xref: /openbmc/linux/net/wireless/reg.c (revision fa0dadde)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2022 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65 
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71 
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *	be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *	regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83 	REG_REQ_OK,
84 	REG_REQ_IGNORE,
85 	REG_REQ_INTERSECT,
86 	REG_REQ_ALREADY_SET,
87 };
88 
89 static struct regulatory_request core_request_world = {
90 	.initiator = NL80211_REGDOM_SET_BY_CORE,
91 	.alpha2[0] = '0',
92 	.alpha2[1] = '0',
93 	.intersect = false,
94 	.processed = true,
95 	.country_ie_env = ENVIRON_ANY,
96 };
97 
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103 	(void __force __rcu *)&core_request_world;
104 
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107 
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115 
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122 
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130 
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133 
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 static void reg_process_hint(struct regulatory_request *reg_request);
137 
138 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139 {
140 	return rcu_dereference_rtnl(cfg80211_regdomain);
141 }
142 
143 /*
144  * Returns the regulatory domain associated with the wiphy.
145  *
146  * Requires any of RTNL, wiphy mutex or RCU protection.
147  */
148 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149 {
150 	return rcu_dereference_check(wiphy->regd,
151 				     lockdep_is_held(&wiphy->mtx) ||
152 				     lockdep_rtnl_is_held());
153 }
154 EXPORT_SYMBOL(get_wiphy_regdom);
155 
156 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157 {
158 	switch (dfs_region) {
159 	case NL80211_DFS_UNSET:
160 		return "unset";
161 	case NL80211_DFS_FCC:
162 		return "FCC";
163 	case NL80211_DFS_ETSI:
164 		return "ETSI";
165 	case NL80211_DFS_JP:
166 		return "JP";
167 	}
168 	return "Unknown";
169 }
170 
171 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172 {
173 	const struct ieee80211_regdomain *regd = NULL;
174 	const struct ieee80211_regdomain *wiphy_regd = NULL;
175 	enum nl80211_dfs_regions dfs_region;
176 
177 	rcu_read_lock();
178 	regd = get_cfg80211_regdom();
179 	dfs_region = regd->dfs_region;
180 
181 	if (!wiphy)
182 		goto out;
183 
184 	wiphy_regd = get_wiphy_regdom(wiphy);
185 	if (!wiphy_regd)
186 		goto out;
187 
188 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189 		dfs_region = wiphy_regd->dfs_region;
190 		goto out;
191 	}
192 
193 	if (wiphy_regd->dfs_region == regd->dfs_region)
194 		goto out;
195 
196 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197 		 dev_name(&wiphy->dev),
198 		 reg_dfs_region_str(wiphy_regd->dfs_region),
199 		 reg_dfs_region_str(regd->dfs_region));
200 
201 out:
202 	rcu_read_unlock();
203 
204 	return dfs_region;
205 }
206 
207 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208 {
209 	if (!r)
210 		return;
211 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212 }
213 
214 static struct regulatory_request *get_last_request(void)
215 {
216 	return rcu_dereference_rtnl(last_request);
217 }
218 
219 /* Used to queue up regulatory hints */
220 static LIST_HEAD(reg_requests_list);
221 static DEFINE_SPINLOCK(reg_requests_lock);
222 
223 /* Used to queue up beacon hints for review */
224 static LIST_HEAD(reg_pending_beacons);
225 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226 
227 /* Used to keep track of processed beacon hints */
228 static LIST_HEAD(reg_beacon_list);
229 
230 struct reg_beacon {
231 	struct list_head list;
232 	struct ieee80211_channel chan;
233 };
234 
235 static void reg_check_chans_work(struct work_struct *work);
236 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237 
238 static void reg_todo(struct work_struct *work);
239 static DECLARE_WORK(reg_work, reg_todo);
240 
241 /* We keep a static world regulatory domain in case of the absence of CRDA */
242 static const struct ieee80211_regdomain world_regdom = {
243 	.n_reg_rules = 8,
244 	.alpha2 =  "00",
245 	.reg_rules = {
246 		/* IEEE 802.11b/g, channels 1..11 */
247 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248 		/* IEEE 802.11b/g, channels 12..13. */
249 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
250 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251 		/* IEEE 802.11 channel 14 - Only JP enables
252 		 * this and for 802.11b only */
253 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
254 			NL80211_RRF_NO_IR |
255 			NL80211_RRF_NO_OFDM),
256 		/* IEEE 802.11a, channel 36..48 */
257 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
258                         NL80211_RRF_NO_IR |
259                         NL80211_RRF_AUTO_BW),
260 
261 		/* IEEE 802.11a, channel 52..64 - DFS required */
262 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
263 			NL80211_RRF_NO_IR |
264 			NL80211_RRF_AUTO_BW |
265 			NL80211_RRF_DFS),
266 
267 		/* IEEE 802.11a, channel 100..144 - DFS required */
268 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
269 			NL80211_RRF_NO_IR |
270 			NL80211_RRF_DFS),
271 
272 		/* IEEE 802.11a, channel 149..165 */
273 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
274 			NL80211_RRF_NO_IR),
275 
276 		/* IEEE 802.11ad (60GHz), channels 1..3 */
277 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278 	}
279 };
280 
281 /* protected by RTNL */
282 static const struct ieee80211_regdomain *cfg80211_world_regdom =
283 	&world_regdom;
284 
285 static char *ieee80211_regdom = "00";
286 static char user_alpha2[2];
287 static const struct ieee80211_regdomain *cfg80211_user_regdom;
288 
289 module_param(ieee80211_regdom, charp, 0444);
290 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291 
292 static void reg_free_request(struct regulatory_request *request)
293 {
294 	if (request == &core_request_world)
295 		return;
296 
297 	if (request != get_last_request())
298 		kfree(request);
299 }
300 
301 static void reg_free_last_request(void)
302 {
303 	struct regulatory_request *lr = get_last_request();
304 
305 	if (lr != &core_request_world && lr)
306 		kfree_rcu(lr, rcu_head);
307 }
308 
309 static void reg_update_last_request(struct regulatory_request *request)
310 {
311 	struct regulatory_request *lr;
312 
313 	lr = get_last_request();
314 	if (lr == request)
315 		return;
316 
317 	reg_free_last_request();
318 	rcu_assign_pointer(last_request, request);
319 }
320 
321 static void reset_regdomains(bool full_reset,
322 			     const struct ieee80211_regdomain *new_regdom)
323 {
324 	const struct ieee80211_regdomain *r;
325 
326 	ASSERT_RTNL();
327 
328 	r = get_cfg80211_regdom();
329 
330 	/* avoid freeing static information or freeing something twice */
331 	if (r == cfg80211_world_regdom)
332 		r = NULL;
333 	if (cfg80211_world_regdom == &world_regdom)
334 		cfg80211_world_regdom = NULL;
335 	if (r == &world_regdom)
336 		r = NULL;
337 
338 	rcu_free_regdom(r);
339 	rcu_free_regdom(cfg80211_world_regdom);
340 
341 	cfg80211_world_regdom = &world_regdom;
342 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343 
344 	if (!full_reset)
345 		return;
346 
347 	reg_update_last_request(&core_request_world);
348 }
349 
350 /*
351  * Dynamic world regulatory domain requested by the wireless
352  * core upon initialization
353  */
354 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355 {
356 	struct regulatory_request *lr;
357 
358 	lr = get_last_request();
359 
360 	WARN_ON(!lr);
361 
362 	reset_regdomains(false, rd);
363 
364 	cfg80211_world_regdom = rd;
365 }
366 
367 bool is_world_regdom(const char *alpha2)
368 {
369 	if (!alpha2)
370 		return false;
371 	return alpha2[0] == '0' && alpha2[1] == '0';
372 }
373 
374 static bool is_alpha2_set(const char *alpha2)
375 {
376 	if (!alpha2)
377 		return false;
378 	return alpha2[0] && alpha2[1];
379 }
380 
381 static bool is_unknown_alpha2(const char *alpha2)
382 {
383 	if (!alpha2)
384 		return false;
385 	/*
386 	 * Special case where regulatory domain was built by driver
387 	 * but a specific alpha2 cannot be determined
388 	 */
389 	return alpha2[0] == '9' && alpha2[1] == '9';
390 }
391 
392 static bool is_intersected_alpha2(const char *alpha2)
393 {
394 	if (!alpha2)
395 		return false;
396 	/*
397 	 * Special case where regulatory domain is the
398 	 * result of an intersection between two regulatory domain
399 	 * structures
400 	 */
401 	return alpha2[0] == '9' && alpha2[1] == '8';
402 }
403 
404 static bool is_an_alpha2(const char *alpha2)
405 {
406 	if (!alpha2)
407 		return false;
408 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409 }
410 
411 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412 {
413 	if (!alpha2_x || !alpha2_y)
414 		return false;
415 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416 }
417 
418 static bool regdom_changes(const char *alpha2)
419 {
420 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421 
422 	if (!r)
423 		return true;
424 	return !alpha2_equal(r->alpha2, alpha2);
425 }
426 
427 /*
428  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430  * has ever been issued.
431  */
432 static bool is_user_regdom_saved(void)
433 {
434 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435 		return false;
436 
437 	/* This would indicate a mistake on the design */
438 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439 		 "Unexpected user alpha2: %c%c\n",
440 		 user_alpha2[0], user_alpha2[1]))
441 		return false;
442 
443 	return true;
444 }
445 
446 static const struct ieee80211_regdomain *
447 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448 {
449 	struct ieee80211_regdomain *regd;
450 	unsigned int i;
451 
452 	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453 		       GFP_KERNEL);
454 	if (!regd)
455 		return ERR_PTR(-ENOMEM);
456 
457 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458 
459 	for (i = 0; i < src_regd->n_reg_rules; i++)
460 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
461 		       sizeof(struct ieee80211_reg_rule));
462 
463 	return regd;
464 }
465 
466 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467 {
468 	ASSERT_RTNL();
469 
470 	if (!IS_ERR(cfg80211_user_regdom))
471 		kfree(cfg80211_user_regdom);
472 	cfg80211_user_regdom = reg_copy_regd(rd);
473 }
474 
475 struct reg_regdb_apply_request {
476 	struct list_head list;
477 	const struct ieee80211_regdomain *regdom;
478 };
479 
480 static LIST_HEAD(reg_regdb_apply_list);
481 static DEFINE_MUTEX(reg_regdb_apply_mutex);
482 
483 static void reg_regdb_apply(struct work_struct *work)
484 {
485 	struct reg_regdb_apply_request *request;
486 
487 	rtnl_lock();
488 
489 	mutex_lock(&reg_regdb_apply_mutex);
490 	while (!list_empty(&reg_regdb_apply_list)) {
491 		request = list_first_entry(&reg_regdb_apply_list,
492 					   struct reg_regdb_apply_request,
493 					   list);
494 		list_del(&request->list);
495 
496 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497 		kfree(request);
498 	}
499 	mutex_unlock(&reg_regdb_apply_mutex);
500 
501 	rtnl_unlock();
502 }
503 
504 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505 
506 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507 {
508 	struct reg_regdb_apply_request *request;
509 
510 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511 	if (!request) {
512 		kfree(regdom);
513 		return -ENOMEM;
514 	}
515 
516 	request->regdom = regdom;
517 
518 	mutex_lock(&reg_regdb_apply_mutex);
519 	list_add_tail(&request->list, &reg_regdb_apply_list);
520 	mutex_unlock(&reg_regdb_apply_mutex);
521 
522 	schedule_work(&reg_regdb_work);
523 	return 0;
524 }
525 
526 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
527 /* Max number of consecutive attempts to communicate with CRDA  */
528 #define REG_MAX_CRDA_TIMEOUTS 10
529 
530 static u32 reg_crda_timeouts;
531 
532 static void crda_timeout_work(struct work_struct *work);
533 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534 
535 static void crda_timeout_work(struct work_struct *work)
536 {
537 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 	rtnl_lock();
539 	reg_crda_timeouts++;
540 	restore_regulatory_settings(true, false);
541 	rtnl_unlock();
542 }
543 
544 static void cancel_crda_timeout(void)
545 {
546 	cancel_delayed_work(&crda_timeout);
547 }
548 
549 static void cancel_crda_timeout_sync(void)
550 {
551 	cancel_delayed_work_sync(&crda_timeout);
552 }
553 
554 static void reset_crda_timeouts(void)
555 {
556 	reg_crda_timeouts = 0;
557 }
558 
559 /*
560  * This lets us keep regulatory code which is updated on a regulatory
561  * basis in userspace.
562  */
563 static int call_crda(const char *alpha2)
564 {
565 	char country[12];
566 	char *env[] = { country, NULL };
567 	int ret;
568 
569 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 		 alpha2[0], alpha2[1]);
571 
572 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 		return -EINVAL;
575 	}
576 
577 	if (!is_world_regdom((char *) alpha2))
578 		pr_debug("Calling CRDA for country: %c%c\n",
579 			 alpha2[0], alpha2[1]);
580 	else
581 		pr_debug("Calling CRDA to update world regulatory domain\n");
582 
583 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
584 	if (ret)
585 		return ret;
586 
587 	queue_delayed_work(system_power_efficient_wq,
588 			   &crda_timeout, msecs_to_jiffies(3142));
589 	return 0;
590 }
591 #else
592 static inline void cancel_crda_timeout(void) {}
593 static inline void cancel_crda_timeout_sync(void) {}
594 static inline void reset_crda_timeouts(void) {}
595 static inline int call_crda(const char *alpha2)
596 {
597 	return -ENODATA;
598 }
599 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600 
601 /* code to directly load a firmware database through request_firmware */
602 static const struct fwdb_header *regdb;
603 
604 struct fwdb_country {
605 	u8 alpha2[2];
606 	__be16 coll_ptr;
607 	/* this struct cannot be extended */
608 } __packed __aligned(4);
609 
610 struct fwdb_collection {
611 	u8 len;
612 	u8 n_rules;
613 	u8 dfs_region;
614 	/* no optional data yet */
615 	/* aligned to 2, then followed by __be16 array of rule pointers */
616 } __packed __aligned(4);
617 
618 enum fwdb_flags {
619 	FWDB_FLAG_NO_OFDM	= BIT(0),
620 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
621 	FWDB_FLAG_DFS		= BIT(2),
622 	FWDB_FLAG_NO_IR		= BIT(3),
623 	FWDB_FLAG_AUTO_BW	= BIT(4),
624 };
625 
626 struct fwdb_wmm_ac {
627 	u8 ecw;
628 	u8 aifsn;
629 	__be16 cot;
630 } __packed;
631 
632 struct fwdb_wmm_rule {
633 	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634 	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635 } __packed;
636 
637 struct fwdb_rule {
638 	u8 len;
639 	u8 flags;
640 	__be16 max_eirp;
641 	__be32 start, end, max_bw;
642 	/* start of optional data */
643 	__be16 cac_timeout;
644 	__be16 wmm_ptr;
645 } __packed __aligned(4);
646 
647 #define FWDB_MAGIC 0x52474442
648 #define FWDB_VERSION 20
649 
650 struct fwdb_header {
651 	__be32 magic;
652 	__be32 version;
653 	struct fwdb_country country[];
654 } __packed __aligned(4);
655 
656 static int ecw2cw(int ecw)
657 {
658 	return (1 << ecw) - 1;
659 }
660 
661 static bool valid_wmm(struct fwdb_wmm_rule *rule)
662 {
663 	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664 	int i;
665 
666 	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667 		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668 		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669 		u8 aifsn = ac[i].aifsn;
670 
671 		if (cw_min >= cw_max)
672 			return false;
673 
674 		if (aifsn < 1)
675 			return false;
676 	}
677 
678 	return true;
679 }
680 
681 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682 {
683 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684 
685 	if ((u8 *)rule + sizeof(rule->len) > data + size)
686 		return false;
687 
688 	/* mandatory fields */
689 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690 		return false;
691 	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692 		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693 		struct fwdb_wmm_rule *wmm;
694 
695 		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696 			return false;
697 
698 		wmm = (void *)(data + wmm_ptr);
699 
700 		if (!valid_wmm(wmm))
701 			return false;
702 	}
703 	return true;
704 }
705 
706 static bool valid_country(const u8 *data, unsigned int size,
707 			  const struct fwdb_country *country)
708 {
709 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710 	struct fwdb_collection *coll = (void *)(data + ptr);
711 	__be16 *rules_ptr;
712 	unsigned int i;
713 
714 	/* make sure we can read len/n_rules */
715 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716 		return false;
717 
718 	/* make sure base struct and all rules fit */
719 	if ((u8 *)coll + ALIGN(coll->len, 2) +
720 	    (coll->n_rules * 2) > data + size)
721 		return false;
722 
723 	/* mandatory fields must exist */
724 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725 		return false;
726 
727 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728 
729 	for (i = 0; i < coll->n_rules; i++) {
730 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731 
732 		if (!valid_rule(data, size, rule_ptr))
733 			return false;
734 	}
735 
736 	return true;
737 }
738 
739 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740 #include <keys/asymmetric-type.h>
741 
742 static struct key *builtin_regdb_keys;
743 
744 static int __init load_builtin_regdb_keys(void)
745 {
746 	builtin_regdb_keys =
747 		keyring_alloc(".builtin_regdb_keys",
748 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
749 			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
750 			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
751 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
752 	if (IS_ERR(builtin_regdb_keys))
753 		return PTR_ERR(builtin_regdb_keys);
754 
755 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
756 
757 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
758 	x509_load_certificate_list(shipped_regdb_certs,
759 				   shipped_regdb_certs_len,
760 				   builtin_regdb_keys);
761 #endif
762 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
763 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
764 		x509_load_certificate_list(extra_regdb_certs,
765 					   extra_regdb_certs_len,
766 					   builtin_regdb_keys);
767 #endif
768 
769 	return 0;
770 }
771 
772 MODULE_FIRMWARE("regulatory.db.p7s");
773 
774 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
775 {
776 	const struct firmware *sig;
777 	bool result;
778 
779 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
780 		return false;
781 
782 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
783 					builtin_regdb_keys,
784 					VERIFYING_UNSPECIFIED_SIGNATURE,
785 					NULL, NULL) == 0;
786 
787 	release_firmware(sig);
788 
789 	return result;
790 }
791 
792 static void free_regdb_keyring(void)
793 {
794 	key_put(builtin_regdb_keys);
795 }
796 #else
797 static int load_builtin_regdb_keys(void)
798 {
799 	return 0;
800 }
801 
802 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
803 {
804 	return true;
805 }
806 
807 static void free_regdb_keyring(void)
808 {
809 }
810 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
811 
812 static bool valid_regdb(const u8 *data, unsigned int size)
813 {
814 	const struct fwdb_header *hdr = (void *)data;
815 	const struct fwdb_country *country;
816 
817 	if (size < sizeof(*hdr))
818 		return false;
819 
820 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
821 		return false;
822 
823 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
824 		return false;
825 
826 	if (!regdb_has_valid_signature(data, size))
827 		return false;
828 
829 	country = &hdr->country[0];
830 	while ((u8 *)(country + 1) <= data + size) {
831 		if (!country->coll_ptr)
832 			break;
833 		if (!valid_country(data, size, country))
834 			return false;
835 		country++;
836 	}
837 
838 	return true;
839 }
840 
841 static void set_wmm_rule(const struct fwdb_header *db,
842 			 const struct fwdb_country *country,
843 			 const struct fwdb_rule *rule,
844 			 struct ieee80211_reg_rule *rrule)
845 {
846 	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
847 	struct fwdb_wmm_rule *wmm;
848 	unsigned int i, wmm_ptr;
849 
850 	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
851 	wmm = (void *)((u8 *)db + wmm_ptr);
852 
853 	if (!valid_wmm(wmm)) {
854 		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
855 		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
856 		       country->alpha2[0], country->alpha2[1]);
857 		return;
858 	}
859 
860 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
861 		wmm_rule->client[i].cw_min =
862 			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
863 		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
864 		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
865 		wmm_rule->client[i].cot =
866 			1000 * be16_to_cpu(wmm->client[i].cot);
867 		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
868 		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
869 		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
870 		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
871 	}
872 
873 	rrule->has_wmm = true;
874 }
875 
876 static int __regdb_query_wmm(const struct fwdb_header *db,
877 			     const struct fwdb_country *country, int freq,
878 			     struct ieee80211_reg_rule *rrule)
879 {
880 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
881 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
882 	int i;
883 
884 	for (i = 0; i < coll->n_rules; i++) {
885 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
886 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
887 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
888 
889 		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
890 			continue;
891 
892 		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
893 		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
894 			set_wmm_rule(db, country, rule, rrule);
895 			return 0;
896 		}
897 	}
898 
899 	return -ENODATA;
900 }
901 
902 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
903 {
904 	const struct fwdb_header *hdr = regdb;
905 	const struct fwdb_country *country;
906 
907 	if (!regdb)
908 		return -ENODATA;
909 
910 	if (IS_ERR(regdb))
911 		return PTR_ERR(regdb);
912 
913 	country = &hdr->country[0];
914 	while (country->coll_ptr) {
915 		if (alpha2_equal(alpha2, country->alpha2))
916 			return __regdb_query_wmm(regdb, country, freq, rule);
917 
918 		country++;
919 	}
920 
921 	return -ENODATA;
922 }
923 EXPORT_SYMBOL(reg_query_regdb_wmm);
924 
925 static int regdb_query_country(const struct fwdb_header *db,
926 			       const struct fwdb_country *country)
927 {
928 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
929 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
930 	struct ieee80211_regdomain *regdom;
931 	unsigned int i;
932 
933 	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
934 			 GFP_KERNEL);
935 	if (!regdom)
936 		return -ENOMEM;
937 
938 	regdom->n_reg_rules = coll->n_rules;
939 	regdom->alpha2[0] = country->alpha2[0];
940 	regdom->alpha2[1] = country->alpha2[1];
941 	regdom->dfs_region = coll->dfs_region;
942 
943 	for (i = 0; i < regdom->n_reg_rules; i++) {
944 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
945 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
946 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
947 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
948 
949 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
950 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
951 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
952 
953 		rrule->power_rule.max_antenna_gain = 0;
954 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
955 
956 		rrule->flags = 0;
957 		if (rule->flags & FWDB_FLAG_NO_OFDM)
958 			rrule->flags |= NL80211_RRF_NO_OFDM;
959 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
960 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
961 		if (rule->flags & FWDB_FLAG_DFS)
962 			rrule->flags |= NL80211_RRF_DFS;
963 		if (rule->flags & FWDB_FLAG_NO_IR)
964 			rrule->flags |= NL80211_RRF_NO_IR;
965 		if (rule->flags & FWDB_FLAG_AUTO_BW)
966 			rrule->flags |= NL80211_RRF_AUTO_BW;
967 
968 		rrule->dfs_cac_ms = 0;
969 
970 		/* handle optional data */
971 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
972 			rrule->dfs_cac_ms =
973 				1000 * be16_to_cpu(rule->cac_timeout);
974 		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
975 			set_wmm_rule(db, country, rule, rrule);
976 	}
977 
978 	return reg_schedule_apply(regdom);
979 }
980 
981 static int query_regdb(const char *alpha2)
982 {
983 	const struct fwdb_header *hdr = regdb;
984 	const struct fwdb_country *country;
985 
986 	ASSERT_RTNL();
987 
988 	if (IS_ERR(regdb))
989 		return PTR_ERR(regdb);
990 
991 	country = &hdr->country[0];
992 	while (country->coll_ptr) {
993 		if (alpha2_equal(alpha2, country->alpha2))
994 			return regdb_query_country(regdb, country);
995 		country++;
996 	}
997 
998 	return -ENODATA;
999 }
1000 
1001 static void regdb_fw_cb(const struct firmware *fw, void *context)
1002 {
1003 	int set_error = 0;
1004 	bool restore = true;
1005 	void *db;
1006 
1007 	if (!fw) {
1008 		pr_info("failed to load regulatory.db\n");
1009 		set_error = -ENODATA;
1010 	} else if (!valid_regdb(fw->data, fw->size)) {
1011 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1012 		set_error = -EINVAL;
1013 	}
1014 
1015 	rtnl_lock();
1016 	if (regdb && !IS_ERR(regdb)) {
1017 		/* negative case - a bug
1018 		 * positive case - can happen due to race in case of multiple cb's in
1019 		 * queue, due to usage of asynchronous callback
1020 		 *
1021 		 * Either case, just restore and free new db.
1022 		 */
1023 	} else if (set_error) {
1024 		regdb = ERR_PTR(set_error);
1025 	} else if (fw) {
1026 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1027 		if (db) {
1028 			regdb = db;
1029 			restore = context && query_regdb(context);
1030 		} else {
1031 			restore = true;
1032 		}
1033 	}
1034 
1035 	if (restore)
1036 		restore_regulatory_settings(true, false);
1037 
1038 	rtnl_unlock();
1039 
1040 	kfree(context);
1041 
1042 	release_firmware(fw);
1043 }
1044 
1045 MODULE_FIRMWARE("regulatory.db");
1046 
1047 static int query_regdb_file(const char *alpha2)
1048 {
1049 	int err;
1050 
1051 	ASSERT_RTNL();
1052 
1053 	if (regdb)
1054 		return query_regdb(alpha2);
1055 
1056 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1057 	if (!alpha2)
1058 		return -ENOMEM;
1059 
1060 	err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1061 				      &reg_pdev->dev, GFP_KERNEL,
1062 				      (void *)alpha2, regdb_fw_cb);
1063 	if (err)
1064 		kfree(alpha2);
1065 
1066 	return err;
1067 }
1068 
1069 int reg_reload_regdb(void)
1070 {
1071 	const struct firmware *fw;
1072 	void *db;
1073 	int err;
1074 	const struct ieee80211_regdomain *current_regdomain;
1075 	struct regulatory_request *request;
1076 
1077 	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1078 	if (err)
1079 		return err;
1080 
1081 	if (!valid_regdb(fw->data, fw->size)) {
1082 		err = -ENODATA;
1083 		goto out;
1084 	}
1085 
1086 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1087 	if (!db) {
1088 		err = -ENOMEM;
1089 		goto out;
1090 	}
1091 
1092 	rtnl_lock();
1093 	if (!IS_ERR_OR_NULL(regdb))
1094 		kfree(regdb);
1095 	regdb = db;
1096 
1097 	/* reset regulatory domain */
1098 	current_regdomain = get_cfg80211_regdom();
1099 
1100 	request = kzalloc(sizeof(*request), GFP_KERNEL);
1101 	if (!request) {
1102 		err = -ENOMEM;
1103 		goto out_unlock;
1104 	}
1105 
1106 	request->wiphy_idx = WIPHY_IDX_INVALID;
1107 	request->alpha2[0] = current_regdomain->alpha2[0];
1108 	request->alpha2[1] = current_regdomain->alpha2[1];
1109 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1110 	request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1111 
1112 	reg_process_hint(request);
1113 
1114 out_unlock:
1115 	rtnl_unlock();
1116  out:
1117 	release_firmware(fw);
1118 	return err;
1119 }
1120 
1121 static bool reg_query_database(struct regulatory_request *request)
1122 {
1123 	if (query_regdb_file(request->alpha2) == 0)
1124 		return true;
1125 
1126 	if (call_crda(request->alpha2) == 0)
1127 		return true;
1128 
1129 	return false;
1130 }
1131 
1132 bool reg_is_valid_request(const char *alpha2)
1133 {
1134 	struct regulatory_request *lr = get_last_request();
1135 
1136 	if (!lr || lr->processed)
1137 		return false;
1138 
1139 	return alpha2_equal(lr->alpha2, alpha2);
1140 }
1141 
1142 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1143 {
1144 	struct regulatory_request *lr = get_last_request();
1145 
1146 	/*
1147 	 * Follow the driver's regulatory domain, if present, unless a country
1148 	 * IE has been processed or a user wants to help complaince further
1149 	 */
1150 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1151 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1152 	    wiphy->regd)
1153 		return get_wiphy_regdom(wiphy);
1154 
1155 	return get_cfg80211_regdom();
1156 }
1157 
1158 static unsigned int
1159 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1160 				 const struct ieee80211_reg_rule *rule)
1161 {
1162 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1163 	const struct ieee80211_freq_range *freq_range_tmp;
1164 	const struct ieee80211_reg_rule *tmp;
1165 	u32 start_freq, end_freq, idx, no;
1166 
1167 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1168 		if (rule == &rd->reg_rules[idx])
1169 			break;
1170 
1171 	if (idx == rd->n_reg_rules)
1172 		return 0;
1173 
1174 	/* get start_freq */
1175 	no = idx;
1176 
1177 	while (no) {
1178 		tmp = &rd->reg_rules[--no];
1179 		freq_range_tmp = &tmp->freq_range;
1180 
1181 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1182 			break;
1183 
1184 		freq_range = freq_range_tmp;
1185 	}
1186 
1187 	start_freq = freq_range->start_freq_khz;
1188 
1189 	/* get end_freq */
1190 	freq_range = &rule->freq_range;
1191 	no = idx;
1192 
1193 	while (no < rd->n_reg_rules - 1) {
1194 		tmp = &rd->reg_rules[++no];
1195 		freq_range_tmp = &tmp->freq_range;
1196 
1197 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1198 			break;
1199 
1200 		freq_range = freq_range_tmp;
1201 	}
1202 
1203 	end_freq = freq_range->end_freq_khz;
1204 
1205 	return end_freq - start_freq;
1206 }
1207 
1208 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1209 				   const struct ieee80211_reg_rule *rule)
1210 {
1211 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1212 
1213 	if (rule->flags & NL80211_RRF_NO_320MHZ)
1214 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1215 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1216 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1217 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1218 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1219 
1220 	/*
1221 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1222 	 * are not allowed.
1223 	 */
1224 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1225 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1226 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1227 
1228 	return bw;
1229 }
1230 
1231 /* Sanity check on a regulatory rule */
1232 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1233 {
1234 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1235 	u32 freq_diff;
1236 
1237 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1238 		return false;
1239 
1240 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1241 		return false;
1242 
1243 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1244 
1245 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1246 	    freq_range->max_bandwidth_khz > freq_diff)
1247 		return false;
1248 
1249 	return true;
1250 }
1251 
1252 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1253 {
1254 	const struct ieee80211_reg_rule *reg_rule = NULL;
1255 	unsigned int i;
1256 
1257 	if (!rd->n_reg_rules)
1258 		return false;
1259 
1260 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1261 		return false;
1262 
1263 	for (i = 0; i < rd->n_reg_rules; i++) {
1264 		reg_rule = &rd->reg_rules[i];
1265 		if (!is_valid_reg_rule(reg_rule))
1266 			return false;
1267 	}
1268 
1269 	return true;
1270 }
1271 
1272 /**
1273  * freq_in_rule_band - tells us if a frequency is in a frequency band
1274  * @freq_range: frequency rule we want to query
1275  * @freq_khz: frequency we are inquiring about
1276  *
1277  * This lets us know if a specific frequency rule is or is not relevant to
1278  * a specific frequency's band. Bands are device specific and artificial
1279  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1280  * however it is safe for now to assume that a frequency rule should not be
1281  * part of a frequency's band if the start freq or end freq are off by more
1282  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1283  * 60 GHz band.
1284  * This resolution can be lowered and should be considered as we add
1285  * regulatory rule support for other "bands".
1286  **/
1287 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1288 			      u32 freq_khz)
1289 {
1290 #define ONE_GHZ_IN_KHZ	1000000
1291 	/*
1292 	 * From 802.11ad: directional multi-gigabit (DMG):
1293 	 * Pertaining to operation in a frequency band containing a channel
1294 	 * with the Channel starting frequency above 45 GHz.
1295 	 */
1296 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1297 			20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1298 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1299 		return true;
1300 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1301 		return true;
1302 	return false;
1303 #undef ONE_GHZ_IN_KHZ
1304 }
1305 
1306 /*
1307  * Later on we can perhaps use the more restrictive DFS
1308  * region but we don't have information for that yet so
1309  * for now simply disallow conflicts.
1310  */
1311 static enum nl80211_dfs_regions
1312 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1313 			 const enum nl80211_dfs_regions dfs_region2)
1314 {
1315 	if (dfs_region1 != dfs_region2)
1316 		return NL80211_DFS_UNSET;
1317 	return dfs_region1;
1318 }
1319 
1320 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1321 				    const struct ieee80211_wmm_ac *wmm_ac2,
1322 				    struct ieee80211_wmm_ac *intersect)
1323 {
1324 	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1325 	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1326 	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1327 	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1328 }
1329 
1330 /*
1331  * Helper for regdom_intersect(), this does the real
1332  * mathematical intersection fun
1333  */
1334 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1335 			       const struct ieee80211_regdomain *rd2,
1336 			       const struct ieee80211_reg_rule *rule1,
1337 			       const struct ieee80211_reg_rule *rule2,
1338 			       struct ieee80211_reg_rule *intersected_rule)
1339 {
1340 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1341 	struct ieee80211_freq_range *freq_range;
1342 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1343 	struct ieee80211_power_rule *power_rule;
1344 	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1345 	struct ieee80211_wmm_rule *wmm_rule;
1346 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1347 
1348 	freq_range1 = &rule1->freq_range;
1349 	freq_range2 = &rule2->freq_range;
1350 	freq_range = &intersected_rule->freq_range;
1351 
1352 	power_rule1 = &rule1->power_rule;
1353 	power_rule2 = &rule2->power_rule;
1354 	power_rule = &intersected_rule->power_rule;
1355 
1356 	wmm_rule1 = &rule1->wmm_rule;
1357 	wmm_rule2 = &rule2->wmm_rule;
1358 	wmm_rule = &intersected_rule->wmm_rule;
1359 
1360 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1361 					 freq_range2->start_freq_khz);
1362 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1363 				       freq_range2->end_freq_khz);
1364 
1365 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1366 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1367 
1368 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1369 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1370 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1371 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1372 
1373 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1374 
1375 	intersected_rule->flags = rule1->flags | rule2->flags;
1376 
1377 	/*
1378 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1379 	 * set AUTO_BW in intersected rule also. Next we will
1380 	 * calculate BW correctly in handle_channel function.
1381 	 * In other case remove AUTO_BW flag while we calculate
1382 	 * maximum bandwidth correctly and auto calculation is
1383 	 * not required.
1384 	 */
1385 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1386 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1387 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1388 	else
1389 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1390 
1391 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1392 	if (freq_range->max_bandwidth_khz > freq_diff)
1393 		freq_range->max_bandwidth_khz = freq_diff;
1394 
1395 	power_rule->max_eirp = min(power_rule1->max_eirp,
1396 		power_rule2->max_eirp);
1397 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1398 		power_rule2->max_antenna_gain);
1399 
1400 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1401 					   rule2->dfs_cac_ms);
1402 
1403 	if (rule1->has_wmm && rule2->has_wmm) {
1404 		u8 ac;
1405 
1406 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1407 			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1408 						&wmm_rule2->client[ac],
1409 						&wmm_rule->client[ac]);
1410 			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1411 						&wmm_rule2->ap[ac],
1412 						&wmm_rule->ap[ac]);
1413 		}
1414 
1415 		intersected_rule->has_wmm = true;
1416 	} else if (rule1->has_wmm) {
1417 		*wmm_rule = *wmm_rule1;
1418 		intersected_rule->has_wmm = true;
1419 	} else if (rule2->has_wmm) {
1420 		*wmm_rule = *wmm_rule2;
1421 		intersected_rule->has_wmm = true;
1422 	} else {
1423 		intersected_rule->has_wmm = false;
1424 	}
1425 
1426 	if (!is_valid_reg_rule(intersected_rule))
1427 		return -EINVAL;
1428 
1429 	return 0;
1430 }
1431 
1432 /* check whether old rule contains new rule */
1433 static bool rule_contains(struct ieee80211_reg_rule *r1,
1434 			  struct ieee80211_reg_rule *r2)
1435 {
1436 	/* for simplicity, currently consider only same flags */
1437 	if (r1->flags != r2->flags)
1438 		return false;
1439 
1440 	/* verify r1 is more restrictive */
1441 	if ((r1->power_rule.max_antenna_gain >
1442 	     r2->power_rule.max_antenna_gain) ||
1443 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1444 		return false;
1445 
1446 	/* make sure r2's range is contained within r1 */
1447 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1448 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1449 		return false;
1450 
1451 	/* and finally verify that r1.max_bw >= r2.max_bw */
1452 	if (r1->freq_range.max_bandwidth_khz <
1453 	    r2->freq_range.max_bandwidth_khz)
1454 		return false;
1455 
1456 	return true;
1457 }
1458 
1459 /* add or extend current rules. do nothing if rule is already contained */
1460 static void add_rule(struct ieee80211_reg_rule *rule,
1461 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1462 {
1463 	struct ieee80211_reg_rule *tmp_rule;
1464 	int i;
1465 
1466 	for (i = 0; i < *n_rules; i++) {
1467 		tmp_rule = &reg_rules[i];
1468 		/* rule is already contained - do nothing */
1469 		if (rule_contains(tmp_rule, rule))
1470 			return;
1471 
1472 		/* extend rule if possible */
1473 		if (rule_contains(rule, tmp_rule)) {
1474 			memcpy(tmp_rule, rule, sizeof(*rule));
1475 			return;
1476 		}
1477 	}
1478 
1479 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1480 	(*n_rules)++;
1481 }
1482 
1483 /**
1484  * regdom_intersect - do the intersection between two regulatory domains
1485  * @rd1: first regulatory domain
1486  * @rd2: second regulatory domain
1487  *
1488  * Use this function to get the intersection between two regulatory domains.
1489  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1490  * as no one single alpha2 can represent this regulatory domain.
1491  *
1492  * Returns a pointer to the regulatory domain structure which will hold the
1493  * resulting intersection of rules between rd1 and rd2. We will
1494  * kzalloc() this structure for you.
1495  */
1496 static struct ieee80211_regdomain *
1497 regdom_intersect(const struct ieee80211_regdomain *rd1,
1498 		 const struct ieee80211_regdomain *rd2)
1499 {
1500 	int r;
1501 	unsigned int x, y;
1502 	unsigned int num_rules = 0;
1503 	const struct ieee80211_reg_rule *rule1, *rule2;
1504 	struct ieee80211_reg_rule intersected_rule;
1505 	struct ieee80211_regdomain *rd;
1506 
1507 	if (!rd1 || !rd2)
1508 		return NULL;
1509 
1510 	/*
1511 	 * First we get a count of the rules we'll need, then we actually
1512 	 * build them. This is to so we can malloc() and free() a
1513 	 * regdomain once. The reason we use reg_rules_intersect() here
1514 	 * is it will return -EINVAL if the rule computed makes no sense.
1515 	 * All rules that do check out OK are valid.
1516 	 */
1517 
1518 	for (x = 0; x < rd1->n_reg_rules; x++) {
1519 		rule1 = &rd1->reg_rules[x];
1520 		for (y = 0; y < rd2->n_reg_rules; y++) {
1521 			rule2 = &rd2->reg_rules[y];
1522 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1523 						 &intersected_rule))
1524 				num_rules++;
1525 		}
1526 	}
1527 
1528 	if (!num_rules)
1529 		return NULL;
1530 
1531 	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1532 	if (!rd)
1533 		return NULL;
1534 
1535 	for (x = 0; x < rd1->n_reg_rules; x++) {
1536 		rule1 = &rd1->reg_rules[x];
1537 		for (y = 0; y < rd2->n_reg_rules; y++) {
1538 			rule2 = &rd2->reg_rules[y];
1539 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1540 						&intersected_rule);
1541 			/*
1542 			 * No need to memset here the intersected rule here as
1543 			 * we're not using the stack anymore
1544 			 */
1545 			if (r)
1546 				continue;
1547 
1548 			add_rule(&intersected_rule, rd->reg_rules,
1549 				 &rd->n_reg_rules);
1550 		}
1551 	}
1552 
1553 	rd->alpha2[0] = '9';
1554 	rd->alpha2[1] = '8';
1555 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1556 						  rd2->dfs_region);
1557 
1558 	return rd;
1559 }
1560 
1561 /*
1562  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1563  * want to just have the channel structure use these
1564  */
1565 static u32 map_regdom_flags(u32 rd_flags)
1566 {
1567 	u32 channel_flags = 0;
1568 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1569 		channel_flags |= IEEE80211_CHAN_NO_IR;
1570 	if (rd_flags & NL80211_RRF_DFS)
1571 		channel_flags |= IEEE80211_CHAN_RADAR;
1572 	if (rd_flags & NL80211_RRF_NO_OFDM)
1573 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1574 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1575 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1576 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1577 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1578 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1579 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1580 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1581 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1582 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1583 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1584 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1585 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1586 	if (rd_flags & NL80211_RRF_NO_HE)
1587 		channel_flags |= IEEE80211_CHAN_NO_HE;
1588 	if (rd_flags & NL80211_RRF_NO_320MHZ)
1589 		channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1590 	return channel_flags;
1591 }
1592 
1593 static const struct ieee80211_reg_rule *
1594 freq_reg_info_regd(u32 center_freq,
1595 		   const struct ieee80211_regdomain *regd, u32 bw)
1596 {
1597 	int i;
1598 	bool band_rule_found = false;
1599 	bool bw_fits = false;
1600 
1601 	if (!regd)
1602 		return ERR_PTR(-EINVAL);
1603 
1604 	for (i = 0; i < regd->n_reg_rules; i++) {
1605 		const struct ieee80211_reg_rule *rr;
1606 		const struct ieee80211_freq_range *fr = NULL;
1607 
1608 		rr = &regd->reg_rules[i];
1609 		fr = &rr->freq_range;
1610 
1611 		/*
1612 		 * We only need to know if one frequency rule was
1613 		 * in center_freq's band, that's enough, so let's
1614 		 * not overwrite it once found
1615 		 */
1616 		if (!band_rule_found)
1617 			band_rule_found = freq_in_rule_band(fr, center_freq);
1618 
1619 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1620 
1621 		if (band_rule_found && bw_fits)
1622 			return rr;
1623 	}
1624 
1625 	if (!band_rule_found)
1626 		return ERR_PTR(-ERANGE);
1627 
1628 	return ERR_PTR(-EINVAL);
1629 }
1630 
1631 static const struct ieee80211_reg_rule *
1632 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1633 {
1634 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1635 	static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1636 	const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1637 	int i = ARRAY_SIZE(bws) - 1;
1638 	u32 bw;
1639 
1640 	for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1641 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1642 		if (!IS_ERR(reg_rule))
1643 			return reg_rule;
1644 	}
1645 
1646 	return reg_rule;
1647 }
1648 
1649 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1650 					       u32 center_freq)
1651 {
1652 	u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1653 
1654 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1655 }
1656 EXPORT_SYMBOL(freq_reg_info);
1657 
1658 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1659 {
1660 	switch (initiator) {
1661 	case NL80211_REGDOM_SET_BY_CORE:
1662 		return "core";
1663 	case NL80211_REGDOM_SET_BY_USER:
1664 		return "user";
1665 	case NL80211_REGDOM_SET_BY_DRIVER:
1666 		return "driver";
1667 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1668 		return "country element";
1669 	default:
1670 		WARN_ON(1);
1671 		return "bug";
1672 	}
1673 }
1674 EXPORT_SYMBOL(reg_initiator_name);
1675 
1676 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1677 					  const struct ieee80211_reg_rule *reg_rule,
1678 					  const struct ieee80211_channel *chan)
1679 {
1680 	const struct ieee80211_freq_range *freq_range = NULL;
1681 	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1682 	bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1683 
1684 	freq_range = &reg_rule->freq_range;
1685 
1686 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1687 	center_freq_khz = ieee80211_channel_to_khz(chan);
1688 	/* Check if auto calculation requested */
1689 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1690 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1691 
1692 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1693 	if (!cfg80211_does_bw_fit_range(freq_range,
1694 					center_freq_khz,
1695 					MHZ_TO_KHZ(10)))
1696 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1697 	if (!cfg80211_does_bw_fit_range(freq_range,
1698 					center_freq_khz,
1699 					MHZ_TO_KHZ(20)))
1700 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1701 
1702 	if (is_s1g) {
1703 		/* S1G is strict about non overlapping channels. We can
1704 		 * calculate which bandwidth is allowed per channel by finding
1705 		 * the largest bandwidth which cleanly divides the freq_range.
1706 		 */
1707 		int edge_offset;
1708 		int ch_bw = max_bandwidth_khz;
1709 
1710 		while (ch_bw) {
1711 			edge_offset = (center_freq_khz - ch_bw / 2) -
1712 				      freq_range->start_freq_khz;
1713 			if (edge_offset % ch_bw == 0) {
1714 				switch (KHZ_TO_MHZ(ch_bw)) {
1715 				case 1:
1716 					bw_flags |= IEEE80211_CHAN_1MHZ;
1717 					break;
1718 				case 2:
1719 					bw_flags |= IEEE80211_CHAN_2MHZ;
1720 					break;
1721 				case 4:
1722 					bw_flags |= IEEE80211_CHAN_4MHZ;
1723 					break;
1724 				case 8:
1725 					bw_flags |= IEEE80211_CHAN_8MHZ;
1726 					break;
1727 				case 16:
1728 					bw_flags |= IEEE80211_CHAN_16MHZ;
1729 					break;
1730 				default:
1731 					/* If we got here, no bandwidths fit on
1732 					 * this frequency, ie. band edge.
1733 					 */
1734 					bw_flags |= IEEE80211_CHAN_DISABLED;
1735 					break;
1736 				}
1737 				break;
1738 			}
1739 			ch_bw /= 2;
1740 		}
1741 	} else {
1742 		if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1743 			bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1744 		if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1745 			bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1746 		if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1747 			bw_flags |= IEEE80211_CHAN_NO_HT40;
1748 		if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1749 			bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1750 		if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1751 			bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1752 		if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1753 			bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1754 	}
1755 	return bw_flags;
1756 }
1757 
1758 static void handle_channel_single_rule(struct wiphy *wiphy,
1759 				       enum nl80211_reg_initiator initiator,
1760 				       struct ieee80211_channel *chan,
1761 				       u32 flags,
1762 				       struct regulatory_request *lr,
1763 				       struct wiphy *request_wiphy,
1764 				       const struct ieee80211_reg_rule *reg_rule)
1765 {
1766 	u32 bw_flags = 0;
1767 	const struct ieee80211_power_rule *power_rule = NULL;
1768 	const struct ieee80211_regdomain *regd;
1769 
1770 	regd = reg_get_regdomain(wiphy);
1771 
1772 	power_rule = &reg_rule->power_rule;
1773 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1774 
1775 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1776 	    request_wiphy && request_wiphy == wiphy &&
1777 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1778 		/*
1779 		 * This guarantees the driver's requested regulatory domain
1780 		 * will always be used as a base for further regulatory
1781 		 * settings
1782 		 */
1783 		chan->flags = chan->orig_flags =
1784 			map_regdom_flags(reg_rule->flags) | bw_flags;
1785 		chan->max_antenna_gain = chan->orig_mag =
1786 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1787 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1788 			(int) MBM_TO_DBM(power_rule->max_eirp);
1789 
1790 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1791 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1792 			if (reg_rule->dfs_cac_ms)
1793 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1794 		}
1795 
1796 		return;
1797 	}
1798 
1799 	chan->dfs_state = NL80211_DFS_USABLE;
1800 	chan->dfs_state_entered = jiffies;
1801 
1802 	chan->beacon_found = false;
1803 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1804 	chan->max_antenna_gain =
1805 		min_t(int, chan->orig_mag,
1806 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1807 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1808 
1809 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1810 		if (reg_rule->dfs_cac_ms)
1811 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1812 		else
1813 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1814 	}
1815 
1816 	if (chan->orig_mpwr) {
1817 		/*
1818 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1819 		 * will always follow the passed country IE power settings.
1820 		 */
1821 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1822 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1823 			chan->max_power = chan->max_reg_power;
1824 		else
1825 			chan->max_power = min(chan->orig_mpwr,
1826 					      chan->max_reg_power);
1827 	} else
1828 		chan->max_power = chan->max_reg_power;
1829 }
1830 
1831 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1832 					  enum nl80211_reg_initiator initiator,
1833 					  struct ieee80211_channel *chan,
1834 					  u32 flags,
1835 					  struct regulatory_request *lr,
1836 					  struct wiphy *request_wiphy,
1837 					  const struct ieee80211_reg_rule *rrule1,
1838 					  const struct ieee80211_reg_rule *rrule2,
1839 					  struct ieee80211_freq_range *comb_range)
1840 {
1841 	u32 bw_flags1 = 0;
1842 	u32 bw_flags2 = 0;
1843 	const struct ieee80211_power_rule *power_rule1 = NULL;
1844 	const struct ieee80211_power_rule *power_rule2 = NULL;
1845 	const struct ieee80211_regdomain *regd;
1846 
1847 	regd = reg_get_regdomain(wiphy);
1848 
1849 	power_rule1 = &rrule1->power_rule;
1850 	power_rule2 = &rrule2->power_rule;
1851 	bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1852 	bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1853 
1854 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1855 	    request_wiphy && request_wiphy == wiphy &&
1856 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1857 		/* This guarantees the driver's requested regulatory domain
1858 		 * will always be used as a base for further regulatory
1859 		 * settings
1860 		 */
1861 		chan->flags =
1862 			map_regdom_flags(rrule1->flags) |
1863 			map_regdom_flags(rrule2->flags) |
1864 			bw_flags1 |
1865 			bw_flags2;
1866 		chan->orig_flags = chan->flags;
1867 		chan->max_antenna_gain =
1868 			min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1869 			      MBI_TO_DBI(power_rule2->max_antenna_gain));
1870 		chan->orig_mag = chan->max_antenna_gain;
1871 		chan->max_reg_power =
1872 			min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1873 			      MBM_TO_DBM(power_rule2->max_eirp));
1874 		chan->max_power = chan->max_reg_power;
1875 		chan->orig_mpwr = chan->max_reg_power;
1876 
1877 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1878 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1879 			if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1880 				chan->dfs_cac_ms = max_t(unsigned int,
1881 							 rrule1->dfs_cac_ms,
1882 							 rrule2->dfs_cac_ms);
1883 		}
1884 
1885 		return;
1886 	}
1887 
1888 	chan->dfs_state = NL80211_DFS_USABLE;
1889 	chan->dfs_state_entered = jiffies;
1890 
1891 	chan->beacon_found = false;
1892 	chan->flags = flags | bw_flags1 | bw_flags2 |
1893 		      map_regdom_flags(rrule1->flags) |
1894 		      map_regdom_flags(rrule2->flags);
1895 
1896 	/* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1897 	 * (otherwise no adj. rule case), recheck therefore
1898 	 */
1899 	if (cfg80211_does_bw_fit_range(comb_range,
1900 				       ieee80211_channel_to_khz(chan),
1901 				       MHZ_TO_KHZ(10)))
1902 		chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1903 	if (cfg80211_does_bw_fit_range(comb_range,
1904 				       ieee80211_channel_to_khz(chan),
1905 				       MHZ_TO_KHZ(20)))
1906 		chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1907 
1908 	chan->max_antenna_gain =
1909 		min_t(int, chan->orig_mag,
1910 		      min_t(int,
1911 			    MBI_TO_DBI(power_rule1->max_antenna_gain),
1912 			    MBI_TO_DBI(power_rule2->max_antenna_gain)));
1913 	chan->max_reg_power = min_t(int,
1914 				    MBM_TO_DBM(power_rule1->max_eirp),
1915 				    MBM_TO_DBM(power_rule2->max_eirp));
1916 
1917 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1918 		if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1919 			chan->dfs_cac_ms = max_t(unsigned int,
1920 						 rrule1->dfs_cac_ms,
1921 						 rrule2->dfs_cac_ms);
1922 		else
1923 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1924 	}
1925 
1926 	if (chan->orig_mpwr) {
1927 		/* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1928 		 * will always follow the passed country IE power settings.
1929 		 */
1930 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1931 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1932 			chan->max_power = chan->max_reg_power;
1933 		else
1934 			chan->max_power = min(chan->orig_mpwr,
1935 					      chan->max_reg_power);
1936 	} else {
1937 		chan->max_power = chan->max_reg_power;
1938 	}
1939 }
1940 
1941 /* Note that right now we assume the desired channel bandwidth
1942  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1943  * per channel, the primary and the extension channel).
1944  */
1945 static void handle_channel(struct wiphy *wiphy,
1946 			   enum nl80211_reg_initiator initiator,
1947 			   struct ieee80211_channel *chan)
1948 {
1949 	const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1950 	struct regulatory_request *lr = get_last_request();
1951 	struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1952 	const struct ieee80211_reg_rule *rrule = NULL;
1953 	const struct ieee80211_reg_rule *rrule1 = NULL;
1954 	const struct ieee80211_reg_rule *rrule2 = NULL;
1955 
1956 	u32 flags = chan->orig_flags;
1957 
1958 	rrule = freq_reg_info(wiphy, orig_chan_freq);
1959 	if (IS_ERR(rrule)) {
1960 		/* check for adjacent match, therefore get rules for
1961 		 * chan - 20 MHz and chan + 20 MHz and test
1962 		 * if reg rules are adjacent
1963 		 */
1964 		rrule1 = freq_reg_info(wiphy,
1965 				       orig_chan_freq - MHZ_TO_KHZ(20));
1966 		rrule2 = freq_reg_info(wiphy,
1967 				       orig_chan_freq + MHZ_TO_KHZ(20));
1968 		if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1969 			struct ieee80211_freq_range comb_range;
1970 
1971 			if (rrule1->freq_range.end_freq_khz !=
1972 			    rrule2->freq_range.start_freq_khz)
1973 				goto disable_chan;
1974 
1975 			comb_range.start_freq_khz =
1976 				rrule1->freq_range.start_freq_khz;
1977 			comb_range.end_freq_khz =
1978 				rrule2->freq_range.end_freq_khz;
1979 			comb_range.max_bandwidth_khz =
1980 				min_t(u32,
1981 				      rrule1->freq_range.max_bandwidth_khz,
1982 				      rrule2->freq_range.max_bandwidth_khz);
1983 
1984 			if (!cfg80211_does_bw_fit_range(&comb_range,
1985 							orig_chan_freq,
1986 							MHZ_TO_KHZ(20)))
1987 				goto disable_chan;
1988 
1989 			handle_channel_adjacent_rules(wiphy, initiator, chan,
1990 						      flags, lr, request_wiphy,
1991 						      rrule1, rrule2,
1992 						      &comb_range);
1993 			return;
1994 		}
1995 
1996 disable_chan:
1997 		/* We will disable all channels that do not match our
1998 		 * received regulatory rule unless the hint is coming
1999 		 * from a Country IE and the Country IE had no information
2000 		 * about a band. The IEEE 802.11 spec allows for an AP
2001 		 * to send only a subset of the regulatory rules allowed,
2002 		 * so an AP in the US that only supports 2.4 GHz may only send
2003 		 * a country IE with information for the 2.4 GHz band
2004 		 * while 5 GHz is still supported.
2005 		 */
2006 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2007 		    PTR_ERR(rrule) == -ERANGE)
2008 			return;
2009 
2010 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2011 		    request_wiphy && request_wiphy == wiphy &&
2012 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2013 			pr_debug("Disabling freq %d.%03d MHz for good\n",
2014 				 chan->center_freq, chan->freq_offset);
2015 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2016 			chan->flags = chan->orig_flags;
2017 		} else {
2018 			pr_debug("Disabling freq %d.%03d MHz\n",
2019 				 chan->center_freq, chan->freq_offset);
2020 			chan->flags |= IEEE80211_CHAN_DISABLED;
2021 		}
2022 		return;
2023 	}
2024 
2025 	handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2026 				   request_wiphy, rrule);
2027 }
2028 
2029 static void handle_band(struct wiphy *wiphy,
2030 			enum nl80211_reg_initiator initiator,
2031 			struct ieee80211_supported_band *sband)
2032 {
2033 	unsigned int i;
2034 
2035 	if (!sband)
2036 		return;
2037 
2038 	for (i = 0; i < sband->n_channels; i++)
2039 		handle_channel(wiphy, initiator, &sband->channels[i]);
2040 }
2041 
2042 static bool reg_request_cell_base(struct regulatory_request *request)
2043 {
2044 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2045 		return false;
2046 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2047 }
2048 
2049 bool reg_last_request_cell_base(void)
2050 {
2051 	return reg_request_cell_base(get_last_request());
2052 }
2053 
2054 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2055 /* Core specific check */
2056 static enum reg_request_treatment
2057 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2058 {
2059 	struct regulatory_request *lr = get_last_request();
2060 
2061 	if (!reg_num_devs_support_basehint)
2062 		return REG_REQ_IGNORE;
2063 
2064 	if (reg_request_cell_base(lr) &&
2065 	    !regdom_changes(pending_request->alpha2))
2066 		return REG_REQ_ALREADY_SET;
2067 
2068 	return REG_REQ_OK;
2069 }
2070 
2071 /* Device specific check */
2072 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2073 {
2074 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2075 }
2076 #else
2077 static enum reg_request_treatment
2078 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2079 {
2080 	return REG_REQ_IGNORE;
2081 }
2082 
2083 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2084 {
2085 	return true;
2086 }
2087 #endif
2088 
2089 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2090 {
2091 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2092 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2093 		return true;
2094 	return false;
2095 }
2096 
2097 static bool ignore_reg_update(struct wiphy *wiphy,
2098 			      enum nl80211_reg_initiator initiator)
2099 {
2100 	struct regulatory_request *lr = get_last_request();
2101 
2102 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2103 		return true;
2104 
2105 	if (!lr) {
2106 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2107 			 reg_initiator_name(initiator));
2108 		return true;
2109 	}
2110 
2111 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2112 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2113 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2114 			 reg_initiator_name(initiator));
2115 		return true;
2116 	}
2117 
2118 	/*
2119 	 * wiphy->regd will be set once the device has its own
2120 	 * desired regulatory domain set
2121 	 */
2122 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2123 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2124 	    !is_world_regdom(lr->alpha2)) {
2125 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2126 			 reg_initiator_name(initiator));
2127 		return true;
2128 	}
2129 
2130 	if (reg_request_cell_base(lr))
2131 		return reg_dev_ignore_cell_hint(wiphy);
2132 
2133 	return false;
2134 }
2135 
2136 static bool reg_is_world_roaming(struct wiphy *wiphy)
2137 {
2138 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2139 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2140 	struct regulatory_request *lr = get_last_request();
2141 
2142 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2143 		return true;
2144 
2145 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2146 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2147 		return true;
2148 
2149 	return false;
2150 }
2151 
2152 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2153 			      struct reg_beacon *reg_beacon)
2154 {
2155 	struct ieee80211_supported_band *sband;
2156 	struct ieee80211_channel *chan;
2157 	bool channel_changed = false;
2158 	struct ieee80211_channel chan_before;
2159 
2160 	sband = wiphy->bands[reg_beacon->chan.band];
2161 	chan = &sband->channels[chan_idx];
2162 
2163 	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2164 		return;
2165 
2166 	if (chan->beacon_found)
2167 		return;
2168 
2169 	chan->beacon_found = true;
2170 
2171 	if (!reg_is_world_roaming(wiphy))
2172 		return;
2173 
2174 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2175 		return;
2176 
2177 	chan_before = *chan;
2178 
2179 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
2180 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
2181 		channel_changed = true;
2182 	}
2183 
2184 	if (channel_changed)
2185 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2186 }
2187 
2188 /*
2189  * Called when a scan on a wiphy finds a beacon on
2190  * new channel
2191  */
2192 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2193 				    struct reg_beacon *reg_beacon)
2194 {
2195 	unsigned int i;
2196 	struct ieee80211_supported_band *sband;
2197 
2198 	if (!wiphy->bands[reg_beacon->chan.band])
2199 		return;
2200 
2201 	sband = wiphy->bands[reg_beacon->chan.band];
2202 
2203 	for (i = 0; i < sband->n_channels; i++)
2204 		handle_reg_beacon(wiphy, i, reg_beacon);
2205 }
2206 
2207 /*
2208  * Called upon reg changes or a new wiphy is added
2209  */
2210 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2211 {
2212 	unsigned int i;
2213 	struct ieee80211_supported_band *sband;
2214 	struct reg_beacon *reg_beacon;
2215 
2216 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2217 		if (!wiphy->bands[reg_beacon->chan.band])
2218 			continue;
2219 		sband = wiphy->bands[reg_beacon->chan.band];
2220 		for (i = 0; i < sband->n_channels; i++)
2221 			handle_reg_beacon(wiphy, i, reg_beacon);
2222 	}
2223 }
2224 
2225 /* Reap the advantages of previously found beacons */
2226 static void reg_process_beacons(struct wiphy *wiphy)
2227 {
2228 	/*
2229 	 * Means we are just firing up cfg80211, so no beacons would
2230 	 * have been processed yet.
2231 	 */
2232 	if (!last_request)
2233 		return;
2234 	wiphy_update_beacon_reg(wiphy);
2235 }
2236 
2237 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2238 {
2239 	if (!chan)
2240 		return false;
2241 	if (chan->flags & IEEE80211_CHAN_DISABLED)
2242 		return false;
2243 	/* This would happen when regulatory rules disallow HT40 completely */
2244 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2245 		return false;
2246 	return true;
2247 }
2248 
2249 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2250 					 struct ieee80211_channel *channel)
2251 {
2252 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2253 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2254 	const struct ieee80211_regdomain *regd;
2255 	unsigned int i;
2256 	u32 flags;
2257 
2258 	if (!is_ht40_allowed(channel)) {
2259 		channel->flags |= IEEE80211_CHAN_NO_HT40;
2260 		return;
2261 	}
2262 
2263 	/*
2264 	 * We need to ensure the extension channels exist to
2265 	 * be able to use HT40- or HT40+, this finds them (or not)
2266 	 */
2267 	for (i = 0; i < sband->n_channels; i++) {
2268 		struct ieee80211_channel *c = &sband->channels[i];
2269 
2270 		if (c->center_freq == (channel->center_freq - 20))
2271 			channel_before = c;
2272 		if (c->center_freq == (channel->center_freq + 20))
2273 			channel_after = c;
2274 	}
2275 
2276 	flags = 0;
2277 	regd = get_wiphy_regdom(wiphy);
2278 	if (regd) {
2279 		const struct ieee80211_reg_rule *reg_rule =
2280 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2281 					   regd, MHZ_TO_KHZ(20));
2282 
2283 		if (!IS_ERR(reg_rule))
2284 			flags = reg_rule->flags;
2285 	}
2286 
2287 	/*
2288 	 * Please note that this assumes target bandwidth is 20 MHz,
2289 	 * if that ever changes we also need to change the below logic
2290 	 * to include that as well.
2291 	 */
2292 	if (!is_ht40_allowed(channel_before) ||
2293 	    flags & NL80211_RRF_NO_HT40MINUS)
2294 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2295 	else
2296 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2297 
2298 	if (!is_ht40_allowed(channel_after) ||
2299 	    flags & NL80211_RRF_NO_HT40PLUS)
2300 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2301 	else
2302 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2303 }
2304 
2305 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2306 				      struct ieee80211_supported_band *sband)
2307 {
2308 	unsigned int i;
2309 
2310 	if (!sband)
2311 		return;
2312 
2313 	for (i = 0; i < sband->n_channels; i++)
2314 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2315 }
2316 
2317 static void reg_process_ht_flags(struct wiphy *wiphy)
2318 {
2319 	enum nl80211_band band;
2320 
2321 	if (!wiphy)
2322 		return;
2323 
2324 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2325 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2326 }
2327 
2328 static void reg_call_notifier(struct wiphy *wiphy,
2329 			      struct regulatory_request *request)
2330 {
2331 	if (wiphy->reg_notifier)
2332 		wiphy->reg_notifier(wiphy, request);
2333 }
2334 
2335 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2336 {
2337 	struct cfg80211_chan_def chandef = {};
2338 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2339 	enum nl80211_iftype iftype;
2340 	bool ret;
2341 	int link;
2342 
2343 	wdev_lock(wdev);
2344 	iftype = wdev->iftype;
2345 
2346 	/* make sure the interface is active */
2347 	if (!wdev->netdev || !netif_running(wdev->netdev))
2348 		goto wdev_inactive_unlock;
2349 
2350 	for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2351 		struct ieee80211_channel *chan;
2352 
2353 		if (!wdev->valid_links && link > 0)
2354 			break;
2355 		if (!(wdev->valid_links & BIT(link)))
2356 			continue;
2357 		switch (iftype) {
2358 		case NL80211_IFTYPE_AP:
2359 		case NL80211_IFTYPE_P2P_GO:
2360 			if (!wdev->links[link].ap.beacon_interval)
2361 				continue;
2362 			chandef = wdev->links[link].ap.chandef;
2363 			break;
2364 		case NL80211_IFTYPE_MESH_POINT:
2365 			if (!wdev->u.mesh.beacon_interval)
2366 				continue;
2367 			chandef = wdev->u.mesh.chandef;
2368 			break;
2369 		case NL80211_IFTYPE_ADHOC:
2370 			if (!wdev->u.ibss.ssid_len)
2371 				continue;
2372 			chandef = wdev->u.ibss.chandef;
2373 			break;
2374 		case NL80211_IFTYPE_STATION:
2375 		case NL80211_IFTYPE_P2P_CLIENT:
2376 			/* Maybe we could consider disabling that link only? */
2377 			if (!wdev->links[link].client.current_bss)
2378 				continue;
2379 
2380 			chan = wdev->links[link].client.current_bss->pub.channel;
2381 			if (!chan)
2382 				continue;
2383 
2384 			if (!rdev->ops->get_channel ||
2385 			    rdev_get_channel(rdev, wdev, link, &chandef))
2386 				cfg80211_chandef_create(&chandef, chan,
2387 							NL80211_CHAN_NO_HT);
2388 			break;
2389 		case NL80211_IFTYPE_MONITOR:
2390 		case NL80211_IFTYPE_AP_VLAN:
2391 		case NL80211_IFTYPE_P2P_DEVICE:
2392 			/* no enforcement required */
2393 			break;
2394 		default:
2395 			/* others not implemented for now */
2396 			WARN_ON(1);
2397 			break;
2398 		}
2399 
2400 		wdev_unlock(wdev);
2401 
2402 		switch (iftype) {
2403 		case NL80211_IFTYPE_AP:
2404 		case NL80211_IFTYPE_P2P_GO:
2405 		case NL80211_IFTYPE_ADHOC:
2406 		case NL80211_IFTYPE_MESH_POINT:
2407 			wiphy_lock(wiphy);
2408 			ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2409 							    iftype);
2410 			wiphy_unlock(wiphy);
2411 
2412 			if (!ret)
2413 				return ret;
2414 			break;
2415 		case NL80211_IFTYPE_STATION:
2416 		case NL80211_IFTYPE_P2P_CLIENT:
2417 			ret = cfg80211_chandef_usable(wiphy, &chandef,
2418 						      IEEE80211_CHAN_DISABLED);
2419 			if (!ret)
2420 				return ret;
2421 			break;
2422 		default:
2423 			break;
2424 		}
2425 
2426 		wdev_lock(wdev);
2427 	}
2428 
2429 	wdev_unlock(wdev);
2430 
2431 	return true;
2432 
2433 wdev_inactive_unlock:
2434 	wdev_unlock(wdev);
2435 	return true;
2436 }
2437 
2438 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2439 {
2440 	struct wireless_dev *wdev;
2441 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2442 
2443 	ASSERT_RTNL();
2444 
2445 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2446 		if (!reg_wdev_chan_valid(wiphy, wdev))
2447 			cfg80211_leave(rdev, wdev);
2448 }
2449 
2450 static void reg_check_chans_work(struct work_struct *work)
2451 {
2452 	struct cfg80211_registered_device *rdev;
2453 
2454 	pr_debug("Verifying active interfaces after reg change\n");
2455 	rtnl_lock();
2456 
2457 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2458 		if (!(rdev->wiphy.regulatory_flags &
2459 		      REGULATORY_IGNORE_STALE_KICKOFF))
2460 			reg_leave_invalid_chans(&rdev->wiphy);
2461 
2462 	rtnl_unlock();
2463 }
2464 
2465 static void reg_check_channels(void)
2466 {
2467 	/*
2468 	 * Give usermode a chance to do something nicer (move to another
2469 	 * channel, orderly disconnection), before forcing a disconnection.
2470 	 */
2471 	mod_delayed_work(system_power_efficient_wq,
2472 			 &reg_check_chans,
2473 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2474 }
2475 
2476 static void wiphy_update_regulatory(struct wiphy *wiphy,
2477 				    enum nl80211_reg_initiator initiator)
2478 {
2479 	enum nl80211_band band;
2480 	struct regulatory_request *lr = get_last_request();
2481 
2482 	if (ignore_reg_update(wiphy, initiator)) {
2483 		/*
2484 		 * Regulatory updates set by CORE are ignored for custom
2485 		 * regulatory cards. Let us notify the changes to the driver,
2486 		 * as some drivers used this to restore its orig_* reg domain.
2487 		 */
2488 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2489 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2490 		    !(wiphy->regulatory_flags &
2491 		      REGULATORY_WIPHY_SELF_MANAGED))
2492 			reg_call_notifier(wiphy, lr);
2493 		return;
2494 	}
2495 
2496 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2497 
2498 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2499 		handle_band(wiphy, initiator, wiphy->bands[band]);
2500 
2501 	reg_process_beacons(wiphy);
2502 	reg_process_ht_flags(wiphy);
2503 	reg_call_notifier(wiphy, lr);
2504 }
2505 
2506 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2507 {
2508 	struct cfg80211_registered_device *rdev;
2509 	struct wiphy *wiphy;
2510 
2511 	ASSERT_RTNL();
2512 
2513 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2514 		wiphy = &rdev->wiphy;
2515 		wiphy_update_regulatory(wiphy, initiator);
2516 	}
2517 
2518 	reg_check_channels();
2519 }
2520 
2521 static void handle_channel_custom(struct wiphy *wiphy,
2522 				  struct ieee80211_channel *chan,
2523 				  const struct ieee80211_regdomain *regd,
2524 				  u32 min_bw)
2525 {
2526 	u32 bw_flags = 0;
2527 	const struct ieee80211_reg_rule *reg_rule = NULL;
2528 	const struct ieee80211_power_rule *power_rule = NULL;
2529 	u32 bw, center_freq_khz;
2530 
2531 	center_freq_khz = ieee80211_channel_to_khz(chan);
2532 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2533 		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2534 		if (!IS_ERR(reg_rule))
2535 			break;
2536 	}
2537 
2538 	if (IS_ERR_OR_NULL(reg_rule)) {
2539 		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2540 			 chan->center_freq, chan->freq_offset);
2541 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2542 			chan->flags |= IEEE80211_CHAN_DISABLED;
2543 		} else {
2544 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2545 			chan->flags = chan->orig_flags;
2546 		}
2547 		return;
2548 	}
2549 
2550 	power_rule = &reg_rule->power_rule;
2551 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2552 
2553 	chan->dfs_state_entered = jiffies;
2554 	chan->dfs_state = NL80211_DFS_USABLE;
2555 
2556 	chan->beacon_found = false;
2557 
2558 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2559 		chan->flags = chan->orig_flags | bw_flags |
2560 			      map_regdom_flags(reg_rule->flags);
2561 	else
2562 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2563 
2564 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2565 	chan->max_reg_power = chan->max_power =
2566 		(int) MBM_TO_DBM(power_rule->max_eirp);
2567 
2568 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2569 		if (reg_rule->dfs_cac_ms)
2570 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2571 		else
2572 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2573 	}
2574 
2575 	chan->max_power = chan->max_reg_power;
2576 }
2577 
2578 static void handle_band_custom(struct wiphy *wiphy,
2579 			       struct ieee80211_supported_band *sband,
2580 			       const struct ieee80211_regdomain *regd)
2581 {
2582 	unsigned int i;
2583 
2584 	if (!sband)
2585 		return;
2586 
2587 	/*
2588 	 * We currently assume that you always want at least 20 MHz,
2589 	 * otherwise channel 12 might get enabled if this rule is
2590 	 * compatible to US, which permits 2402 - 2472 MHz.
2591 	 */
2592 	for (i = 0; i < sband->n_channels; i++)
2593 		handle_channel_custom(wiphy, &sband->channels[i], regd,
2594 				      MHZ_TO_KHZ(20));
2595 }
2596 
2597 /* Used by drivers prior to wiphy registration */
2598 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2599 				   const struct ieee80211_regdomain *regd)
2600 {
2601 	const struct ieee80211_regdomain *new_regd, *tmp;
2602 	enum nl80211_band band;
2603 	unsigned int bands_set = 0;
2604 
2605 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2606 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2607 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2608 
2609 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2610 		if (!wiphy->bands[band])
2611 			continue;
2612 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2613 		bands_set++;
2614 	}
2615 
2616 	/*
2617 	 * no point in calling this if it won't have any effect
2618 	 * on your device's supported bands.
2619 	 */
2620 	WARN_ON(!bands_set);
2621 	new_regd = reg_copy_regd(regd);
2622 	if (IS_ERR(new_regd))
2623 		return;
2624 
2625 	rtnl_lock();
2626 	wiphy_lock(wiphy);
2627 
2628 	tmp = get_wiphy_regdom(wiphy);
2629 	rcu_assign_pointer(wiphy->regd, new_regd);
2630 	rcu_free_regdom(tmp);
2631 
2632 	wiphy_unlock(wiphy);
2633 	rtnl_unlock();
2634 }
2635 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2636 
2637 static void reg_set_request_processed(void)
2638 {
2639 	bool need_more_processing = false;
2640 	struct regulatory_request *lr = get_last_request();
2641 
2642 	lr->processed = true;
2643 
2644 	spin_lock(&reg_requests_lock);
2645 	if (!list_empty(&reg_requests_list))
2646 		need_more_processing = true;
2647 	spin_unlock(&reg_requests_lock);
2648 
2649 	cancel_crda_timeout();
2650 
2651 	if (need_more_processing)
2652 		schedule_work(&reg_work);
2653 }
2654 
2655 /**
2656  * reg_process_hint_core - process core regulatory requests
2657  * @core_request: a pending core regulatory request
2658  *
2659  * The wireless subsystem can use this function to process
2660  * a regulatory request issued by the regulatory core.
2661  */
2662 static enum reg_request_treatment
2663 reg_process_hint_core(struct regulatory_request *core_request)
2664 {
2665 	if (reg_query_database(core_request)) {
2666 		core_request->intersect = false;
2667 		core_request->processed = false;
2668 		reg_update_last_request(core_request);
2669 		return REG_REQ_OK;
2670 	}
2671 
2672 	return REG_REQ_IGNORE;
2673 }
2674 
2675 static enum reg_request_treatment
2676 __reg_process_hint_user(struct regulatory_request *user_request)
2677 {
2678 	struct regulatory_request *lr = get_last_request();
2679 
2680 	if (reg_request_cell_base(user_request))
2681 		return reg_ignore_cell_hint(user_request);
2682 
2683 	if (reg_request_cell_base(lr))
2684 		return REG_REQ_IGNORE;
2685 
2686 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2687 		return REG_REQ_INTERSECT;
2688 	/*
2689 	 * If the user knows better the user should set the regdom
2690 	 * to their country before the IE is picked up
2691 	 */
2692 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2693 	    lr->intersect)
2694 		return REG_REQ_IGNORE;
2695 	/*
2696 	 * Process user requests only after previous user/driver/core
2697 	 * requests have been processed
2698 	 */
2699 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2700 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2701 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2702 	    regdom_changes(lr->alpha2))
2703 		return REG_REQ_IGNORE;
2704 
2705 	if (!regdom_changes(user_request->alpha2))
2706 		return REG_REQ_ALREADY_SET;
2707 
2708 	return REG_REQ_OK;
2709 }
2710 
2711 /**
2712  * reg_process_hint_user - process user regulatory requests
2713  * @user_request: a pending user regulatory request
2714  *
2715  * The wireless subsystem can use this function to process
2716  * a regulatory request initiated by userspace.
2717  */
2718 static enum reg_request_treatment
2719 reg_process_hint_user(struct regulatory_request *user_request)
2720 {
2721 	enum reg_request_treatment treatment;
2722 
2723 	treatment = __reg_process_hint_user(user_request);
2724 	if (treatment == REG_REQ_IGNORE ||
2725 	    treatment == REG_REQ_ALREADY_SET)
2726 		return REG_REQ_IGNORE;
2727 
2728 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2729 	user_request->processed = false;
2730 
2731 	if (reg_query_database(user_request)) {
2732 		reg_update_last_request(user_request);
2733 		user_alpha2[0] = user_request->alpha2[0];
2734 		user_alpha2[1] = user_request->alpha2[1];
2735 		return REG_REQ_OK;
2736 	}
2737 
2738 	return REG_REQ_IGNORE;
2739 }
2740 
2741 static enum reg_request_treatment
2742 __reg_process_hint_driver(struct regulatory_request *driver_request)
2743 {
2744 	struct regulatory_request *lr = get_last_request();
2745 
2746 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2747 		if (regdom_changes(driver_request->alpha2))
2748 			return REG_REQ_OK;
2749 		return REG_REQ_ALREADY_SET;
2750 	}
2751 
2752 	/*
2753 	 * This would happen if you unplug and plug your card
2754 	 * back in or if you add a new device for which the previously
2755 	 * loaded card also agrees on the regulatory domain.
2756 	 */
2757 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2758 	    !regdom_changes(driver_request->alpha2))
2759 		return REG_REQ_ALREADY_SET;
2760 
2761 	return REG_REQ_INTERSECT;
2762 }
2763 
2764 /**
2765  * reg_process_hint_driver - process driver regulatory requests
2766  * @wiphy: the wireless device for the regulatory request
2767  * @driver_request: a pending driver regulatory request
2768  *
2769  * The wireless subsystem can use this function to process
2770  * a regulatory request issued by an 802.11 driver.
2771  *
2772  * Returns one of the different reg request treatment values.
2773  */
2774 static enum reg_request_treatment
2775 reg_process_hint_driver(struct wiphy *wiphy,
2776 			struct regulatory_request *driver_request)
2777 {
2778 	const struct ieee80211_regdomain *regd, *tmp;
2779 	enum reg_request_treatment treatment;
2780 
2781 	treatment = __reg_process_hint_driver(driver_request);
2782 
2783 	switch (treatment) {
2784 	case REG_REQ_OK:
2785 		break;
2786 	case REG_REQ_IGNORE:
2787 		return REG_REQ_IGNORE;
2788 	case REG_REQ_INTERSECT:
2789 	case REG_REQ_ALREADY_SET:
2790 		regd = reg_copy_regd(get_cfg80211_regdom());
2791 		if (IS_ERR(regd))
2792 			return REG_REQ_IGNORE;
2793 
2794 		tmp = get_wiphy_regdom(wiphy);
2795 		ASSERT_RTNL();
2796 		wiphy_lock(wiphy);
2797 		rcu_assign_pointer(wiphy->regd, regd);
2798 		wiphy_unlock(wiphy);
2799 		rcu_free_regdom(tmp);
2800 	}
2801 
2802 
2803 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2804 	driver_request->processed = false;
2805 
2806 	/*
2807 	 * Since CRDA will not be called in this case as we already
2808 	 * have applied the requested regulatory domain before we just
2809 	 * inform userspace we have processed the request
2810 	 */
2811 	if (treatment == REG_REQ_ALREADY_SET) {
2812 		nl80211_send_reg_change_event(driver_request);
2813 		reg_update_last_request(driver_request);
2814 		reg_set_request_processed();
2815 		return REG_REQ_ALREADY_SET;
2816 	}
2817 
2818 	if (reg_query_database(driver_request)) {
2819 		reg_update_last_request(driver_request);
2820 		return REG_REQ_OK;
2821 	}
2822 
2823 	return REG_REQ_IGNORE;
2824 }
2825 
2826 static enum reg_request_treatment
2827 __reg_process_hint_country_ie(struct wiphy *wiphy,
2828 			      struct regulatory_request *country_ie_request)
2829 {
2830 	struct wiphy *last_wiphy = NULL;
2831 	struct regulatory_request *lr = get_last_request();
2832 
2833 	if (reg_request_cell_base(lr)) {
2834 		/* Trust a Cell base station over the AP's country IE */
2835 		if (regdom_changes(country_ie_request->alpha2))
2836 			return REG_REQ_IGNORE;
2837 		return REG_REQ_ALREADY_SET;
2838 	} else {
2839 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2840 			return REG_REQ_IGNORE;
2841 	}
2842 
2843 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2844 		return -EINVAL;
2845 
2846 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2847 		return REG_REQ_OK;
2848 
2849 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2850 
2851 	if (last_wiphy != wiphy) {
2852 		/*
2853 		 * Two cards with two APs claiming different
2854 		 * Country IE alpha2s. We could
2855 		 * intersect them, but that seems unlikely
2856 		 * to be correct. Reject second one for now.
2857 		 */
2858 		if (regdom_changes(country_ie_request->alpha2))
2859 			return REG_REQ_IGNORE;
2860 		return REG_REQ_ALREADY_SET;
2861 	}
2862 
2863 	if (regdom_changes(country_ie_request->alpha2))
2864 		return REG_REQ_OK;
2865 	return REG_REQ_ALREADY_SET;
2866 }
2867 
2868 /**
2869  * reg_process_hint_country_ie - process regulatory requests from country IEs
2870  * @wiphy: the wireless device for the regulatory request
2871  * @country_ie_request: a regulatory request from a country IE
2872  *
2873  * The wireless subsystem can use this function to process
2874  * a regulatory request issued by a country Information Element.
2875  *
2876  * Returns one of the different reg request treatment values.
2877  */
2878 static enum reg_request_treatment
2879 reg_process_hint_country_ie(struct wiphy *wiphy,
2880 			    struct regulatory_request *country_ie_request)
2881 {
2882 	enum reg_request_treatment treatment;
2883 
2884 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2885 
2886 	switch (treatment) {
2887 	case REG_REQ_OK:
2888 		break;
2889 	case REG_REQ_IGNORE:
2890 		return REG_REQ_IGNORE;
2891 	case REG_REQ_ALREADY_SET:
2892 		reg_free_request(country_ie_request);
2893 		return REG_REQ_ALREADY_SET;
2894 	case REG_REQ_INTERSECT:
2895 		/*
2896 		 * This doesn't happen yet, not sure we
2897 		 * ever want to support it for this case.
2898 		 */
2899 		WARN_ONCE(1, "Unexpected intersection for country elements");
2900 		return REG_REQ_IGNORE;
2901 	}
2902 
2903 	country_ie_request->intersect = false;
2904 	country_ie_request->processed = false;
2905 
2906 	if (reg_query_database(country_ie_request)) {
2907 		reg_update_last_request(country_ie_request);
2908 		return REG_REQ_OK;
2909 	}
2910 
2911 	return REG_REQ_IGNORE;
2912 }
2913 
2914 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2915 {
2916 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2917 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2918 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2919 	bool dfs_domain_same;
2920 
2921 	rcu_read_lock();
2922 
2923 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2924 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2925 	if (!wiphy1_regd)
2926 		wiphy1_regd = cfg80211_regd;
2927 
2928 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2929 	if (!wiphy2_regd)
2930 		wiphy2_regd = cfg80211_regd;
2931 
2932 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2933 
2934 	rcu_read_unlock();
2935 
2936 	return dfs_domain_same;
2937 }
2938 
2939 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2940 				    struct ieee80211_channel *src_chan)
2941 {
2942 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2943 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2944 		return;
2945 
2946 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2947 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2948 		return;
2949 
2950 	if (src_chan->center_freq == dst_chan->center_freq &&
2951 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2952 		dst_chan->dfs_state = src_chan->dfs_state;
2953 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2954 	}
2955 }
2956 
2957 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2958 				       struct wiphy *src_wiphy)
2959 {
2960 	struct ieee80211_supported_band *src_sband, *dst_sband;
2961 	struct ieee80211_channel *src_chan, *dst_chan;
2962 	int i, j, band;
2963 
2964 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2965 		return;
2966 
2967 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2968 		dst_sband = dst_wiphy->bands[band];
2969 		src_sband = src_wiphy->bands[band];
2970 		if (!dst_sband || !src_sband)
2971 			continue;
2972 
2973 		for (i = 0; i < dst_sband->n_channels; i++) {
2974 			dst_chan = &dst_sband->channels[i];
2975 			for (j = 0; j < src_sband->n_channels; j++) {
2976 				src_chan = &src_sband->channels[j];
2977 				reg_copy_dfs_chan_state(dst_chan, src_chan);
2978 			}
2979 		}
2980 	}
2981 }
2982 
2983 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2984 {
2985 	struct cfg80211_registered_device *rdev;
2986 
2987 	ASSERT_RTNL();
2988 
2989 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2990 		if (wiphy == &rdev->wiphy)
2991 			continue;
2992 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2993 	}
2994 }
2995 
2996 /* This processes *all* regulatory hints */
2997 static void reg_process_hint(struct regulatory_request *reg_request)
2998 {
2999 	struct wiphy *wiphy = NULL;
3000 	enum reg_request_treatment treatment;
3001 	enum nl80211_reg_initiator initiator = reg_request->initiator;
3002 
3003 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3004 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3005 
3006 	switch (initiator) {
3007 	case NL80211_REGDOM_SET_BY_CORE:
3008 		treatment = reg_process_hint_core(reg_request);
3009 		break;
3010 	case NL80211_REGDOM_SET_BY_USER:
3011 		treatment = reg_process_hint_user(reg_request);
3012 		break;
3013 	case NL80211_REGDOM_SET_BY_DRIVER:
3014 		if (!wiphy)
3015 			goto out_free;
3016 		treatment = reg_process_hint_driver(wiphy, reg_request);
3017 		break;
3018 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3019 		if (!wiphy)
3020 			goto out_free;
3021 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
3022 		break;
3023 	default:
3024 		WARN(1, "invalid initiator %d\n", initiator);
3025 		goto out_free;
3026 	}
3027 
3028 	if (treatment == REG_REQ_IGNORE)
3029 		goto out_free;
3030 
3031 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3032 	     "unexpected treatment value %d\n", treatment);
3033 
3034 	/* This is required so that the orig_* parameters are saved.
3035 	 * NOTE: treatment must be set for any case that reaches here!
3036 	 */
3037 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3038 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3039 		wiphy_update_regulatory(wiphy, initiator);
3040 		wiphy_all_share_dfs_chan_state(wiphy);
3041 		reg_check_channels();
3042 	}
3043 
3044 	return;
3045 
3046 out_free:
3047 	reg_free_request(reg_request);
3048 }
3049 
3050 static void notify_self_managed_wiphys(struct regulatory_request *request)
3051 {
3052 	struct cfg80211_registered_device *rdev;
3053 	struct wiphy *wiphy;
3054 
3055 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3056 		wiphy = &rdev->wiphy;
3057 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3058 		    request->initiator == NL80211_REGDOM_SET_BY_USER)
3059 			reg_call_notifier(wiphy, request);
3060 	}
3061 }
3062 
3063 /*
3064  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3065  * Regulatory hints come on a first come first serve basis and we
3066  * must process each one atomically.
3067  */
3068 static void reg_process_pending_hints(void)
3069 {
3070 	struct regulatory_request *reg_request, *lr;
3071 
3072 	lr = get_last_request();
3073 
3074 	/* When last_request->processed becomes true this will be rescheduled */
3075 	if (lr && !lr->processed) {
3076 		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3077 		return;
3078 	}
3079 
3080 	spin_lock(&reg_requests_lock);
3081 
3082 	if (list_empty(&reg_requests_list)) {
3083 		spin_unlock(&reg_requests_lock);
3084 		return;
3085 	}
3086 
3087 	reg_request = list_first_entry(&reg_requests_list,
3088 				       struct regulatory_request,
3089 				       list);
3090 	list_del_init(&reg_request->list);
3091 
3092 	spin_unlock(&reg_requests_lock);
3093 
3094 	notify_self_managed_wiphys(reg_request);
3095 
3096 	reg_process_hint(reg_request);
3097 
3098 	lr = get_last_request();
3099 
3100 	spin_lock(&reg_requests_lock);
3101 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
3102 		schedule_work(&reg_work);
3103 	spin_unlock(&reg_requests_lock);
3104 }
3105 
3106 /* Processes beacon hints -- this has nothing to do with country IEs */
3107 static void reg_process_pending_beacon_hints(void)
3108 {
3109 	struct cfg80211_registered_device *rdev;
3110 	struct reg_beacon *pending_beacon, *tmp;
3111 
3112 	/* This goes through the _pending_ beacon list */
3113 	spin_lock_bh(&reg_pending_beacons_lock);
3114 
3115 	list_for_each_entry_safe(pending_beacon, tmp,
3116 				 &reg_pending_beacons, list) {
3117 		list_del_init(&pending_beacon->list);
3118 
3119 		/* Applies the beacon hint to current wiphys */
3120 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3121 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3122 
3123 		/* Remembers the beacon hint for new wiphys or reg changes */
3124 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
3125 	}
3126 
3127 	spin_unlock_bh(&reg_pending_beacons_lock);
3128 }
3129 
3130 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3131 {
3132 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3133 	const struct ieee80211_regdomain *tmp;
3134 	const struct ieee80211_regdomain *regd;
3135 	enum nl80211_band band;
3136 	struct regulatory_request request = {};
3137 
3138 	ASSERT_RTNL();
3139 	lockdep_assert_wiphy(wiphy);
3140 
3141 	spin_lock(&reg_requests_lock);
3142 	regd = rdev->requested_regd;
3143 	rdev->requested_regd = NULL;
3144 	spin_unlock(&reg_requests_lock);
3145 
3146 	if (!regd)
3147 		return;
3148 
3149 	tmp = get_wiphy_regdom(wiphy);
3150 	rcu_assign_pointer(wiphy->regd, regd);
3151 	rcu_free_regdom(tmp);
3152 
3153 	for (band = 0; band < NUM_NL80211_BANDS; band++)
3154 		handle_band_custom(wiphy, wiphy->bands[band], regd);
3155 
3156 	reg_process_ht_flags(wiphy);
3157 
3158 	request.wiphy_idx = get_wiphy_idx(wiphy);
3159 	request.alpha2[0] = regd->alpha2[0];
3160 	request.alpha2[1] = regd->alpha2[1];
3161 	request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3162 
3163 	if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3164 		reg_call_notifier(wiphy, &request);
3165 
3166 	nl80211_send_wiphy_reg_change_event(&request);
3167 }
3168 
3169 static void reg_process_self_managed_hints(void)
3170 {
3171 	struct cfg80211_registered_device *rdev;
3172 
3173 	ASSERT_RTNL();
3174 
3175 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3176 		wiphy_lock(&rdev->wiphy);
3177 		reg_process_self_managed_hint(&rdev->wiphy);
3178 		wiphy_unlock(&rdev->wiphy);
3179 	}
3180 
3181 	reg_check_channels();
3182 }
3183 
3184 static void reg_todo(struct work_struct *work)
3185 {
3186 	rtnl_lock();
3187 	reg_process_pending_hints();
3188 	reg_process_pending_beacon_hints();
3189 	reg_process_self_managed_hints();
3190 	rtnl_unlock();
3191 }
3192 
3193 static void queue_regulatory_request(struct regulatory_request *request)
3194 {
3195 	request->alpha2[0] = toupper(request->alpha2[0]);
3196 	request->alpha2[1] = toupper(request->alpha2[1]);
3197 
3198 	spin_lock(&reg_requests_lock);
3199 	list_add_tail(&request->list, &reg_requests_list);
3200 	spin_unlock(&reg_requests_lock);
3201 
3202 	schedule_work(&reg_work);
3203 }
3204 
3205 /*
3206  * Core regulatory hint -- happens during cfg80211_init()
3207  * and when we restore regulatory settings.
3208  */
3209 static int regulatory_hint_core(const char *alpha2)
3210 {
3211 	struct regulatory_request *request;
3212 
3213 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3214 	if (!request)
3215 		return -ENOMEM;
3216 
3217 	request->alpha2[0] = alpha2[0];
3218 	request->alpha2[1] = alpha2[1];
3219 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
3220 	request->wiphy_idx = WIPHY_IDX_INVALID;
3221 
3222 	queue_regulatory_request(request);
3223 
3224 	return 0;
3225 }
3226 
3227 /* User hints */
3228 int regulatory_hint_user(const char *alpha2,
3229 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
3230 {
3231 	struct regulatory_request *request;
3232 
3233 	if (WARN_ON(!alpha2))
3234 		return -EINVAL;
3235 
3236 	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3237 		return -EINVAL;
3238 
3239 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3240 	if (!request)
3241 		return -ENOMEM;
3242 
3243 	request->wiphy_idx = WIPHY_IDX_INVALID;
3244 	request->alpha2[0] = alpha2[0];
3245 	request->alpha2[1] = alpha2[1];
3246 	request->initiator = NL80211_REGDOM_SET_BY_USER;
3247 	request->user_reg_hint_type = user_reg_hint_type;
3248 
3249 	/* Allow calling CRDA again */
3250 	reset_crda_timeouts();
3251 
3252 	queue_regulatory_request(request);
3253 
3254 	return 0;
3255 }
3256 
3257 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3258 {
3259 	spin_lock(&reg_indoor_lock);
3260 
3261 	/* It is possible that more than one user space process is trying to
3262 	 * configure the indoor setting. To handle such cases, clear the indoor
3263 	 * setting in case that some process does not think that the device
3264 	 * is operating in an indoor environment. In addition, if a user space
3265 	 * process indicates that it is controlling the indoor setting, save its
3266 	 * portid, i.e., make it the owner.
3267 	 */
3268 	reg_is_indoor = is_indoor;
3269 	if (reg_is_indoor) {
3270 		if (!reg_is_indoor_portid)
3271 			reg_is_indoor_portid = portid;
3272 	} else {
3273 		reg_is_indoor_portid = 0;
3274 	}
3275 
3276 	spin_unlock(&reg_indoor_lock);
3277 
3278 	if (!is_indoor)
3279 		reg_check_channels();
3280 
3281 	return 0;
3282 }
3283 
3284 void regulatory_netlink_notify(u32 portid)
3285 {
3286 	spin_lock(&reg_indoor_lock);
3287 
3288 	if (reg_is_indoor_portid != portid) {
3289 		spin_unlock(&reg_indoor_lock);
3290 		return;
3291 	}
3292 
3293 	reg_is_indoor = false;
3294 	reg_is_indoor_portid = 0;
3295 
3296 	spin_unlock(&reg_indoor_lock);
3297 
3298 	reg_check_channels();
3299 }
3300 
3301 /* Driver hints */
3302 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3303 {
3304 	struct regulatory_request *request;
3305 
3306 	if (WARN_ON(!alpha2 || !wiphy))
3307 		return -EINVAL;
3308 
3309 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3310 
3311 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3312 	if (!request)
3313 		return -ENOMEM;
3314 
3315 	request->wiphy_idx = get_wiphy_idx(wiphy);
3316 
3317 	request->alpha2[0] = alpha2[0];
3318 	request->alpha2[1] = alpha2[1];
3319 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3320 
3321 	/* Allow calling CRDA again */
3322 	reset_crda_timeouts();
3323 
3324 	queue_regulatory_request(request);
3325 
3326 	return 0;
3327 }
3328 EXPORT_SYMBOL(regulatory_hint);
3329 
3330 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3331 				const u8 *country_ie, u8 country_ie_len)
3332 {
3333 	char alpha2[2];
3334 	enum environment_cap env = ENVIRON_ANY;
3335 	struct regulatory_request *request = NULL, *lr;
3336 
3337 	/* IE len must be evenly divisible by 2 */
3338 	if (country_ie_len & 0x01)
3339 		return;
3340 
3341 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3342 		return;
3343 
3344 	request = kzalloc(sizeof(*request), GFP_KERNEL);
3345 	if (!request)
3346 		return;
3347 
3348 	alpha2[0] = country_ie[0];
3349 	alpha2[1] = country_ie[1];
3350 
3351 	if (country_ie[2] == 'I')
3352 		env = ENVIRON_INDOOR;
3353 	else if (country_ie[2] == 'O')
3354 		env = ENVIRON_OUTDOOR;
3355 
3356 	rcu_read_lock();
3357 	lr = get_last_request();
3358 
3359 	if (unlikely(!lr))
3360 		goto out;
3361 
3362 	/*
3363 	 * We will run this only upon a successful connection on cfg80211.
3364 	 * We leave conflict resolution to the workqueue, where can hold
3365 	 * the RTNL.
3366 	 */
3367 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3368 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3369 		goto out;
3370 
3371 	request->wiphy_idx = get_wiphy_idx(wiphy);
3372 	request->alpha2[0] = alpha2[0];
3373 	request->alpha2[1] = alpha2[1];
3374 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3375 	request->country_ie_env = env;
3376 
3377 	/* Allow calling CRDA again */
3378 	reset_crda_timeouts();
3379 
3380 	queue_regulatory_request(request);
3381 	request = NULL;
3382 out:
3383 	kfree(request);
3384 	rcu_read_unlock();
3385 }
3386 
3387 static void restore_alpha2(char *alpha2, bool reset_user)
3388 {
3389 	/* indicates there is no alpha2 to consider for restoration */
3390 	alpha2[0] = '9';
3391 	alpha2[1] = '7';
3392 
3393 	/* The user setting has precedence over the module parameter */
3394 	if (is_user_regdom_saved()) {
3395 		/* Unless we're asked to ignore it and reset it */
3396 		if (reset_user) {
3397 			pr_debug("Restoring regulatory settings including user preference\n");
3398 			user_alpha2[0] = '9';
3399 			user_alpha2[1] = '7';
3400 
3401 			/*
3402 			 * If we're ignoring user settings, we still need to
3403 			 * check the module parameter to ensure we put things
3404 			 * back as they were for a full restore.
3405 			 */
3406 			if (!is_world_regdom(ieee80211_regdom)) {
3407 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3408 					 ieee80211_regdom[0], ieee80211_regdom[1]);
3409 				alpha2[0] = ieee80211_regdom[0];
3410 				alpha2[1] = ieee80211_regdom[1];
3411 			}
3412 		} else {
3413 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3414 				 user_alpha2[0], user_alpha2[1]);
3415 			alpha2[0] = user_alpha2[0];
3416 			alpha2[1] = user_alpha2[1];
3417 		}
3418 	} else if (!is_world_regdom(ieee80211_regdom)) {
3419 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3420 			 ieee80211_regdom[0], ieee80211_regdom[1]);
3421 		alpha2[0] = ieee80211_regdom[0];
3422 		alpha2[1] = ieee80211_regdom[1];
3423 	} else
3424 		pr_debug("Restoring regulatory settings\n");
3425 }
3426 
3427 static void restore_custom_reg_settings(struct wiphy *wiphy)
3428 {
3429 	struct ieee80211_supported_band *sband;
3430 	enum nl80211_band band;
3431 	struct ieee80211_channel *chan;
3432 	int i;
3433 
3434 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3435 		sband = wiphy->bands[band];
3436 		if (!sband)
3437 			continue;
3438 		for (i = 0; i < sband->n_channels; i++) {
3439 			chan = &sband->channels[i];
3440 			chan->flags = chan->orig_flags;
3441 			chan->max_antenna_gain = chan->orig_mag;
3442 			chan->max_power = chan->orig_mpwr;
3443 			chan->beacon_found = false;
3444 		}
3445 	}
3446 }
3447 
3448 /*
3449  * Restoring regulatory settings involves ignoring any
3450  * possibly stale country IE information and user regulatory
3451  * settings if so desired, this includes any beacon hints
3452  * learned as we could have traveled outside to another country
3453  * after disconnection. To restore regulatory settings we do
3454  * exactly what we did at bootup:
3455  *
3456  *   - send a core regulatory hint
3457  *   - send a user regulatory hint if applicable
3458  *
3459  * Device drivers that send a regulatory hint for a specific country
3460  * keep their own regulatory domain on wiphy->regd so that does
3461  * not need to be remembered.
3462  */
3463 static void restore_regulatory_settings(bool reset_user, bool cached)
3464 {
3465 	char alpha2[2];
3466 	char world_alpha2[2];
3467 	struct reg_beacon *reg_beacon, *btmp;
3468 	LIST_HEAD(tmp_reg_req_list);
3469 	struct cfg80211_registered_device *rdev;
3470 
3471 	ASSERT_RTNL();
3472 
3473 	/*
3474 	 * Clear the indoor setting in case that it is not controlled by user
3475 	 * space, as otherwise there is no guarantee that the device is still
3476 	 * operating in an indoor environment.
3477 	 */
3478 	spin_lock(&reg_indoor_lock);
3479 	if (reg_is_indoor && !reg_is_indoor_portid) {
3480 		reg_is_indoor = false;
3481 		reg_check_channels();
3482 	}
3483 	spin_unlock(&reg_indoor_lock);
3484 
3485 	reset_regdomains(true, &world_regdom);
3486 	restore_alpha2(alpha2, reset_user);
3487 
3488 	/*
3489 	 * If there's any pending requests we simply
3490 	 * stash them to a temporary pending queue and
3491 	 * add then after we've restored regulatory
3492 	 * settings.
3493 	 */
3494 	spin_lock(&reg_requests_lock);
3495 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3496 	spin_unlock(&reg_requests_lock);
3497 
3498 	/* Clear beacon hints */
3499 	spin_lock_bh(&reg_pending_beacons_lock);
3500 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3501 		list_del(&reg_beacon->list);
3502 		kfree(reg_beacon);
3503 	}
3504 	spin_unlock_bh(&reg_pending_beacons_lock);
3505 
3506 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3507 		list_del(&reg_beacon->list);
3508 		kfree(reg_beacon);
3509 	}
3510 
3511 	/* First restore to the basic regulatory settings */
3512 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3513 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3514 
3515 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3516 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3517 			continue;
3518 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3519 			restore_custom_reg_settings(&rdev->wiphy);
3520 	}
3521 
3522 	if (cached && (!is_an_alpha2(alpha2) ||
3523 		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3524 		reset_regdomains(false, cfg80211_world_regdom);
3525 		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3526 		print_regdomain(get_cfg80211_regdom());
3527 		nl80211_send_reg_change_event(&core_request_world);
3528 		reg_set_request_processed();
3529 
3530 		if (is_an_alpha2(alpha2) &&
3531 		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3532 			struct regulatory_request *ureq;
3533 
3534 			spin_lock(&reg_requests_lock);
3535 			ureq = list_last_entry(&reg_requests_list,
3536 					       struct regulatory_request,
3537 					       list);
3538 			list_del(&ureq->list);
3539 			spin_unlock(&reg_requests_lock);
3540 
3541 			notify_self_managed_wiphys(ureq);
3542 			reg_update_last_request(ureq);
3543 			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3544 				   REGD_SOURCE_CACHED);
3545 		}
3546 	} else {
3547 		regulatory_hint_core(world_alpha2);
3548 
3549 		/*
3550 		 * This restores the ieee80211_regdom module parameter
3551 		 * preference or the last user requested regulatory
3552 		 * settings, user regulatory settings takes precedence.
3553 		 */
3554 		if (is_an_alpha2(alpha2))
3555 			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3556 	}
3557 
3558 	spin_lock(&reg_requests_lock);
3559 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3560 	spin_unlock(&reg_requests_lock);
3561 
3562 	pr_debug("Kicking the queue\n");
3563 
3564 	schedule_work(&reg_work);
3565 }
3566 
3567 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3568 {
3569 	struct cfg80211_registered_device *rdev;
3570 	struct wireless_dev *wdev;
3571 
3572 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3573 		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3574 			wdev_lock(wdev);
3575 			if (!(wdev->wiphy->regulatory_flags & flag)) {
3576 				wdev_unlock(wdev);
3577 				return false;
3578 			}
3579 			wdev_unlock(wdev);
3580 		}
3581 	}
3582 
3583 	return true;
3584 }
3585 
3586 void regulatory_hint_disconnect(void)
3587 {
3588 	/* Restore of regulatory settings is not required when wiphy(s)
3589 	 * ignore IE from connected access point but clearance of beacon hints
3590 	 * is required when wiphy(s) supports beacon hints.
3591 	 */
3592 	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3593 		struct reg_beacon *reg_beacon, *btmp;
3594 
3595 		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3596 			return;
3597 
3598 		spin_lock_bh(&reg_pending_beacons_lock);
3599 		list_for_each_entry_safe(reg_beacon, btmp,
3600 					 &reg_pending_beacons, list) {
3601 			list_del(&reg_beacon->list);
3602 			kfree(reg_beacon);
3603 		}
3604 		spin_unlock_bh(&reg_pending_beacons_lock);
3605 
3606 		list_for_each_entry_safe(reg_beacon, btmp,
3607 					 &reg_beacon_list, list) {
3608 			list_del(&reg_beacon->list);
3609 			kfree(reg_beacon);
3610 		}
3611 
3612 		return;
3613 	}
3614 
3615 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3616 	restore_regulatory_settings(false, true);
3617 }
3618 
3619 static bool freq_is_chan_12_13_14(u32 freq)
3620 {
3621 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3622 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3623 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3624 		return true;
3625 	return false;
3626 }
3627 
3628 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3629 {
3630 	struct reg_beacon *pending_beacon;
3631 
3632 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3633 		if (ieee80211_channel_equal(beacon_chan,
3634 					    &pending_beacon->chan))
3635 			return true;
3636 	return false;
3637 }
3638 
3639 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3640 				 struct ieee80211_channel *beacon_chan,
3641 				 gfp_t gfp)
3642 {
3643 	struct reg_beacon *reg_beacon;
3644 	bool processing;
3645 
3646 	if (beacon_chan->beacon_found ||
3647 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3648 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3649 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3650 		return 0;
3651 
3652 	spin_lock_bh(&reg_pending_beacons_lock);
3653 	processing = pending_reg_beacon(beacon_chan);
3654 	spin_unlock_bh(&reg_pending_beacons_lock);
3655 
3656 	if (processing)
3657 		return 0;
3658 
3659 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3660 	if (!reg_beacon)
3661 		return -ENOMEM;
3662 
3663 	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3664 		 beacon_chan->center_freq, beacon_chan->freq_offset,
3665 		 ieee80211_freq_khz_to_channel(
3666 			 ieee80211_channel_to_khz(beacon_chan)),
3667 		 wiphy_name(wiphy));
3668 
3669 	memcpy(&reg_beacon->chan, beacon_chan,
3670 	       sizeof(struct ieee80211_channel));
3671 
3672 	/*
3673 	 * Since we can be called from BH or and non-BH context
3674 	 * we must use spin_lock_bh()
3675 	 */
3676 	spin_lock_bh(&reg_pending_beacons_lock);
3677 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3678 	spin_unlock_bh(&reg_pending_beacons_lock);
3679 
3680 	schedule_work(&reg_work);
3681 
3682 	return 0;
3683 }
3684 
3685 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3686 {
3687 	unsigned int i;
3688 	const struct ieee80211_reg_rule *reg_rule = NULL;
3689 	const struct ieee80211_freq_range *freq_range = NULL;
3690 	const struct ieee80211_power_rule *power_rule = NULL;
3691 	char bw[32], cac_time[32];
3692 
3693 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3694 
3695 	for (i = 0; i < rd->n_reg_rules; i++) {
3696 		reg_rule = &rd->reg_rules[i];
3697 		freq_range = &reg_rule->freq_range;
3698 		power_rule = &reg_rule->power_rule;
3699 
3700 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3701 			snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3702 				 freq_range->max_bandwidth_khz,
3703 				 reg_get_max_bandwidth(rd, reg_rule));
3704 		else
3705 			snprintf(bw, sizeof(bw), "%d KHz",
3706 				 freq_range->max_bandwidth_khz);
3707 
3708 		if (reg_rule->flags & NL80211_RRF_DFS)
3709 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3710 				  reg_rule->dfs_cac_ms/1000);
3711 		else
3712 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3713 
3714 
3715 		/*
3716 		 * There may not be documentation for max antenna gain
3717 		 * in certain regions
3718 		 */
3719 		if (power_rule->max_antenna_gain)
3720 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3721 				freq_range->start_freq_khz,
3722 				freq_range->end_freq_khz,
3723 				bw,
3724 				power_rule->max_antenna_gain,
3725 				power_rule->max_eirp,
3726 				cac_time);
3727 		else
3728 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3729 				freq_range->start_freq_khz,
3730 				freq_range->end_freq_khz,
3731 				bw,
3732 				power_rule->max_eirp,
3733 				cac_time);
3734 	}
3735 }
3736 
3737 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3738 {
3739 	switch (dfs_region) {
3740 	case NL80211_DFS_UNSET:
3741 	case NL80211_DFS_FCC:
3742 	case NL80211_DFS_ETSI:
3743 	case NL80211_DFS_JP:
3744 		return true;
3745 	default:
3746 		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3747 		return false;
3748 	}
3749 }
3750 
3751 static void print_regdomain(const struct ieee80211_regdomain *rd)
3752 {
3753 	struct regulatory_request *lr = get_last_request();
3754 
3755 	if (is_intersected_alpha2(rd->alpha2)) {
3756 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3757 			struct cfg80211_registered_device *rdev;
3758 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3759 			if (rdev) {
3760 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3761 					rdev->country_ie_alpha2[0],
3762 					rdev->country_ie_alpha2[1]);
3763 			} else
3764 				pr_debug("Current regulatory domain intersected:\n");
3765 		} else
3766 			pr_debug("Current regulatory domain intersected:\n");
3767 	} else if (is_world_regdom(rd->alpha2)) {
3768 		pr_debug("World regulatory domain updated:\n");
3769 	} else {
3770 		if (is_unknown_alpha2(rd->alpha2))
3771 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3772 		else {
3773 			if (reg_request_cell_base(lr))
3774 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3775 					rd->alpha2[0], rd->alpha2[1]);
3776 			else
3777 				pr_debug("Regulatory domain changed to country: %c%c\n",
3778 					rd->alpha2[0], rd->alpha2[1]);
3779 		}
3780 	}
3781 
3782 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3783 	print_rd_rules(rd);
3784 }
3785 
3786 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3787 {
3788 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3789 	print_rd_rules(rd);
3790 }
3791 
3792 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3793 {
3794 	if (!is_world_regdom(rd->alpha2))
3795 		return -EINVAL;
3796 	update_world_regdomain(rd);
3797 	return 0;
3798 }
3799 
3800 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3801 			   struct regulatory_request *user_request)
3802 {
3803 	const struct ieee80211_regdomain *intersected_rd = NULL;
3804 
3805 	if (!regdom_changes(rd->alpha2))
3806 		return -EALREADY;
3807 
3808 	if (!is_valid_rd(rd)) {
3809 		pr_err("Invalid regulatory domain detected: %c%c\n",
3810 		       rd->alpha2[0], rd->alpha2[1]);
3811 		print_regdomain_info(rd);
3812 		return -EINVAL;
3813 	}
3814 
3815 	if (!user_request->intersect) {
3816 		reset_regdomains(false, rd);
3817 		return 0;
3818 	}
3819 
3820 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3821 	if (!intersected_rd)
3822 		return -EINVAL;
3823 
3824 	kfree(rd);
3825 	rd = NULL;
3826 	reset_regdomains(false, intersected_rd);
3827 
3828 	return 0;
3829 }
3830 
3831 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3832 			     struct regulatory_request *driver_request)
3833 {
3834 	const struct ieee80211_regdomain *regd;
3835 	const struct ieee80211_regdomain *intersected_rd = NULL;
3836 	const struct ieee80211_regdomain *tmp;
3837 	struct wiphy *request_wiphy;
3838 
3839 	if (is_world_regdom(rd->alpha2))
3840 		return -EINVAL;
3841 
3842 	if (!regdom_changes(rd->alpha2))
3843 		return -EALREADY;
3844 
3845 	if (!is_valid_rd(rd)) {
3846 		pr_err("Invalid regulatory domain detected: %c%c\n",
3847 		       rd->alpha2[0], rd->alpha2[1]);
3848 		print_regdomain_info(rd);
3849 		return -EINVAL;
3850 	}
3851 
3852 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3853 	if (!request_wiphy)
3854 		return -ENODEV;
3855 
3856 	if (!driver_request->intersect) {
3857 		ASSERT_RTNL();
3858 		wiphy_lock(request_wiphy);
3859 		if (request_wiphy->regd) {
3860 			wiphy_unlock(request_wiphy);
3861 			return -EALREADY;
3862 		}
3863 
3864 		regd = reg_copy_regd(rd);
3865 		if (IS_ERR(regd)) {
3866 			wiphy_unlock(request_wiphy);
3867 			return PTR_ERR(regd);
3868 		}
3869 
3870 		rcu_assign_pointer(request_wiphy->regd, regd);
3871 		wiphy_unlock(request_wiphy);
3872 		reset_regdomains(false, rd);
3873 		return 0;
3874 	}
3875 
3876 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3877 	if (!intersected_rd)
3878 		return -EINVAL;
3879 
3880 	/*
3881 	 * We can trash what CRDA provided now.
3882 	 * However if a driver requested this specific regulatory
3883 	 * domain we keep it for its private use
3884 	 */
3885 	tmp = get_wiphy_regdom(request_wiphy);
3886 	rcu_assign_pointer(request_wiphy->regd, rd);
3887 	rcu_free_regdom(tmp);
3888 
3889 	rd = NULL;
3890 
3891 	reset_regdomains(false, intersected_rd);
3892 
3893 	return 0;
3894 }
3895 
3896 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3897 				 struct regulatory_request *country_ie_request)
3898 {
3899 	struct wiphy *request_wiphy;
3900 
3901 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3902 	    !is_unknown_alpha2(rd->alpha2))
3903 		return -EINVAL;
3904 
3905 	/*
3906 	 * Lets only bother proceeding on the same alpha2 if the current
3907 	 * rd is non static (it means CRDA was present and was used last)
3908 	 * and the pending request came in from a country IE
3909 	 */
3910 
3911 	if (!is_valid_rd(rd)) {
3912 		pr_err("Invalid regulatory domain detected: %c%c\n",
3913 		       rd->alpha2[0], rd->alpha2[1]);
3914 		print_regdomain_info(rd);
3915 		return -EINVAL;
3916 	}
3917 
3918 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3919 	if (!request_wiphy)
3920 		return -ENODEV;
3921 
3922 	if (country_ie_request->intersect)
3923 		return -EINVAL;
3924 
3925 	reset_regdomains(false, rd);
3926 	return 0;
3927 }
3928 
3929 /*
3930  * Use this call to set the current regulatory domain. Conflicts with
3931  * multiple drivers can be ironed out later. Caller must've already
3932  * kmalloc'd the rd structure.
3933  */
3934 int set_regdom(const struct ieee80211_regdomain *rd,
3935 	       enum ieee80211_regd_source regd_src)
3936 {
3937 	struct regulatory_request *lr;
3938 	bool user_reset = false;
3939 	int r;
3940 
3941 	if (IS_ERR_OR_NULL(rd))
3942 		return -ENODATA;
3943 
3944 	if (!reg_is_valid_request(rd->alpha2)) {
3945 		kfree(rd);
3946 		return -EINVAL;
3947 	}
3948 
3949 	if (regd_src == REGD_SOURCE_CRDA)
3950 		reset_crda_timeouts();
3951 
3952 	lr = get_last_request();
3953 
3954 	/* Note that this doesn't update the wiphys, this is done below */
3955 	switch (lr->initiator) {
3956 	case NL80211_REGDOM_SET_BY_CORE:
3957 		r = reg_set_rd_core(rd);
3958 		break;
3959 	case NL80211_REGDOM_SET_BY_USER:
3960 		cfg80211_save_user_regdom(rd);
3961 		r = reg_set_rd_user(rd, lr);
3962 		user_reset = true;
3963 		break;
3964 	case NL80211_REGDOM_SET_BY_DRIVER:
3965 		r = reg_set_rd_driver(rd, lr);
3966 		break;
3967 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3968 		r = reg_set_rd_country_ie(rd, lr);
3969 		break;
3970 	default:
3971 		WARN(1, "invalid initiator %d\n", lr->initiator);
3972 		kfree(rd);
3973 		return -EINVAL;
3974 	}
3975 
3976 	if (r) {
3977 		switch (r) {
3978 		case -EALREADY:
3979 			reg_set_request_processed();
3980 			break;
3981 		default:
3982 			/* Back to world regulatory in case of errors */
3983 			restore_regulatory_settings(user_reset, false);
3984 		}
3985 
3986 		kfree(rd);
3987 		return r;
3988 	}
3989 
3990 	/* This would make this whole thing pointless */
3991 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3992 		return -EINVAL;
3993 
3994 	/* update all wiphys now with the new established regulatory domain */
3995 	update_all_wiphy_regulatory(lr->initiator);
3996 
3997 	print_regdomain(get_cfg80211_regdom());
3998 
3999 	nl80211_send_reg_change_event(lr);
4000 
4001 	reg_set_request_processed();
4002 
4003 	return 0;
4004 }
4005 
4006 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4007 				       struct ieee80211_regdomain *rd)
4008 {
4009 	const struct ieee80211_regdomain *regd;
4010 	const struct ieee80211_regdomain *prev_regd;
4011 	struct cfg80211_registered_device *rdev;
4012 
4013 	if (WARN_ON(!wiphy || !rd))
4014 		return -EINVAL;
4015 
4016 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4017 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4018 		return -EPERM;
4019 
4020 	if (WARN(!is_valid_rd(rd),
4021 		 "Invalid regulatory domain detected: %c%c\n",
4022 		 rd->alpha2[0], rd->alpha2[1])) {
4023 		print_regdomain_info(rd);
4024 		return -EINVAL;
4025 	}
4026 
4027 	regd = reg_copy_regd(rd);
4028 	if (IS_ERR(regd))
4029 		return PTR_ERR(regd);
4030 
4031 	rdev = wiphy_to_rdev(wiphy);
4032 
4033 	spin_lock(&reg_requests_lock);
4034 	prev_regd = rdev->requested_regd;
4035 	rdev->requested_regd = regd;
4036 	spin_unlock(&reg_requests_lock);
4037 
4038 	kfree(prev_regd);
4039 	return 0;
4040 }
4041 
4042 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4043 			      struct ieee80211_regdomain *rd)
4044 {
4045 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4046 
4047 	if (ret)
4048 		return ret;
4049 
4050 	schedule_work(&reg_work);
4051 	return 0;
4052 }
4053 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4054 
4055 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4056 				   struct ieee80211_regdomain *rd)
4057 {
4058 	int ret;
4059 
4060 	ASSERT_RTNL();
4061 
4062 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
4063 	if (ret)
4064 		return ret;
4065 
4066 	/* process the request immediately */
4067 	reg_process_self_managed_hint(wiphy);
4068 	reg_check_channels();
4069 	return 0;
4070 }
4071 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4072 
4073 void wiphy_regulatory_register(struct wiphy *wiphy)
4074 {
4075 	struct regulatory_request *lr = get_last_request();
4076 
4077 	/* self-managed devices ignore beacon hints and country IE */
4078 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4079 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4080 					   REGULATORY_COUNTRY_IE_IGNORE;
4081 
4082 		/*
4083 		 * The last request may have been received before this
4084 		 * registration call. Call the driver notifier if
4085 		 * initiator is USER.
4086 		 */
4087 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4088 			reg_call_notifier(wiphy, lr);
4089 	}
4090 
4091 	if (!reg_dev_ignore_cell_hint(wiphy))
4092 		reg_num_devs_support_basehint++;
4093 
4094 	wiphy_update_regulatory(wiphy, lr->initiator);
4095 	wiphy_all_share_dfs_chan_state(wiphy);
4096 	reg_process_self_managed_hints();
4097 }
4098 
4099 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4100 {
4101 	struct wiphy *request_wiphy = NULL;
4102 	struct regulatory_request *lr;
4103 
4104 	lr = get_last_request();
4105 
4106 	if (!reg_dev_ignore_cell_hint(wiphy))
4107 		reg_num_devs_support_basehint--;
4108 
4109 	rcu_free_regdom(get_wiphy_regdom(wiphy));
4110 	RCU_INIT_POINTER(wiphy->regd, NULL);
4111 
4112 	if (lr)
4113 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4114 
4115 	if (!request_wiphy || request_wiphy != wiphy)
4116 		return;
4117 
4118 	lr->wiphy_idx = WIPHY_IDX_INVALID;
4119 	lr->country_ie_env = ENVIRON_ANY;
4120 }
4121 
4122 /*
4123  * See FCC notices for UNII band definitions
4124  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4125  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4126  */
4127 int cfg80211_get_unii(int freq)
4128 {
4129 	/* UNII-1 */
4130 	if (freq >= 5150 && freq <= 5250)
4131 		return 0;
4132 
4133 	/* UNII-2A */
4134 	if (freq > 5250 && freq <= 5350)
4135 		return 1;
4136 
4137 	/* UNII-2B */
4138 	if (freq > 5350 && freq <= 5470)
4139 		return 2;
4140 
4141 	/* UNII-2C */
4142 	if (freq > 5470 && freq <= 5725)
4143 		return 3;
4144 
4145 	/* UNII-3 */
4146 	if (freq > 5725 && freq <= 5825)
4147 		return 4;
4148 
4149 	/* UNII-5 */
4150 	if (freq > 5925 && freq <= 6425)
4151 		return 5;
4152 
4153 	/* UNII-6 */
4154 	if (freq > 6425 && freq <= 6525)
4155 		return 6;
4156 
4157 	/* UNII-7 */
4158 	if (freq > 6525 && freq <= 6875)
4159 		return 7;
4160 
4161 	/* UNII-8 */
4162 	if (freq > 6875 && freq <= 7125)
4163 		return 8;
4164 
4165 	return -EINVAL;
4166 }
4167 
4168 bool regulatory_indoor_allowed(void)
4169 {
4170 	return reg_is_indoor;
4171 }
4172 
4173 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4174 {
4175 	const struct ieee80211_regdomain *regd = NULL;
4176 	const struct ieee80211_regdomain *wiphy_regd = NULL;
4177 	bool pre_cac_allowed = false;
4178 
4179 	rcu_read_lock();
4180 
4181 	regd = rcu_dereference(cfg80211_regdomain);
4182 	wiphy_regd = rcu_dereference(wiphy->regd);
4183 	if (!wiphy_regd) {
4184 		if (regd->dfs_region == NL80211_DFS_ETSI)
4185 			pre_cac_allowed = true;
4186 
4187 		rcu_read_unlock();
4188 
4189 		return pre_cac_allowed;
4190 	}
4191 
4192 	if (regd->dfs_region == wiphy_regd->dfs_region &&
4193 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4194 		pre_cac_allowed = true;
4195 
4196 	rcu_read_unlock();
4197 
4198 	return pre_cac_allowed;
4199 }
4200 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4201 
4202 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4203 {
4204 	struct wireless_dev *wdev;
4205 	/* If we finished CAC or received radar, we should end any
4206 	 * CAC running on the same channels.
4207 	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4208 	 * either all channels are available - those the CAC_FINISHED
4209 	 * event has effected another wdev state, or there is a channel
4210 	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4211 	 * event has effected another wdev state.
4212 	 * In both cases we should end the CAC on the wdev.
4213 	 */
4214 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4215 		struct cfg80211_chan_def *chandef;
4216 
4217 		if (!wdev->cac_started)
4218 			continue;
4219 
4220 		/* FIXME: radar detection is tied to link 0 for now */
4221 		chandef = wdev_chandef(wdev, 0);
4222 		if (!chandef)
4223 			continue;
4224 
4225 		if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4226 			rdev_end_cac(rdev, wdev->netdev);
4227 	}
4228 }
4229 
4230 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4231 				    struct cfg80211_chan_def *chandef,
4232 				    enum nl80211_dfs_state dfs_state,
4233 				    enum nl80211_radar_event event)
4234 {
4235 	struct cfg80211_registered_device *rdev;
4236 
4237 	ASSERT_RTNL();
4238 
4239 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4240 		return;
4241 
4242 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4243 		if (wiphy == &rdev->wiphy)
4244 			continue;
4245 
4246 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4247 			continue;
4248 
4249 		if (!ieee80211_get_channel(&rdev->wiphy,
4250 					   chandef->chan->center_freq))
4251 			continue;
4252 
4253 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4254 
4255 		if (event == NL80211_RADAR_DETECTED ||
4256 		    event == NL80211_RADAR_CAC_FINISHED) {
4257 			cfg80211_sched_dfs_chan_update(rdev);
4258 			cfg80211_check_and_end_cac(rdev);
4259 		}
4260 
4261 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4262 	}
4263 }
4264 
4265 static int __init regulatory_init_db(void)
4266 {
4267 	int err;
4268 
4269 	/*
4270 	 * It's possible that - due to other bugs/issues - cfg80211
4271 	 * never called regulatory_init() below, or that it failed;
4272 	 * in that case, don't try to do any further work here as
4273 	 * it's doomed to lead to crashes.
4274 	 */
4275 	if (IS_ERR_OR_NULL(reg_pdev))
4276 		return -EINVAL;
4277 
4278 	err = load_builtin_regdb_keys();
4279 	if (err) {
4280 		platform_device_unregister(reg_pdev);
4281 		return err;
4282 	}
4283 
4284 	/* We always try to get an update for the static regdomain */
4285 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4286 	if (err) {
4287 		if (err == -ENOMEM) {
4288 			platform_device_unregister(reg_pdev);
4289 			return err;
4290 		}
4291 		/*
4292 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
4293 		 * memory which is handled and propagated appropriately above
4294 		 * but it can also fail during a netlink_broadcast() or during
4295 		 * early boot for call_usermodehelper(). For now treat these
4296 		 * errors as non-fatal.
4297 		 */
4298 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4299 	}
4300 
4301 	/*
4302 	 * Finally, if the user set the module parameter treat it
4303 	 * as a user hint.
4304 	 */
4305 	if (!is_world_regdom(ieee80211_regdom))
4306 		regulatory_hint_user(ieee80211_regdom,
4307 				     NL80211_USER_REG_HINT_USER);
4308 
4309 	return 0;
4310 }
4311 #ifndef MODULE
4312 late_initcall(regulatory_init_db);
4313 #endif
4314 
4315 int __init regulatory_init(void)
4316 {
4317 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4318 	if (IS_ERR(reg_pdev))
4319 		return PTR_ERR(reg_pdev);
4320 
4321 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4322 
4323 	user_alpha2[0] = '9';
4324 	user_alpha2[1] = '7';
4325 
4326 #ifdef MODULE
4327 	return regulatory_init_db();
4328 #else
4329 	return 0;
4330 #endif
4331 }
4332 
4333 void regulatory_exit(void)
4334 {
4335 	struct regulatory_request *reg_request, *tmp;
4336 	struct reg_beacon *reg_beacon, *btmp;
4337 
4338 	cancel_work_sync(&reg_work);
4339 	cancel_crda_timeout_sync();
4340 	cancel_delayed_work_sync(&reg_check_chans);
4341 
4342 	/* Lock to suppress warnings */
4343 	rtnl_lock();
4344 	reset_regdomains(true, NULL);
4345 	rtnl_unlock();
4346 
4347 	dev_set_uevent_suppress(&reg_pdev->dev, true);
4348 
4349 	platform_device_unregister(reg_pdev);
4350 
4351 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4352 		list_del(&reg_beacon->list);
4353 		kfree(reg_beacon);
4354 	}
4355 
4356 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4357 		list_del(&reg_beacon->list);
4358 		kfree(reg_beacon);
4359 	}
4360 
4361 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4362 		list_del(&reg_request->list);
4363 		kfree(reg_request);
4364 	}
4365 
4366 	if (!IS_ERR_OR_NULL(regdb))
4367 		kfree(regdb);
4368 	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4369 		kfree(cfg80211_user_regdom);
4370 
4371 	free_regdb_keyring();
4372 }
4373