1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * cfg80211 scan result handling 4 * 5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2016 Intel Deutschland GmbH 8 */ 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/module.h> 12 #include <linux/netdevice.h> 13 #include <linux/wireless.h> 14 #include <linux/nl80211.h> 15 #include <linux/etherdevice.h> 16 #include <net/arp.h> 17 #include <net/cfg80211.h> 18 #include <net/cfg80211-wext.h> 19 #include <net/iw_handler.h> 20 #include "core.h" 21 #include "nl80211.h" 22 #include "wext-compat.h" 23 #include "rdev-ops.h" 24 25 /** 26 * DOC: BSS tree/list structure 27 * 28 * At the top level, the BSS list is kept in both a list in each 29 * registered device (@bss_list) as well as an RB-tree for faster 30 * lookup. In the RB-tree, entries can be looked up using their 31 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID 32 * for other BSSes. 33 * 34 * Due to the possibility of hidden SSIDs, there's a second level 35 * structure, the "hidden_list" and "hidden_beacon_bss" pointer. 36 * The hidden_list connects all BSSes belonging to a single AP 37 * that has a hidden SSID, and connects beacon and probe response 38 * entries. For a probe response entry for a hidden SSID, the 39 * hidden_beacon_bss pointer points to the BSS struct holding the 40 * beacon's information. 41 * 42 * Reference counting is done for all these references except for 43 * the hidden_list, so that a beacon BSS struct that is otherwise 44 * not referenced has one reference for being on the bss_list and 45 * one for each probe response entry that points to it using the 46 * hidden_beacon_bss pointer. When a BSS struct that has such a 47 * pointer is get/put, the refcount update is also propagated to 48 * the referenced struct, this ensure that it cannot get removed 49 * while somebody is using the probe response version. 50 * 51 * Note that the hidden_beacon_bss pointer never changes, due to 52 * the reference counting. Therefore, no locking is needed for 53 * it. 54 * 55 * Also note that the hidden_beacon_bss pointer is only relevant 56 * if the driver uses something other than the IEs, e.g. private 57 * data stored stored in the BSS struct, since the beacon IEs are 58 * also linked into the probe response struct. 59 */ 60 61 /* 62 * Limit the number of BSS entries stored in mac80211. Each one is 63 * a bit over 4k at most, so this limits to roughly 4-5M of memory. 64 * If somebody wants to really attack this though, they'd likely 65 * use small beacons, and only one type of frame, limiting each of 66 * the entries to a much smaller size (in order to generate more 67 * entries in total, so overhead is bigger.) 68 */ 69 static int bss_entries_limit = 1000; 70 module_param(bss_entries_limit, int, 0644); 71 MODULE_PARM_DESC(bss_entries_limit, 72 "limit to number of scan BSS entries (per wiphy, default 1000)"); 73 74 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ) 75 76 static void bss_free(struct cfg80211_internal_bss *bss) 77 { 78 struct cfg80211_bss_ies *ies; 79 80 if (WARN_ON(atomic_read(&bss->hold))) 81 return; 82 83 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies); 84 if (ies && !bss->pub.hidden_beacon_bss) 85 kfree_rcu(ies, rcu_head); 86 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies); 87 if (ies) 88 kfree_rcu(ies, rcu_head); 89 90 /* 91 * This happens when the module is removed, it doesn't 92 * really matter any more save for completeness 93 */ 94 if (!list_empty(&bss->hidden_list)) 95 list_del(&bss->hidden_list); 96 97 kfree(bss); 98 } 99 100 static inline void bss_ref_get(struct cfg80211_registered_device *rdev, 101 struct cfg80211_internal_bss *bss) 102 { 103 lockdep_assert_held(&rdev->bss_lock); 104 105 bss->refcount++; 106 if (bss->pub.hidden_beacon_bss) { 107 bss = container_of(bss->pub.hidden_beacon_bss, 108 struct cfg80211_internal_bss, 109 pub); 110 bss->refcount++; 111 } 112 } 113 114 static inline void bss_ref_put(struct cfg80211_registered_device *rdev, 115 struct cfg80211_internal_bss *bss) 116 { 117 lockdep_assert_held(&rdev->bss_lock); 118 119 if (bss->pub.hidden_beacon_bss) { 120 struct cfg80211_internal_bss *hbss; 121 hbss = container_of(bss->pub.hidden_beacon_bss, 122 struct cfg80211_internal_bss, 123 pub); 124 hbss->refcount--; 125 if (hbss->refcount == 0) 126 bss_free(hbss); 127 } 128 bss->refcount--; 129 if (bss->refcount == 0) 130 bss_free(bss); 131 } 132 133 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev, 134 struct cfg80211_internal_bss *bss) 135 { 136 lockdep_assert_held(&rdev->bss_lock); 137 138 if (!list_empty(&bss->hidden_list)) { 139 /* 140 * don't remove the beacon entry if it has 141 * probe responses associated with it 142 */ 143 if (!bss->pub.hidden_beacon_bss) 144 return false; 145 /* 146 * if it's a probe response entry break its 147 * link to the other entries in the group 148 */ 149 list_del_init(&bss->hidden_list); 150 } 151 152 list_del_init(&bss->list); 153 rb_erase(&bss->rbn, &rdev->bss_tree); 154 rdev->bss_entries--; 155 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list), 156 "rdev bss entries[%d]/list[empty:%d] corruption\n", 157 rdev->bss_entries, list_empty(&rdev->bss_list)); 158 bss_ref_put(rdev, bss); 159 return true; 160 } 161 162 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev, 163 unsigned long expire_time) 164 { 165 struct cfg80211_internal_bss *bss, *tmp; 166 bool expired = false; 167 168 lockdep_assert_held(&rdev->bss_lock); 169 170 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) { 171 if (atomic_read(&bss->hold)) 172 continue; 173 if (!time_after(expire_time, bss->ts)) 174 continue; 175 176 if (__cfg80211_unlink_bss(rdev, bss)) 177 expired = true; 178 } 179 180 if (expired) 181 rdev->bss_generation++; 182 } 183 184 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev) 185 { 186 struct cfg80211_internal_bss *bss, *oldest = NULL; 187 bool ret; 188 189 lockdep_assert_held(&rdev->bss_lock); 190 191 list_for_each_entry(bss, &rdev->bss_list, list) { 192 if (atomic_read(&bss->hold)) 193 continue; 194 195 if (!list_empty(&bss->hidden_list) && 196 !bss->pub.hidden_beacon_bss) 197 continue; 198 199 if (oldest && time_before(oldest->ts, bss->ts)) 200 continue; 201 oldest = bss; 202 } 203 204 if (WARN_ON(!oldest)) 205 return false; 206 207 /* 208 * The callers make sure to increase rdev->bss_generation if anything 209 * gets removed (and a new entry added), so there's no need to also do 210 * it here. 211 */ 212 213 ret = __cfg80211_unlink_bss(rdev, oldest); 214 WARN_ON(!ret); 215 return ret; 216 } 217 218 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, 219 bool send_message) 220 { 221 struct cfg80211_scan_request *request; 222 struct wireless_dev *wdev; 223 struct sk_buff *msg; 224 #ifdef CONFIG_CFG80211_WEXT 225 union iwreq_data wrqu; 226 #endif 227 228 ASSERT_RTNL(); 229 230 if (rdev->scan_msg) { 231 nl80211_send_scan_msg(rdev, rdev->scan_msg); 232 rdev->scan_msg = NULL; 233 return; 234 } 235 236 request = rdev->scan_req; 237 if (!request) 238 return; 239 240 wdev = request->wdev; 241 242 /* 243 * This must be before sending the other events! 244 * Otherwise, wpa_supplicant gets completely confused with 245 * wext events. 246 */ 247 if (wdev->netdev) 248 cfg80211_sme_scan_done(wdev->netdev); 249 250 if (!request->info.aborted && 251 request->flags & NL80211_SCAN_FLAG_FLUSH) { 252 /* flush entries from previous scans */ 253 spin_lock_bh(&rdev->bss_lock); 254 __cfg80211_bss_expire(rdev, request->scan_start); 255 spin_unlock_bh(&rdev->bss_lock); 256 } 257 258 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted); 259 260 #ifdef CONFIG_CFG80211_WEXT 261 if (wdev->netdev && !request->info.aborted) { 262 memset(&wrqu, 0, sizeof(wrqu)); 263 264 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL); 265 } 266 #endif 267 268 if (wdev->netdev) 269 dev_put(wdev->netdev); 270 271 rdev->scan_req = NULL; 272 kfree(request); 273 274 if (!send_message) 275 rdev->scan_msg = msg; 276 else 277 nl80211_send_scan_msg(rdev, msg); 278 } 279 280 void __cfg80211_scan_done(struct work_struct *wk) 281 { 282 struct cfg80211_registered_device *rdev; 283 284 rdev = container_of(wk, struct cfg80211_registered_device, 285 scan_done_wk); 286 287 rtnl_lock(); 288 ___cfg80211_scan_done(rdev, true); 289 rtnl_unlock(); 290 } 291 292 void cfg80211_scan_done(struct cfg80211_scan_request *request, 293 struct cfg80211_scan_info *info) 294 { 295 trace_cfg80211_scan_done(request, info); 296 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req); 297 298 request->info = *info; 299 request->notified = true; 300 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk); 301 } 302 EXPORT_SYMBOL(cfg80211_scan_done); 303 304 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, 305 struct cfg80211_sched_scan_request *req) 306 { 307 ASSERT_RTNL(); 308 309 list_add_rcu(&req->list, &rdev->sched_scan_req_list); 310 } 311 312 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev, 313 struct cfg80211_sched_scan_request *req) 314 { 315 ASSERT_RTNL(); 316 317 list_del_rcu(&req->list); 318 kfree_rcu(req, rcu_head); 319 } 320 321 static struct cfg80211_sched_scan_request * 322 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid) 323 { 324 struct cfg80211_sched_scan_request *pos; 325 326 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 327 328 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list) { 329 if (pos->reqid == reqid) 330 return pos; 331 } 332 return NULL; 333 } 334 335 /* 336 * Determines if a scheduled scan request can be handled. When a legacy 337 * scheduled scan is running no other scheduled scan is allowed regardless 338 * whether the request is for legacy or multi-support scan. When a multi-support 339 * scheduled scan is running a request for legacy scan is not allowed. In this 340 * case a request for multi-support scan can be handled if resources are 341 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached. 342 */ 343 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, 344 bool want_multi) 345 { 346 struct cfg80211_sched_scan_request *pos; 347 int i = 0; 348 349 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) { 350 /* request id zero means legacy in progress */ 351 if (!i && !pos->reqid) 352 return -EINPROGRESS; 353 i++; 354 } 355 356 if (i) { 357 /* no legacy allowed when multi request(s) are active */ 358 if (!want_multi) 359 return -EINPROGRESS; 360 361 /* resource limit reached */ 362 if (i == rdev->wiphy.max_sched_scan_reqs) 363 return -ENOSPC; 364 } 365 return 0; 366 } 367 368 void cfg80211_sched_scan_results_wk(struct work_struct *work) 369 { 370 struct cfg80211_registered_device *rdev; 371 struct cfg80211_sched_scan_request *req, *tmp; 372 373 rdev = container_of(work, struct cfg80211_registered_device, 374 sched_scan_res_wk); 375 376 rtnl_lock(); 377 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) { 378 if (req->report_results) { 379 req->report_results = false; 380 if (req->flags & NL80211_SCAN_FLAG_FLUSH) { 381 /* flush entries from previous scans */ 382 spin_lock_bh(&rdev->bss_lock); 383 __cfg80211_bss_expire(rdev, req->scan_start); 384 spin_unlock_bh(&rdev->bss_lock); 385 req->scan_start = jiffies; 386 } 387 nl80211_send_sched_scan(req, 388 NL80211_CMD_SCHED_SCAN_RESULTS); 389 } 390 } 391 rtnl_unlock(); 392 } 393 394 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid) 395 { 396 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 397 struct cfg80211_sched_scan_request *request; 398 399 trace_cfg80211_sched_scan_results(wiphy, reqid); 400 /* ignore if we're not scanning */ 401 402 rcu_read_lock(); 403 request = cfg80211_find_sched_scan_req(rdev, reqid); 404 if (request) { 405 request->report_results = true; 406 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk); 407 } 408 rcu_read_unlock(); 409 } 410 EXPORT_SYMBOL(cfg80211_sched_scan_results); 411 412 void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy, u64 reqid) 413 { 414 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 415 416 ASSERT_RTNL(); 417 418 trace_cfg80211_sched_scan_stopped(wiphy, reqid); 419 420 __cfg80211_stop_sched_scan(rdev, reqid, true); 421 } 422 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_rtnl); 423 424 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid) 425 { 426 rtnl_lock(); 427 cfg80211_sched_scan_stopped_rtnl(wiphy, reqid); 428 rtnl_unlock(); 429 } 430 EXPORT_SYMBOL(cfg80211_sched_scan_stopped); 431 432 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, 433 struct cfg80211_sched_scan_request *req, 434 bool driver_initiated) 435 { 436 ASSERT_RTNL(); 437 438 if (!driver_initiated) { 439 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid); 440 if (err) 441 return err; 442 } 443 444 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED); 445 446 cfg80211_del_sched_scan_req(rdev, req); 447 448 return 0; 449 } 450 451 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, 452 u64 reqid, bool driver_initiated) 453 { 454 struct cfg80211_sched_scan_request *sched_scan_req; 455 456 ASSERT_RTNL(); 457 458 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid); 459 if (!sched_scan_req) 460 return -ENOENT; 461 462 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req, 463 driver_initiated); 464 } 465 466 void cfg80211_bss_age(struct cfg80211_registered_device *rdev, 467 unsigned long age_secs) 468 { 469 struct cfg80211_internal_bss *bss; 470 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC); 471 472 spin_lock_bh(&rdev->bss_lock); 473 list_for_each_entry(bss, &rdev->bss_list, list) 474 bss->ts -= age_jiffies; 475 spin_unlock_bh(&rdev->bss_lock); 476 } 477 478 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev) 479 { 480 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE); 481 } 482 483 const u8 *cfg80211_find_ie_match(u8 eid, const u8 *ies, int len, 484 const u8 *match, int match_len, 485 int match_offset) 486 { 487 /* match_offset can't be smaller than 2, unless match_len is 488 * zero, in which case match_offset must be zero as well. 489 */ 490 if (WARN_ON((match_len && match_offset < 2) || 491 (!match_len && match_offset))) 492 return NULL; 493 494 while (len >= 2 && len >= ies[1] + 2) { 495 if ((ies[0] == eid) && 496 (ies[1] + 2 >= match_offset + match_len) && 497 !memcmp(ies + match_offset, match, match_len)) 498 return ies; 499 500 len -= ies[1] + 2; 501 ies += ies[1] + 2; 502 } 503 504 return NULL; 505 } 506 EXPORT_SYMBOL(cfg80211_find_ie_match); 507 508 const u8 *cfg80211_find_vendor_ie(unsigned int oui, int oui_type, 509 const u8 *ies, int len) 510 { 511 const u8 *ie; 512 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type }; 513 int match_len = (oui_type < 0) ? 3 : sizeof(match); 514 515 if (WARN_ON(oui_type > 0xff)) 516 return NULL; 517 518 ie = cfg80211_find_ie_match(WLAN_EID_VENDOR_SPECIFIC, ies, len, 519 match, match_len, 2); 520 521 if (ie && (ie[1] < 4)) 522 return NULL; 523 524 return ie; 525 } 526 EXPORT_SYMBOL(cfg80211_find_vendor_ie); 527 528 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid, 529 const u8 *ssid, size_t ssid_len) 530 { 531 const struct cfg80211_bss_ies *ies; 532 const u8 *ssidie; 533 534 if (bssid && !ether_addr_equal(a->bssid, bssid)) 535 return false; 536 537 if (!ssid) 538 return true; 539 540 ies = rcu_access_pointer(a->ies); 541 if (!ies) 542 return false; 543 ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 544 if (!ssidie) 545 return false; 546 if (ssidie[1] != ssid_len) 547 return false; 548 return memcmp(ssidie + 2, ssid, ssid_len) == 0; 549 } 550 551 /** 552 * enum bss_compare_mode - BSS compare mode 553 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find) 554 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode 555 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode 556 */ 557 enum bss_compare_mode { 558 BSS_CMP_REGULAR, 559 BSS_CMP_HIDE_ZLEN, 560 BSS_CMP_HIDE_NUL, 561 }; 562 563 static int cmp_bss(struct cfg80211_bss *a, 564 struct cfg80211_bss *b, 565 enum bss_compare_mode mode) 566 { 567 const struct cfg80211_bss_ies *a_ies, *b_ies; 568 const u8 *ie1 = NULL; 569 const u8 *ie2 = NULL; 570 int i, r; 571 572 if (a->channel != b->channel) 573 return b->channel->center_freq - a->channel->center_freq; 574 575 a_ies = rcu_access_pointer(a->ies); 576 if (!a_ies) 577 return -1; 578 b_ies = rcu_access_pointer(b->ies); 579 if (!b_ies) 580 return 1; 581 582 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability)) 583 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID, 584 a_ies->data, a_ies->len); 585 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability)) 586 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID, 587 b_ies->data, b_ies->len); 588 if (ie1 && ie2) { 589 int mesh_id_cmp; 590 591 if (ie1[1] == ie2[1]) 592 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]); 593 else 594 mesh_id_cmp = ie2[1] - ie1[1]; 595 596 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 597 a_ies->data, a_ies->len); 598 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 599 b_ies->data, b_ies->len); 600 if (ie1 && ie2) { 601 if (mesh_id_cmp) 602 return mesh_id_cmp; 603 if (ie1[1] != ie2[1]) 604 return ie2[1] - ie1[1]; 605 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 606 } 607 } 608 609 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid)); 610 if (r) 611 return r; 612 613 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len); 614 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len); 615 616 if (!ie1 && !ie2) 617 return 0; 618 619 /* 620 * Note that with "hide_ssid", the function returns a match if 621 * the already-present BSS ("b") is a hidden SSID beacon for 622 * the new BSS ("a"). 623 */ 624 625 /* sort missing IE before (left of) present IE */ 626 if (!ie1) 627 return -1; 628 if (!ie2) 629 return 1; 630 631 switch (mode) { 632 case BSS_CMP_HIDE_ZLEN: 633 /* 634 * In ZLEN mode we assume the BSS entry we're 635 * looking for has a zero-length SSID. So if 636 * the one we're looking at right now has that, 637 * return 0. Otherwise, return the difference 638 * in length, but since we're looking for the 639 * 0-length it's really equivalent to returning 640 * the length of the one we're looking at. 641 * 642 * No content comparison is needed as we assume 643 * the content length is zero. 644 */ 645 return ie2[1]; 646 case BSS_CMP_REGULAR: 647 default: 648 /* sort by length first, then by contents */ 649 if (ie1[1] != ie2[1]) 650 return ie2[1] - ie1[1]; 651 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 652 case BSS_CMP_HIDE_NUL: 653 if (ie1[1] != ie2[1]) 654 return ie2[1] - ie1[1]; 655 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */ 656 for (i = 0; i < ie2[1]; i++) 657 if (ie2[i + 2]) 658 return -1; 659 return 0; 660 } 661 } 662 663 static bool cfg80211_bss_type_match(u16 capability, 664 enum nl80211_band band, 665 enum ieee80211_bss_type bss_type) 666 { 667 bool ret = true; 668 u16 mask, val; 669 670 if (bss_type == IEEE80211_BSS_TYPE_ANY) 671 return ret; 672 673 if (band == NL80211_BAND_60GHZ) { 674 mask = WLAN_CAPABILITY_DMG_TYPE_MASK; 675 switch (bss_type) { 676 case IEEE80211_BSS_TYPE_ESS: 677 val = WLAN_CAPABILITY_DMG_TYPE_AP; 678 break; 679 case IEEE80211_BSS_TYPE_PBSS: 680 val = WLAN_CAPABILITY_DMG_TYPE_PBSS; 681 break; 682 case IEEE80211_BSS_TYPE_IBSS: 683 val = WLAN_CAPABILITY_DMG_TYPE_IBSS; 684 break; 685 default: 686 return false; 687 } 688 } else { 689 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS; 690 switch (bss_type) { 691 case IEEE80211_BSS_TYPE_ESS: 692 val = WLAN_CAPABILITY_ESS; 693 break; 694 case IEEE80211_BSS_TYPE_IBSS: 695 val = WLAN_CAPABILITY_IBSS; 696 break; 697 case IEEE80211_BSS_TYPE_MBSS: 698 val = 0; 699 break; 700 default: 701 return false; 702 } 703 } 704 705 ret = ((capability & mask) == val); 706 return ret; 707 } 708 709 /* Returned bss is reference counted and must be cleaned up appropriately. */ 710 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy, 711 struct ieee80211_channel *channel, 712 const u8 *bssid, 713 const u8 *ssid, size_t ssid_len, 714 enum ieee80211_bss_type bss_type, 715 enum ieee80211_privacy privacy) 716 { 717 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 718 struct cfg80211_internal_bss *bss, *res = NULL; 719 unsigned long now = jiffies; 720 int bss_privacy; 721 722 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type, 723 privacy); 724 725 spin_lock_bh(&rdev->bss_lock); 726 727 list_for_each_entry(bss, &rdev->bss_list, list) { 728 if (!cfg80211_bss_type_match(bss->pub.capability, 729 bss->pub.channel->band, bss_type)) 730 continue; 731 732 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY); 733 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) || 734 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy)) 735 continue; 736 if (channel && bss->pub.channel != channel) 737 continue; 738 if (!is_valid_ether_addr(bss->pub.bssid)) 739 continue; 740 /* Don't get expired BSS structs */ 741 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) && 742 !atomic_read(&bss->hold)) 743 continue; 744 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) { 745 res = bss; 746 bss_ref_get(rdev, res); 747 break; 748 } 749 } 750 751 spin_unlock_bh(&rdev->bss_lock); 752 if (!res) 753 return NULL; 754 trace_cfg80211_return_bss(&res->pub); 755 return &res->pub; 756 } 757 EXPORT_SYMBOL(cfg80211_get_bss); 758 759 static void rb_insert_bss(struct cfg80211_registered_device *rdev, 760 struct cfg80211_internal_bss *bss) 761 { 762 struct rb_node **p = &rdev->bss_tree.rb_node; 763 struct rb_node *parent = NULL; 764 struct cfg80211_internal_bss *tbss; 765 int cmp; 766 767 while (*p) { 768 parent = *p; 769 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn); 770 771 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR); 772 773 if (WARN_ON(!cmp)) { 774 /* will sort of leak this BSS */ 775 return; 776 } 777 778 if (cmp < 0) 779 p = &(*p)->rb_left; 780 else 781 p = &(*p)->rb_right; 782 } 783 784 rb_link_node(&bss->rbn, parent, p); 785 rb_insert_color(&bss->rbn, &rdev->bss_tree); 786 } 787 788 static struct cfg80211_internal_bss * 789 rb_find_bss(struct cfg80211_registered_device *rdev, 790 struct cfg80211_internal_bss *res, 791 enum bss_compare_mode mode) 792 { 793 struct rb_node *n = rdev->bss_tree.rb_node; 794 struct cfg80211_internal_bss *bss; 795 int r; 796 797 while (n) { 798 bss = rb_entry(n, struct cfg80211_internal_bss, rbn); 799 r = cmp_bss(&res->pub, &bss->pub, mode); 800 801 if (r == 0) 802 return bss; 803 else if (r < 0) 804 n = n->rb_left; 805 else 806 n = n->rb_right; 807 } 808 809 return NULL; 810 } 811 812 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev, 813 struct cfg80211_internal_bss *new) 814 { 815 const struct cfg80211_bss_ies *ies; 816 struct cfg80211_internal_bss *bss; 817 const u8 *ie; 818 int i, ssidlen; 819 u8 fold = 0; 820 u32 n_entries = 0; 821 822 ies = rcu_access_pointer(new->pub.beacon_ies); 823 if (WARN_ON(!ies)) 824 return false; 825 826 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 827 if (!ie) { 828 /* nothing to do */ 829 return true; 830 } 831 832 ssidlen = ie[1]; 833 for (i = 0; i < ssidlen; i++) 834 fold |= ie[2 + i]; 835 836 if (fold) { 837 /* not a hidden SSID */ 838 return true; 839 } 840 841 /* This is the bad part ... */ 842 843 list_for_each_entry(bss, &rdev->bss_list, list) { 844 /* 845 * we're iterating all the entries anyway, so take the 846 * opportunity to validate the list length accounting 847 */ 848 n_entries++; 849 850 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid)) 851 continue; 852 if (bss->pub.channel != new->pub.channel) 853 continue; 854 if (bss->pub.scan_width != new->pub.scan_width) 855 continue; 856 if (rcu_access_pointer(bss->pub.beacon_ies)) 857 continue; 858 ies = rcu_access_pointer(bss->pub.ies); 859 if (!ies) 860 continue; 861 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 862 if (!ie) 863 continue; 864 if (ssidlen && ie[1] != ssidlen) 865 continue; 866 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss)) 867 continue; 868 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list))) 869 list_del(&bss->hidden_list); 870 /* combine them */ 871 list_add(&bss->hidden_list, &new->hidden_list); 872 bss->pub.hidden_beacon_bss = &new->pub; 873 new->refcount += bss->refcount; 874 rcu_assign_pointer(bss->pub.beacon_ies, 875 new->pub.beacon_ies); 876 } 877 878 WARN_ONCE(n_entries != rdev->bss_entries, 879 "rdev bss entries[%d]/list[len:%d] corruption\n", 880 rdev->bss_entries, n_entries); 881 882 return true; 883 } 884 885 /* Returned bss is reference counted and must be cleaned up appropriately. */ 886 static struct cfg80211_internal_bss * 887 cfg80211_bss_update(struct cfg80211_registered_device *rdev, 888 struct cfg80211_internal_bss *tmp, 889 bool signal_valid) 890 { 891 struct cfg80211_internal_bss *found = NULL; 892 893 if (WARN_ON(!tmp->pub.channel)) 894 return NULL; 895 896 tmp->ts = jiffies; 897 898 spin_lock_bh(&rdev->bss_lock); 899 900 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) { 901 spin_unlock_bh(&rdev->bss_lock); 902 return NULL; 903 } 904 905 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR); 906 907 if (found) { 908 /* Update IEs */ 909 if (rcu_access_pointer(tmp->pub.proberesp_ies)) { 910 const struct cfg80211_bss_ies *old; 911 912 old = rcu_access_pointer(found->pub.proberesp_ies); 913 914 rcu_assign_pointer(found->pub.proberesp_ies, 915 tmp->pub.proberesp_ies); 916 /* Override possible earlier Beacon frame IEs */ 917 rcu_assign_pointer(found->pub.ies, 918 tmp->pub.proberesp_ies); 919 if (old) 920 kfree_rcu((struct cfg80211_bss_ies *)old, 921 rcu_head); 922 } else if (rcu_access_pointer(tmp->pub.beacon_ies)) { 923 const struct cfg80211_bss_ies *old; 924 struct cfg80211_internal_bss *bss; 925 926 if (found->pub.hidden_beacon_bss && 927 !list_empty(&found->hidden_list)) { 928 const struct cfg80211_bss_ies *f; 929 930 /* 931 * The found BSS struct is one of the probe 932 * response members of a group, but we're 933 * receiving a beacon (beacon_ies in the tmp 934 * bss is used). This can only mean that the 935 * AP changed its beacon from not having an 936 * SSID to showing it, which is confusing so 937 * drop this information. 938 */ 939 940 f = rcu_access_pointer(tmp->pub.beacon_ies); 941 kfree_rcu((struct cfg80211_bss_ies *)f, 942 rcu_head); 943 goto drop; 944 } 945 946 old = rcu_access_pointer(found->pub.beacon_ies); 947 948 rcu_assign_pointer(found->pub.beacon_ies, 949 tmp->pub.beacon_ies); 950 951 /* Override IEs if they were from a beacon before */ 952 if (old == rcu_access_pointer(found->pub.ies)) 953 rcu_assign_pointer(found->pub.ies, 954 tmp->pub.beacon_ies); 955 956 /* Assign beacon IEs to all sub entries */ 957 list_for_each_entry(bss, &found->hidden_list, 958 hidden_list) { 959 const struct cfg80211_bss_ies *ies; 960 961 ies = rcu_access_pointer(bss->pub.beacon_ies); 962 WARN_ON(ies != old); 963 964 rcu_assign_pointer(bss->pub.beacon_ies, 965 tmp->pub.beacon_ies); 966 } 967 968 if (old) 969 kfree_rcu((struct cfg80211_bss_ies *)old, 970 rcu_head); 971 } 972 973 found->pub.beacon_interval = tmp->pub.beacon_interval; 974 /* 975 * don't update the signal if beacon was heard on 976 * adjacent channel. 977 */ 978 if (signal_valid) 979 found->pub.signal = tmp->pub.signal; 980 found->pub.capability = tmp->pub.capability; 981 found->ts = tmp->ts; 982 found->ts_boottime = tmp->ts_boottime; 983 found->parent_tsf = tmp->parent_tsf; 984 found->pub.chains = tmp->pub.chains; 985 memcpy(found->pub.chain_signal, tmp->pub.chain_signal, 986 IEEE80211_MAX_CHAINS); 987 ether_addr_copy(found->parent_bssid, tmp->parent_bssid); 988 } else { 989 struct cfg80211_internal_bss *new; 990 struct cfg80211_internal_bss *hidden; 991 struct cfg80211_bss_ies *ies; 992 993 /* 994 * create a copy -- the "res" variable that is passed in 995 * is allocated on the stack since it's not needed in the 996 * more common case of an update 997 */ 998 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size, 999 GFP_ATOMIC); 1000 if (!new) { 1001 ies = (void *)rcu_dereference(tmp->pub.beacon_ies); 1002 if (ies) 1003 kfree_rcu(ies, rcu_head); 1004 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies); 1005 if (ies) 1006 kfree_rcu(ies, rcu_head); 1007 goto drop; 1008 } 1009 memcpy(new, tmp, sizeof(*new)); 1010 new->refcount = 1; 1011 INIT_LIST_HEAD(&new->hidden_list); 1012 1013 if (rcu_access_pointer(tmp->pub.proberesp_ies)) { 1014 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN); 1015 if (!hidden) 1016 hidden = rb_find_bss(rdev, tmp, 1017 BSS_CMP_HIDE_NUL); 1018 if (hidden) { 1019 new->pub.hidden_beacon_bss = &hidden->pub; 1020 list_add(&new->hidden_list, 1021 &hidden->hidden_list); 1022 hidden->refcount++; 1023 rcu_assign_pointer(new->pub.beacon_ies, 1024 hidden->pub.beacon_ies); 1025 } 1026 } else { 1027 /* 1028 * Ok so we found a beacon, and don't have an entry. If 1029 * it's a beacon with hidden SSID, we might be in for an 1030 * expensive search for any probe responses that should 1031 * be grouped with this beacon for updates ... 1032 */ 1033 if (!cfg80211_combine_bsses(rdev, new)) { 1034 kfree(new); 1035 goto drop; 1036 } 1037 } 1038 1039 if (rdev->bss_entries >= bss_entries_limit && 1040 !cfg80211_bss_expire_oldest(rdev)) { 1041 kfree(new); 1042 goto drop; 1043 } 1044 1045 list_add_tail(&new->list, &rdev->bss_list); 1046 rdev->bss_entries++; 1047 rb_insert_bss(rdev, new); 1048 found = new; 1049 } 1050 1051 rdev->bss_generation++; 1052 bss_ref_get(rdev, found); 1053 spin_unlock_bh(&rdev->bss_lock); 1054 1055 return found; 1056 drop: 1057 spin_unlock_bh(&rdev->bss_lock); 1058 return NULL; 1059 } 1060 1061 /* 1062 * Update RX channel information based on the available frame payload 1063 * information. This is mainly for the 2.4 GHz band where frames can be received 1064 * from neighboring channels and the Beacon frames use the DSSS Parameter Set 1065 * element to indicate the current (transmitting) channel, but this might also 1066 * be needed on other bands if RX frequency does not match with the actual 1067 * operating channel of a BSS. 1068 */ 1069 static struct ieee80211_channel * 1070 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen, 1071 struct ieee80211_channel *channel, 1072 enum nl80211_bss_scan_width scan_width) 1073 { 1074 const u8 *tmp; 1075 u32 freq; 1076 int channel_number = -1; 1077 struct ieee80211_channel *alt_channel; 1078 1079 tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen); 1080 if (tmp && tmp[1] == 1) { 1081 channel_number = tmp[2]; 1082 } else { 1083 tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen); 1084 if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) { 1085 struct ieee80211_ht_operation *htop = (void *)(tmp + 2); 1086 1087 channel_number = htop->primary_chan; 1088 } 1089 } 1090 1091 if (channel_number < 0) { 1092 /* No channel information in frame payload */ 1093 return channel; 1094 } 1095 1096 freq = ieee80211_channel_to_frequency(channel_number, channel->band); 1097 alt_channel = ieee80211_get_channel(wiphy, freq); 1098 if (!alt_channel) { 1099 if (channel->band == NL80211_BAND_2GHZ) { 1100 /* 1101 * Better not allow unexpected channels when that could 1102 * be going beyond the 1-11 range (e.g., discovering 1103 * BSS on channel 12 when radio is configured for 1104 * channel 11. 1105 */ 1106 return NULL; 1107 } 1108 1109 /* No match for the payload channel number - ignore it */ 1110 return channel; 1111 } 1112 1113 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 || 1114 scan_width == NL80211_BSS_CHAN_WIDTH_5) { 1115 /* 1116 * Ignore channel number in 5 and 10 MHz channels where there 1117 * may not be an n:1 or 1:n mapping between frequencies and 1118 * channel numbers. 1119 */ 1120 return channel; 1121 } 1122 1123 /* 1124 * Use the channel determined through the payload channel number 1125 * instead of the RX channel reported by the driver. 1126 */ 1127 if (alt_channel->flags & IEEE80211_CHAN_DISABLED) 1128 return NULL; 1129 return alt_channel; 1130 } 1131 1132 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1133 struct cfg80211_bss * 1134 cfg80211_inform_bss_data(struct wiphy *wiphy, 1135 struct cfg80211_inform_bss *data, 1136 enum cfg80211_bss_frame_type ftype, 1137 const u8 *bssid, u64 tsf, u16 capability, 1138 u16 beacon_interval, const u8 *ie, size_t ielen, 1139 gfp_t gfp) 1140 { 1141 struct cfg80211_bss_ies *ies; 1142 struct ieee80211_channel *channel; 1143 struct cfg80211_internal_bss tmp = {}, *res; 1144 int bss_type; 1145 bool signal_valid; 1146 1147 if (WARN_ON(!wiphy)) 1148 return NULL; 1149 1150 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 1151 (data->signal < 0 || data->signal > 100))) 1152 return NULL; 1153 1154 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan, 1155 data->scan_width); 1156 if (!channel) 1157 return NULL; 1158 1159 memcpy(tmp.pub.bssid, bssid, ETH_ALEN); 1160 tmp.pub.channel = channel; 1161 tmp.pub.scan_width = data->scan_width; 1162 tmp.pub.signal = data->signal; 1163 tmp.pub.beacon_interval = beacon_interval; 1164 tmp.pub.capability = capability; 1165 tmp.ts_boottime = data->boottime_ns; 1166 1167 /* 1168 * If we do not know here whether the IEs are from a Beacon or Probe 1169 * Response frame, we need to pick one of the options and only use it 1170 * with the driver that does not provide the full Beacon/Probe Response 1171 * frame. Use Beacon frame pointer to avoid indicating that this should 1172 * override the IEs pointer should we have received an earlier 1173 * indication of Probe Response data. 1174 */ 1175 ies = kzalloc(sizeof(*ies) + ielen, gfp); 1176 if (!ies) 1177 return NULL; 1178 ies->len = ielen; 1179 ies->tsf = tsf; 1180 ies->from_beacon = false; 1181 memcpy(ies->data, ie, ielen); 1182 1183 switch (ftype) { 1184 case CFG80211_BSS_FTYPE_BEACON: 1185 ies->from_beacon = true; 1186 /* fall through */ 1187 case CFG80211_BSS_FTYPE_UNKNOWN: 1188 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 1189 break; 1190 case CFG80211_BSS_FTYPE_PRESP: 1191 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 1192 break; 1193 } 1194 rcu_assign_pointer(tmp.pub.ies, ies); 1195 1196 signal_valid = abs(data->chan->center_freq - channel->center_freq) <= 1197 wiphy->max_adj_channel_rssi_comp; 1198 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid); 1199 if (!res) 1200 return NULL; 1201 1202 if (channel->band == NL80211_BAND_60GHZ) { 1203 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 1204 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 1205 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 1206 regulatory_hint_found_beacon(wiphy, channel, gfp); 1207 } else { 1208 if (res->pub.capability & WLAN_CAPABILITY_ESS) 1209 regulatory_hint_found_beacon(wiphy, channel, gfp); 1210 } 1211 1212 trace_cfg80211_return_bss(&res->pub); 1213 /* cfg80211_bss_update gives us a referenced result */ 1214 return &res->pub; 1215 } 1216 EXPORT_SYMBOL(cfg80211_inform_bss_data); 1217 1218 /* cfg80211_inform_bss_width_frame helper */ 1219 struct cfg80211_bss * 1220 cfg80211_inform_bss_frame_data(struct wiphy *wiphy, 1221 struct cfg80211_inform_bss *data, 1222 struct ieee80211_mgmt *mgmt, size_t len, 1223 gfp_t gfp) 1224 1225 { 1226 struct cfg80211_internal_bss tmp = {}, *res; 1227 struct cfg80211_bss_ies *ies; 1228 struct ieee80211_channel *channel; 1229 bool signal_valid; 1230 size_t ielen = len - offsetof(struct ieee80211_mgmt, 1231 u.probe_resp.variable); 1232 int bss_type; 1233 1234 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) != 1235 offsetof(struct ieee80211_mgmt, u.beacon.variable)); 1236 1237 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len); 1238 1239 if (WARN_ON(!mgmt)) 1240 return NULL; 1241 1242 if (WARN_ON(!wiphy)) 1243 return NULL; 1244 1245 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 1246 (data->signal < 0 || data->signal > 100))) 1247 return NULL; 1248 1249 if (WARN_ON(len < offsetof(struct ieee80211_mgmt, u.probe_resp.variable))) 1250 return NULL; 1251 1252 channel = cfg80211_get_bss_channel(wiphy, mgmt->u.beacon.variable, 1253 ielen, data->chan, data->scan_width); 1254 if (!channel) 1255 return NULL; 1256 1257 ies = kzalloc(sizeof(*ies) + ielen, gfp); 1258 if (!ies) 1259 return NULL; 1260 ies->len = ielen; 1261 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 1262 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control); 1263 memcpy(ies->data, mgmt->u.probe_resp.variable, ielen); 1264 1265 if (ieee80211_is_probe_resp(mgmt->frame_control)) 1266 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 1267 else 1268 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 1269 rcu_assign_pointer(tmp.pub.ies, ies); 1270 1271 memcpy(tmp.pub.bssid, mgmt->bssid, ETH_ALEN); 1272 tmp.pub.channel = channel; 1273 tmp.pub.scan_width = data->scan_width; 1274 tmp.pub.signal = data->signal; 1275 tmp.pub.beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int); 1276 tmp.pub.capability = le16_to_cpu(mgmt->u.probe_resp.capab_info); 1277 tmp.ts_boottime = data->boottime_ns; 1278 tmp.parent_tsf = data->parent_tsf; 1279 tmp.pub.chains = data->chains; 1280 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS); 1281 ether_addr_copy(tmp.parent_bssid, data->parent_bssid); 1282 1283 signal_valid = abs(data->chan->center_freq - channel->center_freq) <= 1284 wiphy->max_adj_channel_rssi_comp; 1285 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid); 1286 if (!res) 1287 return NULL; 1288 1289 if (channel->band == NL80211_BAND_60GHZ) { 1290 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 1291 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 1292 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 1293 regulatory_hint_found_beacon(wiphy, channel, gfp); 1294 } else { 1295 if (res->pub.capability & WLAN_CAPABILITY_ESS) 1296 regulatory_hint_found_beacon(wiphy, channel, gfp); 1297 } 1298 1299 trace_cfg80211_return_bss(&res->pub); 1300 /* cfg80211_bss_update gives us a referenced result */ 1301 return &res->pub; 1302 } 1303 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data); 1304 1305 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 1306 { 1307 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1308 struct cfg80211_internal_bss *bss; 1309 1310 if (!pub) 1311 return; 1312 1313 bss = container_of(pub, struct cfg80211_internal_bss, pub); 1314 1315 spin_lock_bh(&rdev->bss_lock); 1316 bss_ref_get(rdev, bss); 1317 spin_unlock_bh(&rdev->bss_lock); 1318 } 1319 EXPORT_SYMBOL(cfg80211_ref_bss); 1320 1321 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 1322 { 1323 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1324 struct cfg80211_internal_bss *bss; 1325 1326 if (!pub) 1327 return; 1328 1329 bss = container_of(pub, struct cfg80211_internal_bss, pub); 1330 1331 spin_lock_bh(&rdev->bss_lock); 1332 bss_ref_put(rdev, bss); 1333 spin_unlock_bh(&rdev->bss_lock); 1334 } 1335 EXPORT_SYMBOL(cfg80211_put_bss); 1336 1337 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 1338 { 1339 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1340 struct cfg80211_internal_bss *bss; 1341 1342 if (WARN_ON(!pub)) 1343 return; 1344 1345 bss = container_of(pub, struct cfg80211_internal_bss, pub); 1346 1347 spin_lock_bh(&rdev->bss_lock); 1348 if (!list_empty(&bss->list)) { 1349 if (__cfg80211_unlink_bss(rdev, bss)) 1350 rdev->bss_generation++; 1351 } 1352 spin_unlock_bh(&rdev->bss_lock); 1353 } 1354 EXPORT_SYMBOL(cfg80211_unlink_bss); 1355 1356 #ifdef CONFIG_CFG80211_WEXT 1357 static struct cfg80211_registered_device * 1358 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex) 1359 { 1360 struct cfg80211_registered_device *rdev; 1361 struct net_device *dev; 1362 1363 ASSERT_RTNL(); 1364 1365 dev = dev_get_by_index(net, ifindex); 1366 if (!dev) 1367 return ERR_PTR(-ENODEV); 1368 if (dev->ieee80211_ptr) 1369 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy); 1370 else 1371 rdev = ERR_PTR(-ENODEV); 1372 dev_put(dev); 1373 return rdev; 1374 } 1375 1376 int cfg80211_wext_siwscan(struct net_device *dev, 1377 struct iw_request_info *info, 1378 union iwreq_data *wrqu, char *extra) 1379 { 1380 struct cfg80211_registered_device *rdev; 1381 struct wiphy *wiphy; 1382 struct iw_scan_req *wreq = NULL; 1383 struct cfg80211_scan_request *creq = NULL; 1384 int i, err, n_channels = 0; 1385 enum nl80211_band band; 1386 1387 if (!netif_running(dev)) 1388 return -ENETDOWN; 1389 1390 if (wrqu->data.length == sizeof(struct iw_scan_req)) 1391 wreq = (struct iw_scan_req *)extra; 1392 1393 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 1394 1395 if (IS_ERR(rdev)) 1396 return PTR_ERR(rdev); 1397 1398 if (rdev->scan_req || rdev->scan_msg) { 1399 err = -EBUSY; 1400 goto out; 1401 } 1402 1403 wiphy = &rdev->wiphy; 1404 1405 /* Determine number of channels, needed to allocate creq */ 1406 if (wreq && wreq->num_channels) 1407 n_channels = wreq->num_channels; 1408 else 1409 n_channels = ieee80211_get_num_supported_channels(wiphy); 1410 1411 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) + 1412 n_channels * sizeof(void *), 1413 GFP_ATOMIC); 1414 if (!creq) { 1415 err = -ENOMEM; 1416 goto out; 1417 } 1418 1419 creq->wiphy = wiphy; 1420 creq->wdev = dev->ieee80211_ptr; 1421 /* SSIDs come after channels */ 1422 creq->ssids = (void *)&creq->channels[n_channels]; 1423 creq->n_channels = n_channels; 1424 creq->n_ssids = 1; 1425 creq->scan_start = jiffies; 1426 1427 /* translate "Scan on frequencies" request */ 1428 i = 0; 1429 for (band = 0; band < NUM_NL80211_BANDS; band++) { 1430 int j; 1431 1432 if (!wiphy->bands[band]) 1433 continue; 1434 1435 for (j = 0; j < wiphy->bands[band]->n_channels; j++) { 1436 /* ignore disabled channels */ 1437 if (wiphy->bands[band]->channels[j].flags & 1438 IEEE80211_CHAN_DISABLED) 1439 continue; 1440 1441 /* If we have a wireless request structure and the 1442 * wireless request specifies frequencies, then search 1443 * for the matching hardware channel. 1444 */ 1445 if (wreq && wreq->num_channels) { 1446 int k; 1447 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq; 1448 for (k = 0; k < wreq->num_channels; k++) { 1449 struct iw_freq *freq = 1450 &wreq->channel_list[k]; 1451 int wext_freq = 1452 cfg80211_wext_freq(freq); 1453 1454 if (wext_freq == wiphy_freq) 1455 goto wext_freq_found; 1456 } 1457 goto wext_freq_not_found; 1458 } 1459 1460 wext_freq_found: 1461 creq->channels[i] = &wiphy->bands[band]->channels[j]; 1462 i++; 1463 wext_freq_not_found: ; 1464 } 1465 } 1466 /* No channels found? */ 1467 if (!i) { 1468 err = -EINVAL; 1469 goto out; 1470 } 1471 1472 /* Set real number of channels specified in creq->channels[] */ 1473 creq->n_channels = i; 1474 1475 /* translate "Scan for SSID" request */ 1476 if (wreq) { 1477 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { 1478 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) { 1479 err = -EINVAL; 1480 goto out; 1481 } 1482 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len); 1483 creq->ssids[0].ssid_len = wreq->essid_len; 1484 } 1485 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) 1486 creq->n_ssids = 0; 1487 } 1488 1489 for (i = 0; i < NUM_NL80211_BANDS; i++) 1490 if (wiphy->bands[i]) 1491 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1; 1492 1493 eth_broadcast_addr(creq->bssid); 1494 1495 rdev->scan_req = creq; 1496 err = rdev_scan(rdev, creq); 1497 if (err) { 1498 rdev->scan_req = NULL; 1499 /* creq will be freed below */ 1500 } else { 1501 nl80211_send_scan_start(rdev, dev->ieee80211_ptr); 1502 /* creq now owned by driver */ 1503 creq = NULL; 1504 dev_hold(dev); 1505 } 1506 out: 1507 kfree(creq); 1508 return err; 1509 } 1510 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan); 1511 1512 static char *ieee80211_scan_add_ies(struct iw_request_info *info, 1513 const struct cfg80211_bss_ies *ies, 1514 char *current_ev, char *end_buf) 1515 { 1516 const u8 *pos, *end, *next; 1517 struct iw_event iwe; 1518 1519 if (!ies) 1520 return current_ev; 1521 1522 /* 1523 * If needed, fragment the IEs buffer (at IE boundaries) into short 1524 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages. 1525 */ 1526 pos = ies->data; 1527 end = pos + ies->len; 1528 1529 while (end - pos > IW_GENERIC_IE_MAX) { 1530 next = pos + 2 + pos[1]; 1531 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX) 1532 next = next + 2 + next[1]; 1533 1534 memset(&iwe, 0, sizeof(iwe)); 1535 iwe.cmd = IWEVGENIE; 1536 iwe.u.data.length = next - pos; 1537 current_ev = iwe_stream_add_point_check(info, current_ev, 1538 end_buf, &iwe, 1539 (void *)pos); 1540 if (IS_ERR(current_ev)) 1541 return current_ev; 1542 pos = next; 1543 } 1544 1545 if (end > pos) { 1546 memset(&iwe, 0, sizeof(iwe)); 1547 iwe.cmd = IWEVGENIE; 1548 iwe.u.data.length = end - pos; 1549 current_ev = iwe_stream_add_point_check(info, current_ev, 1550 end_buf, &iwe, 1551 (void *)pos); 1552 if (IS_ERR(current_ev)) 1553 return current_ev; 1554 } 1555 1556 return current_ev; 1557 } 1558 1559 static char * 1560 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info, 1561 struct cfg80211_internal_bss *bss, char *current_ev, 1562 char *end_buf) 1563 { 1564 const struct cfg80211_bss_ies *ies; 1565 struct iw_event iwe; 1566 const u8 *ie; 1567 u8 buf[50]; 1568 u8 *cfg, *p, *tmp; 1569 int rem, i, sig; 1570 bool ismesh = false; 1571 1572 memset(&iwe, 0, sizeof(iwe)); 1573 iwe.cmd = SIOCGIWAP; 1574 iwe.u.ap_addr.sa_family = ARPHRD_ETHER; 1575 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN); 1576 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 1577 IW_EV_ADDR_LEN); 1578 if (IS_ERR(current_ev)) 1579 return current_ev; 1580 1581 memset(&iwe, 0, sizeof(iwe)); 1582 iwe.cmd = SIOCGIWFREQ; 1583 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq); 1584 iwe.u.freq.e = 0; 1585 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 1586 IW_EV_FREQ_LEN); 1587 if (IS_ERR(current_ev)) 1588 return current_ev; 1589 1590 memset(&iwe, 0, sizeof(iwe)); 1591 iwe.cmd = SIOCGIWFREQ; 1592 iwe.u.freq.m = bss->pub.channel->center_freq; 1593 iwe.u.freq.e = 6; 1594 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 1595 IW_EV_FREQ_LEN); 1596 if (IS_ERR(current_ev)) 1597 return current_ev; 1598 1599 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) { 1600 memset(&iwe, 0, sizeof(iwe)); 1601 iwe.cmd = IWEVQUAL; 1602 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED | 1603 IW_QUAL_NOISE_INVALID | 1604 IW_QUAL_QUAL_UPDATED; 1605 switch (wiphy->signal_type) { 1606 case CFG80211_SIGNAL_TYPE_MBM: 1607 sig = bss->pub.signal / 100; 1608 iwe.u.qual.level = sig; 1609 iwe.u.qual.updated |= IW_QUAL_DBM; 1610 if (sig < -110) /* rather bad */ 1611 sig = -110; 1612 else if (sig > -40) /* perfect */ 1613 sig = -40; 1614 /* will give a range of 0 .. 70 */ 1615 iwe.u.qual.qual = sig + 110; 1616 break; 1617 case CFG80211_SIGNAL_TYPE_UNSPEC: 1618 iwe.u.qual.level = bss->pub.signal; 1619 /* will give range 0 .. 100 */ 1620 iwe.u.qual.qual = bss->pub.signal; 1621 break; 1622 default: 1623 /* not reached */ 1624 break; 1625 } 1626 current_ev = iwe_stream_add_event_check(info, current_ev, 1627 end_buf, &iwe, 1628 IW_EV_QUAL_LEN); 1629 if (IS_ERR(current_ev)) 1630 return current_ev; 1631 } 1632 1633 memset(&iwe, 0, sizeof(iwe)); 1634 iwe.cmd = SIOCGIWENCODE; 1635 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY) 1636 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY; 1637 else 1638 iwe.u.data.flags = IW_ENCODE_DISABLED; 1639 iwe.u.data.length = 0; 1640 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 1641 &iwe, ""); 1642 if (IS_ERR(current_ev)) 1643 return current_ev; 1644 1645 rcu_read_lock(); 1646 ies = rcu_dereference(bss->pub.ies); 1647 rem = ies->len; 1648 ie = ies->data; 1649 1650 while (rem >= 2) { 1651 /* invalid data */ 1652 if (ie[1] > rem - 2) 1653 break; 1654 1655 switch (ie[0]) { 1656 case WLAN_EID_SSID: 1657 memset(&iwe, 0, sizeof(iwe)); 1658 iwe.cmd = SIOCGIWESSID; 1659 iwe.u.data.length = ie[1]; 1660 iwe.u.data.flags = 1; 1661 current_ev = iwe_stream_add_point_check(info, 1662 current_ev, 1663 end_buf, &iwe, 1664 (u8 *)ie + 2); 1665 if (IS_ERR(current_ev)) 1666 goto unlock; 1667 break; 1668 case WLAN_EID_MESH_ID: 1669 memset(&iwe, 0, sizeof(iwe)); 1670 iwe.cmd = SIOCGIWESSID; 1671 iwe.u.data.length = ie[1]; 1672 iwe.u.data.flags = 1; 1673 current_ev = iwe_stream_add_point_check(info, 1674 current_ev, 1675 end_buf, &iwe, 1676 (u8 *)ie + 2); 1677 if (IS_ERR(current_ev)) 1678 goto unlock; 1679 break; 1680 case WLAN_EID_MESH_CONFIG: 1681 ismesh = true; 1682 if (ie[1] != sizeof(struct ieee80211_meshconf_ie)) 1683 break; 1684 cfg = (u8 *)ie + 2; 1685 memset(&iwe, 0, sizeof(iwe)); 1686 iwe.cmd = IWEVCUSTOM; 1687 sprintf(buf, "Mesh Network Path Selection Protocol ID: " 1688 "0x%02X", cfg[0]); 1689 iwe.u.data.length = strlen(buf); 1690 current_ev = iwe_stream_add_point_check(info, 1691 current_ev, 1692 end_buf, 1693 &iwe, buf); 1694 if (IS_ERR(current_ev)) 1695 goto unlock; 1696 sprintf(buf, "Path Selection Metric ID: 0x%02X", 1697 cfg[1]); 1698 iwe.u.data.length = strlen(buf); 1699 current_ev = iwe_stream_add_point_check(info, 1700 current_ev, 1701 end_buf, 1702 &iwe, buf); 1703 if (IS_ERR(current_ev)) 1704 goto unlock; 1705 sprintf(buf, "Congestion Control Mode ID: 0x%02X", 1706 cfg[2]); 1707 iwe.u.data.length = strlen(buf); 1708 current_ev = iwe_stream_add_point_check(info, 1709 current_ev, 1710 end_buf, 1711 &iwe, buf); 1712 if (IS_ERR(current_ev)) 1713 goto unlock; 1714 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]); 1715 iwe.u.data.length = strlen(buf); 1716 current_ev = iwe_stream_add_point_check(info, 1717 current_ev, 1718 end_buf, 1719 &iwe, buf); 1720 if (IS_ERR(current_ev)) 1721 goto unlock; 1722 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]); 1723 iwe.u.data.length = strlen(buf); 1724 current_ev = iwe_stream_add_point_check(info, 1725 current_ev, 1726 end_buf, 1727 &iwe, buf); 1728 if (IS_ERR(current_ev)) 1729 goto unlock; 1730 sprintf(buf, "Formation Info: 0x%02X", cfg[5]); 1731 iwe.u.data.length = strlen(buf); 1732 current_ev = iwe_stream_add_point_check(info, 1733 current_ev, 1734 end_buf, 1735 &iwe, buf); 1736 if (IS_ERR(current_ev)) 1737 goto unlock; 1738 sprintf(buf, "Capabilities: 0x%02X", cfg[6]); 1739 iwe.u.data.length = strlen(buf); 1740 current_ev = iwe_stream_add_point_check(info, 1741 current_ev, 1742 end_buf, 1743 &iwe, buf); 1744 if (IS_ERR(current_ev)) 1745 goto unlock; 1746 break; 1747 case WLAN_EID_SUPP_RATES: 1748 case WLAN_EID_EXT_SUPP_RATES: 1749 /* display all supported rates in readable format */ 1750 p = current_ev + iwe_stream_lcp_len(info); 1751 1752 memset(&iwe, 0, sizeof(iwe)); 1753 iwe.cmd = SIOCGIWRATE; 1754 /* Those two flags are ignored... */ 1755 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0; 1756 1757 for (i = 0; i < ie[1]; i++) { 1758 iwe.u.bitrate.value = 1759 ((ie[i + 2] & 0x7f) * 500000); 1760 tmp = p; 1761 p = iwe_stream_add_value(info, current_ev, p, 1762 end_buf, &iwe, 1763 IW_EV_PARAM_LEN); 1764 if (p == tmp) { 1765 current_ev = ERR_PTR(-E2BIG); 1766 goto unlock; 1767 } 1768 } 1769 current_ev = p; 1770 break; 1771 } 1772 rem -= ie[1] + 2; 1773 ie += ie[1] + 2; 1774 } 1775 1776 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) || 1777 ismesh) { 1778 memset(&iwe, 0, sizeof(iwe)); 1779 iwe.cmd = SIOCGIWMODE; 1780 if (ismesh) 1781 iwe.u.mode = IW_MODE_MESH; 1782 else if (bss->pub.capability & WLAN_CAPABILITY_ESS) 1783 iwe.u.mode = IW_MODE_MASTER; 1784 else 1785 iwe.u.mode = IW_MODE_ADHOC; 1786 current_ev = iwe_stream_add_event_check(info, current_ev, 1787 end_buf, &iwe, 1788 IW_EV_UINT_LEN); 1789 if (IS_ERR(current_ev)) 1790 goto unlock; 1791 } 1792 1793 memset(&iwe, 0, sizeof(iwe)); 1794 iwe.cmd = IWEVCUSTOM; 1795 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf)); 1796 iwe.u.data.length = strlen(buf); 1797 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 1798 &iwe, buf); 1799 if (IS_ERR(current_ev)) 1800 goto unlock; 1801 memset(&iwe, 0, sizeof(iwe)); 1802 iwe.cmd = IWEVCUSTOM; 1803 sprintf(buf, " Last beacon: %ums ago", 1804 elapsed_jiffies_msecs(bss->ts)); 1805 iwe.u.data.length = strlen(buf); 1806 current_ev = iwe_stream_add_point_check(info, current_ev, 1807 end_buf, &iwe, buf); 1808 if (IS_ERR(current_ev)) 1809 goto unlock; 1810 1811 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf); 1812 1813 unlock: 1814 rcu_read_unlock(); 1815 return current_ev; 1816 } 1817 1818 1819 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev, 1820 struct iw_request_info *info, 1821 char *buf, size_t len) 1822 { 1823 char *current_ev = buf; 1824 char *end_buf = buf + len; 1825 struct cfg80211_internal_bss *bss; 1826 int err = 0; 1827 1828 spin_lock_bh(&rdev->bss_lock); 1829 cfg80211_bss_expire(rdev); 1830 1831 list_for_each_entry(bss, &rdev->bss_list, list) { 1832 if (buf + len - current_ev <= IW_EV_ADDR_LEN) { 1833 err = -E2BIG; 1834 break; 1835 } 1836 current_ev = ieee80211_bss(&rdev->wiphy, info, bss, 1837 current_ev, end_buf); 1838 if (IS_ERR(current_ev)) { 1839 err = PTR_ERR(current_ev); 1840 break; 1841 } 1842 } 1843 spin_unlock_bh(&rdev->bss_lock); 1844 1845 if (err) 1846 return err; 1847 return current_ev - buf; 1848 } 1849 1850 1851 int cfg80211_wext_giwscan(struct net_device *dev, 1852 struct iw_request_info *info, 1853 struct iw_point *data, char *extra) 1854 { 1855 struct cfg80211_registered_device *rdev; 1856 int res; 1857 1858 if (!netif_running(dev)) 1859 return -ENETDOWN; 1860 1861 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 1862 1863 if (IS_ERR(rdev)) 1864 return PTR_ERR(rdev); 1865 1866 if (rdev->scan_req || rdev->scan_msg) 1867 return -EAGAIN; 1868 1869 res = ieee80211_scan_results(rdev, info, extra, data->length); 1870 data->length = 0; 1871 if (res >= 0) { 1872 data->length = res; 1873 res = 0; 1874 } 1875 1876 return res; 1877 } 1878 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan); 1879 #endif 1880