_elem->datalen)) {
458 			rcu_read_unlock();
459 			return 0;
460 		}
461 	}
462 
463 	rcu_read_unlock();
464 
465 	/*
466 	 * This is a bit weird - it's not on the list, but already on another
467 	 * one! The only way that could happen is if there's some BSSID/SSID
468 	 * shared by multiple APs in their multi-BSSID profiles, potentially
469 	 * with hidden SSID mixed in ... ignore it.
470 	 */
471 	if (!list_empty(&nontrans_bss->nontrans_list))
472 		return -EINVAL;
473 
474 	/* add to the list */
475 	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
476 	return 0;
477 }
478 
479 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
480 				  unsigned long expire_time)
481 {
482 	struct cfg80211_internal_bss *bss, *tmp;
483 	bool expired = false;
484 
485 	lockdep_assert_held(&rdev->bss_lock);
486 
487 	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
488 		if (atomic_read(&bss->hold))
489 			continue;
490 		if (!time_after(expire_time, bss->ts))
491 			continue;
492 
493 		if (__cfg80211_unlink_bss(rdev, bss))
494 			expired = true;
495 	}
496 
497 	if (expired)
498 		rdev->bss_generation++;
499 }
500 
501 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
502 {
503 	struct cfg80211_internal_bss *bss, *oldest = NULL;
504 	bool ret;
505 
506 	lockdep_assert_held(&rdev->bss_lock);
507 
508 	list_for_each_entry(bss, &rdev->bss_list, list) {
509 		if (atomic_read(&bss->hold))
510 			continue;
511 
512 		if (!list_empty(&bss->hidden_list) &&
513 		    !bss->pub.hidden_beacon_bss)
514 			continue;
515 
516 		if (oldest && time_before(oldest->ts, bss->ts))
517 			continue;
518 		oldest = bss;
519 	}
520 
521 	if (WARN_ON(!oldest))
522 		return false;
523 
524 	/*
525 	 * The callers make sure to increase rdev->bss_generation if anything
526 	 * gets removed (and a new entry added), so there's no need to also do
527 	 * it here.
528 	 */
529 
530 	ret = __cfg80211_unlink_bss(rdev, oldest);
531 	WARN_ON(!ret);
532 	return ret;
533 }
534 
535 static u8 cfg80211_parse_bss_param(u8 data,
536 				   struct cfg80211_colocated_ap *coloc_ap)
537 {
538 	coloc_ap->oct_recommended =
539 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
540 	coloc_ap->same_ssid =
541 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
542 	coloc_ap->multi_bss =
543 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
544 	coloc_ap->transmitted_bssid =
545 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
546 	coloc_ap->unsolicited_probe =
547 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
548 	coloc_ap->colocated_ess =
549 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
550 
551 	return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
552 }
553 
554 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
555 				    const struct element **elem, u32 *s_ssid)
556 {
557 
558 	*elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
559 	if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
560 		return -EINVAL;
561 
562 	*s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
563 	return 0;
564 }
565 
566 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
567 {
568 	struct cfg80211_colocated_ap *ap, *tmp_ap;
569 
570 	list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
571 		list_del(&ap->list);
572 		kfree(ap);
573 	}
574 }
575 
576 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
577 				  const u8 *pos, u8 length,
578 				  const struct element *ssid_elem,
579 				  u32 s_ssid_tmp)
580 {
581 	u8 bss_params;
582 
583 	entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
584 
585 	/* The length is already verified by the caller to contain bss_params */
586 	if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
587 		struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
588 
589 		memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
590 		entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
591 		entry->short_ssid_valid = true;
592 
593 		bss_params = tbtt_info->bss_params;
594 
595 		/* Ignore disabled links */
596 		if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
597 			if (le16_get_bits(tbtt_info->mld_params.params,
598 					  IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
599 				return -EINVAL;
600 		}
601 
602 		if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
603 					  psd_20))
604 			entry->psd_20 = tbtt_info->psd_20;
605 	} else {
606 		struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
607 
608 		memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
609 
610 		bss_params = tbtt_info->bss_params;
611 
612 		if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
613 					  psd_20))
614 			entry->psd_20 = tbtt_info->psd_20;
615 	}
616 
617 	/* ignore entries with invalid BSSID */
618 	if (!is_valid_ether_addr(entry->bssid))
619 		return -EINVAL;
620 
621 	/* skip non colocated APs */
622 	if (!cfg80211_parse_bss_param(bss_params, entry))
623 		return -EINVAL;
624 
625 	/* no information about the short ssid. Consider the entry valid
626 	 * for now. It would later be dropped in case there are explicit
627 	 * SSIDs that need to be matched
628 	 */
629 	if (!entry->same_ssid && !entry->short_ssid_valid)
630 		return 0;
631 
632 	if (entry->same_ssid) {
633 		entry->short_ssid = s_ssid_tmp;
634 		entry->short_ssid_valid = true;
635 
636 		/*
637 		 * This is safe because we validate datalen in
638 		 * cfg80211_parse_colocated_ap(), before calling this
639 		 * function.
640 		 */
641 		memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
642 		entry->ssid_len = ssid_elem->datalen;
643 	}
644 
645 	return 0;
646 }
647 
648 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
649 				       struct list_head *list)
650 {
651 	struct ieee80211_neighbor_ap_info *ap_info;
652 	const struct element *elem, *ssid_elem;
653 	const u8 *pos, *end;
654 	u32 s_ssid_tmp;
655 	int n_coloc = 0, ret;
656 	LIST_HEAD(ap_list);
657 
658 	ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
659 	if (ret)
660 		return 0;
661 
662 	for_each_element_id(elem, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
663 			    ies->data, ies->len) {
664 		pos = elem->data;
665 		end = elem->data + elem->datalen;
666 
667 		/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
668 		while (pos + sizeof(*ap_info) <= end) {
669 			enum nl80211_band band;
670 			int freq;
671 			u8 length, i, count;
672 
673 			ap_info = (void *)pos;
674 			count = u8_get_bits(ap_info->tbtt_info_hdr,
675 					    IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
676 			length = ap_info->tbtt_info_len;
677 
678 			pos += sizeof(*ap_info);
679 
680 			if (!ieee80211_operating_class_to_band(ap_info->op_class,
681 							       &band))
682 				break;
683 
684 			freq = ieee80211_channel_to_frequency(ap_info->channel,
685 							      band);
686 
687 			if (end - pos < count * length)
688 				break;
689 
690 			if (u8_get_bits(ap_info->tbtt_info_hdr,
691 					IEEE80211_AP_INFO_TBTT_HDR_TYPE) !=
692 			    IEEE80211_TBTT_INFO_TYPE_TBTT) {
693 				pos += count * length;
694 				continue;
695 			}
696 
697 			/* TBTT info must include bss param + BSSID +
698 			 * (short SSID or same_ssid bit to be set).
699 			 * ignore other options, and move to the
700 			 * next AP info
701 			 */
702 			if (band != NL80211_BAND_6GHZ ||
703 			    !(length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
704 						    bss_params) ||
705 			      length == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
706 			      length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
707 						    bss_params))) {
708 				pos += count * length;
709 				continue;
710 			}
711 
712 			for (i = 0; i < count; i++) {
713 				struct cfg80211_colocated_ap *entry;
714 
715 				entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
716 						GFP_ATOMIC);
717 
718 				if (!entry)
719 					goto error;
720 
721 				entry->center_freq = freq;
722 
723 				if (!cfg80211_parse_ap_info(entry, pos, length,
724 							    ssid_elem,
725 							    s_ssid_tmp)) {
726 					n_coloc++;
727 					list_add_tail(&entry->list, &ap_list);
728 				} else {
729 					kfree(entry);
730 				}
731 
732 				pos += length;
733 			}
734 		}
735 
736 error:
737 		if (pos != end) {
738 			cfg80211_free_coloc_ap_list(&ap_list);
739 			return 0;
740 		}
741 	}
742 
743 	list_splice_tail(&ap_list, list);
744 	return n_coloc;
745 }
746 
747 static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
748 					struct ieee80211_channel *chan,
749 					bool add_to_6ghz)
750 {
751 	int i;
752 	u32 n_channels = request->n_channels;
753 	struct cfg80211_scan_6ghz_params *params =
754 		&request->scan_6ghz_params[request->n_6ghz_params];
755 
756 	for (i = 0; i < n_channels; i++) {
757 		if (request->channels[i] == chan) {
758 			if (add_to_6ghz)
759 				params->channel_idx = i;
760 			return;
761 		}
762 	}
763 
764 	request->channels[n_channels] = chan;
765 	if (add_to_6ghz)
766 		request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
767 			n_channels;
768 
769 	request->n_channels++;
770 }
771 
772 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
773 				     struct cfg80211_scan_request *request)
774 {
775 	int i;
776 	u32 s_ssid;
777 
778 	for (i = 0; i < request->n_ssids; i++) {
779 		/* wildcard ssid in the scan request */
780 		if (!request->ssids[i].ssid_len) {
781 			if (ap->multi_bss && !ap->transmitted_bssid)
782 				continue;
783 
784 			return true;
785 		}
786 
787 		if (ap->ssid_len &&
788 		    ap->ssid_len == request->ssids[i].ssid_len) {
789 			if (!memcmp(request->ssids[i].ssid, ap->ssid,
790 				    ap->ssid_len))
791 				return true;
792 		} else if (ap->short_ssid_valid) {
793 			s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
794 					   request->ssids[i].ssid_len);
795 
796 			if (ap->short_ssid == s_ssid)
797 				return true;
798 		}
799 	}
800 
801 	return false;
802 }
803 
804 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
805 {
806 	u8 i;
807 	struct cfg80211_colocated_ap *ap;
808 	int n_channels, count = 0, err;
809 	struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
810 	LIST_HEAD(coloc_ap_list);
811 	bool need_scan_psc = true;
812 	const struct ieee80211_sband_iftype_data *iftd;
813 
814 	rdev_req->scan_6ghz = true;
815 
816 	if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
817 		return -EOPNOTSUPP;
818 
819 	iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
820 					       rdev_req->wdev->iftype);
821 	if (!iftd || !iftd->he_cap.has_he)
822 		return -EOPNOTSUPP;
823 
824 	n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
825 
826 	if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
827 		struct cfg80211_internal_bss *intbss;
828 
829 		spin_lock_bh(&rdev->bss_lock);
830 		list_for_each_entry(intbss, &rdev->bss_list, list) {
831 			struct cfg80211_bss *res = &intbss->pub;
832 			const struct cfg80211_bss_ies *ies;
833 
834 			ies = rcu_access_pointer(res->ies);
835 			count += cfg80211_parse_colocated_ap(ies,
836 							     &coloc_ap_list);
837 		}
838 		spin_unlock_bh(&rdev->bss_lock);
839 	}
840 
841 	request = kzalloc(struct_size(request, channels, n_channels) +
842 			  sizeof(*request->scan_6ghz_params) * count +
843 			  sizeof(*request->ssids) * rdev_req->n_ssids,
844 			  GFP_KERNEL);
845 	if (!request) {
846 		cfg80211_free_coloc_ap_list(&coloc_ap_list);
847 		return -ENOMEM;
848 	}
849 
850 	*request = *rdev_req;
851 	request->n_channels = 0;
852 	request->scan_6ghz_params =
853 		(void *)&request->channels[n_channels];
854 
855 	/*
856 	 * PSC channels should not be scanned in case of direct scan with 1 SSID
857 	 * and at least one of the reported co-located APs with same SSID
858 	 * indicating that all APs in the same ESS are co-located
859 	 */
860 	if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
861 		list_for_each_entry(ap, &coloc_ap_list, list) {
862 			if (ap->colocated_ess &&
863 			    cfg80211_find_ssid_match(ap, request)) {
864 				need_scan_psc = false;
865 				break;
866 			}
867 		}
868 	}
869 
870 	/*
871 	 * add to the scan request the channels that need to be scanned
872 	 * regardless of the collocated APs (PSC channels or all channels
873 	 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
874 	 */
875 	for (i = 0; i < rdev_req->n_channels; i++) {
876 		if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
877 		    ((need_scan_psc &&
878 		      cfg80211_channel_is_psc(rdev_req->channels[i])) ||
879 		     !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
880 			cfg80211_scan_req_add_chan(request,
881 						   rdev_req->channels[i],
882 						   false);
883 		}
884 	}
885 
886 	if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
887 		goto skip;
888 
889 	list_for_each_entry(ap, &coloc_ap_list, list) {
890 		bool found = false;
891 		struct cfg80211_scan_6ghz_params *scan_6ghz_params =
892 			&request->scan_6ghz_params[request->n_6ghz_params];
893 		struct ieee80211_channel *chan =
894 			ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
895 
896 		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
897 			continue;
898 
899 		for (i = 0; i < rdev_req->n_channels; i++) {
900 			if (rdev_req->channels[i] == chan)
901 				found = true;
902 		}
903 
904 		if (!found)
905 			continue;
906 
907 		if (request->n_ssids > 0 &&
908 		    !cfg80211_find_ssid_match(ap, request))
909 			continue;
910 
911 		if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
912 			continue;
913 
914 		cfg80211_scan_req_add_chan(request, chan, true);
915 		memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
916 		scan_6ghz_params->short_ssid = ap->short_ssid;
917 		scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
918 		scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
919 		scan_6ghz_params->psd_20 = ap->psd_20;
920 
921 		/*
922 		 * If a PSC channel is added to the scan and 'need_scan_psc' is
923 		 * set to false, then all the APs that the scan logic is
924 		 * interested with on the channel are collocated and thus there
925 		 * is no need to perform the initial PSC channel listen.
926 		 */
927 		if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
928 			scan_6ghz_params->psc_no_listen = true;
929 
930 		request->n_6ghz_params++;
931 	}
932 
933 skip:
934 	cfg80211_free_coloc_ap_list(&coloc_ap_list);
935 
936 	if (request->n_channels) {
937 		struct cfg80211_scan_request *old = rdev->int_scan_req;
938 		rdev->int_scan_req = request;
939 
940 		/*
941 		 * Add the ssids from the parent scan request to the new scan
942 		 * request, so the driver would be able to use them in its
943 		 * probe requests to discover hidden APs on PSC channels.
944 		 */
945 		request->ssids = (void *)&request->channels[request->n_channels];
946 		request->n_ssids = rdev_req->n_ssids;
947 		memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
948 		       request->n_ssids);
949 
950 		/*
951 		 * If this scan follows a previous scan, save the scan start
952 		 * info from the first part of the scan
953 		 */
954 		if (old)
955 			rdev->int_scan_req->info = old->info;
956 
957 		err = rdev_scan(rdev, request);
958 		if (err) {
959 			rdev->int_scan_req = old;
960 			kfree(request);
961 		} else {
962 			kfree(old);
963 		}
964 
965 		return err;
966 	}
967 
968 	kfree(request);
969 	return -EINVAL;
970 }
971 
972 int cfg80211_scan(struct cfg80211_registered_device *rdev)
973 {
974 	struct cfg80211_scan_request *request;
975 	struct cfg80211_scan_request *rdev_req = rdev->scan_req;
976 	u32 n_channels = 0, idx, i;
977 
978 	if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
979 		return rdev_scan(rdev, rdev_req);
980 
981 	for (i = 0; i < rdev_req->n_channels; i++) {
982 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
983 			n_channels++;
984 	}
985 
986 	if (!n_channels)
987 		return cfg80211_scan_6ghz(rdev);
988 
989 	request = kzalloc(struct_size(request, channels, n_channels),
990 			  GFP_KERNEL);
991 	if (!request)
992 		return -ENOMEM;
993 
994 	*request = *rdev_req;
995 	request->n_channels = n_channels;
996 
997 	for (i = idx = 0; i < rdev_req->n_channels; i++) {
998 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
999 			request->channels[idx++] = rdev_req->channels[i];
1000 	}
1001 
1002 	rdev_req->scan_6ghz = false;
1003 	rdev->int_scan_req = request;
1004 	return rdev_scan(rdev, request);
1005 }
1006 
1007 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1008 			   bool send_message)
1009 {
1010 	struct cfg80211_scan_request *request, *rdev_req;
1011 	struct wireless_dev *wdev;
1012 	struct sk_buff *msg;
1013 #ifdef CONFIG_CFG80211_WEXT
1014 	union iwreq_data wrqu;
1015 #endif
1016 
1017 	lockdep_assert_held(&rdev->wiphy.mtx);
1018 
1019 	if (rdev->scan_msg) {
1020 		nl80211_send_scan_msg(rdev, rdev->scan_msg);
1021 		rdev->scan_msg = NULL;
1022 		return;
1023 	}
1024 
1025 	rdev_req = rdev->scan_req;
1026 	if (!rdev_req)
1027 		return;
1028 
1029 	wdev = rdev_req->wdev;
1030 	request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1031 
1032 	if (wdev_running(wdev) &&
1033 	    (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1034 	    !rdev_req->scan_6ghz && !request->info.aborted &&
1035 	    !cfg80211_scan_6ghz(rdev))
1036 		return;
1037 
1038 	/*
1039 	 * This must be before sending the other events!
1040 	 * Otherwise, wpa_supplicant gets completely confused with
1041 	 * wext events.
1042 	 */
1043 	if (wdev->netdev)
1044 		cfg80211_sme_scan_done(wdev->netdev);
1045 
1046 	if (!request->info.aborted &&
1047 	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
1048 		/* flush entries from previous scans */
1049 		spin_lock_bh(&rdev->bss_lock);
1050 		__cfg80211_bss_expire(rdev, request->scan_start);
1051 		spin_unlock_bh(&rdev->bss_lock);
1052 	}
1053 
1054 	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1055 
1056 #ifdef CONFIG_CFG80211_WEXT
1057 	if (wdev->netdev && !request->info.aborted) {
1058 		memset(&wrqu, 0, sizeof(wrqu));
1059 
1060 		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1061 	}
1062 #endif
1063 
1064 	dev_put(wdev->netdev);
1065 
1066 	kfree(rdev->int_scan_req);
1067 	rdev->int_scan_req = NULL;
1068 
1069 	kfree(rdev->scan_req);
1070 	rdev->scan_req = NULL;
1071 
1072 	if (!send_message)
1073 		rdev->scan_msg = msg;
1074 	else
1075 		nl80211_send_scan_msg(rdev, msg);
1076 }
1077 
1078 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1079 {
1080 	___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1081 }
1082 
1083 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1084 			struct cfg80211_scan_info *info)
1085 {
1086 	struct cfg80211_scan_info old_info = request->info;
1087 
1088 	trace_cfg80211_scan_done(request, info);
1089 	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1090 		request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1091 
1092 	request->info = *info;
1093 
1094 	/*
1095 	 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1096 	 * be of the first part. In such a case old_info.scan_start_tsf should
1097 	 * be non zero.
1098 	 */
1099 	if (request->scan_6ghz && old_info.scan_start_tsf) {
1100 		request->info.scan_start_tsf = old_info.scan_start_tsf;
1101 		memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1102 		       sizeof(request->info.tsf_bssid));
1103 	}
1104 
1105 	request->notified = true;
1106 	wiphy_work_queue(request->wiphy,
1107 			 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1108 }
1109 EXPORT_SYMBOL(cfg80211_scan_done);
1110 
1111 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1112 				 struct cfg80211_sched_scan_request *req)
1113 {
1114 	lockdep_assert_held(&rdev->wiphy.mtx);
1115 
1116 	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1117 }
1118 
1119 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1120 					struct cfg80211_sched_scan_request *req)
1121 {
1122 	lockdep_assert_held(&rdev->wiphy.mtx);
1123 
1124 	list_del_rcu(&req->list);
1125 	kfree_rcu(req, rcu_head);
1126 }
1127 
1128 static struct cfg80211_sched_scan_request *
1129 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1130 {
1131 	struct cfg80211_sched_scan_request *pos;
1132 
1133 	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1134 				lockdep_is_held(&rdev->wiphy.mtx)) {
1135 		if (pos->reqid == reqid)
1136 			return pos;
1137 	}
1138 	return NULL;
1139 }
1140 
1141 /*
1142  * Determines if a scheduled scan request can be handled. When a legacy
1143  * scheduled scan is running no other scheduled scan is allowed regardless
1144  * whether the request is for legacy or multi-support scan. When a multi-support
1145  * scheduled scan is running a request for legacy scan is not allowed. In this
1146  * case a request for multi-support scan can be handled if resources are
1147  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1148  */
1149 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1150 				     bool want_multi)
1151 {
1152 	struct cfg80211_sched_scan_request *pos;
1153 	int i = 0;
1154 
1155 	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1156 		/* request id zero means legacy in progress */
1157 		if (!i && !pos->reqid)
1158 			return -EINPROGRESS;
1159 		i++;
1160 	}
1161 
1162 	if (i) {
1163 		/* no legacy allowed when multi request(s) are active */
1164 		if (!want_multi)
1165 			return -EINPROGRESS;
1166 
1167 		/* resource limit reached */
1168 		if (i == rdev->wiphy.max_sched_scan_reqs)
1169 			return -ENOSPC;
1170 	}
1171 	return 0;
1172 }
1173 
1174 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1175 {
1176 	struct cfg80211_registered_device *rdev;
1177 	struct cfg80211_sched_scan_request *req, *tmp;
1178 
1179 	rdev = container_of(work, struct cfg80211_registered_device,
1180 			   sched_scan_res_wk);
1181 
1182 	wiphy_lock(&rdev->wiphy);
1183 	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1184 		if (req->report_results) {
1185 			req->report_results = false;
1186 			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1187 				/* flush entries from previous scans */
1188 				spin_lock_bh(&rdev->bss_lock);
1189 				__cfg80211_bss_expire(rdev, req->scan_start);
1190 				spin_unlock_bh(&rdev->bss_lock);
1191 				req->scan_start = jiffies;
1192 			}
1193 			nl80211_send_sched_scan(req,
1194 						NL80211_CMD_SCHED_SCAN_RESULTS);
1195 		}
1196 	}
1197 	wiphy_unlock(&rdev->wiphy);
1198 }
1199 
1200 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1201 {
1202 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1203 	struct cfg80211_sched_scan_request *request;
1204 
1205 	trace_cfg80211_sched_scan_results(wiphy, reqid);
1206 	/* ignore if we're not scanning */
1207 
1208 	rcu_read_lock();
1209 	request = cfg80211_find_sched_scan_req(rdev, reqid);
1210 	if (request) {
1211 		request->report_results = true;
1212 		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1213 	}
1214 	rcu_read_unlock();
1215 }
1216 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1217 
1218 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1219 {
1220 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1221 
1222 	lockdep_assert_held(&wiphy->mtx);
1223 
1224 	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1225 
1226 	__cfg80211_stop_sched_scan(rdev, reqid, true);
1227 }
1228 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1229 
1230 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1231 {
1232 	wiphy_lock(wiphy);
1233 	cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1234 	wiphy_unlock(wiphy);
1235 }
1236 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1237 
1238 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1239 				 struct cfg80211_sched_scan_request *req,
1240 				 bool driver_initiated)
1241 {
1242 	lockdep_assert_held(&rdev->wiphy.mtx);
1243 
1244 	if (!driver_initiated) {
1245 		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1246 		if (err)
1247 			return err;
1248 	}
1249 
1250 	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1251 
1252 	cfg80211_del_sched_scan_req(rdev, req);
1253 
1254 	return 0;
1255 }
1256 
1257 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1258 			       u64 reqid, bool driver_initiated)
1259 {
1260 	struct cfg80211_sched_scan_request *sched_scan_req;
1261 
1262 	lockdep_assert_held(&rdev->wiphy.mtx);
1263 
1264 	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1265 	if (!sched_scan_req)
1266 		return -ENOENT;
1267 
1268 	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1269 					    driver_initiated);
1270 }
1271 
1272 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1273                       unsigned long age_secs)
1274 {
1275 	struct cfg80211_internal_bss *bss;
1276 	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1277 
1278 	spin_lock_bh(&rdev->bss_lock);
1279 	list_for_each_entry(bss, &rdev->bss_list, list)
1280 		bss->ts -= age_jiffies;
1281 	spin_unlock_bh(&rdev->bss_lock);
1282 }
1283 
1284 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1285 {
1286 	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1287 }
1288 
1289 void cfg80211_bss_flush(struct wiphy *wiphy)
1290 {
1291 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1292 
1293 	spin_lock_bh(&rdev->bss_lock);
1294 	__cfg80211_bss_expire(rdev, jiffies);
1295 	spin_unlock_bh(&rdev->bss_lock);
1296 }
1297 EXPORT_SYMBOL(cfg80211_bss_flush);
1298 
1299 const struct element *
1300 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1301 			 const u8 *match, unsigned int match_len,
1302 			 unsigned int match_offset)
1303 {
1304 	const struct element *elem;
1305 
1306 	for_each_element_id(elem, eid, ies, len) {
1307 		if (elem->datalen >= match_offset + match_len &&
1308 		    !memcmp(elem->data + match_offset, match, match_len))
1309 			return elem;
1310 	}
1311 
1312 	return NULL;
1313 }
1314 EXPORT_SYMBOL(cfg80211_find_elem_match);
1315 
1316 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1317 						const u8 *ies,
1318 						unsigned int len)
1319 {
1320 	const struct element *elem;
1321 	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1322 	int match_len = (oui_type < 0) ? 3 : sizeof(match);
1323 
1324 	if (WARN_ON(oui_type > 0xff))
1325 		return NULL;
1326 
1327 	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1328 					match, match_len, 0);
1329 
1330 	if (!elem || elem->datalen < 4)
1331 		return NULL;
1332 
1333 	return elem;
1334 }
1335 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1336 
1337 /**
1338  * enum bss_compare_mode - BSS compare mode
1339  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1340  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1341  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1342  */
1343 enum bss_compare_mode {
1344 	BSS_CMP_REGULAR,
1345 	BSS_CMP_HIDE_ZLEN,
1346 	BSS_CMP_HIDE_NUL,
1347 };
1348 
1349 static int cmp_bss(struct cfg80211_bss *a,
1350 		   struct cfg80211_bss *b,
1351 		   enum bss_compare_mode mode)
1352 {
1353 	const struct cfg80211_bss_ies *a_ies, *b_ies;
1354 	const u8 *ie1 = NULL;
1355 	const u8 *ie2 = NULL;
1356 	int i, r;
1357 
1358 	if (a->channel != b->channel)
1359 		return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1360 		       (a->channel->center_freq * 1000 + a->channel->freq_offset);
1361 
1362 	a_ies = rcu_access_pointer(a->ies);
1363 	if (!a_ies)
1364 		return -1;
1365 	b_ies = rcu_access_pointer(b->ies);
1366 	if (!b_ies)
1367 		return 1;
1368 
1369 	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1370 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1371 				       a_ies->data, a_ies->len);
1372 	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1373 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1374 				       b_ies->data, b_ies->len);
1375 	if (ie1 && ie2) {
1376 		int mesh_id_cmp;
1377 
1378 		if (ie1[1] == ie2[1])
1379 			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1380 		else
1381 			mesh_id_cmp = ie2[1] - ie1[1];
1382 
1383 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1384 				       a_ies->data, a_ies->len);
1385 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1386 				       b_ies->data, b_ies->len);
1387 		if (ie1 && ie2) {
1388 			if (mesh_id_cmp)
1389 				return mesh_id_cmp;
1390 			if (ie1[1] != ie2[1])
1391 				return ie2[1] - ie1[1];
1392 			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1393 		}
1394 	}
1395 
1396 	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1397 	if (r)
1398 		return r;
1399 
1400 	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1401 	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1402 
1403 	if (!ie1 && !ie2)
1404 		return 0;
1405 
1406 	/*
1407 	 * Note that with "hide_ssid", the function returns a match if
1408 	 * the already-present BSS ("b") is a hidden SSID beacon for
1409 	 * the new BSS ("a").
1410 	 */
1411 
1412 	/* sort missing IE before (left of) present IE */
1413 	if (!ie1)
1414 		return -1;
1415 	if (!ie2)
1416 		return 1;
1417 
1418 	switch (mode) {
1419 	case BSS_CMP_HIDE_ZLEN:
1420 		/*
1421 		 * In ZLEN mode we assume the BSS entry we're
1422 		 * looking for has a zero-length SSID. So if
1423 		 * the one we're looking at right now has that,
1424 		 * return 0. Otherwise, return the difference
1425 		 * in length, but since we're looking for the
1426 		 * 0-length it's really equivalent to returning
1427 		 * the length of the one we're looking at.
1428 		 *
1429 		 * No content comparison is needed as we assume
1430 		 * the content length is zero.
1431 		 */
1432 		return ie2[1];
1433 	case BSS_CMP_REGULAR:
1434 	default:
1435 		/* sort by length first, then by contents */
1436 		if (ie1[1] != ie2[1])
1437 			return ie2[1] - ie1[1];
1438 		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1439 	case BSS_CMP_HIDE_NUL:
1440 		if (ie1[1] != ie2[1])
1441 			return ie2[1] - ie1[1];
1442 		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1443 		for (i = 0; i < ie2[1]; i++)
1444 			if (ie2[i + 2])
1445 				return -1;
1446 		return 0;
1447 	}
1448 }
1449 
1450 static bool cfg80211_bss_type_match(u16 capability,
1451 				    enum nl80211_band band,
1452 				    enum ieee80211_bss_type bss_type)
1453 {
1454 	bool ret = true;
1455 	u16 mask, val;
1456 
1457 	if (bss_type == IEEE80211_BSS_TYPE_ANY)
1458 		return ret;
1459 
1460 	if (band == NL80211_BAND_60GHZ) {
1461 		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1462 		switch (bss_type) {
1463 		case IEEE80211_BSS_TYPE_ESS:
1464 			val = WLAN_CAPABILITY_DMG_TYPE_AP;
1465 			break;
1466 		case IEEE80211_BSS_TYPE_PBSS:
1467 			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1468 			break;
1469 		case IEEE80211_BSS_TYPE_IBSS:
1470 			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1471 			break;
1472 		default:
1473 			return false;
1474 		}
1475 	} else {
1476 		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1477 		switch (bss_type) {
1478 		case IEEE80211_BSS_TYPE_ESS:
1479 			val = WLAN_CAPABILITY_ESS;
1480 			break;
1481 		case IEEE80211_BSS_TYPE_IBSS:
1482 			val = WLAN_CAPABILITY_IBSS;
1483 			break;
1484 		case IEEE80211_BSS_TYPE_MBSS:
1485 			val = 0;
1486 			break;
1487 		default:
1488 			return false;
1489 		}
1490 	}
1491 
1492 	ret = ((capability & mask) == val);
1493 	return ret;
1494 }
1495 
1496 /* Returned bss is reference counted and must be cleaned up appropriately. */
1497 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1498 				      struct ieee80211_channel *channel,
1499 				      const u8 *bssid,
1500 				      const u8 *ssid, size_t ssid_len,
1501 				      enum ieee80211_bss_type bss_type,
1502 				      enum ieee80211_privacy privacy)
1503 {
1504 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1505 	struct cfg80211_internal_bss *bss, *res = NULL;
1506 	unsigned long now = jiffies;
1507 	int bss_privacy;
1508 
1509 	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1510 			       privacy);
1511 
1512 	spin_lock_bh(&rdev->bss_lock);
1513 
1514 	list_for_each_entry(bss, &rdev->bss_list, list) {
1515 		if (!cfg80211_bss_type_match(bss->pub.capability,
1516 					     bss->pub.channel->band, bss_type))
1517 			continue;
1518 
1519 		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1520 		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1521 		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1522 			continue;
1523 		if (channel && bss->pub.channel != channel)
1524 			continue;
1525 		if (!is_valid_ether_addr(bss->pub.bssid))
1526 			continue;
1527 		/* Don't get expired BSS structs */
1528 		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1529 		    !atomic_read(&bss->hold))
1530 			continue;
1531 		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1532 			res = bss;
1533 			bss_ref_get(rdev, res);
1534 			break;
1535 		}
1536 	}
1537 
1538 	spin_unlock_bh(&rdev->bss_lock);
1539 	if (!res)
1540 		return NULL;
1541 	trace_cfg80211_return_bss(&res->pub);
1542 	return &res->pub;
1543 }
1544 EXPORT_SYMBOL(cfg80211_get_bss);
1545 
1546 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1547 			  struct cfg80211_internal_bss *bss)
1548 {
1549 	struct rb_node **p = &rdev->bss_tree.rb_node;
1550 	struct rb_node *parent = NULL;
1551 	struct cfg80211_internal_bss *tbss;
1552 	int cmp;
1553 
1554 	while (*p) {
1555 		parent = *p;
1556 		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1557 
1558 		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1559 
1560 		if (WARN_ON(!cmp)) {
1561 			/* will sort of leak this BSS */
1562 			return;
1563 		}
1564 
1565 		if (cmp < 0)
1566 			p = &(*p)->rb_left;
1567 		else
1568 			p = &(*p)->rb_right;
1569 	}
1570 
1571 	rb_link_node(&bss->rbn, parent, p);
1572 	rb_insert_color(&bss->rbn, &rdev->bss_tree);
1573 }
1574 
1575 static struct cfg80211_internal_bss *
1576 rb_find_bss(struct cfg80211_registered_device *rdev,
1577 	    struct cfg80211_internal_bss *res,
1578 	    enum bss_compare_mode mode)
1579 {
1580 	struct rb_node *n = rdev->bss_tree.rb_node;
1581 	struct cfg80211_internal_bss *bss;
1582 	int r;
1583 
1584 	while (n) {
1585 		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1586 		r = cmp_bss(&res->pub, &bss->pub, mode);
1587 
1588 		if (r == 0)
1589 			return bss;
1590 		else if (r < 0)
1591 			n = n->rb_left;
1592 		else
1593 			n = n->rb_right;
1594 	}
1595 
1596 	return NULL;
1597 }
1598 
1599 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1600 				   struct cfg80211_internal_bss *new)
1601 {
1602 	const struct cfg80211_bss_ies *ies;
1603 	struct cfg80211_internal_bss *bss;
1604 	const u8 *ie;
1605 	int i, ssidlen;
1606 	u8 fold = 0;
1607 	u32 n_entries = 0;
1608 
1609 	ies = rcu_access_pointer(new->pub.beacon_ies);
1610 	if (WARN_ON(!ies))
1611 		return false;
1612 
1613 	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1614 	if (!ie) {
1615 		/* nothing to do */
1616 		return true;
1617 	}
1618 
1619 	ssidlen = ie[1];
1620 	for (i = 0; i < ssidlen; i++)
1621 		fold |= ie[2 + i];
1622 
1623 	if (fold) {
1624 		/* not a hidden SSID */
1625 		return true;
1626 	}
1627 
1628 	/* This is the bad part ... */
1629 
1630 	list_for_each_entry(bss, &rdev->bss_list, list) {
1631 		/*
1632 		 * we're iterating all the entries anyway, so take the
1633 		 * opportunity to validate the list length accounting
1634 		 */
1635 		n_entries++;
1636 
1637 		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1638 			continue;
1639 		if (bss->pub.channel != new->pub.channel)
1640 			continue;
1641 		if (bss->pub.scan_width != new->pub.scan_width)
1642 			continue;
1643 		if (rcu_access_pointer(bss->pub.beacon_ies))
1644 			continue;
1645 		ies = rcu_access_pointer(bss->pub.ies);
1646 		if (!ies)
1647 			continue;
1648 		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1649 		if (!ie)
1650 			continue;
1651 		if (ssidlen && ie[1] != ssidlen)
1652 			continue;
1653 		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1654 			continue;
1655 		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1656 			list_del(&bss->hidden_list);
1657 		/* combine them */
1658 		list_add(&bss->hidden_list, &new->hidden_list);
1659 		bss->pub.hidden_beacon_bss = &new->pub;
1660 		new->refcount += bss->refcount;
1661 		rcu_assign_pointer(bss->pub.beacon_ies,
1662 				   new->pub.beacon_ies);
1663 	}
1664 
1665 	WARN_ONCE(n_entries != rdev->bss_entries,
1666 		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1667 		  rdev->bss_entries, n_entries);
1668 
1669 	return true;
1670 }
1671 
1672 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1673 					 const struct cfg80211_bss_ies *new_ies,
1674 					 const struct cfg80211_bss_ies *old_ies)
1675 {
1676 	struct cfg80211_internal_bss *bss;
1677 
1678 	/* Assign beacon IEs to all sub entries */
1679 	list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1680 		const struct cfg80211_bss_ies *ies;
1681 
1682 		ies = rcu_access_pointer(bss->pub.beacon_ies);
1683 		WARN_ON(ies != old_ies);
1684 
1685 		rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1686 	}
1687 }
1688 
1689 static bool
1690 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1691 			  struct cfg80211_internal_bss *known,
1692 			  struct cfg80211_internal_bss *new,
1693 			  bool signal_valid)
1694 {
1695 	lockdep_assert_held(&rdev->bss_lock);
1696 
1697 	/* Update IEs */
1698 	if (rcu_access_pointer(new->pub.proberesp_ies)) {
1699 		const struct cfg80211_bss_ies *old;
1700 
1701 		old = rcu_access_pointer(known->pub.proberesp_ies);
1702 
1703 		rcu_assign_pointer(known->pub.proberesp_ies,
1704 				   new->pub.proberesp_ies);
1705 		/* Override possible earlier Beacon frame IEs */
1706 		rcu_assign_pointer(known->pub.ies,
1707 				   new->pub.proberesp_ies);
1708 		if (old)
1709 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1710 	} else if (rcu_access_pointer(new->pub.beacon_ies)) {
1711 		const struct cfg80211_bss_ies *old;
1712 
1713 		if (known->pub.hidden_beacon_bss &&
1714 		    !list_empty(&known->hidden_list)) {
1715 			const struct cfg80211_bss_ies *f;
1716 
1717 			/* The known BSS struct is one of the probe
1718 			 * response members of a group, but we're
1719 			 * receiving a beacon (beacon_ies in the new
1720 			 * bss is used). This can only mean that the
1721 			 * AP changed its beacon from not having an
1722 			 * SSID to showing it, which is confusing so
1723 			 * drop this information.
1724 			 */
1725 
1726 			f = rcu_access_pointer(new->pub.beacon_ies);
1727 			kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1728 			return false;
1729 		}
1730 
1731 		old = rcu_access_pointer(known->pub.beacon_ies);
1732 
1733 		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1734 
1735 		/* Override IEs if they were from a beacon before */
1736 		if (old == rcu_access_pointer(known->pub.ies))
1737 			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1738 
1739 		cfg80211_update_hidden_bsses(known,
1740 					     rcu_access_pointer(new->pub.beacon_ies),
1741 					     old);
1742 
1743 		if (old)
1744 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1745 	}
1746 
1747 	known->pub.beacon_interval = new->pub.beacon_interval;
1748 
1749 	/* don't update the signal if beacon was heard on
1750 	 * adjacent channel.
1751 	 */
1752 	if (signal_valid)
1753 		known->pub.signal = new->pub.signal;
1754 	known->pub.capability = new->pub.capability;
1755 	known->ts = new->ts;
1756 	known->ts_boottime = new->ts_boottime;
1757 	known->parent_tsf = new->parent_tsf;
1758 	known->pub.chains = new->pub.chains;
1759 	memcpy(known->pub.chain_signal, new->pub.chain_signal,
1760 	       IEEE80211_MAX_CHAINS);
1761 	ether_addr_copy(known->parent_bssid, new->parent_bssid);
1762 	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1763 	known->pub.bssid_index = new->pub.bssid_index;
1764 
1765 	return true;
1766 }
1767 
1768 /* Returned bss is reference counted and must be cleaned up appropriately. */
1769 static struct cfg80211_internal_bss *
1770 __cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1771 		      struct cfg80211_internal_bss *tmp,
1772 		      bool signal_valid, unsigned long ts)
1773 {
1774 	struct cfg80211_internal_bss *found = NULL;
1775 
1776 	if (WARN_ON(!tmp->pub.channel))
1777 		return NULL;
1778 
1779 	tmp->ts = ts;
1780 
1781 	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1782 		return NULL;
1783 	}
1784 
1785 	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1786 
1787 	if (found) {
1788 		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1789 			return NULL;
1790 	} else {
1791 		struct cfg80211_internal_bss *new;
1792 		struct cfg80211_internal_bss *hidden;
1793 		struct cfg80211_bss_ies *ies;
1794 
1795 		/*
1796 		 * create a copy -- the "res" variable that is passed in
1797 		 * is allocated on the stack since it's not needed in the
1798 		 * more common case of an update
1799 		 */
1800 		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1801 			      GFP_ATOMIC);
1802 		if (!new) {
1803 			ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1804 			if (ies)
1805 				kfree_rcu(ies, rcu_head);
1806 			ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1807 			if (ies)
1808 				kfree_rcu(ies, rcu_head);
1809 			return NULL;
1810 		}
1811 		memcpy(new, tmp, sizeof(*new));
1812 		new->refcount = 1;
1813 		INIT_LIST_HEAD(&new->hidden_list);
1814 		INIT_LIST_HEAD(&new->pub.nontrans_list);
1815 		/* we'll set this later if it was non-NULL */
1816 		new->pub.transmitted_bss = NULL;
1817 
1818 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1819 			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1820 			if (!hidden)
1821 				hidden = rb_find_bss(rdev, tmp,
1822 						     BSS_CMP_HIDE_NUL);
1823 			if (hidden) {
1824 				new->pub.hidden_beacon_bss = &hidden->pub;
1825 				list_add(&new->hidden_list,
1826 					 &hidden->hidden_list);
1827 				hidden->refcount++;
1828 				rcu_assign_pointer(new->pub.beacon_ies,
1829 						   hidden->pub.beacon_ies);
1830 			}
1831 		} else {
1832 			/*
1833 			 * Ok so we found a beacon, and don't have an entry. If
1834 			 * it's a beacon with hidden SSID, we might be in for an
1835 			 * expensive search for any probe responses that should
1836 			 * be grouped with this beacon for updates ...
1837 			 */
1838 			if (!cfg80211_combine_bsses(rdev, new)) {
1839 				bss_ref_put(rdev, new);
1840 				return NULL;
1841 			}
1842 		}
1843 
1844 		if (rdev->bss_entries >= bss_entries_limit &&
1845 		    !cfg80211_bss_expire_oldest(rdev)) {
1846 			bss_ref_put(rdev, new);
1847 			return NULL;
1848 		}
1849 
1850 		/* This must be before the call to bss_ref_get */
1851 		if (tmp->pub.transmitted_bss) {
1852 			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1853 			bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1854 		}
1855 
1856 		list_add_tail(&new->list, &rdev->bss_list);
1857 		rdev->bss_entries++;
1858 		rb_insert_bss(rdev, new);
1859 		found = new;
1860 	}
1861 
1862 	rdev->bss_generation++;
1863 	bss_ref_get(rdev, found);
1864 
1865 	return found;
1866 }
1867 
1868 struct cfg80211_internal_bss *
1869 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1870 		    struct cfg80211_internal_bss *tmp,
1871 		    bool signal_valid, unsigned long ts)
1872 {
1873 	struct cfg80211_internal_bss *res;
1874 
1875 	spin_lock_bh(&rdev->bss_lock);
1876 	res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
1877 	spin_unlock_bh(&rdev->bss_lock);
1878 
1879 	return res;
1880 }
1881 
1882 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1883 				    enum nl80211_band band)
1884 {
1885 	const struct element *tmp;
1886 
1887 	if (band == NL80211_BAND_6GHZ) {
1888 		struct ieee80211_he_operation *he_oper;
1889 
1890 		tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
1891 					     ielen);
1892 		if (tmp && tmp->datalen >= sizeof(*he_oper) &&
1893 		    tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
1894 			const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
1895 
1896 			he_oper = (void *)&tmp->data[1];
1897 
1898 			he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
1899 			if (!he_6ghz_oper)
1900 				return -1;
1901 
1902 			return he_6ghz_oper->primary;
1903 		}
1904 	} else if (band == NL80211_BAND_S1GHZ) {
1905 		tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
1906 		if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
1907 			struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
1908 
1909 			return s1gop->oper_ch;
1910 		}
1911 	} else {
1912 		tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
1913 		if (tmp && tmp->datalen == 1)
1914 			return tmp->data[0];
1915 
1916 		tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
1917 		if (tmp &&
1918 		    tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
1919 			struct ieee80211_ht_operation *htop = (void *)tmp->data;
1920 
1921 			return htop->primary_chan;
1922 		}
1923 	}
1924 
1925 	return -1;
1926 }
1927 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
1928 
1929 /*
1930  * Update RX channel information based on the available frame payload
1931  * information. This is mainly for the 2.4 GHz band where frames can be received
1932  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1933  * element to indicate the current (transmitting) channel, but this might also
1934  * be needed on other bands if RX frequency does not match with the actual
1935  * operating channel of a BSS, or if the AP reports a different primary channel.
1936  */
1937 static struct ieee80211_channel *
1938 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1939 			 struct ieee80211_channel *channel,
1940 			 enum nl80211_bss_scan_width scan_width)
1941 {
1942 	u32 freq;
1943 	int channel_number;
1944 	struct ieee80211_channel *alt_channel;
1945 
1946 	channel_number = cfg80211_get_ies_channel_number(ie, ielen,
1947 							 channel->band);
1948 
1949 	if (channel_number < 0) {
1950 		/* No channel information in frame payload */
1951 		return channel;
1952 	}
1953 
1954 	freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1955 
1956 	/*
1957 	 * Frame info (beacon/prob res) is the same as received channel,
1958 	 * no need for further processing.
1959 	 */
1960 	if (freq == ieee80211_channel_to_khz(channel))
1961 		return channel;
1962 
1963 	alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1964 	if (!alt_channel) {
1965 		if (channel->band == NL80211_BAND_2GHZ ||
1966 		    channel->band == NL80211_BAND_6GHZ) {
1967 			/*
1968 			 * Better not allow unexpected channels when that could
1969 			 * be going beyond the 1-11 range (e.g., discovering
1970 			 * BSS on channel 12 when radio is configured for
1971 			 * channel 11) or beyond the 6 GHz channel range.
1972 			 */
1973 			return NULL;
1974 		}
1975 
1976 		/* No match for the payload channel number - ignore it */
1977 		return channel;
1978 	}
1979 
1980 	if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1981 	    scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1982 		/*
1983 		 * Ignore channel number in 5 and 10 MHz channels where there
1984 		 * may not be an n:1 or 1:n mapping between frequencies and
1985 		 * channel numbers.
1986 		 */
1987 		return channel;
1988 	}
1989 
1990 	/*
1991 	 * Use the channel determined through the payload channel number
1992 	 * instead of the RX channel reported by the driver.
1993 	 */
1994 	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1995 		return NULL;
1996 	return alt_channel;
1997 }
1998 
1999 struct cfg80211_inform_single_bss_data {
2000 	struct cfg80211_inform_bss *drv_data;
2001 	enum cfg80211_bss_frame_type ftype;
2002 	struct ieee80211_channel *channel;
2003 	u8 bssid[ETH_ALEN];
2004 	u64 tsf;
2005 	u16 capability;
2006 	u16 beacon_interval;
2007 	const u8 *ie;
2008 	size_t ielen;
2009 
2010 	enum {
2011 		BSS_SOURCE_DIRECT = 0,
2012 		BSS_SOURCE_MBSSID,
2013 		BSS_SOURCE_STA_PROFILE,
2014 	} bss_source;
2015 	/* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2016 	struct cfg80211_bss *source_bss;
2017 	u8 max_bssid_indicator;
2018 	u8 bssid_index;
2019 };
2020 
2021 /* Returned bss is reference counted and must be cleaned up appropriately. */
2022 static struct cfg80211_bss *
2023 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2024 				struct cfg80211_inform_single_bss_data *data,
2025 				gfp_t gfp)
2026 {
2027 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2028 	struct cfg80211_inform_bss *drv_data = data->drv_data;
2029 	struct cfg80211_bss_ies *ies;
2030 	struct ieee80211_channel *channel;
2031 	struct cfg80211_internal_bss tmp = {}, *res;
2032 	int bss_type;
2033 	bool signal_valid;
2034 	unsigned long ts;
2035 
2036 	if (WARN_ON(!wiphy))
2037 		return NULL;
2038 
2039 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2040 		    (drv_data->signal < 0 || drv_data->signal > 100)))
2041 		return NULL;
2042 
2043 	if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2044 		return NULL;
2045 
2046 	channel = data->channel;
2047 	if (!channel)
2048 		channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2049 						   drv_data->chan,
2050 						   drv_data->scan_width);
2051 	if (!channel)
2052 		return NULL;
2053 
2054 	memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2055 	tmp.pub.channel = channel;
2056 	tmp.pub.scan_width = drv_data->scan_width;
2057 	if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2058 		tmp.pub.signal = drv_data->signal;
2059 	else
2060 		tmp.pub.signal = 0;
2061 	tmp.pub.beacon_interval = data->beacon_interval;
2062 	tmp.pub.capability = data->capability;
2063 	tmp.ts_boottime = drv_data->boottime_ns;
2064 	tmp.parent_tsf = drv_data->parent_tsf;
2065 	ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2066 
2067 	if (data->bss_source != BSS_SOURCE_DIRECT) {
2068 		tmp.pub.transmitted_bss = data->source_bss;
2069 		ts = bss_from_pub(data->source_bss)->ts;
2070 		tmp.pub.bssid_index = data->bssid_index;
2071 		tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2072 	} else {
2073 		ts = jiffies;
2074 
2075 		if (channel->band == NL80211_BAND_60GHZ) {
2076 			bss_type = data->capability &
2077 				   WLAN_CAPABILITY_DMG_TYPE_MASK;
2078 			if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2079 			    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2080 				regulatory_hint_found_beacon(wiphy, channel,
2081 							     gfp);
2082 		} else {
2083 			if (data->capability & WLAN_CAPABILITY_ESS)
2084 				regulatory_hint_found_beacon(wiphy, channel,
2085 							     gfp);
2086 		}
2087 	}
2088 
2089 	/*
2090 	 * If we do not know here whether the IEs are from a Beacon or Probe
2091 	 * Response frame, we need to pick one of the options and only use it
2092 	 * with the driver that does not provide the full Beacon/Probe Response
2093 	 * frame. Use Beacon frame pointer to avoid indicating that this should
2094 	 * override the IEs pointer should we have received an earlier
2095 	 * indication of Probe Response data.
2096 	 */
2097 	ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2098 	if (!ies)
2099 		return NULL;
2100 	ies->len = data->ielen;
2101 	ies->tsf = data->tsf;
2102 	ies->from_beacon = false;
2103 	memcpy(ies->data, data->ie, data->ielen);
2104 
2105 	switch (data->ftype) {
2106 	case CFG80211_BSS_FTYPE_BEACON:
2107 		ies->from_beacon = true;
2108 		fallthrough;
2109 	case CFG80211_BSS_FTYPE_UNKNOWN:
2110 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2111 		break;
2112 	case CFG80211_BSS_FTYPE_PRESP:
2113 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2114 		break;
2115 	}
2116 	rcu_assign_pointer(tmp.pub.ies, ies);
2117 
2118 	signal_valid = drv_data->chan == channel;
2119 	spin_lock_bh(&rdev->bss_lock);
2120 	res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2121 	if (!res)
2122 		goto drop;
2123 
2124 	rdev_inform_bss(rdev, &res->pub, ies, data->drv_data);
2125 
2126 	if (data->bss_source == BSS_SOURCE_MBSSID) {
2127 		/* this is a nontransmitting bss, we need to add it to
2128 		 * transmitting bss' list if it is not there
2129 		 */
2130 		if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2131 			if (__cfg80211_unlink_bss(rdev, res)) {
2132 				rdev->bss_generation++;
2133 				res = NULL;
2134 			}
2135 		}
2136 
2137 		if (!res)
2138 			goto drop;
2139 	}
2140 	spin_unlock_bh(&rdev->bss_lock);
2141 
2142 	trace_cfg80211_return_bss(&res->pub);
2143 	/* __cfg80211_bss_update gives us a referenced result */
2144 	return &res->pub;
2145 
2146 drop:
2147 	spin_unlock_bh(&rdev->bss_lock);
2148 	return NULL;
2149 }
2150 
2151 static const struct element
2152 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2153 				   const struct element *mbssid_elem,
2154 				   const struct element *sub_elem)
2155 {
2156 	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2157 	const struct element *next_mbssid;
2158 	const struct element *next_sub;
2159 
2160 	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2161 					 mbssid_end,
2162 					 ielen - (mbssid_end - ie));
2163 
2164 	/*
2165 	 * If it is not the last subelement in current MBSSID IE or there isn't
2166 	 * a next MBSSID IE - profile is complete.
2167 	*/
2168 	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2169 	    !next_mbssid)
2170 		return NULL;
2171 
2172 	/* For any length error, just return NULL */
2173 
2174 	if (next_mbssid->datalen < 4)
2175 		return NULL;
2176 
2177 	next_sub = (void *)&next_mbssid->data[1];
2178 
2179 	if (next_mbssid->data + next_mbssid->datalen <
2180 	    next_sub->data + next_sub->datalen)
2181 		return NULL;
2182 
2183 	if (next_sub->id != 0 || next_sub->datalen < 2)
2184 		return NULL;
2185 
2186 	/*
2187 	 * Check if the first element in the next sub element is a start
2188 	 * of a new profile
2189 	 */
2190 	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2191 	       NULL : next_mbssid;
2192 }
2193 
2194 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2195 			      const struct element *mbssid_elem,
2196 			      const struct element *sub_elem,
2197 			      u8 *merged_ie, size_t max_copy_len)
2198 {
2199 	size_t copied_len = sub_elem->datalen;
2200 	const struct element *next_mbssid;
2201 
2202 	if (sub_elem->datalen > max_copy_len)
2203 		return 0;
2204 
2205 	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2206 
2207 	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2208 								mbssid_elem,
2209 								sub_elem))) {
2210 		const struct element *next_sub = (void *)&next_mbssid->data[1];
2211 
2212 		if (copied_len + next_sub->datalen > max_copy_len)
2213 			break;
2214 		memcpy(merged_ie + copied_len, next_sub->data,
2215 		       next_sub->datalen);
2216 		copied_len += next_sub->datalen;
2217 	}
2218 
2219 	return copied_len;
2220 }
2221 EXPORT_SYMBOL(cfg80211_merge_profile);
2222 
2223 static void
2224 cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2225 			   struct cfg80211_inform_single_bss_data *tx_data,
2226 			   struct cfg80211_bss *source_bss,
2227 			   gfp_t gfp)
2228 {
2229 	struct cfg80211_inform_single_bss_data data = {
2230 		.drv_data = tx_data->drv_data,
2231 		.ftype = tx_data->ftype,
2232 		.tsf = tx_data->tsf,
2233 		.beacon_interval = tx_data->beacon_interval,
2234 		.source_bss = source_bss,
2235 		.bss_source = BSS_SOURCE_MBSSID,
2236 	};
2237 	const u8 *mbssid_index_ie;
2238 	const struct element *elem, *sub;
2239 	u8 *new_ie, *profile;
2240 	u64 seen_indices = 0;
2241 	struct cfg80211_bss *bss;
2242 
2243 	if (!source_bss)
2244 		return;
2245 	if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2246 				tx_data->ie, tx_data->ielen))
2247 		return;
2248 	if (!wiphy->support_mbssid)
2249 		return;
2250 	if (wiphy->support_only_he_mbssid &&
2251 	    !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2252 				    tx_data->ie, tx_data->ielen))
2253 		return;
2254 
2255 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2256 	if (!new_ie)
2257 		return;
2258 
2259 	profile = kmalloc(tx_data->ielen, gfp);
2260 	if (!profile)
2261 		goto out;
2262 
2263 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2264 			    tx_data->ie, tx_data->ielen) {
2265 		if (elem->datalen < 4)
2266 			continue;
2267 		if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2268 			continue;
2269 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2270 			u8 profile_len;
2271 
2272 			if (sub->id != 0 || sub->datalen < 4) {
2273 				/* not a valid BSS profile */
2274 				continue;
2275 			}
2276 
2277 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2278 			    sub->data[1] != 2) {
2279 				/* The first element within the Nontransmitted
2280 				 * BSSID Profile is not the Nontransmitted
2281 				 * BSSID Capability element.
2282 				 */
2283 				continue;
2284 			}
2285 
2286 			memset(profile, 0, tx_data->ielen);
2287 			profile_len = cfg80211_merge_profile(tx_data->ie,
2288 							     tx_data->ielen,
2289 							     elem,
2290 							     sub,
2291 							     profile,
2292 							     tx_data->ielen);
2293 
2294 			/* found a Nontransmitted BSSID Profile */
2295 			mbssid_index_ie = cfg80211_find_ie
2296 				(WLAN_EID_MULTI_BSSID_IDX,
2297 				 profile, profile_len);
2298 			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2299 			    mbssid_index_ie[2] == 0 ||
2300 			    mbssid_index_ie[2] > 46) {
2301 				/* No valid Multiple BSSID-Index element */
2302 				continue;
2303 			}
2304 
2305 			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2306 				/* We don't support legacy split of a profile */
2307 				net_dbg_ratelimited("Partial info for BSSID index %d\n",
2308 						    mbssid_index_ie[2]);
2309 
2310 			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2311 
2312 			data.bssid_index = mbssid_index_ie[2];
2313 			data.max_bssid_indicator = elem->data[0];
2314 
2315 			cfg80211_gen_new_bssid(tx_data->bssid,
2316 					       data.max_bssid_indicator,
2317 					       data.bssid_index,
2318 					       data.bssid);
2319 
2320 			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2321 			data.ie = new_ie;
2322 			data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2323 							 tx_data->ielen,
2324 							 profile,
2325 							 profile_len,
2326 							 new_ie,
2327 							 IEEE80211_MAX_DATA_LEN);
2328 			if (!data.ielen)
2329 				continue;
2330 
2331 			data.capability = get_unaligned_le16(profile + 2);
2332 			bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2333 			if (!bss)
2334 				break;
2335 			cfg80211_put_bss(wiphy, bss);
2336 		}
2337 	}
2338 
2339 out:
2340 	kfree(new_ie);
2341 	kfree(profile);
2342 }
2343 
2344 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2345 				    size_t ieslen, u8 *data, size_t data_len,
2346 				    u8 frag_id)
2347 {
2348 	const struct element *next;
2349 	ssize_t copied;
2350 	u8 elem_datalen;
2351 
2352 	if (!elem)
2353 		return -EINVAL;
2354 
2355 	/* elem might be invalid after the memmove */
2356 	next = (void *)(elem->data + elem->datalen);
2357 
2358 	elem_datalen = elem->datalen;
2359 	if (elem->id == WLAN_EID_EXTENSION) {
2360 		copied = elem->datalen - 1;
2361 		if (copied > data_len)
2362 			return -ENOSPC;
2363 
2364 		memmove(data, elem->data + 1, copied);
2365 	} else {
2366 		copied = elem->datalen;
2367 		if (copied > data_len)
2368 			return -ENOSPC;
2369 
2370 		memmove(data, elem->data, copied);
2371 	}
2372 
2373 	/* Fragmented elements must have 255 bytes */
2374 	if (elem_datalen < 255)
2375 		return copied;
2376 
2377 	for (elem = next;
2378 	     elem->data < ies + ieslen &&
2379 		elem->data + elem->datalen < ies + ieslen;
2380 	     elem = next) {
2381 		/* elem might be invalid after the memmove */
2382 		next = (void *)(elem->data + elem->datalen);
2383 
2384 		if (elem->id != frag_id)
2385 			break;
2386 
2387 		elem_datalen = elem->datalen;
2388 
2389 		if (copied + elem_datalen > data_len)
2390 			return -ENOSPC;
2391 
2392 		memmove(data + copied, elem->data, elem_datalen);
2393 		copied += elem_datalen;
2394 
2395 		/* Only the last fragment may be short */
2396 		if (elem_datalen != 255)
2397 			break;
2398 	}
2399 
2400 	return copied;
2401 }
2402 EXPORT_SYMBOL(cfg80211_defragment_element);
2403 
2404 struct cfg80211_mle {
2405 	struct ieee80211_multi_link_elem *mle;
2406 	struct ieee80211_mle_per_sta_profile
2407 		*sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2408 	ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2409 
2410 	u8 data[];
2411 };
2412 
2413 static struct cfg80211_mle *
2414 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2415 		    gfp_t gfp)
2416 {
2417 	const struct element *elem;
2418 	struct cfg80211_mle *res;
2419 	size_t buf_len;
2420 	ssize_t mle_len;
2421 	u8 common_size, idx;
2422 
2423 	if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2424 		return NULL;
2425 
2426 	/* Required length for first defragmentation */
2427 	buf_len = mle->datalen - 1;
2428 	for_each_element(elem, mle->data + mle->datalen,
2429 			 ielen - sizeof(*mle) + mle->datalen) {
2430 		if (elem->id != WLAN_EID_FRAGMENT)
2431 			break;
2432 
2433 		buf_len += elem->datalen;
2434 	}
2435 
2436 	res = kzalloc(struct_size(res, data, buf_len), gfp);
2437 	if (!res)
2438 		return NULL;
2439 
2440 	mle_len = cfg80211_defragment_element(mle, ie, ielen,
2441 					      res->data, buf_len,
2442 					      WLAN_EID_FRAGMENT);
2443 	if (mle_len < 0)
2444 		goto error;
2445 
2446 	res->mle = (void *)res->data;
2447 
2448 	/* Find the sub-element area in the buffer */
2449 	common_size = ieee80211_mle_common_size((u8 *)res->mle);
2450 	ie = res->data + common_size;
2451 	ielen = mle_len - common_size;
2452 
2453 	idx = 0;
2454 	for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2455 			    ie, ielen) {
2456 		res->sta_prof[idx] = (void *)elem->data;
2457 		res->sta_prof_len[idx] = elem->datalen;
2458 
2459 		idx++;
2460 		if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2461 			break;
2462 	}
2463 	if (!for_each_element_completed(elem, ie, ielen))
2464 		goto error;
2465 
2466 	/* Defragment sta_info in-place */
2467 	for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2468 	     idx++) {
2469 		if (res->sta_prof_len[idx] < 255)
2470 			continue;
2471 
2472 		elem = (void *)res->sta_prof[idx] - 2;
2473 
2474 		if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2475 		    res->sta_prof[idx + 1])
2476 			buf_len = (u8 *)res->sta_prof[idx + 1] -
2477 				  (u8 *)res->sta_prof[idx];
2478 		else
2479 			buf_len = ielen + ie - (u8 *)elem;
2480 
2481 		res->sta_prof_len[idx] =
2482 			cfg80211_defragment_element(elem,
2483 						    (u8 *)elem, buf_len,
2484 						    (u8 *)res->sta_prof[idx],
2485 						    buf_len,
2486 						    IEEE80211_MLE_SUBELEM_FRAGMENT);
2487 		if (res->sta_prof_len[idx] < 0)
2488 			goto error;
2489 	}
2490 
2491 	return res;
2492 
2493 error:
2494 	kfree(res);
2495 	return NULL;
2496 }
2497 
2498 static bool
2499 cfg80211_tbtt_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2500 			      const struct ieee80211_neighbor_ap_info **ap_info,
2501 			      const u8 **tbtt_info)
2502 {
2503 	const struct ieee80211_neighbor_ap_info *info;
2504 	const struct element *rnr;
2505 	const u8 *pos, *end;
2506 
2507 	for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, ie, ielen) {
2508 		pos = rnr->data;
2509 		end = rnr->data + rnr->datalen;
2510 
2511 		/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
2512 		while (sizeof(*info) <= end - pos) {
2513 			const struct ieee80211_rnr_mld_params *mld_params;
2514 			u16 params;
2515 			u8 length, i, count, mld_params_offset;
2516 			u8 type, lid;
2517 
2518 			info = (void *)pos;
2519 			count = u8_get_bits(info->tbtt_info_hdr,
2520 					    IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
2521 			length = info->tbtt_info_len;
2522 
2523 			pos += sizeof(*info);
2524 
2525 			if (count * length > end - pos)
2526 				return false;
2527 
2528 			type = u8_get_bits(info->tbtt_info_hdr,
2529 					   IEEE80211_AP_INFO_TBTT_HDR_TYPE);
2530 
2531 			/* Only accept full TBTT information. NSTR mobile APs
2532 			 * use the shortened version, but we ignore them here.
2533 			 */
2534 			if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2535 			    length >=
2536 			    offsetofend(struct ieee80211_tbtt_info_ge_11,
2537 					mld_params)) {
2538 				mld_params_offset =
2539 					offsetof(struct ieee80211_tbtt_info_ge_11, mld_params);
2540 			} else {
2541 				pos += count * length;
2542 				continue;
2543 			}
2544 
2545 			for (i = 0; i < count; i++) {
2546 				mld_params = (void *)pos + mld_params_offset;
2547 				params = le16_to_cpu(mld_params->params);
2548 
2549 				lid = u16_get_bits(params,
2550 						   IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2551 
2552 				if (mld_id == mld_params->mld_id &&
2553 				    link_id == lid) {
2554 					*ap_info = info;
2555 					*tbtt_info = pos;
2556 
2557 					return true;
2558 				}
2559 
2560 				pos += length;
2561 			}
2562 		}
2563 	}
2564 
2565 	return false;
2566 }
2567 
2568 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
2569 				       struct cfg80211_inform_single_bss_data *tx_data,
2570 				       struct cfg80211_bss *source_bss,
2571 				       gfp_t gfp)
2572 {
2573 	struct cfg80211_inform_single_bss_data data = {
2574 		.drv_data = tx_data->drv_data,
2575 		.ftype = tx_data->ftype,
2576 		.source_bss = source_bss,
2577 		.bss_source = BSS_SOURCE_STA_PROFILE,
2578 	};
2579 	struct ieee80211_multi_link_elem *ml_elem;
2580 	const struct element *elem;
2581 	struct cfg80211_mle *mle;
2582 	u16 control;
2583 	u8 *new_ie;
2584 	struct cfg80211_bss *bss;
2585 	int mld_id;
2586 	u16 seen_links = 0;
2587 	const u8 *pos;
2588 	u8 i;
2589 
2590 	if (!source_bss)
2591 		return;
2592 
2593 	if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
2594 		return;
2595 
2596 	elem = cfg80211_find_ext_elem(WLAN_EID_EXT_EHT_MULTI_LINK,
2597 				      tx_data->ie, tx_data->ielen);
2598 	if (!elem || !ieee80211_mle_size_ok(elem->data + 1, elem->datalen - 1))
2599 		return;
2600 
2601 	ml_elem = (void *)elem->data + 1;
2602 	control = le16_to_cpu(ml_elem->control);
2603 	if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) !=
2604 	    IEEE80211_ML_CONTROL_TYPE_BASIC)
2605 		return;
2606 
2607 	/* Must be present when transmitted by an AP (in a probe response) */
2608 	if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2609 	    !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2610 	    !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2611 		return;
2612 
2613 	/* length + MLD MAC address + link ID info + BSS Params Change Count */
2614 	pos = ml_elem->variable + 1 + 6 + 1 + 1;
2615 
2616 	if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
2617 		pos += 2;
2618 	if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_EML_CAPA))
2619 		pos += 2;
2620 
2621 	/* MLD capabilities and operations */
2622 	pos += 2;
2623 
2624 	/* Not included when the (nontransmitted) AP is responding itself,
2625 	 * but defined to zero then (Draft P802.11be_D3.0, 9.4.2.170.2)
2626 	 */
2627 	if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MLD_ID)) {
2628 		mld_id = *pos;
2629 		pos += 1;
2630 	} else {
2631 		mld_id = 0;
2632 	}
2633 
2634 	/* Extended MLD capabilities and operations */
2635 	pos += 2;
2636 
2637 	/* Fully defrag the ML element for sta information/profile iteration */
2638 	mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2639 	if (!mle)
2640 		return;
2641 
2642 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2643 	if (!new_ie)
2644 		goto out;
2645 
2646 	for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
2647 		const struct ieee80211_neighbor_ap_info *ap_info;
2648 		enum nl80211_band band;
2649 		u32 freq;
2650 		const u8 *profile;
2651 		const u8 *tbtt_info;
2652 		ssize_t profile_len;
2653 		u8 link_id;
2654 
2655 		if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
2656 							  mle->sta_prof_len[i]))
2657 			continue;
2658 
2659 		control = le16_to_cpu(mle->sta_prof[i]->control);
2660 
2661 		if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
2662 			continue;
2663 
2664 		link_id = u16_get_bits(control,
2665 				       IEEE80211_MLE_STA_CONTROL_LINK_ID);
2666 		if (seen_links & BIT(link_id))
2667 			break;
2668 		seen_links |= BIT(link_id);
2669 
2670 		if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
2671 		    !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
2672 		    !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
2673 			continue;
2674 
2675 		memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
2676 		data.beacon_interval =
2677 			get_unaligned_le16(mle->sta_prof[i]->variable + 6);
2678 		data.tsf = tx_data->tsf +
2679 			   get_unaligned_le64(mle->sta_prof[i]->variable + 8);
2680 
2681 		/* sta_info_len counts itself */
2682 		profile = mle->sta_prof[i]->variable +
2683 			  mle->sta_prof[i]->sta_info_len - 1;
2684 		profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
2685 			      profile;
2686 
2687 		if (profile_len < 2)
2688 			continue;
2689 
2690 		data.capability = get_unaligned_le16(profile);
2691 		profile += 2;
2692 		profile_len -= 2;
2693 
2694 		/* Find in RNR to look up channel information */
2695 		if (!cfg80211_tbtt_info_for_mld_ap(tx_data->ie, tx_data->ielen,
2696 						   mld_id, link_id,
2697 						   &ap_info, &tbtt_info))
2698 			continue;
2699 
2700 		/* We could sanity check the BSSID is included */
2701 
2702 		if (!ieee80211_operating_class_to_band(ap_info->op_class,
2703 						       &band))
2704 			continue;
2705 
2706 		freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
2707 		data.channel = ieee80211_get_channel_khz(wiphy, freq);
2708 
2709 		/* Generate new elements */
2710 		memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2711 		data.ie = new_ie;
2712 		data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
2713 						 profile, profile_len,
2714 						 new_ie,
2715 						 IEEE80211_MAX_DATA_LEN);
2716 		if (!data.ielen)
2717 			continue;
2718 
2719 		bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2720 		if (!bss)
2721 			break;
2722 		cfg80211_put_bss(wiphy, bss);
2723 	}
2724 
2725 out:
2726 	kfree(new_ie);
2727 	kfree(mle);
2728 }
2729 
2730 struct cfg80211_bss *
2731 cfg80211_inform_bss_data(struct wiphy *wiphy,
2732 			 struct cfg80211_inform_bss *data,
2733 			 enum cfg80211_bss_frame_type ftype,
2734 			 const u8 *bssid, u64 tsf, u16 capability,
2735 			 u16 beacon_interval, const u8 *ie, size_t ielen,
2736 			 gfp_t gfp)
2737 {
2738 	struct cfg80211_inform_single_bss_data inform_data = {
2739 		.drv_data = data,
2740 		.ftype = ftype,
2741 		.tsf = tsf,
2742 		.capability = capability,
2743 		.beacon_interval = beacon_interval,
2744 		.ie = ie,
2745 		.ielen = ielen,
2746 	};
2747 	struct cfg80211_bss *res;
2748 
2749 	memcpy(inform_data.bssid, bssid, ETH_ALEN);
2750 
2751 	res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
2752 	if (!res)
2753 		return NULL;
2754 
2755 	cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
2756 
2757 	cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
2758 
2759 	return res;
2760 }
2761 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2762 
2763 /* cfg80211_inform_bss_width_frame helper */
2764 static struct cfg80211_bss *
2765 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2766 				      struct cfg80211_inform_bss *data,
2767 				      struct ieee80211_mgmt *mgmt, size_t len,
2768 				      gfp_t gfp)
2769 {
2770 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2771 	struct cfg80211_internal_bss tmp = {}, *res;
2772 	struct cfg80211_bss_ies *ies;
2773 	struct ieee80211_channel *channel;
2774 	bool signal_valid;
2775 	struct ieee80211_ext *ext = NULL;
2776 	u8 *bssid, *variable;
2777 	u16 capability, beacon_int;
2778 	size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2779 					     u.probe_resp.variable);
2780 	int bss_type;
2781 
2782 	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2783 			offsetof(struct ieee80211_mgmt, u.beacon.variable));
2784 
2785 	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2786 
2787 	if (WARN_ON(!mgmt))
2788 		return NULL;
2789 
2790 	if (WARN_ON(!wiphy))
2791 		return NULL;
2792 
2793 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2794 		    (data->signal < 0 || data->signal > 100)))
2795 		return NULL;
2796 
2797 	if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2798 		ext = (void *) mgmt;
2799 		min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2800 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2801 			min_hdr_len = offsetof(struct ieee80211_ext,
2802 					       u.s1g_short_beacon.variable);
2803 	}
2804 
2805 	if (WARN_ON(len < min_hdr_len))
2806 		return NULL;
2807 
2808 	ielen = len - min_hdr_len;
2809 	variable = mgmt->u.probe_resp.variable;
2810 	if (ext) {
2811 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2812 			variable = ext->u.s1g_short_beacon.variable;
2813 		else
2814 			variable = ext->u.s1g_beacon.variable;
2815 	}
2816 
2817 	channel = cfg80211_get_bss_channel(wiphy, variable,
2818 					   ielen, data->chan, data->scan_width);
2819 	if (!channel)
2820 		return NULL;
2821 
2822 	if (ext) {
2823 		const struct ieee80211_s1g_bcn_compat_ie *compat;
2824 		const struct element *elem;
2825 
2826 		elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2827 					  variable, ielen);
2828 		if (!elem)
2829 			return NULL;
2830 		if (elem->datalen < sizeof(*compat))
2831 			return NULL;
2832 		compat = (void *)elem->data;
2833 		bssid = ext->u.s1g_beacon.sa;
2834 		capability = le16_to_cpu(compat->compat_info);
2835 		beacon_int = le16_to_cpu(compat->beacon_int);
2836 	} else {
2837 		bssid = mgmt->bssid;
2838 		beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2839 		capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2840 	}
2841 
2842 	if (channel->band == NL80211_BAND_60GHZ) {
2843 		bss_type = capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2844 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2845 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2846 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2847 	} else {
2848 		if (capability & WLAN_CAPABILITY_ESS)
2849 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2850 	}
2851 
2852 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
2853 	if (!ies)
2854 		return NULL;
2855 	ies->len = ielen;
2856 	ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2857 	ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2858 			   ieee80211_is_s1g_beacon(mgmt->frame_control);
2859 	memcpy(ies->data, variable, ielen);
2860 
2861 	if (ieee80211_is_probe_resp(mgmt->frame_control))
2862 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2863 	else
2864 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2865 	rcu_assign_pointer(tmp.pub.ies, ies);
2866 
2867 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2868 	tmp.pub.beacon_interval = beacon_int;
2869 	tmp.pub.capability = capability;
2870 	tmp.pub.channel = channel;
2871 	tmp.pub.scan_width = data->scan_width;
2872 	tmp.pub.signal = data->signal;
2873 	tmp.ts_boottime = data->boottime_ns;
2874 	tmp.parent_tsf = data->parent_tsf;
2875 	tmp.pub.chains = data->chains;
2876 	memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2877 	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2878 
2879 	signal_valid = data->chan == channel;
2880 	spin_lock_bh(&rdev->bss_lock);
2881 	res = __cfg80211_bss_update(rdev, &tmp, signal_valid, jiffies);
2882 	if (!res)
2883 		goto drop;
2884 
2885 	rdev_inform_bss(rdev, &res->pub, ies, data->drv_data);
2886 
2887 	spin_unlock_bh(&rdev->bss_lock);
2888 
2889 	trace_cfg80211_return_bss(&res->pub);
2890 	/* __cfg80211_bss_update gives us a referenced result */
2891 	return &res->pub;
2892 
2893 drop:
2894 	spin_unlock_bh(&rdev->bss_lock);
2895 	return NULL;
2896 }
2897 
2898 struct cfg80211_bss *
2899 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2900 			       struct cfg80211_inform_bss *data,
2901 			       struct ieee80211_mgmt *mgmt, size_t len,
2902 			       gfp_t gfp)
2903 {
2904 	struct cfg80211_inform_single_bss_data inform_data = {
2905 		.drv_data = data,
2906 		.ie = mgmt->u.probe_resp.variable,
2907 		.ielen = len - offsetof(struct ieee80211_mgmt,
2908 					u.probe_resp.variable),
2909 	};
2910 	struct cfg80211_bss *res;
2911 
2912 	res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2913 						    len, gfp);
2914 	if (!res)
2915 		return NULL;
2916 
2917 	/* don't do any further MBSSID/ML handling for S1G */
2918 	if (ieee80211_is_s1g_beacon(mgmt->frame_control))
2919 		return res;
2920 
2921 	inform_data.ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2922 		CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2923 	memcpy(inform_data.bssid, mgmt->bssid, ETH_ALEN);
2924 	inform_data.tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2925 	inform_data.beacon_interval =
2926 		le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2927 
2928 	/* process each non-transmitting bss */
2929 	cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
2930 
2931 	cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
2932 
2933 	return res;
2934 }
2935 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2936 
2937 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2938 {
2939 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2940 
2941 	if (!pub)
2942 		return;
2943 
2944 	spin_lock_bh(&rdev->bss_lock);
2945 	bss_ref_get(rdev, bss_from_pub(pub));
2946 	spin_unlock_bh(&rdev->bss_lock);
2947 }
2948 EXPORT_SYMBOL(cfg80211_ref_bss);
2949 
2950 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2951 {
2952 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2953 
2954 	if (!pub)
2955 		return;
2956 
2957 	spin_lock_bh(&rdev->bss_lock);
2958 	bss_ref_put(rdev, bss_from_pub(pub));
2959 	spin_unlock_bh(&rdev->bss_lock);
2960 }
2961 EXPORT_SYMBOL(cfg80211_put_bss);
2962 
2963 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2964 {
2965 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2966 	struct cfg80211_internal_bss *bss, *tmp1;
2967 	struct cfg80211_bss *nontrans_bss, *tmp;
2968 
2969 	if (WARN_ON(!pub))
2970 		return;
2971 
2972 	bss = bss_from_pub(pub);
2973 
2974 	spin_lock_bh(&rdev->bss_lock);
2975 	if (list_empty(&bss->list))
2976 		goto out;
2977 
2978 	list_for_each_entry_safe(nontrans_bss, tmp,
2979 				 &pub->nontrans_list,
2980 				 nontrans_list) {
2981 		tmp1 = bss_from_pub(nontrans_bss);
2982 		if (__cfg80211_unlink_bss(rdev, tmp1))
2983 			rdev->bss_generation++;
2984 	}
2985 
2986 	if (__cfg80211_unlink_bss(rdev, bss))
2987 		rdev->bss_generation++;
2988 out:
2989 	spin_unlock_bh(&rdev->bss_lock);
2990 }
2991 EXPORT_SYMBOL(cfg80211_unlink_bss);
2992 
2993 void cfg80211_bss_iter(struct wiphy *wiphy,
2994 		       struct cfg80211_chan_def *chandef,
2995 		       void (*iter)(struct wiphy *wiphy,
2996 				    struct cfg80211_bss *bss,
2997 				    void *data),
2998 		       void *iter_data)
2999 {
3000 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3001 	struct cfg80211_internal_bss *bss;
3002 
3003 	spin_lock_bh(&rdev->bss_lock);
3004 
3005 	list_for_each_entry(bss, &rdev->bss_list, list) {
3006 		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3007 						     false))
3008 			iter(wiphy, &bss->pub, iter_data);
3009 	}
3010 
3011 	spin_unlock_bh(&rdev->bss_lock);
3012 }
3013 EXPORT_SYMBOL(cfg80211_bss_iter);
3014 
3015 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3016 				     unsigned int link_id,
3017 				     struct ieee80211_channel *chan)
3018 {
3019 	struct wiphy *wiphy = wdev->wiphy;
3020 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3021 	struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3022 	struct cfg80211_internal_bss *new = NULL;
3023 	struct cfg80211_internal_bss *bss;
3024 	struct cfg80211_bss *nontrans_bss;
3025 	struct cfg80211_bss *tmp;
3026 
3027 	spin_lock_bh(&rdev->bss_lock);
3028 
3029 	/*
3030 	 * Some APs use CSA also for bandwidth changes, i.e., without actually
3031 	 * changing the control channel, so no need to update in such a case.
3032 	 */
3033 	if (cbss->pub.channel == chan)
3034 		goto done;
3035 
3036 	/* use transmitting bss */
3037 	if (cbss->pub.transmitted_bss)
3038 		cbss = bss_from_pub(cbss->pub.transmitted_bss);
3039 
3040 	cbss->pub.channel = chan;
3041 
3042 	list_for_each_entry(bss, &rdev->bss_list, list) {
3043 		if (!cfg80211_bss_type_match(bss->pub.capability,
3044 					     bss->pub.channel->band,
3045 					     wdev->conn_bss_type))
3046 			continue;
3047 
3048 		if (bss == cbss)
3049 			continue;
3050 
3051 		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3052 			new = bss;
3053 			break;
3054 		}
3055 	}
3056 
3057 	if (new) {
3058 		/* to save time, update IEs for transmitting bss only */
3059 		if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
3060 			new->pub.proberesp_ies = NULL;
3061 			new->pub.beacon_ies = NULL;
3062 		}
3063 
3064 		list_for_each_entry_safe(nontrans_bss, tmp,
3065 					 &new->pub.nontrans_list,
3066 					 nontrans_list) {
3067 			bss = bss_from_pub(nontrans_bss);
3068 			if (__cfg80211_unlink_bss(rdev, bss))
3069 				rdev->bss_generation++;
3070 		}
3071 
3072 		WARN_ON(atomic_read(&new->hold));
3073 		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3074 			rdev->bss_generation++;
3075 	}
3076 
3077 	rb_erase(&cbss->rbn, &rdev->bss_tree);
3078 	rb_insert_bss(rdev, cbss);
3079 	rdev->bss_generation++;
3080 
3081 	list_for_each_entry_safe(nontrans_bss, tmp,
3082 				 &cbss->pub.nontrans_list,
3083 				 nontrans_list) {
3084 		bss = bss_from_pub(nontrans_bss);
3085 		bss->pub.channel = chan;
3086 		rb_erase(&bss->rbn, &rdev->bss_tree);
3087 		rb_insert_bss(rdev, bss);
3088 		rdev->bss_generation++;
3089 	}
3090 
3091 done:
3092 	spin_unlock_bh(&rdev->bss_lock);
3093 }
3094 
3095 #ifdef CONFIG_CFG80211_WEXT
3096 static struct cfg80211_registered_device *
3097 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3098 {
3099 	struct cfg80211_registered_device *rdev;
3100 	struct net_device *dev;
3101 
3102 	ASSERT_RTNL();
3103 
3104 	dev = dev_get_by_index(net, ifindex);
3105 	if (!dev)
3106 		return ERR_PTR(-ENODEV);
3107 	if (dev->ieee80211_ptr)
3108 		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3109 	else
3110 		rdev = ERR_PTR(-ENODEV);
3111 	dev_put(dev);
3112 	return rdev;
3113 }
3114 
3115 int cfg80211_wext_siwscan(struct net_device *dev,
3116 			  struct iw_request_info *info,
3117 			  union iwreq_data *wrqu, char *extra)
3118 {
3119 	struct cfg80211_registered_device *rdev;
3120 	struct wiphy *wiphy;
3121 	struct iw_scan_req *wreq = NULL;
3122 	struct cfg80211_scan_request *creq;
3123 	int i, err, n_channels = 0;
3124 	enum nl80211_band band;
3125 
3126 	if (!netif_running(dev))
3127 		return -ENETDOWN;
3128 
3129 	if (wrqu->data.length == sizeof(struct iw_scan_req))
3130 		wreq = (struct iw_scan_req *)extra;
3131 
3132 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3133 
3134 	if (IS_ERR(rdev))
3135 		return PTR_ERR(rdev);
3136 
3137 	if (rdev->scan_req || rdev->scan_msg)
3138 		return -EBUSY;
3139 
3140 	wiphy = &rdev->wiphy;
3141 
3142 	/* Determine number of channels, needed to allocate creq */
3143 	if (wreq && wreq->num_channels)
3144 		n_channels = wreq->num_channels;
3145 	else
3146 		n_channels = ieee80211_get_num_supported_channels(wiphy);
3147 
3148 	creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
3149 		       n_channels * sizeof(void *),
3150 		       GFP_ATOMIC);
3151 	if (!creq)
3152 		return -ENOMEM;
3153 
3154 	creq->wiphy = wiphy;
3155 	creq->wdev = dev->ieee80211_ptr;
3156 	/* SSIDs come after channels */
3157 	creq->ssids = (void *)&creq->channels[n_channels];
3158 	creq->n_channels = n_channels;
3159 	creq->n_ssids = 1;
3160 	creq->scan_start = jiffies;
3161 
3162 	/* translate "Scan on frequencies" request */
3163 	i = 0;
3164 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3165 		int j;
3166 
3167 		if (!wiphy->bands[band])
3168 			continue;
3169 
3170 		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3171 			/* ignore disabled channels */
3172 			if (wiphy->bands[band]->channels[j].flags &
3173 						IEEE80211_CHAN_DISABLED)
3174 				continue;
3175 
3176 			/* If we have a wireless request structure and the
3177 			 * wireless request specifies frequencies, then search
3178 			 * for the matching hardware channel.
3179 			 */
3180 			if (wreq && wreq->num_channels) {
3181 				int k;
3182 				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3183 				for (k = 0; k < wreq->num_channels; k++) {
3184 					struct iw_freq *freq =
3185 						&wreq->channel_list[k];
3186 					int wext_freq =
3187 						cfg80211_wext_freq(freq);
3188 
3189 					if (wext_freq == wiphy_freq)
3190 						goto wext_freq_found;
3191 				}
3192 				goto wext_freq_not_found;
3193 			}
3194 
3195 		wext_freq_found:
3196 			creq->channels[i] = &wiphy->bands[band]->channels[j];
3197 			i++;
3198 		wext_freq_not_found: ;
3199 		}
3200 	}
3201 	/* No channels found? */
3202 	if (!i) {
3203 		err = -EINVAL;
3204 		goto out;
3205 	}
3206 
3207 	/* Set real number of channels specified in creq->channels[] */
3208 	creq->n_channels = i;
3209 
3210 	/* translate "Scan for SSID" request */
3211 	if (wreq) {
3212 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3213 			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
3214 				err = -EINVAL;
3215 				goto out;
3216 			}
3217 			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3218 			creq->ssids[0].ssid_len = wreq->essid_len;
3219 		}
3220 		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
3221 			creq->n_ssids = 0;
3222 	}
3223 
3224 	for (i = 0; i < NUM_NL80211_BANDS; i++)
3225 		if (wiphy->bands[i])
3226 			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3227 
3228 	eth_broadcast_addr(creq->bssid);
3229 
3230 	wiphy_lock(&rdev->wiphy);
3231 
3232 	rdev->scan_req = creq;
3233 	err = rdev_scan(rdev, creq);
3234 	if (err) {
3235 		rdev->scan_req = NULL;
3236 		/* creq will be freed below */
3237 	} else {
3238 		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3239 		/* creq now owned by driver */
3240 		creq = NULL;
3241 		dev_hold(dev);
3242 	}
3243 	wiphy_unlock(&rdev->wiphy);
3244  out:
3245 	kfree(creq);
3246 	return err;
3247 }
3248 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
3249 
3250 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3251 				    const struct cfg80211_bss_ies *ies,
3252 				    char *current_ev, char *end_buf)
3253 {
3254 	const u8 *pos, *end, *next;
3255 	struct iw_event iwe;
3256 
3257 	if (!ies)
3258 		return current_ev;
3259 
3260 	/*
3261 	 * If needed, fragment the IEs buffer (at IE boundaries) into short
3262 	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3263 	 */
3264 	pos = ies->data;
3265 	end = pos + ies->len;
3266 
3267 	while (end - pos > IW_GENERIC_IE_MAX) {
3268 		next = pos + 2 + pos[1];
3269 		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3270 			next = next + 2 + next[1];
3271 
3272 		memset(&iwe, 0, sizeof(iwe));
3273 		iwe.cmd = IWEVGENIE;
3274 		iwe.u.data.length = next - pos;
3275 		current_ev = iwe_stream_add_point_check(info, current_ev,
3276 							end_buf, &iwe,
3277 							(void *)pos);
3278 		if (IS_ERR(current_ev))
3279 			return current_ev;
3280 		pos = next;
3281 	}
3282 
3283 	if (end > pos) {
3284 		memset(&iwe, 0, sizeof(iwe));
3285 		iwe.cmd = IWEVGENIE;
3286 		iwe.u.data.length = end - pos;
3287 		current_ev = iwe_stream_add_point_check(info, current_ev,
3288 							end_buf, &iwe,
3289 							(void *)pos);
3290 		if (IS_ERR(current_ev))
3291 			return current_ev;
3292 	}
3293 
3294 	return current_ev;
3295 }
3296 
3297 static char *
3298 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3299 	      struct cfg80211_internal_bss *bss, char *current_ev,
3300 	      char *end_buf)
3301 {
3302 	const struct cfg80211_bss_ies *ies;
3303 	struct iw_event iwe;
3304 	const u8 *ie;
3305 	u8 buf[50];
3306 	u8 *cfg, *p, *tmp;
3307 	int rem, i, sig;
3308 	bool ismesh = false;
3309 
3310 	memset(&iwe, 0, sizeof(iwe));
3311 	iwe.cmd = SIOCGIWAP;
3312 	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3313 	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3314 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3315 						IW_EV_ADDR_LEN);
3316 	if (IS_ERR(current_ev))
3317 		return current_ev;
3318 
3319 	memset(&iwe, 0, sizeof(iwe));
3320 	iwe.cmd = SIOCGIWFREQ;
3321 	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3322 	iwe.u.freq.e = 0;
3323 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3324 						IW_EV_FREQ_LEN);
3325 	if (IS_ERR(current_ev))
3326 		return current_ev;
3327 
3328 	memset(&iwe, 0, sizeof(iwe));
3329 	iwe.cmd = SIOCGIWFREQ;
3330 	iwe.u.freq.m = bss->pub.channel->center_freq;
3331 	iwe.u.freq.e = 6;
3332 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3333 						IW_EV_FREQ_LEN);
3334 	if (IS_ERR(current_ev))
3335 		return current_ev;
3336 
3337 	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3338 		memset(&iwe, 0, sizeof(iwe));
3339 		iwe.cmd = IWEVQUAL;
3340 		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3341 				     IW_QUAL_NOISE_INVALID |
3342 				     IW_QUAL_QUAL_UPDATED;
3343 		switch (wiphy->signal_type) {
3344 		case CFG80211_SIGNAL_TYPE_MBM:
3345 			sig = bss->pub.signal / 100;
3346 			iwe.u.qual.level = sig;
3347 			iwe.u.qual.updated |= IW_QUAL_DBM;
3348 			if (sig < -110)		/* rather bad */
3349 				sig = -110;
3350 			else if (sig > -40)	/* perfect */
3351 				sig = -40;
3352 			/* will give a range of 0 .. 70 */
3353 			iwe.u.qual.qual = sig + 110;
3354 			break;
3355 		case CFG80211_SIGNAL_TYPE_UNSPEC:
3356 			iwe.u.qual.level = bss->pub.signal;
3357 			/* will give range 0 .. 100 */
3358 			iwe.u.qual.qual = bss->pub.signal;
3359 			break;
3360 		default:
3361 			/* not reached */
3362 			break;
3363 		}
3364 		current_ev = iwe_stream_add_event_check(info, current_ev,
3365 							end_buf, &iwe,
3366 							IW_EV_QUAL_LEN);
3367 		if (IS_ERR(current_ev))
3368 			return current_ev;
3369 	}
3370 
3371 	memset(&iwe, 0, sizeof(iwe));
3372 	iwe.cmd = SIOCGIWENCODE;
3373 	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3374 		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3375 	else
3376 		iwe.u.data.flags = IW_ENCODE_DISABLED;
3377 	iwe.u.data.length = 0;
3378 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3379 						&iwe, "");
3380 	if (IS_ERR(current_ev))
3381 		return current_ev;
3382 
3383 	rcu_read_lock();
3384 	ies = rcu_dereference(bss->pub.ies);
3385 	rem = ies->len;
3386 	ie = ies->data;
3387 
3388 	while (rem >= 2) {
3389 		/* invalid data */
3390 		if (ie[1] > rem - 2)
3391 			break;
3392 
3393 		switch (ie[0]) {
3394 		case WLAN_EID_SSID:
3395 			memset(&iwe, 0, sizeof(iwe));
3396 			iwe.cmd = SIOCGIWESSID;
3397 			iwe.u.data.length = ie[1];
3398 			iwe.u.data.flags = 1;
3399 			current_ev = iwe_stream_add_point_check(info,
3400 								current_ev,
3401 								end_buf, &iwe,
3402 								(u8 *)ie + 2);
3403 			if (IS_ERR(current_ev))
3404 				goto unlock;
3405 			break;
3406 		case WLAN_EID_MESH_ID:
3407 			memset(&iwe, 0, sizeof(iwe));
3408 			iwe.cmd = SIOCGIWESSID;
3409 			iwe.u.data.length = ie[1];
3410 			iwe.u.data.flags = 1;
3411 			current_ev = iwe_stream_add_point_check(info,
3412 								current_ev,
3413 								end_buf, &iwe,
3414 								(u8 *)ie + 2);
3415 			if (IS_ERR(current_ev))
3416 				goto unlock;
3417 			break;
3418 		case WLAN_EID_MESH_CONFIG:
3419 			ismesh = true;
3420 			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3421 				break;
3422 			cfg = (u8 *)ie + 2;
3423 			memset(&iwe, 0, sizeof(iwe));
3424 			iwe.cmd = IWEVCUSTOM;
3425 			sprintf(buf, "Mesh Network Path Selection Protocol ID: "
3426 				"0x%02X", cfg[0]);
3427 			iwe.u.data.length = strlen(buf);
3428 			current_ev = iwe_stream_add_point_check(info,
3429 								current_ev,
3430 								end_buf,
3431 								&iwe, buf);
3432 			if (IS_ERR(current_ev))
3433 				goto unlock;
3434 			sprintf(buf, "Path Selection Metric ID: 0x%02X",
3435 				cfg[1]);
3436 			iwe.u.data.length = strlen(buf);
3437 			current_ev = iwe_stream_add_point_check(info,
3438 								current_ev,
3439 								end_buf,
3440 								&iwe, buf);
3441 			if (IS_ERR(current_ev))
3442 				goto unlock;
3443 			sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3444 				cfg[2]);
3445 			iwe.u.data.length = strlen(buf);
3446 			current_ev = iwe_stream_add_point_check(info,
3447 								current_ev,
3448 								end_buf,
3449 								&iwe, buf);
3450 			if (IS_ERR(current_ev))
3451 				goto unlock;
3452 			sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3453 			iwe.u.data.length = strlen(buf);
3454 			current_ev = iwe_stream_add_point_check(info,
3455 								current_ev,
3456 								end_buf,
3457 								&iwe, buf);
3458 			if (IS_ERR(current_ev))
3459 				goto unlock;
3460 			sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3461 			iwe.u.data.length = strlen(buf);
3462 			current_ev = iwe_stream_add_point_check(info,
3463 								current_ev,
3464 								end_buf,
3465 								&iwe, buf);
3466 			if (IS_ERR(current_ev))
3467 				goto unlock;
3468 			sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3469 			iwe.u.data.length = strlen(buf);
3470 			current_ev = iwe_stream_add_point_check(info,
3471 								current_ev,
3472 								end_buf,
3473 								&iwe, buf);
3474 			if (IS_ERR(current_ev))
3475 				goto unlock;
3476 			sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3477 			iwe.u.data.length = strlen(buf);
3478 			current_ev = iwe_stream_add_point_check(info,
3479 								current_ev,
3480 								end_buf,
3481 								&iwe, buf);
3482 			if (IS_ERR(current_ev))
3483 				goto unlock;
3484 			break;
3485 		case WLAN_EID_SUPP_RATES:
3486 		case WLAN_EID_EXT_SUPP_RATES:
3487 			/* display all supported rates in readable format */
3488 			p = current_ev + iwe_stream_lcp_len(info);
3489 
3490 			memset(&iwe, 0, sizeof(iwe));
3491 			iwe.cmd = SIOCGIWRATE;
3492 			/* Those two flags are ignored... */
3493 			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3494 
3495 			for (i = 0; i < ie[1]; i++) {
3496 				iwe.u.bitrate.value =
3497 					((ie[i + 2] & 0x7f) * 500000);
3498 				tmp = p;
3499 				p = iwe_stream_add_value(info, current_ev, p,
3500 							 end_buf, &iwe,
3501 							 IW_EV_PARAM_LEN);
3502 				if (p == tmp) {
3503 					current_ev = ERR_PTR(-E2BIG);
3504 					goto unlock;
3505 				}
3506 			}
3507 			current_ev = p;
3508 			break;
3509 		}
3510 		rem -= ie[1] + 2;
3511 		ie += ie[1] + 2;
3512 	}
3513 
3514 	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3515 	    ismesh) {
3516 		memset(&iwe, 0, sizeof(iwe));
3517 		iwe.cmd = SIOCGIWMODE;
3518 		if (ismesh)
3519 			iwe.u.mode = IW_MODE_MESH;
3520 		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3521 			iwe.u.mode = IW_MODE_MASTER;
3522 		else
3523 			iwe.u.mode = IW_MODE_ADHOC;
3524 		current_ev = iwe_stream_add_event_check(info, current_ev,
3525 							end_buf, &iwe,
3526 							IW_EV_UINT_LEN);
3527 		if (IS_ERR(current_ev))
3528 			goto unlock;
3529 	}
3530 
3531 	memset(&iwe, 0, sizeof(iwe));
3532 	iwe.cmd = IWEVCUSTOM;
3533 	sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3534 	iwe.u.data.length = strlen(buf);
3535 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3536 						&iwe, buf);
3537 	if (IS_ERR(current_ev))
3538 		goto unlock;
3539 	memset(&iwe, 0, sizeof(iwe));
3540 	iwe.cmd = IWEVCUSTOM;
3541 	sprintf(buf, " Last beacon: %ums ago",
3542 		elapsed_jiffies_msecs(bss->ts));
3543 	iwe.u.data.length = strlen(buf);
3544 	current_ev = iwe_stream_add_point_check(info, current_ev,
3545 						end_buf, &iwe, buf);
3546 	if (IS_ERR(current_ev))
3547 		goto unlock;
3548 
3549 	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3550 
3551  unlock:
3552 	rcu_read_unlock();
3553 	return current_ev;
3554 }
3555 
3556 
3557 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3558 				  struct iw_request_info *info,
3559 				  char *buf, size_t len)
3560 {
3561 	char *current_ev = buf;
3562 	char *end_buf = buf + len;
3563 	struct cfg80211_internal_bss *bss;
3564 	int err = 0;
3565 
3566 	spin_lock_bh(&rdev->bss_lock);
3567 	cfg80211_bss_expire(rdev);
3568 
3569 	list_for_each_entry(bss, &rdev->bss_list, list) {
3570 		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3571 			err = -E2BIG;
3572 			break;
3573 		}
3574 		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3575 					   current_ev, end_buf);
3576 		if (IS_ERR(current_ev)) {
3577 			err = PTR_ERR(current_ev);
3578 			break;
3579 		}
3580 	}
3581 	spin_unlock_bh(&rdev->bss_lock);
3582 
3583 	if (err)
3584 		return err;
3585 	return current_ev - buf;
3586 }
3587 
3588 
3589 int cfg80211_wext_giwscan(struct net_device *dev,
3590 			  struct iw_request_info *info,
3591 			  union iwreq_data *wrqu, char *extra)
3592 {
3593 	struct iw_point *data = &wrqu->data;
3594 	struct cfg80211_registered_device *rdev;
3595 	int res;
3596 
3597 	if (!netif_running(dev))
3598 		return -ENETDOWN;
3599 
3600 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3601 
3602 	if (IS_ERR(rdev))
3603 		return PTR_ERR(rdev);
3604 
3605 	if (rdev->scan_req || rdev->scan_msg)
3606 		return -EAGAIN;
3607 
3608 	res = ieee80211_scan_results(rdev, info, extra, data->length);
3609 	data->length = 0;
3610 	if (res >= 0) {
3611 		data->length = res;
3612 		res = 0;
3613 	}
3614 
3615 	return res;
3616 }
3617 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3618 #endif
3619