1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * cfg80211 scan result handling 4 * 5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright 2016 Intel Deutschland GmbH 8 * Copyright (C) 2018-2023 Intel Corporation 9 */ 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/netdevice.h> 14 #include <linux/wireless.h> 15 #include <linux/nl80211.h> 16 #include <linux/etherdevice.h> 17 #include <linux/crc32.h> 18 #include <linux/bitfield.h> 19 #include <net/arp.h> 20 #include <net/cfg80211.h> 21 #include <net/cfg80211-wext.h> 22 #include <net/iw_handler.h> 23 #include "core.h" 24 #include "nl80211.h" 25 #include "wext-compat.h" 26 #include "rdev-ops.h" 27 28 /** 29 * DOC: BSS tree/list structure 30 * 31 * At the top level, the BSS list is kept in both a list in each 32 * registered device (@bss_list) as well as an RB-tree for faster 33 * lookup. In the RB-tree, entries can be looked up using their 34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID 35 * for other BSSes. 36 * 37 * Due to the possibility of hidden SSIDs, there's a second level 38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer. 39 * The hidden_list connects all BSSes belonging to a single AP 40 * that has a hidden SSID, and connects beacon and probe response 41 * entries. For a probe response entry for a hidden SSID, the 42 * hidden_beacon_bss pointer points to the BSS struct holding the 43 * beacon's information. 44 * 45 * Reference counting is done for all these references except for 46 * the hidden_list, so that a beacon BSS struct that is otherwise 47 * not referenced has one reference for being on the bss_list and 48 * one for each probe response entry that points to it using the 49 * hidden_beacon_bss pointer. When a BSS struct that has such a 50 * pointer is get/put, the refcount update is also propagated to 51 * the referenced struct, this ensure that it cannot get removed 52 * while somebody is using the probe response version. 53 * 54 * Note that the hidden_beacon_bss pointer never changes, due to 55 * the reference counting. Therefore, no locking is needed for 56 * it. 57 * 58 * Also note that the hidden_beacon_bss pointer is only relevant 59 * if the driver uses something other than the IEs, e.g. private 60 * data stored in the BSS struct, since the beacon IEs are 61 * also linked into the probe response struct. 62 */ 63 64 /* 65 * Limit the number of BSS entries stored in mac80211. Each one is 66 * a bit over 4k at most, so this limits to roughly 4-5M of memory. 67 * If somebody wants to really attack this though, they'd likely 68 * use small beacons, and only one type of frame, limiting each of 69 * the entries to a much smaller size (in order to generate more 70 * entries in total, so overhead is bigger.) 71 */ 72 static int bss_entries_limit = 1000; 73 module_param(bss_entries_limit, int, 0644); 74 MODULE_PARM_DESC(bss_entries_limit, 75 "limit to number of scan BSS entries (per wiphy, default 1000)"); 76 77 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ) 78 79 /** 80 * struct cfg80211_colocated_ap - colocated AP information 81 * 82 * @list: linked list to all colocated aPS 83 * @bssid: BSSID of the reported AP 84 * @ssid: SSID of the reported AP 85 * @ssid_len: length of the ssid 86 * @center_freq: frequency the reported AP is on 87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs 88 * that operate in the same channel as the reported AP and that might be 89 * detected by a STA receiving this frame, are transmitting unsolicited 90 * Probe Response frames every 20 TUs 91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP 92 * @same_ssid: the reported AP has the same SSID as the reporting AP 93 * @multi_bss: the reported AP is part of a multiple BSSID set 94 * @transmitted_bssid: the reported AP is the transmitting BSSID 95 * @colocated_ess: all the APs that share the same ESS as the reported AP are 96 * colocated and can be discovered via legacy bands. 97 * @short_ssid_valid: short_ssid is valid and can be used 98 * @short_ssid: the short SSID for this SSID 99 * @psd_20: The 20MHz PSD EIRP of the primary 20MHz channel for the reported AP 100 */ 101 struct cfg80211_colocated_ap { 102 struct list_head list; 103 u8 bssid[ETH_ALEN]; 104 u8 ssid[IEEE80211_MAX_SSID_LEN]; 105 size_t ssid_len; 106 u32 short_ssid; 107 u32 center_freq; 108 u8 unsolicited_probe:1, 109 oct_recommended:1, 110 same_ssid:1, 111 multi_bss:1, 112 transmitted_bssid:1, 113 colocated_ess:1, 114 short_ssid_valid:1; 115 s8 psd_20; 116 }; 117 118 static void bss_free(struct cfg80211_internal_bss *bss) 119 { 120 struct cfg80211_bss_ies *ies; 121 122 if (WARN_ON(atomic_read(&bss->hold))) 123 return; 124 125 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies); 126 if (ies && !bss->pub.hidden_beacon_bss) 127 kfree_rcu(ies, rcu_head); 128 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies); 129 if (ies) 130 kfree_rcu(ies, rcu_head); 131 132 /* 133 * This happens when the module is removed, it doesn't 134 * really matter any more save for completeness 135 */ 136 if (!list_empty(&bss->hidden_list)) 137 list_del(&bss->hidden_list); 138 139 kfree(bss); 140 } 141 142 static inline void bss_ref_get(struct cfg80211_registered_device *rdev, 143 struct cfg80211_internal_bss *bss) 144 { 145 lockdep_assert_held(&rdev->bss_lock); 146 147 bss->refcount++; 148 149 if (bss->pub.hidden_beacon_bss) 150 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++; 151 152 if (bss->pub.transmitted_bss) 153 bss_from_pub(bss->pub.transmitted_bss)->refcount++; 154 } 155 156 static inline void bss_ref_put(struct cfg80211_registered_device *rdev, 157 struct cfg80211_internal_bss *bss) 158 { 159 lockdep_assert_held(&rdev->bss_lock); 160 161 if (bss->pub.hidden_beacon_bss) { 162 struct cfg80211_internal_bss *hbss; 163 164 hbss = bss_from_pub(bss->pub.hidden_beacon_bss); 165 hbss->refcount--; 166 if (hbss->refcount == 0) 167 bss_free(hbss); 168 } 169 170 if (bss->pub.transmitted_bss) { 171 struct cfg80211_internal_bss *tbss; 172 173 tbss = bss_from_pub(bss->pub.transmitted_bss); 174 tbss->refcount--; 175 if (tbss->refcount == 0) 176 bss_free(tbss); 177 } 178 179 bss->refcount--; 180 if (bss->refcount == 0) 181 bss_free(bss); 182 } 183 184 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev, 185 struct cfg80211_internal_bss *bss) 186 { 187 lockdep_assert_held(&rdev->bss_lock); 188 189 if (!list_empty(&bss->hidden_list)) { 190 /* 191 * don't remove the beacon entry if it has 192 * probe responses associated with it 193 */ 194 if (!bss->pub.hidden_beacon_bss) 195 return false; 196 /* 197 * if it's a probe response entry break its 198 * link to the other entries in the group 199 */ 200 list_del_init(&bss->hidden_list); 201 } 202 203 list_del_init(&bss->list); 204 list_del_init(&bss->pub.nontrans_list); 205 rb_erase(&bss->rbn, &rdev->bss_tree); 206 rdev->bss_entries--; 207 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list), 208 "rdev bss entries[%d]/list[empty:%d] corruption\n", 209 rdev->bss_entries, list_empty(&rdev->bss_list)); 210 bss_ref_put(rdev, bss); 211 return true; 212 } 213 214 bool cfg80211_is_element_inherited(const struct element *elem, 215 const struct element *non_inherit_elem) 216 { 217 u8 id_len, ext_id_len, i, loop_len, id; 218 const u8 *list; 219 220 if (elem->id == WLAN_EID_MULTIPLE_BSSID) 221 return false; 222 223 if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 && 224 elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK) 225 return false; 226 227 if (!non_inherit_elem || non_inherit_elem->datalen < 2) 228 return true; 229 230 /* 231 * non inheritance element format is: 232 * ext ID (56) | IDs list len | list | extension IDs list len | list 233 * Both lists are optional. Both lengths are mandatory. 234 * This means valid length is: 235 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths 236 */ 237 id_len = non_inherit_elem->data[1]; 238 if (non_inherit_elem->datalen < 3 + id_len) 239 return true; 240 241 ext_id_len = non_inherit_elem->data[2 + id_len]; 242 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len) 243 return true; 244 245 if (elem->id == WLAN_EID_EXTENSION) { 246 if (!ext_id_len) 247 return true; 248 loop_len = ext_id_len; 249 list = &non_inherit_elem->data[3 + id_len]; 250 id = elem->data[0]; 251 } else { 252 if (!id_len) 253 return true; 254 loop_len = id_len; 255 list = &non_inherit_elem->data[2]; 256 id = elem->id; 257 } 258 259 for (i = 0; i < loop_len; i++) { 260 if (list[i] == id) 261 return false; 262 } 263 264 return true; 265 } 266 EXPORT_SYMBOL(cfg80211_is_element_inherited); 267 268 static size_t cfg80211_copy_elem_with_frags(const struct element *elem, 269 const u8 *ie, size_t ie_len, 270 u8 **pos, u8 *buf, size_t buf_len) 271 { 272 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len || 273 elem->data + elem->datalen > ie + ie_len)) 274 return 0; 275 276 if (elem->datalen + 2 > buf + buf_len - *pos) 277 return 0; 278 279 memcpy(*pos, elem, elem->datalen + 2); 280 *pos += elem->datalen + 2; 281 282 /* Finish if it is not fragmented */ 283 if (elem->datalen != 255) 284 return *pos - buf; 285 286 ie_len = ie + ie_len - elem->data - elem->datalen; 287 ie = (const u8 *)elem->data + elem->datalen; 288 289 for_each_element(elem, ie, ie_len) { 290 if (elem->id != WLAN_EID_FRAGMENT) 291 break; 292 293 if (elem->datalen + 2 > buf + buf_len - *pos) 294 return 0; 295 296 memcpy(*pos, elem, elem->datalen + 2); 297 *pos += elem->datalen + 2; 298 299 if (elem->datalen != 255) 300 break; 301 } 302 303 return *pos - buf; 304 } 305 306 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen, 307 const u8 *subie, size_t subie_len, 308 u8 *new_ie, size_t new_ie_len) 309 { 310 const struct element *non_inherit_elem, *parent, *sub; 311 u8 *pos = new_ie; 312 u8 id, ext_id; 313 unsigned int match_len; 314 315 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 316 subie, subie_len); 317 318 /* We copy the elements one by one from the parent to the generated 319 * elements. 320 * If they are not inherited (included in subie or in the non 321 * inheritance element), then we copy all occurrences the first time 322 * we see this element type. 323 */ 324 for_each_element(parent, ie, ielen) { 325 if (parent->id == WLAN_EID_FRAGMENT) 326 continue; 327 328 if (parent->id == WLAN_EID_EXTENSION) { 329 if (parent->datalen < 1) 330 continue; 331 332 id = WLAN_EID_EXTENSION; 333 ext_id = parent->data[0]; 334 match_len = 1; 335 } else { 336 id = parent->id; 337 match_len = 0; 338 } 339 340 /* Find first occurrence in subie */ 341 sub = cfg80211_find_elem_match(id, subie, subie_len, 342 &ext_id, match_len, 0); 343 344 /* Copy from parent if not in subie and inherited */ 345 if (!sub && 346 cfg80211_is_element_inherited(parent, non_inherit_elem)) { 347 if (!cfg80211_copy_elem_with_frags(parent, 348 ie, ielen, 349 &pos, new_ie, 350 new_ie_len)) 351 return 0; 352 353 continue; 354 } 355 356 /* Already copied if an earlier element had the same type */ 357 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie, 358 &ext_id, match_len, 0)) 359 continue; 360 361 /* Not inheriting, copy all similar elements from subie */ 362 while (sub) { 363 if (!cfg80211_copy_elem_with_frags(sub, 364 subie, subie_len, 365 &pos, new_ie, 366 new_ie_len)) 367 return 0; 368 369 sub = cfg80211_find_elem_match(id, 370 sub->data + sub->datalen, 371 subie_len + subie - 372 (sub->data + 373 sub->datalen), 374 &ext_id, match_len, 0); 375 } 376 } 377 378 /* The above misses elements that are included in subie but not in the 379 * parent, so do a pass over subie and append those. 380 * Skip the non-tx BSSID caps and non-inheritance element. 381 */ 382 for_each_element(sub, subie, subie_len) { 383 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP) 384 continue; 385 386 if (sub->id == WLAN_EID_FRAGMENT) 387 continue; 388 389 if (sub->id == WLAN_EID_EXTENSION) { 390 if (sub->datalen < 1) 391 continue; 392 393 id = WLAN_EID_EXTENSION; 394 ext_id = sub->data[0]; 395 match_len = 1; 396 397 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE) 398 continue; 399 } else { 400 id = sub->id; 401 match_len = 0; 402 } 403 404 /* Processed if one was included in the parent */ 405 if (cfg80211_find_elem_match(id, ie, ielen, 406 &ext_id, match_len, 0)) 407 continue; 408 409 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len, 410 &pos, new_ie, new_ie_len)) 411 return 0; 412 } 413 414 return pos - new_ie; 415 } 416 417 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid, 418 const u8 *ssid, size_t ssid_len) 419 { 420 const struct cfg80211_bss_ies *ies; 421 const struct element *ssid_elem; 422 423 if (bssid && !ether_addr_equal(a->bssid, bssid)) 424 return false; 425 426 if (!ssid) 427 return true; 428 429 ies = rcu_access_pointer(a->ies); 430 if (!ies) 431 return false; 432 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 433 if (!ssid_elem) 434 return false; 435 if (ssid_elem->datalen != ssid_len) 436 return false; 437 return memcmp(ssid_elem->data, ssid, ssid_len) == 0; 438 } 439 440 static int 441 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss, 442 struct cfg80211_bss *nontrans_bss) 443 { 444 const struct element *ssid_elem; 445 struct cfg80211_bss *bss = NULL; 446 447 rcu_read_lock(); 448 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID); 449 if (!ssid_elem) { 450 rcu_read_unlock(); 451 return -EINVAL; 452 } 453 454 /* check if nontrans_bss is in the list */ 455 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) { 456 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data, 457 ssid_elem->datalen)) { 458 rcu_read_unlock(); 459 return 0; 460 } 461 } 462 463 rcu_read_unlock(); 464 465 /* 466 * This is a bit weird - it's not on the list, but already on another 467 * one! The only way that could happen is if there's some BSSID/SSID 468 * shared by multiple APs in their multi-BSSID profiles, potentially 469 * with hidden SSID mixed in ... ignore it. 470 */ 471 if (!list_empty(&nontrans_bss->nontrans_list)) 472 return -EINVAL; 473 474 /* add to the list */ 475 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list); 476 return 0; 477 } 478 479 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev, 480 unsigned long expire_time) 481 { 482 struct cfg80211_internal_bss *bss, *tmp; 483 bool expired = false; 484 485 lockdep_assert_held(&rdev->bss_lock); 486 487 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) { 488 if (atomic_read(&bss->hold)) 489 continue; 490 if (!time_after(expire_time, bss->ts)) 491 continue; 492 493 if (__cfg80211_unlink_bss(rdev, bss)) 494 expired = true; 495 } 496 497 if (expired) 498 rdev->bss_generation++; 499 } 500 501 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev) 502 { 503 struct cfg80211_internal_bss *bss, *oldest = NULL; 504 bool ret; 505 506 lockdep_assert_held(&rdev->bss_lock); 507 508 list_for_each_entry(bss, &rdev->bss_list, list) { 509 if (atomic_read(&bss->hold)) 510 continue; 511 512 if (!list_empty(&bss->hidden_list) && 513 !bss->pub.hidden_beacon_bss) 514 continue; 515 516 if (oldest && time_before(oldest->ts, bss->ts)) 517 continue; 518 oldest = bss; 519 } 520 521 if (WARN_ON(!oldest)) 522 return false; 523 524 /* 525 * The callers make sure to increase rdev->bss_generation if anything 526 * gets removed (and a new entry added), so there's no need to also do 527 * it here. 528 */ 529 530 ret = __cfg80211_unlink_bss(rdev, oldest); 531 WARN_ON(!ret); 532 return ret; 533 } 534 535 static u8 cfg80211_parse_bss_param(u8 data, 536 struct cfg80211_colocated_ap *coloc_ap) 537 { 538 coloc_ap->oct_recommended = 539 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED); 540 coloc_ap->same_ssid = 541 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID); 542 coloc_ap->multi_bss = 543 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID); 544 coloc_ap->transmitted_bssid = 545 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID); 546 coloc_ap->unsolicited_probe = 547 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE); 548 coloc_ap->colocated_ess = 549 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS); 550 551 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP); 552 } 553 554 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies, 555 const struct element **elem, u32 *s_ssid) 556 { 557 558 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len); 559 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN) 560 return -EINVAL; 561 562 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen); 563 return 0; 564 } 565 566 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list) 567 { 568 struct cfg80211_colocated_ap *ap, *tmp_ap; 569 570 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) { 571 list_del(&ap->list); 572 kfree(ap); 573 } 574 } 575 576 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry, 577 const u8 *pos, u8 length, 578 const struct element *ssid_elem, 579 u32 s_ssid_tmp) 580 { 581 u8 bss_params; 582 583 entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED; 584 585 /* The length is already verified by the caller to contain bss_params */ 586 if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) { 587 struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos; 588 589 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN); 590 entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid); 591 entry->short_ssid_valid = true; 592 593 bss_params = tbtt_info->bss_params; 594 595 /* Ignore disabled links */ 596 if (length >= offsetofend(typeof(*tbtt_info), mld_params)) { 597 if (le16_get_bits(tbtt_info->mld_params.params, 598 IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK)) 599 return -EINVAL; 600 } 601 602 if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11, 603 psd_20)) 604 entry->psd_20 = tbtt_info->psd_20; 605 } else { 606 struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos; 607 608 memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN); 609 610 bss_params = tbtt_info->bss_params; 611 612 if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9, 613 psd_20)) 614 entry->psd_20 = tbtt_info->psd_20; 615 } 616 617 /* ignore entries with invalid BSSID */ 618 if (!is_valid_ether_addr(entry->bssid)) 619 return -EINVAL; 620 621 /* skip non colocated APs */ 622 if (!cfg80211_parse_bss_param(bss_params, entry)) 623 return -EINVAL; 624 625 /* no information about the short ssid. Consider the entry valid 626 * for now. It would later be dropped in case there are explicit 627 * SSIDs that need to be matched 628 */ 629 if (!entry->same_ssid && !entry->short_ssid_valid) 630 return 0; 631 632 if (entry->same_ssid) { 633 entry->short_ssid = s_ssid_tmp; 634 entry->short_ssid_valid = true; 635 636 /* 637 * This is safe because we validate datalen in 638 * cfg80211_parse_colocated_ap(), before calling this 639 * function. 640 */ 641 memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen); 642 entry->ssid_len = ssid_elem->datalen; 643 } 644 645 return 0; 646 } 647 648 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies, 649 struct list_head *list) 650 { 651 struct ieee80211_neighbor_ap_info *ap_info; 652 const struct element *elem, *ssid_elem; 653 const u8 *pos, *end; 654 u32 s_ssid_tmp; 655 int n_coloc = 0, ret; 656 LIST_HEAD(ap_list); 657 658 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp); 659 if (ret) 660 return 0; 661 662 for_each_element_id(elem, WLAN_EID_REDUCED_NEIGHBOR_REPORT, 663 ies->data, ies->len) { 664 pos = elem->data; 665 end = elem->data + elem->datalen; 666 667 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ 668 while (pos + sizeof(*ap_info) <= end) { 669 enum nl80211_band band; 670 int freq; 671 u8 length, i, count; 672 673 ap_info = (void *)pos; 674 count = u8_get_bits(ap_info->tbtt_info_hdr, 675 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1; 676 length = ap_info->tbtt_info_len; 677 678 pos += sizeof(*ap_info); 679 680 if (!ieee80211_operating_class_to_band(ap_info->op_class, 681 &band)) 682 break; 683 684 freq = ieee80211_channel_to_frequency(ap_info->channel, 685 band); 686 687 if (end - pos < count * length) 688 break; 689 690 if (u8_get_bits(ap_info->tbtt_info_hdr, 691 IEEE80211_AP_INFO_TBTT_HDR_TYPE) != 692 IEEE80211_TBTT_INFO_TYPE_TBTT) { 693 pos += count * length; 694 continue; 695 } 696 697 /* TBTT info must include bss param + BSSID + 698 * (short SSID or same_ssid bit to be set). 699 * ignore other options, and move to the 700 * next AP info 701 */ 702 if (band != NL80211_BAND_6GHZ || 703 !(length == offsetofend(struct ieee80211_tbtt_info_7_8_9, 704 bss_params) || 705 length == sizeof(struct ieee80211_tbtt_info_7_8_9) || 706 length >= offsetofend(struct ieee80211_tbtt_info_ge_11, 707 bss_params))) { 708 pos += count * length; 709 continue; 710 } 711 712 for (i = 0; i < count; i++) { 713 struct cfg80211_colocated_ap *entry; 714 715 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, 716 GFP_ATOMIC); 717 718 if (!entry) 719 goto error; 720 721 entry->center_freq = freq; 722 723 if (!cfg80211_parse_ap_info(entry, pos, length, 724 ssid_elem, 725 s_ssid_tmp)) { 726 n_coloc++; 727 list_add_tail(&entry->list, &ap_list); 728 } else { 729 kfree(entry); 730 } 731 732 pos += length; 733 } 734 } 735 736 error: 737 if (pos != end) { 738 cfg80211_free_coloc_ap_list(&ap_list); 739 return 0; 740 } 741 } 742 743 list_splice_tail(&ap_list, list); 744 return n_coloc; 745 } 746 747 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request, 748 struct ieee80211_channel *chan, 749 bool add_to_6ghz) 750 { 751 int i; 752 u32 n_channels = request->n_channels; 753 struct cfg80211_scan_6ghz_params *params = 754 &request->scan_6ghz_params[request->n_6ghz_params]; 755 756 for (i = 0; i < n_channels; i++) { 757 if (request->channels[i] == chan) { 758 if (add_to_6ghz) 759 params->channel_idx = i; 760 return; 761 } 762 } 763 764 request->channels[n_channels] = chan; 765 if (add_to_6ghz) 766 request->scan_6ghz_params[request->n_6ghz_params].channel_idx = 767 n_channels; 768 769 request->n_channels++; 770 } 771 772 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap, 773 struct cfg80211_scan_request *request) 774 { 775 int i; 776 u32 s_ssid; 777 778 for (i = 0; i < request->n_ssids; i++) { 779 /* wildcard ssid in the scan request */ 780 if (!request->ssids[i].ssid_len) { 781 if (ap->multi_bss && !ap->transmitted_bssid) 782 continue; 783 784 return true; 785 } 786 787 if (ap->ssid_len && 788 ap->ssid_len == request->ssids[i].ssid_len) { 789 if (!memcmp(request->ssids[i].ssid, ap->ssid, 790 ap->ssid_len)) 791 return true; 792 } else if (ap->short_ssid_valid) { 793 s_ssid = ~crc32_le(~0, request->ssids[i].ssid, 794 request->ssids[i].ssid_len); 795 796 if (ap->short_ssid == s_ssid) 797 return true; 798 } 799 } 800 801 return false; 802 } 803 804 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev) 805 { 806 u8 i; 807 struct cfg80211_colocated_ap *ap; 808 int n_channels, count = 0, err; 809 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req; 810 LIST_HEAD(coloc_ap_list); 811 bool need_scan_psc = true; 812 const struct ieee80211_sband_iftype_data *iftd; 813 size_t size, offs_ssids, offs_6ghz_params, offs_ies; 814 815 rdev_req->scan_6ghz = true; 816 817 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ]) 818 return -EOPNOTSUPP; 819 820 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ], 821 rdev_req->wdev->iftype); 822 if (!iftd || !iftd->he_cap.has_he) 823 return -EOPNOTSUPP; 824 825 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels; 826 827 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) { 828 struct cfg80211_internal_bss *intbss; 829 830 spin_lock_bh(&rdev->bss_lock); 831 list_for_each_entry(intbss, &rdev->bss_list, list) { 832 struct cfg80211_bss *res = &intbss->pub; 833 const struct cfg80211_bss_ies *ies; 834 835 ies = rcu_access_pointer(res->ies); 836 count += cfg80211_parse_colocated_ap(ies, 837 &coloc_ap_list); 838 } 839 spin_unlock_bh(&rdev->bss_lock); 840 } 841 842 size = struct_size(request, channels, n_channels); 843 offs_ssids = size; 844 size += sizeof(*request->ssids) * rdev_req->n_ssids; 845 offs_6ghz_params = size; 846 size += sizeof(*request->scan_6ghz_params) * count; 847 offs_ies = size; 848 size += rdev_req->ie_len; 849 850 request = kzalloc(size, GFP_KERNEL); 851 if (!request) { 852 cfg80211_free_coloc_ap_list(&coloc_ap_list); 853 return -ENOMEM; 854 } 855 856 *request = *rdev_req; 857 request->n_channels = 0; 858 request->n_6ghz_params = 0; 859 if (rdev_req->n_ssids) { 860 /* 861 * Add the ssids from the parent scan request to the new 862 * scan request, so the driver would be able to use them 863 * in its probe requests to discover hidden APs on PSC 864 * channels. 865 */ 866 request->ssids = (void *)request + offs_ssids; 867 memcpy(request->ssids, rdev_req->ssids, 868 sizeof(*request->ssids) * request->n_ssids); 869 } 870 request->scan_6ghz_params = (void *)request + offs_6ghz_params; 871 872 if (rdev_req->ie_len) { 873 void *ie = (void *)request + offs_ies; 874 875 memcpy(ie, rdev_req->ie, rdev_req->ie_len); 876 request->ie = ie; 877 } 878 879 /* 880 * PSC channels should not be scanned in case of direct scan with 1 SSID 881 * and at least one of the reported co-located APs with same SSID 882 * indicating that all APs in the same ESS are co-located 883 */ 884 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) { 885 list_for_each_entry(ap, &coloc_ap_list, list) { 886 if (ap->colocated_ess && 887 cfg80211_find_ssid_match(ap, request)) { 888 need_scan_psc = false; 889 break; 890 } 891 } 892 } 893 894 /* 895 * add to the scan request the channels that need to be scanned 896 * regardless of the collocated APs (PSC channels or all channels 897 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set) 898 */ 899 for (i = 0; i < rdev_req->n_channels; i++) { 900 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ && 901 ((need_scan_psc && 902 cfg80211_channel_is_psc(rdev_req->channels[i])) || 903 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) { 904 cfg80211_scan_req_add_chan(request, 905 rdev_req->channels[i], 906 false); 907 } 908 } 909 910 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ)) 911 goto skip; 912 913 list_for_each_entry(ap, &coloc_ap_list, list) { 914 bool found = false; 915 struct cfg80211_scan_6ghz_params *scan_6ghz_params = 916 &request->scan_6ghz_params[request->n_6ghz_params]; 917 struct ieee80211_channel *chan = 918 ieee80211_get_channel(&rdev->wiphy, ap->center_freq); 919 920 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED) 921 continue; 922 923 for (i = 0; i < rdev_req->n_channels; i++) { 924 if (rdev_req->channels[i] == chan) 925 found = true; 926 } 927 928 if (!found) 929 continue; 930 931 if (request->n_ssids > 0 && 932 !cfg80211_find_ssid_match(ap, request)) 933 continue; 934 935 if (!is_broadcast_ether_addr(request->bssid) && 936 !ether_addr_equal(request->bssid, ap->bssid)) 937 continue; 938 939 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid) 940 continue; 941 942 cfg80211_scan_req_add_chan(request, chan, true); 943 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN); 944 scan_6ghz_params->short_ssid = ap->short_ssid; 945 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid; 946 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe; 947 scan_6ghz_params->psd_20 = ap->psd_20; 948 949 /* 950 * If a PSC channel is added to the scan and 'need_scan_psc' is 951 * set to false, then all the APs that the scan logic is 952 * interested with on the channel are collocated and thus there 953 * is no need to perform the initial PSC channel listen. 954 */ 955 if (cfg80211_channel_is_psc(chan) && !need_scan_psc) 956 scan_6ghz_params->psc_no_listen = true; 957 958 request->n_6ghz_params++; 959 } 960 961 skip: 962 cfg80211_free_coloc_ap_list(&coloc_ap_list); 963 964 if (request->n_channels) { 965 struct cfg80211_scan_request *old = rdev->int_scan_req; 966 967 rdev->int_scan_req = request; 968 969 /* 970 * If this scan follows a previous scan, save the scan start 971 * info from the first part of the scan 972 */ 973 if (old) 974 rdev->int_scan_req->info = old->info; 975 976 err = rdev_scan(rdev, request); 977 if (err) { 978 rdev->int_scan_req = old; 979 kfree(request); 980 } else { 981 kfree(old); 982 } 983 984 return err; 985 } 986 987 kfree(request); 988 return -EINVAL; 989 } 990 991 int cfg80211_scan(struct cfg80211_registered_device *rdev) 992 { 993 struct cfg80211_scan_request *request; 994 struct cfg80211_scan_request *rdev_req = rdev->scan_req; 995 u32 n_channels = 0, idx, i; 996 997 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ)) 998 return rdev_scan(rdev, rdev_req); 999 1000 for (i = 0; i < rdev_req->n_channels; i++) { 1001 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 1002 n_channels++; 1003 } 1004 1005 if (!n_channels) 1006 return cfg80211_scan_6ghz(rdev); 1007 1008 request = kzalloc(struct_size(request, channels, n_channels), 1009 GFP_KERNEL); 1010 if (!request) 1011 return -ENOMEM; 1012 1013 *request = *rdev_req; 1014 request->n_channels = n_channels; 1015 1016 for (i = idx = 0; i < rdev_req->n_channels; i++) { 1017 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ) 1018 request->channels[idx++] = rdev_req->channels[i]; 1019 } 1020 1021 rdev_req->scan_6ghz = false; 1022 rdev->int_scan_req = request; 1023 return rdev_scan(rdev, request); 1024 } 1025 1026 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev, 1027 bool send_message) 1028 { 1029 struct cfg80211_scan_request *request, *rdev_req; 1030 struct wireless_dev *wdev; 1031 struct sk_buff *msg; 1032 #ifdef CONFIG_CFG80211_WEXT 1033 union iwreq_data wrqu; 1034 #endif 1035 1036 lockdep_assert_held(&rdev->wiphy.mtx); 1037 1038 if (rdev->scan_msg) { 1039 nl80211_send_scan_msg(rdev, rdev->scan_msg); 1040 rdev->scan_msg = NULL; 1041 return; 1042 } 1043 1044 rdev_req = rdev->scan_req; 1045 if (!rdev_req) 1046 return; 1047 1048 wdev = rdev_req->wdev; 1049 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req; 1050 1051 if (wdev_running(wdev) && 1052 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) && 1053 !rdev_req->scan_6ghz && !request->info.aborted && 1054 !cfg80211_scan_6ghz(rdev)) 1055 return; 1056 1057 /* 1058 * This must be before sending the other events! 1059 * Otherwise, wpa_supplicant gets completely confused with 1060 * wext events. 1061 */ 1062 if (wdev->netdev) 1063 cfg80211_sme_scan_done(wdev->netdev); 1064 1065 if (!request->info.aborted && 1066 request->flags & NL80211_SCAN_FLAG_FLUSH) { 1067 /* flush entries from previous scans */ 1068 spin_lock_bh(&rdev->bss_lock); 1069 __cfg80211_bss_expire(rdev, request->scan_start); 1070 spin_unlock_bh(&rdev->bss_lock); 1071 } 1072 1073 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted); 1074 1075 #ifdef CONFIG_CFG80211_WEXT 1076 if (wdev->netdev && !request->info.aborted) { 1077 memset(&wrqu, 0, sizeof(wrqu)); 1078 1079 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL); 1080 } 1081 #endif 1082 1083 dev_put(wdev->netdev); 1084 1085 kfree(rdev->int_scan_req); 1086 rdev->int_scan_req = NULL; 1087 1088 kfree(rdev->scan_req); 1089 rdev->scan_req = NULL; 1090 1091 if (!send_message) 1092 rdev->scan_msg = msg; 1093 else 1094 nl80211_send_scan_msg(rdev, msg); 1095 } 1096 1097 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk) 1098 { 1099 ___cfg80211_scan_done(wiphy_to_rdev(wiphy), true); 1100 } 1101 1102 void cfg80211_scan_done(struct cfg80211_scan_request *request, 1103 struct cfg80211_scan_info *info) 1104 { 1105 struct cfg80211_scan_info old_info = request->info; 1106 1107 trace_cfg80211_scan_done(request, info); 1108 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req && 1109 request != wiphy_to_rdev(request->wiphy)->int_scan_req); 1110 1111 request->info = *info; 1112 1113 /* 1114 * In case the scan is split, the scan_start_tsf and tsf_bssid should 1115 * be of the first part. In such a case old_info.scan_start_tsf should 1116 * be non zero. 1117 */ 1118 if (request->scan_6ghz && old_info.scan_start_tsf) { 1119 request->info.scan_start_tsf = old_info.scan_start_tsf; 1120 memcpy(request->info.tsf_bssid, old_info.tsf_bssid, 1121 sizeof(request->info.tsf_bssid)); 1122 } 1123 1124 request->notified = true; 1125 wiphy_work_queue(request->wiphy, 1126 &wiphy_to_rdev(request->wiphy)->scan_done_wk); 1127 } 1128 EXPORT_SYMBOL(cfg80211_scan_done); 1129 1130 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev, 1131 struct cfg80211_sched_scan_request *req) 1132 { 1133 lockdep_assert_held(&rdev->wiphy.mtx); 1134 1135 list_add_rcu(&req->list, &rdev->sched_scan_req_list); 1136 } 1137 1138 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev, 1139 struct cfg80211_sched_scan_request *req) 1140 { 1141 lockdep_assert_held(&rdev->wiphy.mtx); 1142 1143 list_del_rcu(&req->list); 1144 kfree_rcu(req, rcu_head); 1145 } 1146 1147 static struct cfg80211_sched_scan_request * 1148 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid) 1149 { 1150 struct cfg80211_sched_scan_request *pos; 1151 1152 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list, 1153 lockdep_is_held(&rdev->wiphy.mtx)) { 1154 if (pos->reqid == reqid) 1155 return pos; 1156 } 1157 return NULL; 1158 } 1159 1160 /* 1161 * Determines if a scheduled scan request can be handled. When a legacy 1162 * scheduled scan is running no other scheduled scan is allowed regardless 1163 * whether the request is for legacy or multi-support scan. When a multi-support 1164 * scheduled scan is running a request for legacy scan is not allowed. In this 1165 * case a request for multi-support scan can be handled if resources are 1166 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached. 1167 */ 1168 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev, 1169 bool want_multi) 1170 { 1171 struct cfg80211_sched_scan_request *pos; 1172 int i = 0; 1173 1174 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) { 1175 /* request id zero means legacy in progress */ 1176 if (!i && !pos->reqid) 1177 return -EINPROGRESS; 1178 i++; 1179 } 1180 1181 if (i) { 1182 /* no legacy allowed when multi request(s) are active */ 1183 if (!want_multi) 1184 return -EINPROGRESS; 1185 1186 /* resource limit reached */ 1187 if (i == rdev->wiphy.max_sched_scan_reqs) 1188 return -ENOSPC; 1189 } 1190 return 0; 1191 } 1192 1193 void cfg80211_sched_scan_results_wk(struct work_struct *work) 1194 { 1195 struct cfg80211_registered_device *rdev; 1196 struct cfg80211_sched_scan_request *req, *tmp; 1197 1198 rdev = container_of(work, struct cfg80211_registered_device, 1199 sched_scan_res_wk); 1200 1201 wiphy_lock(&rdev->wiphy); 1202 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) { 1203 if (req->report_results) { 1204 req->report_results = false; 1205 if (req->flags & NL80211_SCAN_FLAG_FLUSH) { 1206 /* flush entries from previous scans */ 1207 spin_lock_bh(&rdev->bss_lock); 1208 __cfg80211_bss_expire(rdev, req->scan_start); 1209 spin_unlock_bh(&rdev->bss_lock); 1210 req->scan_start = jiffies; 1211 } 1212 nl80211_send_sched_scan(req, 1213 NL80211_CMD_SCHED_SCAN_RESULTS); 1214 } 1215 } 1216 wiphy_unlock(&rdev->wiphy); 1217 } 1218 1219 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid) 1220 { 1221 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1222 struct cfg80211_sched_scan_request *request; 1223 1224 trace_cfg80211_sched_scan_results(wiphy, reqid); 1225 /* ignore if we're not scanning */ 1226 1227 rcu_read_lock(); 1228 request = cfg80211_find_sched_scan_req(rdev, reqid); 1229 if (request) { 1230 request->report_results = true; 1231 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk); 1232 } 1233 rcu_read_unlock(); 1234 } 1235 EXPORT_SYMBOL(cfg80211_sched_scan_results); 1236 1237 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid) 1238 { 1239 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1240 1241 lockdep_assert_held(&wiphy->mtx); 1242 1243 trace_cfg80211_sched_scan_stopped(wiphy, reqid); 1244 1245 __cfg80211_stop_sched_scan(rdev, reqid, true); 1246 } 1247 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked); 1248 1249 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid) 1250 { 1251 wiphy_lock(wiphy); 1252 cfg80211_sched_scan_stopped_locked(wiphy, reqid); 1253 wiphy_unlock(wiphy); 1254 } 1255 EXPORT_SYMBOL(cfg80211_sched_scan_stopped); 1256 1257 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev, 1258 struct cfg80211_sched_scan_request *req, 1259 bool driver_initiated) 1260 { 1261 lockdep_assert_held(&rdev->wiphy.mtx); 1262 1263 if (!driver_initiated) { 1264 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid); 1265 if (err) 1266 return err; 1267 } 1268 1269 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED); 1270 1271 cfg80211_del_sched_scan_req(rdev, req); 1272 1273 return 0; 1274 } 1275 1276 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev, 1277 u64 reqid, bool driver_initiated) 1278 { 1279 struct cfg80211_sched_scan_request *sched_scan_req; 1280 1281 lockdep_assert_held(&rdev->wiphy.mtx); 1282 1283 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid); 1284 if (!sched_scan_req) 1285 return -ENOENT; 1286 1287 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req, 1288 driver_initiated); 1289 } 1290 1291 void cfg80211_bss_age(struct cfg80211_registered_device *rdev, 1292 unsigned long age_secs) 1293 { 1294 struct cfg80211_internal_bss *bss; 1295 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC); 1296 1297 spin_lock_bh(&rdev->bss_lock); 1298 list_for_each_entry(bss, &rdev->bss_list, list) 1299 bss->ts -= age_jiffies; 1300 spin_unlock_bh(&rdev->bss_lock); 1301 } 1302 1303 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev) 1304 { 1305 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE); 1306 } 1307 1308 void cfg80211_bss_flush(struct wiphy *wiphy) 1309 { 1310 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1311 1312 spin_lock_bh(&rdev->bss_lock); 1313 __cfg80211_bss_expire(rdev, jiffies); 1314 spin_unlock_bh(&rdev->bss_lock); 1315 } 1316 EXPORT_SYMBOL(cfg80211_bss_flush); 1317 1318 const struct element * 1319 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len, 1320 const u8 *match, unsigned int match_len, 1321 unsigned int match_offset) 1322 { 1323 const struct element *elem; 1324 1325 for_each_element_id(elem, eid, ies, len) { 1326 if (elem->datalen >= match_offset + match_len && 1327 !memcmp(elem->data + match_offset, match, match_len)) 1328 return elem; 1329 } 1330 1331 return NULL; 1332 } 1333 EXPORT_SYMBOL(cfg80211_find_elem_match); 1334 1335 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type, 1336 const u8 *ies, 1337 unsigned int len) 1338 { 1339 const struct element *elem; 1340 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type }; 1341 int match_len = (oui_type < 0) ? 3 : sizeof(match); 1342 1343 if (WARN_ON(oui_type > 0xff)) 1344 return NULL; 1345 1346 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len, 1347 match, match_len, 0); 1348 1349 if (!elem || elem->datalen < 4) 1350 return NULL; 1351 1352 return elem; 1353 } 1354 EXPORT_SYMBOL(cfg80211_find_vendor_elem); 1355 1356 /** 1357 * enum bss_compare_mode - BSS compare mode 1358 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find) 1359 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode 1360 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode 1361 */ 1362 enum bss_compare_mode { 1363 BSS_CMP_REGULAR, 1364 BSS_CMP_HIDE_ZLEN, 1365 BSS_CMP_HIDE_NUL, 1366 }; 1367 1368 static int cmp_bss(struct cfg80211_bss *a, 1369 struct cfg80211_bss *b, 1370 enum bss_compare_mode mode) 1371 { 1372 const struct cfg80211_bss_ies *a_ies, *b_ies; 1373 const u8 *ie1 = NULL; 1374 const u8 *ie2 = NULL; 1375 int i, r; 1376 1377 if (a->channel != b->channel) 1378 return (b->channel->center_freq * 1000 + b->channel->freq_offset) - 1379 (a->channel->center_freq * 1000 + a->channel->freq_offset); 1380 1381 a_ies = rcu_access_pointer(a->ies); 1382 if (!a_ies) 1383 return -1; 1384 b_ies = rcu_access_pointer(b->ies); 1385 if (!b_ies) 1386 return 1; 1387 1388 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability)) 1389 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1390 a_ies->data, a_ies->len); 1391 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability)) 1392 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID, 1393 b_ies->data, b_ies->len); 1394 if (ie1 && ie2) { 1395 int mesh_id_cmp; 1396 1397 if (ie1[1] == ie2[1]) 1398 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1399 else 1400 mesh_id_cmp = ie2[1] - ie1[1]; 1401 1402 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1403 a_ies->data, a_ies->len); 1404 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG, 1405 b_ies->data, b_ies->len); 1406 if (ie1 && ie2) { 1407 if (mesh_id_cmp) 1408 return mesh_id_cmp; 1409 if (ie1[1] != ie2[1]) 1410 return ie2[1] - ie1[1]; 1411 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1412 } 1413 } 1414 1415 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid)); 1416 if (r) 1417 return r; 1418 1419 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len); 1420 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len); 1421 1422 if (!ie1 && !ie2) 1423 return 0; 1424 1425 /* 1426 * Note that with "hide_ssid", the function returns a match if 1427 * the already-present BSS ("b") is a hidden SSID beacon for 1428 * the new BSS ("a"). 1429 */ 1430 1431 /* sort missing IE before (left of) present IE */ 1432 if (!ie1) 1433 return -1; 1434 if (!ie2) 1435 return 1; 1436 1437 switch (mode) { 1438 case BSS_CMP_HIDE_ZLEN: 1439 /* 1440 * In ZLEN mode we assume the BSS entry we're 1441 * looking for has a zero-length SSID. So if 1442 * the one we're looking at right now has that, 1443 * return 0. Otherwise, return the difference 1444 * in length, but since we're looking for the 1445 * 0-length it's really equivalent to returning 1446 * the length of the one we're looking at. 1447 * 1448 * No content comparison is needed as we assume 1449 * the content length is zero. 1450 */ 1451 return ie2[1]; 1452 case BSS_CMP_REGULAR: 1453 default: 1454 /* sort by length first, then by contents */ 1455 if (ie1[1] != ie2[1]) 1456 return ie2[1] - ie1[1]; 1457 return memcmp(ie1 + 2, ie2 + 2, ie1[1]); 1458 case BSS_CMP_HIDE_NUL: 1459 if (ie1[1] != ie2[1]) 1460 return ie2[1] - ie1[1]; 1461 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */ 1462 for (i = 0; i < ie2[1]; i++) 1463 if (ie2[i + 2]) 1464 return -1; 1465 return 0; 1466 } 1467 } 1468 1469 static bool cfg80211_bss_type_match(u16 capability, 1470 enum nl80211_band band, 1471 enum ieee80211_bss_type bss_type) 1472 { 1473 bool ret = true; 1474 u16 mask, val; 1475 1476 if (bss_type == IEEE80211_BSS_TYPE_ANY) 1477 return ret; 1478 1479 if (band == NL80211_BAND_60GHZ) { 1480 mask = WLAN_CAPABILITY_DMG_TYPE_MASK; 1481 switch (bss_type) { 1482 case IEEE80211_BSS_TYPE_ESS: 1483 val = WLAN_CAPABILITY_DMG_TYPE_AP; 1484 break; 1485 case IEEE80211_BSS_TYPE_PBSS: 1486 val = WLAN_CAPABILITY_DMG_TYPE_PBSS; 1487 break; 1488 case IEEE80211_BSS_TYPE_IBSS: 1489 val = WLAN_CAPABILITY_DMG_TYPE_IBSS; 1490 break; 1491 default: 1492 return false; 1493 } 1494 } else { 1495 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS; 1496 switch (bss_type) { 1497 case IEEE80211_BSS_TYPE_ESS: 1498 val = WLAN_CAPABILITY_ESS; 1499 break; 1500 case IEEE80211_BSS_TYPE_IBSS: 1501 val = WLAN_CAPABILITY_IBSS; 1502 break; 1503 case IEEE80211_BSS_TYPE_MBSS: 1504 val = 0; 1505 break; 1506 default: 1507 return false; 1508 } 1509 } 1510 1511 ret = ((capability & mask) == val); 1512 return ret; 1513 } 1514 1515 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1516 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy, 1517 struct ieee80211_channel *channel, 1518 const u8 *bssid, 1519 const u8 *ssid, size_t ssid_len, 1520 enum ieee80211_bss_type bss_type, 1521 enum ieee80211_privacy privacy) 1522 { 1523 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 1524 struct cfg80211_internal_bss *bss, *res = NULL; 1525 unsigned long now = jiffies; 1526 int bss_privacy; 1527 1528 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type, 1529 privacy); 1530 1531 spin_lock_bh(&rdev->bss_lock); 1532 1533 list_for_each_entry(bss, &rdev->bss_list, list) { 1534 if (!cfg80211_bss_type_match(bss->pub.capability, 1535 bss->pub.channel->band, bss_type)) 1536 continue; 1537 1538 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY); 1539 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) || 1540 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy)) 1541 continue; 1542 if (channel && bss->pub.channel != channel) 1543 continue; 1544 if (!is_valid_ether_addr(bss->pub.bssid)) 1545 continue; 1546 /* Don't get expired BSS structs */ 1547 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) && 1548 !atomic_read(&bss->hold)) 1549 continue; 1550 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) { 1551 res = bss; 1552 bss_ref_get(rdev, res); 1553 break; 1554 } 1555 } 1556 1557 spin_unlock_bh(&rdev->bss_lock); 1558 if (!res) 1559 return NULL; 1560 trace_cfg80211_return_bss(&res->pub); 1561 return &res->pub; 1562 } 1563 EXPORT_SYMBOL(cfg80211_get_bss); 1564 1565 static bool rb_insert_bss(struct cfg80211_registered_device *rdev, 1566 struct cfg80211_internal_bss *bss) 1567 { 1568 struct rb_node **p = &rdev->bss_tree.rb_node; 1569 struct rb_node *parent = NULL; 1570 struct cfg80211_internal_bss *tbss; 1571 int cmp; 1572 1573 while (*p) { 1574 parent = *p; 1575 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn); 1576 1577 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR); 1578 1579 if (WARN_ON(!cmp)) { 1580 /* will sort of leak this BSS */ 1581 return false; 1582 } 1583 1584 if (cmp < 0) 1585 p = &(*p)->rb_left; 1586 else 1587 p = &(*p)->rb_right; 1588 } 1589 1590 rb_link_node(&bss->rbn, parent, p); 1591 rb_insert_color(&bss->rbn, &rdev->bss_tree); 1592 return true; 1593 } 1594 1595 static struct cfg80211_internal_bss * 1596 rb_find_bss(struct cfg80211_registered_device *rdev, 1597 struct cfg80211_internal_bss *res, 1598 enum bss_compare_mode mode) 1599 { 1600 struct rb_node *n = rdev->bss_tree.rb_node; 1601 struct cfg80211_internal_bss *bss; 1602 int r; 1603 1604 while (n) { 1605 bss = rb_entry(n, struct cfg80211_internal_bss, rbn); 1606 r = cmp_bss(&res->pub, &bss->pub, mode); 1607 1608 if (r == 0) 1609 return bss; 1610 else if (r < 0) 1611 n = n->rb_left; 1612 else 1613 n = n->rb_right; 1614 } 1615 1616 return NULL; 1617 } 1618 1619 static void cfg80211_insert_bss(struct cfg80211_registered_device *rdev, 1620 struct cfg80211_internal_bss *bss) 1621 { 1622 lockdep_assert_held(&rdev->bss_lock); 1623 1624 if (!rb_insert_bss(rdev, bss)) 1625 return; 1626 list_add_tail(&bss->list, &rdev->bss_list); 1627 rdev->bss_entries++; 1628 } 1629 1630 static void cfg80211_rehash_bss(struct cfg80211_registered_device *rdev, 1631 struct cfg80211_internal_bss *bss) 1632 { 1633 lockdep_assert_held(&rdev->bss_lock); 1634 1635 rb_erase(&bss->rbn, &rdev->bss_tree); 1636 if (!rb_insert_bss(rdev, bss)) { 1637 list_del(&bss->list); 1638 if (!list_empty(&bss->hidden_list)) 1639 list_del_init(&bss->hidden_list); 1640 if (!list_empty(&bss->pub.nontrans_list)) 1641 list_del_init(&bss->pub.nontrans_list); 1642 rdev->bss_entries--; 1643 } 1644 rdev->bss_generation++; 1645 } 1646 1647 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev, 1648 struct cfg80211_internal_bss *new) 1649 { 1650 const struct cfg80211_bss_ies *ies; 1651 struct cfg80211_internal_bss *bss; 1652 const u8 *ie; 1653 int i, ssidlen; 1654 u8 fold = 0; 1655 u32 n_entries = 0; 1656 1657 ies = rcu_access_pointer(new->pub.beacon_ies); 1658 if (WARN_ON(!ies)) 1659 return false; 1660 1661 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1662 if (!ie) { 1663 /* nothing to do */ 1664 return true; 1665 } 1666 1667 ssidlen = ie[1]; 1668 for (i = 0; i < ssidlen; i++) 1669 fold |= ie[2 + i]; 1670 1671 if (fold) { 1672 /* not a hidden SSID */ 1673 return true; 1674 } 1675 1676 /* This is the bad part ... */ 1677 1678 list_for_each_entry(bss, &rdev->bss_list, list) { 1679 /* 1680 * we're iterating all the entries anyway, so take the 1681 * opportunity to validate the list length accounting 1682 */ 1683 n_entries++; 1684 1685 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid)) 1686 continue; 1687 if (bss->pub.channel != new->pub.channel) 1688 continue; 1689 if (bss->pub.scan_width != new->pub.scan_width) 1690 continue; 1691 if (rcu_access_pointer(bss->pub.beacon_ies)) 1692 continue; 1693 ies = rcu_access_pointer(bss->pub.ies); 1694 if (!ies) 1695 continue; 1696 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len); 1697 if (!ie) 1698 continue; 1699 if (ssidlen && ie[1] != ssidlen) 1700 continue; 1701 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss)) 1702 continue; 1703 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list))) 1704 list_del(&bss->hidden_list); 1705 /* combine them */ 1706 list_add(&bss->hidden_list, &new->hidden_list); 1707 bss->pub.hidden_beacon_bss = &new->pub; 1708 new->refcount += bss->refcount; 1709 rcu_assign_pointer(bss->pub.beacon_ies, 1710 new->pub.beacon_ies); 1711 } 1712 1713 WARN_ONCE(n_entries != rdev->bss_entries, 1714 "rdev bss entries[%d]/list[len:%d] corruption\n", 1715 rdev->bss_entries, n_entries); 1716 1717 return true; 1718 } 1719 1720 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known, 1721 const struct cfg80211_bss_ies *new_ies, 1722 const struct cfg80211_bss_ies *old_ies) 1723 { 1724 struct cfg80211_internal_bss *bss; 1725 1726 /* Assign beacon IEs to all sub entries */ 1727 list_for_each_entry(bss, &known->hidden_list, hidden_list) { 1728 const struct cfg80211_bss_ies *ies; 1729 1730 ies = rcu_access_pointer(bss->pub.beacon_ies); 1731 WARN_ON(ies != old_ies); 1732 1733 rcu_assign_pointer(bss->pub.beacon_ies, new_ies); 1734 } 1735 } 1736 1737 static bool 1738 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev, 1739 struct cfg80211_internal_bss *known, 1740 struct cfg80211_internal_bss *new, 1741 bool signal_valid) 1742 { 1743 lockdep_assert_held(&rdev->bss_lock); 1744 1745 /* Update IEs */ 1746 if (rcu_access_pointer(new->pub.proberesp_ies)) { 1747 const struct cfg80211_bss_ies *old; 1748 1749 old = rcu_access_pointer(known->pub.proberesp_ies); 1750 1751 rcu_assign_pointer(known->pub.proberesp_ies, 1752 new->pub.proberesp_ies); 1753 /* Override possible earlier Beacon frame IEs */ 1754 rcu_assign_pointer(known->pub.ies, 1755 new->pub.proberesp_ies); 1756 if (old) 1757 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1758 } else if (rcu_access_pointer(new->pub.beacon_ies)) { 1759 const struct cfg80211_bss_ies *old; 1760 1761 if (known->pub.hidden_beacon_bss && 1762 !list_empty(&known->hidden_list)) { 1763 const struct cfg80211_bss_ies *f; 1764 1765 /* The known BSS struct is one of the probe 1766 * response members of a group, but we're 1767 * receiving a beacon (beacon_ies in the new 1768 * bss is used). This can only mean that the 1769 * AP changed its beacon from not having an 1770 * SSID to showing it, which is confusing so 1771 * drop this information. 1772 */ 1773 1774 f = rcu_access_pointer(new->pub.beacon_ies); 1775 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head); 1776 return false; 1777 } 1778 1779 old = rcu_access_pointer(known->pub.beacon_ies); 1780 1781 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies); 1782 1783 /* Override IEs if they were from a beacon before */ 1784 if (old == rcu_access_pointer(known->pub.ies)) 1785 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies); 1786 1787 cfg80211_update_hidden_bsses(known, 1788 rcu_access_pointer(new->pub.beacon_ies), 1789 old); 1790 1791 if (old) 1792 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head); 1793 } 1794 1795 known->pub.beacon_interval = new->pub.beacon_interval; 1796 1797 /* don't update the signal if beacon was heard on 1798 * adjacent channel. 1799 */ 1800 if (signal_valid) 1801 known->pub.signal = new->pub.signal; 1802 known->pub.capability = new->pub.capability; 1803 known->ts = new->ts; 1804 known->ts_boottime = new->ts_boottime; 1805 known->parent_tsf = new->parent_tsf; 1806 known->pub.chains = new->pub.chains; 1807 memcpy(known->pub.chain_signal, new->pub.chain_signal, 1808 IEEE80211_MAX_CHAINS); 1809 ether_addr_copy(known->parent_bssid, new->parent_bssid); 1810 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator; 1811 known->pub.bssid_index = new->pub.bssid_index; 1812 1813 return true; 1814 } 1815 1816 /* Returned bss is reference counted and must be cleaned up appropriately. */ 1817 static struct cfg80211_internal_bss * 1818 __cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1819 struct cfg80211_internal_bss *tmp, 1820 bool signal_valid, unsigned long ts) 1821 { 1822 struct cfg80211_internal_bss *found = NULL; 1823 1824 if (WARN_ON(!tmp->pub.channel)) 1825 return NULL; 1826 1827 tmp->ts = ts; 1828 1829 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) { 1830 return NULL; 1831 } 1832 1833 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR); 1834 1835 if (found) { 1836 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid)) 1837 return NULL; 1838 } else { 1839 struct cfg80211_internal_bss *new; 1840 struct cfg80211_internal_bss *hidden; 1841 struct cfg80211_bss_ies *ies; 1842 1843 /* 1844 * create a copy -- the "res" variable that is passed in 1845 * is allocated on the stack since it's not needed in the 1846 * more common case of an update 1847 */ 1848 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size, 1849 GFP_ATOMIC); 1850 if (!new) { 1851 ies = (void *)rcu_dereference(tmp->pub.beacon_ies); 1852 if (ies) 1853 kfree_rcu(ies, rcu_head); 1854 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies); 1855 if (ies) 1856 kfree_rcu(ies, rcu_head); 1857 return NULL; 1858 } 1859 memcpy(new, tmp, sizeof(*new)); 1860 new->refcount = 1; 1861 INIT_LIST_HEAD(&new->hidden_list); 1862 INIT_LIST_HEAD(&new->pub.nontrans_list); 1863 /* we'll set this later if it was non-NULL */ 1864 new->pub.transmitted_bss = NULL; 1865 1866 if (rcu_access_pointer(tmp->pub.proberesp_ies)) { 1867 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN); 1868 if (!hidden) 1869 hidden = rb_find_bss(rdev, tmp, 1870 BSS_CMP_HIDE_NUL); 1871 if (hidden) { 1872 new->pub.hidden_beacon_bss = &hidden->pub; 1873 list_add(&new->hidden_list, 1874 &hidden->hidden_list); 1875 hidden->refcount++; 1876 1877 ies = (void *)rcu_access_pointer(new->pub.beacon_ies); 1878 rcu_assign_pointer(new->pub.beacon_ies, 1879 hidden->pub.beacon_ies); 1880 if (ies) 1881 kfree_rcu(ies, rcu_head); 1882 } 1883 } else { 1884 /* 1885 * Ok so we found a beacon, and don't have an entry. If 1886 * it's a beacon with hidden SSID, we might be in for an 1887 * expensive search for any probe responses that should 1888 * be grouped with this beacon for updates ... 1889 */ 1890 if (!cfg80211_combine_bsses(rdev, new)) { 1891 bss_ref_put(rdev, new); 1892 return NULL; 1893 } 1894 } 1895 1896 if (rdev->bss_entries >= bss_entries_limit && 1897 !cfg80211_bss_expire_oldest(rdev)) { 1898 bss_ref_put(rdev, new); 1899 return NULL; 1900 } 1901 1902 /* This must be before the call to bss_ref_get */ 1903 if (tmp->pub.transmitted_bss) { 1904 new->pub.transmitted_bss = tmp->pub.transmitted_bss; 1905 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss)); 1906 } 1907 1908 cfg80211_insert_bss(rdev, new); 1909 found = new; 1910 } 1911 1912 rdev->bss_generation++; 1913 bss_ref_get(rdev, found); 1914 1915 return found; 1916 } 1917 1918 struct cfg80211_internal_bss * 1919 cfg80211_bss_update(struct cfg80211_registered_device *rdev, 1920 struct cfg80211_internal_bss *tmp, 1921 bool signal_valid, unsigned long ts) 1922 { 1923 struct cfg80211_internal_bss *res; 1924 1925 spin_lock_bh(&rdev->bss_lock); 1926 res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts); 1927 spin_unlock_bh(&rdev->bss_lock); 1928 1929 return res; 1930 } 1931 1932 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen, 1933 enum nl80211_band band) 1934 { 1935 const struct element *tmp; 1936 1937 if (band == NL80211_BAND_6GHZ) { 1938 struct ieee80211_he_operation *he_oper; 1939 1940 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie, 1941 ielen); 1942 if (tmp && tmp->datalen >= sizeof(*he_oper) && 1943 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) { 1944 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 1945 1946 he_oper = (void *)&tmp->data[1]; 1947 1948 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 1949 if (!he_6ghz_oper) 1950 return -1; 1951 1952 return he_6ghz_oper->primary; 1953 } 1954 } else if (band == NL80211_BAND_S1GHZ) { 1955 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen); 1956 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) { 1957 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data; 1958 1959 return s1gop->oper_ch; 1960 } 1961 } else { 1962 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen); 1963 if (tmp && tmp->datalen == 1) 1964 return tmp->data[0]; 1965 1966 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen); 1967 if (tmp && 1968 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) { 1969 struct ieee80211_ht_operation *htop = (void *)tmp->data; 1970 1971 return htop->primary_chan; 1972 } 1973 } 1974 1975 return -1; 1976 } 1977 EXPORT_SYMBOL(cfg80211_get_ies_channel_number); 1978 1979 /* 1980 * Update RX channel information based on the available frame payload 1981 * information. This is mainly for the 2.4 GHz band where frames can be received 1982 * from neighboring channels and the Beacon frames use the DSSS Parameter Set 1983 * element to indicate the current (transmitting) channel, but this might also 1984 * be needed on other bands if RX frequency does not match with the actual 1985 * operating channel of a BSS, or if the AP reports a different primary channel. 1986 */ 1987 static struct ieee80211_channel * 1988 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen, 1989 struct ieee80211_channel *channel, 1990 enum nl80211_bss_scan_width scan_width) 1991 { 1992 u32 freq; 1993 int channel_number; 1994 struct ieee80211_channel *alt_channel; 1995 1996 channel_number = cfg80211_get_ies_channel_number(ie, ielen, 1997 channel->band); 1998 1999 if (channel_number < 0) { 2000 /* No channel information in frame payload */ 2001 return channel; 2002 } 2003 2004 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band); 2005 2006 /* 2007 * Frame info (beacon/prob res) is the same as received channel, 2008 * no need for further processing. 2009 */ 2010 if (freq == ieee80211_channel_to_khz(channel)) 2011 return channel; 2012 2013 alt_channel = ieee80211_get_channel_khz(wiphy, freq); 2014 if (!alt_channel) { 2015 if (channel->band == NL80211_BAND_2GHZ || 2016 channel->band == NL80211_BAND_6GHZ) { 2017 /* 2018 * Better not allow unexpected channels when that could 2019 * be going beyond the 1-11 range (e.g., discovering 2020 * BSS on channel 12 when radio is configured for 2021 * channel 11) or beyond the 6 GHz channel range. 2022 */ 2023 return NULL; 2024 } 2025 2026 /* No match for the payload channel number - ignore it */ 2027 return channel; 2028 } 2029 2030 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 || 2031 scan_width == NL80211_BSS_CHAN_WIDTH_5) { 2032 /* 2033 * Ignore channel number in 5 and 10 MHz channels where there 2034 * may not be an n:1 or 1:n mapping between frequencies and 2035 * channel numbers. 2036 */ 2037 return channel; 2038 } 2039 2040 /* 2041 * Use the channel determined through the payload channel number 2042 * instead of the RX channel reported by the driver. 2043 */ 2044 if (alt_channel->flags & IEEE80211_CHAN_DISABLED) 2045 return NULL; 2046 return alt_channel; 2047 } 2048 2049 struct cfg80211_inform_single_bss_data { 2050 struct cfg80211_inform_bss *drv_data; 2051 enum cfg80211_bss_frame_type ftype; 2052 struct ieee80211_channel *channel; 2053 u8 bssid[ETH_ALEN]; 2054 u64 tsf; 2055 u16 capability; 2056 u16 beacon_interval; 2057 const u8 *ie; 2058 size_t ielen; 2059 2060 enum { 2061 BSS_SOURCE_DIRECT = 0, 2062 BSS_SOURCE_MBSSID, 2063 BSS_SOURCE_STA_PROFILE, 2064 } bss_source; 2065 /* Set if reporting bss_source != BSS_SOURCE_DIRECT */ 2066 struct cfg80211_bss *source_bss; 2067 u8 max_bssid_indicator; 2068 u8 bssid_index; 2069 }; 2070 2071 /* Returned bss is reference counted and must be cleaned up appropriately. */ 2072 static struct cfg80211_bss * 2073 cfg80211_inform_single_bss_data(struct wiphy *wiphy, 2074 struct cfg80211_inform_single_bss_data *data, 2075 gfp_t gfp) 2076 { 2077 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2078 struct cfg80211_inform_bss *drv_data = data->drv_data; 2079 struct cfg80211_bss_ies *ies; 2080 struct ieee80211_channel *channel; 2081 struct cfg80211_internal_bss tmp = {}, *res; 2082 int bss_type; 2083 bool signal_valid; 2084 unsigned long ts; 2085 2086 if (WARN_ON(!wiphy)) 2087 return NULL; 2088 2089 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 2090 (drv_data->signal < 0 || drv_data->signal > 100))) 2091 return NULL; 2092 2093 if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss)) 2094 return NULL; 2095 2096 channel = data->channel; 2097 if (!channel) 2098 channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen, 2099 drv_data->chan, 2100 drv_data->scan_width); 2101 if (!channel) 2102 return NULL; 2103 2104 memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN); 2105 tmp.pub.channel = channel; 2106 tmp.pub.scan_width = drv_data->scan_width; 2107 if (data->bss_source != BSS_SOURCE_STA_PROFILE) 2108 tmp.pub.signal = drv_data->signal; 2109 else 2110 tmp.pub.signal = 0; 2111 tmp.pub.beacon_interval = data->beacon_interval; 2112 tmp.pub.capability = data->capability; 2113 tmp.ts_boottime = drv_data->boottime_ns; 2114 tmp.parent_tsf = drv_data->parent_tsf; 2115 ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid); 2116 2117 if (data->bss_source != BSS_SOURCE_DIRECT) { 2118 tmp.pub.transmitted_bss = data->source_bss; 2119 ts = bss_from_pub(data->source_bss)->ts; 2120 tmp.pub.bssid_index = data->bssid_index; 2121 tmp.pub.max_bssid_indicator = data->max_bssid_indicator; 2122 } else { 2123 ts = jiffies; 2124 2125 if (channel->band == NL80211_BAND_60GHZ) { 2126 bss_type = data->capability & 2127 WLAN_CAPABILITY_DMG_TYPE_MASK; 2128 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2129 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2130 regulatory_hint_found_beacon(wiphy, channel, 2131 gfp); 2132 } else { 2133 if (data->capability & WLAN_CAPABILITY_ESS) 2134 regulatory_hint_found_beacon(wiphy, channel, 2135 gfp); 2136 } 2137 } 2138 2139 /* 2140 * If we do not know here whether the IEs are from a Beacon or Probe 2141 * Response frame, we need to pick one of the options and only use it 2142 * with the driver that does not provide the full Beacon/Probe Response 2143 * frame. Use Beacon frame pointer to avoid indicating that this should 2144 * override the IEs pointer should we have received an earlier 2145 * indication of Probe Response data. 2146 */ 2147 ies = kzalloc(sizeof(*ies) + data->ielen, gfp); 2148 if (!ies) 2149 return NULL; 2150 ies->len = data->ielen; 2151 ies->tsf = data->tsf; 2152 ies->from_beacon = false; 2153 memcpy(ies->data, data->ie, data->ielen); 2154 2155 switch (data->ftype) { 2156 case CFG80211_BSS_FTYPE_BEACON: 2157 ies->from_beacon = true; 2158 fallthrough; 2159 case CFG80211_BSS_FTYPE_UNKNOWN: 2160 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 2161 break; 2162 case CFG80211_BSS_FTYPE_PRESP: 2163 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 2164 break; 2165 } 2166 rcu_assign_pointer(tmp.pub.ies, ies); 2167 2168 signal_valid = drv_data->chan == channel; 2169 spin_lock_bh(&rdev->bss_lock); 2170 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts); 2171 if (!res) 2172 goto drop; 2173 2174 rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data); 2175 2176 if (data->bss_source == BSS_SOURCE_MBSSID) { 2177 /* this is a nontransmitting bss, we need to add it to 2178 * transmitting bss' list if it is not there 2179 */ 2180 if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) { 2181 if (__cfg80211_unlink_bss(rdev, res)) { 2182 rdev->bss_generation++; 2183 res = NULL; 2184 } 2185 } 2186 2187 if (!res) 2188 goto drop; 2189 } 2190 spin_unlock_bh(&rdev->bss_lock); 2191 2192 trace_cfg80211_return_bss(&res->pub); 2193 /* __cfg80211_bss_update gives us a referenced result */ 2194 return &res->pub; 2195 2196 drop: 2197 spin_unlock_bh(&rdev->bss_lock); 2198 return NULL; 2199 } 2200 2201 static const struct element 2202 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen, 2203 const struct element *mbssid_elem, 2204 const struct element *sub_elem) 2205 { 2206 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen; 2207 const struct element *next_mbssid; 2208 const struct element *next_sub; 2209 2210 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2211 mbssid_end, 2212 ielen - (mbssid_end - ie)); 2213 2214 /* 2215 * If it is not the last subelement in current MBSSID IE or there isn't 2216 * a next MBSSID IE - profile is complete. 2217 */ 2218 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) || 2219 !next_mbssid) 2220 return NULL; 2221 2222 /* For any length error, just return NULL */ 2223 2224 if (next_mbssid->datalen < 4) 2225 return NULL; 2226 2227 next_sub = (void *)&next_mbssid->data[1]; 2228 2229 if (next_mbssid->data + next_mbssid->datalen < 2230 next_sub->data + next_sub->datalen) 2231 return NULL; 2232 2233 if (next_sub->id != 0 || next_sub->datalen < 2) 2234 return NULL; 2235 2236 /* 2237 * Check if the first element in the next sub element is a start 2238 * of a new profile 2239 */ 2240 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ? 2241 NULL : next_mbssid; 2242 } 2243 2244 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen, 2245 const struct element *mbssid_elem, 2246 const struct element *sub_elem, 2247 u8 *merged_ie, size_t max_copy_len) 2248 { 2249 size_t copied_len = sub_elem->datalen; 2250 const struct element *next_mbssid; 2251 2252 if (sub_elem->datalen > max_copy_len) 2253 return 0; 2254 2255 memcpy(merged_ie, sub_elem->data, sub_elem->datalen); 2256 2257 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen, 2258 mbssid_elem, 2259 sub_elem))) { 2260 const struct element *next_sub = (void *)&next_mbssid->data[1]; 2261 2262 if (copied_len + next_sub->datalen > max_copy_len) 2263 break; 2264 memcpy(merged_ie + copied_len, next_sub->data, 2265 next_sub->datalen); 2266 copied_len += next_sub->datalen; 2267 } 2268 2269 return copied_len; 2270 } 2271 EXPORT_SYMBOL(cfg80211_merge_profile); 2272 2273 static void 2274 cfg80211_parse_mbssid_data(struct wiphy *wiphy, 2275 struct cfg80211_inform_single_bss_data *tx_data, 2276 struct cfg80211_bss *source_bss, 2277 gfp_t gfp) 2278 { 2279 struct cfg80211_inform_single_bss_data data = { 2280 .drv_data = tx_data->drv_data, 2281 .ftype = tx_data->ftype, 2282 .tsf = tx_data->tsf, 2283 .beacon_interval = tx_data->beacon_interval, 2284 .source_bss = source_bss, 2285 .bss_source = BSS_SOURCE_MBSSID, 2286 }; 2287 const u8 *mbssid_index_ie; 2288 const struct element *elem, *sub; 2289 u8 *new_ie, *profile; 2290 u64 seen_indices = 0; 2291 struct cfg80211_bss *bss; 2292 2293 if (!source_bss) 2294 return; 2295 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, 2296 tx_data->ie, tx_data->ielen)) 2297 return; 2298 if (!wiphy->support_mbssid) 2299 return; 2300 if (wiphy->support_only_he_mbssid && 2301 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, 2302 tx_data->ie, tx_data->ielen)) 2303 return; 2304 2305 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2306 if (!new_ie) 2307 return; 2308 2309 profile = kmalloc(tx_data->ielen, gfp); 2310 if (!profile) 2311 goto out; 2312 2313 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, 2314 tx_data->ie, tx_data->ielen) { 2315 if (elem->datalen < 4) 2316 continue; 2317 if (elem->data[0] < 1 || (int)elem->data[0] > 8) 2318 continue; 2319 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 2320 u8 profile_len; 2321 2322 if (sub->id != 0 || sub->datalen < 4) { 2323 /* not a valid BSS profile */ 2324 continue; 2325 } 2326 2327 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 2328 sub->data[1] != 2) { 2329 /* The first element within the Nontransmitted 2330 * BSSID Profile is not the Nontransmitted 2331 * BSSID Capability element. 2332 */ 2333 continue; 2334 } 2335 2336 memset(profile, 0, tx_data->ielen); 2337 profile_len = cfg80211_merge_profile(tx_data->ie, 2338 tx_data->ielen, 2339 elem, 2340 sub, 2341 profile, 2342 tx_data->ielen); 2343 2344 /* found a Nontransmitted BSSID Profile */ 2345 mbssid_index_ie = cfg80211_find_ie 2346 (WLAN_EID_MULTI_BSSID_IDX, 2347 profile, profile_len); 2348 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 || 2349 mbssid_index_ie[2] == 0 || 2350 mbssid_index_ie[2] > 46) { 2351 /* No valid Multiple BSSID-Index element */ 2352 continue; 2353 } 2354 2355 if (seen_indices & BIT_ULL(mbssid_index_ie[2])) 2356 /* We don't support legacy split of a profile */ 2357 net_dbg_ratelimited("Partial info for BSSID index %d\n", 2358 mbssid_index_ie[2]); 2359 2360 seen_indices |= BIT_ULL(mbssid_index_ie[2]); 2361 2362 data.bssid_index = mbssid_index_ie[2]; 2363 data.max_bssid_indicator = elem->data[0]; 2364 2365 cfg80211_gen_new_bssid(tx_data->bssid, 2366 data.max_bssid_indicator, 2367 data.bssid_index, 2368 data.bssid); 2369 2370 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 2371 data.ie = new_ie; 2372 data.ielen = cfg80211_gen_new_ie(tx_data->ie, 2373 tx_data->ielen, 2374 profile, 2375 profile_len, 2376 new_ie, 2377 IEEE80211_MAX_DATA_LEN); 2378 if (!data.ielen) 2379 continue; 2380 2381 data.capability = get_unaligned_le16(profile + 2); 2382 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp); 2383 if (!bss) 2384 break; 2385 cfg80211_put_bss(wiphy, bss); 2386 } 2387 } 2388 2389 out: 2390 kfree(new_ie); 2391 kfree(profile); 2392 } 2393 2394 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies, 2395 size_t ieslen, u8 *data, size_t data_len, 2396 u8 frag_id) 2397 { 2398 const struct element *next; 2399 ssize_t copied; 2400 u8 elem_datalen; 2401 2402 if (!elem) 2403 return -EINVAL; 2404 2405 /* elem might be invalid after the memmove */ 2406 next = (void *)(elem->data + elem->datalen); 2407 elem_datalen = elem->datalen; 2408 2409 if (elem->id == WLAN_EID_EXTENSION) { 2410 copied = elem->datalen - 1; 2411 if (copied > data_len) 2412 return -ENOSPC; 2413 2414 memmove(data, elem->data + 1, copied); 2415 } else { 2416 copied = elem->datalen; 2417 if (copied > data_len) 2418 return -ENOSPC; 2419 2420 memmove(data, elem->data, copied); 2421 } 2422 2423 /* Fragmented elements must have 255 bytes */ 2424 if (elem_datalen < 255) 2425 return copied; 2426 2427 for (elem = next; 2428 elem->data < ies + ieslen && 2429 elem->data + elem->datalen <= ies + ieslen; 2430 elem = next) { 2431 /* elem might be invalid after the memmove */ 2432 next = (void *)(elem->data + elem->datalen); 2433 2434 if (elem->id != frag_id) 2435 break; 2436 2437 elem_datalen = elem->datalen; 2438 2439 if (copied + elem_datalen > data_len) 2440 return -ENOSPC; 2441 2442 memmove(data + copied, elem->data, elem_datalen); 2443 copied += elem_datalen; 2444 2445 /* Only the last fragment may be short */ 2446 if (elem_datalen != 255) 2447 break; 2448 } 2449 2450 return copied; 2451 } 2452 EXPORT_SYMBOL(cfg80211_defragment_element); 2453 2454 struct cfg80211_mle { 2455 struct ieee80211_multi_link_elem *mle; 2456 struct ieee80211_mle_per_sta_profile 2457 *sta_prof[IEEE80211_MLD_MAX_NUM_LINKS]; 2458 ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS]; 2459 2460 u8 data[]; 2461 }; 2462 2463 static struct cfg80211_mle * 2464 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen, 2465 gfp_t gfp) 2466 { 2467 const struct element *elem; 2468 struct cfg80211_mle *res; 2469 size_t buf_len; 2470 ssize_t mle_len; 2471 u8 common_size, idx; 2472 2473 if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1)) 2474 return NULL; 2475 2476 /* Required length for first defragmentation */ 2477 buf_len = mle->datalen - 1; 2478 for_each_element(elem, mle->data + mle->datalen, 2479 ielen - sizeof(*mle) + mle->datalen) { 2480 if (elem->id != WLAN_EID_FRAGMENT) 2481 break; 2482 2483 buf_len += elem->datalen; 2484 } 2485 2486 res = kzalloc(struct_size(res, data, buf_len), gfp); 2487 if (!res) 2488 return NULL; 2489 2490 mle_len = cfg80211_defragment_element(mle, ie, ielen, 2491 res->data, buf_len, 2492 WLAN_EID_FRAGMENT); 2493 if (mle_len < 0) 2494 goto error; 2495 2496 res->mle = (void *)res->data; 2497 2498 /* Find the sub-element area in the buffer */ 2499 common_size = ieee80211_mle_common_size((u8 *)res->mle); 2500 ie = res->data + common_size; 2501 ielen = mle_len - common_size; 2502 2503 idx = 0; 2504 for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE, 2505 ie, ielen) { 2506 res->sta_prof[idx] = (void *)elem->data; 2507 res->sta_prof_len[idx] = elem->datalen; 2508 2509 idx++; 2510 if (idx >= IEEE80211_MLD_MAX_NUM_LINKS) 2511 break; 2512 } 2513 if (!for_each_element_completed(elem, ie, ielen)) 2514 goto error; 2515 2516 /* Defragment sta_info in-place */ 2517 for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx]; 2518 idx++) { 2519 if (res->sta_prof_len[idx] < 255) 2520 continue; 2521 2522 elem = (void *)res->sta_prof[idx] - 2; 2523 2524 if (idx + 1 < ARRAY_SIZE(res->sta_prof) && 2525 res->sta_prof[idx + 1]) 2526 buf_len = (u8 *)res->sta_prof[idx + 1] - 2527 (u8 *)res->sta_prof[idx]; 2528 else 2529 buf_len = ielen + ie - (u8 *)elem; 2530 2531 res->sta_prof_len[idx] = 2532 cfg80211_defragment_element(elem, 2533 (u8 *)elem, buf_len, 2534 (u8 *)res->sta_prof[idx], 2535 buf_len, 2536 IEEE80211_MLE_SUBELEM_FRAGMENT); 2537 if (res->sta_prof_len[idx] < 0) 2538 goto error; 2539 } 2540 2541 return res; 2542 2543 error: 2544 kfree(res); 2545 return NULL; 2546 } 2547 2548 static bool 2549 cfg80211_tbtt_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id, 2550 const struct ieee80211_neighbor_ap_info **ap_info, 2551 const u8 **tbtt_info) 2552 { 2553 const struct ieee80211_neighbor_ap_info *info; 2554 const struct element *rnr; 2555 const u8 *pos, *end; 2556 2557 for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT, ie, ielen) { 2558 pos = rnr->data; 2559 end = rnr->data + rnr->datalen; 2560 2561 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */ 2562 while (sizeof(*info) <= end - pos) { 2563 const struct ieee80211_rnr_mld_params *mld_params; 2564 u16 params; 2565 u8 length, i, count, mld_params_offset; 2566 u8 type, lid; 2567 2568 info = (void *)pos; 2569 count = u8_get_bits(info->tbtt_info_hdr, 2570 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1; 2571 length = info->tbtt_info_len; 2572 2573 pos += sizeof(*info); 2574 2575 if (count * length > end - pos) 2576 return false; 2577 2578 type = u8_get_bits(info->tbtt_info_hdr, 2579 IEEE80211_AP_INFO_TBTT_HDR_TYPE); 2580 2581 /* Only accept full TBTT information. NSTR mobile APs 2582 * use the shortened version, but we ignore them here. 2583 */ 2584 if (type == IEEE80211_TBTT_INFO_TYPE_TBTT && 2585 length >= 2586 offsetofend(struct ieee80211_tbtt_info_ge_11, 2587 mld_params)) { 2588 mld_params_offset = 2589 offsetof(struct ieee80211_tbtt_info_ge_11, mld_params); 2590 } else { 2591 pos += count * length; 2592 continue; 2593 } 2594 2595 for (i = 0; i < count; i++) { 2596 mld_params = (void *)pos + mld_params_offset; 2597 params = le16_to_cpu(mld_params->params); 2598 2599 lid = u16_get_bits(params, 2600 IEEE80211_RNR_MLD_PARAMS_LINK_ID); 2601 2602 if (mld_id == mld_params->mld_id && 2603 link_id == lid) { 2604 *ap_info = info; 2605 *tbtt_info = pos; 2606 2607 return true; 2608 } 2609 2610 pos += length; 2611 } 2612 } 2613 } 2614 2615 return false; 2616 } 2617 2618 static void 2619 cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy, 2620 struct cfg80211_inform_single_bss_data *tx_data, 2621 struct cfg80211_bss *source_bss, 2622 const struct element *elem, 2623 gfp_t gfp) 2624 { 2625 struct cfg80211_inform_single_bss_data data = { 2626 .drv_data = tx_data->drv_data, 2627 .ftype = tx_data->ftype, 2628 .source_bss = source_bss, 2629 .bss_source = BSS_SOURCE_STA_PROFILE, 2630 }; 2631 struct ieee80211_multi_link_elem *ml_elem; 2632 struct cfg80211_mle *mle; 2633 u16 control; 2634 u8 *new_ie; 2635 struct cfg80211_bss *bss; 2636 int mld_id; 2637 u16 seen_links = 0; 2638 const u8 *pos; 2639 u8 i; 2640 2641 if (!ieee80211_mle_size_ok(elem->data + 1, elem->datalen - 1)) 2642 return; 2643 2644 ml_elem = (void *)elem->data + 1; 2645 control = le16_to_cpu(ml_elem->control); 2646 if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) != 2647 IEEE80211_ML_CONTROL_TYPE_BASIC) 2648 return; 2649 2650 /* Must be present when transmitted by an AP (in a probe response) */ 2651 if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) || 2652 !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) || 2653 !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)) 2654 return; 2655 2656 /* length + MLD MAC address + link ID info + BSS Params Change Count */ 2657 pos = ml_elem->variable + 1 + 6 + 1 + 1; 2658 2659 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)) 2660 pos += 2; 2661 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_EML_CAPA)) 2662 pos += 2; 2663 2664 /* MLD capabilities and operations */ 2665 pos += 2; 2666 2667 /* 2668 * The MLD ID of the reporting AP is always zero. It is set if the AP 2669 * is part of an MBSSID set and will be non-zero for ML Elements 2670 * relating to a nontransmitted BSS (matching the Multi-BSSID Index, 2671 * Draft P802.11be_D3.2, 35.3.4.2) 2672 */ 2673 if (u16_get_bits(control, IEEE80211_MLC_BASIC_PRES_MLD_ID)) { 2674 mld_id = *pos; 2675 pos += 1; 2676 } else { 2677 mld_id = 0; 2678 } 2679 2680 /* Extended MLD capabilities and operations */ 2681 pos += 2; 2682 2683 /* Fully defrag the ML element for sta information/profile iteration */ 2684 mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp); 2685 if (!mle) 2686 return; 2687 2688 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp); 2689 if (!new_ie) 2690 goto out; 2691 2692 for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) { 2693 const struct ieee80211_neighbor_ap_info *ap_info; 2694 enum nl80211_band band; 2695 u32 freq; 2696 const u8 *profile; 2697 const u8 *tbtt_info; 2698 ssize_t profile_len; 2699 u8 link_id; 2700 2701 if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i], 2702 mle->sta_prof_len[i])) 2703 continue; 2704 2705 control = le16_to_cpu(mle->sta_prof[i]->control); 2706 2707 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE)) 2708 continue; 2709 2710 link_id = u16_get_bits(control, 2711 IEEE80211_MLE_STA_CONTROL_LINK_ID); 2712 if (seen_links & BIT(link_id)) 2713 break; 2714 seen_links |= BIT(link_id); 2715 2716 if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) || 2717 !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) || 2718 !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)) 2719 continue; 2720 2721 memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN); 2722 data.beacon_interval = 2723 get_unaligned_le16(mle->sta_prof[i]->variable + 6); 2724 data.tsf = tx_data->tsf + 2725 get_unaligned_le64(mle->sta_prof[i]->variable + 8); 2726 2727 /* sta_info_len counts itself */ 2728 profile = mle->sta_prof[i]->variable + 2729 mle->sta_prof[i]->sta_info_len - 1; 2730 profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] - 2731 profile; 2732 2733 if (profile_len < 2) 2734 continue; 2735 2736 data.capability = get_unaligned_le16(profile); 2737 profile += 2; 2738 profile_len -= 2; 2739 2740 /* Find in RNR to look up channel information */ 2741 if (!cfg80211_tbtt_info_for_mld_ap(tx_data->ie, tx_data->ielen, 2742 mld_id, link_id, 2743 &ap_info, &tbtt_info)) 2744 continue; 2745 2746 /* We could sanity check the BSSID is included */ 2747 2748 if (!ieee80211_operating_class_to_band(ap_info->op_class, 2749 &band)) 2750 continue; 2751 2752 freq = ieee80211_channel_to_freq_khz(ap_info->channel, band); 2753 data.channel = ieee80211_get_channel_khz(wiphy, freq); 2754 2755 /* Generate new elements */ 2756 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN); 2757 data.ie = new_ie; 2758 data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen, 2759 profile, profile_len, 2760 new_ie, 2761 IEEE80211_MAX_DATA_LEN); 2762 if (!data.ielen) 2763 continue; 2764 2765 bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp); 2766 if (!bss) 2767 break; 2768 cfg80211_put_bss(wiphy, bss); 2769 } 2770 2771 out: 2772 kfree(new_ie); 2773 kfree(mle); 2774 } 2775 2776 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy, 2777 struct cfg80211_inform_single_bss_data *tx_data, 2778 struct cfg80211_bss *source_bss, 2779 gfp_t gfp) 2780 { 2781 const struct element *elem; 2782 2783 if (!source_bss) 2784 return; 2785 2786 if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP) 2787 return; 2788 2789 for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK, 2790 tx_data->ie, tx_data->ielen) 2791 cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss, 2792 elem, gfp); 2793 } 2794 2795 struct cfg80211_bss * 2796 cfg80211_inform_bss_data(struct wiphy *wiphy, 2797 struct cfg80211_inform_bss *data, 2798 enum cfg80211_bss_frame_type ftype, 2799 const u8 *bssid, u64 tsf, u16 capability, 2800 u16 beacon_interval, const u8 *ie, size_t ielen, 2801 gfp_t gfp) 2802 { 2803 struct cfg80211_inform_single_bss_data inform_data = { 2804 .drv_data = data, 2805 .ftype = ftype, 2806 .tsf = tsf, 2807 .capability = capability, 2808 .beacon_interval = beacon_interval, 2809 .ie = ie, 2810 .ielen = ielen, 2811 }; 2812 struct cfg80211_bss *res; 2813 2814 memcpy(inform_data.bssid, bssid, ETH_ALEN); 2815 2816 res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp); 2817 if (!res) 2818 return NULL; 2819 2820 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp); 2821 2822 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp); 2823 2824 return res; 2825 } 2826 EXPORT_SYMBOL(cfg80211_inform_bss_data); 2827 2828 /* cfg80211_inform_bss_width_frame helper */ 2829 static struct cfg80211_bss * 2830 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy, 2831 struct cfg80211_inform_bss *data, 2832 struct ieee80211_mgmt *mgmt, size_t len, 2833 gfp_t gfp) 2834 { 2835 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 2836 struct cfg80211_internal_bss tmp = {}, *res; 2837 struct cfg80211_bss_ies *ies; 2838 struct ieee80211_channel *channel; 2839 bool signal_valid; 2840 struct ieee80211_ext *ext = NULL; 2841 u8 *bssid, *variable; 2842 u16 capability, beacon_int; 2843 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt, 2844 u.probe_resp.variable); 2845 int bss_type; 2846 2847 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) != 2848 offsetof(struct ieee80211_mgmt, u.beacon.variable)); 2849 2850 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len); 2851 2852 if (WARN_ON(!mgmt)) 2853 return NULL; 2854 2855 if (WARN_ON(!wiphy)) 2856 return NULL; 2857 2858 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC && 2859 (data->signal < 0 || data->signal > 100))) 2860 return NULL; 2861 2862 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) { 2863 ext = (void *) mgmt; 2864 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon); 2865 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 2866 min_hdr_len = offsetof(struct ieee80211_ext, 2867 u.s1g_short_beacon.variable); 2868 } 2869 2870 if (WARN_ON(len < min_hdr_len)) 2871 return NULL; 2872 2873 ielen = len - min_hdr_len; 2874 variable = mgmt->u.probe_resp.variable; 2875 if (ext) { 2876 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control)) 2877 variable = ext->u.s1g_short_beacon.variable; 2878 else 2879 variable = ext->u.s1g_beacon.variable; 2880 } 2881 2882 channel = cfg80211_get_bss_channel(wiphy, variable, 2883 ielen, data->chan, data->scan_width); 2884 if (!channel) 2885 return NULL; 2886 2887 if (ext) { 2888 const struct ieee80211_s1g_bcn_compat_ie *compat; 2889 const struct element *elem; 2890 2891 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, 2892 variable, ielen); 2893 if (!elem) 2894 return NULL; 2895 if (elem->datalen < sizeof(*compat)) 2896 return NULL; 2897 compat = (void *)elem->data; 2898 bssid = ext->u.s1g_beacon.sa; 2899 capability = le16_to_cpu(compat->compat_info); 2900 beacon_int = le16_to_cpu(compat->beacon_int); 2901 } else { 2902 bssid = mgmt->bssid; 2903 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int); 2904 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info); 2905 } 2906 2907 if (channel->band == NL80211_BAND_60GHZ) { 2908 bss_type = capability & WLAN_CAPABILITY_DMG_TYPE_MASK; 2909 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP || 2910 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS) 2911 regulatory_hint_found_beacon(wiphy, channel, gfp); 2912 } else { 2913 if (capability & WLAN_CAPABILITY_ESS) 2914 regulatory_hint_found_beacon(wiphy, channel, gfp); 2915 } 2916 2917 ies = kzalloc(sizeof(*ies) + ielen, gfp); 2918 if (!ies) 2919 return NULL; 2920 ies->len = ielen; 2921 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 2922 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) || 2923 ieee80211_is_s1g_beacon(mgmt->frame_control); 2924 memcpy(ies->data, variable, ielen); 2925 2926 if (ieee80211_is_probe_resp(mgmt->frame_control)) 2927 rcu_assign_pointer(tmp.pub.proberesp_ies, ies); 2928 else 2929 rcu_assign_pointer(tmp.pub.beacon_ies, ies); 2930 rcu_assign_pointer(tmp.pub.ies, ies); 2931 2932 memcpy(tmp.pub.bssid, bssid, ETH_ALEN); 2933 tmp.pub.beacon_interval = beacon_int; 2934 tmp.pub.capability = capability; 2935 tmp.pub.channel = channel; 2936 tmp.pub.scan_width = data->scan_width; 2937 tmp.pub.signal = data->signal; 2938 tmp.ts_boottime = data->boottime_ns; 2939 tmp.parent_tsf = data->parent_tsf; 2940 tmp.pub.chains = data->chains; 2941 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS); 2942 ether_addr_copy(tmp.parent_bssid, data->parent_bssid); 2943 2944 signal_valid = data->chan == channel; 2945 spin_lock_bh(&rdev->bss_lock); 2946 res = __cfg80211_bss_update(rdev, &tmp, signal_valid, jiffies); 2947 if (!res) 2948 goto drop; 2949 2950 rdev_inform_bss(rdev, &res->pub, ies, data->drv_data); 2951 2952 spin_unlock_bh(&rdev->bss_lock); 2953 2954 trace_cfg80211_return_bss(&res->pub); 2955 /* __cfg80211_bss_update gives us a referenced result */ 2956 return &res->pub; 2957 2958 drop: 2959 spin_unlock_bh(&rdev->bss_lock); 2960 return NULL; 2961 } 2962 2963 struct cfg80211_bss * 2964 cfg80211_inform_bss_frame_data(struct wiphy *wiphy, 2965 struct cfg80211_inform_bss *data, 2966 struct ieee80211_mgmt *mgmt, size_t len, 2967 gfp_t gfp) 2968 { 2969 struct cfg80211_inform_single_bss_data inform_data = { 2970 .drv_data = data, 2971 .ie = mgmt->u.probe_resp.variable, 2972 .ielen = len - offsetof(struct ieee80211_mgmt, 2973 u.probe_resp.variable), 2974 }; 2975 struct cfg80211_bss *res; 2976 2977 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt, 2978 len, gfp); 2979 if (!res) 2980 return NULL; 2981 2982 /* don't do any further MBSSID/ML handling for S1G */ 2983 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 2984 return res; 2985 2986 inform_data.ftype = ieee80211_is_beacon(mgmt->frame_control) ? 2987 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP; 2988 memcpy(inform_data.bssid, mgmt->bssid, ETH_ALEN); 2989 inform_data.tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp); 2990 inform_data.beacon_interval = 2991 le16_to_cpu(mgmt->u.probe_resp.beacon_int); 2992 2993 /* process each non-transmitting bss */ 2994 cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp); 2995 2996 cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp); 2997 2998 return res; 2999 } 3000 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data); 3001 3002 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3003 { 3004 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3005 3006 if (!pub) 3007 return; 3008 3009 spin_lock_bh(&rdev->bss_lock); 3010 bss_ref_get(rdev, bss_from_pub(pub)); 3011 spin_unlock_bh(&rdev->bss_lock); 3012 } 3013 EXPORT_SYMBOL(cfg80211_ref_bss); 3014 3015 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3016 { 3017 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3018 3019 if (!pub) 3020 return; 3021 3022 spin_lock_bh(&rdev->bss_lock); 3023 bss_ref_put(rdev, bss_from_pub(pub)); 3024 spin_unlock_bh(&rdev->bss_lock); 3025 } 3026 EXPORT_SYMBOL(cfg80211_put_bss); 3027 3028 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub) 3029 { 3030 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3031 struct cfg80211_internal_bss *bss, *tmp1; 3032 struct cfg80211_bss *nontrans_bss, *tmp; 3033 3034 if (WARN_ON(!pub)) 3035 return; 3036 3037 bss = bss_from_pub(pub); 3038 3039 spin_lock_bh(&rdev->bss_lock); 3040 if (list_empty(&bss->list)) 3041 goto out; 3042 3043 list_for_each_entry_safe(nontrans_bss, tmp, 3044 &pub->nontrans_list, 3045 nontrans_list) { 3046 tmp1 = bss_from_pub(nontrans_bss); 3047 if (__cfg80211_unlink_bss(rdev, tmp1)) 3048 rdev->bss_generation++; 3049 } 3050 3051 if (__cfg80211_unlink_bss(rdev, bss)) 3052 rdev->bss_generation++; 3053 out: 3054 spin_unlock_bh(&rdev->bss_lock); 3055 } 3056 EXPORT_SYMBOL(cfg80211_unlink_bss); 3057 3058 void cfg80211_bss_iter(struct wiphy *wiphy, 3059 struct cfg80211_chan_def *chandef, 3060 void (*iter)(struct wiphy *wiphy, 3061 struct cfg80211_bss *bss, 3062 void *data), 3063 void *iter_data) 3064 { 3065 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3066 struct cfg80211_internal_bss *bss; 3067 3068 spin_lock_bh(&rdev->bss_lock); 3069 3070 list_for_each_entry(bss, &rdev->bss_list, list) { 3071 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel, 3072 false)) 3073 iter(wiphy, &bss->pub, iter_data); 3074 } 3075 3076 spin_unlock_bh(&rdev->bss_lock); 3077 } 3078 EXPORT_SYMBOL(cfg80211_bss_iter); 3079 3080 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev, 3081 unsigned int link_id, 3082 struct ieee80211_channel *chan) 3083 { 3084 struct wiphy *wiphy = wdev->wiphy; 3085 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy); 3086 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss; 3087 struct cfg80211_internal_bss *new = NULL; 3088 struct cfg80211_internal_bss *bss; 3089 struct cfg80211_bss *nontrans_bss; 3090 struct cfg80211_bss *tmp; 3091 3092 spin_lock_bh(&rdev->bss_lock); 3093 3094 /* 3095 * Some APs use CSA also for bandwidth changes, i.e., without actually 3096 * changing the control channel, so no need to update in such a case. 3097 */ 3098 if (cbss->pub.channel == chan) 3099 goto done; 3100 3101 /* use transmitting bss */ 3102 if (cbss->pub.transmitted_bss) 3103 cbss = bss_from_pub(cbss->pub.transmitted_bss); 3104 3105 cbss->pub.channel = chan; 3106 3107 list_for_each_entry(bss, &rdev->bss_list, list) { 3108 if (!cfg80211_bss_type_match(bss->pub.capability, 3109 bss->pub.channel->band, 3110 wdev->conn_bss_type)) 3111 continue; 3112 3113 if (bss == cbss) 3114 continue; 3115 3116 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) { 3117 new = bss; 3118 break; 3119 } 3120 } 3121 3122 if (new) { 3123 /* to save time, update IEs for transmitting bss only */ 3124 if (cfg80211_update_known_bss(rdev, cbss, new, false)) { 3125 new->pub.proberesp_ies = NULL; 3126 new->pub.beacon_ies = NULL; 3127 } 3128 3129 list_for_each_entry_safe(nontrans_bss, tmp, 3130 &new->pub.nontrans_list, 3131 nontrans_list) { 3132 bss = bss_from_pub(nontrans_bss); 3133 if (__cfg80211_unlink_bss(rdev, bss)) 3134 rdev->bss_generation++; 3135 } 3136 3137 WARN_ON(atomic_read(&new->hold)); 3138 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new))) 3139 rdev->bss_generation++; 3140 } 3141 cfg80211_rehash_bss(rdev, cbss); 3142 3143 list_for_each_entry_safe(nontrans_bss, tmp, 3144 &cbss->pub.nontrans_list, 3145 nontrans_list) { 3146 bss = bss_from_pub(nontrans_bss); 3147 bss->pub.channel = chan; 3148 cfg80211_rehash_bss(rdev, bss); 3149 } 3150 3151 done: 3152 spin_unlock_bh(&rdev->bss_lock); 3153 } 3154 3155 #ifdef CONFIG_CFG80211_WEXT 3156 static struct cfg80211_registered_device * 3157 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex) 3158 { 3159 struct cfg80211_registered_device *rdev; 3160 struct net_device *dev; 3161 3162 ASSERT_RTNL(); 3163 3164 dev = dev_get_by_index(net, ifindex); 3165 if (!dev) 3166 return ERR_PTR(-ENODEV); 3167 if (dev->ieee80211_ptr) 3168 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy); 3169 else 3170 rdev = ERR_PTR(-ENODEV); 3171 dev_put(dev); 3172 return rdev; 3173 } 3174 3175 int cfg80211_wext_siwscan(struct net_device *dev, 3176 struct iw_request_info *info, 3177 union iwreq_data *wrqu, char *extra) 3178 { 3179 struct cfg80211_registered_device *rdev; 3180 struct wiphy *wiphy; 3181 struct iw_scan_req *wreq = NULL; 3182 struct cfg80211_scan_request *creq; 3183 int i, err, n_channels = 0; 3184 enum nl80211_band band; 3185 3186 if (!netif_running(dev)) 3187 return -ENETDOWN; 3188 3189 if (wrqu->data.length == sizeof(struct iw_scan_req)) 3190 wreq = (struct iw_scan_req *)extra; 3191 3192 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3193 3194 if (IS_ERR(rdev)) 3195 return PTR_ERR(rdev); 3196 3197 if (rdev->scan_req || rdev->scan_msg) 3198 return -EBUSY; 3199 3200 wiphy = &rdev->wiphy; 3201 3202 /* Determine number of channels, needed to allocate creq */ 3203 if (wreq && wreq->num_channels) { 3204 /* Passed from userspace so should be checked */ 3205 if (unlikely(wreq->num_channels > IW_MAX_FREQUENCIES)) 3206 return -EINVAL; 3207 n_channels = wreq->num_channels; 3208 } else { 3209 n_channels = ieee80211_get_num_supported_channels(wiphy); 3210 } 3211 3212 creq = kzalloc(struct_size(creq, channels, n_channels) + 3213 sizeof(struct cfg80211_ssid), 3214 GFP_ATOMIC); 3215 if (!creq) 3216 return -ENOMEM; 3217 3218 creq->wiphy = wiphy; 3219 creq->wdev = dev->ieee80211_ptr; 3220 /* SSIDs come after channels */ 3221 creq->ssids = (void *)creq + struct_size(creq, channels, n_channels); 3222 creq->n_channels = n_channels; 3223 creq->n_ssids = 1; 3224 creq->scan_start = jiffies; 3225 3226 /* translate "Scan on frequencies" request */ 3227 i = 0; 3228 for (band = 0; band < NUM_NL80211_BANDS; band++) { 3229 int j; 3230 3231 if (!wiphy->bands[band]) 3232 continue; 3233 3234 for (j = 0; j < wiphy->bands[band]->n_channels; j++) { 3235 /* ignore disabled channels */ 3236 if (wiphy->bands[band]->channels[j].flags & 3237 IEEE80211_CHAN_DISABLED) 3238 continue; 3239 3240 /* If we have a wireless request structure and the 3241 * wireless request specifies frequencies, then search 3242 * for the matching hardware channel. 3243 */ 3244 if (wreq && wreq->num_channels) { 3245 int k; 3246 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq; 3247 for (k = 0; k < wreq->num_channels; k++) { 3248 struct iw_freq *freq = 3249 &wreq->channel_list[k]; 3250 int wext_freq = 3251 cfg80211_wext_freq(freq); 3252 3253 if (wext_freq == wiphy_freq) 3254 goto wext_freq_found; 3255 } 3256 goto wext_freq_not_found; 3257 } 3258 3259 wext_freq_found: 3260 creq->channels[i] = &wiphy->bands[band]->channels[j]; 3261 i++; 3262 wext_freq_not_found: ; 3263 } 3264 } 3265 /* No channels found? */ 3266 if (!i) { 3267 err = -EINVAL; 3268 goto out; 3269 } 3270 3271 /* Set real number of channels specified in creq->channels[] */ 3272 creq->n_channels = i; 3273 3274 /* translate "Scan for SSID" request */ 3275 if (wreq) { 3276 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) { 3277 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) { 3278 err = -EINVAL; 3279 goto out; 3280 } 3281 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len); 3282 creq->ssids[0].ssid_len = wreq->essid_len; 3283 } 3284 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) { 3285 creq->ssids = NULL; 3286 creq->n_ssids = 0; 3287 } 3288 } 3289 3290 for (i = 0; i < NUM_NL80211_BANDS; i++) 3291 if (wiphy->bands[i]) 3292 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1; 3293 3294 eth_broadcast_addr(creq->bssid); 3295 3296 wiphy_lock(&rdev->wiphy); 3297 3298 rdev->scan_req = creq; 3299 err = rdev_scan(rdev, creq); 3300 if (err) { 3301 rdev->scan_req = NULL; 3302 /* creq will be freed below */ 3303 } else { 3304 nl80211_send_scan_start(rdev, dev->ieee80211_ptr); 3305 /* creq now owned by driver */ 3306 creq = NULL; 3307 dev_hold(dev); 3308 } 3309 wiphy_unlock(&rdev->wiphy); 3310 out: 3311 kfree(creq); 3312 return err; 3313 } 3314 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan); 3315 3316 static char *ieee80211_scan_add_ies(struct iw_request_info *info, 3317 const struct cfg80211_bss_ies *ies, 3318 char *current_ev, char *end_buf) 3319 { 3320 const u8 *pos, *end, *next; 3321 struct iw_event iwe; 3322 3323 if (!ies) 3324 return current_ev; 3325 3326 /* 3327 * If needed, fragment the IEs buffer (at IE boundaries) into short 3328 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages. 3329 */ 3330 pos = ies->data; 3331 end = pos + ies->len; 3332 3333 while (end - pos > IW_GENERIC_IE_MAX) { 3334 next = pos + 2 + pos[1]; 3335 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX) 3336 next = next + 2 + next[1]; 3337 3338 memset(&iwe, 0, sizeof(iwe)); 3339 iwe.cmd = IWEVGENIE; 3340 iwe.u.data.length = next - pos; 3341 current_ev = iwe_stream_add_point_check(info, current_ev, 3342 end_buf, &iwe, 3343 (void *)pos); 3344 if (IS_ERR(current_ev)) 3345 return current_ev; 3346 pos = next; 3347 } 3348 3349 if (end > pos) { 3350 memset(&iwe, 0, sizeof(iwe)); 3351 iwe.cmd = IWEVGENIE; 3352 iwe.u.data.length = end - pos; 3353 current_ev = iwe_stream_add_point_check(info, current_ev, 3354 end_buf, &iwe, 3355 (void *)pos); 3356 if (IS_ERR(current_ev)) 3357 return current_ev; 3358 } 3359 3360 return current_ev; 3361 } 3362 3363 static char * 3364 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info, 3365 struct cfg80211_internal_bss *bss, char *current_ev, 3366 char *end_buf) 3367 { 3368 const struct cfg80211_bss_ies *ies; 3369 struct iw_event iwe; 3370 const u8 *ie; 3371 u8 buf[50]; 3372 u8 *cfg, *p, *tmp; 3373 int rem, i, sig; 3374 bool ismesh = false; 3375 3376 memset(&iwe, 0, sizeof(iwe)); 3377 iwe.cmd = SIOCGIWAP; 3378 iwe.u.ap_addr.sa_family = ARPHRD_ETHER; 3379 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN); 3380 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3381 IW_EV_ADDR_LEN); 3382 if (IS_ERR(current_ev)) 3383 return current_ev; 3384 3385 memset(&iwe, 0, sizeof(iwe)); 3386 iwe.cmd = SIOCGIWFREQ; 3387 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq); 3388 iwe.u.freq.e = 0; 3389 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3390 IW_EV_FREQ_LEN); 3391 if (IS_ERR(current_ev)) 3392 return current_ev; 3393 3394 memset(&iwe, 0, sizeof(iwe)); 3395 iwe.cmd = SIOCGIWFREQ; 3396 iwe.u.freq.m = bss->pub.channel->center_freq; 3397 iwe.u.freq.e = 6; 3398 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe, 3399 IW_EV_FREQ_LEN); 3400 if (IS_ERR(current_ev)) 3401 return current_ev; 3402 3403 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) { 3404 memset(&iwe, 0, sizeof(iwe)); 3405 iwe.cmd = IWEVQUAL; 3406 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED | 3407 IW_QUAL_NOISE_INVALID | 3408 IW_QUAL_QUAL_UPDATED; 3409 switch (wiphy->signal_type) { 3410 case CFG80211_SIGNAL_TYPE_MBM: 3411 sig = bss->pub.signal / 100; 3412 iwe.u.qual.level = sig; 3413 iwe.u.qual.updated |= IW_QUAL_DBM; 3414 if (sig < -110) /* rather bad */ 3415 sig = -110; 3416 else if (sig > -40) /* perfect */ 3417 sig = -40; 3418 /* will give a range of 0 .. 70 */ 3419 iwe.u.qual.qual = sig + 110; 3420 break; 3421 case CFG80211_SIGNAL_TYPE_UNSPEC: 3422 iwe.u.qual.level = bss->pub.signal; 3423 /* will give range 0 .. 100 */ 3424 iwe.u.qual.qual = bss->pub.signal; 3425 break; 3426 default: 3427 /* not reached */ 3428 break; 3429 } 3430 current_ev = iwe_stream_add_event_check(info, current_ev, 3431 end_buf, &iwe, 3432 IW_EV_QUAL_LEN); 3433 if (IS_ERR(current_ev)) 3434 return current_ev; 3435 } 3436 3437 memset(&iwe, 0, sizeof(iwe)); 3438 iwe.cmd = SIOCGIWENCODE; 3439 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY) 3440 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY; 3441 else 3442 iwe.u.data.flags = IW_ENCODE_DISABLED; 3443 iwe.u.data.length = 0; 3444 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3445 &iwe, ""); 3446 if (IS_ERR(current_ev)) 3447 return current_ev; 3448 3449 rcu_read_lock(); 3450 ies = rcu_dereference(bss->pub.ies); 3451 rem = ies->len; 3452 ie = ies->data; 3453 3454 while (rem >= 2) { 3455 /* invalid data */ 3456 if (ie[1] > rem - 2) 3457 break; 3458 3459 switch (ie[0]) { 3460 case WLAN_EID_SSID: 3461 memset(&iwe, 0, sizeof(iwe)); 3462 iwe.cmd = SIOCGIWESSID; 3463 iwe.u.data.length = ie[1]; 3464 iwe.u.data.flags = 1; 3465 current_ev = iwe_stream_add_point_check(info, 3466 current_ev, 3467 end_buf, &iwe, 3468 (u8 *)ie + 2); 3469 if (IS_ERR(current_ev)) 3470 goto unlock; 3471 break; 3472 case WLAN_EID_MESH_ID: 3473 memset(&iwe, 0, sizeof(iwe)); 3474 iwe.cmd = SIOCGIWESSID; 3475 iwe.u.data.length = ie[1]; 3476 iwe.u.data.flags = 1; 3477 current_ev = iwe_stream_add_point_check(info, 3478 current_ev, 3479 end_buf, &iwe, 3480 (u8 *)ie + 2); 3481 if (IS_ERR(current_ev)) 3482 goto unlock; 3483 break; 3484 case WLAN_EID_MESH_CONFIG: 3485 ismesh = true; 3486 if (ie[1] != sizeof(struct ieee80211_meshconf_ie)) 3487 break; 3488 cfg = (u8 *)ie + 2; 3489 memset(&iwe, 0, sizeof(iwe)); 3490 iwe.cmd = IWEVCUSTOM; 3491 sprintf(buf, "Mesh Network Path Selection Protocol ID: " 3492 "0x%02X", cfg[0]); 3493 iwe.u.data.length = strlen(buf); 3494 current_ev = iwe_stream_add_point_check(info, 3495 current_ev, 3496 end_buf, 3497 &iwe, buf); 3498 if (IS_ERR(current_ev)) 3499 goto unlock; 3500 sprintf(buf, "Path Selection Metric ID: 0x%02X", 3501 cfg[1]); 3502 iwe.u.data.length = strlen(buf); 3503 current_ev = iwe_stream_add_point_check(info, 3504 current_ev, 3505 end_buf, 3506 &iwe, buf); 3507 if (IS_ERR(current_ev)) 3508 goto unlock; 3509 sprintf(buf, "Congestion Control Mode ID: 0x%02X", 3510 cfg[2]); 3511 iwe.u.data.length = strlen(buf); 3512 current_ev = iwe_stream_add_point_check(info, 3513 current_ev, 3514 end_buf, 3515 &iwe, buf); 3516 if (IS_ERR(current_ev)) 3517 goto unlock; 3518 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]); 3519 iwe.u.data.length = strlen(buf); 3520 current_ev = iwe_stream_add_point_check(info, 3521 current_ev, 3522 end_buf, 3523 &iwe, buf); 3524 if (IS_ERR(current_ev)) 3525 goto unlock; 3526 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]); 3527 iwe.u.data.length = strlen(buf); 3528 current_ev = iwe_stream_add_point_check(info, 3529 current_ev, 3530 end_buf, 3531 &iwe, buf); 3532 if (IS_ERR(current_ev)) 3533 goto unlock; 3534 sprintf(buf, "Formation Info: 0x%02X", cfg[5]); 3535 iwe.u.data.length = strlen(buf); 3536 current_ev = iwe_stream_add_point_check(info, 3537 current_ev, 3538 end_buf, 3539 &iwe, buf); 3540 if (IS_ERR(current_ev)) 3541 goto unlock; 3542 sprintf(buf, "Capabilities: 0x%02X", cfg[6]); 3543 iwe.u.data.length = strlen(buf); 3544 current_ev = iwe_stream_add_point_check(info, 3545 current_ev, 3546 end_buf, 3547 &iwe, buf); 3548 if (IS_ERR(current_ev)) 3549 goto unlock; 3550 break; 3551 case WLAN_EID_SUPP_RATES: 3552 case WLAN_EID_EXT_SUPP_RATES: 3553 /* display all supported rates in readable format */ 3554 p = current_ev + iwe_stream_lcp_len(info); 3555 3556 memset(&iwe, 0, sizeof(iwe)); 3557 iwe.cmd = SIOCGIWRATE; 3558 /* Those two flags are ignored... */ 3559 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0; 3560 3561 for (i = 0; i < ie[1]; i++) { 3562 iwe.u.bitrate.value = 3563 ((ie[i + 2] & 0x7f) * 500000); 3564 tmp = p; 3565 p = iwe_stream_add_value(info, current_ev, p, 3566 end_buf, &iwe, 3567 IW_EV_PARAM_LEN); 3568 if (p == tmp) { 3569 current_ev = ERR_PTR(-E2BIG); 3570 goto unlock; 3571 } 3572 } 3573 current_ev = p; 3574 break; 3575 } 3576 rem -= ie[1] + 2; 3577 ie += ie[1] + 2; 3578 } 3579 3580 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) || 3581 ismesh) { 3582 memset(&iwe, 0, sizeof(iwe)); 3583 iwe.cmd = SIOCGIWMODE; 3584 if (ismesh) 3585 iwe.u.mode = IW_MODE_MESH; 3586 else if (bss->pub.capability & WLAN_CAPABILITY_ESS) 3587 iwe.u.mode = IW_MODE_MASTER; 3588 else 3589 iwe.u.mode = IW_MODE_ADHOC; 3590 current_ev = iwe_stream_add_event_check(info, current_ev, 3591 end_buf, &iwe, 3592 IW_EV_UINT_LEN); 3593 if (IS_ERR(current_ev)) 3594 goto unlock; 3595 } 3596 3597 memset(&iwe, 0, sizeof(iwe)); 3598 iwe.cmd = IWEVCUSTOM; 3599 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf)); 3600 iwe.u.data.length = strlen(buf); 3601 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf, 3602 &iwe, buf); 3603 if (IS_ERR(current_ev)) 3604 goto unlock; 3605 memset(&iwe, 0, sizeof(iwe)); 3606 iwe.cmd = IWEVCUSTOM; 3607 sprintf(buf, " Last beacon: %ums ago", 3608 elapsed_jiffies_msecs(bss->ts)); 3609 iwe.u.data.length = strlen(buf); 3610 current_ev = iwe_stream_add_point_check(info, current_ev, 3611 end_buf, &iwe, buf); 3612 if (IS_ERR(current_ev)) 3613 goto unlock; 3614 3615 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf); 3616 3617 unlock: 3618 rcu_read_unlock(); 3619 return current_ev; 3620 } 3621 3622 3623 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev, 3624 struct iw_request_info *info, 3625 char *buf, size_t len) 3626 { 3627 char *current_ev = buf; 3628 char *end_buf = buf + len; 3629 struct cfg80211_internal_bss *bss; 3630 int err = 0; 3631 3632 spin_lock_bh(&rdev->bss_lock); 3633 cfg80211_bss_expire(rdev); 3634 3635 list_for_each_entry(bss, &rdev->bss_list, list) { 3636 if (buf + len - current_ev <= IW_EV_ADDR_LEN) { 3637 err = -E2BIG; 3638 break; 3639 } 3640 current_ev = ieee80211_bss(&rdev->wiphy, info, bss, 3641 current_ev, end_buf); 3642 if (IS_ERR(current_ev)) { 3643 err = PTR_ERR(current_ev); 3644 break; 3645 } 3646 } 3647 spin_unlock_bh(&rdev->bss_lock); 3648 3649 if (err) 3650 return err; 3651 return current_ev - buf; 3652 } 3653 3654 3655 int cfg80211_wext_giwscan(struct net_device *dev, 3656 struct iw_request_info *info, 3657 union iwreq_data *wrqu, char *extra) 3658 { 3659 struct iw_point *data = &wrqu->data; 3660 struct cfg80211_registered_device *rdev; 3661 int res; 3662 3663 if (!netif_running(dev)) 3664 return -ENETDOWN; 3665 3666 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex); 3667 3668 if (IS_ERR(rdev)) 3669 return PTR_ERR(rdev); 3670 3671 if (rdev->scan_req || rdev->scan_msg) 3672 return -EAGAIN; 3673 3674 res = ieee80211_scan_results(rdev, info, extra, data->length); 3675 data->length = 0; 3676 if (res >= 0) { 3677 data->length = res; 3678 res = 0; 3679 } 3680 3681 return res; 3682 } 3683 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan); 3684 #endif 3685