xref: /openbmc/linux/net/wireless/reg.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2019 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65 
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71 
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *	be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *	regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83 	REG_REQ_OK,
84 	REG_REQ_IGNORE,
85 	REG_REQ_INTERSECT,
86 	REG_REQ_ALREADY_SET,
87 };
88 
89 static struct regulatory_request core_request_world = {
90 	.initiator = NL80211_REGDOM_SET_BY_CORE,
91 	.alpha2[0] = '0',
92 	.alpha2[1] = '0',
93 	.intersect = false,
94 	.processed = true,
95 	.country_ie_env = ENVIRON_ANY,
96 };
97 
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103 	(void __force __rcu *)&core_request_world;
104 
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107 
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115 
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122 
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130 
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133 
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 
137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
138 {
139 	return rcu_dereference_rtnl(cfg80211_regdomain);
140 }
141 
142 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
143 {
144 	return rcu_dereference_rtnl(wiphy->regd);
145 }
146 
147 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
148 {
149 	switch (dfs_region) {
150 	case NL80211_DFS_UNSET:
151 		return "unset";
152 	case NL80211_DFS_FCC:
153 		return "FCC";
154 	case NL80211_DFS_ETSI:
155 		return "ETSI";
156 	case NL80211_DFS_JP:
157 		return "JP";
158 	}
159 	return "Unknown";
160 }
161 
162 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
163 {
164 	const struct ieee80211_regdomain *regd = NULL;
165 	const struct ieee80211_regdomain *wiphy_regd = NULL;
166 
167 	regd = get_cfg80211_regdom();
168 	if (!wiphy)
169 		goto out;
170 
171 	wiphy_regd = get_wiphy_regdom(wiphy);
172 	if (!wiphy_regd)
173 		goto out;
174 
175 	if (wiphy_regd->dfs_region == regd->dfs_region)
176 		goto out;
177 
178 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
179 		 dev_name(&wiphy->dev),
180 		 reg_dfs_region_str(wiphy_regd->dfs_region),
181 		 reg_dfs_region_str(regd->dfs_region));
182 
183 out:
184 	return regd->dfs_region;
185 }
186 
187 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
188 {
189 	if (!r)
190 		return;
191 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
192 }
193 
194 static struct regulatory_request *get_last_request(void)
195 {
196 	return rcu_dereference_rtnl(last_request);
197 }
198 
199 /* Used to queue up regulatory hints */
200 static LIST_HEAD(reg_requests_list);
201 static spinlock_t reg_requests_lock;
202 
203 /* Used to queue up beacon hints for review */
204 static LIST_HEAD(reg_pending_beacons);
205 static spinlock_t reg_pending_beacons_lock;
206 
207 /* Used to keep track of processed beacon hints */
208 static LIST_HEAD(reg_beacon_list);
209 
210 struct reg_beacon {
211 	struct list_head list;
212 	struct ieee80211_channel chan;
213 };
214 
215 static void reg_check_chans_work(struct work_struct *work);
216 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
217 
218 static void reg_todo(struct work_struct *work);
219 static DECLARE_WORK(reg_work, reg_todo);
220 
221 /* We keep a static world regulatory domain in case of the absence of CRDA */
222 static const struct ieee80211_regdomain world_regdom = {
223 	.n_reg_rules = 8,
224 	.alpha2 =  "00",
225 	.reg_rules = {
226 		/* IEEE 802.11b/g, channels 1..11 */
227 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
228 		/* IEEE 802.11b/g, channels 12..13. */
229 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
230 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
231 		/* IEEE 802.11 channel 14 - Only JP enables
232 		 * this and for 802.11b only */
233 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
234 			NL80211_RRF_NO_IR |
235 			NL80211_RRF_NO_OFDM),
236 		/* IEEE 802.11a, channel 36..48 */
237 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
238                         NL80211_RRF_NO_IR |
239                         NL80211_RRF_AUTO_BW),
240 
241 		/* IEEE 802.11a, channel 52..64 - DFS required */
242 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
243 			NL80211_RRF_NO_IR |
244 			NL80211_RRF_AUTO_BW |
245 			NL80211_RRF_DFS),
246 
247 		/* IEEE 802.11a, channel 100..144 - DFS required */
248 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
249 			NL80211_RRF_NO_IR |
250 			NL80211_RRF_DFS),
251 
252 		/* IEEE 802.11a, channel 149..165 */
253 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
254 			NL80211_RRF_NO_IR),
255 
256 		/* IEEE 802.11ad (60GHz), channels 1..3 */
257 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
258 	}
259 };
260 
261 /* protected by RTNL */
262 static const struct ieee80211_regdomain *cfg80211_world_regdom =
263 	&world_regdom;
264 
265 static char *ieee80211_regdom = "00";
266 static char user_alpha2[2];
267 static const struct ieee80211_regdomain *cfg80211_user_regdom;
268 
269 module_param(ieee80211_regdom, charp, 0444);
270 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
271 
272 static void reg_free_request(struct regulatory_request *request)
273 {
274 	if (request == &core_request_world)
275 		return;
276 
277 	if (request != get_last_request())
278 		kfree(request);
279 }
280 
281 static void reg_free_last_request(void)
282 {
283 	struct regulatory_request *lr = get_last_request();
284 
285 	if (lr != &core_request_world && lr)
286 		kfree_rcu(lr, rcu_head);
287 }
288 
289 static void reg_update_last_request(struct regulatory_request *request)
290 {
291 	struct regulatory_request *lr;
292 
293 	lr = get_last_request();
294 	if (lr == request)
295 		return;
296 
297 	reg_free_last_request();
298 	rcu_assign_pointer(last_request, request);
299 }
300 
301 static void reset_regdomains(bool full_reset,
302 			     const struct ieee80211_regdomain *new_regdom)
303 {
304 	const struct ieee80211_regdomain *r;
305 
306 	ASSERT_RTNL();
307 
308 	r = get_cfg80211_regdom();
309 
310 	/* avoid freeing static information or freeing something twice */
311 	if (r == cfg80211_world_regdom)
312 		r = NULL;
313 	if (cfg80211_world_regdom == &world_regdom)
314 		cfg80211_world_regdom = NULL;
315 	if (r == &world_regdom)
316 		r = NULL;
317 
318 	rcu_free_regdom(r);
319 	rcu_free_regdom(cfg80211_world_regdom);
320 
321 	cfg80211_world_regdom = &world_regdom;
322 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
323 
324 	if (!full_reset)
325 		return;
326 
327 	reg_update_last_request(&core_request_world);
328 }
329 
330 /*
331  * Dynamic world regulatory domain requested by the wireless
332  * core upon initialization
333  */
334 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
335 {
336 	struct regulatory_request *lr;
337 
338 	lr = get_last_request();
339 
340 	WARN_ON(!lr);
341 
342 	reset_regdomains(false, rd);
343 
344 	cfg80211_world_regdom = rd;
345 }
346 
347 bool is_world_regdom(const char *alpha2)
348 {
349 	if (!alpha2)
350 		return false;
351 	return alpha2[0] == '0' && alpha2[1] == '0';
352 }
353 
354 static bool is_alpha2_set(const char *alpha2)
355 {
356 	if (!alpha2)
357 		return false;
358 	return alpha2[0] && alpha2[1];
359 }
360 
361 static bool is_unknown_alpha2(const char *alpha2)
362 {
363 	if (!alpha2)
364 		return false;
365 	/*
366 	 * Special case where regulatory domain was built by driver
367 	 * but a specific alpha2 cannot be determined
368 	 */
369 	return alpha2[0] == '9' && alpha2[1] == '9';
370 }
371 
372 static bool is_intersected_alpha2(const char *alpha2)
373 {
374 	if (!alpha2)
375 		return false;
376 	/*
377 	 * Special case where regulatory domain is the
378 	 * result of an intersection between two regulatory domain
379 	 * structures
380 	 */
381 	return alpha2[0] == '9' && alpha2[1] == '8';
382 }
383 
384 static bool is_an_alpha2(const char *alpha2)
385 {
386 	if (!alpha2)
387 		return false;
388 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
389 }
390 
391 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
392 {
393 	if (!alpha2_x || !alpha2_y)
394 		return false;
395 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
396 }
397 
398 static bool regdom_changes(const char *alpha2)
399 {
400 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
401 
402 	if (!r)
403 		return true;
404 	return !alpha2_equal(r->alpha2, alpha2);
405 }
406 
407 /*
408  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
409  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
410  * has ever been issued.
411  */
412 static bool is_user_regdom_saved(void)
413 {
414 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
415 		return false;
416 
417 	/* This would indicate a mistake on the design */
418 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
419 		 "Unexpected user alpha2: %c%c\n",
420 		 user_alpha2[0], user_alpha2[1]))
421 		return false;
422 
423 	return true;
424 }
425 
426 static const struct ieee80211_regdomain *
427 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
428 {
429 	struct ieee80211_regdomain *regd;
430 	unsigned int i;
431 
432 	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
433 		       GFP_KERNEL);
434 	if (!regd)
435 		return ERR_PTR(-ENOMEM);
436 
437 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
438 
439 	for (i = 0; i < src_regd->n_reg_rules; i++)
440 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
441 		       sizeof(struct ieee80211_reg_rule));
442 
443 	return regd;
444 }
445 
446 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
447 {
448 	ASSERT_RTNL();
449 
450 	if (!IS_ERR(cfg80211_user_regdom))
451 		kfree(cfg80211_user_regdom);
452 	cfg80211_user_regdom = reg_copy_regd(rd);
453 }
454 
455 struct reg_regdb_apply_request {
456 	struct list_head list;
457 	const struct ieee80211_regdomain *regdom;
458 };
459 
460 static LIST_HEAD(reg_regdb_apply_list);
461 static DEFINE_MUTEX(reg_regdb_apply_mutex);
462 
463 static void reg_regdb_apply(struct work_struct *work)
464 {
465 	struct reg_regdb_apply_request *request;
466 
467 	rtnl_lock();
468 
469 	mutex_lock(&reg_regdb_apply_mutex);
470 	while (!list_empty(&reg_regdb_apply_list)) {
471 		request = list_first_entry(&reg_regdb_apply_list,
472 					   struct reg_regdb_apply_request,
473 					   list);
474 		list_del(&request->list);
475 
476 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
477 		kfree(request);
478 	}
479 	mutex_unlock(&reg_regdb_apply_mutex);
480 
481 	rtnl_unlock();
482 }
483 
484 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
485 
486 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
487 {
488 	struct reg_regdb_apply_request *request;
489 
490 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
491 	if (!request) {
492 		kfree(regdom);
493 		return -ENOMEM;
494 	}
495 
496 	request->regdom = regdom;
497 
498 	mutex_lock(&reg_regdb_apply_mutex);
499 	list_add_tail(&request->list, &reg_regdb_apply_list);
500 	mutex_unlock(&reg_regdb_apply_mutex);
501 
502 	schedule_work(&reg_regdb_work);
503 	return 0;
504 }
505 
506 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
507 /* Max number of consecutive attempts to communicate with CRDA  */
508 #define REG_MAX_CRDA_TIMEOUTS 10
509 
510 static u32 reg_crda_timeouts;
511 
512 static void crda_timeout_work(struct work_struct *work);
513 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
514 
515 static void crda_timeout_work(struct work_struct *work)
516 {
517 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
518 	rtnl_lock();
519 	reg_crda_timeouts++;
520 	restore_regulatory_settings(true, false);
521 	rtnl_unlock();
522 }
523 
524 static void cancel_crda_timeout(void)
525 {
526 	cancel_delayed_work(&crda_timeout);
527 }
528 
529 static void cancel_crda_timeout_sync(void)
530 {
531 	cancel_delayed_work_sync(&crda_timeout);
532 }
533 
534 static void reset_crda_timeouts(void)
535 {
536 	reg_crda_timeouts = 0;
537 }
538 
539 /*
540  * This lets us keep regulatory code which is updated on a regulatory
541  * basis in userspace.
542  */
543 static int call_crda(const char *alpha2)
544 {
545 	char country[12];
546 	char *env[] = { country, NULL };
547 	int ret;
548 
549 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
550 		 alpha2[0], alpha2[1]);
551 
552 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
553 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
554 		return -EINVAL;
555 	}
556 
557 	if (!is_world_regdom((char *) alpha2))
558 		pr_debug("Calling CRDA for country: %c%c\n",
559 			 alpha2[0], alpha2[1]);
560 	else
561 		pr_debug("Calling CRDA to update world regulatory domain\n");
562 
563 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
564 	if (ret)
565 		return ret;
566 
567 	queue_delayed_work(system_power_efficient_wq,
568 			   &crda_timeout, msecs_to_jiffies(3142));
569 	return 0;
570 }
571 #else
572 static inline void cancel_crda_timeout(void) {}
573 static inline void cancel_crda_timeout_sync(void) {}
574 static inline void reset_crda_timeouts(void) {}
575 static inline int call_crda(const char *alpha2)
576 {
577 	return -ENODATA;
578 }
579 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
580 
581 /* code to directly load a firmware database through request_firmware */
582 static const struct fwdb_header *regdb;
583 
584 struct fwdb_country {
585 	u8 alpha2[2];
586 	__be16 coll_ptr;
587 	/* this struct cannot be extended */
588 } __packed __aligned(4);
589 
590 struct fwdb_collection {
591 	u8 len;
592 	u8 n_rules;
593 	u8 dfs_region;
594 	/* no optional data yet */
595 	/* aligned to 2, then followed by __be16 array of rule pointers */
596 } __packed __aligned(4);
597 
598 enum fwdb_flags {
599 	FWDB_FLAG_NO_OFDM	= BIT(0),
600 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
601 	FWDB_FLAG_DFS		= BIT(2),
602 	FWDB_FLAG_NO_IR		= BIT(3),
603 	FWDB_FLAG_AUTO_BW	= BIT(4),
604 };
605 
606 struct fwdb_wmm_ac {
607 	u8 ecw;
608 	u8 aifsn;
609 	__be16 cot;
610 } __packed;
611 
612 struct fwdb_wmm_rule {
613 	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
614 	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
615 } __packed;
616 
617 struct fwdb_rule {
618 	u8 len;
619 	u8 flags;
620 	__be16 max_eirp;
621 	__be32 start, end, max_bw;
622 	/* start of optional data */
623 	__be16 cac_timeout;
624 	__be16 wmm_ptr;
625 } __packed __aligned(4);
626 
627 #define FWDB_MAGIC 0x52474442
628 #define FWDB_VERSION 20
629 
630 struct fwdb_header {
631 	__be32 magic;
632 	__be32 version;
633 	struct fwdb_country country[];
634 } __packed __aligned(4);
635 
636 static int ecw2cw(int ecw)
637 {
638 	return (1 << ecw) - 1;
639 }
640 
641 static bool valid_wmm(struct fwdb_wmm_rule *rule)
642 {
643 	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
644 	int i;
645 
646 	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
647 		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
648 		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
649 		u8 aifsn = ac[i].aifsn;
650 
651 		if (cw_min >= cw_max)
652 			return false;
653 
654 		if (aifsn < 1)
655 			return false;
656 	}
657 
658 	return true;
659 }
660 
661 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
662 {
663 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
664 
665 	if ((u8 *)rule + sizeof(rule->len) > data + size)
666 		return false;
667 
668 	/* mandatory fields */
669 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
670 		return false;
671 	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
672 		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
673 		struct fwdb_wmm_rule *wmm;
674 
675 		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
676 			return false;
677 
678 		wmm = (void *)(data + wmm_ptr);
679 
680 		if (!valid_wmm(wmm))
681 			return false;
682 	}
683 	return true;
684 }
685 
686 static bool valid_country(const u8 *data, unsigned int size,
687 			  const struct fwdb_country *country)
688 {
689 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
690 	struct fwdb_collection *coll = (void *)(data + ptr);
691 	__be16 *rules_ptr;
692 	unsigned int i;
693 
694 	/* make sure we can read len/n_rules */
695 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
696 		return false;
697 
698 	/* make sure base struct and all rules fit */
699 	if ((u8 *)coll + ALIGN(coll->len, 2) +
700 	    (coll->n_rules * 2) > data + size)
701 		return false;
702 
703 	/* mandatory fields must exist */
704 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
705 		return false;
706 
707 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
708 
709 	for (i = 0; i < coll->n_rules; i++) {
710 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
711 
712 		if (!valid_rule(data, size, rule_ptr))
713 			return false;
714 	}
715 
716 	return true;
717 }
718 
719 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
720 static struct key *builtin_regdb_keys;
721 
722 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
723 {
724 	const u8 *end = p + buflen;
725 	size_t plen;
726 	key_ref_t key;
727 
728 	while (p < end) {
729 		/* Each cert begins with an ASN.1 SEQUENCE tag and must be more
730 		 * than 256 bytes in size.
731 		 */
732 		if (end - p < 4)
733 			goto dodgy_cert;
734 		if (p[0] != 0x30 &&
735 		    p[1] != 0x82)
736 			goto dodgy_cert;
737 		plen = (p[2] << 8) | p[3];
738 		plen += 4;
739 		if (plen > end - p)
740 			goto dodgy_cert;
741 
742 		key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
743 					   "asymmetric", NULL, p, plen,
744 					   ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
745 					    KEY_USR_VIEW | KEY_USR_READ),
746 					   KEY_ALLOC_NOT_IN_QUOTA |
747 					   KEY_ALLOC_BUILT_IN |
748 					   KEY_ALLOC_BYPASS_RESTRICTION);
749 		if (IS_ERR(key)) {
750 			pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
751 			       PTR_ERR(key));
752 		} else {
753 			pr_notice("Loaded X.509 cert '%s'\n",
754 				  key_ref_to_ptr(key)->description);
755 			key_ref_put(key);
756 		}
757 		p += plen;
758 	}
759 
760 	return;
761 
762 dodgy_cert:
763 	pr_err("Problem parsing in-kernel X.509 certificate list\n");
764 }
765 
766 static int __init load_builtin_regdb_keys(void)
767 {
768 	builtin_regdb_keys =
769 		keyring_alloc(".builtin_regdb_keys",
770 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
771 			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
772 			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
773 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
774 	if (IS_ERR(builtin_regdb_keys))
775 		return PTR_ERR(builtin_regdb_keys);
776 
777 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
778 
779 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
780 	load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
781 #endif
782 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
783 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
784 		load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
785 #endif
786 
787 	return 0;
788 }
789 
790 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
791 {
792 	const struct firmware *sig;
793 	bool result;
794 
795 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
796 		return false;
797 
798 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
799 					builtin_regdb_keys,
800 					VERIFYING_UNSPECIFIED_SIGNATURE,
801 					NULL, NULL) == 0;
802 
803 	release_firmware(sig);
804 
805 	return result;
806 }
807 
808 static void free_regdb_keyring(void)
809 {
810 	key_put(builtin_regdb_keys);
811 }
812 #else
813 static int load_builtin_regdb_keys(void)
814 {
815 	return 0;
816 }
817 
818 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
819 {
820 	return true;
821 }
822 
823 static void free_regdb_keyring(void)
824 {
825 }
826 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
827 
828 static bool valid_regdb(const u8 *data, unsigned int size)
829 {
830 	const struct fwdb_header *hdr = (void *)data;
831 	const struct fwdb_country *country;
832 
833 	if (size < sizeof(*hdr))
834 		return false;
835 
836 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
837 		return false;
838 
839 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
840 		return false;
841 
842 	if (!regdb_has_valid_signature(data, size))
843 		return false;
844 
845 	country = &hdr->country[0];
846 	while ((u8 *)(country + 1) <= data + size) {
847 		if (!country->coll_ptr)
848 			break;
849 		if (!valid_country(data, size, country))
850 			return false;
851 		country++;
852 	}
853 
854 	return true;
855 }
856 
857 static void set_wmm_rule(const struct fwdb_header *db,
858 			 const struct fwdb_country *country,
859 			 const struct fwdb_rule *rule,
860 			 struct ieee80211_reg_rule *rrule)
861 {
862 	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
863 	struct fwdb_wmm_rule *wmm;
864 	unsigned int i, wmm_ptr;
865 
866 	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
867 	wmm = (void *)((u8 *)db + wmm_ptr);
868 
869 	if (!valid_wmm(wmm)) {
870 		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
871 		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
872 		       country->alpha2[0], country->alpha2[1]);
873 		return;
874 	}
875 
876 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
877 		wmm_rule->client[i].cw_min =
878 			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
879 		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
880 		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
881 		wmm_rule->client[i].cot =
882 			1000 * be16_to_cpu(wmm->client[i].cot);
883 		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
884 		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
885 		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
886 		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
887 	}
888 
889 	rrule->has_wmm = true;
890 }
891 
892 static int __regdb_query_wmm(const struct fwdb_header *db,
893 			     const struct fwdb_country *country, int freq,
894 			     struct ieee80211_reg_rule *rrule)
895 {
896 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
897 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
898 	int i;
899 
900 	for (i = 0; i < coll->n_rules; i++) {
901 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
902 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
903 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
904 
905 		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
906 			continue;
907 
908 		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
909 		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
910 			set_wmm_rule(db, country, rule, rrule);
911 			return 0;
912 		}
913 	}
914 
915 	return -ENODATA;
916 }
917 
918 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
919 {
920 	const struct fwdb_header *hdr = regdb;
921 	const struct fwdb_country *country;
922 
923 	if (!regdb)
924 		return -ENODATA;
925 
926 	if (IS_ERR(regdb))
927 		return PTR_ERR(regdb);
928 
929 	country = &hdr->country[0];
930 	while (country->coll_ptr) {
931 		if (alpha2_equal(alpha2, country->alpha2))
932 			return __regdb_query_wmm(regdb, country, freq, rule);
933 
934 		country++;
935 	}
936 
937 	return -ENODATA;
938 }
939 EXPORT_SYMBOL(reg_query_regdb_wmm);
940 
941 static int regdb_query_country(const struct fwdb_header *db,
942 			       const struct fwdb_country *country)
943 {
944 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
945 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
946 	struct ieee80211_regdomain *regdom;
947 	unsigned int i;
948 
949 	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
950 			 GFP_KERNEL);
951 	if (!regdom)
952 		return -ENOMEM;
953 
954 	regdom->n_reg_rules = coll->n_rules;
955 	regdom->alpha2[0] = country->alpha2[0];
956 	regdom->alpha2[1] = country->alpha2[1];
957 	regdom->dfs_region = coll->dfs_region;
958 
959 	for (i = 0; i < regdom->n_reg_rules; i++) {
960 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
961 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
962 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
963 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
964 
965 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
966 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
967 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
968 
969 		rrule->power_rule.max_antenna_gain = 0;
970 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
971 
972 		rrule->flags = 0;
973 		if (rule->flags & FWDB_FLAG_NO_OFDM)
974 			rrule->flags |= NL80211_RRF_NO_OFDM;
975 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
976 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
977 		if (rule->flags & FWDB_FLAG_DFS)
978 			rrule->flags |= NL80211_RRF_DFS;
979 		if (rule->flags & FWDB_FLAG_NO_IR)
980 			rrule->flags |= NL80211_RRF_NO_IR;
981 		if (rule->flags & FWDB_FLAG_AUTO_BW)
982 			rrule->flags |= NL80211_RRF_AUTO_BW;
983 
984 		rrule->dfs_cac_ms = 0;
985 
986 		/* handle optional data */
987 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
988 			rrule->dfs_cac_ms =
989 				1000 * be16_to_cpu(rule->cac_timeout);
990 		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
991 			set_wmm_rule(db, country, rule, rrule);
992 	}
993 
994 	return reg_schedule_apply(regdom);
995 }
996 
997 static int query_regdb(const char *alpha2)
998 {
999 	const struct fwdb_header *hdr = regdb;
1000 	const struct fwdb_country *country;
1001 
1002 	ASSERT_RTNL();
1003 
1004 	if (IS_ERR(regdb))
1005 		return PTR_ERR(regdb);
1006 
1007 	country = &hdr->country[0];
1008 	while (country->coll_ptr) {
1009 		if (alpha2_equal(alpha2, country->alpha2))
1010 			return regdb_query_country(regdb, country);
1011 		country++;
1012 	}
1013 
1014 	return -ENODATA;
1015 }
1016 
1017 static void regdb_fw_cb(const struct firmware *fw, void *context)
1018 {
1019 	int set_error = 0;
1020 	bool restore = true;
1021 	void *db;
1022 
1023 	if (!fw) {
1024 		pr_info("failed to load regulatory.db\n");
1025 		set_error = -ENODATA;
1026 	} else if (!valid_regdb(fw->data, fw->size)) {
1027 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1028 		set_error = -EINVAL;
1029 	}
1030 
1031 	rtnl_lock();
1032 	if (regdb && !IS_ERR(regdb)) {
1033 		/* negative case - a bug
1034 		 * positive case - can happen due to race in case of multiple cb's in
1035 		 * queue, due to usage of asynchronous callback
1036 		 *
1037 		 * Either case, just restore and free new db.
1038 		 */
1039 	} else if (set_error) {
1040 		regdb = ERR_PTR(set_error);
1041 	} else if (fw) {
1042 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1043 		if (db) {
1044 			regdb = db;
1045 			restore = context && query_regdb(context);
1046 		} else {
1047 			restore = true;
1048 		}
1049 	}
1050 
1051 	if (restore)
1052 		restore_regulatory_settings(true, false);
1053 
1054 	rtnl_unlock();
1055 
1056 	kfree(context);
1057 
1058 	release_firmware(fw);
1059 }
1060 
1061 static int query_regdb_file(const char *alpha2)
1062 {
1063 	ASSERT_RTNL();
1064 
1065 	if (regdb)
1066 		return query_regdb(alpha2);
1067 
1068 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1069 	if (!alpha2)
1070 		return -ENOMEM;
1071 
1072 	return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1073 				       &reg_pdev->dev, GFP_KERNEL,
1074 				       (void *)alpha2, regdb_fw_cb);
1075 }
1076 
1077 int reg_reload_regdb(void)
1078 {
1079 	const struct firmware *fw;
1080 	void *db;
1081 	int err;
1082 
1083 	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1084 	if (err)
1085 		return err;
1086 
1087 	if (!valid_regdb(fw->data, fw->size)) {
1088 		err = -ENODATA;
1089 		goto out;
1090 	}
1091 
1092 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1093 	if (!db) {
1094 		err = -ENOMEM;
1095 		goto out;
1096 	}
1097 
1098 	rtnl_lock();
1099 	if (!IS_ERR_OR_NULL(regdb))
1100 		kfree(regdb);
1101 	regdb = db;
1102 	rtnl_unlock();
1103 
1104  out:
1105 	release_firmware(fw);
1106 	return err;
1107 }
1108 
1109 static bool reg_query_database(struct regulatory_request *request)
1110 {
1111 	if (query_regdb_file(request->alpha2) == 0)
1112 		return true;
1113 
1114 	if (call_crda(request->alpha2) == 0)
1115 		return true;
1116 
1117 	return false;
1118 }
1119 
1120 bool reg_is_valid_request(const char *alpha2)
1121 {
1122 	struct regulatory_request *lr = get_last_request();
1123 
1124 	if (!lr || lr->processed)
1125 		return false;
1126 
1127 	return alpha2_equal(lr->alpha2, alpha2);
1128 }
1129 
1130 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1131 {
1132 	struct regulatory_request *lr = get_last_request();
1133 
1134 	/*
1135 	 * Follow the driver's regulatory domain, if present, unless a country
1136 	 * IE has been processed or a user wants to help complaince further
1137 	 */
1138 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1139 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1140 	    wiphy->regd)
1141 		return get_wiphy_regdom(wiphy);
1142 
1143 	return get_cfg80211_regdom();
1144 }
1145 
1146 static unsigned int
1147 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1148 				 const struct ieee80211_reg_rule *rule)
1149 {
1150 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1151 	const struct ieee80211_freq_range *freq_range_tmp;
1152 	const struct ieee80211_reg_rule *tmp;
1153 	u32 start_freq, end_freq, idx, no;
1154 
1155 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1156 		if (rule == &rd->reg_rules[idx])
1157 			break;
1158 
1159 	if (idx == rd->n_reg_rules)
1160 		return 0;
1161 
1162 	/* get start_freq */
1163 	no = idx;
1164 
1165 	while (no) {
1166 		tmp = &rd->reg_rules[--no];
1167 		freq_range_tmp = &tmp->freq_range;
1168 
1169 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1170 			break;
1171 
1172 		freq_range = freq_range_tmp;
1173 	}
1174 
1175 	start_freq = freq_range->start_freq_khz;
1176 
1177 	/* get end_freq */
1178 	freq_range = &rule->freq_range;
1179 	no = idx;
1180 
1181 	while (no < rd->n_reg_rules - 1) {
1182 		tmp = &rd->reg_rules[++no];
1183 		freq_range_tmp = &tmp->freq_range;
1184 
1185 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1186 			break;
1187 
1188 		freq_range = freq_range_tmp;
1189 	}
1190 
1191 	end_freq = freq_range->end_freq_khz;
1192 
1193 	return end_freq - start_freq;
1194 }
1195 
1196 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1197 				   const struct ieee80211_reg_rule *rule)
1198 {
1199 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1200 
1201 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1202 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1203 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1204 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1205 
1206 	/*
1207 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1208 	 * are not allowed.
1209 	 */
1210 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1211 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1212 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1213 
1214 	return bw;
1215 }
1216 
1217 /* Sanity check on a regulatory rule */
1218 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1219 {
1220 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1221 	u32 freq_diff;
1222 
1223 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1224 		return false;
1225 
1226 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1227 		return false;
1228 
1229 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1230 
1231 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1232 	    freq_range->max_bandwidth_khz > freq_diff)
1233 		return false;
1234 
1235 	return true;
1236 }
1237 
1238 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1239 {
1240 	const struct ieee80211_reg_rule *reg_rule = NULL;
1241 	unsigned int i;
1242 
1243 	if (!rd->n_reg_rules)
1244 		return false;
1245 
1246 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1247 		return false;
1248 
1249 	for (i = 0; i < rd->n_reg_rules; i++) {
1250 		reg_rule = &rd->reg_rules[i];
1251 		if (!is_valid_reg_rule(reg_rule))
1252 			return false;
1253 	}
1254 
1255 	return true;
1256 }
1257 
1258 /**
1259  * freq_in_rule_band - tells us if a frequency is in a frequency band
1260  * @freq_range: frequency rule we want to query
1261  * @freq_khz: frequency we are inquiring about
1262  *
1263  * This lets us know if a specific frequency rule is or is not relevant to
1264  * a specific frequency's band. Bands are device specific and artificial
1265  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1266  * however it is safe for now to assume that a frequency rule should not be
1267  * part of a frequency's band if the start freq or end freq are off by more
1268  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1269  * 60 GHz band.
1270  * This resolution can be lowered and should be considered as we add
1271  * regulatory rule support for other "bands".
1272  **/
1273 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1274 			      u32 freq_khz)
1275 {
1276 #define ONE_GHZ_IN_KHZ	1000000
1277 	/*
1278 	 * From 802.11ad: directional multi-gigabit (DMG):
1279 	 * Pertaining to operation in a frequency band containing a channel
1280 	 * with the Channel starting frequency above 45 GHz.
1281 	 */
1282 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1283 			20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1284 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1285 		return true;
1286 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1287 		return true;
1288 	return false;
1289 #undef ONE_GHZ_IN_KHZ
1290 }
1291 
1292 /*
1293  * Later on we can perhaps use the more restrictive DFS
1294  * region but we don't have information for that yet so
1295  * for now simply disallow conflicts.
1296  */
1297 static enum nl80211_dfs_regions
1298 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1299 			 const enum nl80211_dfs_regions dfs_region2)
1300 {
1301 	if (dfs_region1 != dfs_region2)
1302 		return NL80211_DFS_UNSET;
1303 	return dfs_region1;
1304 }
1305 
1306 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1307 				    const struct ieee80211_wmm_ac *wmm_ac2,
1308 				    struct ieee80211_wmm_ac *intersect)
1309 {
1310 	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1311 	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1312 	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1313 	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1314 }
1315 
1316 /*
1317  * Helper for regdom_intersect(), this does the real
1318  * mathematical intersection fun
1319  */
1320 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1321 			       const struct ieee80211_regdomain *rd2,
1322 			       const struct ieee80211_reg_rule *rule1,
1323 			       const struct ieee80211_reg_rule *rule2,
1324 			       struct ieee80211_reg_rule *intersected_rule)
1325 {
1326 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1327 	struct ieee80211_freq_range *freq_range;
1328 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1329 	struct ieee80211_power_rule *power_rule;
1330 	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1331 	struct ieee80211_wmm_rule *wmm_rule;
1332 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1333 
1334 	freq_range1 = &rule1->freq_range;
1335 	freq_range2 = &rule2->freq_range;
1336 	freq_range = &intersected_rule->freq_range;
1337 
1338 	power_rule1 = &rule1->power_rule;
1339 	power_rule2 = &rule2->power_rule;
1340 	power_rule = &intersected_rule->power_rule;
1341 
1342 	wmm_rule1 = &rule1->wmm_rule;
1343 	wmm_rule2 = &rule2->wmm_rule;
1344 	wmm_rule = &intersected_rule->wmm_rule;
1345 
1346 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1347 					 freq_range2->start_freq_khz);
1348 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1349 				       freq_range2->end_freq_khz);
1350 
1351 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1352 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1353 
1354 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1355 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1356 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1357 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1358 
1359 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1360 
1361 	intersected_rule->flags = rule1->flags | rule2->flags;
1362 
1363 	/*
1364 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1365 	 * set AUTO_BW in intersected rule also. Next we will
1366 	 * calculate BW correctly in handle_channel function.
1367 	 * In other case remove AUTO_BW flag while we calculate
1368 	 * maximum bandwidth correctly and auto calculation is
1369 	 * not required.
1370 	 */
1371 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1372 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1373 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1374 	else
1375 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1376 
1377 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1378 	if (freq_range->max_bandwidth_khz > freq_diff)
1379 		freq_range->max_bandwidth_khz = freq_diff;
1380 
1381 	power_rule->max_eirp = min(power_rule1->max_eirp,
1382 		power_rule2->max_eirp);
1383 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1384 		power_rule2->max_antenna_gain);
1385 
1386 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1387 					   rule2->dfs_cac_ms);
1388 
1389 	if (rule1->has_wmm && rule2->has_wmm) {
1390 		u8 ac;
1391 
1392 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1393 			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1394 						&wmm_rule2->client[ac],
1395 						&wmm_rule->client[ac]);
1396 			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1397 						&wmm_rule2->ap[ac],
1398 						&wmm_rule->ap[ac]);
1399 		}
1400 
1401 		intersected_rule->has_wmm = true;
1402 	} else if (rule1->has_wmm) {
1403 		*wmm_rule = *wmm_rule1;
1404 		intersected_rule->has_wmm = true;
1405 	} else if (rule2->has_wmm) {
1406 		*wmm_rule = *wmm_rule2;
1407 		intersected_rule->has_wmm = true;
1408 	} else {
1409 		intersected_rule->has_wmm = false;
1410 	}
1411 
1412 	if (!is_valid_reg_rule(intersected_rule))
1413 		return -EINVAL;
1414 
1415 	return 0;
1416 }
1417 
1418 /* check whether old rule contains new rule */
1419 static bool rule_contains(struct ieee80211_reg_rule *r1,
1420 			  struct ieee80211_reg_rule *r2)
1421 {
1422 	/* for simplicity, currently consider only same flags */
1423 	if (r1->flags != r2->flags)
1424 		return false;
1425 
1426 	/* verify r1 is more restrictive */
1427 	if ((r1->power_rule.max_antenna_gain >
1428 	     r2->power_rule.max_antenna_gain) ||
1429 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1430 		return false;
1431 
1432 	/* make sure r2's range is contained within r1 */
1433 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1434 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1435 		return false;
1436 
1437 	/* and finally verify that r1.max_bw >= r2.max_bw */
1438 	if (r1->freq_range.max_bandwidth_khz <
1439 	    r2->freq_range.max_bandwidth_khz)
1440 		return false;
1441 
1442 	return true;
1443 }
1444 
1445 /* add or extend current rules. do nothing if rule is already contained */
1446 static void add_rule(struct ieee80211_reg_rule *rule,
1447 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1448 {
1449 	struct ieee80211_reg_rule *tmp_rule;
1450 	int i;
1451 
1452 	for (i = 0; i < *n_rules; i++) {
1453 		tmp_rule = &reg_rules[i];
1454 		/* rule is already contained - do nothing */
1455 		if (rule_contains(tmp_rule, rule))
1456 			return;
1457 
1458 		/* extend rule if possible */
1459 		if (rule_contains(rule, tmp_rule)) {
1460 			memcpy(tmp_rule, rule, sizeof(*rule));
1461 			return;
1462 		}
1463 	}
1464 
1465 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1466 	(*n_rules)++;
1467 }
1468 
1469 /**
1470  * regdom_intersect - do the intersection between two regulatory domains
1471  * @rd1: first regulatory domain
1472  * @rd2: second regulatory domain
1473  *
1474  * Use this function to get the intersection between two regulatory domains.
1475  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1476  * as no one single alpha2 can represent this regulatory domain.
1477  *
1478  * Returns a pointer to the regulatory domain structure which will hold the
1479  * resulting intersection of rules between rd1 and rd2. We will
1480  * kzalloc() this structure for you.
1481  */
1482 static struct ieee80211_regdomain *
1483 regdom_intersect(const struct ieee80211_regdomain *rd1,
1484 		 const struct ieee80211_regdomain *rd2)
1485 {
1486 	int r;
1487 	unsigned int x, y;
1488 	unsigned int num_rules = 0;
1489 	const struct ieee80211_reg_rule *rule1, *rule2;
1490 	struct ieee80211_reg_rule intersected_rule;
1491 	struct ieee80211_regdomain *rd;
1492 
1493 	if (!rd1 || !rd2)
1494 		return NULL;
1495 
1496 	/*
1497 	 * First we get a count of the rules we'll need, then we actually
1498 	 * build them. This is to so we can malloc() and free() a
1499 	 * regdomain once. The reason we use reg_rules_intersect() here
1500 	 * is it will return -EINVAL if the rule computed makes no sense.
1501 	 * All rules that do check out OK are valid.
1502 	 */
1503 
1504 	for (x = 0; x < rd1->n_reg_rules; x++) {
1505 		rule1 = &rd1->reg_rules[x];
1506 		for (y = 0; y < rd2->n_reg_rules; y++) {
1507 			rule2 = &rd2->reg_rules[y];
1508 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1509 						 &intersected_rule))
1510 				num_rules++;
1511 		}
1512 	}
1513 
1514 	if (!num_rules)
1515 		return NULL;
1516 
1517 	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1518 	if (!rd)
1519 		return NULL;
1520 
1521 	for (x = 0; x < rd1->n_reg_rules; x++) {
1522 		rule1 = &rd1->reg_rules[x];
1523 		for (y = 0; y < rd2->n_reg_rules; y++) {
1524 			rule2 = &rd2->reg_rules[y];
1525 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1526 						&intersected_rule);
1527 			/*
1528 			 * No need to memset here the intersected rule here as
1529 			 * we're not using the stack anymore
1530 			 */
1531 			if (r)
1532 				continue;
1533 
1534 			add_rule(&intersected_rule, rd->reg_rules,
1535 				 &rd->n_reg_rules);
1536 		}
1537 	}
1538 
1539 	rd->alpha2[0] = '9';
1540 	rd->alpha2[1] = '8';
1541 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1542 						  rd2->dfs_region);
1543 
1544 	return rd;
1545 }
1546 
1547 /*
1548  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1549  * want to just have the channel structure use these
1550  */
1551 static u32 map_regdom_flags(u32 rd_flags)
1552 {
1553 	u32 channel_flags = 0;
1554 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1555 		channel_flags |= IEEE80211_CHAN_NO_IR;
1556 	if (rd_flags & NL80211_RRF_DFS)
1557 		channel_flags |= IEEE80211_CHAN_RADAR;
1558 	if (rd_flags & NL80211_RRF_NO_OFDM)
1559 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1560 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1561 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1562 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1563 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1564 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1565 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1566 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1567 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1568 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1569 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1570 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1571 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1572 	if (rd_flags & NL80211_RRF_NO_HE)
1573 		channel_flags |= IEEE80211_CHAN_NO_HE;
1574 	return channel_flags;
1575 }
1576 
1577 static const struct ieee80211_reg_rule *
1578 freq_reg_info_regd(u32 center_freq,
1579 		   const struct ieee80211_regdomain *regd, u32 bw)
1580 {
1581 	int i;
1582 	bool band_rule_found = false;
1583 	bool bw_fits = false;
1584 
1585 	if (!regd)
1586 		return ERR_PTR(-EINVAL);
1587 
1588 	for (i = 0; i < regd->n_reg_rules; i++) {
1589 		const struct ieee80211_reg_rule *rr;
1590 		const struct ieee80211_freq_range *fr = NULL;
1591 
1592 		rr = &regd->reg_rules[i];
1593 		fr = &rr->freq_range;
1594 
1595 		/*
1596 		 * We only need to know if one frequency rule was
1597 		 * was in center_freq's band, that's enough, so lets
1598 		 * not overwrite it once found
1599 		 */
1600 		if (!band_rule_found)
1601 			band_rule_found = freq_in_rule_band(fr, center_freq);
1602 
1603 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1604 
1605 		if (band_rule_found && bw_fits)
1606 			return rr;
1607 	}
1608 
1609 	if (!band_rule_found)
1610 		return ERR_PTR(-ERANGE);
1611 
1612 	return ERR_PTR(-EINVAL);
1613 }
1614 
1615 static const struct ieee80211_reg_rule *
1616 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1617 {
1618 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1619 	const struct ieee80211_reg_rule *reg_rule = NULL;
1620 	u32 bw;
1621 
1622 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1623 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1624 		if (!IS_ERR(reg_rule))
1625 			return reg_rule;
1626 	}
1627 
1628 	return reg_rule;
1629 }
1630 
1631 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1632 					       u32 center_freq)
1633 {
1634 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1635 }
1636 EXPORT_SYMBOL(freq_reg_info);
1637 
1638 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1639 {
1640 	switch (initiator) {
1641 	case NL80211_REGDOM_SET_BY_CORE:
1642 		return "core";
1643 	case NL80211_REGDOM_SET_BY_USER:
1644 		return "user";
1645 	case NL80211_REGDOM_SET_BY_DRIVER:
1646 		return "driver";
1647 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1648 		return "country element";
1649 	default:
1650 		WARN_ON(1);
1651 		return "bug";
1652 	}
1653 }
1654 EXPORT_SYMBOL(reg_initiator_name);
1655 
1656 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1657 					  const struct ieee80211_reg_rule *reg_rule,
1658 					  const struct ieee80211_channel *chan)
1659 {
1660 	const struct ieee80211_freq_range *freq_range = NULL;
1661 	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1662 
1663 	freq_range = &reg_rule->freq_range;
1664 
1665 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1666 	center_freq_khz = ieee80211_channel_to_khz(chan);
1667 	/* Check if auto calculation requested */
1668 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1669 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1670 
1671 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1672 	if (!cfg80211_does_bw_fit_range(freq_range,
1673 					center_freq_khz,
1674 					MHZ_TO_KHZ(10)))
1675 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1676 	if (!cfg80211_does_bw_fit_range(freq_range,
1677 					center_freq_khz,
1678 					MHZ_TO_KHZ(20)))
1679 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1680 
1681 	if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1682 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1683 	if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1684 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1685 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1686 		bw_flags |= IEEE80211_CHAN_NO_HT40;
1687 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1688 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1689 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1690 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1691 	return bw_flags;
1692 }
1693 
1694 /*
1695  * Note that right now we assume the desired channel bandwidth
1696  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1697  * per channel, the primary and the extension channel).
1698  */
1699 static void handle_channel(struct wiphy *wiphy,
1700 			   enum nl80211_reg_initiator initiator,
1701 			   struct ieee80211_channel *chan)
1702 {
1703 	u32 flags, bw_flags = 0;
1704 	const struct ieee80211_reg_rule *reg_rule = NULL;
1705 	const struct ieee80211_power_rule *power_rule = NULL;
1706 	struct wiphy *request_wiphy = NULL;
1707 	struct regulatory_request *lr = get_last_request();
1708 	const struct ieee80211_regdomain *regd;
1709 
1710 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1711 
1712 	flags = chan->orig_flags;
1713 
1714 	reg_rule = freq_reg_info(wiphy, ieee80211_channel_to_khz(chan));
1715 	if (IS_ERR(reg_rule)) {
1716 		/*
1717 		 * We will disable all channels that do not match our
1718 		 * received regulatory rule unless the hint is coming
1719 		 * from a Country IE and the Country IE had no information
1720 		 * about a band. The IEEE 802.11 spec allows for an AP
1721 		 * to send only a subset of the regulatory rules allowed,
1722 		 * so an AP in the US that only supports 2.4 GHz may only send
1723 		 * a country IE with information for the 2.4 GHz band
1724 		 * while 5 GHz is still supported.
1725 		 */
1726 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1727 		    PTR_ERR(reg_rule) == -ERANGE)
1728 			return;
1729 
1730 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1731 		    request_wiphy && request_wiphy == wiphy &&
1732 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1733 			pr_debug("Disabling freq %d.%03d MHz for good\n",
1734 				 chan->center_freq, chan->freq_offset);
1735 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1736 			chan->flags = chan->orig_flags;
1737 		} else {
1738 			pr_debug("Disabling freq %d.%03d MHz\n",
1739 				 chan->center_freq, chan->freq_offset);
1740 			chan->flags |= IEEE80211_CHAN_DISABLED;
1741 		}
1742 		return;
1743 	}
1744 
1745 	regd = reg_get_regdomain(wiphy);
1746 
1747 	power_rule = &reg_rule->power_rule;
1748 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1749 
1750 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1751 	    request_wiphy && request_wiphy == wiphy &&
1752 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1753 		/*
1754 		 * This guarantees the driver's requested regulatory domain
1755 		 * will always be used as a base for further regulatory
1756 		 * settings
1757 		 */
1758 		chan->flags = chan->orig_flags =
1759 			map_regdom_flags(reg_rule->flags) | bw_flags;
1760 		chan->max_antenna_gain = chan->orig_mag =
1761 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1762 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1763 			(int) MBM_TO_DBM(power_rule->max_eirp);
1764 
1765 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1766 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1767 			if (reg_rule->dfs_cac_ms)
1768 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1769 		}
1770 
1771 		return;
1772 	}
1773 
1774 	chan->dfs_state = NL80211_DFS_USABLE;
1775 	chan->dfs_state_entered = jiffies;
1776 
1777 	chan->beacon_found = false;
1778 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1779 	chan->max_antenna_gain =
1780 		min_t(int, chan->orig_mag,
1781 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1782 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1783 
1784 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1785 		if (reg_rule->dfs_cac_ms)
1786 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1787 		else
1788 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1789 	}
1790 
1791 	if (chan->orig_mpwr) {
1792 		/*
1793 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1794 		 * will always follow the passed country IE power settings.
1795 		 */
1796 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1797 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1798 			chan->max_power = chan->max_reg_power;
1799 		else
1800 			chan->max_power = min(chan->orig_mpwr,
1801 					      chan->max_reg_power);
1802 	} else
1803 		chan->max_power = chan->max_reg_power;
1804 }
1805 
1806 static void handle_band(struct wiphy *wiphy,
1807 			enum nl80211_reg_initiator initiator,
1808 			struct ieee80211_supported_band *sband)
1809 {
1810 	unsigned int i;
1811 
1812 	if (!sband)
1813 		return;
1814 
1815 	for (i = 0; i < sband->n_channels; i++)
1816 		handle_channel(wiphy, initiator, &sband->channels[i]);
1817 }
1818 
1819 static bool reg_request_cell_base(struct regulatory_request *request)
1820 {
1821 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1822 		return false;
1823 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1824 }
1825 
1826 bool reg_last_request_cell_base(void)
1827 {
1828 	return reg_request_cell_base(get_last_request());
1829 }
1830 
1831 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1832 /* Core specific check */
1833 static enum reg_request_treatment
1834 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1835 {
1836 	struct regulatory_request *lr = get_last_request();
1837 
1838 	if (!reg_num_devs_support_basehint)
1839 		return REG_REQ_IGNORE;
1840 
1841 	if (reg_request_cell_base(lr) &&
1842 	    !regdom_changes(pending_request->alpha2))
1843 		return REG_REQ_ALREADY_SET;
1844 
1845 	return REG_REQ_OK;
1846 }
1847 
1848 /* Device specific check */
1849 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1850 {
1851 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1852 }
1853 #else
1854 static enum reg_request_treatment
1855 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1856 {
1857 	return REG_REQ_IGNORE;
1858 }
1859 
1860 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1861 {
1862 	return true;
1863 }
1864 #endif
1865 
1866 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1867 {
1868 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1869 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1870 		return true;
1871 	return false;
1872 }
1873 
1874 static bool ignore_reg_update(struct wiphy *wiphy,
1875 			      enum nl80211_reg_initiator initiator)
1876 {
1877 	struct regulatory_request *lr = get_last_request();
1878 
1879 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1880 		return true;
1881 
1882 	if (!lr) {
1883 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1884 			 reg_initiator_name(initiator));
1885 		return true;
1886 	}
1887 
1888 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1889 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1890 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1891 			 reg_initiator_name(initiator));
1892 		return true;
1893 	}
1894 
1895 	/*
1896 	 * wiphy->regd will be set once the device has its own
1897 	 * desired regulatory domain set
1898 	 */
1899 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1900 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1901 	    !is_world_regdom(lr->alpha2)) {
1902 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1903 			 reg_initiator_name(initiator));
1904 		return true;
1905 	}
1906 
1907 	if (reg_request_cell_base(lr))
1908 		return reg_dev_ignore_cell_hint(wiphy);
1909 
1910 	return false;
1911 }
1912 
1913 static bool reg_is_world_roaming(struct wiphy *wiphy)
1914 {
1915 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1916 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1917 	struct regulatory_request *lr = get_last_request();
1918 
1919 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1920 		return true;
1921 
1922 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1923 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1924 		return true;
1925 
1926 	return false;
1927 }
1928 
1929 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1930 			      struct reg_beacon *reg_beacon)
1931 {
1932 	struct ieee80211_supported_band *sband;
1933 	struct ieee80211_channel *chan;
1934 	bool channel_changed = false;
1935 	struct ieee80211_channel chan_before;
1936 
1937 	sband = wiphy->bands[reg_beacon->chan.band];
1938 	chan = &sband->channels[chan_idx];
1939 
1940 	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
1941 		return;
1942 
1943 	if (chan->beacon_found)
1944 		return;
1945 
1946 	chan->beacon_found = true;
1947 
1948 	if (!reg_is_world_roaming(wiphy))
1949 		return;
1950 
1951 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1952 		return;
1953 
1954 	chan_before = *chan;
1955 
1956 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
1957 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
1958 		channel_changed = true;
1959 	}
1960 
1961 	if (channel_changed)
1962 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1963 }
1964 
1965 /*
1966  * Called when a scan on a wiphy finds a beacon on
1967  * new channel
1968  */
1969 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1970 				    struct reg_beacon *reg_beacon)
1971 {
1972 	unsigned int i;
1973 	struct ieee80211_supported_band *sband;
1974 
1975 	if (!wiphy->bands[reg_beacon->chan.band])
1976 		return;
1977 
1978 	sband = wiphy->bands[reg_beacon->chan.band];
1979 
1980 	for (i = 0; i < sband->n_channels; i++)
1981 		handle_reg_beacon(wiphy, i, reg_beacon);
1982 }
1983 
1984 /*
1985  * Called upon reg changes or a new wiphy is added
1986  */
1987 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1988 {
1989 	unsigned int i;
1990 	struct ieee80211_supported_band *sband;
1991 	struct reg_beacon *reg_beacon;
1992 
1993 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1994 		if (!wiphy->bands[reg_beacon->chan.band])
1995 			continue;
1996 		sband = wiphy->bands[reg_beacon->chan.band];
1997 		for (i = 0; i < sband->n_channels; i++)
1998 			handle_reg_beacon(wiphy, i, reg_beacon);
1999 	}
2000 }
2001 
2002 /* Reap the advantages of previously found beacons */
2003 static void reg_process_beacons(struct wiphy *wiphy)
2004 {
2005 	/*
2006 	 * Means we are just firing up cfg80211, so no beacons would
2007 	 * have been processed yet.
2008 	 */
2009 	if (!last_request)
2010 		return;
2011 	wiphy_update_beacon_reg(wiphy);
2012 }
2013 
2014 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2015 {
2016 	if (!chan)
2017 		return false;
2018 	if (chan->flags & IEEE80211_CHAN_DISABLED)
2019 		return false;
2020 	/* This would happen when regulatory rules disallow HT40 completely */
2021 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2022 		return false;
2023 	return true;
2024 }
2025 
2026 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2027 					 struct ieee80211_channel *channel)
2028 {
2029 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2030 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2031 	const struct ieee80211_regdomain *regd;
2032 	unsigned int i;
2033 	u32 flags;
2034 
2035 	if (!is_ht40_allowed(channel)) {
2036 		channel->flags |= IEEE80211_CHAN_NO_HT40;
2037 		return;
2038 	}
2039 
2040 	/*
2041 	 * We need to ensure the extension channels exist to
2042 	 * be able to use HT40- or HT40+, this finds them (or not)
2043 	 */
2044 	for (i = 0; i < sband->n_channels; i++) {
2045 		struct ieee80211_channel *c = &sband->channels[i];
2046 
2047 		if (c->center_freq == (channel->center_freq - 20))
2048 			channel_before = c;
2049 		if (c->center_freq == (channel->center_freq + 20))
2050 			channel_after = c;
2051 	}
2052 
2053 	flags = 0;
2054 	regd = get_wiphy_regdom(wiphy);
2055 	if (regd) {
2056 		const struct ieee80211_reg_rule *reg_rule =
2057 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2058 					   regd, MHZ_TO_KHZ(20));
2059 
2060 		if (!IS_ERR(reg_rule))
2061 			flags = reg_rule->flags;
2062 	}
2063 
2064 	/*
2065 	 * Please note that this assumes target bandwidth is 20 MHz,
2066 	 * if that ever changes we also need to change the below logic
2067 	 * to include that as well.
2068 	 */
2069 	if (!is_ht40_allowed(channel_before) ||
2070 	    flags & NL80211_RRF_NO_HT40MINUS)
2071 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2072 	else
2073 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2074 
2075 	if (!is_ht40_allowed(channel_after) ||
2076 	    flags & NL80211_RRF_NO_HT40PLUS)
2077 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2078 	else
2079 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2080 }
2081 
2082 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2083 				      struct ieee80211_supported_band *sband)
2084 {
2085 	unsigned int i;
2086 
2087 	if (!sband)
2088 		return;
2089 
2090 	for (i = 0; i < sband->n_channels; i++)
2091 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2092 }
2093 
2094 static void reg_process_ht_flags(struct wiphy *wiphy)
2095 {
2096 	enum nl80211_band band;
2097 
2098 	if (!wiphy)
2099 		return;
2100 
2101 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2102 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2103 }
2104 
2105 static void reg_call_notifier(struct wiphy *wiphy,
2106 			      struct regulatory_request *request)
2107 {
2108 	if (wiphy->reg_notifier)
2109 		wiphy->reg_notifier(wiphy, request);
2110 }
2111 
2112 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2113 {
2114 	struct cfg80211_chan_def chandef = {};
2115 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2116 	enum nl80211_iftype iftype;
2117 
2118 	wdev_lock(wdev);
2119 	iftype = wdev->iftype;
2120 
2121 	/* make sure the interface is active */
2122 	if (!wdev->netdev || !netif_running(wdev->netdev))
2123 		goto wdev_inactive_unlock;
2124 
2125 	switch (iftype) {
2126 	case NL80211_IFTYPE_AP:
2127 	case NL80211_IFTYPE_P2P_GO:
2128 		if (!wdev->beacon_interval)
2129 			goto wdev_inactive_unlock;
2130 		chandef = wdev->chandef;
2131 		break;
2132 	case NL80211_IFTYPE_ADHOC:
2133 		if (!wdev->ssid_len)
2134 			goto wdev_inactive_unlock;
2135 		chandef = wdev->chandef;
2136 		break;
2137 	case NL80211_IFTYPE_STATION:
2138 	case NL80211_IFTYPE_P2P_CLIENT:
2139 		if (!wdev->current_bss ||
2140 		    !wdev->current_bss->pub.channel)
2141 			goto wdev_inactive_unlock;
2142 
2143 		if (!rdev->ops->get_channel ||
2144 		    rdev_get_channel(rdev, wdev, &chandef))
2145 			cfg80211_chandef_create(&chandef,
2146 						wdev->current_bss->pub.channel,
2147 						NL80211_CHAN_NO_HT);
2148 		break;
2149 	case NL80211_IFTYPE_MONITOR:
2150 	case NL80211_IFTYPE_AP_VLAN:
2151 	case NL80211_IFTYPE_P2P_DEVICE:
2152 		/* no enforcement required */
2153 		break;
2154 	default:
2155 		/* others not implemented for now */
2156 		WARN_ON(1);
2157 		break;
2158 	}
2159 
2160 	wdev_unlock(wdev);
2161 
2162 	switch (iftype) {
2163 	case NL80211_IFTYPE_AP:
2164 	case NL80211_IFTYPE_P2P_GO:
2165 	case NL80211_IFTYPE_ADHOC:
2166 		return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2167 	case NL80211_IFTYPE_STATION:
2168 	case NL80211_IFTYPE_P2P_CLIENT:
2169 		return cfg80211_chandef_usable(wiphy, &chandef,
2170 					       IEEE80211_CHAN_DISABLED);
2171 	default:
2172 		break;
2173 	}
2174 
2175 	return true;
2176 
2177 wdev_inactive_unlock:
2178 	wdev_unlock(wdev);
2179 	return true;
2180 }
2181 
2182 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2183 {
2184 	struct wireless_dev *wdev;
2185 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2186 
2187 	ASSERT_RTNL();
2188 
2189 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2190 		if (!reg_wdev_chan_valid(wiphy, wdev))
2191 			cfg80211_leave(rdev, wdev);
2192 }
2193 
2194 static void reg_check_chans_work(struct work_struct *work)
2195 {
2196 	struct cfg80211_registered_device *rdev;
2197 
2198 	pr_debug("Verifying active interfaces after reg change\n");
2199 	rtnl_lock();
2200 
2201 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2202 		if (!(rdev->wiphy.regulatory_flags &
2203 		      REGULATORY_IGNORE_STALE_KICKOFF))
2204 			reg_leave_invalid_chans(&rdev->wiphy);
2205 
2206 	rtnl_unlock();
2207 }
2208 
2209 static void reg_check_channels(void)
2210 {
2211 	/*
2212 	 * Give usermode a chance to do something nicer (move to another
2213 	 * channel, orderly disconnection), before forcing a disconnection.
2214 	 */
2215 	mod_delayed_work(system_power_efficient_wq,
2216 			 &reg_check_chans,
2217 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2218 }
2219 
2220 static void wiphy_update_regulatory(struct wiphy *wiphy,
2221 				    enum nl80211_reg_initiator initiator)
2222 {
2223 	enum nl80211_band band;
2224 	struct regulatory_request *lr = get_last_request();
2225 
2226 	if (ignore_reg_update(wiphy, initiator)) {
2227 		/*
2228 		 * Regulatory updates set by CORE are ignored for custom
2229 		 * regulatory cards. Let us notify the changes to the driver,
2230 		 * as some drivers used this to restore its orig_* reg domain.
2231 		 */
2232 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2233 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2234 		    !(wiphy->regulatory_flags &
2235 		      REGULATORY_WIPHY_SELF_MANAGED))
2236 			reg_call_notifier(wiphy, lr);
2237 		return;
2238 	}
2239 
2240 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2241 
2242 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2243 		handle_band(wiphy, initiator, wiphy->bands[band]);
2244 
2245 	reg_process_beacons(wiphy);
2246 	reg_process_ht_flags(wiphy);
2247 	reg_call_notifier(wiphy, lr);
2248 }
2249 
2250 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2251 {
2252 	struct cfg80211_registered_device *rdev;
2253 	struct wiphy *wiphy;
2254 
2255 	ASSERT_RTNL();
2256 
2257 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2258 		wiphy = &rdev->wiphy;
2259 		wiphy_update_regulatory(wiphy, initiator);
2260 	}
2261 
2262 	reg_check_channels();
2263 }
2264 
2265 static void handle_channel_custom(struct wiphy *wiphy,
2266 				  struct ieee80211_channel *chan,
2267 				  const struct ieee80211_regdomain *regd,
2268 				  u32 min_bw)
2269 {
2270 	u32 bw_flags = 0;
2271 	const struct ieee80211_reg_rule *reg_rule = NULL;
2272 	const struct ieee80211_power_rule *power_rule = NULL;
2273 	u32 bw, center_freq_khz;
2274 
2275 	center_freq_khz = ieee80211_channel_to_khz(chan);
2276 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2277 		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2278 		if (!IS_ERR(reg_rule))
2279 			break;
2280 	}
2281 
2282 	if (IS_ERR_OR_NULL(reg_rule)) {
2283 		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2284 			 chan->center_freq, chan->freq_offset);
2285 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2286 			chan->flags |= IEEE80211_CHAN_DISABLED;
2287 		} else {
2288 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2289 			chan->flags = chan->orig_flags;
2290 		}
2291 		return;
2292 	}
2293 
2294 	power_rule = &reg_rule->power_rule;
2295 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2296 
2297 	chan->dfs_state_entered = jiffies;
2298 	chan->dfs_state = NL80211_DFS_USABLE;
2299 
2300 	chan->beacon_found = false;
2301 
2302 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2303 		chan->flags = chan->orig_flags | bw_flags |
2304 			      map_regdom_flags(reg_rule->flags);
2305 	else
2306 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2307 
2308 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2309 	chan->max_reg_power = chan->max_power =
2310 		(int) MBM_TO_DBM(power_rule->max_eirp);
2311 
2312 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2313 		if (reg_rule->dfs_cac_ms)
2314 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2315 		else
2316 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2317 	}
2318 
2319 	chan->max_power = chan->max_reg_power;
2320 }
2321 
2322 static void handle_band_custom(struct wiphy *wiphy,
2323 			       struct ieee80211_supported_band *sband,
2324 			       const struct ieee80211_regdomain *regd)
2325 {
2326 	unsigned int i;
2327 
2328 	if (!sband)
2329 		return;
2330 
2331 	/*
2332 	 * We currently assume that you always want at least 20 MHz,
2333 	 * otherwise channel 12 might get enabled if this rule is
2334 	 * compatible to US, which permits 2402 - 2472 MHz.
2335 	 */
2336 	for (i = 0; i < sband->n_channels; i++)
2337 		handle_channel_custom(wiphy, &sband->channels[i], regd,
2338 				      MHZ_TO_KHZ(20));
2339 }
2340 
2341 /* Used by drivers prior to wiphy registration */
2342 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2343 				   const struct ieee80211_regdomain *regd)
2344 {
2345 	enum nl80211_band band;
2346 	unsigned int bands_set = 0;
2347 
2348 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2349 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2350 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2351 
2352 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2353 		if (!wiphy->bands[band])
2354 			continue;
2355 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2356 		bands_set++;
2357 	}
2358 
2359 	/*
2360 	 * no point in calling this if it won't have any effect
2361 	 * on your device's supported bands.
2362 	 */
2363 	WARN_ON(!bands_set);
2364 }
2365 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2366 
2367 static void reg_set_request_processed(void)
2368 {
2369 	bool need_more_processing = false;
2370 	struct regulatory_request *lr = get_last_request();
2371 
2372 	lr->processed = true;
2373 
2374 	spin_lock(&reg_requests_lock);
2375 	if (!list_empty(&reg_requests_list))
2376 		need_more_processing = true;
2377 	spin_unlock(&reg_requests_lock);
2378 
2379 	cancel_crda_timeout();
2380 
2381 	if (need_more_processing)
2382 		schedule_work(&reg_work);
2383 }
2384 
2385 /**
2386  * reg_process_hint_core - process core regulatory requests
2387  * @core_request: a pending core regulatory request
2388  *
2389  * The wireless subsystem can use this function to process
2390  * a regulatory request issued by the regulatory core.
2391  */
2392 static enum reg_request_treatment
2393 reg_process_hint_core(struct regulatory_request *core_request)
2394 {
2395 	if (reg_query_database(core_request)) {
2396 		core_request->intersect = false;
2397 		core_request->processed = false;
2398 		reg_update_last_request(core_request);
2399 		return REG_REQ_OK;
2400 	}
2401 
2402 	return REG_REQ_IGNORE;
2403 }
2404 
2405 static enum reg_request_treatment
2406 __reg_process_hint_user(struct regulatory_request *user_request)
2407 {
2408 	struct regulatory_request *lr = get_last_request();
2409 
2410 	if (reg_request_cell_base(user_request))
2411 		return reg_ignore_cell_hint(user_request);
2412 
2413 	if (reg_request_cell_base(lr))
2414 		return REG_REQ_IGNORE;
2415 
2416 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2417 		return REG_REQ_INTERSECT;
2418 	/*
2419 	 * If the user knows better the user should set the regdom
2420 	 * to their country before the IE is picked up
2421 	 */
2422 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2423 	    lr->intersect)
2424 		return REG_REQ_IGNORE;
2425 	/*
2426 	 * Process user requests only after previous user/driver/core
2427 	 * requests have been processed
2428 	 */
2429 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2430 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2431 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2432 	    regdom_changes(lr->alpha2))
2433 		return REG_REQ_IGNORE;
2434 
2435 	if (!regdom_changes(user_request->alpha2))
2436 		return REG_REQ_ALREADY_SET;
2437 
2438 	return REG_REQ_OK;
2439 }
2440 
2441 /**
2442  * reg_process_hint_user - process user regulatory requests
2443  * @user_request: a pending user regulatory request
2444  *
2445  * The wireless subsystem can use this function to process
2446  * a regulatory request initiated by userspace.
2447  */
2448 static enum reg_request_treatment
2449 reg_process_hint_user(struct regulatory_request *user_request)
2450 {
2451 	enum reg_request_treatment treatment;
2452 
2453 	treatment = __reg_process_hint_user(user_request);
2454 	if (treatment == REG_REQ_IGNORE ||
2455 	    treatment == REG_REQ_ALREADY_SET)
2456 		return REG_REQ_IGNORE;
2457 
2458 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2459 	user_request->processed = false;
2460 
2461 	if (reg_query_database(user_request)) {
2462 		reg_update_last_request(user_request);
2463 		user_alpha2[0] = user_request->alpha2[0];
2464 		user_alpha2[1] = user_request->alpha2[1];
2465 		return REG_REQ_OK;
2466 	}
2467 
2468 	return REG_REQ_IGNORE;
2469 }
2470 
2471 static enum reg_request_treatment
2472 __reg_process_hint_driver(struct regulatory_request *driver_request)
2473 {
2474 	struct regulatory_request *lr = get_last_request();
2475 
2476 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2477 		if (regdom_changes(driver_request->alpha2))
2478 			return REG_REQ_OK;
2479 		return REG_REQ_ALREADY_SET;
2480 	}
2481 
2482 	/*
2483 	 * This would happen if you unplug and plug your card
2484 	 * back in or if you add a new device for which the previously
2485 	 * loaded card also agrees on the regulatory domain.
2486 	 */
2487 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2488 	    !regdom_changes(driver_request->alpha2))
2489 		return REG_REQ_ALREADY_SET;
2490 
2491 	return REG_REQ_INTERSECT;
2492 }
2493 
2494 /**
2495  * reg_process_hint_driver - process driver regulatory requests
2496  * @wiphy: the wireless device for the regulatory request
2497  * @driver_request: a pending driver regulatory request
2498  *
2499  * The wireless subsystem can use this function to process
2500  * a regulatory request issued by an 802.11 driver.
2501  *
2502  * Returns one of the different reg request treatment values.
2503  */
2504 static enum reg_request_treatment
2505 reg_process_hint_driver(struct wiphy *wiphy,
2506 			struct regulatory_request *driver_request)
2507 {
2508 	const struct ieee80211_regdomain *regd, *tmp;
2509 	enum reg_request_treatment treatment;
2510 
2511 	treatment = __reg_process_hint_driver(driver_request);
2512 
2513 	switch (treatment) {
2514 	case REG_REQ_OK:
2515 		break;
2516 	case REG_REQ_IGNORE:
2517 		return REG_REQ_IGNORE;
2518 	case REG_REQ_INTERSECT:
2519 	case REG_REQ_ALREADY_SET:
2520 		regd = reg_copy_regd(get_cfg80211_regdom());
2521 		if (IS_ERR(regd))
2522 			return REG_REQ_IGNORE;
2523 
2524 		tmp = get_wiphy_regdom(wiphy);
2525 		rcu_assign_pointer(wiphy->regd, regd);
2526 		rcu_free_regdom(tmp);
2527 	}
2528 
2529 
2530 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2531 	driver_request->processed = false;
2532 
2533 	/*
2534 	 * Since CRDA will not be called in this case as we already
2535 	 * have applied the requested regulatory domain before we just
2536 	 * inform userspace we have processed the request
2537 	 */
2538 	if (treatment == REG_REQ_ALREADY_SET) {
2539 		nl80211_send_reg_change_event(driver_request);
2540 		reg_update_last_request(driver_request);
2541 		reg_set_request_processed();
2542 		return REG_REQ_ALREADY_SET;
2543 	}
2544 
2545 	if (reg_query_database(driver_request)) {
2546 		reg_update_last_request(driver_request);
2547 		return REG_REQ_OK;
2548 	}
2549 
2550 	return REG_REQ_IGNORE;
2551 }
2552 
2553 static enum reg_request_treatment
2554 __reg_process_hint_country_ie(struct wiphy *wiphy,
2555 			      struct regulatory_request *country_ie_request)
2556 {
2557 	struct wiphy *last_wiphy = NULL;
2558 	struct regulatory_request *lr = get_last_request();
2559 
2560 	if (reg_request_cell_base(lr)) {
2561 		/* Trust a Cell base station over the AP's country IE */
2562 		if (regdom_changes(country_ie_request->alpha2))
2563 			return REG_REQ_IGNORE;
2564 		return REG_REQ_ALREADY_SET;
2565 	} else {
2566 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2567 			return REG_REQ_IGNORE;
2568 	}
2569 
2570 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2571 		return -EINVAL;
2572 
2573 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2574 		return REG_REQ_OK;
2575 
2576 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2577 
2578 	if (last_wiphy != wiphy) {
2579 		/*
2580 		 * Two cards with two APs claiming different
2581 		 * Country IE alpha2s. We could
2582 		 * intersect them, but that seems unlikely
2583 		 * to be correct. Reject second one for now.
2584 		 */
2585 		if (regdom_changes(country_ie_request->alpha2))
2586 			return REG_REQ_IGNORE;
2587 		return REG_REQ_ALREADY_SET;
2588 	}
2589 
2590 	if (regdom_changes(country_ie_request->alpha2))
2591 		return REG_REQ_OK;
2592 	return REG_REQ_ALREADY_SET;
2593 }
2594 
2595 /**
2596  * reg_process_hint_country_ie - process regulatory requests from country IEs
2597  * @wiphy: the wireless device for the regulatory request
2598  * @country_ie_request: a regulatory request from a country IE
2599  *
2600  * The wireless subsystem can use this function to process
2601  * a regulatory request issued by a country Information Element.
2602  *
2603  * Returns one of the different reg request treatment values.
2604  */
2605 static enum reg_request_treatment
2606 reg_process_hint_country_ie(struct wiphy *wiphy,
2607 			    struct regulatory_request *country_ie_request)
2608 {
2609 	enum reg_request_treatment treatment;
2610 
2611 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2612 
2613 	switch (treatment) {
2614 	case REG_REQ_OK:
2615 		break;
2616 	case REG_REQ_IGNORE:
2617 		return REG_REQ_IGNORE;
2618 	case REG_REQ_ALREADY_SET:
2619 		reg_free_request(country_ie_request);
2620 		return REG_REQ_ALREADY_SET;
2621 	case REG_REQ_INTERSECT:
2622 		/*
2623 		 * This doesn't happen yet, not sure we
2624 		 * ever want to support it for this case.
2625 		 */
2626 		WARN_ONCE(1, "Unexpected intersection for country elements");
2627 		return REG_REQ_IGNORE;
2628 	}
2629 
2630 	country_ie_request->intersect = false;
2631 	country_ie_request->processed = false;
2632 
2633 	if (reg_query_database(country_ie_request)) {
2634 		reg_update_last_request(country_ie_request);
2635 		return REG_REQ_OK;
2636 	}
2637 
2638 	return REG_REQ_IGNORE;
2639 }
2640 
2641 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2642 {
2643 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2644 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2645 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2646 	bool dfs_domain_same;
2647 
2648 	rcu_read_lock();
2649 
2650 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2651 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2652 	if (!wiphy1_regd)
2653 		wiphy1_regd = cfg80211_regd;
2654 
2655 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2656 	if (!wiphy2_regd)
2657 		wiphy2_regd = cfg80211_regd;
2658 
2659 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2660 
2661 	rcu_read_unlock();
2662 
2663 	return dfs_domain_same;
2664 }
2665 
2666 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2667 				    struct ieee80211_channel *src_chan)
2668 {
2669 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2670 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2671 		return;
2672 
2673 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2674 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2675 		return;
2676 
2677 	if (src_chan->center_freq == dst_chan->center_freq &&
2678 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2679 		dst_chan->dfs_state = src_chan->dfs_state;
2680 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2681 	}
2682 }
2683 
2684 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2685 				       struct wiphy *src_wiphy)
2686 {
2687 	struct ieee80211_supported_band *src_sband, *dst_sband;
2688 	struct ieee80211_channel *src_chan, *dst_chan;
2689 	int i, j, band;
2690 
2691 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2692 		return;
2693 
2694 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2695 		dst_sband = dst_wiphy->bands[band];
2696 		src_sband = src_wiphy->bands[band];
2697 		if (!dst_sband || !src_sband)
2698 			continue;
2699 
2700 		for (i = 0; i < dst_sband->n_channels; i++) {
2701 			dst_chan = &dst_sband->channels[i];
2702 			for (j = 0; j < src_sband->n_channels; j++) {
2703 				src_chan = &src_sband->channels[j];
2704 				reg_copy_dfs_chan_state(dst_chan, src_chan);
2705 			}
2706 		}
2707 	}
2708 }
2709 
2710 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2711 {
2712 	struct cfg80211_registered_device *rdev;
2713 
2714 	ASSERT_RTNL();
2715 
2716 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2717 		if (wiphy == &rdev->wiphy)
2718 			continue;
2719 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2720 	}
2721 }
2722 
2723 /* This processes *all* regulatory hints */
2724 static void reg_process_hint(struct regulatory_request *reg_request)
2725 {
2726 	struct wiphy *wiphy = NULL;
2727 	enum reg_request_treatment treatment;
2728 	enum nl80211_reg_initiator initiator = reg_request->initiator;
2729 
2730 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2731 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2732 
2733 	switch (initiator) {
2734 	case NL80211_REGDOM_SET_BY_CORE:
2735 		treatment = reg_process_hint_core(reg_request);
2736 		break;
2737 	case NL80211_REGDOM_SET_BY_USER:
2738 		treatment = reg_process_hint_user(reg_request);
2739 		break;
2740 	case NL80211_REGDOM_SET_BY_DRIVER:
2741 		if (!wiphy)
2742 			goto out_free;
2743 		treatment = reg_process_hint_driver(wiphy, reg_request);
2744 		break;
2745 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2746 		if (!wiphy)
2747 			goto out_free;
2748 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2749 		break;
2750 	default:
2751 		WARN(1, "invalid initiator %d\n", initiator);
2752 		goto out_free;
2753 	}
2754 
2755 	if (treatment == REG_REQ_IGNORE)
2756 		goto out_free;
2757 
2758 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2759 	     "unexpected treatment value %d\n", treatment);
2760 
2761 	/* This is required so that the orig_* parameters are saved.
2762 	 * NOTE: treatment must be set for any case that reaches here!
2763 	 */
2764 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2765 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2766 		wiphy_update_regulatory(wiphy, initiator);
2767 		wiphy_all_share_dfs_chan_state(wiphy);
2768 		reg_check_channels();
2769 	}
2770 
2771 	return;
2772 
2773 out_free:
2774 	reg_free_request(reg_request);
2775 }
2776 
2777 static void notify_self_managed_wiphys(struct regulatory_request *request)
2778 {
2779 	struct cfg80211_registered_device *rdev;
2780 	struct wiphy *wiphy;
2781 
2782 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2783 		wiphy = &rdev->wiphy;
2784 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2785 		    request->initiator == NL80211_REGDOM_SET_BY_USER)
2786 			reg_call_notifier(wiphy, request);
2787 	}
2788 }
2789 
2790 /*
2791  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2792  * Regulatory hints come on a first come first serve basis and we
2793  * must process each one atomically.
2794  */
2795 static void reg_process_pending_hints(void)
2796 {
2797 	struct regulatory_request *reg_request, *lr;
2798 
2799 	lr = get_last_request();
2800 
2801 	/* When last_request->processed becomes true this will be rescheduled */
2802 	if (lr && !lr->processed) {
2803 		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
2804 		return;
2805 	}
2806 
2807 	spin_lock(&reg_requests_lock);
2808 
2809 	if (list_empty(&reg_requests_list)) {
2810 		spin_unlock(&reg_requests_lock);
2811 		return;
2812 	}
2813 
2814 	reg_request = list_first_entry(&reg_requests_list,
2815 				       struct regulatory_request,
2816 				       list);
2817 	list_del_init(&reg_request->list);
2818 
2819 	spin_unlock(&reg_requests_lock);
2820 
2821 	notify_self_managed_wiphys(reg_request);
2822 
2823 	reg_process_hint(reg_request);
2824 
2825 	lr = get_last_request();
2826 
2827 	spin_lock(&reg_requests_lock);
2828 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
2829 		schedule_work(&reg_work);
2830 	spin_unlock(&reg_requests_lock);
2831 }
2832 
2833 /* Processes beacon hints -- this has nothing to do with country IEs */
2834 static void reg_process_pending_beacon_hints(void)
2835 {
2836 	struct cfg80211_registered_device *rdev;
2837 	struct reg_beacon *pending_beacon, *tmp;
2838 
2839 	/* This goes through the _pending_ beacon list */
2840 	spin_lock_bh(&reg_pending_beacons_lock);
2841 
2842 	list_for_each_entry_safe(pending_beacon, tmp,
2843 				 &reg_pending_beacons, list) {
2844 		list_del_init(&pending_beacon->list);
2845 
2846 		/* Applies the beacon hint to current wiphys */
2847 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2848 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2849 
2850 		/* Remembers the beacon hint for new wiphys or reg changes */
2851 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
2852 	}
2853 
2854 	spin_unlock_bh(&reg_pending_beacons_lock);
2855 }
2856 
2857 static void reg_process_self_managed_hints(void)
2858 {
2859 	struct cfg80211_registered_device *rdev;
2860 	struct wiphy *wiphy;
2861 	const struct ieee80211_regdomain *tmp;
2862 	const struct ieee80211_regdomain *regd;
2863 	enum nl80211_band band;
2864 	struct regulatory_request request = {};
2865 
2866 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2867 		wiphy = &rdev->wiphy;
2868 
2869 		spin_lock(&reg_requests_lock);
2870 		regd = rdev->requested_regd;
2871 		rdev->requested_regd = NULL;
2872 		spin_unlock(&reg_requests_lock);
2873 
2874 		if (regd == NULL)
2875 			continue;
2876 
2877 		tmp = get_wiphy_regdom(wiphy);
2878 		rcu_assign_pointer(wiphy->regd, regd);
2879 		rcu_free_regdom(tmp);
2880 
2881 		for (band = 0; band < NUM_NL80211_BANDS; band++)
2882 			handle_band_custom(wiphy, wiphy->bands[band], regd);
2883 
2884 		reg_process_ht_flags(wiphy);
2885 
2886 		request.wiphy_idx = get_wiphy_idx(wiphy);
2887 		request.alpha2[0] = regd->alpha2[0];
2888 		request.alpha2[1] = regd->alpha2[1];
2889 		request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2890 
2891 		nl80211_send_wiphy_reg_change_event(&request);
2892 	}
2893 
2894 	reg_check_channels();
2895 }
2896 
2897 static void reg_todo(struct work_struct *work)
2898 {
2899 	rtnl_lock();
2900 	reg_process_pending_hints();
2901 	reg_process_pending_beacon_hints();
2902 	reg_process_self_managed_hints();
2903 	rtnl_unlock();
2904 }
2905 
2906 static void queue_regulatory_request(struct regulatory_request *request)
2907 {
2908 	request->alpha2[0] = toupper(request->alpha2[0]);
2909 	request->alpha2[1] = toupper(request->alpha2[1]);
2910 
2911 	spin_lock(&reg_requests_lock);
2912 	list_add_tail(&request->list, &reg_requests_list);
2913 	spin_unlock(&reg_requests_lock);
2914 
2915 	schedule_work(&reg_work);
2916 }
2917 
2918 /*
2919  * Core regulatory hint -- happens during cfg80211_init()
2920  * and when we restore regulatory settings.
2921  */
2922 static int regulatory_hint_core(const char *alpha2)
2923 {
2924 	struct regulatory_request *request;
2925 
2926 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2927 	if (!request)
2928 		return -ENOMEM;
2929 
2930 	request->alpha2[0] = alpha2[0];
2931 	request->alpha2[1] = alpha2[1];
2932 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
2933 	request->wiphy_idx = WIPHY_IDX_INVALID;
2934 
2935 	queue_regulatory_request(request);
2936 
2937 	return 0;
2938 }
2939 
2940 /* User hints */
2941 int regulatory_hint_user(const char *alpha2,
2942 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
2943 {
2944 	struct regulatory_request *request;
2945 
2946 	if (WARN_ON(!alpha2))
2947 		return -EINVAL;
2948 
2949 	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
2950 		return -EINVAL;
2951 
2952 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2953 	if (!request)
2954 		return -ENOMEM;
2955 
2956 	request->wiphy_idx = WIPHY_IDX_INVALID;
2957 	request->alpha2[0] = alpha2[0];
2958 	request->alpha2[1] = alpha2[1];
2959 	request->initiator = NL80211_REGDOM_SET_BY_USER;
2960 	request->user_reg_hint_type = user_reg_hint_type;
2961 
2962 	/* Allow calling CRDA again */
2963 	reset_crda_timeouts();
2964 
2965 	queue_regulatory_request(request);
2966 
2967 	return 0;
2968 }
2969 
2970 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2971 {
2972 	spin_lock(&reg_indoor_lock);
2973 
2974 	/* It is possible that more than one user space process is trying to
2975 	 * configure the indoor setting. To handle such cases, clear the indoor
2976 	 * setting in case that some process does not think that the device
2977 	 * is operating in an indoor environment. In addition, if a user space
2978 	 * process indicates that it is controlling the indoor setting, save its
2979 	 * portid, i.e., make it the owner.
2980 	 */
2981 	reg_is_indoor = is_indoor;
2982 	if (reg_is_indoor) {
2983 		if (!reg_is_indoor_portid)
2984 			reg_is_indoor_portid = portid;
2985 	} else {
2986 		reg_is_indoor_portid = 0;
2987 	}
2988 
2989 	spin_unlock(&reg_indoor_lock);
2990 
2991 	if (!is_indoor)
2992 		reg_check_channels();
2993 
2994 	return 0;
2995 }
2996 
2997 void regulatory_netlink_notify(u32 portid)
2998 {
2999 	spin_lock(&reg_indoor_lock);
3000 
3001 	if (reg_is_indoor_portid != portid) {
3002 		spin_unlock(&reg_indoor_lock);
3003 		return;
3004 	}
3005 
3006 	reg_is_indoor = false;
3007 	reg_is_indoor_portid = 0;
3008 
3009 	spin_unlock(&reg_indoor_lock);
3010 
3011 	reg_check_channels();
3012 }
3013 
3014 /* Driver hints */
3015 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3016 {
3017 	struct regulatory_request *request;
3018 
3019 	if (WARN_ON(!alpha2 || !wiphy))
3020 		return -EINVAL;
3021 
3022 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3023 
3024 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3025 	if (!request)
3026 		return -ENOMEM;
3027 
3028 	request->wiphy_idx = get_wiphy_idx(wiphy);
3029 
3030 	request->alpha2[0] = alpha2[0];
3031 	request->alpha2[1] = alpha2[1];
3032 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3033 
3034 	/* Allow calling CRDA again */
3035 	reset_crda_timeouts();
3036 
3037 	queue_regulatory_request(request);
3038 
3039 	return 0;
3040 }
3041 EXPORT_SYMBOL(regulatory_hint);
3042 
3043 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3044 				const u8 *country_ie, u8 country_ie_len)
3045 {
3046 	char alpha2[2];
3047 	enum environment_cap env = ENVIRON_ANY;
3048 	struct regulatory_request *request = NULL, *lr;
3049 
3050 	/* IE len must be evenly divisible by 2 */
3051 	if (country_ie_len & 0x01)
3052 		return;
3053 
3054 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3055 		return;
3056 
3057 	request = kzalloc(sizeof(*request), GFP_KERNEL);
3058 	if (!request)
3059 		return;
3060 
3061 	alpha2[0] = country_ie[0];
3062 	alpha2[1] = country_ie[1];
3063 
3064 	if (country_ie[2] == 'I')
3065 		env = ENVIRON_INDOOR;
3066 	else if (country_ie[2] == 'O')
3067 		env = ENVIRON_OUTDOOR;
3068 
3069 	rcu_read_lock();
3070 	lr = get_last_request();
3071 
3072 	if (unlikely(!lr))
3073 		goto out;
3074 
3075 	/*
3076 	 * We will run this only upon a successful connection on cfg80211.
3077 	 * We leave conflict resolution to the workqueue, where can hold
3078 	 * the RTNL.
3079 	 */
3080 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3081 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3082 		goto out;
3083 
3084 	request->wiphy_idx = get_wiphy_idx(wiphy);
3085 	request->alpha2[0] = alpha2[0];
3086 	request->alpha2[1] = alpha2[1];
3087 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3088 	request->country_ie_env = env;
3089 
3090 	/* Allow calling CRDA again */
3091 	reset_crda_timeouts();
3092 
3093 	queue_regulatory_request(request);
3094 	request = NULL;
3095 out:
3096 	kfree(request);
3097 	rcu_read_unlock();
3098 }
3099 
3100 static void restore_alpha2(char *alpha2, bool reset_user)
3101 {
3102 	/* indicates there is no alpha2 to consider for restoration */
3103 	alpha2[0] = '9';
3104 	alpha2[1] = '7';
3105 
3106 	/* The user setting has precedence over the module parameter */
3107 	if (is_user_regdom_saved()) {
3108 		/* Unless we're asked to ignore it and reset it */
3109 		if (reset_user) {
3110 			pr_debug("Restoring regulatory settings including user preference\n");
3111 			user_alpha2[0] = '9';
3112 			user_alpha2[1] = '7';
3113 
3114 			/*
3115 			 * If we're ignoring user settings, we still need to
3116 			 * check the module parameter to ensure we put things
3117 			 * back as they were for a full restore.
3118 			 */
3119 			if (!is_world_regdom(ieee80211_regdom)) {
3120 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3121 					 ieee80211_regdom[0], ieee80211_regdom[1]);
3122 				alpha2[0] = ieee80211_regdom[0];
3123 				alpha2[1] = ieee80211_regdom[1];
3124 			}
3125 		} else {
3126 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3127 				 user_alpha2[0], user_alpha2[1]);
3128 			alpha2[0] = user_alpha2[0];
3129 			alpha2[1] = user_alpha2[1];
3130 		}
3131 	} else if (!is_world_regdom(ieee80211_regdom)) {
3132 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3133 			 ieee80211_regdom[0], ieee80211_regdom[1]);
3134 		alpha2[0] = ieee80211_regdom[0];
3135 		alpha2[1] = ieee80211_regdom[1];
3136 	} else
3137 		pr_debug("Restoring regulatory settings\n");
3138 }
3139 
3140 static void restore_custom_reg_settings(struct wiphy *wiphy)
3141 {
3142 	struct ieee80211_supported_band *sband;
3143 	enum nl80211_band band;
3144 	struct ieee80211_channel *chan;
3145 	int i;
3146 
3147 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3148 		sband = wiphy->bands[band];
3149 		if (!sband)
3150 			continue;
3151 		for (i = 0; i < sband->n_channels; i++) {
3152 			chan = &sband->channels[i];
3153 			chan->flags = chan->orig_flags;
3154 			chan->max_antenna_gain = chan->orig_mag;
3155 			chan->max_power = chan->orig_mpwr;
3156 			chan->beacon_found = false;
3157 		}
3158 	}
3159 }
3160 
3161 /*
3162  * Restoring regulatory settings involves ingoring any
3163  * possibly stale country IE information and user regulatory
3164  * settings if so desired, this includes any beacon hints
3165  * learned as we could have traveled outside to another country
3166  * after disconnection. To restore regulatory settings we do
3167  * exactly what we did at bootup:
3168  *
3169  *   - send a core regulatory hint
3170  *   - send a user regulatory hint if applicable
3171  *
3172  * Device drivers that send a regulatory hint for a specific country
3173  * keep their own regulatory domain on wiphy->regd so that does does
3174  * not need to be remembered.
3175  */
3176 static void restore_regulatory_settings(bool reset_user, bool cached)
3177 {
3178 	char alpha2[2];
3179 	char world_alpha2[2];
3180 	struct reg_beacon *reg_beacon, *btmp;
3181 	LIST_HEAD(tmp_reg_req_list);
3182 	struct cfg80211_registered_device *rdev;
3183 
3184 	ASSERT_RTNL();
3185 
3186 	/*
3187 	 * Clear the indoor setting in case that it is not controlled by user
3188 	 * space, as otherwise there is no guarantee that the device is still
3189 	 * operating in an indoor environment.
3190 	 */
3191 	spin_lock(&reg_indoor_lock);
3192 	if (reg_is_indoor && !reg_is_indoor_portid) {
3193 		reg_is_indoor = false;
3194 		reg_check_channels();
3195 	}
3196 	spin_unlock(&reg_indoor_lock);
3197 
3198 	reset_regdomains(true, &world_regdom);
3199 	restore_alpha2(alpha2, reset_user);
3200 
3201 	/*
3202 	 * If there's any pending requests we simply
3203 	 * stash them to a temporary pending queue and
3204 	 * add then after we've restored regulatory
3205 	 * settings.
3206 	 */
3207 	spin_lock(&reg_requests_lock);
3208 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3209 	spin_unlock(&reg_requests_lock);
3210 
3211 	/* Clear beacon hints */
3212 	spin_lock_bh(&reg_pending_beacons_lock);
3213 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3214 		list_del(&reg_beacon->list);
3215 		kfree(reg_beacon);
3216 	}
3217 	spin_unlock_bh(&reg_pending_beacons_lock);
3218 
3219 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3220 		list_del(&reg_beacon->list);
3221 		kfree(reg_beacon);
3222 	}
3223 
3224 	/* First restore to the basic regulatory settings */
3225 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3226 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3227 
3228 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3229 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3230 			continue;
3231 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3232 			restore_custom_reg_settings(&rdev->wiphy);
3233 	}
3234 
3235 	if (cached && (!is_an_alpha2(alpha2) ||
3236 		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3237 		reset_regdomains(false, cfg80211_world_regdom);
3238 		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3239 		print_regdomain(get_cfg80211_regdom());
3240 		nl80211_send_reg_change_event(&core_request_world);
3241 		reg_set_request_processed();
3242 
3243 		if (is_an_alpha2(alpha2) &&
3244 		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3245 			struct regulatory_request *ureq;
3246 
3247 			spin_lock(&reg_requests_lock);
3248 			ureq = list_last_entry(&reg_requests_list,
3249 					       struct regulatory_request,
3250 					       list);
3251 			list_del(&ureq->list);
3252 			spin_unlock(&reg_requests_lock);
3253 
3254 			notify_self_managed_wiphys(ureq);
3255 			reg_update_last_request(ureq);
3256 			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3257 				   REGD_SOURCE_CACHED);
3258 		}
3259 	} else {
3260 		regulatory_hint_core(world_alpha2);
3261 
3262 		/*
3263 		 * This restores the ieee80211_regdom module parameter
3264 		 * preference or the last user requested regulatory
3265 		 * settings, user regulatory settings takes precedence.
3266 		 */
3267 		if (is_an_alpha2(alpha2))
3268 			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3269 	}
3270 
3271 	spin_lock(&reg_requests_lock);
3272 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3273 	spin_unlock(&reg_requests_lock);
3274 
3275 	pr_debug("Kicking the queue\n");
3276 
3277 	schedule_work(&reg_work);
3278 }
3279 
3280 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3281 {
3282 	struct cfg80211_registered_device *rdev;
3283 	struct wireless_dev *wdev;
3284 
3285 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3286 		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3287 			wdev_lock(wdev);
3288 			if (!(wdev->wiphy->regulatory_flags & flag)) {
3289 				wdev_unlock(wdev);
3290 				return false;
3291 			}
3292 			wdev_unlock(wdev);
3293 		}
3294 	}
3295 
3296 	return true;
3297 }
3298 
3299 void regulatory_hint_disconnect(void)
3300 {
3301 	/* Restore of regulatory settings is not required when wiphy(s)
3302 	 * ignore IE from connected access point but clearance of beacon hints
3303 	 * is required when wiphy(s) supports beacon hints.
3304 	 */
3305 	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3306 		struct reg_beacon *reg_beacon, *btmp;
3307 
3308 		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3309 			return;
3310 
3311 		spin_lock_bh(&reg_pending_beacons_lock);
3312 		list_for_each_entry_safe(reg_beacon, btmp,
3313 					 &reg_pending_beacons, list) {
3314 			list_del(&reg_beacon->list);
3315 			kfree(reg_beacon);
3316 		}
3317 		spin_unlock_bh(&reg_pending_beacons_lock);
3318 
3319 		list_for_each_entry_safe(reg_beacon, btmp,
3320 					 &reg_beacon_list, list) {
3321 			list_del(&reg_beacon->list);
3322 			kfree(reg_beacon);
3323 		}
3324 
3325 		return;
3326 	}
3327 
3328 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3329 	restore_regulatory_settings(false, true);
3330 }
3331 
3332 static bool freq_is_chan_12_13_14(u32 freq)
3333 {
3334 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3335 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3336 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3337 		return true;
3338 	return false;
3339 }
3340 
3341 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3342 {
3343 	struct reg_beacon *pending_beacon;
3344 
3345 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3346 		if (ieee80211_channel_equal(beacon_chan,
3347 					    &pending_beacon->chan))
3348 			return true;
3349 	return false;
3350 }
3351 
3352 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3353 				 struct ieee80211_channel *beacon_chan,
3354 				 gfp_t gfp)
3355 {
3356 	struct reg_beacon *reg_beacon;
3357 	bool processing;
3358 
3359 	if (beacon_chan->beacon_found ||
3360 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3361 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3362 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3363 		return 0;
3364 
3365 	spin_lock_bh(&reg_pending_beacons_lock);
3366 	processing = pending_reg_beacon(beacon_chan);
3367 	spin_unlock_bh(&reg_pending_beacons_lock);
3368 
3369 	if (processing)
3370 		return 0;
3371 
3372 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3373 	if (!reg_beacon)
3374 		return -ENOMEM;
3375 
3376 	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3377 		 beacon_chan->center_freq, beacon_chan->freq_offset,
3378 		 ieee80211_freq_khz_to_channel(
3379 			 ieee80211_channel_to_khz(beacon_chan)),
3380 		 wiphy_name(wiphy));
3381 
3382 	memcpy(&reg_beacon->chan, beacon_chan,
3383 	       sizeof(struct ieee80211_channel));
3384 
3385 	/*
3386 	 * Since we can be called from BH or and non-BH context
3387 	 * we must use spin_lock_bh()
3388 	 */
3389 	spin_lock_bh(&reg_pending_beacons_lock);
3390 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3391 	spin_unlock_bh(&reg_pending_beacons_lock);
3392 
3393 	schedule_work(&reg_work);
3394 
3395 	return 0;
3396 }
3397 
3398 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3399 {
3400 	unsigned int i;
3401 	const struct ieee80211_reg_rule *reg_rule = NULL;
3402 	const struct ieee80211_freq_range *freq_range = NULL;
3403 	const struct ieee80211_power_rule *power_rule = NULL;
3404 	char bw[32], cac_time[32];
3405 
3406 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3407 
3408 	for (i = 0; i < rd->n_reg_rules; i++) {
3409 		reg_rule = &rd->reg_rules[i];
3410 		freq_range = &reg_rule->freq_range;
3411 		power_rule = &reg_rule->power_rule;
3412 
3413 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3414 			snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3415 				 freq_range->max_bandwidth_khz,
3416 				 reg_get_max_bandwidth(rd, reg_rule));
3417 		else
3418 			snprintf(bw, sizeof(bw), "%d KHz",
3419 				 freq_range->max_bandwidth_khz);
3420 
3421 		if (reg_rule->flags & NL80211_RRF_DFS)
3422 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3423 				  reg_rule->dfs_cac_ms/1000);
3424 		else
3425 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3426 
3427 
3428 		/*
3429 		 * There may not be documentation for max antenna gain
3430 		 * in certain regions
3431 		 */
3432 		if (power_rule->max_antenna_gain)
3433 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3434 				freq_range->start_freq_khz,
3435 				freq_range->end_freq_khz,
3436 				bw,
3437 				power_rule->max_antenna_gain,
3438 				power_rule->max_eirp,
3439 				cac_time);
3440 		else
3441 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3442 				freq_range->start_freq_khz,
3443 				freq_range->end_freq_khz,
3444 				bw,
3445 				power_rule->max_eirp,
3446 				cac_time);
3447 	}
3448 }
3449 
3450 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3451 {
3452 	switch (dfs_region) {
3453 	case NL80211_DFS_UNSET:
3454 	case NL80211_DFS_FCC:
3455 	case NL80211_DFS_ETSI:
3456 	case NL80211_DFS_JP:
3457 		return true;
3458 	default:
3459 		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3460 		return false;
3461 	}
3462 }
3463 
3464 static void print_regdomain(const struct ieee80211_regdomain *rd)
3465 {
3466 	struct regulatory_request *lr = get_last_request();
3467 
3468 	if (is_intersected_alpha2(rd->alpha2)) {
3469 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3470 			struct cfg80211_registered_device *rdev;
3471 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3472 			if (rdev) {
3473 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3474 					rdev->country_ie_alpha2[0],
3475 					rdev->country_ie_alpha2[1]);
3476 			} else
3477 				pr_debug("Current regulatory domain intersected:\n");
3478 		} else
3479 			pr_debug("Current regulatory domain intersected:\n");
3480 	} else if (is_world_regdom(rd->alpha2)) {
3481 		pr_debug("World regulatory domain updated:\n");
3482 	} else {
3483 		if (is_unknown_alpha2(rd->alpha2))
3484 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3485 		else {
3486 			if (reg_request_cell_base(lr))
3487 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3488 					rd->alpha2[0], rd->alpha2[1]);
3489 			else
3490 				pr_debug("Regulatory domain changed to country: %c%c\n",
3491 					rd->alpha2[0], rd->alpha2[1]);
3492 		}
3493 	}
3494 
3495 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3496 	print_rd_rules(rd);
3497 }
3498 
3499 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3500 {
3501 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3502 	print_rd_rules(rd);
3503 }
3504 
3505 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3506 {
3507 	if (!is_world_regdom(rd->alpha2))
3508 		return -EINVAL;
3509 	update_world_regdomain(rd);
3510 	return 0;
3511 }
3512 
3513 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3514 			   struct regulatory_request *user_request)
3515 {
3516 	const struct ieee80211_regdomain *intersected_rd = NULL;
3517 
3518 	if (!regdom_changes(rd->alpha2))
3519 		return -EALREADY;
3520 
3521 	if (!is_valid_rd(rd)) {
3522 		pr_err("Invalid regulatory domain detected: %c%c\n",
3523 		       rd->alpha2[0], rd->alpha2[1]);
3524 		print_regdomain_info(rd);
3525 		return -EINVAL;
3526 	}
3527 
3528 	if (!user_request->intersect) {
3529 		reset_regdomains(false, rd);
3530 		return 0;
3531 	}
3532 
3533 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3534 	if (!intersected_rd)
3535 		return -EINVAL;
3536 
3537 	kfree(rd);
3538 	rd = NULL;
3539 	reset_regdomains(false, intersected_rd);
3540 
3541 	return 0;
3542 }
3543 
3544 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3545 			     struct regulatory_request *driver_request)
3546 {
3547 	const struct ieee80211_regdomain *regd;
3548 	const struct ieee80211_regdomain *intersected_rd = NULL;
3549 	const struct ieee80211_regdomain *tmp;
3550 	struct wiphy *request_wiphy;
3551 
3552 	if (is_world_regdom(rd->alpha2))
3553 		return -EINVAL;
3554 
3555 	if (!regdom_changes(rd->alpha2))
3556 		return -EALREADY;
3557 
3558 	if (!is_valid_rd(rd)) {
3559 		pr_err("Invalid regulatory domain detected: %c%c\n",
3560 		       rd->alpha2[0], rd->alpha2[1]);
3561 		print_regdomain_info(rd);
3562 		return -EINVAL;
3563 	}
3564 
3565 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3566 	if (!request_wiphy)
3567 		return -ENODEV;
3568 
3569 	if (!driver_request->intersect) {
3570 		if (request_wiphy->regd)
3571 			return -EALREADY;
3572 
3573 		regd = reg_copy_regd(rd);
3574 		if (IS_ERR(regd))
3575 			return PTR_ERR(regd);
3576 
3577 		rcu_assign_pointer(request_wiphy->regd, regd);
3578 		reset_regdomains(false, rd);
3579 		return 0;
3580 	}
3581 
3582 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3583 	if (!intersected_rd)
3584 		return -EINVAL;
3585 
3586 	/*
3587 	 * We can trash what CRDA provided now.
3588 	 * However if a driver requested this specific regulatory
3589 	 * domain we keep it for its private use
3590 	 */
3591 	tmp = get_wiphy_regdom(request_wiphy);
3592 	rcu_assign_pointer(request_wiphy->regd, rd);
3593 	rcu_free_regdom(tmp);
3594 
3595 	rd = NULL;
3596 
3597 	reset_regdomains(false, intersected_rd);
3598 
3599 	return 0;
3600 }
3601 
3602 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3603 				 struct regulatory_request *country_ie_request)
3604 {
3605 	struct wiphy *request_wiphy;
3606 
3607 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3608 	    !is_unknown_alpha2(rd->alpha2))
3609 		return -EINVAL;
3610 
3611 	/*
3612 	 * Lets only bother proceeding on the same alpha2 if the current
3613 	 * rd is non static (it means CRDA was present and was used last)
3614 	 * and the pending request came in from a country IE
3615 	 */
3616 
3617 	if (!is_valid_rd(rd)) {
3618 		pr_err("Invalid regulatory domain detected: %c%c\n",
3619 		       rd->alpha2[0], rd->alpha2[1]);
3620 		print_regdomain_info(rd);
3621 		return -EINVAL;
3622 	}
3623 
3624 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3625 	if (!request_wiphy)
3626 		return -ENODEV;
3627 
3628 	if (country_ie_request->intersect)
3629 		return -EINVAL;
3630 
3631 	reset_regdomains(false, rd);
3632 	return 0;
3633 }
3634 
3635 /*
3636  * Use this call to set the current regulatory domain. Conflicts with
3637  * multiple drivers can be ironed out later. Caller must've already
3638  * kmalloc'd the rd structure.
3639  */
3640 int set_regdom(const struct ieee80211_regdomain *rd,
3641 	       enum ieee80211_regd_source regd_src)
3642 {
3643 	struct regulatory_request *lr;
3644 	bool user_reset = false;
3645 	int r;
3646 
3647 	if (IS_ERR_OR_NULL(rd))
3648 		return -ENODATA;
3649 
3650 	if (!reg_is_valid_request(rd->alpha2)) {
3651 		kfree(rd);
3652 		return -EINVAL;
3653 	}
3654 
3655 	if (regd_src == REGD_SOURCE_CRDA)
3656 		reset_crda_timeouts();
3657 
3658 	lr = get_last_request();
3659 
3660 	/* Note that this doesn't update the wiphys, this is done below */
3661 	switch (lr->initiator) {
3662 	case NL80211_REGDOM_SET_BY_CORE:
3663 		r = reg_set_rd_core(rd);
3664 		break;
3665 	case NL80211_REGDOM_SET_BY_USER:
3666 		cfg80211_save_user_regdom(rd);
3667 		r = reg_set_rd_user(rd, lr);
3668 		user_reset = true;
3669 		break;
3670 	case NL80211_REGDOM_SET_BY_DRIVER:
3671 		r = reg_set_rd_driver(rd, lr);
3672 		break;
3673 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3674 		r = reg_set_rd_country_ie(rd, lr);
3675 		break;
3676 	default:
3677 		WARN(1, "invalid initiator %d\n", lr->initiator);
3678 		kfree(rd);
3679 		return -EINVAL;
3680 	}
3681 
3682 	if (r) {
3683 		switch (r) {
3684 		case -EALREADY:
3685 			reg_set_request_processed();
3686 			break;
3687 		default:
3688 			/* Back to world regulatory in case of errors */
3689 			restore_regulatory_settings(user_reset, false);
3690 		}
3691 
3692 		kfree(rd);
3693 		return r;
3694 	}
3695 
3696 	/* This would make this whole thing pointless */
3697 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3698 		return -EINVAL;
3699 
3700 	/* update all wiphys now with the new established regulatory domain */
3701 	update_all_wiphy_regulatory(lr->initiator);
3702 
3703 	print_regdomain(get_cfg80211_regdom());
3704 
3705 	nl80211_send_reg_change_event(lr);
3706 
3707 	reg_set_request_processed();
3708 
3709 	return 0;
3710 }
3711 
3712 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3713 				       struct ieee80211_regdomain *rd)
3714 {
3715 	const struct ieee80211_regdomain *regd;
3716 	const struct ieee80211_regdomain *prev_regd;
3717 	struct cfg80211_registered_device *rdev;
3718 
3719 	if (WARN_ON(!wiphy || !rd))
3720 		return -EINVAL;
3721 
3722 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3723 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3724 		return -EPERM;
3725 
3726 	if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3727 		print_regdomain_info(rd);
3728 		return -EINVAL;
3729 	}
3730 
3731 	regd = reg_copy_regd(rd);
3732 	if (IS_ERR(regd))
3733 		return PTR_ERR(regd);
3734 
3735 	rdev = wiphy_to_rdev(wiphy);
3736 
3737 	spin_lock(&reg_requests_lock);
3738 	prev_regd = rdev->requested_regd;
3739 	rdev->requested_regd = regd;
3740 	spin_unlock(&reg_requests_lock);
3741 
3742 	kfree(prev_regd);
3743 	return 0;
3744 }
3745 
3746 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3747 			      struct ieee80211_regdomain *rd)
3748 {
3749 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3750 
3751 	if (ret)
3752 		return ret;
3753 
3754 	schedule_work(&reg_work);
3755 	return 0;
3756 }
3757 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3758 
3759 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3760 					struct ieee80211_regdomain *rd)
3761 {
3762 	int ret;
3763 
3764 	ASSERT_RTNL();
3765 
3766 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
3767 	if (ret)
3768 		return ret;
3769 
3770 	/* process the request immediately */
3771 	reg_process_self_managed_hints();
3772 	return 0;
3773 }
3774 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3775 
3776 void wiphy_regulatory_register(struct wiphy *wiphy)
3777 {
3778 	struct regulatory_request *lr = get_last_request();
3779 
3780 	/* self-managed devices ignore beacon hints and country IE */
3781 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3782 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3783 					   REGULATORY_COUNTRY_IE_IGNORE;
3784 
3785 		/*
3786 		 * The last request may have been received before this
3787 		 * registration call. Call the driver notifier if
3788 		 * initiator is USER.
3789 		 */
3790 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
3791 			reg_call_notifier(wiphy, lr);
3792 	}
3793 
3794 	if (!reg_dev_ignore_cell_hint(wiphy))
3795 		reg_num_devs_support_basehint++;
3796 
3797 	wiphy_update_regulatory(wiphy, lr->initiator);
3798 	wiphy_all_share_dfs_chan_state(wiphy);
3799 }
3800 
3801 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3802 {
3803 	struct wiphy *request_wiphy = NULL;
3804 	struct regulatory_request *lr;
3805 
3806 	lr = get_last_request();
3807 
3808 	if (!reg_dev_ignore_cell_hint(wiphy))
3809 		reg_num_devs_support_basehint--;
3810 
3811 	rcu_free_regdom(get_wiphy_regdom(wiphy));
3812 	RCU_INIT_POINTER(wiphy->regd, NULL);
3813 
3814 	if (lr)
3815 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3816 
3817 	if (!request_wiphy || request_wiphy != wiphy)
3818 		return;
3819 
3820 	lr->wiphy_idx = WIPHY_IDX_INVALID;
3821 	lr->country_ie_env = ENVIRON_ANY;
3822 }
3823 
3824 /*
3825  * See FCC notices for UNII band definitions
3826  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
3827  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
3828  */
3829 int cfg80211_get_unii(int freq)
3830 {
3831 	/* UNII-1 */
3832 	if (freq >= 5150 && freq <= 5250)
3833 		return 0;
3834 
3835 	/* UNII-2A */
3836 	if (freq > 5250 && freq <= 5350)
3837 		return 1;
3838 
3839 	/* UNII-2B */
3840 	if (freq > 5350 && freq <= 5470)
3841 		return 2;
3842 
3843 	/* UNII-2C */
3844 	if (freq > 5470 && freq <= 5725)
3845 		return 3;
3846 
3847 	/* UNII-3 */
3848 	if (freq > 5725 && freq <= 5825)
3849 		return 4;
3850 
3851 	/* UNII-5 */
3852 	if (freq > 5925 && freq <= 6425)
3853 		return 5;
3854 
3855 	/* UNII-6 */
3856 	if (freq > 6425 && freq <= 6525)
3857 		return 6;
3858 
3859 	/* UNII-7 */
3860 	if (freq > 6525 && freq <= 6875)
3861 		return 7;
3862 
3863 	/* UNII-8 */
3864 	if (freq > 6875 && freq <= 7125)
3865 		return 8;
3866 
3867 	return -EINVAL;
3868 }
3869 
3870 bool regulatory_indoor_allowed(void)
3871 {
3872 	return reg_is_indoor;
3873 }
3874 
3875 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3876 {
3877 	const struct ieee80211_regdomain *regd = NULL;
3878 	const struct ieee80211_regdomain *wiphy_regd = NULL;
3879 	bool pre_cac_allowed = false;
3880 
3881 	rcu_read_lock();
3882 
3883 	regd = rcu_dereference(cfg80211_regdomain);
3884 	wiphy_regd = rcu_dereference(wiphy->regd);
3885 	if (!wiphy_regd) {
3886 		if (regd->dfs_region == NL80211_DFS_ETSI)
3887 			pre_cac_allowed = true;
3888 
3889 		rcu_read_unlock();
3890 
3891 		return pre_cac_allowed;
3892 	}
3893 
3894 	if (regd->dfs_region == wiphy_regd->dfs_region &&
3895 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3896 		pre_cac_allowed = true;
3897 
3898 	rcu_read_unlock();
3899 
3900 	return pre_cac_allowed;
3901 }
3902 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
3903 
3904 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
3905 {
3906 	struct wireless_dev *wdev;
3907 	/* If we finished CAC or received radar, we should end any
3908 	 * CAC running on the same channels.
3909 	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
3910 	 * either all channels are available - those the CAC_FINISHED
3911 	 * event has effected another wdev state, or there is a channel
3912 	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
3913 	 * event has effected another wdev state.
3914 	 * In both cases we should end the CAC on the wdev.
3915 	 */
3916 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3917 		if (wdev->cac_started &&
3918 		    !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
3919 			rdev_end_cac(rdev, wdev->netdev);
3920 	}
3921 }
3922 
3923 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3924 				    struct cfg80211_chan_def *chandef,
3925 				    enum nl80211_dfs_state dfs_state,
3926 				    enum nl80211_radar_event event)
3927 {
3928 	struct cfg80211_registered_device *rdev;
3929 
3930 	ASSERT_RTNL();
3931 
3932 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3933 		return;
3934 
3935 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3936 		if (wiphy == &rdev->wiphy)
3937 			continue;
3938 
3939 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3940 			continue;
3941 
3942 		if (!ieee80211_get_channel(&rdev->wiphy,
3943 					   chandef->chan->center_freq))
3944 			continue;
3945 
3946 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3947 
3948 		if (event == NL80211_RADAR_DETECTED ||
3949 		    event == NL80211_RADAR_CAC_FINISHED) {
3950 			cfg80211_sched_dfs_chan_update(rdev);
3951 			cfg80211_check_and_end_cac(rdev);
3952 		}
3953 
3954 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3955 	}
3956 }
3957 
3958 static int __init regulatory_init_db(void)
3959 {
3960 	int err;
3961 
3962 	/*
3963 	 * It's possible that - due to other bugs/issues - cfg80211
3964 	 * never called regulatory_init() below, or that it failed;
3965 	 * in that case, don't try to do any further work here as
3966 	 * it's doomed to lead to crashes.
3967 	 */
3968 	if (IS_ERR_OR_NULL(reg_pdev))
3969 		return -EINVAL;
3970 
3971 	err = load_builtin_regdb_keys();
3972 	if (err)
3973 		return err;
3974 
3975 	/* We always try to get an update for the static regdomain */
3976 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3977 	if (err) {
3978 		if (err == -ENOMEM) {
3979 			platform_device_unregister(reg_pdev);
3980 			return err;
3981 		}
3982 		/*
3983 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
3984 		 * memory which is handled and propagated appropriately above
3985 		 * but it can also fail during a netlink_broadcast() or during
3986 		 * early boot for call_usermodehelper(). For now treat these
3987 		 * errors as non-fatal.
3988 		 */
3989 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3990 	}
3991 
3992 	/*
3993 	 * Finally, if the user set the module parameter treat it
3994 	 * as a user hint.
3995 	 */
3996 	if (!is_world_regdom(ieee80211_regdom))
3997 		regulatory_hint_user(ieee80211_regdom,
3998 				     NL80211_USER_REG_HINT_USER);
3999 
4000 	return 0;
4001 }
4002 #ifndef MODULE
4003 late_initcall(regulatory_init_db);
4004 #endif
4005 
4006 int __init regulatory_init(void)
4007 {
4008 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4009 	if (IS_ERR(reg_pdev))
4010 		return PTR_ERR(reg_pdev);
4011 
4012 	spin_lock_init(&reg_requests_lock);
4013 	spin_lock_init(&reg_pending_beacons_lock);
4014 	spin_lock_init(&reg_indoor_lock);
4015 
4016 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4017 
4018 	user_alpha2[0] = '9';
4019 	user_alpha2[1] = '7';
4020 
4021 #ifdef MODULE
4022 	return regulatory_init_db();
4023 #else
4024 	return 0;
4025 #endif
4026 }
4027 
4028 void regulatory_exit(void)
4029 {
4030 	struct regulatory_request *reg_request, *tmp;
4031 	struct reg_beacon *reg_beacon, *btmp;
4032 
4033 	cancel_work_sync(&reg_work);
4034 	cancel_crda_timeout_sync();
4035 	cancel_delayed_work_sync(&reg_check_chans);
4036 
4037 	/* Lock to suppress warnings */
4038 	rtnl_lock();
4039 	reset_regdomains(true, NULL);
4040 	rtnl_unlock();
4041 
4042 	dev_set_uevent_suppress(&reg_pdev->dev, true);
4043 
4044 	platform_device_unregister(reg_pdev);
4045 
4046 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4047 		list_del(&reg_beacon->list);
4048 		kfree(reg_beacon);
4049 	}
4050 
4051 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4052 		list_del(&reg_beacon->list);
4053 		kfree(reg_beacon);
4054 	}
4055 
4056 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4057 		list_del(&reg_request->list);
4058 		kfree(reg_request);
4059 	}
4060 
4061 	if (!IS_ERR_OR_NULL(regdb))
4062 		kfree(regdb);
4063 	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4064 		kfree(cfg80211_user_regdom);
4065 
4066 	free_regdb_keyring();
4067 }
4068