xref: /openbmc/linux/net/wireless/reg.c (revision f7af616c)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2021 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65 
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71 
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *	be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *	regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83 	REG_REQ_OK,
84 	REG_REQ_IGNORE,
85 	REG_REQ_INTERSECT,
86 	REG_REQ_ALREADY_SET,
87 };
88 
89 static struct regulatory_request core_request_world = {
90 	.initiator = NL80211_REGDOM_SET_BY_CORE,
91 	.alpha2[0] = '0',
92 	.alpha2[1] = '0',
93 	.intersect = false,
94 	.processed = true,
95 	.country_ie_env = ENVIRON_ANY,
96 };
97 
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103 	(void __force __rcu *)&core_request_world;
104 
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107 
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115 
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122 
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static DEFINE_SPINLOCK(reg_indoor_lock);
130 
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133 
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 
137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
138 {
139 	return rcu_dereference_rtnl(cfg80211_regdomain);
140 }
141 
142 /*
143  * Returns the regulatory domain associated with the wiphy.
144  *
145  * Requires any of RTNL, wiphy mutex or RCU protection.
146  */
147 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
148 {
149 	return rcu_dereference_check(wiphy->regd,
150 				     lockdep_is_held(&wiphy->mtx) ||
151 				     lockdep_rtnl_is_held());
152 }
153 EXPORT_SYMBOL(get_wiphy_regdom);
154 
155 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
156 {
157 	switch (dfs_region) {
158 	case NL80211_DFS_UNSET:
159 		return "unset";
160 	case NL80211_DFS_FCC:
161 		return "FCC";
162 	case NL80211_DFS_ETSI:
163 		return "ETSI";
164 	case NL80211_DFS_JP:
165 		return "JP";
166 	}
167 	return "Unknown";
168 }
169 
170 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
171 {
172 	const struct ieee80211_regdomain *regd = NULL;
173 	const struct ieee80211_regdomain *wiphy_regd = NULL;
174 
175 	rcu_read_lock();
176 	regd = get_cfg80211_regdom();
177 
178 	if (!wiphy)
179 		goto out;
180 
181 	wiphy_regd = get_wiphy_regdom(wiphy);
182 	if (!wiphy_regd)
183 		goto out;
184 
185 	if (wiphy_regd->dfs_region == regd->dfs_region)
186 		goto out;
187 
188 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
189 		 dev_name(&wiphy->dev),
190 		 reg_dfs_region_str(wiphy_regd->dfs_region),
191 		 reg_dfs_region_str(regd->dfs_region));
192 
193 out:
194 	rcu_read_unlock();
195 
196 	return regd->dfs_region;
197 }
198 
199 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
200 {
201 	if (!r)
202 		return;
203 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
204 }
205 
206 static struct regulatory_request *get_last_request(void)
207 {
208 	return rcu_dereference_rtnl(last_request);
209 }
210 
211 /* Used to queue up regulatory hints */
212 static LIST_HEAD(reg_requests_list);
213 static DEFINE_SPINLOCK(reg_requests_lock);
214 
215 /* Used to queue up beacon hints for review */
216 static LIST_HEAD(reg_pending_beacons);
217 static DEFINE_SPINLOCK(reg_pending_beacons_lock);
218 
219 /* Used to keep track of processed beacon hints */
220 static LIST_HEAD(reg_beacon_list);
221 
222 struct reg_beacon {
223 	struct list_head list;
224 	struct ieee80211_channel chan;
225 };
226 
227 static void reg_check_chans_work(struct work_struct *work);
228 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
229 
230 static void reg_todo(struct work_struct *work);
231 static DECLARE_WORK(reg_work, reg_todo);
232 
233 /* We keep a static world regulatory domain in case of the absence of CRDA */
234 static const struct ieee80211_regdomain world_regdom = {
235 	.n_reg_rules = 8,
236 	.alpha2 =  "00",
237 	.reg_rules = {
238 		/* IEEE 802.11b/g, channels 1..11 */
239 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
240 		/* IEEE 802.11b/g, channels 12..13. */
241 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
242 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
243 		/* IEEE 802.11 channel 14 - Only JP enables
244 		 * this and for 802.11b only */
245 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
246 			NL80211_RRF_NO_IR |
247 			NL80211_RRF_NO_OFDM),
248 		/* IEEE 802.11a, channel 36..48 */
249 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
250                         NL80211_RRF_NO_IR |
251                         NL80211_RRF_AUTO_BW),
252 
253 		/* IEEE 802.11a, channel 52..64 - DFS required */
254 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
255 			NL80211_RRF_NO_IR |
256 			NL80211_RRF_AUTO_BW |
257 			NL80211_RRF_DFS),
258 
259 		/* IEEE 802.11a, channel 100..144 - DFS required */
260 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
261 			NL80211_RRF_NO_IR |
262 			NL80211_RRF_DFS),
263 
264 		/* IEEE 802.11a, channel 149..165 */
265 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
266 			NL80211_RRF_NO_IR),
267 
268 		/* IEEE 802.11ad (60GHz), channels 1..3 */
269 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
270 	}
271 };
272 
273 /* protected by RTNL */
274 static const struct ieee80211_regdomain *cfg80211_world_regdom =
275 	&world_regdom;
276 
277 static char *ieee80211_regdom = "00";
278 static char user_alpha2[2];
279 static const struct ieee80211_regdomain *cfg80211_user_regdom;
280 
281 module_param(ieee80211_regdom, charp, 0444);
282 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
283 
284 static void reg_free_request(struct regulatory_request *request)
285 {
286 	if (request == &core_request_world)
287 		return;
288 
289 	if (request != get_last_request())
290 		kfree(request);
291 }
292 
293 static void reg_free_last_request(void)
294 {
295 	struct regulatory_request *lr = get_last_request();
296 
297 	if (lr != &core_request_world && lr)
298 		kfree_rcu(lr, rcu_head);
299 }
300 
301 static void reg_update_last_request(struct regulatory_request *request)
302 {
303 	struct regulatory_request *lr;
304 
305 	lr = get_last_request();
306 	if (lr == request)
307 		return;
308 
309 	reg_free_last_request();
310 	rcu_assign_pointer(last_request, request);
311 }
312 
313 static void reset_regdomains(bool full_reset,
314 			     const struct ieee80211_regdomain *new_regdom)
315 {
316 	const struct ieee80211_regdomain *r;
317 
318 	ASSERT_RTNL();
319 
320 	r = get_cfg80211_regdom();
321 
322 	/* avoid freeing static information or freeing something twice */
323 	if (r == cfg80211_world_regdom)
324 		r = NULL;
325 	if (cfg80211_world_regdom == &world_regdom)
326 		cfg80211_world_regdom = NULL;
327 	if (r == &world_regdom)
328 		r = NULL;
329 
330 	rcu_free_regdom(r);
331 	rcu_free_regdom(cfg80211_world_regdom);
332 
333 	cfg80211_world_regdom = &world_regdom;
334 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
335 
336 	if (!full_reset)
337 		return;
338 
339 	reg_update_last_request(&core_request_world);
340 }
341 
342 /*
343  * Dynamic world regulatory domain requested by the wireless
344  * core upon initialization
345  */
346 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
347 {
348 	struct regulatory_request *lr;
349 
350 	lr = get_last_request();
351 
352 	WARN_ON(!lr);
353 
354 	reset_regdomains(false, rd);
355 
356 	cfg80211_world_regdom = rd;
357 }
358 
359 bool is_world_regdom(const char *alpha2)
360 {
361 	if (!alpha2)
362 		return false;
363 	return alpha2[0] == '0' && alpha2[1] == '0';
364 }
365 
366 static bool is_alpha2_set(const char *alpha2)
367 {
368 	if (!alpha2)
369 		return false;
370 	return alpha2[0] && alpha2[1];
371 }
372 
373 static bool is_unknown_alpha2(const char *alpha2)
374 {
375 	if (!alpha2)
376 		return false;
377 	/*
378 	 * Special case where regulatory domain was built by driver
379 	 * but a specific alpha2 cannot be determined
380 	 */
381 	return alpha2[0] == '9' && alpha2[1] == '9';
382 }
383 
384 static bool is_intersected_alpha2(const char *alpha2)
385 {
386 	if (!alpha2)
387 		return false;
388 	/*
389 	 * Special case where regulatory domain is the
390 	 * result of an intersection between two regulatory domain
391 	 * structures
392 	 */
393 	return alpha2[0] == '9' && alpha2[1] == '8';
394 }
395 
396 static bool is_an_alpha2(const char *alpha2)
397 {
398 	if (!alpha2)
399 		return false;
400 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
401 }
402 
403 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
404 {
405 	if (!alpha2_x || !alpha2_y)
406 		return false;
407 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
408 }
409 
410 static bool regdom_changes(const char *alpha2)
411 {
412 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
413 
414 	if (!r)
415 		return true;
416 	return !alpha2_equal(r->alpha2, alpha2);
417 }
418 
419 /*
420  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
421  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
422  * has ever been issued.
423  */
424 static bool is_user_regdom_saved(void)
425 {
426 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
427 		return false;
428 
429 	/* This would indicate a mistake on the design */
430 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
431 		 "Unexpected user alpha2: %c%c\n",
432 		 user_alpha2[0], user_alpha2[1]))
433 		return false;
434 
435 	return true;
436 }
437 
438 static const struct ieee80211_regdomain *
439 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
440 {
441 	struct ieee80211_regdomain *regd;
442 	unsigned int i;
443 
444 	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
445 		       GFP_KERNEL);
446 	if (!regd)
447 		return ERR_PTR(-ENOMEM);
448 
449 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
450 
451 	for (i = 0; i < src_regd->n_reg_rules; i++)
452 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
453 		       sizeof(struct ieee80211_reg_rule));
454 
455 	return regd;
456 }
457 
458 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
459 {
460 	ASSERT_RTNL();
461 
462 	if (!IS_ERR(cfg80211_user_regdom))
463 		kfree(cfg80211_user_regdom);
464 	cfg80211_user_regdom = reg_copy_regd(rd);
465 }
466 
467 struct reg_regdb_apply_request {
468 	struct list_head list;
469 	const struct ieee80211_regdomain *regdom;
470 };
471 
472 static LIST_HEAD(reg_regdb_apply_list);
473 static DEFINE_MUTEX(reg_regdb_apply_mutex);
474 
475 static void reg_regdb_apply(struct work_struct *work)
476 {
477 	struct reg_regdb_apply_request *request;
478 
479 	rtnl_lock();
480 
481 	mutex_lock(&reg_regdb_apply_mutex);
482 	while (!list_empty(&reg_regdb_apply_list)) {
483 		request = list_first_entry(&reg_regdb_apply_list,
484 					   struct reg_regdb_apply_request,
485 					   list);
486 		list_del(&request->list);
487 
488 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
489 		kfree(request);
490 	}
491 	mutex_unlock(&reg_regdb_apply_mutex);
492 
493 	rtnl_unlock();
494 }
495 
496 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
497 
498 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
499 {
500 	struct reg_regdb_apply_request *request;
501 
502 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
503 	if (!request) {
504 		kfree(regdom);
505 		return -ENOMEM;
506 	}
507 
508 	request->regdom = regdom;
509 
510 	mutex_lock(&reg_regdb_apply_mutex);
511 	list_add_tail(&request->list, &reg_regdb_apply_list);
512 	mutex_unlock(&reg_regdb_apply_mutex);
513 
514 	schedule_work(&reg_regdb_work);
515 	return 0;
516 }
517 
518 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
519 /* Max number of consecutive attempts to communicate with CRDA  */
520 #define REG_MAX_CRDA_TIMEOUTS 10
521 
522 static u32 reg_crda_timeouts;
523 
524 static void crda_timeout_work(struct work_struct *work);
525 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
526 
527 static void crda_timeout_work(struct work_struct *work)
528 {
529 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
530 	rtnl_lock();
531 	reg_crda_timeouts++;
532 	restore_regulatory_settings(true, false);
533 	rtnl_unlock();
534 }
535 
536 static void cancel_crda_timeout(void)
537 {
538 	cancel_delayed_work(&crda_timeout);
539 }
540 
541 static void cancel_crda_timeout_sync(void)
542 {
543 	cancel_delayed_work_sync(&crda_timeout);
544 }
545 
546 static void reset_crda_timeouts(void)
547 {
548 	reg_crda_timeouts = 0;
549 }
550 
551 /*
552  * This lets us keep regulatory code which is updated on a regulatory
553  * basis in userspace.
554  */
555 static int call_crda(const char *alpha2)
556 {
557 	char country[12];
558 	char *env[] = { country, NULL };
559 	int ret;
560 
561 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
562 		 alpha2[0], alpha2[1]);
563 
564 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
565 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
566 		return -EINVAL;
567 	}
568 
569 	if (!is_world_regdom((char *) alpha2))
570 		pr_debug("Calling CRDA for country: %c%c\n",
571 			 alpha2[0], alpha2[1]);
572 	else
573 		pr_debug("Calling CRDA to update world regulatory domain\n");
574 
575 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
576 	if (ret)
577 		return ret;
578 
579 	queue_delayed_work(system_power_efficient_wq,
580 			   &crda_timeout, msecs_to_jiffies(3142));
581 	return 0;
582 }
583 #else
584 static inline void cancel_crda_timeout(void) {}
585 static inline void cancel_crda_timeout_sync(void) {}
586 static inline void reset_crda_timeouts(void) {}
587 static inline int call_crda(const char *alpha2)
588 {
589 	return -ENODATA;
590 }
591 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
592 
593 /* code to directly load a firmware database through request_firmware */
594 static const struct fwdb_header *regdb;
595 
596 struct fwdb_country {
597 	u8 alpha2[2];
598 	__be16 coll_ptr;
599 	/* this struct cannot be extended */
600 } __packed __aligned(4);
601 
602 struct fwdb_collection {
603 	u8 len;
604 	u8 n_rules;
605 	u8 dfs_region;
606 	/* no optional data yet */
607 	/* aligned to 2, then followed by __be16 array of rule pointers */
608 } __packed __aligned(4);
609 
610 enum fwdb_flags {
611 	FWDB_FLAG_NO_OFDM	= BIT(0),
612 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
613 	FWDB_FLAG_DFS		= BIT(2),
614 	FWDB_FLAG_NO_IR		= BIT(3),
615 	FWDB_FLAG_AUTO_BW	= BIT(4),
616 };
617 
618 struct fwdb_wmm_ac {
619 	u8 ecw;
620 	u8 aifsn;
621 	__be16 cot;
622 } __packed;
623 
624 struct fwdb_wmm_rule {
625 	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
626 	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
627 } __packed;
628 
629 struct fwdb_rule {
630 	u8 len;
631 	u8 flags;
632 	__be16 max_eirp;
633 	__be32 start, end, max_bw;
634 	/* start of optional data */
635 	__be16 cac_timeout;
636 	__be16 wmm_ptr;
637 } __packed __aligned(4);
638 
639 #define FWDB_MAGIC 0x52474442
640 #define FWDB_VERSION 20
641 
642 struct fwdb_header {
643 	__be32 magic;
644 	__be32 version;
645 	struct fwdb_country country[];
646 } __packed __aligned(4);
647 
648 static int ecw2cw(int ecw)
649 {
650 	return (1 << ecw) - 1;
651 }
652 
653 static bool valid_wmm(struct fwdb_wmm_rule *rule)
654 {
655 	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
656 	int i;
657 
658 	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
659 		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
660 		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
661 		u8 aifsn = ac[i].aifsn;
662 
663 		if (cw_min >= cw_max)
664 			return false;
665 
666 		if (aifsn < 1)
667 			return false;
668 	}
669 
670 	return true;
671 }
672 
673 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
674 {
675 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
676 
677 	if ((u8 *)rule + sizeof(rule->len) > data + size)
678 		return false;
679 
680 	/* mandatory fields */
681 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
682 		return false;
683 	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
684 		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
685 		struct fwdb_wmm_rule *wmm;
686 
687 		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
688 			return false;
689 
690 		wmm = (void *)(data + wmm_ptr);
691 
692 		if (!valid_wmm(wmm))
693 			return false;
694 	}
695 	return true;
696 }
697 
698 static bool valid_country(const u8 *data, unsigned int size,
699 			  const struct fwdb_country *country)
700 {
701 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
702 	struct fwdb_collection *coll = (void *)(data + ptr);
703 	__be16 *rules_ptr;
704 	unsigned int i;
705 
706 	/* make sure we can read len/n_rules */
707 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
708 		return false;
709 
710 	/* make sure base struct and all rules fit */
711 	if ((u8 *)coll + ALIGN(coll->len, 2) +
712 	    (coll->n_rules * 2) > data + size)
713 		return false;
714 
715 	/* mandatory fields must exist */
716 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
717 		return false;
718 
719 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
720 
721 	for (i = 0; i < coll->n_rules; i++) {
722 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
723 
724 		if (!valid_rule(data, size, rule_ptr))
725 			return false;
726 	}
727 
728 	return true;
729 }
730 
731 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
732 static struct key *builtin_regdb_keys;
733 
734 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
735 {
736 	const u8 *end = p + buflen;
737 	size_t plen;
738 	key_ref_t key;
739 
740 	while (p < end) {
741 		/* Each cert begins with an ASN.1 SEQUENCE tag and must be more
742 		 * than 256 bytes in size.
743 		 */
744 		if (end - p < 4)
745 			goto dodgy_cert;
746 		if (p[0] != 0x30 &&
747 		    p[1] != 0x82)
748 			goto dodgy_cert;
749 		plen = (p[2] << 8) | p[3];
750 		plen += 4;
751 		if (plen > end - p)
752 			goto dodgy_cert;
753 
754 		key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
755 					   "asymmetric", NULL, p, plen,
756 					   ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
757 					    KEY_USR_VIEW | KEY_USR_READ),
758 					   KEY_ALLOC_NOT_IN_QUOTA |
759 					   KEY_ALLOC_BUILT_IN |
760 					   KEY_ALLOC_BYPASS_RESTRICTION);
761 		if (IS_ERR(key)) {
762 			pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
763 			       PTR_ERR(key));
764 		} else {
765 			pr_notice("Loaded X.509 cert '%s'\n",
766 				  key_ref_to_ptr(key)->description);
767 			key_ref_put(key);
768 		}
769 		p += plen;
770 	}
771 
772 	return;
773 
774 dodgy_cert:
775 	pr_err("Problem parsing in-kernel X.509 certificate list\n");
776 }
777 
778 static int __init load_builtin_regdb_keys(void)
779 {
780 	builtin_regdb_keys =
781 		keyring_alloc(".builtin_regdb_keys",
782 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
783 			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
784 			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
785 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
786 	if (IS_ERR(builtin_regdb_keys))
787 		return PTR_ERR(builtin_regdb_keys);
788 
789 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
790 
791 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
792 	load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
793 #endif
794 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
795 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
796 		load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
797 #endif
798 
799 	return 0;
800 }
801 
802 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
803 {
804 	const struct firmware *sig;
805 	bool result;
806 
807 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
808 		return false;
809 
810 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
811 					builtin_regdb_keys,
812 					VERIFYING_UNSPECIFIED_SIGNATURE,
813 					NULL, NULL) == 0;
814 
815 	release_firmware(sig);
816 
817 	return result;
818 }
819 
820 static void free_regdb_keyring(void)
821 {
822 	key_put(builtin_regdb_keys);
823 }
824 #else
825 static int load_builtin_regdb_keys(void)
826 {
827 	return 0;
828 }
829 
830 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
831 {
832 	return true;
833 }
834 
835 static void free_regdb_keyring(void)
836 {
837 }
838 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
839 
840 static bool valid_regdb(const u8 *data, unsigned int size)
841 {
842 	const struct fwdb_header *hdr = (void *)data;
843 	const struct fwdb_country *country;
844 
845 	if (size < sizeof(*hdr))
846 		return false;
847 
848 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
849 		return false;
850 
851 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
852 		return false;
853 
854 	if (!regdb_has_valid_signature(data, size))
855 		return false;
856 
857 	country = &hdr->country[0];
858 	while ((u8 *)(country + 1) <= data + size) {
859 		if (!country->coll_ptr)
860 			break;
861 		if (!valid_country(data, size, country))
862 			return false;
863 		country++;
864 	}
865 
866 	return true;
867 }
868 
869 static void set_wmm_rule(const struct fwdb_header *db,
870 			 const struct fwdb_country *country,
871 			 const struct fwdb_rule *rule,
872 			 struct ieee80211_reg_rule *rrule)
873 {
874 	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
875 	struct fwdb_wmm_rule *wmm;
876 	unsigned int i, wmm_ptr;
877 
878 	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
879 	wmm = (void *)((u8 *)db + wmm_ptr);
880 
881 	if (!valid_wmm(wmm)) {
882 		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
883 		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
884 		       country->alpha2[0], country->alpha2[1]);
885 		return;
886 	}
887 
888 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
889 		wmm_rule->client[i].cw_min =
890 			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
891 		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
892 		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
893 		wmm_rule->client[i].cot =
894 			1000 * be16_to_cpu(wmm->client[i].cot);
895 		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
896 		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
897 		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
898 		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
899 	}
900 
901 	rrule->has_wmm = true;
902 }
903 
904 static int __regdb_query_wmm(const struct fwdb_header *db,
905 			     const struct fwdb_country *country, int freq,
906 			     struct ieee80211_reg_rule *rrule)
907 {
908 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
909 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
910 	int i;
911 
912 	for (i = 0; i < coll->n_rules; i++) {
913 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
914 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
915 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
916 
917 		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
918 			continue;
919 
920 		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
921 		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
922 			set_wmm_rule(db, country, rule, rrule);
923 			return 0;
924 		}
925 	}
926 
927 	return -ENODATA;
928 }
929 
930 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
931 {
932 	const struct fwdb_header *hdr = regdb;
933 	const struct fwdb_country *country;
934 
935 	if (!regdb)
936 		return -ENODATA;
937 
938 	if (IS_ERR(regdb))
939 		return PTR_ERR(regdb);
940 
941 	country = &hdr->country[0];
942 	while (country->coll_ptr) {
943 		if (alpha2_equal(alpha2, country->alpha2))
944 			return __regdb_query_wmm(regdb, country, freq, rule);
945 
946 		country++;
947 	}
948 
949 	return -ENODATA;
950 }
951 EXPORT_SYMBOL(reg_query_regdb_wmm);
952 
953 static int regdb_query_country(const struct fwdb_header *db,
954 			       const struct fwdb_country *country)
955 {
956 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
957 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
958 	struct ieee80211_regdomain *regdom;
959 	unsigned int i;
960 
961 	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
962 			 GFP_KERNEL);
963 	if (!regdom)
964 		return -ENOMEM;
965 
966 	regdom->n_reg_rules = coll->n_rules;
967 	regdom->alpha2[0] = country->alpha2[0];
968 	regdom->alpha2[1] = country->alpha2[1];
969 	regdom->dfs_region = coll->dfs_region;
970 
971 	for (i = 0; i < regdom->n_reg_rules; i++) {
972 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
973 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
974 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
975 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
976 
977 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
978 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
979 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
980 
981 		rrule->power_rule.max_antenna_gain = 0;
982 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
983 
984 		rrule->flags = 0;
985 		if (rule->flags & FWDB_FLAG_NO_OFDM)
986 			rrule->flags |= NL80211_RRF_NO_OFDM;
987 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
988 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
989 		if (rule->flags & FWDB_FLAG_DFS)
990 			rrule->flags |= NL80211_RRF_DFS;
991 		if (rule->flags & FWDB_FLAG_NO_IR)
992 			rrule->flags |= NL80211_RRF_NO_IR;
993 		if (rule->flags & FWDB_FLAG_AUTO_BW)
994 			rrule->flags |= NL80211_RRF_AUTO_BW;
995 
996 		rrule->dfs_cac_ms = 0;
997 
998 		/* handle optional data */
999 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
1000 			rrule->dfs_cac_ms =
1001 				1000 * be16_to_cpu(rule->cac_timeout);
1002 		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
1003 			set_wmm_rule(db, country, rule, rrule);
1004 	}
1005 
1006 	return reg_schedule_apply(regdom);
1007 }
1008 
1009 static int query_regdb(const char *alpha2)
1010 {
1011 	const struct fwdb_header *hdr = regdb;
1012 	const struct fwdb_country *country;
1013 
1014 	ASSERT_RTNL();
1015 
1016 	if (IS_ERR(regdb))
1017 		return PTR_ERR(regdb);
1018 
1019 	country = &hdr->country[0];
1020 	while (country->coll_ptr) {
1021 		if (alpha2_equal(alpha2, country->alpha2))
1022 			return regdb_query_country(regdb, country);
1023 		country++;
1024 	}
1025 
1026 	return -ENODATA;
1027 }
1028 
1029 static void regdb_fw_cb(const struct firmware *fw, void *context)
1030 {
1031 	int set_error = 0;
1032 	bool restore = true;
1033 	void *db;
1034 
1035 	if (!fw) {
1036 		pr_info("failed to load regulatory.db\n");
1037 		set_error = -ENODATA;
1038 	} else if (!valid_regdb(fw->data, fw->size)) {
1039 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1040 		set_error = -EINVAL;
1041 	}
1042 
1043 	rtnl_lock();
1044 	if (regdb && !IS_ERR(regdb)) {
1045 		/* negative case - a bug
1046 		 * positive case - can happen due to race in case of multiple cb's in
1047 		 * queue, due to usage of asynchronous callback
1048 		 *
1049 		 * Either case, just restore and free new db.
1050 		 */
1051 	} else if (set_error) {
1052 		regdb = ERR_PTR(set_error);
1053 	} else if (fw) {
1054 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1055 		if (db) {
1056 			regdb = db;
1057 			restore = context && query_regdb(context);
1058 		} else {
1059 			restore = true;
1060 		}
1061 	}
1062 
1063 	if (restore)
1064 		restore_regulatory_settings(true, false);
1065 
1066 	rtnl_unlock();
1067 
1068 	kfree(context);
1069 
1070 	release_firmware(fw);
1071 }
1072 
1073 static int query_regdb_file(const char *alpha2)
1074 {
1075 	ASSERT_RTNL();
1076 
1077 	if (regdb)
1078 		return query_regdb(alpha2);
1079 
1080 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1081 	if (!alpha2)
1082 		return -ENOMEM;
1083 
1084 	return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1085 				       &reg_pdev->dev, GFP_KERNEL,
1086 				       (void *)alpha2, regdb_fw_cb);
1087 }
1088 
1089 int reg_reload_regdb(void)
1090 {
1091 	const struct firmware *fw;
1092 	void *db;
1093 	int err;
1094 
1095 	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1096 	if (err)
1097 		return err;
1098 
1099 	if (!valid_regdb(fw->data, fw->size)) {
1100 		err = -ENODATA;
1101 		goto out;
1102 	}
1103 
1104 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1105 	if (!db) {
1106 		err = -ENOMEM;
1107 		goto out;
1108 	}
1109 
1110 	rtnl_lock();
1111 	if (!IS_ERR_OR_NULL(regdb))
1112 		kfree(regdb);
1113 	regdb = db;
1114 	rtnl_unlock();
1115 
1116  out:
1117 	release_firmware(fw);
1118 	return err;
1119 }
1120 
1121 static bool reg_query_database(struct regulatory_request *request)
1122 {
1123 	if (query_regdb_file(request->alpha2) == 0)
1124 		return true;
1125 
1126 	if (call_crda(request->alpha2) == 0)
1127 		return true;
1128 
1129 	return false;
1130 }
1131 
1132 bool reg_is_valid_request(const char *alpha2)
1133 {
1134 	struct regulatory_request *lr = get_last_request();
1135 
1136 	if (!lr || lr->processed)
1137 		return false;
1138 
1139 	return alpha2_equal(lr->alpha2, alpha2);
1140 }
1141 
1142 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1143 {
1144 	struct regulatory_request *lr = get_last_request();
1145 
1146 	/*
1147 	 * Follow the driver's regulatory domain, if present, unless a country
1148 	 * IE has been processed or a user wants to help complaince further
1149 	 */
1150 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1151 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1152 	    wiphy->regd)
1153 		return get_wiphy_regdom(wiphy);
1154 
1155 	return get_cfg80211_regdom();
1156 }
1157 
1158 static unsigned int
1159 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1160 				 const struct ieee80211_reg_rule *rule)
1161 {
1162 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1163 	const struct ieee80211_freq_range *freq_range_tmp;
1164 	const struct ieee80211_reg_rule *tmp;
1165 	u32 start_freq, end_freq, idx, no;
1166 
1167 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1168 		if (rule == &rd->reg_rules[idx])
1169 			break;
1170 
1171 	if (idx == rd->n_reg_rules)
1172 		return 0;
1173 
1174 	/* get start_freq */
1175 	no = idx;
1176 
1177 	while (no) {
1178 		tmp = &rd->reg_rules[--no];
1179 		freq_range_tmp = &tmp->freq_range;
1180 
1181 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1182 			break;
1183 
1184 		freq_range = freq_range_tmp;
1185 	}
1186 
1187 	start_freq = freq_range->start_freq_khz;
1188 
1189 	/* get end_freq */
1190 	freq_range = &rule->freq_range;
1191 	no = idx;
1192 
1193 	while (no < rd->n_reg_rules - 1) {
1194 		tmp = &rd->reg_rules[++no];
1195 		freq_range_tmp = &tmp->freq_range;
1196 
1197 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1198 			break;
1199 
1200 		freq_range = freq_range_tmp;
1201 	}
1202 
1203 	end_freq = freq_range->end_freq_khz;
1204 
1205 	return end_freq - start_freq;
1206 }
1207 
1208 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1209 				   const struct ieee80211_reg_rule *rule)
1210 {
1211 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1212 
1213 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1214 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1215 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1216 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1217 
1218 	/*
1219 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1220 	 * are not allowed.
1221 	 */
1222 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1223 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1224 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1225 
1226 	return bw;
1227 }
1228 
1229 /* Sanity check on a regulatory rule */
1230 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1231 {
1232 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1233 	u32 freq_diff;
1234 
1235 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1236 		return false;
1237 
1238 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1239 		return false;
1240 
1241 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1242 
1243 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1244 	    freq_range->max_bandwidth_khz > freq_diff)
1245 		return false;
1246 
1247 	return true;
1248 }
1249 
1250 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1251 {
1252 	const struct ieee80211_reg_rule *reg_rule = NULL;
1253 	unsigned int i;
1254 
1255 	if (!rd->n_reg_rules)
1256 		return false;
1257 
1258 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1259 		return false;
1260 
1261 	for (i = 0; i < rd->n_reg_rules; i++) {
1262 		reg_rule = &rd->reg_rules[i];
1263 		if (!is_valid_reg_rule(reg_rule))
1264 			return false;
1265 	}
1266 
1267 	return true;
1268 }
1269 
1270 /**
1271  * freq_in_rule_band - tells us if a frequency is in a frequency band
1272  * @freq_range: frequency rule we want to query
1273  * @freq_khz: frequency we are inquiring about
1274  *
1275  * This lets us know if a specific frequency rule is or is not relevant to
1276  * a specific frequency's band. Bands are device specific and artificial
1277  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1278  * however it is safe for now to assume that a frequency rule should not be
1279  * part of a frequency's band if the start freq or end freq are off by more
1280  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1281  * 60 GHz band.
1282  * This resolution can be lowered and should be considered as we add
1283  * regulatory rule support for other "bands".
1284  **/
1285 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1286 			      u32 freq_khz)
1287 {
1288 #define ONE_GHZ_IN_KHZ	1000000
1289 	/*
1290 	 * From 802.11ad: directional multi-gigabit (DMG):
1291 	 * Pertaining to operation in a frequency band containing a channel
1292 	 * with the Channel starting frequency above 45 GHz.
1293 	 */
1294 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1295 			20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1296 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1297 		return true;
1298 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1299 		return true;
1300 	return false;
1301 #undef ONE_GHZ_IN_KHZ
1302 }
1303 
1304 /*
1305  * Later on we can perhaps use the more restrictive DFS
1306  * region but we don't have information for that yet so
1307  * for now simply disallow conflicts.
1308  */
1309 static enum nl80211_dfs_regions
1310 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1311 			 const enum nl80211_dfs_regions dfs_region2)
1312 {
1313 	if (dfs_region1 != dfs_region2)
1314 		return NL80211_DFS_UNSET;
1315 	return dfs_region1;
1316 }
1317 
1318 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1319 				    const struct ieee80211_wmm_ac *wmm_ac2,
1320 				    struct ieee80211_wmm_ac *intersect)
1321 {
1322 	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1323 	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1324 	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1325 	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1326 }
1327 
1328 /*
1329  * Helper for regdom_intersect(), this does the real
1330  * mathematical intersection fun
1331  */
1332 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1333 			       const struct ieee80211_regdomain *rd2,
1334 			       const struct ieee80211_reg_rule *rule1,
1335 			       const struct ieee80211_reg_rule *rule2,
1336 			       struct ieee80211_reg_rule *intersected_rule)
1337 {
1338 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1339 	struct ieee80211_freq_range *freq_range;
1340 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1341 	struct ieee80211_power_rule *power_rule;
1342 	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1343 	struct ieee80211_wmm_rule *wmm_rule;
1344 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1345 
1346 	freq_range1 = &rule1->freq_range;
1347 	freq_range2 = &rule2->freq_range;
1348 	freq_range = &intersected_rule->freq_range;
1349 
1350 	power_rule1 = &rule1->power_rule;
1351 	power_rule2 = &rule2->power_rule;
1352 	power_rule = &intersected_rule->power_rule;
1353 
1354 	wmm_rule1 = &rule1->wmm_rule;
1355 	wmm_rule2 = &rule2->wmm_rule;
1356 	wmm_rule = &intersected_rule->wmm_rule;
1357 
1358 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1359 					 freq_range2->start_freq_khz);
1360 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1361 				       freq_range2->end_freq_khz);
1362 
1363 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1364 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1365 
1366 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1367 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1368 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1369 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1370 
1371 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1372 
1373 	intersected_rule->flags = rule1->flags | rule2->flags;
1374 
1375 	/*
1376 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1377 	 * set AUTO_BW in intersected rule also. Next we will
1378 	 * calculate BW correctly in handle_channel function.
1379 	 * In other case remove AUTO_BW flag while we calculate
1380 	 * maximum bandwidth correctly and auto calculation is
1381 	 * not required.
1382 	 */
1383 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1384 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1385 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1386 	else
1387 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1388 
1389 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1390 	if (freq_range->max_bandwidth_khz > freq_diff)
1391 		freq_range->max_bandwidth_khz = freq_diff;
1392 
1393 	power_rule->max_eirp = min(power_rule1->max_eirp,
1394 		power_rule2->max_eirp);
1395 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1396 		power_rule2->max_antenna_gain);
1397 
1398 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1399 					   rule2->dfs_cac_ms);
1400 
1401 	if (rule1->has_wmm && rule2->has_wmm) {
1402 		u8 ac;
1403 
1404 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1405 			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1406 						&wmm_rule2->client[ac],
1407 						&wmm_rule->client[ac]);
1408 			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1409 						&wmm_rule2->ap[ac],
1410 						&wmm_rule->ap[ac]);
1411 		}
1412 
1413 		intersected_rule->has_wmm = true;
1414 	} else if (rule1->has_wmm) {
1415 		*wmm_rule = *wmm_rule1;
1416 		intersected_rule->has_wmm = true;
1417 	} else if (rule2->has_wmm) {
1418 		*wmm_rule = *wmm_rule2;
1419 		intersected_rule->has_wmm = true;
1420 	} else {
1421 		intersected_rule->has_wmm = false;
1422 	}
1423 
1424 	if (!is_valid_reg_rule(intersected_rule))
1425 		return -EINVAL;
1426 
1427 	return 0;
1428 }
1429 
1430 /* check whether old rule contains new rule */
1431 static bool rule_contains(struct ieee80211_reg_rule *r1,
1432 			  struct ieee80211_reg_rule *r2)
1433 {
1434 	/* for simplicity, currently consider only same flags */
1435 	if (r1->flags != r2->flags)
1436 		return false;
1437 
1438 	/* verify r1 is more restrictive */
1439 	if ((r1->power_rule.max_antenna_gain >
1440 	     r2->power_rule.max_antenna_gain) ||
1441 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1442 		return false;
1443 
1444 	/* make sure r2's range is contained within r1 */
1445 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1446 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1447 		return false;
1448 
1449 	/* and finally verify that r1.max_bw >= r2.max_bw */
1450 	if (r1->freq_range.max_bandwidth_khz <
1451 	    r2->freq_range.max_bandwidth_khz)
1452 		return false;
1453 
1454 	return true;
1455 }
1456 
1457 /* add or extend current rules. do nothing if rule is already contained */
1458 static void add_rule(struct ieee80211_reg_rule *rule,
1459 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1460 {
1461 	struct ieee80211_reg_rule *tmp_rule;
1462 	int i;
1463 
1464 	for (i = 0; i < *n_rules; i++) {
1465 		tmp_rule = &reg_rules[i];
1466 		/* rule is already contained - do nothing */
1467 		if (rule_contains(tmp_rule, rule))
1468 			return;
1469 
1470 		/* extend rule if possible */
1471 		if (rule_contains(rule, tmp_rule)) {
1472 			memcpy(tmp_rule, rule, sizeof(*rule));
1473 			return;
1474 		}
1475 	}
1476 
1477 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1478 	(*n_rules)++;
1479 }
1480 
1481 /**
1482  * regdom_intersect - do the intersection between two regulatory domains
1483  * @rd1: first regulatory domain
1484  * @rd2: second regulatory domain
1485  *
1486  * Use this function to get the intersection between two regulatory domains.
1487  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1488  * as no one single alpha2 can represent this regulatory domain.
1489  *
1490  * Returns a pointer to the regulatory domain structure which will hold the
1491  * resulting intersection of rules between rd1 and rd2. We will
1492  * kzalloc() this structure for you.
1493  */
1494 static struct ieee80211_regdomain *
1495 regdom_intersect(const struct ieee80211_regdomain *rd1,
1496 		 const struct ieee80211_regdomain *rd2)
1497 {
1498 	int r;
1499 	unsigned int x, y;
1500 	unsigned int num_rules = 0;
1501 	const struct ieee80211_reg_rule *rule1, *rule2;
1502 	struct ieee80211_reg_rule intersected_rule;
1503 	struct ieee80211_regdomain *rd;
1504 
1505 	if (!rd1 || !rd2)
1506 		return NULL;
1507 
1508 	/*
1509 	 * First we get a count of the rules we'll need, then we actually
1510 	 * build them. This is to so we can malloc() and free() a
1511 	 * regdomain once. The reason we use reg_rules_intersect() here
1512 	 * is it will return -EINVAL if the rule computed makes no sense.
1513 	 * All rules that do check out OK are valid.
1514 	 */
1515 
1516 	for (x = 0; x < rd1->n_reg_rules; x++) {
1517 		rule1 = &rd1->reg_rules[x];
1518 		for (y = 0; y < rd2->n_reg_rules; y++) {
1519 			rule2 = &rd2->reg_rules[y];
1520 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1521 						 &intersected_rule))
1522 				num_rules++;
1523 		}
1524 	}
1525 
1526 	if (!num_rules)
1527 		return NULL;
1528 
1529 	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1530 	if (!rd)
1531 		return NULL;
1532 
1533 	for (x = 0; x < rd1->n_reg_rules; x++) {
1534 		rule1 = &rd1->reg_rules[x];
1535 		for (y = 0; y < rd2->n_reg_rules; y++) {
1536 			rule2 = &rd2->reg_rules[y];
1537 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1538 						&intersected_rule);
1539 			/*
1540 			 * No need to memset here the intersected rule here as
1541 			 * we're not using the stack anymore
1542 			 */
1543 			if (r)
1544 				continue;
1545 
1546 			add_rule(&intersected_rule, rd->reg_rules,
1547 				 &rd->n_reg_rules);
1548 		}
1549 	}
1550 
1551 	rd->alpha2[0] = '9';
1552 	rd->alpha2[1] = '8';
1553 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1554 						  rd2->dfs_region);
1555 
1556 	return rd;
1557 }
1558 
1559 /*
1560  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1561  * want to just have the channel structure use these
1562  */
1563 static u32 map_regdom_flags(u32 rd_flags)
1564 {
1565 	u32 channel_flags = 0;
1566 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1567 		channel_flags |= IEEE80211_CHAN_NO_IR;
1568 	if (rd_flags & NL80211_RRF_DFS)
1569 		channel_flags |= IEEE80211_CHAN_RADAR;
1570 	if (rd_flags & NL80211_RRF_NO_OFDM)
1571 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1572 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1573 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1574 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1575 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1576 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1577 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1578 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1579 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1580 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1581 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1582 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1583 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1584 	if (rd_flags & NL80211_RRF_NO_HE)
1585 		channel_flags |= IEEE80211_CHAN_NO_HE;
1586 	return channel_flags;
1587 }
1588 
1589 static const struct ieee80211_reg_rule *
1590 freq_reg_info_regd(u32 center_freq,
1591 		   const struct ieee80211_regdomain *regd, u32 bw)
1592 {
1593 	int i;
1594 	bool band_rule_found = false;
1595 	bool bw_fits = false;
1596 
1597 	if (!regd)
1598 		return ERR_PTR(-EINVAL);
1599 
1600 	for (i = 0; i < regd->n_reg_rules; i++) {
1601 		const struct ieee80211_reg_rule *rr;
1602 		const struct ieee80211_freq_range *fr = NULL;
1603 
1604 		rr = &regd->reg_rules[i];
1605 		fr = &rr->freq_range;
1606 
1607 		/*
1608 		 * We only need to know if one frequency rule was
1609 		 * in center_freq's band, that's enough, so let's
1610 		 * not overwrite it once found
1611 		 */
1612 		if (!band_rule_found)
1613 			band_rule_found = freq_in_rule_band(fr, center_freq);
1614 
1615 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1616 
1617 		if (band_rule_found && bw_fits)
1618 			return rr;
1619 	}
1620 
1621 	if (!band_rule_found)
1622 		return ERR_PTR(-ERANGE);
1623 
1624 	return ERR_PTR(-EINVAL);
1625 }
1626 
1627 static const struct ieee80211_reg_rule *
1628 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1629 {
1630 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1631 	static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1632 	const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1633 	int i = ARRAY_SIZE(bws) - 1;
1634 	u32 bw;
1635 
1636 	for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1637 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1638 		if (!IS_ERR(reg_rule))
1639 			return reg_rule;
1640 	}
1641 
1642 	return reg_rule;
1643 }
1644 
1645 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1646 					       u32 center_freq)
1647 {
1648 	u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1649 
1650 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1651 }
1652 EXPORT_SYMBOL(freq_reg_info);
1653 
1654 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1655 {
1656 	switch (initiator) {
1657 	case NL80211_REGDOM_SET_BY_CORE:
1658 		return "core";
1659 	case NL80211_REGDOM_SET_BY_USER:
1660 		return "user";
1661 	case NL80211_REGDOM_SET_BY_DRIVER:
1662 		return "driver";
1663 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1664 		return "country element";
1665 	default:
1666 		WARN_ON(1);
1667 		return "bug";
1668 	}
1669 }
1670 EXPORT_SYMBOL(reg_initiator_name);
1671 
1672 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1673 					  const struct ieee80211_reg_rule *reg_rule,
1674 					  const struct ieee80211_channel *chan)
1675 {
1676 	const struct ieee80211_freq_range *freq_range = NULL;
1677 	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1678 	bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1679 
1680 	freq_range = &reg_rule->freq_range;
1681 
1682 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1683 	center_freq_khz = ieee80211_channel_to_khz(chan);
1684 	/* Check if auto calculation requested */
1685 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1686 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1687 
1688 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1689 	if (!cfg80211_does_bw_fit_range(freq_range,
1690 					center_freq_khz,
1691 					MHZ_TO_KHZ(10)))
1692 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1693 	if (!cfg80211_does_bw_fit_range(freq_range,
1694 					center_freq_khz,
1695 					MHZ_TO_KHZ(20)))
1696 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1697 
1698 	if (is_s1g) {
1699 		/* S1G is strict about non overlapping channels. We can
1700 		 * calculate which bandwidth is allowed per channel by finding
1701 		 * the largest bandwidth which cleanly divides the freq_range.
1702 		 */
1703 		int edge_offset;
1704 		int ch_bw = max_bandwidth_khz;
1705 
1706 		while (ch_bw) {
1707 			edge_offset = (center_freq_khz - ch_bw / 2) -
1708 				      freq_range->start_freq_khz;
1709 			if (edge_offset % ch_bw == 0) {
1710 				switch (KHZ_TO_MHZ(ch_bw)) {
1711 				case 1:
1712 					bw_flags |= IEEE80211_CHAN_1MHZ;
1713 					break;
1714 				case 2:
1715 					bw_flags |= IEEE80211_CHAN_2MHZ;
1716 					break;
1717 				case 4:
1718 					bw_flags |= IEEE80211_CHAN_4MHZ;
1719 					break;
1720 				case 8:
1721 					bw_flags |= IEEE80211_CHAN_8MHZ;
1722 					break;
1723 				case 16:
1724 					bw_flags |= IEEE80211_CHAN_16MHZ;
1725 					break;
1726 				default:
1727 					/* If we got here, no bandwidths fit on
1728 					 * this frequency, ie. band edge.
1729 					 */
1730 					bw_flags |= IEEE80211_CHAN_DISABLED;
1731 					break;
1732 				}
1733 				break;
1734 			}
1735 			ch_bw /= 2;
1736 		}
1737 	} else {
1738 		if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1739 			bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1740 		if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1741 			bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1742 		if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1743 			bw_flags |= IEEE80211_CHAN_NO_HT40;
1744 		if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1745 			bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1746 		if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1747 			bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1748 	}
1749 	return bw_flags;
1750 }
1751 
1752 static void handle_channel_single_rule(struct wiphy *wiphy,
1753 				       enum nl80211_reg_initiator initiator,
1754 				       struct ieee80211_channel *chan,
1755 				       u32 flags,
1756 				       struct regulatory_request *lr,
1757 				       struct wiphy *request_wiphy,
1758 				       const struct ieee80211_reg_rule *reg_rule)
1759 {
1760 	u32 bw_flags = 0;
1761 	const struct ieee80211_power_rule *power_rule = NULL;
1762 	const struct ieee80211_regdomain *regd;
1763 
1764 	regd = reg_get_regdomain(wiphy);
1765 
1766 	power_rule = &reg_rule->power_rule;
1767 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1768 
1769 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1770 	    request_wiphy && request_wiphy == wiphy &&
1771 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1772 		/*
1773 		 * This guarantees the driver's requested regulatory domain
1774 		 * will always be used as a base for further regulatory
1775 		 * settings
1776 		 */
1777 		chan->flags = chan->orig_flags =
1778 			map_regdom_flags(reg_rule->flags) | bw_flags;
1779 		chan->max_antenna_gain = chan->orig_mag =
1780 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1781 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1782 			(int) MBM_TO_DBM(power_rule->max_eirp);
1783 
1784 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1785 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1786 			if (reg_rule->dfs_cac_ms)
1787 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1788 		}
1789 
1790 		return;
1791 	}
1792 
1793 	chan->dfs_state = NL80211_DFS_USABLE;
1794 	chan->dfs_state_entered = jiffies;
1795 
1796 	chan->beacon_found = false;
1797 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1798 	chan->max_antenna_gain =
1799 		min_t(int, chan->orig_mag,
1800 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1801 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1802 
1803 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1804 		if (reg_rule->dfs_cac_ms)
1805 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1806 		else
1807 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1808 	}
1809 
1810 	if (chan->orig_mpwr) {
1811 		/*
1812 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1813 		 * will always follow the passed country IE power settings.
1814 		 */
1815 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1816 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1817 			chan->max_power = chan->max_reg_power;
1818 		else
1819 			chan->max_power = min(chan->orig_mpwr,
1820 					      chan->max_reg_power);
1821 	} else
1822 		chan->max_power = chan->max_reg_power;
1823 }
1824 
1825 static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1826 					  enum nl80211_reg_initiator initiator,
1827 					  struct ieee80211_channel *chan,
1828 					  u32 flags,
1829 					  struct regulatory_request *lr,
1830 					  struct wiphy *request_wiphy,
1831 					  const struct ieee80211_reg_rule *rrule1,
1832 					  const struct ieee80211_reg_rule *rrule2,
1833 					  struct ieee80211_freq_range *comb_range)
1834 {
1835 	u32 bw_flags1 = 0;
1836 	u32 bw_flags2 = 0;
1837 	const struct ieee80211_power_rule *power_rule1 = NULL;
1838 	const struct ieee80211_power_rule *power_rule2 = NULL;
1839 	const struct ieee80211_regdomain *regd;
1840 
1841 	regd = reg_get_regdomain(wiphy);
1842 
1843 	power_rule1 = &rrule1->power_rule;
1844 	power_rule2 = &rrule2->power_rule;
1845 	bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1846 	bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1847 
1848 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1849 	    request_wiphy && request_wiphy == wiphy &&
1850 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1851 		/* This guarantees the driver's requested regulatory domain
1852 		 * will always be used as a base for further regulatory
1853 		 * settings
1854 		 */
1855 		chan->flags =
1856 			map_regdom_flags(rrule1->flags) |
1857 			map_regdom_flags(rrule2->flags) |
1858 			bw_flags1 |
1859 			bw_flags2;
1860 		chan->orig_flags = chan->flags;
1861 		chan->max_antenna_gain =
1862 			min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1863 			      MBI_TO_DBI(power_rule2->max_antenna_gain));
1864 		chan->orig_mag = chan->max_antenna_gain;
1865 		chan->max_reg_power =
1866 			min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1867 			      MBM_TO_DBM(power_rule2->max_eirp));
1868 		chan->max_power = chan->max_reg_power;
1869 		chan->orig_mpwr = chan->max_reg_power;
1870 
1871 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1872 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1873 			if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1874 				chan->dfs_cac_ms = max_t(unsigned int,
1875 							 rrule1->dfs_cac_ms,
1876 							 rrule2->dfs_cac_ms);
1877 		}
1878 
1879 		return;
1880 	}
1881 
1882 	chan->dfs_state = NL80211_DFS_USABLE;
1883 	chan->dfs_state_entered = jiffies;
1884 
1885 	chan->beacon_found = false;
1886 	chan->flags = flags | bw_flags1 | bw_flags2 |
1887 		      map_regdom_flags(rrule1->flags) |
1888 		      map_regdom_flags(rrule2->flags);
1889 
1890 	/* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1891 	 * (otherwise no adj. rule case), recheck therefore
1892 	 */
1893 	if (cfg80211_does_bw_fit_range(comb_range,
1894 				       ieee80211_channel_to_khz(chan),
1895 				       MHZ_TO_KHZ(10)))
1896 		chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1897 	if (cfg80211_does_bw_fit_range(comb_range,
1898 				       ieee80211_channel_to_khz(chan),
1899 				       MHZ_TO_KHZ(20)))
1900 		chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1901 
1902 	chan->max_antenna_gain =
1903 		min_t(int, chan->orig_mag,
1904 		      min_t(int,
1905 			    MBI_TO_DBI(power_rule1->max_antenna_gain),
1906 			    MBI_TO_DBI(power_rule2->max_antenna_gain)));
1907 	chan->max_reg_power = min_t(int,
1908 				    MBM_TO_DBM(power_rule1->max_eirp),
1909 				    MBM_TO_DBM(power_rule2->max_eirp));
1910 
1911 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1912 		if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1913 			chan->dfs_cac_ms = max_t(unsigned int,
1914 						 rrule1->dfs_cac_ms,
1915 						 rrule2->dfs_cac_ms);
1916 		else
1917 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1918 	}
1919 
1920 	if (chan->orig_mpwr) {
1921 		/* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1922 		 * will always follow the passed country IE power settings.
1923 		 */
1924 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1925 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1926 			chan->max_power = chan->max_reg_power;
1927 		else
1928 			chan->max_power = min(chan->orig_mpwr,
1929 					      chan->max_reg_power);
1930 	} else {
1931 		chan->max_power = chan->max_reg_power;
1932 	}
1933 }
1934 
1935 /* Note that right now we assume the desired channel bandwidth
1936  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1937  * per channel, the primary and the extension channel).
1938  */
1939 static void handle_channel(struct wiphy *wiphy,
1940 			   enum nl80211_reg_initiator initiator,
1941 			   struct ieee80211_channel *chan)
1942 {
1943 	const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1944 	struct regulatory_request *lr = get_last_request();
1945 	struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1946 	const struct ieee80211_reg_rule *rrule = NULL;
1947 	const struct ieee80211_reg_rule *rrule1 = NULL;
1948 	const struct ieee80211_reg_rule *rrule2 = NULL;
1949 
1950 	u32 flags = chan->orig_flags;
1951 
1952 	rrule = freq_reg_info(wiphy, orig_chan_freq);
1953 	if (IS_ERR(rrule)) {
1954 		/* check for adjacent match, therefore get rules for
1955 		 * chan - 20 MHz and chan + 20 MHz and test
1956 		 * if reg rules are adjacent
1957 		 */
1958 		rrule1 = freq_reg_info(wiphy,
1959 				       orig_chan_freq - MHZ_TO_KHZ(20));
1960 		rrule2 = freq_reg_info(wiphy,
1961 				       orig_chan_freq + MHZ_TO_KHZ(20));
1962 		if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1963 			struct ieee80211_freq_range comb_range;
1964 
1965 			if (rrule1->freq_range.end_freq_khz !=
1966 			    rrule2->freq_range.start_freq_khz)
1967 				goto disable_chan;
1968 
1969 			comb_range.start_freq_khz =
1970 				rrule1->freq_range.start_freq_khz;
1971 			comb_range.end_freq_khz =
1972 				rrule2->freq_range.end_freq_khz;
1973 			comb_range.max_bandwidth_khz =
1974 				min_t(u32,
1975 				      rrule1->freq_range.max_bandwidth_khz,
1976 				      rrule2->freq_range.max_bandwidth_khz);
1977 
1978 			if (!cfg80211_does_bw_fit_range(&comb_range,
1979 							orig_chan_freq,
1980 							MHZ_TO_KHZ(20)))
1981 				goto disable_chan;
1982 
1983 			handle_channel_adjacent_rules(wiphy, initiator, chan,
1984 						      flags, lr, request_wiphy,
1985 						      rrule1, rrule2,
1986 						      &comb_range);
1987 			return;
1988 		}
1989 
1990 disable_chan:
1991 		/* We will disable all channels that do not match our
1992 		 * received regulatory rule unless the hint is coming
1993 		 * from a Country IE and the Country IE had no information
1994 		 * about a band. The IEEE 802.11 spec allows for an AP
1995 		 * to send only a subset of the regulatory rules allowed,
1996 		 * so an AP in the US that only supports 2.4 GHz may only send
1997 		 * a country IE with information for the 2.4 GHz band
1998 		 * while 5 GHz is still supported.
1999 		 */
2000 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2001 		    PTR_ERR(rrule) == -ERANGE)
2002 			return;
2003 
2004 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2005 		    request_wiphy && request_wiphy == wiphy &&
2006 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2007 			pr_debug("Disabling freq %d.%03d MHz for good\n",
2008 				 chan->center_freq, chan->freq_offset);
2009 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2010 			chan->flags = chan->orig_flags;
2011 		} else {
2012 			pr_debug("Disabling freq %d.%03d MHz\n",
2013 				 chan->center_freq, chan->freq_offset);
2014 			chan->flags |= IEEE80211_CHAN_DISABLED;
2015 		}
2016 		return;
2017 	}
2018 
2019 	handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2020 				   request_wiphy, rrule);
2021 }
2022 
2023 static void handle_band(struct wiphy *wiphy,
2024 			enum nl80211_reg_initiator initiator,
2025 			struct ieee80211_supported_band *sband)
2026 {
2027 	unsigned int i;
2028 
2029 	if (!sband)
2030 		return;
2031 
2032 	for (i = 0; i < sband->n_channels; i++)
2033 		handle_channel(wiphy, initiator, &sband->channels[i]);
2034 }
2035 
2036 static bool reg_request_cell_base(struct regulatory_request *request)
2037 {
2038 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2039 		return false;
2040 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2041 }
2042 
2043 bool reg_last_request_cell_base(void)
2044 {
2045 	return reg_request_cell_base(get_last_request());
2046 }
2047 
2048 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2049 /* Core specific check */
2050 static enum reg_request_treatment
2051 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2052 {
2053 	struct regulatory_request *lr = get_last_request();
2054 
2055 	if (!reg_num_devs_support_basehint)
2056 		return REG_REQ_IGNORE;
2057 
2058 	if (reg_request_cell_base(lr) &&
2059 	    !regdom_changes(pending_request->alpha2))
2060 		return REG_REQ_ALREADY_SET;
2061 
2062 	return REG_REQ_OK;
2063 }
2064 
2065 /* Device specific check */
2066 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2067 {
2068 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2069 }
2070 #else
2071 static enum reg_request_treatment
2072 reg_ignore_cell_hint(struct regulatory_request *pending_request)
2073 {
2074 	return REG_REQ_IGNORE;
2075 }
2076 
2077 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2078 {
2079 	return true;
2080 }
2081 #endif
2082 
2083 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2084 {
2085 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2086 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2087 		return true;
2088 	return false;
2089 }
2090 
2091 static bool ignore_reg_update(struct wiphy *wiphy,
2092 			      enum nl80211_reg_initiator initiator)
2093 {
2094 	struct regulatory_request *lr = get_last_request();
2095 
2096 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2097 		return true;
2098 
2099 	if (!lr) {
2100 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2101 			 reg_initiator_name(initiator));
2102 		return true;
2103 	}
2104 
2105 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2106 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2107 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2108 			 reg_initiator_name(initiator));
2109 		return true;
2110 	}
2111 
2112 	/*
2113 	 * wiphy->regd will be set once the device has its own
2114 	 * desired regulatory domain set
2115 	 */
2116 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2117 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2118 	    !is_world_regdom(lr->alpha2)) {
2119 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2120 			 reg_initiator_name(initiator));
2121 		return true;
2122 	}
2123 
2124 	if (reg_request_cell_base(lr))
2125 		return reg_dev_ignore_cell_hint(wiphy);
2126 
2127 	return false;
2128 }
2129 
2130 static bool reg_is_world_roaming(struct wiphy *wiphy)
2131 {
2132 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2133 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2134 	struct regulatory_request *lr = get_last_request();
2135 
2136 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2137 		return true;
2138 
2139 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2140 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2141 		return true;
2142 
2143 	return false;
2144 }
2145 
2146 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2147 			      struct reg_beacon *reg_beacon)
2148 {
2149 	struct ieee80211_supported_band *sband;
2150 	struct ieee80211_channel *chan;
2151 	bool channel_changed = false;
2152 	struct ieee80211_channel chan_before;
2153 
2154 	sband = wiphy->bands[reg_beacon->chan.band];
2155 	chan = &sband->channels[chan_idx];
2156 
2157 	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2158 		return;
2159 
2160 	if (chan->beacon_found)
2161 		return;
2162 
2163 	chan->beacon_found = true;
2164 
2165 	if (!reg_is_world_roaming(wiphy))
2166 		return;
2167 
2168 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2169 		return;
2170 
2171 	chan_before = *chan;
2172 
2173 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
2174 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
2175 		channel_changed = true;
2176 	}
2177 
2178 	if (channel_changed)
2179 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2180 }
2181 
2182 /*
2183  * Called when a scan on a wiphy finds a beacon on
2184  * new channel
2185  */
2186 static void wiphy_update_new_beacon(struct wiphy *wiphy,
2187 				    struct reg_beacon *reg_beacon)
2188 {
2189 	unsigned int i;
2190 	struct ieee80211_supported_band *sband;
2191 
2192 	if (!wiphy->bands[reg_beacon->chan.band])
2193 		return;
2194 
2195 	sband = wiphy->bands[reg_beacon->chan.band];
2196 
2197 	for (i = 0; i < sband->n_channels; i++)
2198 		handle_reg_beacon(wiphy, i, reg_beacon);
2199 }
2200 
2201 /*
2202  * Called upon reg changes or a new wiphy is added
2203  */
2204 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2205 {
2206 	unsigned int i;
2207 	struct ieee80211_supported_band *sband;
2208 	struct reg_beacon *reg_beacon;
2209 
2210 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2211 		if (!wiphy->bands[reg_beacon->chan.band])
2212 			continue;
2213 		sband = wiphy->bands[reg_beacon->chan.band];
2214 		for (i = 0; i < sband->n_channels; i++)
2215 			handle_reg_beacon(wiphy, i, reg_beacon);
2216 	}
2217 }
2218 
2219 /* Reap the advantages of previously found beacons */
2220 static void reg_process_beacons(struct wiphy *wiphy)
2221 {
2222 	/*
2223 	 * Means we are just firing up cfg80211, so no beacons would
2224 	 * have been processed yet.
2225 	 */
2226 	if (!last_request)
2227 		return;
2228 	wiphy_update_beacon_reg(wiphy);
2229 }
2230 
2231 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2232 {
2233 	if (!chan)
2234 		return false;
2235 	if (chan->flags & IEEE80211_CHAN_DISABLED)
2236 		return false;
2237 	/* This would happen when regulatory rules disallow HT40 completely */
2238 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2239 		return false;
2240 	return true;
2241 }
2242 
2243 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2244 					 struct ieee80211_channel *channel)
2245 {
2246 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2247 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2248 	const struct ieee80211_regdomain *regd;
2249 	unsigned int i;
2250 	u32 flags;
2251 
2252 	if (!is_ht40_allowed(channel)) {
2253 		channel->flags |= IEEE80211_CHAN_NO_HT40;
2254 		return;
2255 	}
2256 
2257 	/*
2258 	 * We need to ensure the extension channels exist to
2259 	 * be able to use HT40- or HT40+, this finds them (or not)
2260 	 */
2261 	for (i = 0; i < sband->n_channels; i++) {
2262 		struct ieee80211_channel *c = &sband->channels[i];
2263 
2264 		if (c->center_freq == (channel->center_freq - 20))
2265 			channel_before = c;
2266 		if (c->center_freq == (channel->center_freq + 20))
2267 			channel_after = c;
2268 	}
2269 
2270 	flags = 0;
2271 	regd = get_wiphy_regdom(wiphy);
2272 	if (regd) {
2273 		const struct ieee80211_reg_rule *reg_rule =
2274 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2275 					   regd, MHZ_TO_KHZ(20));
2276 
2277 		if (!IS_ERR(reg_rule))
2278 			flags = reg_rule->flags;
2279 	}
2280 
2281 	/*
2282 	 * Please note that this assumes target bandwidth is 20 MHz,
2283 	 * if that ever changes we also need to change the below logic
2284 	 * to include that as well.
2285 	 */
2286 	if (!is_ht40_allowed(channel_before) ||
2287 	    flags & NL80211_RRF_NO_HT40MINUS)
2288 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2289 	else
2290 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2291 
2292 	if (!is_ht40_allowed(channel_after) ||
2293 	    flags & NL80211_RRF_NO_HT40PLUS)
2294 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2295 	else
2296 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2297 }
2298 
2299 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2300 				      struct ieee80211_supported_band *sband)
2301 {
2302 	unsigned int i;
2303 
2304 	if (!sband)
2305 		return;
2306 
2307 	for (i = 0; i < sband->n_channels; i++)
2308 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2309 }
2310 
2311 static void reg_process_ht_flags(struct wiphy *wiphy)
2312 {
2313 	enum nl80211_band band;
2314 
2315 	if (!wiphy)
2316 		return;
2317 
2318 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2319 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2320 }
2321 
2322 static void reg_call_notifier(struct wiphy *wiphy,
2323 			      struct regulatory_request *request)
2324 {
2325 	if (wiphy->reg_notifier)
2326 		wiphy->reg_notifier(wiphy, request);
2327 }
2328 
2329 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2330 {
2331 	struct cfg80211_chan_def chandef = {};
2332 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2333 	enum nl80211_iftype iftype;
2334 
2335 	wdev_lock(wdev);
2336 	iftype = wdev->iftype;
2337 
2338 	/* make sure the interface is active */
2339 	if (!wdev->netdev || !netif_running(wdev->netdev))
2340 		goto wdev_inactive_unlock;
2341 
2342 	switch (iftype) {
2343 	case NL80211_IFTYPE_AP:
2344 	case NL80211_IFTYPE_P2P_GO:
2345 		if (!wdev->beacon_interval)
2346 			goto wdev_inactive_unlock;
2347 		chandef = wdev->chandef;
2348 		break;
2349 	case NL80211_IFTYPE_ADHOC:
2350 		if (!wdev->ssid_len)
2351 			goto wdev_inactive_unlock;
2352 		chandef = wdev->chandef;
2353 		break;
2354 	case NL80211_IFTYPE_STATION:
2355 	case NL80211_IFTYPE_P2P_CLIENT:
2356 		if (!wdev->current_bss ||
2357 		    !wdev->current_bss->pub.channel)
2358 			goto wdev_inactive_unlock;
2359 
2360 		if (!rdev->ops->get_channel ||
2361 		    rdev_get_channel(rdev, wdev, &chandef))
2362 			cfg80211_chandef_create(&chandef,
2363 						wdev->current_bss->pub.channel,
2364 						NL80211_CHAN_NO_HT);
2365 		break;
2366 	case NL80211_IFTYPE_MONITOR:
2367 	case NL80211_IFTYPE_AP_VLAN:
2368 	case NL80211_IFTYPE_P2P_DEVICE:
2369 		/* no enforcement required */
2370 		break;
2371 	default:
2372 		/* others not implemented for now */
2373 		WARN_ON(1);
2374 		break;
2375 	}
2376 
2377 	wdev_unlock(wdev);
2378 
2379 	switch (iftype) {
2380 	case NL80211_IFTYPE_AP:
2381 	case NL80211_IFTYPE_P2P_GO:
2382 	case NL80211_IFTYPE_ADHOC:
2383 		return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2384 	case NL80211_IFTYPE_STATION:
2385 	case NL80211_IFTYPE_P2P_CLIENT:
2386 		return cfg80211_chandef_usable(wiphy, &chandef,
2387 					       IEEE80211_CHAN_DISABLED);
2388 	default:
2389 		break;
2390 	}
2391 
2392 	return true;
2393 
2394 wdev_inactive_unlock:
2395 	wdev_unlock(wdev);
2396 	return true;
2397 }
2398 
2399 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2400 {
2401 	struct wireless_dev *wdev;
2402 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2403 
2404 	ASSERT_RTNL();
2405 
2406 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2407 		if (!reg_wdev_chan_valid(wiphy, wdev))
2408 			cfg80211_leave(rdev, wdev);
2409 }
2410 
2411 static void reg_check_chans_work(struct work_struct *work)
2412 {
2413 	struct cfg80211_registered_device *rdev;
2414 
2415 	pr_debug("Verifying active interfaces after reg change\n");
2416 	rtnl_lock();
2417 
2418 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2419 		if (!(rdev->wiphy.regulatory_flags &
2420 		      REGULATORY_IGNORE_STALE_KICKOFF))
2421 			reg_leave_invalid_chans(&rdev->wiphy);
2422 
2423 	rtnl_unlock();
2424 }
2425 
2426 static void reg_check_channels(void)
2427 {
2428 	/*
2429 	 * Give usermode a chance to do something nicer (move to another
2430 	 * channel, orderly disconnection), before forcing a disconnection.
2431 	 */
2432 	mod_delayed_work(system_power_efficient_wq,
2433 			 &reg_check_chans,
2434 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2435 }
2436 
2437 static void wiphy_update_regulatory(struct wiphy *wiphy,
2438 				    enum nl80211_reg_initiator initiator)
2439 {
2440 	enum nl80211_band band;
2441 	struct regulatory_request *lr = get_last_request();
2442 
2443 	if (ignore_reg_update(wiphy, initiator)) {
2444 		/*
2445 		 * Regulatory updates set by CORE are ignored for custom
2446 		 * regulatory cards. Let us notify the changes to the driver,
2447 		 * as some drivers used this to restore its orig_* reg domain.
2448 		 */
2449 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2450 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2451 		    !(wiphy->regulatory_flags &
2452 		      REGULATORY_WIPHY_SELF_MANAGED))
2453 			reg_call_notifier(wiphy, lr);
2454 		return;
2455 	}
2456 
2457 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2458 
2459 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2460 		handle_band(wiphy, initiator, wiphy->bands[band]);
2461 
2462 	reg_process_beacons(wiphy);
2463 	reg_process_ht_flags(wiphy);
2464 	reg_call_notifier(wiphy, lr);
2465 }
2466 
2467 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2468 {
2469 	struct cfg80211_registered_device *rdev;
2470 	struct wiphy *wiphy;
2471 
2472 	ASSERT_RTNL();
2473 
2474 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2475 		wiphy = &rdev->wiphy;
2476 		wiphy_update_regulatory(wiphy, initiator);
2477 	}
2478 
2479 	reg_check_channels();
2480 }
2481 
2482 static void handle_channel_custom(struct wiphy *wiphy,
2483 				  struct ieee80211_channel *chan,
2484 				  const struct ieee80211_regdomain *regd,
2485 				  u32 min_bw)
2486 {
2487 	u32 bw_flags = 0;
2488 	const struct ieee80211_reg_rule *reg_rule = NULL;
2489 	const struct ieee80211_power_rule *power_rule = NULL;
2490 	u32 bw, center_freq_khz;
2491 
2492 	center_freq_khz = ieee80211_channel_to_khz(chan);
2493 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2494 		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2495 		if (!IS_ERR(reg_rule))
2496 			break;
2497 	}
2498 
2499 	if (IS_ERR_OR_NULL(reg_rule)) {
2500 		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2501 			 chan->center_freq, chan->freq_offset);
2502 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2503 			chan->flags |= IEEE80211_CHAN_DISABLED;
2504 		} else {
2505 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2506 			chan->flags = chan->orig_flags;
2507 		}
2508 		return;
2509 	}
2510 
2511 	power_rule = &reg_rule->power_rule;
2512 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2513 
2514 	chan->dfs_state_entered = jiffies;
2515 	chan->dfs_state = NL80211_DFS_USABLE;
2516 
2517 	chan->beacon_found = false;
2518 
2519 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2520 		chan->flags = chan->orig_flags | bw_flags |
2521 			      map_regdom_flags(reg_rule->flags);
2522 	else
2523 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2524 
2525 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2526 	chan->max_reg_power = chan->max_power =
2527 		(int) MBM_TO_DBM(power_rule->max_eirp);
2528 
2529 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2530 		if (reg_rule->dfs_cac_ms)
2531 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2532 		else
2533 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2534 	}
2535 
2536 	chan->max_power = chan->max_reg_power;
2537 }
2538 
2539 static void handle_band_custom(struct wiphy *wiphy,
2540 			       struct ieee80211_supported_band *sband,
2541 			       const struct ieee80211_regdomain *regd)
2542 {
2543 	unsigned int i;
2544 
2545 	if (!sband)
2546 		return;
2547 
2548 	/*
2549 	 * We currently assume that you always want at least 20 MHz,
2550 	 * otherwise channel 12 might get enabled if this rule is
2551 	 * compatible to US, which permits 2402 - 2472 MHz.
2552 	 */
2553 	for (i = 0; i < sband->n_channels; i++)
2554 		handle_channel_custom(wiphy, &sband->channels[i], regd,
2555 				      MHZ_TO_KHZ(20));
2556 }
2557 
2558 /* Used by drivers prior to wiphy registration */
2559 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2560 				   const struct ieee80211_regdomain *regd)
2561 {
2562 	const struct ieee80211_regdomain *new_regd, *tmp;
2563 	enum nl80211_band band;
2564 	unsigned int bands_set = 0;
2565 
2566 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2567 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2568 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2569 
2570 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2571 		if (!wiphy->bands[band])
2572 			continue;
2573 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2574 		bands_set++;
2575 	}
2576 
2577 	/*
2578 	 * no point in calling this if it won't have any effect
2579 	 * on your device's supported bands.
2580 	 */
2581 	WARN_ON(!bands_set);
2582 	new_regd = reg_copy_regd(regd);
2583 	if (IS_ERR(new_regd))
2584 		return;
2585 
2586 	rtnl_lock();
2587 	wiphy_lock(wiphy);
2588 
2589 	tmp = get_wiphy_regdom(wiphy);
2590 	rcu_assign_pointer(wiphy->regd, new_regd);
2591 	rcu_free_regdom(tmp);
2592 
2593 	wiphy_unlock(wiphy);
2594 	rtnl_unlock();
2595 }
2596 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2597 
2598 static void reg_set_request_processed(void)
2599 {
2600 	bool need_more_processing = false;
2601 	struct regulatory_request *lr = get_last_request();
2602 
2603 	lr->processed = true;
2604 
2605 	spin_lock(&reg_requests_lock);
2606 	if (!list_empty(&reg_requests_list))
2607 		need_more_processing = true;
2608 	spin_unlock(&reg_requests_lock);
2609 
2610 	cancel_crda_timeout();
2611 
2612 	if (need_more_processing)
2613 		schedule_work(&reg_work);
2614 }
2615 
2616 /**
2617  * reg_process_hint_core - process core regulatory requests
2618  * @core_request: a pending core regulatory request
2619  *
2620  * The wireless subsystem can use this function to process
2621  * a regulatory request issued by the regulatory core.
2622  */
2623 static enum reg_request_treatment
2624 reg_process_hint_core(struct regulatory_request *core_request)
2625 {
2626 	if (reg_query_database(core_request)) {
2627 		core_request->intersect = false;
2628 		core_request->processed = false;
2629 		reg_update_last_request(core_request);
2630 		return REG_REQ_OK;
2631 	}
2632 
2633 	return REG_REQ_IGNORE;
2634 }
2635 
2636 static enum reg_request_treatment
2637 __reg_process_hint_user(struct regulatory_request *user_request)
2638 {
2639 	struct regulatory_request *lr = get_last_request();
2640 
2641 	if (reg_request_cell_base(user_request))
2642 		return reg_ignore_cell_hint(user_request);
2643 
2644 	if (reg_request_cell_base(lr))
2645 		return REG_REQ_IGNORE;
2646 
2647 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2648 		return REG_REQ_INTERSECT;
2649 	/*
2650 	 * If the user knows better the user should set the regdom
2651 	 * to their country before the IE is picked up
2652 	 */
2653 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2654 	    lr->intersect)
2655 		return REG_REQ_IGNORE;
2656 	/*
2657 	 * Process user requests only after previous user/driver/core
2658 	 * requests have been processed
2659 	 */
2660 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2661 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2662 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2663 	    regdom_changes(lr->alpha2))
2664 		return REG_REQ_IGNORE;
2665 
2666 	if (!regdom_changes(user_request->alpha2))
2667 		return REG_REQ_ALREADY_SET;
2668 
2669 	return REG_REQ_OK;
2670 }
2671 
2672 /**
2673  * reg_process_hint_user - process user regulatory requests
2674  * @user_request: a pending user regulatory request
2675  *
2676  * The wireless subsystem can use this function to process
2677  * a regulatory request initiated by userspace.
2678  */
2679 static enum reg_request_treatment
2680 reg_process_hint_user(struct regulatory_request *user_request)
2681 {
2682 	enum reg_request_treatment treatment;
2683 
2684 	treatment = __reg_process_hint_user(user_request);
2685 	if (treatment == REG_REQ_IGNORE ||
2686 	    treatment == REG_REQ_ALREADY_SET)
2687 		return REG_REQ_IGNORE;
2688 
2689 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2690 	user_request->processed = false;
2691 
2692 	if (reg_query_database(user_request)) {
2693 		reg_update_last_request(user_request);
2694 		user_alpha2[0] = user_request->alpha2[0];
2695 		user_alpha2[1] = user_request->alpha2[1];
2696 		return REG_REQ_OK;
2697 	}
2698 
2699 	return REG_REQ_IGNORE;
2700 }
2701 
2702 static enum reg_request_treatment
2703 __reg_process_hint_driver(struct regulatory_request *driver_request)
2704 {
2705 	struct regulatory_request *lr = get_last_request();
2706 
2707 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2708 		if (regdom_changes(driver_request->alpha2))
2709 			return REG_REQ_OK;
2710 		return REG_REQ_ALREADY_SET;
2711 	}
2712 
2713 	/*
2714 	 * This would happen if you unplug and plug your card
2715 	 * back in or if you add a new device for which the previously
2716 	 * loaded card also agrees on the regulatory domain.
2717 	 */
2718 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2719 	    !regdom_changes(driver_request->alpha2))
2720 		return REG_REQ_ALREADY_SET;
2721 
2722 	return REG_REQ_INTERSECT;
2723 }
2724 
2725 /**
2726  * reg_process_hint_driver - process driver regulatory requests
2727  * @wiphy: the wireless device for the regulatory request
2728  * @driver_request: a pending driver regulatory request
2729  *
2730  * The wireless subsystem can use this function to process
2731  * a regulatory request issued by an 802.11 driver.
2732  *
2733  * Returns one of the different reg request treatment values.
2734  */
2735 static enum reg_request_treatment
2736 reg_process_hint_driver(struct wiphy *wiphy,
2737 			struct regulatory_request *driver_request)
2738 {
2739 	const struct ieee80211_regdomain *regd, *tmp;
2740 	enum reg_request_treatment treatment;
2741 
2742 	treatment = __reg_process_hint_driver(driver_request);
2743 
2744 	switch (treatment) {
2745 	case REG_REQ_OK:
2746 		break;
2747 	case REG_REQ_IGNORE:
2748 		return REG_REQ_IGNORE;
2749 	case REG_REQ_INTERSECT:
2750 	case REG_REQ_ALREADY_SET:
2751 		regd = reg_copy_regd(get_cfg80211_regdom());
2752 		if (IS_ERR(regd))
2753 			return REG_REQ_IGNORE;
2754 
2755 		tmp = get_wiphy_regdom(wiphy);
2756 		ASSERT_RTNL();
2757 		wiphy_lock(wiphy);
2758 		rcu_assign_pointer(wiphy->regd, regd);
2759 		wiphy_unlock(wiphy);
2760 		rcu_free_regdom(tmp);
2761 	}
2762 
2763 
2764 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2765 	driver_request->processed = false;
2766 
2767 	/*
2768 	 * Since CRDA will not be called in this case as we already
2769 	 * have applied the requested regulatory domain before we just
2770 	 * inform userspace we have processed the request
2771 	 */
2772 	if (treatment == REG_REQ_ALREADY_SET) {
2773 		nl80211_send_reg_change_event(driver_request);
2774 		reg_update_last_request(driver_request);
2775 		reg_set_request_processed();
2776 		return REG_REQ_ALREADY_SET;
2777 	}
2778 
2779 	if (reg_query_database(driver_request)) {
2780 		reg_update_last_request(driver_request);
2781 		return REG_REQ_OK;
2782 	}
2783 
2784 	return REG_REQ_IGNORE;
2785 }
2786 
2787 static enum reg_request_treatment
2788 __reg_process_hint_country_ie(struct wiphy *wiphy,
2789 			      struct regulatory_request *country_ie_request)
2790 {
2791 	struct wiphy *last_wiphy = NULL;
2792 	struct regulatory_request *lr = get_last_request();
2793 
2794 	if (reg_request_cell_base(lr)) {
2795 		/* Trust a Cell base station over the AP's country IE */
2796 		if (regdom_changes(country_ie_request->alpha2))
2797 			return REG_REQ_IGNORE;
2798 		return REG_REQ_ALREADY_SET;
2799 	} else {
2800 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2801 			return REG_REQ_IGNORE;
2802 	}
2803 
2804 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2805 		return -EINVAL;
2806 
2807 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2808 		return REG_REQ_OK;
2809 
2810 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2811 
2812 	if (last_wiphy != wiphy) {
2813 		/*
2814 		 * Two cards with two APs claiming different
2815 		 * Country IE alpha2s. We could
2816 		 * intersect them, but that seems unlikely
2817 		 * to be correct. Reject second one for now.
2818 		 */
2819 		if (regdom_changes(country_ie_request->alpha2))
2820 			return REG_REQ_IGNORE;
2821 		return REG_REQ_ALREADY_SET;
2822 	}
2823 
2824 	if (regdom_changes(country_ie_request->alpha2))
2825 		return REG_REQ_OK;
2826 	return REG_REQ_ALREADY_SET;
2827 }
2828 
2829 /**
2830  * reg_process_hint_country_ie - process regulatory requests from country IEs
2831  * @wiphy: the wireless device for the regulatory request
2832  * @country_ie_request: a regulatory request from a country IE
2833  *
2834  * The wireless subsystem can use this function to process
2835  * a regulatory request issued by a country Information Element.
2836  *
2837  * Returns one of the different reg request treatment values.
2838  */
2839 static enum reg_request_treatment
2840 reg_process_hint_country_ie(struct wiphy *wiphy,
2841 			    struct regulatory_request *country_ie_request)
2842 {
2843 	enum reg_request_treatment treatment;
2844 
2845 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2846 
2847 	switch (treatment) {
2848 	case REG_REQ_OK:
2849 		break;
2850 	case REG_REQ_IGNORE:
2851 		return REG_REQ_IGNORE;
2852 	case REG_REQ_ALREADY_SET:
2853 		reg_free_request(country_ie_request);
2854 		return REG_REQ_ALREADY_SET;
2855 	case REG_REQ_INTERSECT:
2856 		/*
2857 		 * This doesn't happen yet, not sure we
2858 		 * ever want to support it for this case.
2859 		 */
2860 		WARN_ONCE(1, "Unexpected intersection for country elements");
2861 		return REG_REQ_IGNORE;
2862 	}
2863 
2864 	country_ie_request->intersect = false;
2865 	country_ie_request->processed = false;
2866 
2867 	if (reg_query_database(country_ie_request)) {
2868 		reg_update_last_request(country_ie_request);
2869 		return REG_REQ_OK;
2870 	}
2871 
2872 	return REG_REQ_IGNORE;
2873 }
2874 
2875 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2876 {
2877 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2878 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2879 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2880 	bool dfs_domain_same;
2881 
2882 	rcu_read_lock();
2883 
2884 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2885 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2886 	if (!wiphy1_regd)
2887 		wiphy1_regd = cfg80211_regd;
2888 
2889 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2890 	if (!wiphy2_regd)
2891 		wiphy2_regd = cfg80211_regd;
2892 
2893 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2894 
2895 	rcu_read_unlock();
2896 
2897 	return dfs_domain_same;
2898 }
2899 
2900 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2901 				    struct ieee80211_channel *src_chan)
2902 {
2903 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2904 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2905 		return;
2906 
2907 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2908 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2909 		return;
2910 
2911 	if (src_chan->center_freq == dst_chan->center_freq &&
2912 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2913 		dst_chan->dfs_state = src_chan->dfs_state;
2914 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2915 	}
2916 }
2917 
2918 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2919 				       struct wiphy *src_wiphy)
2920 {
2921 	struct ieee80211_supported_band *src_sband, *dst_sband;
2922 	struct ieee80211_channel *src_chan, *dst_chan;
2923 	int i, j, band;
2924 
2925 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2926 		return;
2927 
2928 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2929 		dst_sband = dst_wiphy->bands[band];
2930 		src_sband = src_wiphy->bands[band];
2931 		if (!dst_sband || !src_sband)
2932 			continue;
2933 
2934 		for (i = 0; i < dst_sband->n_channels; i++) {
2935 			dst_chan = &dst_sband->channels[i];
2936 			for (j = 0; j < src_sband->n_channels; j++) {
2937 				src_chan = &src_sband->channels[j];
2938 				reg_copy_dfs_chan_state(dst_chan, src_chan);
2939 			}
2940 		}
2941 	}
2942 }
2943 
2944 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2945 {
2946 	struct cfg80211_registered_device *rdev;
2947 
2948 	ASSERT_RTNL();
2949 
2950 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2951 		if (wiphy == &rdev->wiphy)
2952 			continue;
2953 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2954 	}
2955 }
2956 
2957 /* This processes *all* regulatory hints */
2958 static void reg_process_hint(struct regulatory_request *reg_request)
2959 {
2960 	struct wiphy *wiphy = NULL;
2961 	enum reg_request_treatment treatment;
2962 	enum nl80211_reg_initiator initiator = reg_request->initiator;
2963 
2964 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2965 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2966 
2967 	switch (initiator) {
2968 	case NL80211_REGDOM_SET_BY_CORE:
2969 		treatment = reg_process_hint_core(reg_request);
2970 		break;
2971 	case NL80211_REGDOM_SET_BY_USER:
2972 		treatment = reg_process_hint_user(reg_request);
2973 		break;
2974 	case NL80211_REGDOM_SET_BY_DRIVER:
2975 		if (!wiphy)
2976 			goto out_free;
2977 		treatment = reg_process_hint_driver(wiphy, reg_request);
2978 		break;
2979 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2980 		if (!wiphy)
2981 			goto out_free;
2982 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2983 		break;
2984 	default:
2985 		WARN(1, "invalid initiator %d\n", initiator);
2986 		goto out_free;
2987 	}
2988 
2989 	if (treatment == REG_REQ_IGNORE)
2990 		goto out_free;
2991 
2992 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2993 	     "unexpected treatment value %d\n", treatment);
2994 
2995 	/* This is required so that the orig_* parameters are saved.
2996 	 * NOTE: treatment must be set for any case that reaches here!
2997 	 */
2998 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2999 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3000 		wiphy_update_regulatory(wiphy, initiator);
3001 		wiphy_all_share_dfs_chan_state(wiphy);
3002 		reg_check_channels();
3003 	}
3004 
3005 	return;
3006 
3007 out_free:
3008 	reg_free_request(reg_request);
3009 }
3010 
3011 static void notify_self_managed_wiphys(struct regulatory_request *request)
3012 {
3013 	struct cfg80211_registered_device *rdev;
3014 	struct wiphy *wiphy;
3015 
3016 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3017 		wiphy = &rdev->wiphy;
3018 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3019 		    request->initiator == NL80211_REGDOM_SET_BY_USER)
3020 			reg_call_notifier(wiphy, request);
3021 	}
3022 }
3023 
3024 /*
3025  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3026  * Regulatory hints come on a first come first serve basis and we
3027  * must process each one atomically.
3028  */
3029 static void reg_process_pending_hints(void)
3030 {
3031 	struct regulatory_request *reg_request, *lr;
3032 
3033 	lr = get_last_request();
3034 
3035 	/* When last_request->processed becomes true this will be rescheduled */
3036 	if (lr && !lr->processed) {
3037 		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3038 		return;
3039 	}
3040 
3041 	spin_lock(&reg_requests_lock);
3042 
3043 	if (list_empty(&reg_requests_list)) {
3044 		spin_unlock(&reg_requests_lock);
3045 		return;
3046 	}
3047 
3048 	reg_request = list_first_entry(&reg_requests_list,
3049 				       struct regulatory_request,
3050 				       list);
3051 	list_del_init(&reg_request->list);
3052 
3053 	spin_unlock(&reg_requests_lock);
3054 
3055 	notify_self_managed_wiphys(reg_request);
3056 
3057 	reg_process_hint(reg_request);
3058 
3059 	lr = get_last_request();
3060 
3061 	spin_lock(&reg_requests_lock);
3062 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
3063 		schedule_work(&reg_work);
3064 	spin_unlock(&reg_requests_lock);
3065 }
3066 
3067 /* Processes beacon hints -- this has nothing to do with country IEs */
3068 static void reg_process_pending_beacon_hints(void)
3069 {
3070 	struct cfg80211_registered_device *rdev;
3071 	struct reg_beacon *pending_beacon, *tmp;
3072 
3073 	/* This goes through the _pending_ beacon list */
3074 	spin_lock_bh(&reg_pending_beacons_lock);
3075 
3076 	list_for_each_entry_safe(pending_beacon, tmp,
3077 				 &reg_pending_beacons, list) {
3078 		list_del_init(&pending_beacon->list);
3079 
3080 		/* Applies the beacon hint to current wiphys */
3081 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3082 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3083 
3084 		/* Remembers the beacon hint for new wiphys or reg changes */
3085 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
3086 	}
3087 
3088 	spin_unlock_bh(&reg_pending_beacons_lock);
3089 }
3090 
3091 static void reg_process_self_managed_hint(struct wiphy *wiphy)
3092 {
3093 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3094 	const struct ieee80211_regdomain *tmp;
3095 	const struct ieee80211_regdomain *regd;
3096 	enum nl80211_band band;
3097 	struct regulatory_request request = {};
3098 
3099 	ASSERT_RTNL();
3100 	lockdep_assert_wiphy(wiphy);
3101 
3102 	spin_lock(&reg_requests_lock);
3103 	regd = rdev->requested_regd;
3104 	rdev->requested_regd = NULL;
3105 	spin_unlock(&reg_requests_lock);
3106 
3107 	if (!regd)
3108 		return;
3109 
3110 	tmp = get_wiphy_regdom(wiphy);
3111 	rcu_assign_pointer(wiphy->regd, regd);
3112 	rcu_free_regdom(tmp);
3113 
3114 	for (band = 0; band < NUM_NL80211_BANDS; band++)
3115 		handle_band_custom(wiphy, wiphy->bands[band], regd);
3116 
3117 	reg_process_ht_flags(wiphy);
3118 
3119 	request.wiphy_idx = get_wiphy_idx(wiphy);
3120 	request.alpha2[0] = regd->alpha2[0];
3121 	request.alpha2[1] = regd->alpha2[1];
3122 	request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3123 
3124 	nl80211_send_wiphy_reg_change_event(&request);
3125 }
3126 
3127 static void reg_process_self_managed_hints(void)
3128 {
3129 	struct cfg80211_registered_device *rdev;
3130 
3131 	ASSERT_RTNL();
3132 
3133 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3134 		wiphy_lock(&rdev->wiphy);
3135 		reg_process_self_managed_hint(&rdev->wiphy);
3136 		wiphy_unlock(&rdev->wiphy);
3137 	}
3138 
3139 	reg_check_channels();
3140 }
3141 
3142 static void reg_todo(struct work_struct *work)
3143 {
3144 	rtnl_lock();
3145 	reg_process_pending_hints();
3146 	reg_process_pending_beacon_hints();
3147 	reg_process_self_managed_hints();
3148 	rtnl_unlock();
3149 }
3150 
3151 static void queue_regulatory_request(struct regulatory_request *request)
3152 {
3153 	request->alpha2[0] = toupper(request->alpha2[0]);
3154 	request->alpha2[1] = toupper(request->alpha2[1]);
3155 
3156 	spin_lock(&reg_requests_lock);
3157 	list_add_tail(&request->list, &reg_requests_list);
3158 	spin_unlock(&reg_requests_lock);
3159 
3160 	schedule_work(&reg_work);
3161 }
3162 
3163 /*
3164  * Core regulatory hint -- happens during cfg80211_init()
3165  * and when we restore regulatory settings.
3166  */
3167 static int regulatory_hint_core(const char *alpha2)
3168 {
3169 	struct regulatory_request *request;
3170 
3171 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3172 	if (!request)
3173 		return -ENOMEM;
3174 
3175 	request->alpha2[0] = alpha2[0];
3176 	request->alpha2[1] = alpha2[1];
3177 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
3178 	request->wiphy_idx = WIPHY_IDX_INVALID;
3179 
3180 	queue_regulatory_request(request);
3181 
3182 	return 0;
3183 }
3184 
3185 /* User hints */
3186 int regulatory_hint_user(const char *alpha2,
3187 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
3188 {
3189 	struct regulatory_request *request;
3190 
3191 	if (WARN_ON(!alpha2))
3192 		return -EINVAL;
3193 
3194 	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3195 		return -EINVAL;
3196 
3197 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3198 	if (!request)
3199 		return -ENOMEM;
3200 
3201 	request->wiphy_idx = WIPHY_IDX_INVALID;
3202 	request->alpha2[0] = alpha2[0];
3203 	request->alpha2[1] = alpha2[1];
3204 	request->initiator = NL80211_REGDOM_SET_BY_USER;
3205 	request->user_reg_hint_type = user_reg_hint_type;
3206 
3207 	/* Allow calling CRDA again */
3208 	reset_crda_timeouts();
3209 
3210 	queue_regulatory_request(request);
3211 
3212 	return 0;
3213 }
3214 
3215 int regulatory_hint_indoor(bool is_indoor, u32 portid)
3216 {
3217 	spin_lock(&reg_indoor_lock);
3218 
3219 	/* It is possible that more than one user space process is trying to
3220 	 * configure the indoor setting. To handle such cases, clear the indoor
3221 	 * setting in case that some process does not think that the device
3222 	 * is operating in an indoor environment. In addition, if a user space
3223 	 * process indicates that it is controlling the indoor setting, save its
3224 	 * portid, i.e., make it the owner.
3225 	 */
3226 	reg_is_indoor = is_indoor;
3227 	if (reg_is_indoor) {
3228 		if (!reg_is_indoor_portid)
3229 			reg_is_indoor_portid = portid;
3230 	} else {
3231 		reg_is_indoor_portid = 0;
3232 	}
3233 
3234 	spin_unlock(&reg_indoor_lock);
3235 
3236 	if (!is_indoor)
3237 		reg_check_channels();
3238 
3239 	return 0;
3240 }
3241 
3242 void regulatory_netlink_notify(u32 portid)
3243 {
3244 	spin_lock(&reg_indoor_lock);
3245 
3246 	if (reg_is_indoor_portid != portid) {
3247 		spin_unlock(&reg_indoor_lock);
3248 		return;
3249 	}
3250 
3251 	reg_is_indoor = false;
3252 	reg_is_indoor_portid = 0;
3253 
3254 	spin_unlock(&reg_indoor_lock);
3255 
3256 	reg_check_channels();
3257 }
3258 
3259 /* Driver hints */
3260 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3261 {
3262 	struct regulatory_request *request;
3263 
3264 	if (WARN_ON(!alpha2 || !wiphy))
3265 		return -EINVAL;
3266 
3267 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3268 
3269 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3270 	if (!request)
3271 		return -ENOMEM;
3272 
3273 	request->wiphy_idx = get_wiphy_idx(wiphy);
3274 
3275 	request->alpha2[0] = alpha2[0];
3276 	request->alpha2[1] = alpha2[1];
3277 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3278 
3279 	/* Allow calling CRDA again */
3280 	reset_crda_timeouts();
3281 
3282 	queue_regulatory_request(request);
3283 
3284 	return 0;
3285 }
3286 EXPORT_SYMBOL(regulatory_hint);
3287 
3288 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3289 				const u8 *country_ie, u8 country_ie_len)
3290 {
3291 	char alpha2[2];
3292 	enum environment_cap env = ENVIRON_ANY;
3293 	struct regulatory_request *request = NULL, *lr;
3294 
3295 	/* IE len must be evenly divisible by 2 */
3296 	if (country_ie_len & 0x01)
3297 		return;
3298 
3299 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3300 		return;
3301 
3302 	request = kzalloc(sizeof(*request), GFP_KERNEL);
3303 	if (!request)
3304 		return;
3305 
3306 	alpha2[0] = country_ie[0];
3307 	alpha2[1] = country_ie[1];
3308 
3309 	if (country_ie[2] == 'I')
3310 		env = ENVIRON_INDOOR;
3311 	else if (country_ie[2] == 'O')
3312 		env = ENVIRON_OUTDOOR;
3313 
3314 	rcu_read_lock();
3315 	lr = get_last_request();
3316 
3317 	if (unlikely(!lr))
3318 		goto out;
3319 
3320 	/*
3321 	 * We will run this only upon a successful connection on cfg80211.
3322 	 * We leave conflict resolution to the workqueue, where can hold
3323 	 * the RTNL.
3324 	 */
3325 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3326 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3327 		goto out;
3328 
3329 	request->wiphy_idx = get_wiphy_idx(wiphy);
3330 	request->alpha2[0] = alpha2[0];
3331 	request->alpha2[1] = alpha2[1];
3332 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3333 	request->country_ie_env = env;
3334 
3335 	/* Allow calling CRDA again */
3336 	reset_crda_timeouts();
3337 
3338 	queue_regulatory_request(request);
3339 	request = NULL;
3340 out:
3341 	kfree(request);
3342 	rcu_read_unlock();
3343 }
3344 
3345 static void restore_alpha2(char *alpha2, bool reset_user)
3346 {
3347 	/* indicates there is no alpha2 to consider for restoration */
3348 	alpha2[0] = '9';
3349 	alpha2[1] = '7';
3350 
3351 	/* The user setting has precedence over the module parameter */
3352 	if (is_user_regdom_saved()) {
3353 		/* Unless we're asked to ignore it and reset it */
3354 		if (reset_user) {
3355 			pr_debug("Restoring regulatory settings including user preference\n");
3356 			user_alpha2[0] = '9';
3357 			user_alpha2[1] = '7';
3358 
3359 			/*
3360 			 * If we're ignoring user settings, we still need to
3361 			 * check the module parameter to ensure we put things
3362 			 * back as they were for a full restore.
3363 			 */
3364 			if (!is_world_regdom(ieee80211_regdom)) {
3365 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3366 					 ieee80211_regdom[0], ieee80211_regdom[1]);
3367 				alpha2[0] = ieee80211_regdom[0];
3368 				alpha2[1] = ieee80211_regdom[1];
3369 			}
3370 		} else {
3371 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3372 				 user_alpha2[0], user_alpha2[1]);
3373 			alpha2[0] = user_alpha2[0];
3374 			alpha2[1] = user_alpha2[1];
3375 		}
3376 	} else if (!is_world_regdom(ieee80211_regdom)) {
3377 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3378 			 ieee80211_regdom[0], ieee80211_regdom[1]);
3379 		alpha2[0] = ieee80211_regdom[0];
3380 		alpha2[1] = ieee80211_regdom[1];
3381 	} else
3382 		pr_debug("Restoring regulatory settings\n");
3383 }
3384 
3385 static void restore_custom_reg_settings(struct wiphy *wiphy)
3386 {
3387 	struct ieee80211_supported_band *sband;
3388 	enum nl80211_band band;
3389 	struct ieee80211_channel *chan;
3390 	int i;
3391 
3392 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3393 		sband = wiphy->bands[band];
3394 		if (!sband)
3395 			continue;
3396 		for (i = 0; i < sband->n_channels; i++) {
3397 			chan = &sband->channels[i];
3398 			chan->flags = chan->orig_flags;
3399 			chan->max_antenna_gain = chan->orig_mag;
3400 			chan->max_power = chan->orig_mpwr;
3401 			chan->beacon_found = false;
3402 		}
3403 	}
3404 }
3405 
3406 /*
3407  * Restoring regulatory settings involves ignoring any
3408  * possibly stale country IE information and user regulatory
3409  * settings if so desired, this includes any beacon hints
3410  * learned as we could have traveled outside to another country
3411  * after disconnection. To restore regulatory settings we do
3412  * exactly what we did at bootup:
3413  *
3414  *   - send a core regulatory hint
3415  *   - send a user regulatory hint if applicable
3416  *
3417  * Device drivers that send a regulatory hint for a specific country
3418  * keep their own regulatory domain on wiphy->regd so that does
3419  * not need to be remembered.
3420  */
3421 static void restore_regulatory_settings(bool reset_user, bool cached)
3422 {
3423 	char alpha2[2];
3424 	char world_alpha2[2];
3425 	struct reg_beacon *reg_beacon, *btmp;
3426 	LIST_HEAD(tmp_reg_req_list);
3427 	struct cfg80211_registered_device *rdev;
3428 
3429 	ASSERT_RTNL();
3430 
3431 	/*
3432 	 * Clear the indoor setting in case that it is not controlled by user
3433 	 * space, as otherwise there is no guarantee that the device is still
3434 	 * operating in an indoor environment.
3435 	 */
3436 	spin_lock(&reg_indoor_lock);
3437 	if (reg_is_indoor && !reg_is_indoor_portid) {
3438 		reg_is_indoor = false;
3439 		reg_check_channels();
3440 	}
3441 	spin_unlock(&reg_indoor_lock);
3442 
3443 	reset_regdomains(true, &world_regdom);
3444 	restore_alpha2(alpha2, reset_user);
3445 
3446 	/*
3447 	 * If there's any pending requests we simply
3448 	 * stash them to a temporary pending queue and
3449 	 * add then after we've restored regulatory
3450 	 * settings.
3451 	 */
3452 	spin_lock(&reg_requests_lock);
3453 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3454 	spin_unlock(&reg_requests_lock);
3455 
3456 	/* Clear beacon hints */
3457 	spin_lock_bh(&reg_pending_beacons_lock);
3458 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3459 		list_del(&reg_beacon->list);
3460 		kfree(reg_beacon);
3461 	}
3462 	spin_unlock_bh(&reg_pending_beacons_lock);
3463 
3464 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3465 		list_del(&reg_beacon->list);
3466 		kfree(reg_beacon);
3467 	}
3468 
3469 	/* First restore to the basic regulatory settings */
3470 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3471 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3472 
3473 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3474 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3475 			continue;
3476 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3477 			restore_custom_reg_settings(&rdev->wiphy);
3478 	}
3479 
3480 	if (cached && (!is_an_alpha2(alpha2) ||
3481 		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3482 		reset_regdomains(false, cfg80211_world_regdom);
3483 		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3484 		print_regdomain(get_cfg80211_regdom());
3485 		nl80211_send_reg_change_event(&core_request_world);
3486 		reg_set_request_processed();
3487 
3488 		if (is_an_alpha2(alpha2) &&
3489 		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3490 			struct regulatory_request *ureq;
3491 
3492 			spin_lock(&reg_requests_lock);
3493 			ureq = list_last_entry(&reg_requests_list,
3494 					       struct regulatory_request,
3495 					       list);
3496 			list_del(&ureq->list);
3497 			spin_unlock(&reg_requests_lock);
3498 
3499 			notify_self_managed_wiphys(ureq);
3500 			reg_update_last_request(ureq);
3501 			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3502 				   REGD_SOURCE_CACHED);
3503 		}
3504 	} else {
3505 		regulatory_hint_core(world_alpha2);
3506 
3507 		/*
3508 		 * This restores the ieee80211_regdom module parameter
3509 		 * preference or the last user requested regulatory
3510 		 * settings, user regulatory settings takes precedence.
3511 		 */
3512 		if (is_an_alpha2(alpha2))
3513 			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3514 	}
3515 
3516 	spin_lock(&reg_requests_lock);
3517 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3518 	spin_unlock(&reg_requests_lock);
3519 
3520 	pr_debug("Kicking the queue\n");
3521 
3522 	schedule_work(&reg_work);
3523 }
3524 
3525 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3526 {
3527 	struct cfg80211_registered_device *rdev;
3528 	struct wireless_dev *wdev;
3529 
3530 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3531 		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3532 			wdev_lock(wdev);
3533 			if (!(wdev->wiphy->regulatory_flags & flag)) {
3534 				wdev_unlock(wdev);
3535 				return false;
3536 			}
3537 			wdev_unlock(wdev);
3538 		}
3539 	}
3540 
3541 	return true;
3542 }
3543 
3544 void regulatory_hint_disconnect(void)
3545 {
3546 	/* Restore of regulatory settings is not required when wiphy(s)
3547 	 * ignore IE from connected access point but clearance of beacon hints
3548 	 * is required when wiphy(s) supports beacon hints.
3549 	 */
3550 	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3551 		struct reg_beacon *reg_beacon, *btmp;
3552 
3553 		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3554 			return;
3555 
3556 		spin_lock_bh(&reg_pending_beacons_lock);
3557 		list_for_each_entry_safe(reg_beacon, btmp,
3558 					 &reg_pending_beacons, list) {
3559 			list_del(&reg_beacon->list);
3560 			kfree(reg_beacon);
3561 		}
3562 		spin_unlock_bh(&reg_pending_beacons_lock);
3563 
3564 		list_for_each_entry_safe(reg_beacon, btmp,
3565 					 &reg_beacon_list, list) {
3566 			list_del(&reg_beacon->list);
3567 			kfree(reg_beacon);
3568 		}
3569 
3570 		return;
3571 	}
3572 
3573 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3574 	restore_regulatory_settings(false, true);
3575 }
3576 
3577 static bool freq_is_chan_12_13_14(u32 freq)
3578 {
3579 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3580 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3581 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3582 		return true;
3583 	return false;
3584 }
3585 
3586 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3587 {
3588 	struct reg_beacon *pending_beacon;
3589 
3590 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3591 		if (ieee80211_channel_equal(beacon_chan,
3592 					    &pending_beacon->chan))
3593 			return true;
3594 	return false;
3595 }
3596 
3597 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3598 				 struct ieee80211_channel *beacon_chan,
3599 				 gfp_t gfp)
3600 {
3601 	struct reg_beacon *reg_beacon;
3602 	bool processing;
3603 
3604 	if (beacon_chan->beacon_found ||
3605 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3606 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3607 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3608 		return 0;
3609 
3610 	spin_lock_bh(&reg_pending_beacons_lock);
3611 	processing = pending_reg_beacon(beacon_chan);
3612 	spin_unlock_bh(&reg_pending_beacons_lock);
3613 
3614 	if (processing)
3615 		return 0;
3616 
3617 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3618 	if (!reg_beacon)
3619 		return -ENOMEM;
3620 
3621 	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3622 		 beacon_chan->center_freq, beacon_chan->freq_offset,
3623 		 ieee80211_freq_khz_to_channel(
3624 			 ieee80211_channel_to_khz(beacon_chan)),
3625 		 wiphy_name(wiphy));
3626 
3627 	memcpy(&reg_beacon->chan, beacon_chan,
3628 	       sizeof(struct ieee80211_channel));
3629 
3630 	/*
3631 	 * Since we can be called from BH or and non-BH context
3632 	 * we must use spin_lock_bh()
3633 	 */
3634 	spin_lock_bh(&reg_pending_beacons_lock);
3635 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3636 	spin_unlock_bh(&reg_pending_beacons_lock);
3637 
3638 	schedule_work(&reg_work);
3639 
3640 	return 0;
3641 }
3642 
3643 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3644 {
3645 	unsigned int i;
3646 	const struct ieee80211_reg_rule *reg_rule = NULL;
3647 	const struct ieee80211_freq_range *freq_range = NULL;
3648 	const struct ieee80211_power_rule *power_rule = NULL;
3649 	char bw[32], cac_time[32];
3650 
3651 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3652 
3653 	for (i = 0; i < rd->n_reg_rules; i++) {
3654 		reg_rule = &rd->reg_rules[i];
3655 		freq_range = &reg_rule->freq_range;
3656 		power_rule = &reg_rule->power_rule;
3657 
3658 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3659 			snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3660 				 freq_range->max_bandwidth_khz,
3661 				 reg_get_max_bandwidth(rd, reg_rule));
3662 		else
3663 			snprintf(bw, sizeof(bw), "%d KHz",
3664 				 freq_range->max_bandwidth_khz);
3665 
3666 		if (reg_rule->flags & NL80211_RRF_DFS)
3667 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3668 				  reg_rule->dfs_cac_ms/1000);
3669 		else
3670 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3671 
3672 
3673 		/*
3674 		 * There may not be documentation for max antenna gain
3675 		 * in certain regions
3676 		 */
3677 		if (power_rule->max_antenna_gain)
3678 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3679 				freq_range->start_freq_khz,
3680 				freq_range->end_freq_khz,
3681 				bw,
3682 				power_rule->max_antenna_gain,
3683 				power_rule->max_eirp,
3684 				cac_time);
3685 		else
3686 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3687 				freq_range->start_freq_khz,
3688 				freq_range->end_freq_khz,
3689 				bw,
3690 				power_rule->max_eirp,
3691 				cac_time);
3692 	}
3693 }
3694 
3695 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3696 {
3697 	switch (dfs_region) {
3698 	case NL80211_DFS_UNSET:
3699 	case NL80211_DFS_FCC:
3700 	case NL80211_DFS_ETSI:
3701 	case NL80211_DFS_JP:
3702 		return true;
3703 	default:
3704 		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3705 		return false;
3706 	}
3707 }
3708 
3709 static void print_regdomain(const struct ieee80211_regdomain *rd)
3710 {
3711 	struct regulatory_request *lr = get_last_request();
3712 
3713 	if (is_intersected_alpha2(rd->alpha2)) {
3714 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3715 			struct cfg80211_registered_device *rdev;
3716 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3717 			if (rdev) {
3718 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3719 					rdev->country_ie_alpha2[0],
3720 					rdev->country_ie_alpha2[1]);
3721 			} else
3722 				pr_debug("Current regulatory domain intersected:\n");
3723 		} else
3724 			pr_debug("Current regulatory domain intersected:\n");
3725 	} else if (is_world_regdom(rd->alpha2)) {
3726 		pr_debug("World regulatory domain updated:\n");
3727 	} else {
3728 		if (is_unknown_alpha2(rd->alpha2))
3729 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3730 		else {
3731 			if (reg_request_cell_base(lr))
3732 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3733 					rd->alpha2[0], rd->alpha2[1]);
3734 			else
3735 				pr_debug("Regulatory domain changed to country: %c%c\n",
3736 					rd->alpha2[0], rd->alpha2[1]);
3737 		}
3738 	}
3739 
3740 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3741 	print_rd_rules(rd);
3742 }
3743 
3744 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3745 {
3746 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3747 	print_rd_rules(rd);
3748 }
3749 
3750 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3751 {
3752 	if (!is_world_regdom(rd->alpha2))
3753 		return -EINVAL;
3754 	update_world_regdomain(rd);
3755 	return 0;
3756 }
3757 
3758 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3759 			   struct regulatory_request *user_request)
3760 {
3761 	const struct ieee80211_regdomain *intersected_rd = NULL;
3762 
3763 	if (!regdom_changes(rd->alpha2))
3764 		return -EALREADY;
3765 
3766 	if (!is_valid_rd(rd)) {
3767 		pr_err("Invalid regulatory domain detected: %c%c\n",
3768 		       rd->alpha2[0], rd->alpha2[1]);
3769 		print_regdomain_info(rd);
3770 		return -EINVAL;
3771 	}
3772 
3773 	if (!user_request->intersect) {
3774 		reset_regdomains(false, rd);
3775 		return 0;
3776 	}
3777 
3778 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3779 	if (!intersected_rd)
3780 		return -EINVAL;
3781 
3782 	kfree(rd);
3783 	rd = NULL;
3784 	reset_regdomains(false, intersected_rd);
3785 
3786 	return 0;
3787 }
3788 
3789 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3790 			     struct regulatory_request *driver_request)
3791 {
3792 	const struct ieee80211_regdomain *regd;
3793 	const struct ieee80211_regdomain *intersected_rd = NULL;
3794 	const struct ieee80211_regdomain *tmp;
3795 	struct wiphy *request_wiphy;
3796 
3797 	if (is_world_regdom(rd->alpha2))
3798 		return -EINVAL;
3799 
3800 	if (!regdom_changes(rd->alpha2))
3801 		return -EALREADY;
3802 
3803 	if (!is_valid_rd(rd)) {
3804 		pr_err("Invalid regulatory domain detected: %c%c\n",
3805 		       rd->alpha2[0], rd->alpha2[1]);
3806 		print_regdomain_info(rd);
3807 		return -EINVAL;
3808 	}
3809 
3810 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3811 	if (!request_wiphy)
3812 		return -ENODEV;
3813 
3814 	if (!driver_request->intersect) {
3815 		ASSERT_RTNL();
3816 		wiphy_lock(request_wiphy);
3817 		if (request_wiphy->regd) {
3818 			wiphy_unlock(request_wiphy);
3819 			return -EALREADY;
3820 		}
3821 
3822 		regd = reg_copy_regd(rd);
3823 		if (IS_ERR(regd)) {
3824 			wiphy_unlock(request_wiphy);
3825 			return PTR_ERR(regd);
3826 		}
3827 
3828 		rcu_assign_pointer(request_wiphy->regd, regd);
3829 		wiphy_unlock(request_wiphy);
3830 		reset_regdomains(false, rd);
3831 		return 0;
3832 	}
3833 
3834 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3835 	if (!intersected_rd)
3836 		return -EINVAL;
3837 
3838 	/*
3839 	 * We can trash what CRDA provided now.
3840 	 * However if a driver requested this specific regulatory
3841 	 * domain we keep it for its private use
3842 	 */
3843 	tmp = get_wiphy_regdom(request_wiphy);
3844 	rcu_assign_pointer(request_wiphy->regd, rd);
3845 	rcu_free_regdom(tmp);
3846 
3847 	rd = NULL;
3848 
3849 	reset_regdomains(false, intersected_rd);
3850 
3851 	return 0;
3852 }
3853 
3854 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3855 				 struct regulatory_request *country_ie_request)
3856 {
3857 	struct wiphy *request_wiphy;
3858 
3859 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3860 	    !is_unknown_alpha2(rd->alpha2))
3861 		return -EINVAL;
3862 
3863 	/*
3864 	 * Lets only bother proceeding on the same alpha2 if the current
3865 	 * rd is non static (it means CRDA was present and was used last)
3866 	 * and the pending request came in from a country IE
3867 	 */
3868 
3869 	if (!is_valid_rd(rd)) {
3870 		pr_err("Invalid regulatory domain detected: %c%c\n",
3871 		       rd->alpha2[0], rd->alpha2[1]);
3872 		print_regdomain_info(rd);
3873 		return -EINVAL;
3874 	}
3875 
3876 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3877 	if (!request_wiphy)
3878 		return -ENODEV;
3879 
3880 	if (country_ie_request->intersect)
3881 		return -EINVAL;
3882 
3883 	reset_regdomains(false, rd);
3884 	return 0;
3885 }
3886 
3887 /*
3888  * Use this call to set the current regulatory domain. Conflicts with
3889  * multiple drivers can be ironed out later. Caller must've already
3890  * kmalloc'd the rd structure.
3891  */
3892 int set_regdom(const struct ieee80211_regdomain *rd,
3893 	       enum ieee80211_regd_source regd_src)
3894 {
3895 	struct regulatory_request *lr;
3896 	bool user_reset = false;
3897 	int r;
3898 
3899 	if (IS_ERR_OR_NULL(rd))
3900 		return -ENODATA;
3901 
3902 	if (!reg_is_valid_request(rd->alpha2)) {
3903 		kfree(rd);
3904 		return -EINVAL;
3905 	}
3906 
3907 	if (regd_src == REGD_SOURCE_CRDA)
3908 		reset_crda_timeouts();
3909 
3910 	lr = get_last_request();
3911 
3912 	/* Note that this doesn't update the wiphys, this is done below */
3913 	switch (lr->initiator) {
3914 	case NL80211_REGDOM_SET_BY_CORE:
3915 		r = reg_set_rd_core(rd);
3916 		break;
3917 	case NL80211_REGDOM_SET_BY_USER:
3918 		cfg80211_save_user_regdom(rd);
3919 		r = reg_set_rd_user(rd, lr);
3920 		user_reset = true;
3921 		break;
3922 	case NL80211_REGDOM_SET_BY_DRIVER:
3923 		r = reg_set_rd_driver(rd, lr);
3924 		break;
3925 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3926 		r = reg_set_rd_country_ie(rd, lr);
3927 		break;
3928 	default:
3929 		WARN(1, "invalid initiator %d\n", lr->initiator);
3930 		kfree(rd);
3931 		return -EINVAL;
3932 	}
3933 
3934 	if (r) {
3935 		switch (r) {
3936 		case -EALREADY:
3937 			reg_set_request_processed();
3938 			break;
3939 		default:
3940 			/* Back to world regulatory in case of errors */
3941 			restore_regulatory_settings(user_reset, false);
3942 		}
3943 
3944 		kfree(rd);
3945 		return r;
3946 	}
3947 
3948 	/* This would make this whole thing pointless */
3949 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3950 		return -EINVAL;
3951 
3952 	/* update all wiphys now with the new established regulatory domain */
3953 	update_all_wiphy_regulatory(lr->initiator);
3954 
3955 	print_regdomain(get_cfg80211_regdom());
3956 
3957 	nl80211_send_reg_change_event(lr);
3958 
3959 	reg_set_request_processed();
3960 
3961 	return 0;
3962 }
3963 
3964 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3965 				       struct ieee80211_regdomain *rd)
3966 {
3967 	const struct ieee80211_regdomain *regd;
3968 	const struct ieee80211_regdomain *prev_regd;
3969 	struct cfg80211_registered_device *rdev;
3970 
3971 	if (WARN_ON(!wiphy || !rd))
3972 		return -EINVAL;
3973 
3974 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3975 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3976 		return -EPERM;
3977 
3978 	if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3979 		print_regdomain_info(rd);
3980 		return -EINVAL;
3981 	}
3982 
3983 	regd = reg_copy_regd(rd);
3984 	if (IS_ERR(regd))
3985 		return PTR_ERR(regd);
3986 
3987 	rdev = wiphy_to_rdev(wiphy);
3988 
3989 	spin_lock(&reg_requests_lock);
3990 	prev_regd = rdev->requested_regd;
3991 	rdev->requested_regd = regd;
3992 	spin_unlock(&reg_requests_lock);
3993 
3994 	kfree(prev_regd);
3995 	return 0;
3996 }
3997 
3998 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3999 			      struct ieee80211_regdomain *rd)
4000 {
4001 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4002 
4003 	if (ret)
4004 		return ret;
4005 
4006 	schedule_work(&reg_work);
4007 	return 0;
4008 }
4009 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4010 
4011 int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4012 				   struct ieee80211_regdomain *rd)
4013 {
4014 	int ret;
4015 
4016 	ASSERT_RTNL();
4017 
4018 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
4019 	if (ret)
4020 		return ret;
4021 
4022 	/* process the request immediately */
4023 	reg_process_self_managed_hint(wiphy);
4024 	reg_check_channels();
4025 	return 0;
4026 }
4027 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4028 
4029 void wiphy_regulatory_register(struct wiphy *wiphy)
4030 {
4031 	struct regulatory_request *lr = get_last_request();
4032 
4033 	/* self-managed devices ignore beacon hints and country IE */
4034 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4035 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4036 					   REGULATORY_COUNTRY_IE_IGNORE;
4037 
4038 		/*
4039 		 * The last request may have been received before this
4040 		 * registration call. Call the driver notifier if
4041 		 * initiator is USER.
4042 		 */
4043 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4044 			reg_call_notifier(wiphy, lr);
4045 	}
4046 
4047 	if (!reg_dev_ignore_cell_hint(wiphy))
4048 		reg_num_devs_support_basehint++;
4049 
4050 	wiphy_update_regulatory(wiphy, lr->initiator);
4051 	wiphy_all_share_dfs_chan_state(wiphy);
4052 }
4053 
4054 void wiphy_regulatory_deregister(struct wiphy *wiphy)
4055 {
4056 	struct wiphy *request_wiphy = NULL;
4057 	struct regulatory_request *lr;
4058 
4059 	lr = get_last_request();
4060 
4061 	if (!reg_dev_ignore_cell_hint(wiphy))
4062 		reg_num_devs_support_basehint--;
4063 
4064 	rcu_free_regdom(get_wiphy_regdom(wiphy));
4065 	RCU_INIT_POINTER(wiphy->regd, NULL);
4066 
4067 	if (lr)
4068 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4069 
4070 	if (!request_wiphy || request_wiphy != wiphy)
4071 		return;
4072 
4073 	lr->wiphy_idx = WIPHY_IDX_INVALID;
4074 	lr->country_ie_env = ENVIRON_ANY;
4075 }
4076 
4077 /*
4078  * See FCC notices for UNII band definitions
4079  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4080  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4081  */
4082 int cfg80211_get_unii(int freq)
4083 {
4084 	/* UNII-1 */
4085 	if (freq >= 5150 && freq <= 5250)
4086 		return 0;
4087 
4088 	/* UNII-2A */
4089 	if (freq > 5250 && freq <= 5350)
4090 		return 1;
4091 
4092 	/* UNII-2B */
4093 	if (freq > 5350 && freq <= 5470)
4094 		return 2;
4095 
4096 	/* UNII-2C */
4097 	if (freq > 5470 && freq <= 5725)
4098 		return 3;
4099 
4100 	/* UNII-3 */
4101 	if (freq > 5725 && freq <= 5825)
4102 		return 4;
4103 
4104 	/* UNII-5 */
4105 	if (freq > 5925 && freq <= 6425)
4106 		return 5;
4107 
4108 	/* UNII-6 */
4109 	if (freq > 6425 && freq <= 6525)
4110 		return 6;
4111 
4112 	/* UNII-7 */
4113 	if (freq > 6525 && freq <= 6875)
4114 		return 7;
4115 
4116 	/* UNII-8 */
4117 	if (freq > 6875 && freq <= 7125)
4118 		return 8;
4119 
4120 	return -EINVAL;
4121 }
4122 
4123 bool regulatory_indoor_allowed(void)
4124 {
4125 	return reg_is_indoor;
4126 }
4127 
4128 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4129 {
4130 	const struct ieee80211_regdomain *regd = NULL;
4131 	const struct ieee80211_regdomain *wiphy_regd = NULL;
4132 	bool pre_cac_allowed = false;
4133 
4134 	rcu_read_lock();
4135 
4136 	regd = rcu_dereference(cfg80211_regdomain);
4137 	wiphy_regd = rcu_dereference(wiphy->regd);
4138 	if (!wiphy_regd) {
4139 		if (regd->dfs_region == NL80211_DFS_ETSI)
4140 			pre_cac_allowed = true;
4141 
4142 		rcu_read_unlock();
4143 
4144 		return pre_cac_allowed;
4145 	}
4146 
4147 	if (regd->dfs_region == wiphy_regd->dfs_region &&
4148 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4149 		pre_cac_allowed = true;
4150 
4151 	rcu_read_unlock();
4152 
4153 	return pre_cac_allowed;
4154 }
4155 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4156 
4157 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4158 {
4159 	struct wireless_dev *wdev;
4160 	/* If we finished CAC or received radar, we should end any
4161 	 * CAC running on the same channels.
4162 	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4163 	 * either all channels are available - those the CAC_FINISHED
4164 	 * event has effected another wdev state, or there is a channel
4165 	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4166 	 * event has effected another wdev state.
4167 	 * In both cases we should end the CAC on the wdev.
4168 	 */
4169 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4170 		if (wdev->cac_started &&
4171 		    !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
4172 			rdev_end_cac(rdev, wdev->netdev);
4173 	}
4174 }
4175 
4176 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4177 				    struct cfg80211_chan_def *chandef,
4178 				    enum nl80211_dfs_state dfs_state,
4179 				    enum nl80211_radar_event event)
4180 {
4181 	struct cfg80211_registered_device *rdev;
4182 
4183 	ASSERT_RTNL();
4184 
4185 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4186 		return;
4187 
4188 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4189 		if (wiphy == &rdev->wiphy)
4190 			continue;
4191 
4192 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4193 			continue;
4194 
4195 		if (!ieee80211_get_channel(&rdev->wiphy,
4196 					   chandef->chan->center_freq))
4197 			continue;
4198 
4199 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4200 
4201 		if (event == NL80211_RADAR_DETECTED ||
4202 		    event == NL80211_RADAR_CAC_FINISHED) {
4203 			cfg80211_sched_dfs_chan_update(rdev);
4204 			cfg80211_check_and_end_cac(rdev);
4205 		}
4206 
4207 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4208 	}
4209 }
4210 
4211 static int __init regulatory_init_db(void)
4212 {
4213 	int err;
4214 
4215 	/*
4216 	 * It's possible that - due to other bugs/issues - cfg80211
4217 	 * never called regulatory_init() below, or that it failed;
4218 	 * in that case, don't try to do any further work here as
4219 	 * it's doomed to lead to crashes.
4220 	 */
4221 	if (IS_ERR_OR_NULL(reg_pdev))
4222 		return -EINVAL;
4223 
4224 	err = load_builtin_regdb_keys();
4225 	if (err)
4226 		return err;
4227 
4228 	/* We always try to get an update for the static regdomain */
4229 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4230 	if (err) {
4231 		if (err == -ENOMEM) {
4232 			platform_device_unregister(reg_pdev);
4233 			return err;
4234 		}
4235 		/*
4236 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
4237 		 * memory which is handled and propagated appropriately above
4238 		 * but it can also fail during a netlink_broadcast() or during
4239 		 * early boot for call_usermodehelper(). For now treat these
4240 		 * errors as non-fatal.
4241 		 */
4242 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4243 	}
4244 
4245 	/*
4246 	 * Finally, if the user set the module parameter treat it
4247 	 * as a user hint.
4248 	 */
4249 	if (!is_world_regdom(ieee80211_regdom))
4250 		regulatory_hint_user(ieee80211_regdom,
4251 				     NL80211_USER_REG_HINT_USER);
4252 
4253 	return 0;
4254 }
4255 #ifndef MODULE
4256 late_initcall(regulatory_init_db);
4257 #endif
4258 
4259 int __init regulatory_init(void)
4260 {
4261 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4262 	if (IS_ERR(reg_pdev))
4263 		return PTR_ERR(reg_pdev);
4264 
4265 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4266 
4267 	user_alpha2[0] = '9';
4268 	user_alpha2[1] = '7';
4269 
4270 #ifdef MODULE
4271 	return regulatory_init_db();
4272 #else
4273 	return 0;
4274 #endif
4275 }
4276 
4277 void regulatory_exit(void)
4278 {
4279 	struct regulatory_request *reg_request, *tmp;
4280 	struct reg_beacon *reg_beacon, *btmp;
4281 
4282 	cancel_work_sync(&reg_work);
4283 	cancel_crda_timeout_sync();
4284 	cancel_delayed_work_sync(&reg_check_chans);
4285 
4286 	/* Lock to suppress warnings */
4287 	rtnl_lock();
4288 	reset_regdomains(true, NULL);
4289 	rtnl_unlock();
4290 
4291 	dev_set_uevent_suppress(&reg_pdev->dev, true);
4292 
4293 	platform_device_unregister(reg_pdev);
4294 
4295 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4296 		list_del(&reg_beacon->list);
4297 		kfree(reg_beacon);
4298 	}
4299 
4300 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4301 		list_del(&reg_beacon->list);
4302 		kfree(reg_beacon);
4303 	}
4304 
4305 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4306 		list_del(&reg_request->list);
4307 		kfree(reg_request);
4308 	}
4309 
4310 	if (!IS_ERR_OR_NULL(regdb))
4311 		kfree(regdb);
4312 	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4313 		kfree(cfg80211_user_regdom);
4314 
4315 	free_regdb_keyring();
4316 }
4317